WO2022141762A1 - 一种电量采集电路和装置 - Google Patents

一种电量采集电路和装置 Download PDF

Info

Publication number
WO2022141762A1
WO2022141762A1 PCT/CN2021/075960 CN2021075960W WO2022141762A1 WO 2022141762 A1 WO2022141762 A1 WO 2022141762A1 CN 2021075960 W CN2021075960 W CN 2021075960W WO 2022141762 A1 WO2022141762 A1 WO 2022141762A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
circuit
isolation
power
communication
Prior art date
Application number
PCT/CN2021/075960
Other languages
English (en)
French (fr)
Inventor
曹宏桂
房继军
薛波浪
Original Assignee
维谛技术(西安)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维谛技术(西安)有限公司 filed Critical 维谛技术(西安)有限公司
Priority to US18/270,430 priority Critical patent/US20240094270A1/en
Priority to EP21912536.6A priority patent/EP4273562A4/en
Publication of WO2022141762A1 publication Critical patent/WO2022141762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/36Overload-protection arrangements or circuits for electric measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/22Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique

Definitions

  • the present disclosure relates to the technical field of power electronics, and in particular, to a power collection circuit and device.
  • the monitoring host of the data center computer room needs to realize the integration of the environmental monitoring part and the power acquisition function.
  • the power acquisition circuit commonly used in the industry usually adopts the circuit shown in Figure 1.
  • the power acquisition chip uses high-resistance isolation for the voltage signal when sampling the signal, and uses an isolation device for sampling when sampling the current signal, such as CT (Current Transformer, current transformer), Rogowski coil.
  • CT Current Transformer, current transformer
  • Rogowski coil a Device for sampling when sampling the current signal
  • the power supply and communication part share an AC-DC (Alternating Current-Direct Current, AC-DC) power module with the secondary side.
  • AC-DC Alternating Current-Direct Current, AC-DC
  • the voltage on the voltage sampling resistor increases, which in turn causes the current to increase, which may cause the resistor to be burnt due to overcurrent. Therefore, the voltage sampling terminal needs to be unplugged.
  • the present disclosure provides a power collection circuit and device, which are used to solve the problems in the prior art of wasting man-hours and having potential safety hazards when performing reinforced insulation tests.
  • an embodiment of the present disclosure provides a power collection circuit, the circuit includes: an AC-DC conversion unit, a collection unit, a processing unit, a power isolation unit, and a communication isolation unit, wherein:
  • the input end of the AC-DC conversion unit is connected to the AC power supply, and the output end of the AC-DC conversion unit is connected to the input end of the power isolation unit and the power supply end of the processing unit respectively, for converting the AC power be direct current, and input the direct current to the power supply terminals of the power isolation unit and the processing unit;
  • the sampling end of the collection unit is connected to the AC power source for sampling the AC power
  • the output end of the power isolation unit is connected to the output end of the collection unit, and is used for isolating the current between the collection unit and the processing unit;
  • the communication isolation unit is connected between the communication terminal of the acquisition unit and the communication terminal of the processing unit, and is used for isolating the current when the acquisition unit and the processing unit communicate.
  • the power isolation unit includes a high withstand voltage DC-DC isolation transformer and a switch circuit, wherein:
  • the switch circuit is used to generate a control signal according to the input switch signal
  • the first input end of the high withstand voltage DC-DC isolation transformer is connected to the output end of the AC-DC conversion unit, and the second input end of the high withstand voltage DC-DC isolation transformer is connected to the output of the switching circuit
  • the output terminal of the high-voltage DC-DC isolation transformer is connected to the power supply terminal of the acquisition unit, and is used to control the isolation unit of the high-voltage DC-DC isolation transformer through the control signal output by the switching circuit. the current between the acquisition unit and the processing unit.
  • the switch circuit includes a first resistor, a second resistor and a switch tube, wherein:
  • One end of the first resistor is used as the input end of the switch circuit, and the second end of the first resistor is respectively connected to one end of the second resistor and the base of the switch tube;
  • the other end of the second resistor is connected to the emitter of the switch tube and is grounded;
  • the collector of the switch tube is connected to the second input end of the high withstand voltage DC-DC isolation transformer.
  • the power isolation unit further includes a voltage regulator circuit, wherein:
  • the input end of the voltage stabilizer circuit is connected to the output end of the high withstand voltage DC-DC isolation transformer, and the output end of the voltage stabilizer circuit is connected to the power supply end of the acquisition unit, and is used for the high withstand voltage
  • the direct current output from the DC-DC isolation transformer is regulated and then input to the power supply terminal of the acquisition unit.
  • the voltage regulator circuit includes a diode, a first capacitor, a third resistor, a voltage regulator chip, a second capacitor, a first inductor, and a second inductor, wherein:
  • the anode of the diode is connected to the first output end of the high withstand voltage DC-DC isolation transformer, and the cathode of the diode is respectively connected to the input end of the first capacitor, the third resistor and the voltage regulator chip connect;
  • the output end of the voltage regulator chip is respectively connected with one end of the second capacitor and one end of the first inductor;
  • the other end of the first inductor is connected to the power supply end of the acquisition unit;
  • the second output end of the high withstand voltage DC-DC isolation transformer is respectively connected to the other end of the first capacitor, the other end of the third resistor, the ground end of the voltage regulator chip, and the second end of the second capacitor.
  • the other end is connected to one end of the second inductor;
  • the other end of the second inductor is grounded.
  • the communication isolation unit includes an optocoupler and a drive circuit, a first end of the optocoupler is connected to the communication end of the processing unit, and the other end of the optocoupler is connected to the communication terminal of the collection unit is connected;
  • the drive circuit is used to drive the optocoupler to work normally according to the received trigger signal
  • the optocoupler is used to isolate the current during communication between the acquisition unit and the processing unit after normal operation.
  • the communication isolation unit includes a communication isolation chip, wherein:
  • One end of the communication isolation chip is connected to the communication end of the processing unit, and the other end of the communication isolation chip is connected to the communication end of the acquisition unit, wherein one end of the communication isolation chip is connected to the communication isolation chip
  • the other ends are distributed on different sides of the isolation strip of the communication isolation chip.
  • the collection unit includes a collection chip, a voltage dividing resistor, a non-isolated current collection unit and a sampling resistor, wherein:
  • One end of the voltage dividing resistor is connected to the phase line of the alternating current, and the other end of the voltage dividing resistor is connected to the voltage collecting end of the collecting chip for collecting voltage;
  • One end of the non-isolated current acquisition unit is connected to the phase line of the alternating current, the other end of the non-isolated current acquisition unit is connected to one end of the sampling resistor, and the other end of the sampling resistor is connected to the acquisition chip.
  • the current collection terminal is connected to collect current.
  • the circuit further includes a DC-DC DC-DC conversion circuit
  • the input end of the DC-DC conversion circuit is connected to the output end of the AC-DC conversion unit, and the output end of the DC-DC conversion circuit is connected to the power supply end of the processing unit, and is used for converting the AC-DC
  • the direct current output by the DC conversion unit is subjected to step-down processing to obtain the first direct current after the step-down.
  • the power isolation unit is further used for:
  • the high-voltage DC-DC isolation transformer is controlled by the switch circuit to perform step-down processing on the DC power output by the AC-DC conversion unit, so as to obtain a second DC power after step-down.
  • an embodiment of the present disclosure provides an electric power collection device, including the electric power collection circuit according to any one of the first aspect.
