WO2022141606A1 - 光学指纹检测装置和电子设备 - Google Patents

光学指纹检测装置和电子设备 Download PDF

Info

Publication number
WO2022141606A1
WO2022141606A1 PCT/CN2020/142597 CN2020142597W WO2022141606A1 WO 2022141606 A1 WO2022141606 A1 WO 2022141606A1 CN 2020142597 W CN2020142597 W CN 2020142597W WO 2022141606 A1 WO2022141606 A1 WO 2022141606A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint detection
detection device
optical
lens
cover plate
Prior art date
Application number
PCT/CN2020/142597
Other languages
English (en)
French (fr)
Inventor
王仁峰
郭益平
黄新利
刘凯
龙卫
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/142597 priority Critical patent/WO2022141606A1/zh
Publication of WO2022141606A1 publication Critical patent/WO2022141606A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints

Definitions

  • the present application relates to the technical field of biometric detection, and more particularly, to an optical fingerprint detection device and an electronic device.
  • fingerprint detection technology is widely used in mobile terminal design, automotive electronics, smart home and other fields. Consumers have increased functional requirements for various electronic terminal products, and at the same time, the product size is required to be as thin and light as possible. Therefore, the internal structure of electronic products is becoming more and more compact, and the structural design of the fingerprint detection function device is more difficult. As a result, the fingerprint detection device is miniaturized and other functional devices. The demand for integration is increasingly urgent, requiring fingerprint detection devices to achieve more accurate functions while occupying a smaller volume of electronic products.
  • the mainstream fingerprint detection devices are mainly capacitive fingerprint detection devices and optical fingerprint detection devices.
  • the optical fingerprint detection device is generally installed inside the display screen of the electronic device or below the display screen, and integrated inside the display screen will display the display on the display screen. The function will have a certain impact, and setting it under the display screen will occupy a part of the thickness space of the electronic device, which is not conducive to the development of thin and light electronic devices.
  • the embodiments of the present application provide an optical fingerprint detection device and an electronic device, which can reduce the space occupied in the electronic device under the premise of taking into account the performance of the optical fingerprint detection device, which is beneficial to the development of miniaturization and thinning of the electronic device.
  • an optical fingerprint detection device for being arranged on the side of an electronic device, the optical fingerprint detection device includes: a cover plate; a lens assembly and a fingerprint sensor, which are sequentially arranged in a first direction of the cover plate, the first One direction faces the inner side of the side surface of the electronic device; a first substrate is disposed in the first direction of the fingerprint sensor and is used to support the fingerprint sensor; a supporting member is connected to the lens assembly, the cover plate and the first substrate, a second direction for supporting the lens assembly and the cover plate in the fingerprint sensor, the second direction facing the outside of the side of the electronic device; a light source for emitting a light signal to the finger at the cover plate, the light The signal is reflected or transmitted by the finger to form a fingerprint light signal carrying fingerprint information, and the lens assembly is used to image the fingerprint light signal to the fingerprint sensor for fingerprint detection.
  • the optical fingerprint detection device is arranged in the side surface of the electronic device, using the The side space of the electronic device is relatively abundant, and the optical fingerprint detection device does not need to be arranged under the display screen, thus saving the space under the screen, and it will not restrict the performance of the optical fingerprint detection device due to the narrow space under the screen. It is not only conducive to the development of light and thin electronic equipment, but also conducive to further improving the performance of the optical fingerprint detection device.
  • the cover plate is an arc surface cover plate, and the arc surface of the cover plate faces the outside of the electronic device.
  • the cover plate is designed as an arc surface cover plate, and its arc surface is used for contact with the user's finger.
  • the arc of the arc cover can be designed according to the curvature of the side of the electronic device, so that the arc cover and the side of the electronic device form a good fit and improve the appearance of the electronic device.
  • the current capacitive fingerprint detection devices installed on the surface of electronic equipment are generally flat structures, which are relatively simple in appearance, have no three-dimensional sense, and have poor customer experience. This leads to problems such as misjudgment of fingerprint identification, and when the mobile phone is dropped, it will damage the plane of the entire capacitive fingerprint detection device, which affects the performance of the fingerprint detection device. And even if the arc cover is set above the capacitive fingerprint detection device, since the detection principle of the capacitive fingerprint detection device is based on the capacitance detection between the finger and the electrode, the arc cover will affect the capacitance between the finger and the electrode, causing The fingerprint signal detected by the capacitive fingerprint detection device becomes smaller, which affects the performance of fingerprint detection.
  • the arc of the arc surface cover is too large and the distance between the finger and the capacitive fingerprint device is too far, it may cause the capacitive fingerprint detection device.
  • the detected fingerprint signal is not available, therefore, the radian of the curved cover cannot be designed correspondingly according to the radian of the surface of the electronic device. To sum up, it is not suitable to add a cover plate structure on the surface of the capacitive fingerprint detection device, and the optical fingerprint detection device is superior to the capacitive fingerprint detection device in the aesthetics and adaptability of the electronic equipment.
  • the lens assembly includes a lens and a lens barrel, the lens is disposed in the lens barrel; the support is connected to the lens barrel, and supports the lens barrel to be disposed in the second direction of the fingerprint sensor .
  • the lens includes an aspherical lens or an aspherical lens group.
  • the optical fingerprint detection device includes: a plurality of the lens assemblies and a plurality of the fingerprint sensors, the plurality of the lens assemblies are disposed in the second direction of the plurality of fingerprint sensors in a one-to-one correspondence, and The plurality of lens assemblies and the plurality of fingerprint sensors are arranged along the long sides of the side surface of the electronic device.
  • the optical fingerprint detection device includes: a plurality of the lens assemblies and a fingerprint sensor, the fingerprint sensor includes a plurality of imaging regions, and the plurality of the lens assemblies are disposed in the fingerprint sensor in a one-to-one correspondence In the second direction of the plurality of imaging regions, the plurality of lens assemblies and the plurality of imaging regions are arranged along the long sides of the side surface of the electronic device.
  • the cover plate is a first optical imaging element
  • the lens assembly is a second optical imaging element; the cover plate and the lens assembly are used to image the fingerprint optical signal to the fingerprint sensor for performing Fingerprint detection.
  • the first optical imaging element includes: a plurality of first optical imaging parts
  • the second optical imaging element includes: a plurality of second optical imaging parts; the plurality of first optical imaging parts one by one Corresponding to the plurality of second optical imaging parts, a plurality of lens parts are formed, and the plurality of lens parts are arranged along the long side of the side surface of the electronic device.
  • the first optical imaging part is a concave lens
  • the second optical imaging part is a convex lens or a group of convex lenses.
  • the optical fingerprint detection device includes: a plurality of the fingerprint sensors, and the plurality of lens parts are disposed in the second direction of the plurality of fingerprint sensors in a one-to-one correspondence; or, the optical fingerprint detection device Including: a fingerprint sensor, the fingerprint sensor includes a plurality of imaging regions, and the plurality of lens parts are arranged in the second direction of the plurality of imaging regions in the fingerprint sensor in a one-to-one correspondence.
  • the support member includes a first support portion and a second support portion, the first support portion is used for connecting and fixing the lens assembly, and the second support portion is used for fixedly connecting the first support portion and the first substrate, so that the lens assembly is arranged in the second direction of the first substrate.
  • the second support portion is a hollow cylindrical structure
  • the fingerprint sensor is disposed in the hollow cylindrical structure
  • the light source is disposed outside the hollow cylindrical structure.
  • the cover plate is fixedly connected to the peripheral edge region of the first support portion through an adhesive layer, so that the cover plate is disposed in the second direction of the lens assembly.
  • the support member further includes a third support portion, disposed on a side of the second support portion away from the fingerprint sensor, and connected to the second direction of the first substrate; the cover plate The cover plate is fixedly connected to a part of the edge region of the first support portion and the third support portion through an adhesive layer, so that the cover plate is arranged in the second direction of the lens assembly.
  • the light source is disposed between the third support portion and the second support portion, and the cover plate is disposed in the second direction of the light source.
  • the optical fingerprint detection device further includes: foam, disposed between the light source and the lens assembly.
  • the foam is disposed on the peripheral edge region of the first support portion, and connects the first support portion and the cover plate.
  • the light source is disposed in the second direction of the first substrate, and the first substrate is used to support the light source.
  • the optical fingerprint detection device further includes a second substrate, the second substrate and the first substrate are arranged on the same plane, and the light source is arranged in the first direction of the second substrate, the The second substrate is used to support the light source.
  • the optical fingerprint detection device further includes a second substrate, the second substrate is disposed in the second direction of the first support portion in the support member, and the light source is disposed in the second substrate of the second substrate In the first direction, the first support portion and the second substrate are used to support the light source.
  • the cover plate, the lens assembly, the fingerprint sensor and the support are arranged in a first accommodating area on the side of the electronic device, and the light source is arranged on a second side of the electronic device. In the accommodating area, the first accommodating area is adjacent to the second accommodating area.
  • the cover plate, the lens assembly, the fingerprint sensor, the support and the light source are all disposed in the first accommodating area on the side of the electronic device.
  • the cover plate is made of a transparent material, or the cover plate includes a filter material, and the filter material is used to pass the light signal of the target wavelength band and filter the light signal of the non-target wavelength band.
  • the optical fingerprint detection device further includes: a filter layer, disposed between the lens assembly and the fingerprint sensor, for passing the light signal of the target wavelength band and filtering the light signal of the non-target wavelength band.
  • the light source is used to emit light signals in an infrared wavelength band
  • the target wavelength band includes an infrared wavelength band
  • the optical fingerprint detection device is arranged in a button on the side of the electronic device.
  • the key is only used to implement the fingerprint detection function, or the key is used to implement the fingerprint detection function and the target function of the electronic device.
  • an electronic device including: the optical fingerprint detection apparatus according to the first aspect or any possible implementation manner of the first aspect.
  • the electronic device further includes: an accommodating area disposed on the side of the electronic device and a carrier plate disposed at the accommodating area; the optical fingerprint detection device is fixedly disposed on the carrier plate.
  • the carrier board is disposed in the accommodating area, or the carrier board is disposed in a first direction of the accommodating area, wherein the first direction faces the inner side of the side surface of the electronic device.
  • the carrier board is a mechanical structure or an electrical structure in the electronic device.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a position design of a light source according to an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of an optical fingerprint detection apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another position design of a light source according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of an optical fingerprint detection apparatus according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of an optical fingerprint detection device according to an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of an optical fingerprint detection apparatus according to an embodiment of the present application.
  • embodiments of the present application can be applied to optical biometric identification systems, including but not limited to optical fingerprint detection systems and products based on optical fingerprint imaging.
  • the embodiments of the present application only take an optical fingerprint detection system as an example for description, but should not constitute any limitation to the embodiments of the present application, and the embodiments of the present application are also applicable to other systems adopting optical imaging technology and the like.
