WO2022141634A1 - 激光发射装置、激光测距装置及可移动平台 - Google Patents

激光发射装置、激光测距装置及可移动平台 Download PDF

Info

Publication number
WO2022141634A1
WO2022141634A1 PCT/CN2021/070149 CN2021070149W WO2022141634A1 WO 2022141634 A1 WO2022141634 A1 WO 2022141634A1 CN 2021070149 W CN2021070149 W CN 2021070149W WO 2022141634 A1 WO2022141634 A1 WO 2022141634A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
light
laser
emitting device
loop
Prior art date
Application number
PCT/CN2021/070149
Other languages
English (en)
French (fr)
Inventor
张朝
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/070149 priority Critical patent/WO2022141634A1/zh
Publication of WO2022141634A1 publication Critical patent/WO2022141634A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the present disclosure relates to the technical field of laser ranging, and in particular, to a laser emitting device, a laser ranging device, and a movable platform.
  • multiple radars respectively emit laser pulses outward.
  • laser pulses emitted by one radar can be captured by another radar. Since the radar cannot distinguish whether the received echo signal is the echo signal of the laser pulse emitted by the radar or the pulse signal sent by other radars, in a multi-radar coexistence system, multiple radars will interfere with each other.
  • embodiments of the present disclosure propose a laser emitting device, a laser ranging device, and a movable platform to reduce mutual interference between radars in a multi-radar system.
  • a laser emitting device includes at least one light-emitting branch, wherein the light-emitting branch includes: a plurality of power supply circuits, and are respectively connected to the respective power supply circuits The light-emitting module; the plurality of power supply circuits are used to supply power to the light-emitting module at least twice in one working cycle of the laser emitting device, so that the light-emitting module emits light at least twice in the working cycle , and the two adjacent light-emitting of the light-emitting module are powered by different power supply circuits.
  • a laser ranging device comprising: a laser receiving device; and the laser emitting device according to any embodiment of the present disclosure.
  • a movable platform comprising: the laser ranging device according to any embodiment of the present disclosure, which is used to measure the distance of objects around the movable platform; and a control The device is used to plan the driving state of the movable platform according to the distance measurement result.
  • a plurality of power supply circuits on a light-emitting branch can supply power to the light-emitting module at least twice within one working cycle of the laser emitting device, so that the light-emitting module emits light at least twice within the working cycle, and After the time interval of two adjacent lightings is determined, the time interval of the echo signals corresponding to the two lightings is also determined accordingly. Therefore, it can be determined whether the received signal is an echo signal or a signal transmitted by other radars according to the time interval of the received signal. , which improves the anti-interference ability of the laser emitting device.
  • the light-emitting module since the two adjacent lighting of the light-emitting module are powered by different power supply loops, after one power supply loop supplies power to the light-emitting module to make the light-emitting module emit light once, the light-emitting module can be powered through another power supply loop to make the light-emitting module emit light immediately. When the light-emitting module performs next light-emitting, there is no need to wait between two power supplies, which reduces the possibility of electric leakage during the waiting process.
  • FIG. 1 is a schematic diagram of a multiple radar system of some embodiments.
  • FIG. 2 is a schematic diagram of a laser emitting device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a periodic light-emitting process of a laser emitting device according to an embodiment of the present disclosure.
  • FIGS. 4A and 4B are schematic diagrams of a charging process and a light-emitting process, respectively, according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of element multiplexing according to an embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of a multi-line single-pulse laser emitting device of some embodiments.
  • FIG. 7 is a timing diagram of a single-pulse laser emitting device of some embodiments.
  • FIG. 8 is a circuit diagram of a double-pulse laser emitting device according to an embodiment of the present disclosure.
  • FIG. 9 is a timing diagram of a laser emitting device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a laser ranging device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a movable platform according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of an application scenario of an embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • a laser emission device for example, lidar
  • relevant information of the target based on the echo signal corresponding to the detection signal, such as target distance, azimuth, height, moving speed, attitude, shape, etc. information.
  • TOF Time of Flight
  • a multi-radar coexistence system there may be some interference problems between each lidar.
  • radar 1 can transmit detection signals to the physical space, wherein the detection signal p 1 transmitted to the tree will The echo signal p 2 is returned and captured by radar 1 .
  • the radar 2 also transmits a detection signal to the physical space, wherein the detection signal p 3 transmitted by the radar 2 can be captured by the radar 1 .
  • the detection signal p 4 transmitted by the radar 2 to the tree will return the echo signal p 5
  • the detection signal p 6 transmitted by the radar 1 can be captured by the radar 2 . Therefore, in the above system, the detection signal p 3 transmitted by the radar 2 will interfere with the radar 1 , and the detection signal p 6 transmitted by the radar 1 will also interfere with the radar 2 .
  • each line of laser light source of the lidar can be made to emit laser continuously for multiple times (for example, 2 times) in one light-emitting period of the lidar.
  • the time interval of the echo signals corresponding to the two lightings is also determined accordingly, so it can be determined whether the received signal is an echo signal or transmitted by other radars according to the time interval of the received signal. signal, which improves the anti-jamming capability of lidar.
  • a lidar that emits multiple consecutive times from the same line of laser light can be called a multi-pulse lidar.
  • the laser light source can be powered multiple times through the power supply loop, so that the laser light source emits light multiple times. Since the power supply circuit needs to be charged by the power supply first, and then supply the electric energy obtained during the charging process to the laser light source, after the power supply circuit supplies power to the laser light source once, it needs to wait for the power supply circuit to be fully charged, and then proceed to the laser light source.
  • One power supply That is to say, the time interval between the power supply unit supplying power to the laser light source for two consecutive times is relatively long, and there may be a leakage problem during this time, especially in the case of high temperature, the leakage problem is more serious.
  • the laser emitting device includes at least one light-emitting branch, wherein the light-emitting branch includes:
  • the plurality of power supply circuits 201 are used to supply power to the light-emitting module 202 at least twice in one working cycle of the laser emitting device, so that the light-emitting module 202 emits light at least twice in the working cycle, In addition, the light-emitting module 202 is powered by different power supply circuits 201 for two adjacent light-emitting operations.
  • multiple power supply circuits 201 on one light-emitting branch can supply power to the light-emitting module 202 at least twice within one working cycle of the laser emitting device, so that the light-emitting module 202 can be powered at least twice within the working cycle.
  • Lighting after the time interval of two adjacent lightings is determined, the time interval of the echo signals corresponding to the two lightings is also determined accordingly, so it can be determined whether the received signal is an echo signal or another radar according to the time interval of the received signal.
  • the transmitted signal improves the anti-interference ability of the laser emitting device.
  • the light-emitting module 202 is powered by different power supply circuits 201 for two consecutive times of light emission, after one power supply circuit 201 supplies power to the light-emitting module 202 to make the light-emitting module 202 emit light once, the other power supply circuit 201 can immediately pass through another power supply circuit 201. Power is supplied to the light emitting module 202 to make the light emitting module 202 emit light next time, and there is no need to wait between two power supplies, which reduces the possibility of leakage during the waiting process.
  • the plurality of power supply loops in the present disclosure may be two or more power supply loops, each power supply loop 201 may be connected to one or more light-emitting modules 202, and the number of power supply loops 201 may be equal to the number of light-emitting modules 202,
  • the number of the light emitting modules 202 may also be larger or smaller, which is not limited in the present disclosure, as long as it suffices that the two adjacent light emission of the light emitting modules 202 are powered by different power supply circuits 201 .
  • a light-emitting module may include only one light-emitting element, or may include a plurality of light-emitting elements connected in series.
  • the same light-emitting module 202 can be powered by a different power supply unit 201 each time it emits light.
  • the light-emitting module 202 is powered by the power supply unit 201A for the first light emission, and powered by the power supply unit 201B for the second light emission.
  • the third lighting is powered by the power supply unit 201C, and the power supply units 201A, 201B and 201C are all different power supply units.
  • the same light-emitting module 202 can be powered by the same power supply unit 201 for multiple times of lighting that are not adjacent to each other.
  • the light-emitting module 202 is powered by the power supply unit 201A for the first lighting, and powered by the power supply for the second lighting.
  • the unit 201B is powered, and the third lighting is powered by the power supply unit 201A. In this way, the number of power supply units 201 required in the laser emitting device can be reduced, thereby reducing hardware costs.
  • each power supply circuit 201 of the plurality of power supply circuits 201 includes a power source, a charging unit and an energy storage unit, the power source is used to charge the charging unit, and the charging unit is used to charge the charging unit.
  • the obtained electrical energy is output to the energy storage unit for storage, and the energy storage unit is configured to provide the stored electrical energy to the light emitting module.
  • the charging unit may include an inductor, and the energy storage unit may include a capacitor.
  • each of the power supply circuits 201 in the plurality of power supply circuits 201 includes a power source, an impedance unit and an energy storage unit, the power source can charge the energy storage unit through the impedance unit, and the energy storage unit can charge the energy storage unit.
  • the electrical energy output by the power supply is stored, and the stored electrical energy is provided to the light emitting module.
  • the impedance unit may include a resistor.
  • the power supply circuit 201 of the present disclosure may also adopt other implementation forms, which are not limited in the present disclosure, as long as the power can be transferred from the power source to the light emitting module.
  • FIG. 3 it is a schematic diagram of a light-emitting sequence of the light-emitting module 202 according to an embodiment of the present disclosure.