  • the current between the power supply terminal of the acquisition unit and the power supply terminal of the processing unit is isolated by the power isolation unit, and the current during the communication between the communication terminal of the acquisition unit and the communication terminal of the processing unit is isolated by the communication isolation unit.
  • FIG. 1 is a schematic diagram of a power collection circuit in the prior art
  • FIG. 2 is a schematic diagram of a power collection circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a collection unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a power isolation unit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another power isolation unit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a communication isolation unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another communication isolation unit provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another communication isolation unit provided by an embodiment of the present disclosure.
  • Insulation test that is, insulation test, in the embodiment of the present disclosure, in order to perform insulation test on the primary side and the secondary side, a voltage is applied between the primary side and the secondary side step by step, and the leakage current is tested. After the voltage is added to a certain level, if If the leakage current tested is less than the current value specified in the standard, the insulation test is qualified. Among them, the insulation test is divided into basic insulation test and reinforced insulation test. The withstand voltage value of reinforced insulation test is larger than that of basic insulation test, generally 4000V DC.
  • Galvanic isolation refers to a way to prevent current from flowing directly from one area to another area in a circuit , that is, a path for direct current flow is not established between the two areas. Although electricity cannot flow directly, energy or information can still be transferred by other means, such as electromagnetic induction or electromagnetic waves, or by optical, acoustic or mechanical means.
  • the voltage terminal In the power collection unit, the voltage terminal is usually pulled out for reinforced insulation testing, and the voltage sampling terminal is pulled out, which wastes man-hours and may also pose a safety hazard to production operators.
  • an embodiment of the present disclosure provides a power collection circuit, as shown in FIG. 2 , including an AC-DC conversion unit 20, a collection unit 21, a processing unit 22, a power isolation unit 23, and a communication isolation unit 24, wherein:
  • the input end of the AC-DC conversion unit 20 is connected to the AC power supply, and the output end of the AC-DC conversion unit 20 is connected to the input end of the power isolation unit 23 and the power supply end of the processing unit 22, respectively, for converting the alternating current into direct current, and Input the DC power to the power supply terminals of the power isolation unit 23 and the processing unit 22;
  • the sampling end of the collection unit 21 is connected to the AC power source, and is used for sampling the AC power;
  • the output end of the power isolation unit 23 is connected to the output end of the collection unit 21 for isolating the current between the collection unit 21 and the processing unit 22;
  • the communication isolation unit 24 is connected between the communication end of the collection unit 21 and the communication end of the processing unit 22 , and is used for isolating the current when the collection unit 21 and the processing unit 22 communicate.
  • the power isolation unit is used to isolate the current between the power supply terminal of the acquisition unit and the power supply terminal of the processing unit
  • the communication isolation unit is used to isolate the current during communication between the communication terminal of the acquisition unit and the communication terminal of the processing unit.
  • the communication isolation unit is electrically isolated, so there is no need for isolation and insulation testing during the production test, which can save man-hours and reduce safety hazards.
  • the AC power can be three-phase power
  • the collection can include current collection and voltage collection.
  • the collection unit 21 includes a collection chip 211, a voltage dividing resistor R1, a non-isolated current collection unit 212 and a sampling resistor R2, in:
  • One end of the voltage dividing resistor R1 is connected to the phase line of the alternating current, and the other end of the voltage dividing resistor R2 is connected to the voltage collecting end of the collecting chip 211 for collecting the voltage;
  • One end of the non-isolated current acquisition unit 212 is connected to the phase line of the alternating current, the other end of the non-isolated current acquisition unit 212 is connected to one end of the sampling resistor R2, and the other end of the sampling resistor R2 is connected to the current acquisition end of the acquisition chip 212 for use in Collect current.
  • the non-isolated current acquisition unit 212 may be a CT.
  • the processing unit 22 may be a CPU (Central Processing Unit, central processing unit).
  • CPU Central Processing Unit, central processing unit
  • the acquisition chip and the CPU work normally, and a working voltage is required.
  • the AC-DC conversion unit 20 converts the alternating current into direct current, it provides the acquisition chip and the CPU with a working voltage. Since the primary side is a high-voltage area and the secondary side is a low-voltage area, so the primary side It needs to be electrically isolated from the secondary side. Therefore, a power isolation unit 23 is connected between the power supply terminal of the acquisition chip and the power supply terminal of the CPU to prevent current from flowing through the primary side and the secondary side.
  • the power isolation unit 23 may include a high withstand voltage DC-DC isolation transformer 231 and a switch circuit 232.
  • the switch circuit 232 is used to generate a control signal according to the input switch signal; the high withstand voltage DC-DC isolation transformer 231
  • the first input terminal of the high voltage DC-DC isolation transformer 231 is connected to the output terminal of the AC-DC conversion unit 20, the second input terminal of the high voltage DC-DC isolation transformer 231 is connected to the output terminal of the switching circuit 232, and the high voltage DC-DC isolation transformer 231
  • the output terminal is connected to the power terminal of the acquisition unit 21 , and is used for controlling the high withstand voltage DC-DC isolation transformer 231 to isolate the current between the acquisition unit and the processing unit through the control signal output by the switch circuit 232 .
  • the power isolation unit may further include a voltage regulator circuit. As shown in FIG. 3 , the input end of the voltage regulator circuit 233 is connected to the The output end of the high withstand voltage DC-DC isolation transformer 231 is connected, and the output end of the voltage stabilizing circuit 233 is connected to the power supply end of the acquisition unit 21, which is used to stabilize the direct current output by the high withstand voltage DC-DC isolation transformer 231 and then input it to the The power supply terminal of the acquisition unit 21 .
  • the high withstand voltage DC-DC isolation transformer 231 , the switch circuit 232 and the voltage regulator circuit 233 in the embodiments of the present disclosure will be described in detail below.
  • FIG. 4 which is a schematic circuit diagram of a power isolation unit provided in an embodiment of the present disclosure
  • the high withstand voltage DC-DC isolation transformer 231 that is, the high withstand voltage DC-DC
  • the DC isolation transformer T includes a primary winding and a secondary winding.
  • the switch circuit 232 includes a resistor R2, a resistor R3 and a switch tube Q1, wherein: one end of the resistor R2 is used as the input end of the switch circuit 232, and the other end of the resistor R2 is respectively connected with one end of the resistor R3 and the switch tube Q1.
  • the base is connected; the other end of the resistor R3 is connected to the emitter of the switch tube Q1 and grounded; the collector of the switch tube Q1 is connected to the second input end of the high withstand voltage DC-DC isolation transformer T.
  • the switch circuit receives the switch signal, which can be triggered by the CPU, the switch signal can be high level, the switch circuit input high level, the switch tube Q1 is turned on; the switch signal is low level, the switch circuit input Low level, the switch tube Q1 is turned off.
  • the voltage regulator circuit 233 includes a diode D2, a capacitor C5, a resistor R4, a voltage regulator chip U1, a capacitor C6, an inductor L2 and an inductor L3, wherein: the anode of the diode D2 is connected to the high withstand voltage DC-DC isolation transformer T
  • the first output terminal of the diode D2 is connected to the input terminal of the capacitor C5, the resistor R4 and the voltage regulator chip U1 respectively;