  • the optical fingerprint detection system can be applied to smart phones, tablet computers, smart wearable devices, and other types of mobile terminals or other electronic devices. More specifically, in the above electronic device, the optical fingerprint detection system may include an optical fingerprint detection device and a processing unit, wherein the optical fingerprint detection device is used for optically imaging the fingerprint, and the processing unit is used for fingerprint detection and identification of the fingerprint image. and other processing to obtain relevant detection results and identification results and provide them to the electronic device, so as to meet the relevant needs of users.
  • the optical fingerprint detection device may be disposed on any surface of the electronic device that interacts with the user, including but not limited to the front, back, or side surface of the electronic device.
  • the electronic device in which the optical fingerprint detection system provided by the embodiment of the present application is located is a mobile phone, wherein the optical fingerprint detection device may be arranged on the side of the mobile phone. As an example, it may be embedded, raised or flat. It is arranged on the side of the mobile phone, and the present application does not specifically limit the configuration of the arrangement on the side of the mobile phone.
  • the optical fingerprint detection device may be an independent component disposed on the side of the mobile phone, and is only used to realize the fingerprint detection function;
  • the optical fingerprint detection device can be integrated on a target button on the side of the mobile phone.
  • the target button includes but is not limited to a power button of an electronic device.
  • the power button is used to start/wake up the mobile phone.
  • it can also be used to realize the function of fingerprint detection.
  • the mobile phone on the basis of successful fingerprint detection, can be restarted/wake up to improve the security performance of mobile phone authentication.
  • FIG. 2 shows a schematic structural diagram of an optical fingerprint detection apparatus 100 in an embodiment of the present application.
  • the optical fingerprint detection device 100 can be disposed on the side of the mobile phone in FIG. 1 , optionally, it can be fixedly disposed on the side of the mobile phone, or can also be disposed on the buttons on the side of the mobile phone shown in FIG. 1 .
  • the schematic structural diagram shown in FIG. 2 may be a schematic cross-sectional structural diagram along the plane where the XZ axis in FIG. 1 is located.
  • the positive direction of the Z axis is the direction toward the outside of the side surface of the electronic device, and the negative direction of the Z axis is the direction toward the inner side of the side surface of the electronic device.
  • the X-axis is the short-side direction of the side of the electronic device
  • the Y-axis is the long-side direction of the side of the electronic device.
  • the optical fingerprint detection device 100 includes: a cover plate 110 , a lens assembly 120 , a fingerprint sensor 130 , a first substrate 140 , a support member 150 and a light source 160 .
  • the lens assembly 120 and the fingerprint sensor 130 are sequentially arranged in the first direction of the cover plate 110, and the first direction faces the inner side of the side surface of the electronic device;
  • the first substrate 140 is disposed in the first direction of the fingerprint sensor 130 for supporting the fingerprint sensor 130;
  • the support 150 is connected to the lens assembly 120, the cover plate 110 and the first substrate 140, and is used for supporting the lens assembly 120 and the cover plate 110 in a second direction of the fingerprint sensor 130, the second direction facing the outer side of the side of the electronic device .
  • the light source 160 is used for emitting a light signal to the finger at the cover plate 110, the light signal is reflected or transmitted by the finger to form a fingerprint light signal carrying the fingerprint information of the finger, and the lens assembly 120 is used for imaging the fingerprint light signal to the fingerprint sensor 130 for fingerprint detection and/or fingerprint identification.
  • a first accommodating area 102 is formed in the outer frame 101 on the side of the electronic device, and the first accommodating area 102 may be a through hole, a groove or an area in a key. At least some components of the fingerprint detection device 100 can be disposed in the first accommodating area 102 .
  • the optical signal formed by the reflection or transmission of the finger may also carry biometric information such as pulse, blood oxygen, and veins.
  • biometric information such as pulse, blood oxygen, and veins.
  • the optical fingerprint detection device of the embodiments of the present application can also be used to detect other biometric information such as pulse, blood oxygen, and veins, so as to perform other functions such as living body detection and human health detection.
  • first direction in the above is toward the inner side of the side of the electronic device, that is, the “first direction” may be the negative direction of the Z axis shown in Figures 1 and 2.
  • first direction can also be written as “below”.
  • second direction in the above is toward the outside of the side surface of the electronic device, that is, the “second direction” may be the positive direction of the Z-axis shown in Figures 1 and 2.
  • the embodiment of the present application provides an optical fingerprint detection device, which uses a lens assembly and a fingerprint sensor to perform optical fingerprint imaging, and has a good fingerprint imaging effect.
  • the optical fingerprint detection device is arranged in the side of the electronic device, and the relatively abundant side space of the electronic device is used, and the optical fingerprint detection device does not need to be arranged under the display screen, thereby saving the space under the screen and making the narrow
  • the small space under the screen restricts the performance of the optical fingerprint detection device, which is not only conducive to the development of thin and light electronic equipment, but also to further improve the performance of the optical fingerprint detection device.
  • the above-mentioned optical fingerprint detection device can be integrated in a button on the side of the electronic device.
  • the button can be a dedicated button for fingerprint detection, or can also be used for fingerprint detection and execution of other functions of the electronic device.
  • multi-function button By adopting this embodiment, it is convenient for users to quickly find the buttons on the surface of the electronic device for fingerprint detection, which can improve user experience.
  • the optical fingerprint detection device reuses the space of the key, which further improves the space utilization in the electronic device.
  • FIG. 3 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 , and the structural schematic diagram may be a cross-sectional structural schematic diagram along the plane where the XZ axis in FIG. 1 is located.
  • the above-mentioned cover plate 110 may be an arc surface cover plate, and the arc surface thereof faces the positive direction of the Z-axis, that is, toward the outside of the electronic device.
  • the curved cover is used for contact with the user's finger. Compared with the flat cover, the curved cover can improve the contact experience of the user's finger. More importantly, the curved surface of the curved cover can be adjusted according to the electronic device. The curvature of the side surface of the device is designed accordingly, so that the curved surface cover plate forms a good fit with the side surface of the electronic device, and the appearance of the electronic device is improved.
  • the current capacitive fingerprint detection devices installed on the surface of electronic equipment are generally flat structures, which are relatively simple in appearance, have no three-dimensional sense, and have poor customer experience. This leads to problems such as misjudgment of fingerprint identification, and when the mobile phone is dropped, it will damage the plane of the entire capacitive fingerprint detection device, which affects the performance of the fingerprint detection device. And even if the arc cover is set above the capacitive fingerprint detection device, since the detection principle of the capacitive fingerprint detection device is based on the capacitance detection between the finger and the electrode, the arc cover will affect the capacitance between the finger and the electrode, causing The fingerprint signal detected by the capacitive fingerprint detection device becomes smaller, which affects the performance of fingerprint detection.
  • the arc of the arc surface cover is too large and the distance between the finger and the capacitive fingerprint device is too far, it may cause the capacitive fingerprint detection device.
  • the detected fingerprint signal is not available, therefore, the radian of the curved cover cannot be designed correspondingly according to the radian of the surface of the electronic device. To sum up, it is not suitable to add a cover plate structure on the surface of the capacitive fingerprint detection device, and the optical fingerprint detection device is superior to the capacitive fingerprint detection device in the aesthetics and adaptability of the electronic equipment.
  • the lens assembly 120 includes a lens 121 and a lens barrel 122, wherein the lens 121 is arranged in the lens barrel 122, and the support 150 is connected to the lens barrel 122, The lens barrel 122 is supported and disposed above the fingerprint sensor 130 .
  • the lens 121 may include an aspherical lens or an aspherical lens group, so as to reduce the imaging distortion of the fingerprint image.
  • the object-side focal length of the aspheric lens or aspheric lens group may be smaller than the focal length of the front camera used for taking pictures or the lens 121 may be a macro lens, so as to meet the requirements of fingerprint detection.
  • the object-side focal length range of the macro lens may be within a preset range, and correspondingly, the object-side focal length of the macro lens may be located on or near the cover plate 110 .
  • the lens 121 can be fixedly disposed in the lens barrel 122 .
  • the lens 121 is also movably disposed in the lens barrel 122 .
  • the lens barrel 122 may include a focusing component for adjusting the position of the lens 121 in the lens barrel 12 to adjust the distance between the lens 121 and the fingerprint sensor 130 .
  • the desired optical imaging of the lens 121 can be realized by focusing, thereby reducing the need for optical imaging of the lens 121 . Processing technology requirements, while improving the performance and efficiency of fingerprint detection.
  • the cover plate 110 can be connected to the support member 150 through the adhesive layer 111 , and fixedly disposed above the lens assembly 120 .
  • the cover plate 110 can be covered and disposed above the lens assembly 120 , in other words, on a plane perpendicular to the Z direction in FIG. 3 , that is, on the XY plane, the orthographic projection of the lens assembly 120 is completely located on the right side of the cover plate 110 . in projection.
  • the material of the cover plate 110 may be a transparent material, or the material of the cover plate 110 may also include a filter material for passing the target wavelength band.
  • the wavelength range of the target band should include at least part of the wavelength range of the optical signal emitted by the light source 160 , and optionally, the wavelength range of the target band is the wavelength range of the optical signal emitted by the light source 160 .
  • the transparent material includes, but is not limited to, glass or resin.
  • the cover plate 110 may be a cover plate structure formed by coating a filter material layer on a transparent substrate, the filter material The layer can be applied to the upper and/or lower surface of the transparent substrate.
  • the cover plate 110 adopts the structure scheme of this embodiment, which can realize the filtering function and have strong mechanical strength, and can prevent the external force from affecting the optical fingerprint detection device 100, especially the lens assembly 120 when the electronic device is affected by external force. cause damage, thereby improving the reliability of the optical fingerprint detection device.
  • the light source 160 (not shown in the figure) is used to emit infrared light and/or near-infrared light to the finger above the cover plate 110, correspondingly, the infrared light and/or near-infrared light can After being reflected or transmitted by the finger, it is transmitted to the lens assembly 120 through the cover plate 110 .
  • the cover plate 110 needs to transmit light signals in the infrared and/or near-infrared band, in other words, the target band includes the infrared and/or near-infrared band.
  • the upper surface and/or the lower surface of the cover plate 110 may be coated with infrared-transmitting ink, so as to transmit light signals in the infrared band and block interfering light signals in the non-infrared band.
  • infrared and/or near-infrared light is emitted through a light source, and the infrared light and/or near-infrared light transmitted by the finger is mainly used for optical fingerprint imaging to perform fingerprint detection. Therefore, the position requirement of the light source is not high, and it only needs to satisfy that the infrared light can reach the finger pressing on the cover plate. Therefore, the position of the light source in the optical fingerprint detection apparatus in the embodiment of the present application can be flexibly set according to the space conditions of different electronic devices.
  • a foam 112 is provided below the cover plate 110 for connecting the cover plate 110 and the support member 150 .
  • the lens assembly 120 is disposed under the middle area of the cover plate 110 , and the foam 112 may be disposed at the edge area of the cover plate 110 .
  • the light signal passing through the middle area of the cover plate 110 will not be affected, so the light signal received by the lens assembly 120 will not be affected.