  • t represents the time interval of the light emitting module 202 emitting light twice in a row
  • T represents one working cycle of the laser emitting device
  • a to H all represent the moment when the light emitting module 202 emits light.
  • the light-emitting module 202 emits narrow-pulse laser light, that is, the duration of each light-emitting module 202 is shorter than the time interval t of the light-emitting module 202 lighting twice in a row.
  • the ratio of the time interval t of the light-emitting module 202 emitting two consecutive times to the duty cycle T of the laser emitting device is less than 50%.
  • the light-emitting module 202 in one working cycle of the laser emitting device emits light twice continuously as an example. Those skilled in the art can understand that this is only an exemplary illustration. In practical applications, in one working cycle of the laser emitting device, the light-emitting module 202 can also emit light three times or more continuously.
  • the light-emitting parameters of the light-emitting module 202 for multiple light-emitting may be the same or different, which are not covered in this disclosure. limit.
  • the time interval at which the energy storage units in two different power supply circuits 201 for supplying power to the light emitting module 202 for two consecutive times may start energy storage based on the two adjacent times of the light emitting module 202
  • the desired time interval for light emission is determined. For example, the shorter the expected time interval for the light-emitting module 202 to emit light for two consecutive times, the shorter the time interval for the energy storage unit in the power supply circuit 201 that performs two adjacent power supply cycles to start energy storage can be set, so as to ensure light-emitting Module 202 can emit light at desired time intervals.
  • the expected time interval of the light-emitting module 202 for two adjacent light-emitting is adjustable, so as to meet the requirements of different application scenarios.
  • the expected time interval between two consecutive times of light emission by the light-emitting module 202 may be determined based on a pre-generated random number. In this way, the light-emitting time of the light-emitting module 202 can be randomly jittered, so as to achieve anti-interference in the case of including a plurality of laser emitting devices.
  • the plurality of power supply loops include a first power supply loop and a second power supply loop
  • the first power supply loop is used to supply power to the light emitting module at a fixed period at least part of the time period, so that The light-emitting module emits light with a fixed period
  • the second power supply loop is used for supplying light at a fixed or random time interval from the last light-emitting period of the light-emitting module between two adjacent power supply periods of the first power supply loop.
  • the light emitting module is powered so that the light emitting module emits light again at fixed or random time intervals.
  • the time interval T between the i-th first power supply loop supplying power to the light-emitting module and the i+1-th first power supply circuit supplying power to the light-emitting module is a fixed time interval.
  • the time interval t between the second power supply loop supplying power to the light emitting module for the i-th time and the light-emitting module emitting light under the i-th power supply of the first power supply loop can be a fixed time interval or a random time interval.
  • Figures 4A and 4B show two extreme cases, respectively.
  • the inductor can be charged immediately by the power supply of the second charging unit, and then the capacitor of the second charging unit can be charged by the inductance of the second charging unit.
  • the light-emitting module is powered by the capacitor of the second charging unit, and t is close to 0 at this time.
  • a period of time during which the capacitor of the second charging unit supplies power to the light-emitting module ends, and there may be a time interval ⁇ t between when the light-emitting module emits light under the i+1th power supply of the first power supply loop.
  • the light-emitting module finishes emitting light under the i-th power supply of the first power supply circuit, it can wait for the ⁇ t time, and then charge the inductor through the power supply of the second charging unit, and then charge the inductor from the inductance of the second charging unit to the inductance.
  • the capacitor of the second charging unit is charged, and then the light-emitting module is powered by the capacitor of the second charging unit, and t is equal to ⁇ t at this time. In this way, the period during which the light emitting module emits light under the i+1th power supply of the first power supply loop is just close to the period during which the capacitor of the second charging unit supplies power to the light emitting module 202 .
  • the waiting time between the end of supplying power to the light-emitting module 202 by the capacitor of the second charging unit and the time when the light-emitting module emits light under the i+1th power supply of the first power supply loop can be reduced, so that the capacitor can be turned off when it is just fully charged.
  • the light-emitting module can be powered, thereby reducing the possibility of leakage.
  • the start of the power supply period of the second power supply loop and the time interval from the last time the light-emitting module emits light according to the power supply of the first power supply loop is greater than the power supply period of the first power supply loop at least 5 times the length.
  • some components in the laser emitting device may be multiplexed.
  • at least two of the plurality of power supply circuits 201 may share the light emitting module 202, the power supply and/or the energy storage unit.
  • FIG. 5 it is a schematic diagram of the laser emitting device when all the power supply circuits 201 share the power supply and the energy storage unit at the same time.
  • the power supply circuit includes a first branch, a second branch and a third branch, the first branch includes the power supply and the charging unit, and the second branch includes all The charging unit and the energy storage unit, and the third branch includes the energy storage unit.
  • the power supply is used to charge the charging unit through the first branch during a first period
  • the charging unit is used to charge the energy storage through the second branch during a second period unit charging
  • the energy storage unit is used to supply power to the light-emitting module through the third branch in a third period of time
  • the third period of time is adjacent to the second period of time
  • the second period of time is adjacent to the first period of time .
  • the first branch is further provided with a first switch unit for turning on or off the first branch.
  • the first switch unit may be turned on, thereby turning on the first branch.
  • the first switch unit may be disconnected, thereby disconnecting the first branch.
  • the second branch includes a one-way conducting element disposed between the charging unit and the energy storage unit, so as to ensure that energy can only be transferred from the charging unit to the energy storage unit, and There is no transfer from the energy storage unit to the charging unit.
  • the unidirectional conduction element includes N diodes, the N diodes are connected in series, the cathode of the i-th diode is connected to the i+1-th diode, the anode of the first diode is connected to the charging unit, and the N-th diode is connected to the charging unit.
  • the cathode of the diode is connected to the energy storage unit, 1 ⁇ i ⁇ N, where N is the total number of diodes.
  • the third branch is further provided with a second switch unit for turning on or off the third branch. During the process of supplying power to the light emitting module 202 from the energy storage unit, the second switch unit may be turned on, thereby turning on the third branch. When the energy storage unit does not supply power to the light emitting module 202, the second switch unit may be disconnected, thereby disconnecting the third branch.
  • the laser emitting device further includes a plurality of third switch units, each of which is connected to a power supply loop, and is used for disconnecting or conducting the power supply loop.
  • the entire power supply circuit 201 can be directly disconnected or turned on through the third switch, which is beneficial to cut off the power supply from the power supply circuit 201 to the light emitting module 202 in time when the power supply circuit 201 or the light emitting module 202 fails.
  • the laser emitting device further includes a reset circuit
  • the reset circuit is connected to a power supply circuit, and is used for supplying the connected power supply before the energy storage unit in the connected power supply circuit performs energy storage.
  • the energy storage unit in the circuit is reset.
  • the energy storage unit can release the residual energy before the energy storage, so as to prevent the residual energy in the energy storage unit from being supplied to the light-emitting module 202 at an inappropriate time, and also prevent the light-emitting module from emitting light due to the residual energy.
  • the reset loop may include a fourth switch unit for turning on or off the reset loop; wherein, when the reset loop is turned on, the energy storage unit in the connected power supply loop is reset.
  • the number of the reset loops is multiple and corresponds to the multiple power supply loops one-to-one, and each reset loop is used for storing all the energy storage units in the corresponding power supply loop before storing energy.
  • the energy storage unit is reset. That is, each power supply loop can have its own independent reset loop.
  • the multiple power supply circuits are time-division multiplexed with the same reset circuit, and the reset circuit is used to store energy in the energy storage units in each of the multiple power supply circuits respectively.
  • the energy storage unit is reset before. That is to say, the same reset circuit can reset different power supply circuits in different time periods.
  • the reset circuit in a first period, resets the energy storage unit, and the power supply charges the charging unit through a first charging path, and in a second period, the power supply The charging unit is charged through a second charging path, wherein the start time of the first time period is earlier than the start time of the second time period. That is to say, in the reset stage, when the energy storage unit is reset, the charging unit can also be charged. In this way, the charging efficiency can be improved. After the reset of the energy storage unit is completed, since the electric energy obtained by the charging unit may not reach the electric energy required to supply power to the light emitting module 202, the charging unit may continue to be charged.
  • the first period and the second period partially overlap. In this way, it can be ensured that the charging unit is in a charging state before the charging amount reaches the power required by the light-emitting module 202 to supply power, and the charging unit is prevented from discharging within the time interval due to the time interval between the first period and the second period. Therefore, the situation that the electric energy obtained by the light emitting module 202 does not match the electric energy required for light emission is reduced.
  • the laser emitting device further includes a plurality of freewheeling loops, each freewheeling loop is connected to a power supply loop, and is used to provide power to the connected power supply loop when the connected power supply loop supplies power to the light emitting module. freewheeling of the power supply circuit. Since the current flow when the power supply charges the charging unit is opposite to that when the charging unit supplies power to the energy storage unit, if the freewheeling circuit is not used, the components in the laser emitting device may be damaged due to the sudden change of current. By using a freewheeling loop, a sudden change of current can be avoided, thereby protecting the components in the laser emitting device.
  • the power of each power supply loop 201 in the plurality of power supply loops 201 is individually adjustable.
  • the output power of each line may be different, and thus the detection distance is also different, which affects the consistency of the performance of each line.
  • the light-emitting power decreases with the increase of the working temperature; at the same time, with the aging of the working time, the photoelectric conversion efficiency gradually decreases.