  • the output terminal of the voltage regulator chip U1 is respectively connected to one end of the capacitor C6 and one end of the inductor L2;
  • the inductor L2 The other end is connected to the power supply end of the acquisition unit 21;
  • the second output end of the high withstand voltage DC-DC isolation transformer T is respectively connected to the other end of the capacitor C5, the other end of the resistor R4, the ground end of the voltage regulator chip U1, and the capacitor C6
  • the other end of the inductance L3 is connected to one end; the other end of the inductance
  • the withstand voltage value of the high withstand voltage DC-DC isolation transformer in the embodiment of the present disclosure is greater than or equal to 4000V, and the high withstand voltage DC-DC isolation transformer is a small high withstand voltage DC-DC isolation transformer.
  • the working principle of the voltage regulator circuit 233 is as follows: .
  • the output diode D2 When Q1 is turned on, the primary side inductance current of the high withstand voltage DC-DC isolation transformer T begins to rise. At this time, due to the relationship of the secondary terminal with the same name, the output diode D2 is turned off, the high withstand voltage DC-DC isolation transformer stores energy, and the load R4 consists of The output capacitor C5 provides energy; when the switch tube Q1 is turned off, the inductive voltage on the primary side of the high withstand voltage DC-DC isolation transformer T is reversed, and the output diode D2 is turned on at this time, and the energy in the high withstand voltage DC-DC isolation transformer T passes through The output diode D2 supplies power to the load R4 while charging the capacitor C5 to supplement the energy just lost.
  • the inductor L2 plays a filtering role
  • the capacitor C6 and the inductor L3 also play a filtering role.
  • the power isolation circuit may further include a capacitor C1 , a capacitor C2 , a capacitor C3 , a capacitor C4 , a resistor R1 , an inductor L1 and a diode D1 .
  • One end of the capacitor C1, the capacitor C2 and the inductor L1 is connected to the power supply 12V, and the other end of the inductor L1 is respectively connected to one end of the capacitor C3, one end of the capacitor C4, one end of the resistor R1 and the first input of the isolation transformer.
  • the other end, the other end of the capacitor C2 and the other end of the capacitor C3 are grounded; the other end of the capacitor C4 is respectively connected to the other end of the resistor R1 and the cathode of the diode D1, and the anode of the diode D1 is connected to the first end of the high withstand voltage DC-DC isolation transformer.
  • Two input terminals are connected.
  • the capacitor C1 is an energy storage element
  • the capacitor C2 the capacitor C3 and the inductor L1 play a filtering role
  • the capacitor C4 the resistor R1 and the diode D1 play a protective role to protect the switch tube Q1.
  • the power isolation unit is further configured to: control the high-voltage DC-DC isolation transformer to perform step-down processing on the direct current output by the AC-DC conversion unit through the switch circuit, so as to obtain the second voltage step-down direct current.
  • the acquisition unit provided by the embodiment of the present disclosure may further include a DC-DC conversion circuit 25 , that is, AC-DC conversion
  • the 12V output from unit 25 drops to 3.3V, which powers the CPU.
  • the DC-DC conversion circuit 25 may use a step-down circuit composed of a step-down chip.
  • the input end of the DC-DC conversion circuit is connected to the output end of the AC-DC conversion unit, and the output end of the DC-DC conversion circuit is connected to the power supply end of the processing unit, and is used to perform the direct current output from the AC-DC conversion unit.
  • the step-down process is performed to obtain the first direct current after the step-down, which supplies power to the processing unit.
  • FIG. 5 is a schematic diagram of another power isolation unit provided in the embodiment of the present disclosure, FIG.
  • the dotted box in is the circuit that is increased compared to Figure 4. It can be seen from Figure 5 that the voltage regulator circuit outputs two voltages of 3.3V.
  • the communication isolation unit in the embodiment of the present disclosure may include an optocoupler and a driving circuit. As shown in FIG. 3 , the first end of the optocoupler is connected to the communication end of the processing unit, and the other end of the optocoupler communicates with the acquisition unit. end connection;
  • the drive circuit 241 is used to drive the optocoupler to work normally according to the received trigger signal
  • the optocoupler is used to isolate the current during the communication between the acquisition unit and the processing unit after normal operation.
  • the communication isolation unit provided by the implementation of the present disclosure will be described below with specific embodiments.
  • FIG. 6 is a schematic diagram of a communication isolation unit provided by an embodiment of the present disclosure
  • the communication isolation unit includes a resistor R6 , a resistor R7 , a resistor R8 , a resistor R9 , a resistor R10 , and a switch tube.
  • Q2 and optocoupler U3 where:
  • One end of the resistor R9 is connected to the 3.3V power supply voltage obtained from the DC voltage converted by the AC-DC conversion unit (that is, the power supply voltage before isolation, 3.3V in Figure 6), and the other end of the resistor R9 is connected to the optocoupler U3.
  • the second input end of the optocoupler U3 is connected to one end of the resistor R10, the first output end of the optocoupler U3 is connected to one end of the resistor R6 and the 3.3V power supply voltage obtained after isolation by the communication isolation unit (that is, after isolation The power supply voltage, 3.3V_ISO in Figure 6) is connected, the second output end of the optocoupler U3 is connected to one end of the resistor R8; the other end of the resistor R10 is used as the second end of the communication isolation unit, that is, it is connected to the processing unit, the switch tube
  • the base of Q2 is connected to the other end of the resistor R8 and the other end of the resistor R7 respectively, the collector of the switch tube Q2 is connected to the other end of the resistor R6, as the first end of the communication isolation unit, connected to the acquisition unit, the switch tube Q2 is connected to the acquisition unit.
  • the emitter is connected to the other end of resistor R7 and grounded.
  • R9 and R10 form a drive circuit.
  • an I 2 C chip can be used for communication, so the communication isolation unit can be designed as shown in FIG.
  • the first end and the second end are connected to the SDA of the acquisition unit, the third end is connected to the SDA of the processing unit, the fourth end is connected to the SCL of the acquisition unit, and the fifth end is connected to the SCL of the processing unit.
  • R9 and R10 are the drive circuits of the optocoupler U3
  • R11 is the drive circuit of the optocoupler U4
  • R18 is the drive circuit of the optocoupler U5.
  • the communication isolation unit may further include a communication isolation chip U6, the communication isolation chip U6 includes an isolation strip, one side of the isolation strip includes SDA1 and SCL1, and the other side of the isolation strip One side includes SDA2 and SCL2, SDA1 is connected to the communication terminal of the acquisition unit, SCL1 is connected to the clock signal terminal of the acquisition unit, SDA2 is connected to the communication terminal of the processing unit, and SCL2 is connected to the clock signal terminal of the processing unit.
  • the communication isolation unit further includes a resistor R19 , a resistor R20 , a resistor R21 , a resistor R22 , a capacitor C9 and a capacitor C10 .
  • the connection relationship of each component in the communication isolation unit is described below with reference to FIG. 8 .
  • resistor R19 is connected to one end of resistor R20 and the isolated power supply voltage 3.3V (3.3V_ISO in Figure 8) respectively, the other end of resistor R19 is connected to SDA1, the other end of resistor R20 is connected to SCL1, and one end of capacitor C9 is connected Connect to 3.3V_ISO and the power terminal on one side of the isolation belt respectively, the other end of capacitor C9 is grounded, the ground terminal on one side of isolation belt is grounded, one end of resistor R21 is connected to one end of resistor R22 and the power supply voltage before isolation is 3.3V (Fig.
  • the size of the communication isolation chip is small, so it occupies a small area on the PCB (Printed Circuit Board, printed circuit board), which can reduce the board of the PCB and reduce the cost.
  • PCB Print Circuit Board, printed circuit board
  • the present application may also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the present application may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by an instruction execution system or Used in conjunction with an instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by, or in connection with, an instruction execution system, apparatus, or device. device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Power Conversion In General (AREA)