  • the first support portion 151 in the support member 150 is used to fix and connect the lens assembly 120
  • the adhesive layer 111 for fixing the cover plate 110 may be disposed on the peripheral edge area of the first support portion 151 to The cover plate 110 is fixed and supported.
  • the foam 112 can be disposed on the peripheral edge region of the first support portion 151 and disposed on the side of the adhesive layer 111 close to the lens assembly 120 for connecting and supporting the cover plate 110 .
  • the material of the support member 150 may be an organic plastic, which can be manufactured by an injection molding process with high manufacturing precision to form each component in the support member 150 , which can be combined with the lens assembly 120 and the cover plate 110 . And other components in the optical fingerprint detection device 100 form a good connection and cooperation, and play a stable supporting role, so as to improve the use reliability of the optical fingerprint detection device 100 .
  • the first substrate 140 may be a circuit board, and the fingerprint sensor 130 may be disposed on the first substrate 140 through an adhesive layer, which includes but is not limited to a die attach film (Die Attach Film, DAF) adhesive layer. While supporting the fingerprint sensor 130 , the first substrate 140 is used for electrical connection with the fingerprint sensor 130 , and transmits the photoelectrically converted fingerprint electrical signal of the fingerprint sensor 130 to the processing unit to perform subsequent processing operations such as fingerprint detection.
  • DAF Die Attach Film
  • the first substrate 140 includes, but is not limited to, a printed circuit board (Printed Circuit Board, PCB), a flexible printed circuit board (Flexible Printed Circuit, FPC), a rigid-flex board, or other types of circuit boards, to which the embodiments of the present application There is no specific limitation.
  • the electrical connection method between the fingerprint sensor 130 and the first substrate 140 includes, but is not limited to, wire bonding (Wire Bonding), tape automated bonding (TAB), flip chip (Flip Chip, FC) ) or other types of electrical connection methods, etc., which are not specifically limited in the embodiments of the present application.
  • a reinforcing plate 141 may be further disposed below the first substrate 140 to enhance the mechanical strength of the FPC and support the fingerprint sensor 130 above it.
  • the reinforcing plate 141 includes, but is not limited to, a reinforcing steel plate, and may also be other types of reinforcing plates in the related art, which are not specifically limited in the embodiments of the present application.
  • the fingerprint sensor 130 can be directly disposed above the FPC, or a window can be formed in the FPC, and the fingerprint sensor 130 can be disposed in the window and above the reinforcing plate.
  • the preparation process is simple and the production can be improved.
  • Efficiency by adopting the latter embodiment, the height of the optical fingerprint detection apparatus 100 can be reduced, thereby reducing the space occupied by the electronic equipment.
  • the first substrate 140 may only be used as a circuit board of the fingerprint sensor 130 for transmitting electrical signals of the fingerprint sensor 130 and supporting the fingerprint sensor 130 and the supporting member 150 above it.
  • a processing unit and other types of electrical components may also be disposed on a substrate 140 for performing a complete fingerprint detection function.
  • the first substrate 140 can also be a circuit board of other functional modules in the electronic device, and on this basis, it can be multiplexed into a circuit board of the fingerprint sensor 130 at the same time.
  • the support member 150 further includes a second support portion 152 , and the second support portion 152 is used for fixedly connecting the first support portion 152 and the first substrate 140 , so that the lens assembly 120 is disposed on the first substrate 140 and above the fingerprint sensor 130.
  • the second support portion 152 is disposed on the peripheral edge region of the first substrate 140 .
  • the second support portion 152 may be a hollow cylindrical structure, and the fingerprint sensor 130 is disposed in the hollow cylindrical structure.
  • the second supporting portion 152 is also used for protecting the fingerprint sensor 130 while playing a supporting role.
  • the second support portion 152 can be reused as a structural member of the button.
  • the size or the shape and size of the accommodating area are designed and manufactured for the shape and size of the second support portion 152 and the cover plate 110 .
  • the keys are circular or waist-shaped keys
  • the second support portion 152 may be an annular hollow cylindrical structure.
  • the second support portion 152 may also be a frame-shaped columnar hollow structure.
  • the optical fingerprint detection device 100 further includes: a filter layer 170, which is disposed between the lens assembly 120 and the fingerprint sensor 130, and is used for passing the optical signal of the target wavelength band, filtering unless the optical signal of the target band.
  • a filter layer 170 which is disposed between the lens assembly 120 and the fingerprint sensor 130, and is used for passing the optical signal of the target wavelength band, filtering unless the optical signal of the target band.
  • the wavelength range of the target wavelength band passed by the filter layer 170 should include at least part of the wavelength range of the optical signal emitted by the light source 160.
  • the wavelength range of the target wavelength band The wavelength range is the wavelength range of the optical signal emitted by the light source 160 .
  • the filter layer 170 can be used to pass the infrared light band and/or the near-infrared light band, and filter the non-infrared light band, for example Filter out the visible light band to prevent ambient visible light or light leakage from the display from interfering with fingerprint detection.
  • the filter layer 170 may specifically be a filter, which is fixed above the fingerprint sensor 130 through an adhesive layer and used to cover the pixel array area of the fingerprint sensor 130 .
  • the filter layer 170 can also be directly coated on the surface of the fingerprint sensor 130 and packaged together with the fingerprint sensor 130 in a chip.
  • the optical fingerprint detection device 100 may include both the filter material layer and the filter layer 170 in the cover plate 110, or may only include the filter layer in the cover plate 110.
  • FIG. 4 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection apparatus 100 shown in FIG. 4 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the optical fingerprint detection device 100 may include: a plurality of lens assemblies 120 , and the support member 150 is configured to support the plurality of lens assemblies 120 to be disposed above the fingerprint sensor 130 .
  • the plurality of lens assemblies 120 are arranged in one or more rows along the Y-axis direction, and the number of lens assemblies in each row is one or more.
  • FIG. 3 and FIG. 4 may be a schematic cross-sectional view of the same optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along a plane where the YZ axis is located.
  • the length of the optical fingerprint detection device 100 in the Y-axis direction is greater than the length in the X-axis direction.
  • the length in the Y direction is greater than the length in the X direction.
  • the optical fingerprint detection apparatus 100 includes one fingerprint sensor 130, and the one fingerprint sensor 130 corresponds to a plurality of lens assemblies 120.
  • the fingerprint sensor 130 includes a plurality of imaging areas.
  • the imaging area 131 includes a pixel array area formed by a plurality of pixel (Pixel) units, which may be referred to as an active area (Active Area, AA) of the fingerprint sensor 130 .
  • the above-mentioned plurality of lens assemblies 120 are disposed above the plurality of imaging areas 131 in a one-to-one correspondence, that is, in the fingerprint sensor 130, each imaging area in the plurality of imaging areas 131 is used to receive a lens assembly 120 corresponding to it. light signal.
  • the plurality of lens assemblies 120 and the plurality of imaging areas 131 are all arranged along the long sides of the side of the electronic device.
  • the filter layer 170 is disposed above the fingerprint sensor 130 , it needs to cover all the imaging areas 131 in the fingerprint sensor 130 .
  • FIG. 5 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • 3 and 5 may be a schematic cross-sectional view of another optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along the plane where the YZ axis is located.
  • the optical fingerprint detection device 100 includes: a plurality of fingerprint sensors 130 , and the above-mentioned plurality of lens assemblies 120 are disposed above the plurality of fingerprint sensors 130 in a one-to-one correspondence, that is, a plurality of fingerprints Each of the fingerprint sensors 130 in the sensors 130 is used to receive the optical signal imaged by the corresponding lens assembly 120 .
  • the plurality of lens assemblies 120 and the plurality of fingerprint sensors 130 are arranged along the long sides of the side of the electronic device.
  • the filter layer 170 may include a plurality of filters or a plurality of filter layers, and the plurality of filters or a plurality of filter layers They are disposed above the plurality of fingerprint sensors 130 in a one-to-one correspondence.
  • the technical solutions shown in FIGS. 3 and 4 above, or the technical solutions shown in FIGS. 3 and 5 are used to make full use of the side space of the electronic device, and an elongated accommodating area is arranged on the side of the electronic device.
  • a plurality of lens components can be arranged along the long side direction of the electronic device, that is, the Y direction in the above, so as to expand the fingerprint detection area, thereby improving the fingerprint detection effect.
  • fingerprint detection is implemented only through one fingerprint sensor corresponding to multiple lens assemblies, and the manufacturing process is simple and the cost is low.
  • multiple fingerprint sensors correspond to multiple lens assemblies, and the operation of multiple fingerprint sensors can be controlled respectively, which has high flexibility. For example, if one of the multiple fingerprint sensors If it is damaged, other sensors can continue to work, which can improve the reliability of the optical fingerprint detection device.
  • the light source 160 may be disposed above the first substrate 140 and electrically connected to the first substrate 140 .
  • the light source 160 is not disposed in the hollow columnar structure formed by the second supporting portion 152 in the support member 150 together with the at least one fingerprint sensor 130, but is disposed outside the hollow columnar structure formed by the second supporting portion 152, that is, the light source 160 is disposed in The side of the second support portion 152 away from the at least one fingerprint sensor 130 prevents the emitted light signal and/or non-finger reflected light signal from the light source 160 from directly entering the at least one fingerprint sensor 130 to interfere with fingerprint detection.
  • the light source 160 may be a point light source, a line light source or a surface light source.
  • the light source 160 may include one or more light emitting diodes (Light Emitting Diode, LED), which are distributed around the second support portion 152 .
  • LED Light Emitting Diode
  • FIG. 6 shows a schematic diagram of a position design of the light source in the embodiment of the present application, which may be a schematic cross-sectional structure diagram along the plane where the XY axis is located in FIG. 1 .
  • the cross section of the first support portion 151 in the plane of the XY axis is a quadrilateral.
  • the light source 160 can be other than the LEDs shown in FIG. 6 , it can also be other forms of light source, such as a line light source, which is disposed on one side of the first support portion 151 .
  • the light source 160 can also be disposed at any position between the first support portion 151 and the first substrate 140 , that is, between the two dotted frames shown in FIG. 6 . any location.
  • the light source 160 and the at least one fingerprint sensor 130 are both disposed on the same first substrate 140, which facilitates the installation of the light source 160, and does not require additional electrical connectors for the light source 160, which is convenient while reducing costs.
  • the common control of the light source 160 and the at least one fingerprint sensor 130 is realized.
  • the light source 160 is disposed obliquely below the cover plate 110, the cover plate 110 does not cover the light source 160, and the light source 160 is disposed in the slit between the cover plate 110 and the outer frame of the electronic device middle.
  • the cover plate 110 may be arranged to cover the light source 160 .
  • FIG. 7 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 7 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the support member 150 further includes a third support portion 153 disposed on a side of the second support portion 152 away from the at least one fingerprint sensor 130 and connected above the first substrate 140 .
  • the cover plate 110 is fixedly connected to a part of the edge region of the first support portion 151 and the third support portion 153 through the adhesive layer 111 , so that the cover plate 110 is disposed above the at least one lens assembly 120 .