  • each power supply circuit 201 in this embodiment is individually adjustable, it can ensure that the energy obtained by the light-emitting module 202 is the same each time, thereby compensating for individual differences in devices, temperature changes, aging and decay differences, etc., and ensuring that the light-emitting power of each light is the same. , to ensure the consistency of the performance of each line.
  • Each switch unit in the above-mentioned embodiment may use a triode switch unit or other switch units, as long as it has the function of turning on or off, and the present disclosure does not limit the specific form of the switch unit used.
  • the number of the light-emitting branches in the above-mentioned embodiments may be one or more, and the number of the light-emitting branches may be two or more.
  • the plurality of light-emitting branches emit light alternately in sequence.
  • each light-emitting branch includes two light-emitting modules, and each light-emitting module emits light twice in a row as an example, the light-emitting process is as follows: the light-emitting module 1 of the light-emitting branch 1 emits light twice in a row.
  • the light-emitting module 2 of the light-emitting branch 1 emits light twice in a row
  • the light-emitting module 1 of the light-emitting branch 2 emits light twice in a row
  • the light-emitting module 2 of the light-emitting branch 2 emits light twice in a row
  • the working principle of each light-emitting branch is the same as that in the foregoing embodiment, and details are not repeated here.
  • At least part of the lighting branches in the multiple lighting branches time-division multiplex at least one of the following: a power source, a charging unit, an energy storage unit, and a power supply circuit.
  • the time interval during which the same light-emitting module emits light multiple times in succession is smaller than the light-emitting interval between adjacent light-emitting modules. That is, one light-emitting module continuously emits light multiple times, and then the next light-emitting module continuously emits light multiple times.
  • At least some of the plurality of lighting branches are time-division multiplexed into a reset loop.
  • the laser emitting device further includes a plurality of freewheeling loops, each freewheeling loop is connected to a power supply loop, and is used to provide power to the connected power supply loop when the connected power supply loop supplies power to the light emitting module.
  • the power supply loop is freewheeling, wherein the power supply loops of at least two light-emitting modules share a freewheeling loop.
  • FIG. 6 and FIG. 7 it is a schematic diagram of a laser emission circuit (for example, a multi-line lidar) including a plurality of light-emitting modules and its working sequence according to some embodiments.
  • a laser emission circuit for example, a multi-line lidar
  • each light-emitting module is in one of the lidars
  • Only one light pulse is emitted in the light-emitting period, so the circuit can be called a multi-line single-pulse laser emission circuit.
  • What is shown in the figure is a three-line single-pulse laser emitting circuit.
  • the light-emitting circuit in the circuit can be increased or decreased as required (the dashed box in the figure).
  • the number of parts shown thus realizing a single-pulse laser emission circuit with any number of lines. Since the working principle of each line is the same, the working principle of the circuit will be described below by taking the lighting sequence of the lighting module D6 as an example.
  • V represents the power supply
  • D1 to D10 represent diodes
  • C1 represents capacitors
  • R1 represents resistors
  • Q1 to Q4 represent transistors or MOS tubes
  • L1 represents inductors
  • RESET represents reset signals
  • START1, START2 and START3 represent Q1, Q2 and Q3 respectively control signal.
  • the light-emitting process of the light-emitting module D6 mainly includes the following stages:
  • the first stage (charge 1 (reset): At t6, RESET is pulled high, Q4 is turned on, and the power supply V charges the inductor L1 through D1, D2, R1 and Q4 in turn, as shown in the No. 1 path in the figure; at this time, if When the capacitor C1 is powered, it will be discharged and reset through the paths of C1, R1, and Q4, as shown in path 5 in the figure.
  • the second stage (charging 2): At t7, the START2 signal is pulled high, Q2 is turned on, and the power supply V charges L1 through the No. 3 path where L1, D4, and Q2 are located and the No. 1 path of charging 1 at the same time. At time t8, the RESET signal is pulled low, Q4 is turned off, and only path 3 is left for the charging path.
  • the third stage (energy transfer): At t9, the START2 signal is pulled low, Q2 is turned off, and the energy stored in the inductor L1 is transferred to C1 through D1 and D2, as shown in path 2 in the figure.
  • the fourth stage (light-emitting): At t10, START2 is pulled high again, Q2 is turned on, and the voltage in C1 drives the light-emitting module to emit light through the paths of C1, D6, and Q2, as shown in the No. 6 path in the figure; at the same time, in the inductor L1 The current is reversed, and D10 provides freewheeling, as shown in the No. 4 loop in the figure; at t11 time (the light-emitting has ended at this time), START2 is pulled low and Q2 is turned off.
  • the working sequence of the circuit can be adjusted according to factors such as the lighting duration of each light-emitting module and the time interval between two adjacent lightings, and can also be increased or decreased as required.
  • One or more phases eg, reduce the reset phase).
  • control signals of the above-mentioned respective switch units may be valid at high level, that is, the switch unit is turned on when the corresponding control signal is at high level, and disconnected when the corresponding control signal is at low level; or, its control signal may also be valid at low level. There is no restriction on this publicly.
  • the double-pulse laser emitting device and its working sequence will be illustrated by way of example.
  • the laser emitting device of the present disclosure can also be a three-pulse laser emitting device or a laser emitting device with more than three pulses,
  • the number of light-emitting modules included in the laser emitting device may be one or multiple, and is not limited to the three shown in the figure.
  • V10 and V11 represent the power supply
  • L1 and L2 represent the inductor
  • C1 is the capacitor
  • R1 is the resistor
  • D1 to D10 are diodes
  • Q1 to Q7 are transistors or MOS transistors
  • RESET is the reset signal
  • FIRST, SECOND1 and SECOND2 are Q7 respectively
  • the control signals of Q5 and Q6, START1, START2 and START3 represent the control signals of Q1, Q2 and Q3 respectively
  • the diodes connected across Q5, Q6 and Q7 are the body diodes of Q5, Q6 and Q7 respectively.
  • the light-emitting process of the light-emitting module D6 mainly includes the following stages:
  • the first stage (charge 1 (reset): At t12, the FIRST signal is pulled high and Q7 is turned on; at the same time, the RESET signal is pulled high, Q4 is turned on, and the power supply V10 charges L1 through Q7, D1, D2, R1 and Q4, As shown in the No. 1 path in the figure; since SECOND2 does not give a valid signal from t12 to t14, and Q6 is in the off state, V11 will not charge L2 through No. 8 path where Q6, D11 and C1 are located; at this time If there is power in C1, the discharge reset will be performed through the path where C1, R1, and Q4 are located, as shown in path 5 in the figure.
  • the second stage (charging 2): At t13, the START2 signal is pulled high, Q2 is turned on, and the power supply V10 simultaneously charges L1 through the No. 3 path where Q7, D4, and Q2 are located and the No. 1 path of charging 1. At time t14, the RESET signal is pulled low, Q4 is turned off, and only path 3 is left in the charging path.
  • the third stage (energy transfer): At t16, the START2 signal is pulled low, Q2 is turned off, and the energy stored in the inductor L1 is transferred to C1 through Q7, D1, and D2, as shown in path 2 in the figure. At t17, FIRST is pulled low, Q7 is turned off, and the charging path No. 2 is disconnected.
  • the fourth stage (light-emitting): At t17, START2 is pulled high again, Q2 is turned on, and the voltage in C1 drives the light-emitting module to emit light through the paths of C1, D6, and Q2, as shown in the No. 6 path in the figure; at the same time, in the inductor L1 The current is reversed, and D10 provides freewheeling, as shown in the No. 4 loop in the figure; at t18 (the light-emitting has ended at this time), START2 is pulled low and Q2 is turned off.
  • the second pulse sequence process is also divided into four stages of charging 1 -> charging 2 (reset) -> energy transfer -> emitting light.
  • the second pulse sequence process is also divided into four stages of charging 1 -> charging 2 (reset) -> energy transfer -> emitting light.
  • the sixth stage (charging 2 (reset)): At t19, the SECOND2 signal is pulled high, and Q6 is turned on; at the same time, the RESET signal is pulled high, Q4 is turned on, and the power supply V11 passes through the No. 7 path of Q6, D11, R1, Q4 and the fifth Path 9 of stage charge 1 simultaneously charges L2. At t20, the SECOND1 signal is pulled low, Q5 is turned off, and only path 7 is left in the charging path.
  • the laser emission cannot exceed the energy value specified by the safety regulations, so as to ensure that even if the laser enters the human eye will not cause any harm to the human body. Therefore, in the design of the laser emission scheme, the output power is generally increased as much as possible under the premise of being less than the safety limit, so as to achieve a longer detection distance. However, in the case of a single fault (single fault), it may lead to an increase in the output optical power, which is greater than the safety limit.
  • the signal is pulled high, and before the RESET signal is pulled low at t21, it can also ensure that the energy in C1 is completely discharged, thus avoiding the case of single fault, charging C1 for the second time, resulting in excessive voltage of C1 and damage to MOS tubes such as Q4. .
  • the seventh stage (energy transfer): At t21, the RESET signal is pulled low, Q4 is turned off, and the energy stored in the inductor L2 is transferred to C1 through Q6 and D11, as shown in No. 8 path. At time t22, the SECOND2 signal is pulled low, Q6 is turned off, and the charging path No. 8 is disconnected.
  • the eighth stage (light-emitting): At t22, the START2 signal is pulled high, Q2 is turned on, and the voltage in C1 drives the light-emitting module to emit light through the paths of C1, D6, and Q2, as shown in the No. 6 path in the figure; at the same time, in the inductor L2 The current is reversed, and the freewheeling current is provided through the body diode of Q5, as shown in the No. 10 loop in the figure; at t23 (the light-emitting has ended at this time), START2 is pulled low and Q2 is turned off.