Abstract

一种电量采集电路和装置,用以解决现有技术中存在的进行加强绝缘测试时,浪费工时,存在安全隐患的问题。电量采集电路包括AC-DC转换单元(20)、采集单元(21)、处理单元(22)、电源隔离单元(23)以及通信隔离单元(24),电源隔离单元(23)隔离采集单元(21)电源端和处理单元(22)电源端之间的电流,通信隔离单元(24)隔离采集单元(21)通信端和处理单元(22)通信端进行通信时的电流,由于电源隔离单元(23)和通信隔离单元(24)的存在,在采样单元(21)侧不会出现大电流的现象,从而无需拔掉采样端子进行加强绝缘测试,进而节省工时,降低安全隐患。

Description

一种电量采集电路和装置
本申请要求以下中国专利申请的优先权:于2020年12月31日提交中国专利局的申请号为202011623943.1、发明创造名称为“一种电量采集电路和装置”的中国专利申请。该专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及电力电子技术领域,特别涉及一种电量采集电路和装置。
背景技术
数据中心机房监控主机要实现环境量监控部分与电量采集功能的集成,业内常用的电量采集电路通常采用如图1所示的电路。
图1所示的电量采集电路,电量采集芯片在信号采样时,对电压信号使用高阻隔离,对电流信号进行采样时,使用隔离器件进行采样,比如,CT(Current Transformer,电流互感器),罗氏线圈。电源和通信部分与二次侧共用一路AC-DC(Alternating Current-Direct Current,交流-直流)电源模块。
该电量采集电路,在生产测试的过程中进行加强绝缘测试时,由于电压采样电阻上承受的电压变大,进而导致电流变大,可能会导致电阻过流烧毁,因此需要拔掉电压采样端子。
拔掉电压采样端子进行加强绝缘测试,浪费工时,并且生产操作人员存在触电的风险。
发明内容
本公开提供一种电量采集电路和装置,用以解决现有技术中存在的进行加强绝缘测试时,浪费工时,存在安全隐患的问题。
第一方面,本公开实施例提供一种电量采集电路,该电路包括:AC-DC转换单元、采集单元、处理单元、电源隔离单元以及通信隔离单元,其中:
所述AC-DC转换单元的输入端与交流电源连接,所述AC-DC转换单元的输出端分别与所述电源隔离单元的输入端和所述处理单元的电源端连接,用于将交流电转换为直流电,并将所述直流电输入到所述电源隔离单元和所述处 理单元的电源端;
所述采集单元的采样端与所述交流电源连接,用于对交流电进行采样;
所述电源隔离单元的输出端与所述采集单元的输出端连接,用于隔离所述采集单元和所述处理单元之间的电流;
所述通信隔离单元连接于所述采集单元的通信端和所述处理单元的通信端之间,用于隔离所述采集单元和所述处理单元进行通信时的电流。
在一种可能的实现方式中,所述电源隔离单元包括高耐压DC-DC隔离变压器和开关电路,其中:
所述开关电路,用于根据输入的开关信号生成控制信号;
所述高耐压DC-DC隔离变压器的第一输入端与所述AC-DC转换单元的输出端连接,所述高耐压DC-DC隔离变压器的第二输入端与所述开关电路的输出端连接,所述高耐压DC-DC隔离变压器的输出端与所述采集单元的电源端连接,用于通过所述开关电路输出的控制信号控制所述高耐压DC-DC隔离变压器隔离所述采集单元和所述处理单元之间的电流。
在一种可能的实现方式中,所述开关电路包括第一电阻、第二电阻和开关管,其中:
所述第一电阻的一端作为所述开关电路的输入端,所述第一电阻的第二端分别与第二电阻的一端和所述开关管的基极连接;
所述第二电阻的另一端与所述开关管的发射极,并接地;
所述开关管的集电极与所述高耐压DC-DC隔离变压器的第二输入端连接。
在一种可能的实现方式中,所述电源隔离单元还包括稳压电路,其中:
所述稳压电路的输入端与所述高耐压DC-DC隔离变压器的输出端连接,所述稳压电路的输出端与所述采集单元的电源端连接,用于对所述高耐压DC-DC隔离变压器输出的直流电进行稳压后输入到所述采集单元的电源端。
在一种可能的实现方式中,所述稳压电路包括二极管、第一电容、第三电阻、稳压芯片、第二电容、第一电感以及第二电感,其中:
所述二极管的阳极与所述高耐压DC-DC隔离变压器的第一输出端连接,所述二极管的阴极分别与所述第一电容、所述第三电阻和所述稳压芯片的输入端连接;
所述稳压芯片的输出端分别与第二电容的一端和所述第一电感的一端连接;
所述第一电感的另一端与所述采集单元的电源端连接;
所述高耐压DC-DC隔离变压器的第二输出端分别与所述第一电容的另一端、所述第三电阻的另一端、所述稳压芯片的接地端、所述第二电容的另一端以及所述第二电感的一端连接;
所述第二电感的另一端接地。
在一种可能的实现方式中,所述通信隔离单元包括光电耦合器和驱动电路,所述光电耦合器的第一端与所述处理单元的通信端连接,所述光电耦合器的另一端与所述采集单元的通信端连接;
所述驱动电路,用于根据接收到的触发信号,驱动所述光电耦合器正常工作;
所述光电耦合器,用于在正常工作后,隔离所述采集单元和所述处理单元进行通信时的电流。
在一种可能的实现方式中,所述通信隔离单元包括通信隔离芯片,其中:
所述通信隔离芯片的一端与所述处理单元的通信端连接,所述通信隔离芯片的另一端与所述采集单元的通信端连接,其中,所述通信隔离芯片的一端和所述通信隔离芯片的另一端分布在所述通信隔离芯片的隔离带的不同侧。
在一种可能的实现方式中,所述采集单元包括采集芯片、分压电阻、非隔离电流采集单元和采样电阻,其中:
所述分压电阻的一端与所述交流电的相线连接,所述分压电阻的另一端与所述采集芯片的电压采集端连接,用于采集电压;
所述非隔离电流采集单元的一端与所述交流电的相线连接,所述非隔离电流采集单元的另一端与所述采样电阻的一端连接,所述采样电阻的另一端与所述采集芯片的电流采集端连接,用于采集电流。
在一种可能的实现方式中,所述电路还包括直流-直流DC-DC转换电路;
所述DC-DC转换电路的输入端与所述AC-DC转换单元的输出端连接,所述DC-DC转换电路的输出端与所述处理单元的电源端连接,用于对所述AC-DC转换单元输出的直流电进行降压处理,得到降压后的第一直流电。
在一种可能的实现方式中,所述电源隔离单元还用于:
通过所述开关电路控制所述高耐压DC-DC隔离变压器对所述AC-DC转换单元输出的直流电进行降压处理,得到降压后的第二直流电。
第二方面,本公开实施例提供一种电量采集装置,包括第一方面任一所述的电量采集电路。
本公开有益效果如下:
本公开实施例,通过电源隔离单元对采集单元电源端和处理单元电源端之间的电流进行隔离,通过通信隔离单元隔离采集单元通信端和处理单元通信端进行通信时的电流进行隔离,在生产测试的过程中进行加强绝缘测试时,由于电源隔离单元和通信隔离单元的存在,在采样单元侧不会出现大电流的现象,从而无需拔掉采样端子进行加强绝缘测试,进而节省工时,降低安全隐患。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中一种电量采集电路的示意图;
图2为本公开实施例提供的一种电量采集电路的示意图;
图3为本公开实施例提供的一种采集单元的示意图;
图4为本公开实施例提供的一种电源隔离单元的示意图;
图5为本公开实施例提供的另一种电源隔离单元的示意图;
图6为本公开实施例提供的一种通信隔离单元的示意图;
图7为本公开实施例提供的另一种通信隔离单元的示意图;
图8为本公开实施例提供的另一种通信隔离单元的示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
绝缘测试,即绝缘试验,本公开实施例中为对一次侧和二次侧进行绝缘测试,在一次侧和二次侧之间逐级加电压,测试漏电流,电压加到一定等级后,如果测试的漏电流小于标准中规定的电流值,则绝缘测试合格。其中,绝缘测试分为基本绝缘测试和加强绝缘测试,加强绝缘测试的耐压值比基本绝缘测试的耐压值大,一般为4000V直流电。
电气隔离(Galvanic isolation)是指在 电路中避免电流直接从某一区域流到另外一区域的方式,也就是在两个区域间不建立电流直接流动的路径。虽然电流无法直接流过,但能量或是资讯仍可以经由其他方式传递,例如 电磁感应或电磁波,或是利用光学、声学或是机械的方式进行。
电量采集单元,通常采用拔掉电压端子进行加强绝缘测试,拔电压采样端子,浪费工时,对生产操作人员还可能存在安全隐患。
基于上述问题,本公开实施例提供了一种电量采集电路,如图2所示,包括AC-DC转换单元20、采集单元21、处理单元22、电源隔离单元23以及通信隔离单元24,其中:
AC-DC转换单元20的输入端与交流电源连接,AC-DC转换单元20的输出端分别与电源隔离单元23的输入端和处理单元22的电源端连接,用于将交流电转换为直流电,并将直流电输入到电源隔离单元23和处理单元22的电源端;
采集单元21的采样端与交流电源连接,用于对交流电进行采样;
电源隔离单元23的输出端与采集单元21的输出端连接,用于隔离采集单元21和所述处理单元22之间的电流;
通信隔离单元24连接于采集单元21的通信端和处理单元22的通信端之间,用于隔离采集单元21和所述处理单元22进行通信时的电流。
本公开实施例,使用电源隔离单元隔离采集单元电源端和处理单元电源端之间的电流,使用通信隔离单元隔离采集单元通信端和处理单元通信端进行通信时的电流,由于使用电源隔离单元和通信隔离单元进行电气隔离,因此在生产测试的过程中无需进行隔离绝缘测试,从而可以节省工时,降低安全隐患。
在实施中,交流电可以为三相电,采集可以包括电流采集和电压采集,如图3所示,采集单元21包括采集芯片211、分压电阻R1、非隔离电流采集单元212和采样电阻R2,其中:
分压电阻R1的一端与交流电的相线连接,分压电阻R2的另一端与采集芯片211的电压采集端连接,用于采集电压;
非隔离电流采集单元212的一端与交流电的相线连接,非隔离电流采集单元212的另一端与采样电阻R2的一端连接,采样电阻R2的另一端与采集芯片212的电流采集端连接,用于采集电流。
其中,非隔离电流采集单元212可以为CT。
本公开实施例中,处理单元22可以为CPU(Central Processing Unit,中央处理器)。
采集芯片和CPU正常工作,需要工作电压,AC-DC转换单元20将交流电转换为直流电后,为采集芯片和CPU提供工作电压,由于一次侧为高压区,二次侧为低压区,所以一次侧和二次侧需要进行电气隔离,因此,在采集芯片的电源端和CPU的电源端之间连接电源隔离单元23,防止一次侧和二次侧有电流流过。
如图3所示,电源隔离单元23可以包括高耐压DC-DC隔离变压器231和开关电路232,开关电路232,用于根据输入的开关信号生成控制信号;高耐压DC-DC隔离变压器231的第一输入端与AC-DC转换单元20的输出端连接,高耐压DC-DC隔离变压器231的第二输入端与开关电路232的输出端连接,高耐压DC-DC隔离变压器231的输出端与采集单元21的电源端连接,用于通过开关电路232输出的控制信号控制高耐压DC-DC隔离变压器231隔离采集单元和处理单元之间的电流。
在具体实施中,为了使高耐压DC-DC隔离变压器输出的电压能够稳定的输出给采集芯片,电源隔离单元还可以包括稳压电路,如图3所示,稳压电路233的输入端与高耐压DC-DC隔离变压器231的输出端连接,稳压电路233的输出端采集单元21的电源端连接,用于对高耐压DC-DC隔离变压器231输出的直流电进行稳压后输入到采集单元21的电源端。
下面对本公开实施例中的高耐压DC-DC隔离变压器231、开关电路232和稳压电路233进行详细说明。
如图4所示,为本公开实施例提供的一种电源隔离单元的电路示意图,从图4中可以看出,高耐压DC-DC隔离变压器231,即图4中的高耐压DC-DC隔离变压器T包括原边绕组和副边绕组。
如图4所示,开关电路232包括电阻R2、电阻R3和开关管Q1,其中:电阻R2的一端作为开关电路232的输入端,电阻R2的另一端分别与电阻R3的一端和开关管Q1的基极连接;电阻R3的另一端与开关管Q1的发射极连接,并接地;开关管Q1的集电极与高耐压DC-DC隔离变压器T的第二输入端连接。
在实施中,开关电路接收开关信号,该开关信号可以为CPU触发的,开关信号可以为高电平,开关电路输入高电平,开关管Q1导通;开关信号为低电平,开关电路输入低电平,开关管Q1截止。
如图4所示,稳压电路233包括二极管D2、电容C5、电阻R4、稳压芯片U1、电容C6、电感L2以及电感L3,其中:二极管D2的阳极与高耐压DC-DC隔离变压器T的第一输出端连接,二极管D2的阴极分别与电容C5、电阻R4和稳压芯片U1的输入端连接;稳压芯片U1的输出端分别与电容C6的一端和电感L2的一端连接;电感L2的另一端与采集单元21的电源端连接;高耐压DC-DC隔离变压器T的第二输出端分别与电容C5的另一端、电阻R4的另一端、稳压芯片U1的接地端、电容C6的另一端以及电感L3的一端连接;电感L3的另一端接地。
需要说明的是,本公开实施例中的高耐压DC-DC隔离变压器的耐压值≥4000V,且高耐压DC-DC隔离变压器为小型高耐压DC-DC隔离变压器。