  • the light source 160 is disposed between the second support portion 152 and the third support portion 153 .
  • a foam 112 is disposed between at least one lens assembly 120 and the light source 160 to block the light emitted by the light source 160 and/or the non-finger reflected light signal from entering the lens assembly 120 .
  • the foam 112 can be disposed between the first support portion 151 and the cover plate 110 , and can further support the cover plate 110 above it while blocking the interference light signal.
  • FIG. 7 only shows the case where the optical fingerprint detection device 100 includes one fingerprint sensor 130 , in this embodiment, the optical fingerprint detection device 100 may also include multiple fingerprint sensors 130 , including multiple fingerprint sensors 130
  • the optical fingerprint detection device 100 may also include multiple fingerprint sensors 130 , including multiple fingerprint sensors 130
  • FIG. 5 please refer to the relevant description of FIG. 5 above, which will not be repeated here.
  • the light source 160 may be disposed in various positions in the following embodiments in addition to the positions shown in the embodiments shown in FIG. 4 to FIG. 7 above.
  • FIG. 8 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 8 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the light source 160 is not disposed on the first substrate 140 , but is disposed on the first support portion 151 of the support member 150 .
  • the light source 160 may be disposed at an edge region of the first support portion 151 , and a middle region of the first support portion 151 is used for connecting and supporting at least one lens assembly 120 .
  • a foam 112 is disposed between the light source 160 and the lens assembly 120 to block the emitted light signal of the light source 160 and other stray light signals.
  • the distance between the light source 160 and the cover plate 110 and the finger above the cover plate 110 is closer, so that the utilization rate of the light signal of the light source can be improved, and the intensity of the light signal after reflection or transmission by the finger can be increased, so as to improve the fingerprint detection effect.
  • the optical fingerprint detection device 100 further includes: a second substrate 161 , the second substrate 161 is disposed below the light source 160 and above the first supporting portion 151 for transmission A control signal is sent to the light source 160 to control the light source 160 to emit light.
  • the second substrate 161 and the first support portion 151 are used to jointly support the light source 160 .
  • the second substrate 161 includes, but is not limited to, a flexible circuit board FPC, one end of which is used for electrical connection with the light source 160 and the other end is used for electrical connection with the first substrate 140 , the second substrate 161 is connected to the first
  • An electrical connection method of the substrate 140 includes, but is not limited to, a Zero Insertion Force (ZIF) connector, a Board To Board (BTB) connector, an Anisotropic Conductive Film (ACF) ) and other electrical connections.
  • ZIF Zero Insertion Force
  • BTB Board To Board
  • ACF Anisotropic Conductive Film
  • a reinforcing plate may also be provided under one side of the second substrate 161 connected to the light source 160 to improve the mechanical strength of the second substrate 161 and the light source 160 .
  • FIG. 8 shows the third support portion 153 in the support member 150 , a part of the adhesive layer 111 connecting the cover plate 110 is located on the third support portion 153 , and the light source 160 is covered by the cover plate 110 above.
  • the third support portion 153 may not be provided, the cover plate 110 does not cover the light source 160 , the adhesive layers 111 connecting the cover plate 110 are all located above the first support portion 151 , and The light source 160 is disposed on the side of the light source 160 close to the lens assembly 120 and is used for connecting the fixed cover plate 110 .
  • FIG. 9 is a schematic cross-sectional structure diagram of the embodiment shown in FIG. 8 along the plane of the XY axis in FIG. 1 .
  • the cross section of the first support portion 151 on the plane of the XY axis is a quadrilateral.
  • the light source 160 may be other than a plurality of LEDs shown in FIG. 6 , it may also be other forms of light sources, such as a line light source, disposed on one side of the edge region of the first support portion 151 .
  • the light source 160 can also be disposed at any position in the edge region of the first support portion 151 . Any position between the edges of the first support portion 151 , that is, any position between the two dotted boxes as shown in FIG. 9 .
  • FIG. 10 and FIG. 11 show two other schematic structural diagrams of the optical fingerprint detection device 100 .
  • the optical fingerprint detection device 100 shown in FIG. 10 and FIG. 11 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the light source 160 is not disposed in the first accommodating area 102 of the outer frame 101 on the side of the electronic device, but is disposed in the second accommodating area 101 in the outer frame 101 of the electronic device
  • the accommodating area 103 other components in the optical fingerprint detection device 100 , including the cover plate 110 , at least one lens assembly 120 , at least one fingerprint sensor 120 , and support members 150 are disposed in the first accommodating area 101 .
  • the embodiment shown in FIG. 10 or FIG. 11 can be used, and the light source 160 is arranged in the second accommodating area 103, which can be flexibly adapted. Match the needs of different electronic devices.
  • the second accommodating area 103 can also be a groove, a through hole or other types of accommodating spaces.
  • the light source 160 may be disposed above the first substrate 140 , and the first substrate 140 is used to support the light source 160 .
  • the first substrate 140 is disposed below the first accommodating area 102 and the second accommodating area 103 .
  • the light source 160 and other components in the optical fingerprint sensor 100 are not disposed in the same accommodating area, they are all disposed above the first substrate 140 to facilitate the installation of the light source 160 without requiring 160 is provided with additional electrical connectors, which facilitates the common control of the light source 160 and the at least one fingerprint sensor 130 while reducing costs.
  • the optical fingerprint detection device 100 further includes: a second substrate 161 , the second substrate 161 is disposed below the light source 160 , and the second substrate 161 and the first substrate 140 can be disposed on the same plane On or close to the same plane, for transmitting control signals to the light source 160 to control the light source 160 to emit light.
  • the second substrate may be a flexible circuit board FPC, and a reinforcing plate 162 may be disposed under the second substrate. The reinforcing plate 162 and the second substrate 161 are used to jointly support the light source 160 .
  • one end of the second substrate 161 is used to connect to the light source 160
  • the other end of the second substrate 161 can be used to connect to other electrical modules of the electronic device to provide power and control signals to the light source 160 .
  • the second substrate 161 and the light source 160 are provided independently from other components of the optical fingerprint detection device 100 . It is convenient to disassemble and maintain the light source 160 .
  • FIG. 8 to FIG. 11 are only to illustrate the position design of the light source 160 .
  • the relevant technical solutions of the fingerprint sensor 130 , the first substrate 140 and the support member 150 may refer to the relevant descriptions in FIGS. 2 to 7 above, and will not be repeated here.
  • the positions of the light sources 160 shown in FIG. 4 to FIG. 11 above are only schematic illustrations. In addition to the positions shown in the above-mentioned embodiments, the light sources 160 may also be arranged in electronic devices. For other positions, the optical element can then guide the light signal emitted by the light source 160 to the finger at the cover plate 110 .
  • the specific position of the light source 160 is not limited in this embodiment of the present application.
  • the cover plate 110 may only support the cover plate, which has no optical imaging function.
  • the cover plate 110 can be multiplexed into an optical imaging element, which is used to perform fingerprint imaging together with the lens assembly 120 .
  • FIG. 12 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 12 may be a schematic cross-sectional structure diagram along the plane of the XZ axis in FIG. 1 .
  • the cover plate 110 is the first optical imaging element
  • the lens assembly 120 is the second optical imaging element.
  • the light signal of the fingerprint is imaged to the fingerprint sensor 130 for fingerprint detection.
  • the cover plate 110 includes a first optical imaging part
  • the lens assembly 120 includes a second optical imaging part
  • the first optical imaging part is a lens or lens group with negative refractive power
  • the second optical imaging part is A lens or lens group with positive refractive power
  • the first optical imaging part and the second optical imaging part form a lens part, which is used for optical fingerprint imaging.
  • the first optical imaging part is a meniscus negative power lens with a convex surface on the object side (that is, the side close to the finger) and a concave surface on the image side (that is, the side close to the fingerprint sensor), and the second optical The part is a positive power lens with convex surfaces on both the object side (that is, the side close to the finger) and the image side (that is, the side close to the fingerprint sensor).
  • concave or convex surface on the object side here refers to the unevenness of the surface on the object side of the lens along the optical axis direction.
  • the unevenness of the surface in the axial direction refers to the unevenness of the surface on the object side of the lens along the optical axis direction.
  • the first optical imaging part is a first imaging lens 1101
  • the second optical imaging part may include a second imaging lens 1201 and a third imaging lens 1202 .
  • the three imaging lenses 1202 may all be convex lenses.
  • the second optical imaging part can also be implemented by a convex lens instead, for example, only the second imaging lens 1201 or only the third imaging lens 1202 is included, or it can also be realized by a lens group including more lenses
  • the embodiments of the present application do not specifically limit the specific lens structure in the lens assembly 120 .
  • the lenses in the cover plate 110 and the lens assembly 120 may be formed by using transparent materials such as resin or glass, or may also be formed by using other organic or inorganic transparent plastic materials. This is not limited.
  • the cover plate 110 is multiplexed into an optical lens structure in the imaging system, which can reduce the cost of the entire optical fingerprint detection device 100 and compress the optical fingerprint detection device while realizing optical fingerprint imaging.
  • the space occupied by 100 is beneficial to the miniaturization development of the optical fingerprint detection device 100 and the electronic equipment in which it is located.
  • FIG. 13 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • the optical fingerprint detection device 100 shown in FIG. 13 may be a schematic cross-sectional structure diagram along the plane of the YZ axis in FIG. 1 .
  • the cover plate 110 includes a plurality of first optical imaging parts, that is, includes a plurality of first imaging lenses 1101 , and the plurality of first imaging lenses 1101 are connected to each other to form the cover plate 110 the overall structure.
  • the lens assembly 120 includes a plurality of second optical imaging parts.
  • each of the second optical imaging parts in FIG. 13 includes a second imaging lens 1201 and a third imaging lens 1202 .
  • the plurality of first optical imaging parts correspond to the plurality of second optical imaging parts one by one, and a set of one first optical imaging part and one second optical imaging part corresponding to each other forms a lens part 1301 , the cover plate 110 and the lens assembly 120 forms a plurality of lens parts 1301 in total to perform optical fingerprint imaging.
  • the plurality of lens parts 1301 are arranged in one or more rows along the Y-axis direction, and the number of lens parts in each row is one or more.
  • FIG. 12 and FIG. 13 may be a schematic cross-sectional view of the same optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along a plane where the YZ axis is located.
  • the length of the optical fingerprint detection device 100 in the Y-axis direction is greater than the length in the X-axis direction.
  • the length in the Y direction is greater than the length in the X direction.
  • the optical fingerprint detection apparatus 100 includes one fingerprint sensor 130 , and the one fingerprint sensor 130 corresponds to a plurality of lens parts 1301 .
  • the fingerprint sensor 130 includes a plurality of imaging areas. 131.
  • the above-mentioned plurality of lens parts 1301 are arranged above the plurality of imaging areas 131 in a one-to-one correspondence, that is, in the fingerprint sensor 130, each imaging area in the plurality of imaging areas 131 is used to receive a corresponding one of the lens parts.