  • the interval T (t5-t17, t17-t29) between every two times of light emission can be kept the same.
  • the duration of the second stage (charging 2) t2 ⁇ t4, t14 ⁇ t16, t26 ⁇ t28
  • the charging time of the inductor L1 before each line emits light for the first time can be adjusted, thereby adjusting the energy in the inductor L1, thus changing the capacitance
  • the voltage on C1 to ensure the consistency of the first luminous power of each line.
  • the duration of the fifth stage (charging 1) (t3 ⁇ t7, t15 ⁇ t19, t27 ⁇ t31)
  • the charging time of the inductor L2 before the second light emission of each line can be adjusted, thereby adjusting the energy in the inductor L2, thus changing the capacitance The voltage on C1, so as to ensure the consistency of the second luminous power of each line.
  • T1, T2, T3 (t5 ⁇ t10, t17 ⁇ t22, t29 ⁇ t34) of the same laser light-emitting twice, the light-emitting interval can be randomly jittered.
  • the detection echo When the signal is detected, the received signals at the same interval can be determined as the echo signals of the signals transmitted by the laser emitting device, and the received signals whose intervals do not meet the emission interval can be determined as interference signals, so as to realize anti-interference.
  • the third stage (energy transfer) is very short and the time is fixed (mainly determined by the inductor L1 and the capacitor C1), there is basically no leakage problem at high temperature, which ensures the stability of the capacitor voltage at the time of laser light emission in the full temperature range. .
  • stage seven energy transfer
  • the time is fixed (mainly determined by the inductance L2 and the capacitor C1)
  • there is basically no leakage problem at high temperature which ensures that the capacitor voltage at the time of laser light emission is within the full temperature range. Stablize.
  • an embodiment of the present disclosure further provides a laser ranging device, and the laser ranging device includes the laser transmitting device described in any embodiment of the present disclosure, which is used for transmitting a laser signal, and a laser receiving device, It is used for receiving an echo signal corresponding to the laser signal, and the echo signal is used for ranging.
  • the laser ranging device may be a laser radar, for example, a single-line laser radar or a multi-line laser radar, or a laser range finder or the like.
  • the laser ranging device can be mounted on a movable platform such as an aircraft, a vehicle, a movable robot, etc., to measure the distance of objects around the movable platform.
  • an embodiment of the present disclosure further provides a movable platform, including the laser ranging device according to any embodiment of the present disclosure, which is used to measure the distance of objects around the movable platform, and to control The device is used to plan the driving state of the movable platform according to the distance measurement result.
  • the laser ranging device can be installed at at least one of the front, rear and side surfaces of the movable platform, and one or more laser ranging devices can be installed according to the needs of ranging.
  • the controller may plan the traveling state (eg, speed, pose) and the like of the movable platform according to the distance measurement result.
  • the movable platform may further include a multimedia system, and the multimedia system may include at least one of a voice playback system and an image/video display system.
  • the multimedia system can output multimedia prompt information according to the ranging result of the laser ranging device, and can also output prompt information according to the planning result of the controller.
  • FIG. 12 it is a schematic diagram of an application scenario of the present disclosure.
  • vehicle A can measure the distance by laser during driving
  • the device detects the distances of vehicles (eg, Vehicle B and Vehicle C) around it in real time.
  • the laser ranging device on vehicle A can output the real-time detected distance to the controller on vehicle A, and the controller can combine vehicle A, vehicle B and vehicle C according to the distance
  • the speed of the vehicle A can even be combined with the semantic information in the road (for example, traffic lights, lane lines, etc.) to plan the path of vehicle A.
  • the controller determines that it is possible to change lanes, it can plan a route as shown by the dotted line in the figure.