稳压电路233的工作原理如下:。
当Q1导通时,高耐压DC-DC隔离变压器T原边电感电流开始上升,此时由于次级同名端的关系,输出二极管D2截止,高耐压DC-DC隔离变压器储存能量,负载R4由输出电容C5提供能量;开关管Q1截止时,高耐压DC-DC隔离变压器T原边电感感应电压反向,此时输出二极管D2导通,高耐压DC-DC隔离变压器T中的能量经由输出二极管D2向负载R4供电,同时对电容C5充电,补充刚刚损失的能量。
其中,电感L2起滤波作用,电容C6和电感L3也起滤波作用。
参见图4,该电源隔离电路还可以包括电容C1、电容C2、电容C3、电容C4、电阻R1、电感L1以及二极管D1。
电容C1、电容C2以及电感L1的一端与供电电源12V连接,电感L1的另一端分别与电容C3的一端、电容C4的一端、电阻R1的一端和隔离变压器 的第一输入端连接,电容C1的另一端、电容C2的另一端以及电容C3的另一端接地;电容C4的另一端分别与电阻R1的另一端和二极管D1的阴极连接,二极管D1的阳极与高耐压DC-DC隔离变压器的第二输入端连接。
其中,电容C1为储能元件,电容C2、电容C3和电感L1起滤波作用,电容C4、电阻R1和二极管D1起保护作用,保护开关管Q1。
在一种可选的实施方式中,电源隔离单元还用于:通过开关电路控制高耐压DC-DC隔离变压器对AC-DC转换单元输出的直流电进行降压处理,得到降压后的第二直流电。
比如,将AC-DC转换单元输出的12V电压降为3.3V,为采集芯片供电。
如果AC-DC转换单元输出的电压为12V,CPU供电电压也为3.3V,则如图3所示,本公开实施例提供的采集单元还可以包括DC-DC转换电路25,即将AC-DC转换单元25输出的12V电压降为3.3V,为CPU供电。具体的,DC-DC转换电路25可以使用降压芯片组成的降压电路。
具体的,DC-DC转换电路的输入端与AC-DC转换单元的输出端连接,DC-DC转换电路的输出端与处理单元的电源端连接,用于对AC-DC转换单元输出的直流电进行降压处理,得到降压后的第一直流电,为处理单元供电。
在具体实施中,可以采集两路三相电,因此需要电源隔离单元输出两个3.3V的电压,如图5所示,为本公开实施例提供的另一种电源隔离单元的示意图,图5中的虚线框为比图4增加的电路,从图5中可以看出,稳压电路输出两个3.3V的电压。
图5电路的原理可以参见图4中电路的原理,此处不再赘述。
本公开实施例中的通信隔离单元可以包括光电耦合器和驱动电路,如图3所示,光电耦合器的第一端与处理单元的通信端连接,光电耦合器的另一端与采集单元的通信端连接;
驱动电路241,用于根据接收到的触发信号,驱动光电耦合器正常工作;
光电耦合器,用于在正常工作后,隔离采集单元和处理单元进行通信时的电流。
下面以具体的实施例对本公开实施提供的通信隔离单元进行说明。
如图6所示,为本公开实施例提供的一种通信隔离单元的示意图,从图6中可以看出,通信隔离单元包括电阻R6、电阻R7、电阻R8、电阻R9、电阻 R10、开关管Q2以及光耦U3,其中:
电阻R9的一端与经AC-DC转换单元转换后的直流电压得到的3.3V供电电压(即隔离前的供电电压,图6中的3.3V)连接,电阻R9的另一端与光耦U3的第一输入端连接,光耦U3的第二输入端与电阻R10的一端连接,光耦U3的第一输出端与电阻R6的一端和经过通信隔离单元隔离后得到的3.3V供电电压(即隔离后的供电电压,图6中的3.3V_ISO)连接,光耦U3的第二输出端与电阻R8的一端连接;电阻R10的另一端作为通信隔离单元的第二端,即与处理单元连接,开关管Q2的基极分别与电阻R8的另一端和电阻R7的一端连接,开关管Q2的集电极与电阻R6的另一端连接,作为通信隔离单元的第一端,与采集单元连接,开关管Q2的发射极与电阻R7的另一端连接,并接地。
需要说明的是,图6中R9和R10组成驱动电路。
在具体实施中,可以使用I 2C的芯片进行通信,因此可以将通信隔离单元设计成如图7所示的结构,具体电路图的原理可以参见对图6电路图的介绍,此处不再赘述。
需要说明的是,由于I 2C信号的SDA(Serial Data Line,串行数据线)是双向的,所以要用两个光耦,即图7中的光耦U3和光耦U4,光耦U5用于SCL(Serial Clock Line,串行时钟线)信号传输时电流的隔离。
图7中,第一端和第二端与采集单元的SDA连接,第三端与处理单元的SDA连接,第四端与采集单元的SCL连接,第五端与处理单元的SCL连接。
图7中,R9和R10为光耦U3的驱动电路,R11为光耦U4的驱动电路,R18为光耦U5的驱动电路。
在一种可能的实现方式中,如图8所示,通信隔离单元还可以包括通信隔离芯片U6,通信隔离芯片U6包括隔离带,在隔离带的一侧包括SDA1和SCL1,在隔离带的另一侧包括SDA2和SCL2,SDA1与采集单元的通信端连接,SCL1与采集单元的时钟信号端连接,SDA2与处理单元的通信端连接,SCL2与处理单元的时钟信号端连接。
具体的,通信隔离单元还包括电阻R19、电阻R20、电阻R21、电阻R22、电容C9以及电容C10,下面参照图8对通信隔离单元中各元器件的连接关系进行说明。
电阻R19的一端分别与电阻R20的一端和隔离后的供电电压3.3V(图8中的3.3V_ISO)连接,电阻R19的另一端与SDA1连接,电阻R20的另一端与SCL1连接,电容C9的一端分别与3.3V_ISO和隔离带一侧的电源端连接,电容C9的另一端接地,隔离带一侧的接地端接地,电阻R21的一端分别与电阻R22的一端和隔离前的供电电压3.3V(图8中的3.3V)连接,电阻R21的另一端与SDA2连接,电阻R22的另一端与SCL2连接,电容C10的一端分别与3.3V_ISO和隔离带另一侧的电源端连接,电容C10的另一端接地,隔离带另一侧的接地端接地。
通信隔离芯片的体积较小,因此在PCB(Printed Circuit Board,印制线路板)上占用的面积较小,可以缩小PCB的板材,降低成本。
以上参照示出根据本申请实施例的方法、装置(***)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行***来使用或结合指令执行***而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行***、装置或设备使用,或结合指令执行***、装置或设备使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (11)