  • the plurality of lens parts 1301 and the plurality of imaging regions 131 are arranged along the long sides of the side surface of the electronic device.
  • the filter layer 170 is disposed above the fingerprint sensor 130 , it needs to cover all the imaging areas 131 in the fingerprint sensor 130 .
  • a plurality of second imaging lenses 1201 are connected to each other to form an imaging lens array assembly, and similarly, a plurality of third imaging lenses 1202 are connected to each other to form an imaging lens array assembly.
  • the central area thereof may be formed under the action of gravity, thereby affecting its imaging effect.
  • FIG. 14 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • 12 and FIG. 14 may be a schematic cross-sectional view of another optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along the plane where the YZ axis is located.
  • the plurality of second imaging lenses 1201 and the plurality of third imaging lenses 1202 can be disposed separately, and the plurality of second imaging lenses 1201 and the plurality of third imaging lenses 1202 can be fixedly supported by the support member 150 , specifically They can be connected to each other through the first support portion 151 in the support member 150 , and can be fixedly disposed above the first substrate 140 through the second support portion 152 .
  • FIG. 15 shows another schematic structural diagram of the optical fingerprint detection apparatus 100 .
  • FIG. 12 and FIG. 15 are respectively a schematic cross-sectional view of another optical fingerprint detection device 100 along a plane where the XZ axis is located and a schematic cross-sectional view along the plane where the YZ axis is located.
  • the optical fingerprint detection apparatus 100 includes: a plurality of fingerprint sensors 130 .
  • the above-mentioned plurality of lens parts 1301 are disposed above the plurality of fingerprint sensors 130 in a one-to-one correspondence, that is, each fingerprint sensor 130 is used to receive after passing through a corresponding one of the lens parts 1301 light signal.
  • the plurality of lens parts 1301 and the plurality of fingerprint sensors 130 are arranged along the long side of the side surface of the electronic device.
  • the filter layer 170 may include multiple filters or multiple filter layers, the multiple filters or multiple filters The layers are disposed above the plurality of fingerprint sensors 130 in a one-to-one correspondence.
  • the technical solutions shown in FIG. 12 to FIG. 15 above are adopted, the side space of the electronic device is fully utilized, and a long-strip accommodating area is arranged on the side of the electronic device, which can be used along the side of the electronic device.
  • a long-side direction that is, the Y-direction above, a plurality of lens parts are arranged to expand the fingerprint detection area, thereby improving the fingerprint detection effect.
  • the embodiment of the present application further provides an electronic device, and the electronic device may include: the optical fingerprint detection apparatus of any of the above-mentioned embodiments of the application.
  • the electronic device further includes: an accommodating area disposed on the side of the electronic device and a carrier plate disposed at the accommodating area; wherein, the optical fingerprint detection device is fixedly disposed on the carrier plate.
  • the carrier board can be a structural member inside the electronic device, which has a certain mechanical strength and supporting function, and can be arranged inside the accommodating area. On the same plane, the cross-sectional area of the carrier board is smaller than that of the accommodating area.
  • the carrier board can also be disposed on the side of the accommodating area close to the inside of the electronic device, and on the same plane, the cross-sectional area of the carrier board is larger than that of the accommodating area.
  • the carrier board includes, but is not limited to, a mechanical structural member in an electronic device, or may also be an electrical structural member, and the embodiment of the present application does not limit the specific type and specific structure of the carrier board.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Input (AREA)

Abstract

一种光学指纹检测装置和电子设备,兼顾光学指纹检测装置的性能,并减小其在电子设备中的占用空间,有利于电子设备小型化和轻薄化发展。该光学指纹检测装置用于设置在电子设备的侧面,包括:盖板;镜头组件和指纹传感器,依次设置于盖板的第一方向,第一方向朝向电子设备的侧面的内侧;第一基板,设置于指纹传感器的第一方向,并用于支撑指纹传感器;支撑件,连接镜头组件、盖板和第一基板,用于将镜头组件和盖板支撑设置于指纹传感器的第二方向,第二方向朝向电子设备侧面的外侧;光源,用于发射光信号至盖板处的手指,光信号经由手指反射或透射后形成携带有指纹信息的指纹光信号,镜头组件用于将指纹光信号成像至指纹传感器,以进行指纹检测。

Description

光学指纹检测装置和电子设备 技术领域
本申请涉及生物特征检测技术领域,并且更具体地,涉及一种光学指纹检测装置和电子设备。
背景技术
随着生物识别技术发展,指纹检测技术广泛应用于移动终端设计、汽车电子、智能家居等领域。消费者对各种电子终端产品的功能需求增多的同时要求产品尺寸尽量轻薄,因此电子产品内部结构日益紧凑,指纹检测功能装置结构设计难度增大,由此指纹检测装置小型化以及和其他功能装置集成化需求日益迫切,要求指纹检测装置在占有电子产品更小的体积空间的条件下去实现更加精准的功能。
目前,主流的指纹检测装置主要为电容指纹检测装置和光学指纹检测装置,其中,光学指纹检测装置一般设置于电子设备的显示屏内部或者显示屏下方,集成于显示屏内部会对显示屏的显示功能造成一定影响,而设置在显示屏下方则会占用电子设备的一部分厚度空间,不利于电子设备的轻薄化发展。
因此,如何在兼顾光学指纹检测装置的性能的前提下,减小其在电子设备中的占用空间,是一项亟待解决的技术问题。
发明内容
本申请实施例提供一种光学指纹检测装置和电子设备,能够兼顾光学指纹检测装置的性能的前提下,减小其在电子设备中的占用空间,有利于电子设备的小型化和轻薄化发展。
第一方面,提供一种光学指纹检测装置,用于设置在电子设备的侧面,该光学指纹检测装置包括:盖板;镜头组件和指纹传感器,依次设置于该盖板的第一方向,该第一方向朝向该电子设备的侧面的内侧;第一基板,设置于该指纹传感器的该第一方向,并用于支撑该指纹传感器;支撑件,连接该镜头组件、该盖板和该第一基板,用于将该镜头组件和该盖板支撑设置于该指纹传感器的第二方向,该第二方向朝向该电子设备侧面的外侧;光源,用 于发射光信号至该盖板处的手指,该光信号经由该手指反射或透射后形成携带有指纹信息的指纹光信号,该镜头组件用于将该指纹光信号成像至该指纹传感器,以进行指纹检测。