  • a typical implementing device is a computer, which may be in the form of a personal computer, laptop computer, cellular phone, camera phone, smart phone, personal digital assistant, media player, navigation device, email sending and receiving device, game control desktop, tablet, wearable device, or a combination of any of these devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光发射装置、激光测距装置及可移动平台,激光发射装置包括至少一个发光支路,发光支路包括:多个供电回路(201),以及分别连接于各个供电回路(201)的发光模块(202);多个供电回路(201)用于在激光发射装置的一个工作周期内向发光模块(202)进行至少两次供电,以使发光模块(202)在工作周期内进行至少两次发光,且发光模块(202)的相邻两次发光由不同的供电回路(201)进行供电。

Description

激光发射装置、激光测距装置及可移动平台 技术领域
本公开涉及激光测距技术领域,具体而言,涉及激光发射装置、激光测距装置及可移动平台。
背景技术
在多雷达共存***中,多个雷达分别向外发射激光脉冲。在一些情况下,一个雷达发射的激光脉冲可以被另一个雷达捕获到。由于雷达无法区分接收到的回波信号是本雷达所发射的激光脉冲的回波信号还是其他雷达发出的脉冲信号,因此,在多雷达共存***中,多个雷达之间会互相干扰。
发明内容
有鉴于此,本公开的实施例提出了激光发射装置、激光测距装置及可移动平台,以降低多雷达***中各个雷达之间的相互干扰。
根据本公开实施例的第一方面,提供一种激光发射装置,所述激光发射装置包括至少一个发光支路,其中,所述发光支路包括:多个供电回路,以及分别连接于各个供电回路的发光模块;所述多个供电回路用于在所述激光发射装置的一个工作周期内向所述发光模块进行至少两次供电,以使所述发光模块在所述工作周期内进行至少两次发光,且所述发光模块的相邻两次发光由不同的供电回路进行供电。
根据本公开实施例的第二方面,提供一种激光测距装置,所述激光测距装置包括:激光接收装置;以及本公开任一实施例所述的激光发射装置。
根据本公开实施例的第三方面,提供一种可移动平台,包括:本公开任一实施例所述的激光测距装置,用于对所述可移动平台周围的物体进行测距;以及控制器,用于根据测距结果,对所述可移动平台的行驶状态进行规划。
应用本公开实施例方案,一个发光支路上的多个供电回路可以在激光发射装置的一个工作周期内向发光模块进行至少两次供电,使发光模块在所述工作周期内进行至少两次发光,在相邻两次发光的时间间隔确定以后,两次发光对应的回波信号的时间 间隔也相应地确定了,因此可以根据接收信号的时间间隔确定该接收信号是回波信号还是其他雷达发射的信号,提高了激光发射装置的抗干扰能力。此外,由于发光模块的相邻两次发光由不同的供电回路进行供电,因此,在一个供电回路向发光模块供电使发光模块进行一次发光后,可以立即通过另一个供电回路向发光模块供电以使发光模块进行下一次发光,两次供电之间无需等待,减少了等待过程中漏电的可能性。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一些实施例的多雷达***的示意图。
图2是本公开实施例的激光发射装置的示意图。
图3是本公开实施例的激光发射装置周期性发光过程的示意图。
图4A和图4B分别是本公开实施例的充电过程与发光过程的示意图。
图5是本公开实施例的元件复用的示意图。
图6是一些实施例的多线单脉冲激光发射装置的电路图。
图7是一些实施例的单脉冲激光发射装置的时序图。
图8是本公开实施例的双脉冲激光发射装置的电路图。
图9是本公开实施例的激光发射装置的时序图。
图10是本公开实施例的激光测距装置的示意图。
图11是本公开实施例的可移动平台的示意图。
图12是本公开实施例的应用场景的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及 附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
激光发射装置(例如,激光雷达)可以向目标发射探测信号(激光束),并基于探测信号对应的回波信号获得目标的有关信息,如目标距离、方位、高度、移动速度、姿态、形状等信息。为了便于理解,下文以激光雷达为例,对本公开的方案进行说明。本领域技术人员可以理解,本公开中的激光发射装置还可以是其他任意的基于飞行时间(Time of Flight,TOF)技术的装置。
在多雷达共存***中,各个激光雷达之间可能存在一定的干扰问题。如图1所示,以两个雷达构成的多雷达共存***为例,假设物理空间中存在一棵树,雷达1可以向物理空间发射探测信号,其中,发射到树上的探测信号p 1会返回回波信号p 2并由雷达1捕获到。此外,雷达2也会向物理空间发射探测信号,其中,雷达2发射的探测信号p 3可以被雷达1捕获。同理,雷达2发射到树上的探测信号p 4会返回回波信号p 5,且雷达1发射的探测信号p 6可以被雷达2捕获到。因此,在上述***中,雷达2发射的探测信号p 3会对雷达1产生干扰,雷达1发射的探测信号p 6也会对雷达2产生干扰。
为了解决多雷达共存***之间的干扰问题,可以使激光雷达的每线激光光源在激光雷达的一个发光周期连续多次(例如2次)发射激光。在相邻两次发光的时间间隔确定以后,两次发光对应的回波信号的时间间隔也相应地确定了,因此可以根据接收信号的时间间隔确定该接收信号是回波信号还是其他雷达发射的信号,提高了激光雷达的抗干扰能力。由同一线激光连续多次发光的激光雷达可称为多脉冲激光雷达。
在具体实现时,可以通过供电回路向激光光源进行多次供电,以使激光光源进行多次发光。由于供电回路需要先通过电源进行充电,再将充电过程中获得的电能提供给激光光源,因此,供电回路在向激光光源进行一次供电之后,需要等待供电回路自身充电完成,再向激光光源进行下一次供电。也就是说,供电单元向激光光源进行相邻两次供电之间所间隔的时间比较长,该时间内可能存在漏电问题,尤其是在高温情况下,漏电问题较为显著。
基于此,本公开实施例提供一种激光发射装置,如图2所示,所述激光发射装置包括至少一个发光支路,其中,所述发光支路包括:
多个供电回路201,以及分别连接于各个供电回路201的发光模块202;
所述多个供电回路201用于在所述激光发射装置的一个工作周期内向所述发光模块202进行至少两次供电,以使所述发光模块202在所述工作周期内进行至少两次发光,且所述发光模块202的相邻两次发光由不同的供电回路201进行供电。
应用本公开实施例方案,一个发光支路上的多个供电回路201可以在激光发射装置的一个工作周期内向发光模块202进行至少两次供电,使发光模块202在所述工作周期内进行至少两次发光,在相邻两次发光的时间间隔确定以后,两次发光对应的回波信号的时间间隔也相应地确定了,因此可以根据接收信号的时间间隔确定该接收信号是回波信号还是其他雷达发射的信号,提高了激光发射装置的抗干扰能力。此外,由于发光模块202的相邻两次发光由不同的供电回路201进行供电,因此,在一个供电回路201向发光模块202供电使发光模块202进行一次发光后,可以立即通过另一个供电回路201向发光模块202供电以使发光模块202进行下一次发光,两次供电之间无需等待,减少了等待过程中漏电的可能性。
本公开中的所述多个供电回路可以是两个或两个以上的供电回路,每个供电回路201可连接一个或多个发光模块202,供电回路201的数量可以等于发光模块202的数量,也可以大于或者小于发光模块202的数量,本公开对此不做限制,只要满足发光模块202的相邻两次发光由不同的供电回路201进行供电即可。一个发光模块中可以仅包括一个发光元件,也可以包括相互串联的多个发光元件。在一些实施例中,同一发光模块202每次发光均可以由不同的供电单元201进行供电,例如,发光模块202第一次发光由供电单元201A进行供电,第二次发光由供电单元201B进行供电,第三次发光由供电单元201C进行供电,且供电单元201A、201B和201C均为不同的供电 单元。在另一些实施例中,同一发光模块202不相邻的多次发光可以由相同的供电单元201进行供电,例如,发光模块202第一次发光由供电单元201A进行供电,第二次发光由供电单元201B进行供电,第三次发光由供电单元201A进行供电。这样,可以减少激光发射装置中所需的供电单元201的数量,从而降低硬件成本。
在一些实施例中,所述多个供电回路201中的每个供电回路201均包括电源、充电单元和储能单元,所述电源用于向所述充电单元充电,所述充电单元用于将获取的电能输出至所述储能单元进行存储,所述储能单元用于将存储的电能提供给所述发光模块。可选地,所述充电单元可以包括电感,所述储能单元可以包括电容。在另一些实施例中,所述多个供电回路201中的每个供电回路201均包括电源、阻抗单元和储能单元,所述电源可以通过阻抗单元向储能单元充电,储能单元可以对电源输出的电能进行存储,并将存储的电能提供给所述发光模块。可选地,所述阻抗单元可以包括电阻。本公开的供电回路201还可以采用其他实现形式,本公开对此不做限制,只要能够实现将电能从电源转移到发光模块即可。
如图3所示,是本公开实施例的发光模块202的发光时序的示意图。其中,t表示发光模块202连续两次发光的时间间隔,T表示激光发射装置的一个工作周期,A~H均表示发光模块202进行发光的时刻。在一些实施例中,发光模块202发射的为窄脉冲激光,即发光模块202每次发光的时长小于发光模块202连续两次发光的时间间隔t。在一些实施例中,发光模块202连续两次发光的时间间隔t与激光发射装置的工作周期T的比值小于50%。此处以激光发射装置的一个工作周期发光模块202连续两次发光为例,本领域技术人员可以理解,这仅仅是示例性说明,在实际应用中,在激光发射装置的一个工作周期内,发光模块202还可以连续三次或者三次以上发光。应当说明的是,在同一个工作周期T内,发光模块202多次发光的发光参数(例如发光功率、光脉冲的出射方向、发光波长等)可以相同,也可以不同,本公开对此不做限制。
在一些实施例中,用于为所述发光模块202进行相邻两次供电的两个不同的供电回路201中的储能单元开始储能的时间间隔可以基于所述发光模块202相邻两次发光的期望时间间隔而确定。例如,所述发光模块202相邻两次发光的期望时间间隔越短,可以将进行相邻两次供电的供电回路201中的储能单元开始储能的时间间隔设置得越短,从而保证发光模块202能够按照期望的时间间隔进行发光。
其中,所述发光模块202相邻两次发光的期望时间间隔可调,从而满足不同应用场景的需求。可选地,所述发光模块202相邻两次发光的期望时间间隔可以基于预先 生成的随机数而确定。通过这种方式,能够使发光模块202的发光时间随机抖动,从而在包括多个激光发射装置的情况下实现抗干扰。
在一些实施例中,所述多个供电回路包括第一供电回路和第二供电回路,在至少部分时长内,所述第一供电回路用于以固定的周期给所述发光模块供电,以使所述发光模块以固定的周期发光,所述第二供电回路用于在相邻两次第一供电回路的供电时段之间,以距离所述发光模块的上一次发光固定或随机的时间间隔给所述发光模块供电,以使所述发光模块以固定或随机的时间间隔再次发光。例如,第一供电回路第i次向发光模块供电与第一供电回路第i+1次向发光模块供电之间的时间间隔T为一个固定的时间间隔。而第二供电回路第i次向发光模块供电与发光模块在第一供电回路第i次供电下发光的时间间隔t可以是固定的时间间隔,也可以是随机的时间间隔。