  1. 一种电量采集电路,其特征在于,该电路包括:交流-直流AC-DC转换单元、采集单元、处理单元、电源隔离单元以及通信隔离单元,其中:
    所述AC-DC转换单元的输入端与交流电源连接,所述AC-DC转换单元的输出端分别与所述电源隔离单元的输入端和所述处理单元的电源端连接,用于将交流电转换为直流电,并将所述直流电输入到所述电源隔离单元和所述处理单元的电源端;
    所述采集单元的采样端与所述交流电源连接,用于对交流电进行采样;
    所述电源隔离单元的输出端与所述采集单元的输出端连接,用于隔离所述采集单元和所述处理单元之间的电流;
    所述通信隔离单元连接于所述采集单元的通信端和所述处理单元的通信端之间,用于隔离所述采集单元和所述处理单元进行通信时的电流。
  2. 如权利要求1所述的电路,其特征在于,所述电源隔离单元包括高耐压直流-直流DC-DC隔离变压器和开关电路,其中:
    所述开关电路,用于根据输入的开关信号生成控制信号;
    所述高耐压DC-DC隔离变压器的第一输入端与所述AC-DC转换单元的输出端连接,所述高耐压DC-DC隔离变压器的第二输入端与所述开关电路的输出端连接,所述高耐压DC-DC隔离变压器的输出端与所述采集单元的电源端连接,用于通过所述开关电路输出的控制信号控制所述高耐压DC-DC隔离变压器隔离所述采集单元和所述处理单元之间的电流。
  3. 如权利要求2所述的电路,其特征在于,所述开关电路包括第一电阻、第二电阻和开关管,其中:
    所述第一电阻的一端作为所述开关电路的输入端,所述第一电阻的第二端分别与第二电阻的一端和所述开关管的基极连接;
    所述第二电阻的另一端与所述开关管的发射极,并接地;
    所述开关管的集电极与所述高耐压DC-DC隔离变压器的第二输入端连接。
  4. 如权利要求2所述的电路,其特征在于,所述电源隔离单元还包括稳压电路,其中:
    所述稳压电路的输入端与所述高耐压DC-DC隔离变压器的输出端连接,所述稳压电路的输出端与所述采集单元的电源端连接,用于对所述高耐压DC-DC隔离变压器输出的直流电进行稳压后输入到所述采集单元的电源端。
  5. 如权利要求4所述的电路,其特征在于,所述稳压电路包括二极管、第一电容、第三电阻、稳压芯片、第二电容、第一电感以及第二电感,其中:
    所述二极管的阳极与所述高耐压DC-DC隔离变压器的第一输出端连接,所述二极管的阴极分别与所述第一电容、所述第三电阻和所述稳压芯片的输入端连接;
    所述稳压芯片的输出端分别与第二电容的一端和所述第一电感的一端连接;
    所述第一电感的另一端与所述采集单元的电源端连接;
    所述高耐压DC-DC隔离变压器的第二输出端分别与所述第一电容的另一端、所述第三电阻的另一端、所述稳压芯片的接地端、所述第二电容的另一端以及所述第二电感的一端连接;
    所述第二电感的另一端接地。
  6. 如权利要求1所述的电路,其特征在于,所述通信隔离单元包括光电耦合器和驱动电路,所述光电耦合器的第一端与所述处理单元的通信端连接,所述光电耦合器的另一端与所述采集单元的通信端连接;
    所述驱动电路,用于根据接收到的触发信号,驱动所述光电耦合器正常工作;
    所述光电耦合器,用于在正常工作后,隔离所述采集单元和所述处理单元进行通信时的电流。
  7. 如权利要求1所述的电路,其特征在于,所述通信隔离单元包括通信隔离芯片,其中:
    所述通信隔离芯片的一端与所述处理单元的通信端连接,所述通信隔离芯片的另一端与所述采集单元的通信端连接,其中,所述通信隔离芯片的一端和所述通信隔离芯片的另一端分布在所述通信隔离芯片的隔离带的不同侧。
  8. 如权利要求1所述的电路,其特征在于,所述采集单元包括采集芯片、分压电阻、非隔离电流采集单元和采样电阻,其中:
    所述分压电阻的一端与所述交流电的相线连接,所述分压电阻的另一端与 所述采集芯片的电压采集端连接,用于采集电压;
    所述非隔离电流采集单元的一端与所述交流电的相线连接,所述非隔离电流采集单元的另一端与所述采样电阻的一端连接,所述采样电阻的另一端与所述采集芯片的电流采集端连接,用于采集电流。
  9. 如权利要求1所述的电路,其特征在于,所述电路还包括DC-DC转换电路;
    所述DC-DC转换电路的输入端与所述AC-DC转换单元的输出端连接,所述DC-DC转换电路的输出端与所述处理单元的电源端连接,用于对所述AC-DC转换单元输出的直流电进行降压处理,得到降压后的第一直流电。
  10. 如权利要求9所述的电路,其特征在于,所述电源隔离单元还用于:
    通过所述开关电路控制所述高耐压DC-DC隔离变压器对所述AC-DC转换单元输出的直流电进行降压处理,得到降压后的第二直流电。
  11. 一种电量采集装置,其特征在于,包括如权利要求1~10任一所述的电量采集电路。
PCT/CN2021/075960 2020-12-31 2021-02-08 一种电量采集电路和装置 WO2022141762A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/270,430 US20240094270A1 (en) 2020-12-31 2021-02-08 Power level acquisition circuit and apparatus
EP21912536.6A EP4273562A4 (en) 2020-12-31 2021-02-08 POWER LEVEL DETECTION CIRCUIT AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011623943.1 2020-12-31
CN202011623943.1A CN114689931A (zh) 2020-12-31 2020-12-31 一种电量采集电路和装置