根据本申请实施例的技术方案,利用镜头组件和指纹传感器进行光学指纹成像,具有良好的指纹成像效果,另外,本申请实施例中,该光学指纹检测装置设置于电子设备的侧面中,利用了电子设备较为充裕的侧面空间,而不需将该光学指纹检测装置设置在显示屏下,从而节省了屏下空间,也不会让窄小的屏下空间对光学指纹检测装置的性能造成制约,不仅有利于电子设备的轻薄化发展,也有利于进一步提升光学指纹检测装置的性能。
在一些可能的实施方式中,该盖板为弧面盖板,该盖板的弧面朝向该电子设备的外侧。
通过本申请实施例的技术方案,将盖板设计为弧面盖板,其弧面用于与用户手指接触,相比于平面盖板,该弧面盖板可以改善用户手指的接触体验,更重要的是,该弧面盖板的弧面弧度可根据电子设备的侧面的弧度进行相应设计,使得该弧面盖板与电子设备的侧面形成良好配合,提升电子设备的外观的美观度。
在这一点上,目前设置于电子设备表面的电容指纹检测装置则一般为平面结构,外观上比较单一,没有立体感,客户体验不佳,另外,灰尘等物质经常会很容易吸附在平面上,导致指纹识别出现误判等问题,且手机在摔落时,会对整个电容指纹检测装置的平面造成损伤,影响指纹检测装置的性能。且即使在电容指纹检测装置上方设置弧面盖板,由于电容指纹检测装置的检测原理是基于手指与电极之间的电容检测,因此,弧面盖板会影响手指与电极之间的电容,造成电容指纹检测装置检测到的指纹信号变小,从而影响指纹检测的性能,进一步地,若弧面盖板的弧度过大,手指与电容指纹装置的距离过远,则可能会造成电容指纹检测装置检测到的指纹信号不可用,因此,弧面盖板的弧度不能根据电子设备的表面的弧度进行对应设计。综上,对于电容指纹检测装置,不适合在其表面增加盖板结构,在电子设备的美观度和适配性上,光学指纹检测装置优于电容指纹检测装置。
在一些可能的实施方式中,该镜头组件包括镜头和镜筒,该镜头设置于该镜筒内;该支撑件连接于该镜筒,并支撑该镜筒设置于该指纹传感器的该第二方向。
在一些可能的实施方式中,该镜头包括非球面透镜或非球面透镜组。
在一些可能的实施方式中,该光学指纹检测装置包括:多个该镜头组件和多个该指纹传感器,多个该镜头组件一一对应的设置于多个该指纹传感器的该第二方向,且该多个镜头组件和该多个指纹传感器均沿该电子设备的侧面的长边排列。
在一些可能的实施方式中,该光学指纹检测装置包括:多个该镜头组件和一个该指纹传感器,该指纹传感器包括多个成像区域,多个该镜头组件一一对应的设置于该指纹传感器中该多个成像区域的该第二方向,且该多个镜头组件和该多个成像区域均沿该电子设备的侧面的长边排列。
在一些可能的实施方式中,该盖板为第一光学成像元件,该镜头组件为第二光学成像元件;该盖板与该镜头组件用于将该指纹光信号成像至该指纹传感器,以进行指纹检测。
在一些可能的实施方式中,该第一光学成像元件包括:多个第一光学成像部,该第二光学成像元件包括:多个第二光学成像部;该多个第一光学成像部一一对应于该多个第二光学成像部,并形成多个镜头部,该多个镜头部沿该电子设备的侧面的长边排列。
在一些可能的实施方式中,该第一光学成像部为凹透镜,该第二光学成像部为凸透镜或者凸透镜组。
在一些可能的实施方式中,该光学指纹检测装置包括:多个该指纹传感器,该多个镜头部一一对应的设置于多个该指纹传感器的该第二方向;或者,该光学指纹检测装置包括:一个该指纹传感器,该指纹传感器包括多个成像区域,该多个镜头部一一对应的设置于该指纹传感器中该多个成像区域的该第二方向。
在一些可能的实施方式中,该支撑件包括第一支撑部和第二支撑部,该第一支撑部用于连接并固定该镜头组件,该第二支撑部用于固定连接该第一支撑部和该第一基板,以使该镜头组件设置于该第一基板的该第二方向。
在一些可能的实施方式中,该第二支撑部为空心柱状结构,该指纹传感器设置于该空心柱状结构内,该光源设置于该空心柱状结构外。
在一些可能的实施方式中,该盖板通过胶层固定连接于该第一支撑部的四周边缘区域,以使该盖板设置于该镜头组件的该第二方向。
在一些可能的实施方式中,该支撑件还包括第三支撑部,设置于该第二 支撑部远离该指纹传感器的一侧,并连接设置于该第一基板的该第二方向;该盖板通过胶层固定连接于该第一支撑部的部分边缘区域以及该第三支撑部,以使该盖板设置于该镜头组件的该第二方向。
在一些可能的实施方式中,该光源设置于该第三支撑部与该第二支撑部之间,该盖板设置于该光源的该第二方向。
在一些可能的实施方式中,该光学指纹检测装置还包括:泡棉,设置于该光源与该镜头组件之间。
在一些可能的实施方式中,该泡棉设置于该第一支撑部的四周边缘区域,并连接该第一支撑部与该盖板。
在一些可能的实施方式中,该光源设置于该第一基板的该第二方向,该第一基板用于支撑该光源。
在一些可能的实施方式中,该光学指纹检测装置还包括第二基板,该第二基板与该第一基板设置于同一平面上,且该光源设置于该第二基板的该第一方向,该第二基板用于支撑该光源。
在一些可能的实施方式中,该光学指纹检测装置还包括第二基板,该第二基板设置于该支撑件中第一支撑部的该第二方向,且该光源设置于该第二基板的该第一方向,该第一支撑部和该第二基板用于支撑该光源。
在一些可能的实施方式中,该盖板、该镜头组件、该指纹传感器和该支撑件设置于该电子设备的侧面的第一容置区域中,该光源设置于该电子设备的侧面的第二容置区域中,该第一容置区域与该第二容置区域相邻设置。
在一些可能的实施方式中,该盖板、该镜头组件、该指纹传感器、该支撑件和该光源均设置于该电子设备的侧面的第一容置区域中。
在一些可能的实施方式中,该盖板的材料为透明材料,或者,该盖板包括滤光材料,该滤光材料用于通过目标波段的光信号,滤除非目标波段的光信号。
在一些可能的实施方式中,该光学指纹检测装置还包括:滤光层,设置于该镜头组件和该指纹传感器之间,用于通过目标波段的光信号,滤除非目标波段的光信号。
在一些可能的实施方式中,该光源用于发射红外波段的光信号,该目标波段包括红外波段。
在一些可能的实施方式中,该光学指纹检测装置设置于该电子设备的侧 面的按键中。
在一些可能的实施方式中,该按键仅用于实现指纹检测功能,或者,该按键用于实现指纹检测功能以及该电子设备的目标功能。
第二方面,提供一种电子设备,包括:如第一方面或者第一方面中任一种可能的实施方式中的光学指纹检测装置。
在一些可能的实施方式中,电子设备还包括:设置于该电子设备的侧面的容置区域和设置于该容置区域处的载板;该光学指纹检测装置固定设置于该载板。
在一些可能的实施方式中,该载板设置于该容置区域中,或者,该载板设置于该容置区域的第一方向,其中,该第一方向朝向该电子设备侧面的内侧。
在一些可能的实施方式中,该载板为该电子设备中的机械结构件或者电学结构件。
附图说明
图1为本申请实施例提供的一种电子设备的示意图。
图2为根据本申请实施例的光学指纹检测装置的一种结构示意图。
图3为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图4为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图5为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图6为根据本申请实施例的光源的一种位置设计示意图。
图7为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图8为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图9为根据本申请实施例的光源的另一位置设计示意图。
图10为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图11为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图12为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图13为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图14为根据本申请实施例的光学指纹检测装置的另一结构示意图。
图15为根据本申请实施例的光学指纹检测装置的另一结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学生物特征识别***,包括但不限于光学指纹检测***和基于光学指纹成像的产品。本申请实施例仅以光学指纹检测***为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的***等。
作为一种常见的应用场景,本申请实施例提供的光学指纹检测***可以应用在智能手机、平板电脑、智能穿戴设备以及其他类型的移动终端或者其他电子设备中。更具体地,在上述电子设备中,光学指纹检测***可包括光学指纹检测装置和处理单元,其中,光学指纹检测装置用于对指纹进行光学成像,处理单元用于对指纹图像进行指纹检测和识别等处理,以获取相关的检测结果和识别结果提供给电子设备,从而相应用户的相关需求。在本申请实施例中,光学指纹检测装置可设置于电子设备与用户交互的任意面,包括但不限于是电子设备的正面、背面或者侧面。
作为示例,如图1所示,本申请实施例提供的光学指纹检测***所在的电子设备为手机,其中,光学指纹检测装置可以设置在手机的侧面,作为示例,其可以嵌入、凸起或者平整设置于手机的侧面,本申请对其在手机侧面的设置形态不做具体限定。
在一些实施方式中,该光学指纹检测装置可以为设置在手机侧面的一个独立部件,仅用于实现指纹检测功能;
在另一些实施方式中,该光学指纹检测装置可以集成设置于手机侧面的目标按键上,例如,该目标按键包括但不限于是电子设备的电源按键,该电源按键除了用于实现启动/唤醒手机外,还可以用于实现指纹检测功能。进一步地,在该实施方式中,可以在指纹检测成功的基础上,再启动/唤醒手机,提高手机认证的安全性能。
图2示出了本申请实施例中光学指纹检测装置100的一种结构示意图。该光学指纹检测装置100可设置在图1中手机的侧面,可选地,其可固定设置于手机的侧面,或者也可设置在图1中所示的手机侧面的按键上。具体地,图2中所示的结构示意图可为沿图1中XZ轴所在平面的截面结构示意图。其中,Z轴的正方向为朝向电子设备侧面的外侧的方向,Z轴的负方向为朝向电子设备侧面的内侧方向。X轴为电子设备侧面的短边方向,Y轴为电子 设备侧面的长边方向。
如图2所示,该光学指纹检测装置100包括:盖板110,镜头组件120,指纹传感器130、第一基板140、支撑件150和光源160。
其中,镜头组件120和指纹传感器130依次设置于盖板110的第一方向,该第一方向朝向电子设备的侧面的内侧;
第一基板140设置于指纹传感器130的第一方向,用于支撑该指纹传感器130;
支撑件150,连接镜头组件120、盖板110和第一基板140,用于将该镜头组件120和盖板110支撑设置于指纹传感器130的第二方向,该第二方向朝向电子设备侧面的外侧。
光源160用于发射光信号至盖板110处的手指,该光信号经由手指反射或透射后形成携带有手指的指纹信息的指纹光信号,镜头组件120用于将该指纹光信号成像至指纹传感器130,以进行指纹检测和/或指纹识别。
可选地,如图2所示,电子设备的侧面的外框101中形成有第一容置区域102,该第一容置区域102可以为通孔、凹槽或者按键中的区域,该光学指纹检测装置100至少部分组件可设置于该第一容置区域102中。
可以理解的是,经由手指反射或透射后形成的光信号除了上述携带有手指指纹信息的指纹光信号以外,还可以携带有脉搏、血氧、静脉等生物特征信息。换言之,本申请实施例的光学指纹检测装置除了可以检测指纹以外,还可以用于检测脉搏、血氧、静脉等其它生物特征信息,以进行活体检测、人体健康检测等其它功能。
还可以理解的是,上文中的“第一方向”朝向电子设备的侧面的内侧,即“第一方向”可为图1和图2中所示Z轴的负方向,在图2中,“第一方向”也可写为“下方”。对应的,上文中的“第二方向”朝向电子设备的侧面的外侧,即“第二方向”可为图1和图2中所示Z轴的正方向,在图2中,“第二方向”也可写为“上方”。为了便于结合附图对本申请中的相关实施例进行说明,除了特殊情况下的说明以外,下文中的“上方”指朝向电子设备的外侧的“第二方向”,“下方”指朝向电子设备的内侧的“第一方向”。