图4A和图4B分别示出了两种极端的情况。如图4A所示,发光模块在第一供电回路第i次供电下发光结束时,可以立即通过第二充电单元的电源向电感充电,然后由第二充电单元的电感向第二充电单元的电容充电,再由第二充电单元的电容向发光模块供电,此时t接近0。在这种情况下,第二充电单元的电容向发光模块供电的时段结束,到发光模块在第一供电回路第i+1次供电下发光之间可能存在一个时间间隔△t。
如图4B所示,发光模块在第一供电回路第i次供电下发光结束时,可以等待△t时间之后,再通过第二充电单元的电源向电感充电,然后由第二充电单元的电感向第二充电单元的电容充电,再由第二充电单元的电容向发光模块供电,此时t等于△t。这样,发光模块在第一供电回路第i+1次供电下发光的时段正好紧邻第二充电单元的电容向发光模块202供电的时段。在这种情况下,能够减少第二充电单元的电容向发光模块202供电结束到发光模块在第一供电回路第i+1次供电下发光之间的等待时长,使得电容在刚充满电时就可以给发光模块供电,从而减少了漏电的可能性。在一些实施例中,所述第二供电回路的供电时段的开始,距离所述发光模块上一次根据所述第一供电回路的供电进行发光的时间间隔,大于所述第一供电回路的供电时段的长度的至少5倍。
在一些实施例中,为了提高激光发射装置中元件的利用率,从而降低硬件成本,可以对激光发射装置中的部分元件进行复用。例如,所述多个供电回路201中的至少两个供电回路201可以共用发光模块202、电源和/或储能单元。如图5所示,是所有供电回路201同时共用电源和储能单元时激光发射装置的示意图。本领域技术人员可以理解,除了图5所示的情况之外,还可以存在仅有部分供电回路201仅共用电源, 部分供电回路201仅共用储能单元,或者部分供电回路201既共用电源又共用储能单元等情况。
在一些实施例中,所述供电回路包括第一支路、第二支路和第三支路,所述第一支路包括所述电源和所述充电单元,所述第二支路包括所述充电单元和储能单元,所述第三支路包括所述储能单元。在所述供电时段内,所述电源用于在第一时段通过所述第一支路向所述充电单元充电,所述充电单元用于在第二时段通过所述第二支路向所述储能单元充电,所述储能单元用于在第三时段通过所述第三支路向所述发光模块供电,所述第三时段紧邻所述第二时段,所述第二时段紧邻所述第一时段。
在一些实施例中,所述第一支路上还设有第一开关单元,用于导通或断开所述第一支路。在电源向充电单元充电的过程中,可以导通所述第一开关单元,从而导通所述第一支路。在电源未向充电单元充电的情况下,可以断开所述第一开关单元,从而断开所述第一支路。在另一些实施例中,所述第二支路上包括设置在所述充电单元与所述储能单元之间的单向导通元件,用于保证能量仅能够从充电单元转移到储能单元,而不会从储能单元转移到充电单元。其中,所述单向导通元件包括N个二极管,所述N个二极管串联连接,第i个二极管的阴极连接第i+1个二极管,第1个二极管的阳极连接所述充电单元,第N个二极管的阴极连接所述储能单元,1≤i≤N,N为二极管的总数。在另一些实施例中,所述第三支路上还设有第二开关单元,用于导通或断开所述第三支路。在储能单元向发光模块202供电的过程中,可以导通所述第二开关单元,从而导通所述第三支路。在储能单元未向发光模块202供电的情况下,可以断开所述第二开关单元,从而断开所述第三支路。
在一些实施例中,所述激光发射装置还包括多个第三开关单元,每个第三开关单元连接于一个供电回路,用于断开或导通所述供电回路。在本实施例中,可以通过第三开关直接将整个供电回路201断开或导通,有利于在供电回路201或者发光模块202故障时及时切断供电回路201向发光模块202的供电。
在一些实施例中,所述激光发射装置还包括复位回路,所述复位回路与一个供电回路相连接,用于在所连接的供电回路中的储能单元进行储能之前,对所连接的供电回路中的储能单元进行复位。通过复位,可以使储能单元在储能之前将残余的能量释放掉,防止储能单元中残余的能量在不适当的时机提供给发光模块202,同时也避免了因残余能量导致发光模块的发光功率与预期功率不同的情况。所述复位回路可以包括第四开关单元,用于导通或断开所述复位回路;其中,所述复位回路导通时,对所 连接的供电回路中的储能单元进行复位。在一些实施例中,所述复位回路的数量为多个,且与所述多个供电回路一一对应,每个复位回路用于在对应的供电回路中的储能单元进行储能之前对所述储能单元进行复位。也就是说,每个供电回路都可以有自己独立的复位回路。在另一些实施例中,所述多个供电回路时分复用同一个复位回路,所述复位回路用于在分别在所述多个供电回路中的每个供电回路中的储能单元进行储能之前对所述储能单元进行复位。也就是说,同一个复位回路可以在不同的时段分别对不同的供电回路进行复位。通过时分复用的方式,降低了装置的硬件复杂度和成本。
在一些实施例中,在第一时段内,所述复位回路对所述储能单元进行复位,且所述电源通过第一充电路径向所述充电单元充电,在第二时段内,所述电源通过第二充电路径向所述充电单元充电,其中,所述第一时段的起始时刻早于所述第二时段的起始时刻。也就是说,在复位阶段,储能单元进行复位的同时,还可以对充电单元进行充电。这样,可以提高充电效率。在储能单元复位结束之后,由于充电单元获得的电能可能还未达到向发光模块202供电所需的电能,因此,可以继续向充电单元充电。
进一步地,所述第一时段与所述第二时段部分重叠。通过这种方式,可以保证充电单元在充电量达到发光模块202供电所需的电能之前时钟处于充电状态,避免了第一时段与第二时段之间存在时间间隔导致充电单元在该时间间隔内放电的情况,从而减少了发光模块202获得的电能与发光所需的电能不符的情况。
在一些实施例中,所述激光发射装置还包括多个续流回路,每个续流回路与一个供电回路相连接,用于在所连接的供电回路为所述发光模块供电时,为所连接的供电回路续流。由于电源向充电单元充电时电流的流向与充电单元向储能单元供电时电流的流向相反,如果不采用续流回路,可能因电流突变导致激光发射装置中的元件损坏。通过采用续流回路,能够避免电流突变,从而保护激光发射装置中的元件。
在一些实施例中,所述多个供电回路201中每个供电回路201的功率单独可调。在多线激光发射装置中,由于发光模块或激光发射装置中器件的个体差异,各线的出光功率可能存在差异,从而探测距离也存在差异,影响了各线性能的一致性。此外,对于同一个发光模块来说,发光功率随着工作温度的上升而下降;同时,随着工作时长而老化,光电转换效率逐步下降。由于本实施例中每个供电回路201的功率单独可调,可以保证发光模块202每次获得的能量相同,从而补偿器件个体差异、温度变化、老化衰减差异等,保证每次发光的发光功率相同,保证各线性能的一致性。
上述实施例中的各个开关单元可以采用三极管开关单元,也可以采用其他开关单元,只要具有导通或者关断的功能即可,本公开对所采用的开关单元的具体形式不做限制。
上述实施例中的发光支路的数量可以是一个或多个,所述多个可以是两个或者两个以上。在发光支路的数量为多个的情况下,所述多个发光支路依次交替发光。以发光支路数量为2,每条发光支路包括两个发光模块,且每个发光模块连续两次发光为例,发光过程依次为:条发光支路1的发光模块1连续进行两次发光,发光支路1的发光模块2连续进行两次发光,条发光支路2的发光模块1连续进行两次发光,发光支路2的发光模块2连续进行两次发光,然后,结束发光或者重复上述发光过程。在发光支路的数量为多个的情况下,每个发光支路的工作原理与前述实施例中的工作原理相同,此处不再赘述。
在发光支路的数量为多个的情况下,所述多个发光支路中的至少部分发光支路时分复用以下至少一项:电源、充电单元、储能单元、供电回路。
在一些实施例中,同一发光模块连续多次发光的时间间隔小于相邻发光模块的发光间隔。即,先由一个发光模块连续地进行多次发光,然后再由下一个发光模块连续地进行多次发光。
在一些实施例中,所述多个发光支路中的至少部分发光支路时分复用一个复位回路。
在一些实施例中,所述激光发射装置还包括多个续流回路,每个续流回路与一个供电回路相连接,用于在所连接的供电回路为所述发光模块供电时,为所连接的供电回路续流,其中,至少两个发光模块的供电回路共用一个续流回路。
下面结合具体的电路形式对本公开实施例的方案进行说明。为了便于理解,先介绍发射单脉冲的情况下的电路形式。如图6和图7所示,是一些实施例的包括多个发光模块的激光发射电路(例如,多线激光雷达)及其工作时序的示意图,该电路中每个发光模块在激光雷达的一个发光周期内仅发射一次光脉冲,因此,该电路可称为多线单脉冲激光发射电路。图中示出的是三线单脉冲激光发射电路,本领域技术人员可以理解,这仅仅是一种示例性说明,在实际应用中可以根据需要增加或者减少电路中发光回路(如图中虚线框中的部分所示)的数量,从而实现任意线数的单脉冲激光发射电路。由于每一线的工作原理相同,下面以发光模块D6的发光时序为例,对该电 路的工作原理进行说明。图中V表示电源,D1到D10表示二极管,C1表示电容,R1表示电阻,Q1到Q4表示三极管或者MOS管,L1表示电感,RESET表示复位信号,START1、START2和START3分别表示Q1、Q2和Q3的控制信号。发光模块D6的发光过程主要包括以下阶段:
第一阶段(充电1(复位)):t6时刻,RESET拉高,Q4导通,电源V依次通过D1、D2、R1和Q4给电感L1充电,如图中1号路径所示;此时如果电容C1中有电,会通过C1、R1、Q4路径进行放电复位,如图中5号路径所示。
第二阶段(充电2):t7时刻,START2信号拉高,Q2导通,电源V通过L1、D4、Q2所在的3号路径和充电1的1号路径同时给L1充电。t8时刻,RESET信号拉低,Q4关闭,充电路径只剩下3号路径。
第三阶段(能量转移):t9时刻,START2信号拉低,Q2关闭,电感L1中储存的能量通过D1、D2转移到C1中,如图中2号路径。
第四阶段(发光):t10时刻,START2再次拉高,Q2导通,C1中电压通过C1、D6、Q2路径驱动发光模块发光,如图中6号路径所示;与此同时,电感L1中电流反向,D10提供续流,如图中4号环路所示;t11时刻(此时发光已结束),START2拉低,关闭Q2。
以上时序仅为示例性说明,在实际应用中,可以根据各个发光模块的发光时长以及相邻两次发光的时间间隔等因素对电路的工作时序进行调整,还可以根据需要增加或者减少时序中的一个或多个阶段(例如,减少复位阶段)。
上述各个开关单元的控制信号可以在高电平时有效,即,开关单元在对应控制信号为高电平时导通,在低电平时断开;或者,其控制信号也可以在低电平时有效,本公开对此不做限制。
现在结合图8和图9,对双脉冲激光发射装置及其工作时序进行举例说明。本领域技术人员可以理解,图中所示仅为示例性说明,并非用于限制本公开。例如,本公开的激光发射装置除了可以是双脉冲激光发射装置(即每个发光模块可以连续发射两次脉冲)之外,还可以是三脉冲激光发射装置或者是三脉冲以上的激光发射装置,且激光发射装置中包括的发光模块的数量可以是1个,也可以是多个,不限于图中所示的3个。由于各个发光模块的工作原理相同,此处仅以发光模块D6为例进行说明,其他发光模块的工作时序可以参考发光模块D6。图中V10和V11表示电源,L1和L2 表示电感,C1为电容,R1为电阻,D1到D10为二极管,Q1到Q7为三极管或者MOS管,RESET为复位信号,FIRST、SECOND1和SECOND2分别为Q7、Q5和Q6的控制信号,START1、START2和START3分别表示Q1、Q2和Q3的控制信号,跨接在Q5、Q6和Q7上的二极管分别为Q5、Q6和Q7的体二极管。发光模块D6的发光过程主要包括以下阶段:
第一阶段(充电1(复位)):t12时刻,FIRST信号拉高,Q7导通;同时,RESET信号拉高,Q4导通,电源V10通过Q7、D1、D2、R1和Q4给L1充电,如图中1号路径所示;由于SECOND2在t12到t14时刻并未给出有效信号,Q6处于关闭状态,所以V11并不会通过Q6、D11和C1所在的8号路径给L2充电;此时如果C1中有电,会通过C1、R1、Q4所在的路径进行放电复位,如图中5号路径所示。
第二阶段(充电2):t13时刻,START2信号拉高,Q2导通,电源V10通过Q7、D4、Q2所在的3号路径和充电1的1号路径同时给L1充电。t14时刻,RESET信号拉低,Q4关闭,充电路径只剩下3号路径。
第三阶段(能量转移):t16时刻,START2信号拉低,Q2关闭,电感L1中储存的能量通过Q7、D1、D2转移到C1中,如图中2号路径。t17时刻,FIRST拉低,Q7关闭,2号充电路径断开。
第四阶段(发光):t17时刻,START2再次拉高,Q2导通,C1中电压通过C1、D6、Q2路径驱动发光模块发光,如图中6号路径所示;与此同时,电感L1中电流反向,D10提供续流,如图中4号环路所示;t18时刻(此时发光已结束),START2拉低,关闭Q2。
第二个脉冲时序过程也分为充电1->充电2(复位)->能量转移->发光四个阶段。继续以图中发光模块D6的发光时序为例,并将第二次发光的四个阶段标为第五到第八阶段:
第五阶段(充电1):t15时刻,SECOND1信号拉高,Q5导通,电源V11通过Q5给L2充电,如图中9号路径所示。
第六阶段(充电2(复位)):t19时刻,SECOND2信号拉高,Q6导通;同时RESET信号拉高,Q4导通,电源V11通过Q6、D11、R1、Q4的7号路径和第五阶段充电1的9号路径同时给L2充电。t20时刻,SECOND1信号拉低,Q5关闭,充电路径只剩下7号路径。
在激光雷达、激光测距等领域,由于产品直接在现实生活场景中使用,激光存在直接射入人眼的风险,因此规定了激光发射不能超过安全规定的能量值,从而保证即使激光入射人眼的时候也不会造成人体的伤害。因此在激光发射方案设计时,在小于安规限制的前提下,一般会尽可能地增大出光功率,从而实现更远的探测距离。然而,在单点故障(single fault)情况下,可能导致出光功率增加,从而大于安规限制的情况。而在本公开实施例中,在正常情况下,t19时刻RESET信号拉高时,C1中如果有残余的能量会通过C1、R1、Q4的橙色路径放电;在不正常的情况下,比如D6开路的single fault情况,t17时刻START2拉高后,C1中的能量并不能通过C1、D6、Q2的6号路径释放掉,t18时刻START2信号拉低后,C1中保持充满电的状态,t19时刻RESET信号拉高,到t21时刻RESET信号拉低之前,也可以保证C1中的能量完全放完,从而避免了single fault情况下,第二次给C1充电导致C1电压过大损坏Q4等MOS管的情况。
第七阶段(能量转移):t21时刻,RESET信号拉低,Q4关闭,电感L2中储存的能量通过Q6、D11转移到C1中,如图中8号路径。t22时刻,SECOND2信号拉低,Q6关闭,8号充电路径断开。
第八阶段(发光):t22时刻,START2信号拉高,Q2导通,C1中电压通过C1、D6、Q2路径驱动发光模块发光,如图中6号路径所示;与此同时,电感L2中电流反向,通过Q5体二极管提供续流,如图中10号环路所示;t23时刻(此时发光已结束),START2拉低,关闭Q2。
在上述实施例中,通过时序调整,可以让每两次发光之间的间隔T(t5~t17、t17~t29)保持一致。通过调整第二阶段(充电2)的时长(t2~t4、t14~t16、t26~t28),可以调整每一线第一次发光之前电感L1充电时长,从而调整电感L1中的能量,既而改变电容C1上的电压,从而保证各线第一次发光功率的一致性。通过调整第五阶段(充电1)的时长(t3~t7、t15~t19、t27~t31),可以调整每一线第二次发光之前电感L2充电时长,从而调整电感L2中的能量,既而改变电容C1上的电压,从而保证各线第二次发光功率的一致性。通过调整同一激光器两次发光的时间间隔T1、T2、T3(t5~t10、t17~t22、t29~t34),可以让发光间隔随机抖动,由于***能够预先获知发射间隔的精确值,探测回波信号时,可以将同间隔的接收信号确定为本激光发射装置发射信号的回波信号,而间隔不满足发射间隔的接收信号确定为干扰信号,从而实现抗干扰。此外,由于阶段三(能量转移)时长非常短,且时间固定(主要由电感L1和电容C1决 定),高温下基本不存在漏电问题,保证了激光器发光时刻的电容电压在全温度范围内的稳定。同理,由于阶段七(能量转移)时长非常短,且时间固定(主要由电感L2和电容C1决定),高温下基本不存在漏电问题,保证了激光器发光时刻的电容电压在全温度范围内的稳定。
如果阶段一(充电1(复位))开始时,电容C1上存在电压,说明上一线激光器发生了损坏,此时如果C1电压高于电源V的电压,L1并不会开始充电,而要等电容C1复位一段时间(电容C1电压低于电源电压V)之后,L1才会开始充电,这样L1的充电时长就会变短,充电总能量就会变低,最终该线激光器发光就会变弱。客观上降低了该激光器的电气应力,起到了一定的保护作用。
如图10所示,本公开实施例还提供一种激光测距装置,所述激光测距装置包括本公开任一实施例所述的激光发射装置,用于发射激光信号,以及激光接收装置,用于接收所述激光信号对应的回波信号,所述回波信号用于进行测距。
所述激光测距装置可以是激光雷达,例如,单线激光雷达或者多线激光雷达,还可以是激光测距仪等。所述激光测距装置可以搭载在飞行器、车辆、可移动机器人等可移动平台上,以对所述可移动平台周围的物体进行测距。
如图11所示,本公开实施例还提供一种可移动平台,包括本公开任一实施例所述的激光测距装置,用于对所述可移动平台周围的物体进行测距,以及控制器,用于根据测距结果,对所述可移动平台的行驶状态进行规划。
所述激光测距装置可以安装于所述可移动平台的前部、后部和侧面中的至少一个位置,根据测距需要,可以安装一个或多个激光测距装置。所述控制器可以根据测距结果,对所述可移动平台的行驶状态(例如,速度、位姿)等进行规划。
进一步地,所述可移动平台还可包括多媒体***,所述多媒体***可包括语音播放***和图像/视频显示***中的至少一种。所述多媒体***可以根据所述激光测距装置的测距结果输出多媒体提示信息,还可以根据所述控制器的规划结果输出提示信息。
如图12所示,是本公开的一种应用场景的示意图。假设车辆A、车辆B和车辆C行驶在道路上,其中,车辆A的前方以及右侧装载有本公开实施例所述的激光测距装置,则车辆A在行驶过程中,可以通过激光测距装置实时检测其周围车辆(例如,车辆B和车辆C)的距离。在需要变道的情况下,车辆A上的激光测距装置可以将实时检测到的距离输出至车辆A上的控制器,控制器可以根据所述距离,并结合车辆A、 车辆B和车辆C的速度,甚至还可以结合道路中的语义信息(例如,红绿灯、车道线等)对车辆A进行路径规划。当控制器判定可以变道时,可以规划出一条如图中虚线所示的路线。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
以上实施例中的各种技术特征可以任意进行组合,只要特征之间的组合不存在冲突或矛盾,但是限于篇幅,未进行一一描述,因此上述实施方式中的各种技术特征的任意进行组合也属于本公开的范围。
本领域技术人员在考虑公开及实践这里公开的说明书后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (29)

  1. 一种激光发射装置,其特征在于,所述激光发射装置包括至少一个发光支路,其中,所述发光支路包括:
    多个供电回路,以及分别连接于各个供电回路的发光模块;
    所述多个供电回路用于在所述激光发射装置的一个工作周期内向所述发光模块进行至少两次供电,以使所述发光模块在所述工作周期内进行至少两次发光,且所述发光模块的相邻两次发光由不同的供电回路进行供电。
  2. 根据权利要求1所述的激光发射装置,其特征在于,所述多个供电回路中的每个供电回路均包括电源、充电单元和储能单元,在所述供电回路的一个供电时段内,所述电源用于通过所述充电单元将电能输出至所述储能单元进行存储,所述储能单元用于将存储的电能提供给与所述供电回路连接的发光模块。
  3. 根据权利要求2所述的激光发射装置,其特征在于,所述充电单元为电感;和/或所述储能单元为电容。
  4. 根据权利要求2所述的激光发射装置,其特征在于,所述多个供电回路中的至少两个供电回路共用以下至少一项:发光模块、电源、储能单元;和/或
    进行相邻两次供电的任意两个供电回路采用不同的充电单元。
  5. 根据权利要求2-4任一项所述的激光发射装置,其特征在于,所述供电回路包括第一支路、第二支路和第三支路,所述第一支路包括所述电源和所述充电单元,所述第二支路包括所述充电单元和储能单元,所述第三支路包括所述储能单元;
    在所述供电时段内,所述电源用于在第一时段通过所述第一支路向所述充电单元充电,所述充电单元用于在第二时段通过所述第二支路向所述储能单元充电,所述储能单元用于在第三时段通过所述第三支路向所述发光模块供电;
    所述第三时段紧邻所述第二时段,所述第二时段紧邻所述第一时段。
  6. 根据权利要求2至5任一项所述的激光发射装置,其特征在于,所述多个供电回路包括第一供电回路和第二供电回路,
    在至少部分时长内,所述第一供电回路用于以固定的周期给所述发光模块供电,以使所述发光模块以固定的周期发光,所述第二供电回路用于在相邻两次第一供电回路的供电时段之间,以距离所述发光模块的上一次发光固定或随机的时间间隔给所述发光模块供电,以使所述发光模块以固定或随机的时间间隔再次发光。
  7. 根据权利要求6所述的激光发射装置,其特征在于,所述第一供电回路的供电 时段的开始,距离所述发光模块上一次根据所述第一供电回路的供电进行发光的时间间隔,大于所述第一供电回路的供电时段的长度的至少5倍。
  8. 根据权利要求5所述的激光发射装置,其特征在于,所述第一支路上还设有第一开关单元,用于导通或断开所述第一支路;和/或
    所述第三支路上还设有第二开关单元,用于导通或断开所述第三支路。
  9. 根据权利要求8所述的激光发射装置,其特征在于,同一供电回路中的所述第一开关单元和所述第二开关单元为同一开关单元。
  10. 根据权利要求5所述的激光发射装置,其特征在于,所述第二支路上还设有至少一个二极管,用于使电流从所述充电单元到所述储能单元单向导通。
  11. 根据权利要求2所述的激光发射装置,其特征在于,用于进行相邻两次供电的两个不同的供电回路中的储能单元开始储能的时间间隔基于所述发光模块相邻两次发光的期望时间间隔而确定。