Publications (1)

Publication Number Publication Date
WO2022141762A1 true WO2022141762A1 (zh) 2022-07-07

Family

ID=82133400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075960 WO2022141762A1 (zh) 2020-12-31 2021-02-08 一种电量采集电路和装置

Country Status (4)

Country Link
US (1) US20240094270A1 (zh)
EP (1) EP4273562A4 (zh)
CN (1) CN114689931A (zh)
WO (1) WO2022141762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115483813A (zh) * 2022-09-15 2022-12-16 无锡市欧瑞杰电子科技有限公司 一种交直流自适应输入采样电路和开关电源

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182577A (zh) * 2011-01-30 2011-09-14 潍柴动力股份有限公司 发动机电子控制单元
CN103378660A (zh) * 2012-04-23 2013-10-30 美国亚德诺半导体公司 用于隔离式测量***的***及其控制方法
CN106249178A (zh) * 2016-09-05 2016-12-21 东莞市旺达富自动化设备有限公司 一种交流电参数检测和老化测试***
CN106685211A (zh) * 2016-08-22 2017-05-17 武汉盛帆电子股份有限公司 开关电源及电气隔离方法、电表
US20190222126A1 (en) * 2018-01-12 2019-07-18 Stmicroelectronics S.R.L. Galvanically isolated dc-dc circuit converter with data communication, corresponding system and corresponding method
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理***
CN211827556U (zh) * 2020-03-31 2020-10-30 深圳和而泰数据资源与云技术有限公司 一种物联网数据采集***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893150B1 (ko) * 2012-06-12 2018-08-30 엘지전자 주식회사 전력량측정장치가 내장된 가전기기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182577A (zh) * 2011-01-30 2011-09-14 潍柴动力股份有限公司 发动机电子控制单元
CN103378660A (zh) * 2012-04-23 2013-10-30 美国亚德诺半导体公司 用于隔离式测量***的***及其控制方法
CN106685211A (zh) * 2016-08-22 2017-05-17 武汉盛帆电子股份有限公司 开关电源及电气隔离方法、电表
CN106249178A (zh) * 2016-09-05 2016-12-21 东莞市旺达富自动化设备有限公司 一种交流电参数检测和老化测试***
US20190222126A1 (en) * 2018-01-12 2019-07-18 Stmicroelectronics S.R.L. Galvanically isolated dc-dc circuit converter with data communication, corresponding system and corresponding method
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理***
CN211827556U (zh) * 2020-03-31 2020-10-30 深圳和而泰数据资源与云技术有限公司 一种物联网数据采集***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4273562A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115483813A (zh) * 2022-09-15 2022-12-16 无锡市欧瑞杰电子科技有限公司 一种交直流自适应输入采样电路和开关电源

Also Published As

Publication number Publication date
US20240094270A1 (en) 2024-03-21
EP4273562A1 (en) 2023-11-08
CN114689931A (zh) 2022-07-01
EP4273562A4 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
CN204217167U (zh) 单火线触摸灯控开关
CN105432006A (zh) 开关元件驱动电源电路
CN204928349U (zh) 一种单电池自动化不间断电源装置
WO2022141762A1 (zh) 一种电量采集电路和装置
CN204030993U (zh) 输电线路高压取电装置
CN112506731B (zh) 一种配电开关模拟接口装置的设计方法
CN103872792A (zh) 电流互感器在线取电装置
CN203788174U (zh) 耐冲击直流高压发生器
CN206294067U (zh) 一种应用于bms上的防呆隔离电源电路
CN107040143B (zh) 电源电路、供电方法及其制成的计量仪表
CN202696482U (zh) 漏电断路器用电源电路
CN114447878A (zh) 一种直流接地***的故障监测保护装置及保护方法
CN212324007U (zh) 一种电源适配器及电子设备
CN210181142U (zh) 一种逆变器测试***
CN103607110B (zh) 一种辅助绕组供电的快速开启开关电源
CN111693835A (zh) 一种工频三倍频变频三合一集成无局放试验电源
CN219145003U (zh) 漏电保护电路及功率变换器
EP3163713B1 (en) Uninterruptible electric power system
CN220754412U (zh) 一种不间断电源
CN215010045U (zh) 一种反激电源开关管过电压抑制电路
CN115149633B (zh) 一种能量传递装置、电源供应器及供电设备
CN219204357U (zh) 一种显微镜及其显微镜集成电源模块
CN220368511U (zh) 一种电池充电装置及电压暂降试验***
CN217282717U (zh) 一种用于公路隧道机电设备的直流供电电源
CN210577900U (zh) 一种高压电源的自供电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021912536

Country of ref document: EP

Effective date: 20230731