基于图1和图2的相关说明,本申请实施例提供了一种光学指纹检测装置,其利用镜头组件和指纹传感器进行光学指纹成像,具有良好的指纹成像效果,另外,本申请实施例中,该光学指纹检测装置设置于电子设备的侧面 中,利用了电子设备较为充裕的侧面空间,而不需将该光学指纹检测装置设置在显示屏下,从而节省了屏下空间,也不会让窄小的屏下空间对光学指纹检测装置的性能造成制约,不仅有利于电子设备的轻薄化发展,也有利于进一步提升光学指纹检测装置的性能。
进一步地,上述光学指纹检测装置可以集成设置于电子设备的侧面的按键中,可选地,该按键可以为用于指纹检测的专用按键,或者也可以为用于指纹检测和执行电子设备其它功能的多功能按键。采用该实施方式,可以方便用户快速找到电子设备表面的按键,以进行指纹检测,能够提高用户体验,进一步地,若按键为电子设备中用于执行其它功能的按键,则本申请实施例中的光学指纹检测装置复用了该按键的空间,进一步提高了电子设备中的空间利用率。
图3示出了光学指纹检测装置100的另一结构示意图,该结构示意图可为沿图1中XZ轴所在平面的截面结构示意图。
可选地,在本申请实施例中,上述盖板110可为弧面盖板,其弧面朝向Z轴的正方向,即朝向电子设备的外侧。该弧面盖板用于与用户手指接触,相比于平面盖板,该弧面盖板可以改善用户手指的接触体验,更重要的是,该弧面盖板的弧面弧度可根据电子设备的侧面的弧度进行相应设计,使得该弧面盖板与电子设备的侧面形成良好配合,提升电子设备的外观的美观度。
在这一点上,目前设置于电子设备表面的电容指纹检测装置则一般为平面结构,外观上比较单一,没有立体感,客户体验不佳,另外,灰尘等物质经常会很容易吸附在平面上,导致指纹识别出现误判等问题,且手机在摔落时,会对整个电容指纹检测装置的平面造成损伤,影响指纹检测装置的性能。且即使在电容指纹检测装置上方设置弧面盖板,由于电容指纹检测装置的检测原理是基于手指与电极之间的电容检测,因此,弧面盖板会影响手指与电极之间的电容,造成电容指纹检测装置检测到的指纹信号变小,从而影响指纹检测的性能,进一步地,若弧面盖板的弧度过大,手指与电容指纹装置的距离过远,则可能会造成电容指纹检测装置检测到的指纹信号不可用,因此,弧面盖板的弧度不能根据电子设备的表面的弧度进行对应设计。综上,对于电容指纹检测装置,不适合在其表面增加盖板结构,在电子设备的美观度和适配性上,光学指纹检测装置优于电容指纹检测装置。
继续参见图3,可选地,在该光学指纹检测装置100中,镜头组件120 包括镜头121和镜筒122,其中,镜头121设置于镜筒122内,支撑件150连接于该镜筒122,并支撑该镜筒122设置于指纹传感器130上方。
可选地,在本申请一个实施例中,镜头121可以包括非球面透镜或非球面透镜组,以减小指纹图像的成像畸变。
需要注意的是,该非球面透镜或非球面透镜组的物方焦距可以比用于拍照用的前置摄像头的焦距小或镜头121为微距镜头,以达到指纹检测的要求。例如,微距镜头的物方焦距范围可以在预设范围内,对应的,该微距镜头的物方焦点可位于上述盖板110上或者位于上述盖板110附近。
可选地,在一些实施方式中,该镜头121可固定设置于镜筒122内。
可选地,在另一些实施方式中,该镜头121也可移动的设置于镜筒122内。作为示例,该镜筒122中可包括调焦组件,用于调整镜筒12中镜头121的位置,以调整该镜头121与指纹传感器130之间的距离。
采用该实施方式,在盖板安装过程中,若盖板110与镜头121之间的距离随加工工艺波动发生变化,则可通过调焦的方式来实现镜头121期望的光学成像,进而降低了对加工工艺的要求,同时提升指纹检测的性能和效率。
进一步地,如图3所示,盖板110可通过胶层111连接于支撑件150,并固定设置于镜头组件120上方。
具体地,该盖板110可覆盖设置于该镜头组件120上方,换言之,在垂直于图3中Z方向的平面上,即在XY平面上,镜头组件120的正投影完全位于盖板110的正投影之中。
可选地,该盖板110的材料可为透明材料,或者,该盖板110的材料也可包括用于通过目标波段的滤光材料。可以理解的是,该目标波段的波长范围应包括光源160发射的光信号的至少部分波长范围,可选地,该目标波段的波长范围即为光源160发射的光信号的波长范围。
作为一种示例,若盖板110的材料为透明材料,该透明材料包括但不限于是玻璃或者树脂。
作为另一种示例,若盖板110的材料包括用于通过目标波段的滤光材料,则该盖板110可为在透明基底上涂覆滤光材料层形成的盖板结构,该滤光材料层可涂覆于透明基底的上表面和/或下表面。盖板110采用该实施方式的结构方案,可在实现滤光功能的同时具有较强的机械强度,在电子设备受到外力影响时,可防止外力对光学指纹检测装置100,尤其是对镜头组件120造 成损坏,从而提高光学指纹检测装置的可靠性。
优选地,在一些实施方式中,光源160(图中未示出)用于发射红外光和/或近红外光至盖板110上方的手指,对应的,该红外光和/或近红外光能够经过手指反射或者透射后,再经过盖板110传输至镜头组件120。在此情况下,盖板110需透过红外和/或近红外波段的光信号,换言之,上述目标波段包括红外和/或近红外波段。作为示例,盖板110的上表面和/或下表面可涂覆透红外油墨,用于透过红外波段的光信号,而阻挡非红外波段的干扰光信号。
采用本申请实施例的方案,通过光源发射红外和/或近红外光,并主要利用经过手指透射的红外光和/或近红外光进行光学指纹成像,以进行指纹检测。因而对光源的位置要求不高,仅需满足红外光能够达到按压于盖板处的手指即可。因而,可以根据不同的电子设备的空间情况,灵活设置本申请实施例中光学指纹检测装置中的光源位置。
继续参见图3,为了提高盖板110与支撑件150连接的可靠性和稳定性,可选地,在盖板110的下方设置有泡棉112,用于连接盖板110和支撑件150。
可选地,在本申请实施例中,镜头组件120设置于盖板110的中间区域下方,泡棉112可设置于盖板110的边缘区域,在对盖板110起到固定支撑作用的同时,不会对穿过该盖板110的中间区域的光信号造成影响,从而不会对镜头组件120接收的光信号造成影响。
可选地,如图3所示,支撑件150中的第一支撑部151用于固定连接镜头组件120,固定盖板110的胶层111可设置于第一支撑部151的四周边缘区域,以固定支撑盖板110。进一步地,泡棉112可设置于第一支撑部151的四周边缘区域,并设置于胶层111靠近于镜头组件120的一侧,用于连接并支撑盖板110。
作为一些示例,在本申请实施例中,支撑件150的材料可为有机塑料,其可通过制造精度较高的注塑工艺制造形成支撑件150中的各部件,能够与镜头组件120、盖板110以及光学指纹检测装置100中的其它组件形成良好的连接配合,起到稳固的支撑作用,以提高光学指纹检测装置100的使用可靠度。
进一步地,图3所示的实施例中,第一基板140可为电路板,指纹传感器130可通过胶层设置于第一基板140上,该胶层包括但不限于是芯片粘接 薄膜(Die Attach Film,DAF)胶层。第一基板140在支撑指纹传感器130的同时,用于与指纹传感器130电连接,并传输该指纹传感器130经过光电转换后的指纹电信号至处理单元中,以执行后续的指纹检测等处理动作。
作为示例,第一基板140包括但不限于印刷电路板(Printed Circuit Board,PCB),柔性电路板(Flexible Printed Circuit,FPC)、软硬结合板或者其它类型的电路板,本申请实施例对此不作具体限定。可选地,指纹传感器130和第一基板140的电连接方式包括但不限于是:引线键合(Wire Bonding)、载带自动焊(Tape Automated Bonding,TAB)、倒装芯片(Flip Chip,FC)或者其它类型的电连接方式等,本申请实施例对此也不作具体限定。
可以理解的是,若第一基板140为FPC,则其下方可进一步设置补强板141,以增强FPC的机械强度,对其上方的指纹传感器130起到支撑作用。作为示例,该补强板141包括但不限于是补强钢板,其还可以为相关技术中其它类型的补强板,本申请实施例对此不做具体限定。
可选地,指纹传感器130可直接设置于FPC上方,或者FPC中可形成有窗口,指纹传感器130设置于该窗口中并位于补强板上方,采用前一种实施方式,制备工艺简单能够提高生产效率,采用后一种实施方式,则能够降低光学指纹检测装置100的高度,从而减小其占用的电子设备空间。
在一些实施方式中,第一基板140可仅作为指纹传感器130的电路板,用于传输指纹传感器130的电信号并对其上方的指纹传感器130和支撑件150起到支撑作用,进一步地,第一基板140上还可设置处理单元以及其他类型的电学元器件,用于执行完整的指纹检测功能。
在另一些实施方式中,第一基板140也可为电子设备中其它功能模块的电路板,在此基础上,同时复用为指纹传感器130的电路板。
继续参见图3,支撑件150中还包括第二支撑部152,该第二支撑部152用于固定连接上述第一支撑部152和第一基板140,以使镜头组件120设置于第一基板140和指纹传感器130的上方。
可选地,如图3所示,第二支撑部152设置于第一基板140的四周边缘区域。第二支撑部152可为空心柱状结构,指纹传感器130设置于该空心柱状结构中。第二支撑部152在起到支撑作用的同时,还用于保护指纹传感器130。
可选地,若将本申请实施例中的光学指纹检测装置100设置于电子设备 的按键中,该第二支撑部152可复用为按键的结构件,换言之,可根据电子设备中按键的形态大小或者容置区域的形态大小,设计制造第二支撑部152和盖板110的形态大小。作为示例,若按键为圆形或者腰圆形按键,则第二支撑部152可为环形的空心柱状结构。或者第二支撑部152也可以为框型的柱状空心结构。
可选地,在图3所示的实施例中,光学指纹检测装置100还包括:滤光层170,其设置于镜头组件120和指纹传感器130之间,用于通过目标波段的光信号,滤除非目标波段的光信号。
具体地,与上文中盖板110中的滤光材料层类似,该滤光层170通过的目标波段的波长范围应包括光源160发射的光信号的至少部分波长范围,优选地,该目标波段的波长范围即为光源160发射的光信号的波长范围。
若光源160用于发射红外光和/或近红外光至盖板110上方的手指,对应的,该滤光层170可用于通过红外光波段和/或近红外波段,而滤除非红外波段,例如滤除可见光波段,防止环境可见光或者显示屏的漏光对指纹检测造成干扰。
可选地,该滤光层170具体可以为滤光片,其通过胶层固定于指纹传感器130上方,用于覆盖指纹传感器130的像素阵列区域。或者,该滤光层170也可直接镀膜形成于指纹传感器130的表面,与指纹传感器130共同封装于芯片中。
可以理解的是,在本申请实施例中,光学指纹检测装置100可同时包括上述盖板110中的滤光材料层和上述滤光层170,或者,也可以仅包括上述盖板110中的滤光材料层和上述滤光层170中其中一个。
图4示出了光学指纹检测装置100的另一结构示意图,该图4中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图4所示,在本申请实施例中,光学指纹检测装置100可包括:多个镜头组件120,支撑件150用于支撑该多个镜头组件120设置于指纹传感器130上方。
可选地,多个镜头组件120沿Y轴方向排列为一排或多排,每一排镜头组件的数量为一个或多个。
作为示例,若多个镜头组件120沿Y轴方向排列为一排,即多个镜头组件120沿电子设备的侧面的长边排列成一排。在一些实施例中,图3和图4 可分别为同一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
基于多个镜头组件120在X轴方向和Y轴方向上的设置,通过图3和图4可以看出,光学指纹检测装置100在Y轴方向上的长度大于在X轴方向上的长度。具体地,在XY轴所在平面上,若盖板110、指纹传感器130和第一基板140的投影形状为四边形,则其在Y方向上的长度大于在X方向上的长度。
作为一种示例,如图3和图4所示,光学指纹检测装置100包括一个指纹传感器130,该一个指纹传感器130对应于多个镜头组件120,具体地,指纹传感器130中包括多个成像区域131,该成像区域131包括多个像素(Pixel)单元形成的像素阵列区域,其可称为指纹传感器130的有源区域(Active Area,AA)。上述多个镜头组件120一一对应的设置于该多个成像区域131的上方,即,指纹传感器130中,多个成像区域131中每个成像区域用于接收经过与其对应的一个镜头组件120后的光信号。该多个镜头组件120和多个成像区域131均沿电子设备的侧面的长边排列。
可以理解的是,若指纹传感器130上方设置有滤光层170,其需覆盖指纹传感器130中所有的成像区域131。
作为另一示例,图5示出了光学指纹检测装置100的另一结构示意图。该图3和图5可分别为另一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