  12. 根据权利要求1所述的激光发射装置,其特征在于,所述发光模块相邻两次发光的期望时间间隔可调。
  13. 根据权利要求12所述的激光发射装置,其特征在于,所述发光模块相邻两次发光的期望时间间隔基于预先生成的随机数而确定。
  14. 根据权利要求1所述的激光发射装置,其特征在于,所述激光发射装置还包括多个第三开关单元,每个第三开关单元连接于一个供电回路,用于断开或导通所述供电回路。
  15. 根据权利要求2所述的激光发射装置,其特征在于,所述激光发射装置还包括:
    复位回路,所述复位回路与一个供电回路相连接,用于在所连接的供电回路中的储能单元进行储能之前,对所连接的供电回路中的储能单元进行复位。
  16. 根据权利要求15所述的激光发射装置,其特征在于,所述复位回路的数量为多个,且与所述多个供电回路一一对应,每个复位回路用于在对应的供电回路中的储能单元进行储能之前对所述储能单元进行复位;或者,
    所述多个供电回路时分复用同一个复位回路,所述复位回路用于在分别在所述多个供电回路中的每个供电回路中的储能单元进行储能之前对所述储能单元进行复位。
  17. 根据权利要求15所述的激光发射装置,其特征在于,所述复位回路包括第四开关单元,用于导通或断开所述复位回路;其中,所述复位回路导通时,对所连接的供电回路中的储能单元进行复位。
  18. 根据权利要求15所述的激光发射装置,其特征在于,在第一时段内,所述复位回路对所述储能单元进行复位,且所述电源通过第一充电路径向所述充电单元充电;
    在第二时段内,所述电源通过第二充电路径向所述充电单元充电;
    其中,所述第一时段的起始时刻早于所述第二时段的起始时刻。
  19. 根据权利要求17所述的激光发射装置,其特征在于,所述第一时段与所述第二时段部分重叠。
  20. 根据权利要求1所述的激光发射装置,其特征在于,所述激光发射装置还包括:
    多个续流回路,每个续流回路与一个供电回路相连接,用于在所连接的供电回路为所述发光模块供电时,为所连接的供电回路续流。
  21. 根据权利要求1所述的激光发射装置,其特征在于,所述多个供电回路中每个供电回路的功率单独可调。
  22. 根据权利要求1至21任一项所述的激光发射装置,其特征在于,所述发光支路的数量为多个,所述多个发光支路依次交替发光。
  23. 根据权利要求22所述的激光发射装置,其特征在于,所述多个发光支路中的至少部分发光支路时分复用以下至少一项:
    电源、充电单元、储能单元、供电回路。
  24. 根据权利要求23所述的激光发射装置,其特征在于,所述多个供电回路包括第一供电回路和第二供电回路,
    在至少部分时长内,所述第一供电回路用于以固定的周期给所述发光模块供电,以使所述发光模块以固定的周期发光,所述第二供电回路用于在相邻两次第一供电回路的供电时段之间,以距离所述发光模块的上一次发光固定或随机的时间间隔给所述发光模块供电,以使所述发光模块以固定或随机的时间间隔再次发光;
    其中,所述多个发光支路中的至少部分发光支路时分复用所述第二供电回路。
  25. 根据权利要求22所述的激光发射装置,其特征在于,同一发光模块连续两次发光的时间间隔小于相邻发光模块的发光间隔。
  26. 根据权利要求22所述的激光发射装置,其特征在于,所述多个发光支路中的至少部分发光支路时分复用一个复位回路。
  27. 根据权利要求22所述的激光发射装置,其特征在于,所述激光发射装置还包括:
    多个续流回路,每个续流回路与一个供电回路相连接,用于在所连接的供电回路 为所述发光模块供电时,为所连接的供电回路续流;
    其中,至少两个发光模块的供电回路共用一个续流回路。
  28. 一种激光测距装置,其特征在于,所述激光测距装置包括:
    如权利要求1至27任意一项所述的激光发射装置,用于发射激光信号;以及
    激光接收装置,用于接收所述激光信号对应的回波信号,所述回波信号用于进行测距。
  29. 一种可移动平台,其特征在于,包括:
    权利要求28所述的激光测距装置,用于对所述可移动平台周围的物体进行测距;以及
    控制器,用于根据测距结果,对所述可移动平台的行驶状态进行规划。
PCT/CN2021/070149 2021-01-04 2021-01-04 激光发射装置、激光测距装置及可移动平台 WO2022141634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070149 WO2022141634A1 (zh) 2021-01-04 2021-01-04 激光发射装置、激光测距装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070149 WO2022141634A1 (zh) 2021-01-04 2021-01-04 激光发射装置、激光测距装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2022141634A1 true WO2022141634A1 (zh) 2022-07-07

Family

ID=82258814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070149 WO2022141634A1 (zh) 2021-01-04 2021-01-04 激光发射装置、激光测距装置及可移动平台

Country Status (1)

Country Link
WO (1) WO2022141634A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207396732U (zh) * 2017-09-19 2018-05-22 深圳市镭神智能***有限公司 一种多线激光雷达光路***
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
CN109387819A (zh) * 2017-08-03 2019-02-26 北京北科天绘科技有限公司 一种激光雷达装置及其通道选通方法
CN109752729A (zh) * 2019-01-23 2019-05-14 电子科技大学 一种脉冲式激光测距装置及方法
CN110146868A (zh) * 2019-05-31 2019-08-20 深圳市速腾聚创科技有限公司 激光雷达***和激光雷达回波信号的确定方法
CN211236240U (zh) * 2018-09-27 2020-08-11 深圳市大疆创新科技有限公司 一种光发射装置及测距装置、移动平台
US20200319304A1 (en) * 2019-04-02 2020-10-08 Hesai Photonics Technology Co., Ltd. Laser system for lidar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387819A (zh) * 2017-08-03 2019-02-26 北京北科天绘科技有限公司 一种激光雷达装置及其通道选通方法
CN207396732U (zh) * 2017-09-19 2018-05-22 深圳市镭神智能***有限公司 一种多线激光雷达光路***
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
CN211236240U (zh) * 2018-09-27 2020-08-11 深圳市大疆创新科技有限公司 一种光发射装置及测距装置、移动平台
CN109752729A (zh) * 2019-01-23 2019-05-14 电子科技大学 一种脉冲式激光测距装置及方法
US20200319304A1 (en) * 2019-04-02 2020-10-08 Hesai Photonics Technology Co., Ltd. Laser system for lidar
CN110146868A (zh) * 2019-05-31 2019-08-20 深圳市速腾聚创科技有限公司 激光雷达***和激光雷达回波信号的确定方法

Similar Documents

Publication Publication Date Title
US10903621B2 (en) Circuit for driving a laser and method therefor
WO2020142949A1 (zh) 一种光发射装置及测距装置、移动平台
CN106549301B (zh) 脉冲激光二极管驱动器
WO2021031753A1 (zh) 用于发光模块的安全充电电路、保护方法以及激光雷达发射***
JP3132346U (ja) 発光ダイオード装置の制御回路
US20230178961A1 (en) Light source system
CN112805587B (zh) 激光发射电路和激光雷达
CN110459955B (zh) 一种高大功率高重频的半导体激光器驱动电路
CN114594453A (zh) 激光发射电路、激光发射控制方法及激光雷达
US20210215807A1 (en) Pipelined histogram pixel
US11604283B2 (en) Light source system
CN111880193B (zh) 一种激光驱动***及方法、三维传感***
WO2022141634A1 (zh) 激光发射装置、激光测距装置及可移动平台
US20210273405A1 (en) Light source system
US20230132592A1 (en) Power supply unit, emitting apparatus including the same, and control method
CN104808214A (zh) 一种多发射***的脉冲激光测距仪
CN217278913U (zh) 多线激光雷达设备
WO2021088647A1 (zh) 多脉冲激光发射电路、激光雷达以及发射激光束的方法
CN209913235U (zh) 一种激光器的驱动电路及激光雷达***
CN103596344A (zh) 一种led驱动***和方法
RU2627729C2 (ru) По отдельности управляемая матрица излучающих элементов
CN112805586B (zh) 激光发射电路和激光雷达
CN114844189A (zh) 一种改善电源***的电压调制的方法
CN110456374A (zh) 激光雷达的发射电路、激光雷达及激光雷达的测距方法
WO2021138770A1 (zh) 一种光发射装置及测距设备、移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912417

Country of ref document: EP

Kind code of ref document: A1