如图3和图5所示,光学指纹检测装置100中,包括:多个指纹传感器130,上述多个镜头组件120一一对应的设置于该多个指纹传感器130的上方,即,多个指纹传感器130中每个指纹传感器130用于接收经过与其对应的镜头组件120成像后的光信号。该多个镜头组件120和多个指纹传感器130均沿电子设备的侧面的长边排列。
可以理解的是,若多个指纹传感器130上方设置有滤光层170,该滤光层170可以包括多个滤光片或者多个滤光层,该多个滤光片或者多个滤光层一一对应的设置于多个指纹传感器130上方。
在本申请实施例中,采用上文图3和图4,或者图3和图5中所示的技术方案,充分利用电子设备的侧面空间,在电子设备侧面配合设置长条形的容置区域,可以在沿电子设备的长边方向,即上文中的Y方向上,设置多个 镜头组件,以扩大指纹检测区域,从而提高指纹检测效果。
在图3和图4所示的实施方式中,仅通过一个指纹传感器对应多个镜头组件实现指纹检测,制造工艺简单且成本较低。而在图3和图5所示的实施方式中,通过多个指纹传感器对应多个镜头组件,可以分别控制多个指纹传感器工作,具有较高灵活性,例如,若多个指纹传感器的其中一个损坏,其它的传感器还可继续工作,可以提高光学指纹检测装置的使用可靠性。
如图4和图5所示,在本申请实施例中,光源160可设置于第一基板140上方,且与该第一基板140电连接。该光源160不与至少一指纹传感器130一起设置于支撑件150中第二支撑部152形成的空心柱状结构内,而设置于第二支撑部152形成的空心柱状结构之外,即光源160设置于第二支撑部152远离至少一指纹传感器130的一侧,以防止光源160的发射光信号和/或非手指反射光信号直接进入至少一指纹传感器130,对指纹检测造成干扰。
可选地,该光源160可为点光源、线光源或者面光源。作为示例,该光源160可以包括一个或多个发光二极管(Light Emitting Diode,LED),分布设置于第二支撑部152的周围。
图6示出了本申请实施例中光源的一种位置设计示意图,其可以是沿图1中XY轴所在平面的截面结构示意图。
如图6所示,第一支撑部151在XY轴所在平面的截面为四边形,光源160,例如多个LED沿X轴方向排列设置,并位于第一支撑部151其中一边的一侧。当然,光源160除了可以设置为图6中所示的多个LED以外,其还可以为其它形式的光源,例如线光源,设置于第一支撑部151其中一边的一侧。
此外,除了图6中多个LED所处位置以外,光源160还可设置于第一支撑部151与第一基板140之间的任意位置,即如图6中所示的两个虚线框之间任意位置。
在本申请实施例中,将光源160和至少一指纹传感器130均设置在同一第一基板140上,便于光源160的安装,不需对光源160设置额外的电学连接件,在降低成本的同时方便实现对光源160和至少一指纹传感器130的共同控制。
从上文中图4和图5可以看出,光源160设置于盖板110的斜下方,盖板110并未覆盖光源160,该光源160设置于盖板110与电子设备外框之间 的狭缝中。为了对该光源160起到防护作用,且避免在盖板110与外框之间形成狭缝,进一步地,可设置盖板110覆盖于光源160。
图7示出了光学指纹检测装置100的另一结构示意图。该图7中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图7所示,支撑件150还包括第三支撑部153,设置于第二支撑部152远离至少一指纹传感器130的一侧,并连接设置于第一基板140的上方。盖板110通过胶层111固定连接于第一支撑部151的部分边缘区域以及第三支撑部153,以使盖板110设置于至少一镜头组件120的上方。
作为示例,如图7所示,光源160设置于第二支撑部152和第三支撑部153之间。进一步地,为了防止光源160的发射光信号和/或非手指反射光信号越过第二支撑部152,进入镜头组件120对指纹检测造成干扰,可选地,如图7所示,在本申请实施例中,在至少一镜头组件120和光源160之间设置泡棉112,以阻挡光源160的发射光信号和/或非手指反射光信号进入镜头组件120。具体地,该泡棉112可设置于第一支撑部151与盖板110之间,在阻挡干扰光信号的同时,也可进一步支撑其上方的盖板110。
可以理解的是,图7中仅示出了光学指纹检测装置100包括一个指纹传感器130的情况,该实施例中,光学指纹检测装置100也可以包括多个指纹传感器130,包括多个指纹传感器130的具体方案可以参见上文图5的相关描述,此处不再赘述。
可选地,光源160除了可以设置在如上文图4至图7中所示实施例的位置以外,还可以设置在如下实施例中的多种位置。
图8示出了光学指纹检测装置100的另一种结构示意图。该图8中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图8所示,在本申请实施例中,光源160未设置于第一基板140上,而设置于支撑件150中的第一支撑部151上。
可选地,光源160可以设置于第一支撑部151的边缘区域,第一支撑部151的中间区域用于连接支撑至少一镜头组件120。光源160和镜头组件120之间设置有泡棉112以阻挡光源160的发射光信号以及其它杂散光信号。
采用该实施方式,光源160与盖板110以及盖板110上方的手指距离更近,从而能够提高光源光信号的利用率,增大经过手指反射或透射后的光信号强度,以提高指纹检测效果。
可选地,在本申请实施例中,光学指纹检测装置100还包括:第二基板161,该第二基板161设置于光源160的下方,并设置于第一支撑部151的上方,用于传输控制信号至光源160以控制光源160发光,该第二基板161和第一支撑部151用于共同支撑光源160。
在一些实施方式中,该第二基板161包括但不限于是柔性电路板FPC,其一端用于与光源160电连接,另一端用于与第一基板140电连接,该第二基板161与第一基板140的电连接方式包括但不限于是零***力(Zero Insertion Force,ZIF)连接器、板对板(Board To Board,BTB)连接器,各向异性导电胶膜(Anisotropic Conductive Film,ACF)等电连接方式。
可选地,该第二基板161连接于光源160的一侧下方还可设置补强板,提高第二基板161和光源160的机械强度。
作为示例,图8示出了支撑件150中的第三支撑部153,连接盖板110的胶层111的一部分位于第三支撑部153,光源160被其上方的盖板110覆盖。可选地,图8所示的实施例中,也可以不设置第三支撑部153,盖板110不覆盖光源160,连接盖板110的胶层111全部位于第一支撑部151的上方,且设置于光源160靠近于镜头组件120的一侧,用于连接固定盖板110。
图9示出了图8所示实施例沿图1中XY轴所在平面的截面结构示意图。
如图9所示,第一支撑部151在XY轴所在平面的截面为四边形,光源160,例如多个LED沿X轴方向排列设置,并位于第一支撑部151边缘区域的其中一边。当然,光源160除了可以设置为图6中所示的多个LED以外,其还可以为其它形式的光源,例如线光源,设置于第一支撑部151边缘区域的其中一边。
此外,除了图9中多个LED所处位置以外,光源160还可设置于第一支撑部151边缘区域的任意位置,具体地,位于第一支撑部151中的至少一镜头组件120所在区域与第一支撑部151的边缘之间的任意位置,即如图9中所示的两个虚线框之间任意位置。
图10和图11示出了光学指纹检测装置100的另两种结构示意图。该图10和图11中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图10和图11所示,在本申请实施例中,光源160未设置于电子设备的侧面的外框101的第一容置区域102中,而设置于电子设备外框101中的 第二容置区域103中,而光学指纹检测装置100中的其它部件,包括盖板110、至少一镜头组件120、至少一指纹传感器120以及支撑件150均设置于第一容置区域101中。
在电子设备中可提供的第一容置区域102空间较小的情况下,可选用图10或图11中所示的实施例方案,将光源160设置于第二容置区域103中,灵活适配于不同电子设备的需求。可选地,该第二容置区域103同样可以为凹槽、通孔或者其它类型的容置空间。
可选地,在图10所示的实施例中,光源160可设置于第一基板140上方,第一基板140用于支撑该光源160。第一基板140设置于第一容置区域102和第二容置区域103的下方。在图10所示实施例中,光源160和光学指纹传感器100中的其它部件虽未设置于同一容置区域中,但均设置于第一基板140上方,便于光源160的安装,不需对光源160设置额外的电学连接件,在降低成本的同时方便实现对光源160和至少一指纹传感器130的共同控制。
在图11所示的实施例中,光学指纹检测装置100还包括:第二基板161,该第二基板161设置于光源160的下方,该第二基板161与第一基板140可设置于同一平面上或者接近于同一平面,用于传输控制信号至光源160以控制光源160发光。作为示例,该第二基板可为柔性电路板FPC,其下方可设置有补强板162,该补强板162和第二基板161用于共同支撑光源160。可选地,图11所示的实施例中,第二基板161的一端用于连接光源160,其另一端可用于连接至电子设备的其它电学模块,以对光源160提供电源以及控制信号。
在图11所示实施例中,第二基板161和光源160独立于光学指纹检测装置100的其它部件单独设置。便于对该光源160的拆卸和维修。
需要说明的是,上文图8至图11中所示的光学指纹检测装置100的结构示意图仅为说明其中光源160的位置设计,除光源160的设计方案以外,其中盖板110、镜头组件120、指纹传感器130、第一基板140和支撑件150的相关技术方案可以参见上文图2至图7中的相关描述,此处不再赘述。
还需要说明的是,上文图4至图11中所示的光源160的位置仅为示意性说明,除了上述几种实施例所示出了位置以外,光源160还可以设置于电子设备中的其它位置,再通过光学元件将光源160发出的光信号导引至盖板 110处的手指即可,本申请实施例对光源160的具***置不做限定。
在上文实施例中,盖板110可仅为支撑盖板,其不具有光学成像作用。在下文实施例中,可将盖板110复用为一种光学成像元件,用于配合镜头组件120共同进行指纹成像。
图12示出了光学指纹检测装置100的另一结构示意图。该图12中所示的光学指纹检测装置100可为沿图1中XZ轴所在平面的截面结构示意图。
如图12所示,在本申请实施例中,盖板110为第一光学成像元件,镜头组件120为第二光学成像元件,该盖板110与镜头组件120用于将经过手指反射后散射后的指纹光信号成像至指纹传感器130,以进行指纹检测。
可选地,盖板110包括第一光学成像部,镜头组件120包括第二光学成像部,其中,该第一光学成像部为负光焦度的透镜或者透镜组,该第二光学成像部为正光焦度的透镜或者透镜组,该第一光学成像部和第二光学成像部形成一个镜头部,用于进行光学指纹成像。
可选地,第一光学成像部为物体侧(即靠近手指的一侧)是凸面,像面侧(即靠近指纹传感器的一侧)为凹面的弯月形负光焦度透镜,第二光学部为物体侧(即靠近手指的一侧)与像面侧(即靠近指纹传感器的一侧)都是凸面的正光焦度透镜。
应理解,这里的物体侧为凹面或凸面指的是该透镜的物体侧沿光轴方向的表面的凹凸情况,类似地,像面侧为凸面或凹面指的是该透镜的像面侧沿光轴方向的表面的凹凸情况。
作为一种示例,如图12所示,第一光学成像部为第一成像透镜1101,第二光学成像部可包括第二成像透镜1201和第三成像透镜1202,该第二成像透镜1201和第三成像透镜1202可均为凸透镜。应理解,在本申请实施例中,第二光学成像部也可由一个凸透镜替代实现,例如只包括第二成像透镜1201或者只包括第三成像透镜1202,或者还可以由包括更多透镜的透镜组实现,本申请实施例对镜头组件120中的具体透镜结构不做具体限定。
可选地,在一些实施例中,盖板110和镜头组件120中的透镜可以采用树脂或玻璃等透明材料制备形成,或者还可以采用其他有机或者无机的透明塑料材质制备形成,本申请实施例对此不作限定。
通过本申请实施例的技术方案,将盖板110复用为成像***中的光学透镜结构,在实现光学指纹成像的同时,能够降低整个光学指纹检测装置100 的成本,且压缩该光学指纹检测装置100占用的空间,有利于光学指纹检测装置100及其所在电子设备的小型化发展。
图13示出了光学指纹检测装置100的另一结构示意图。该图13中所示的光学指纹检测装置100可为沿图1中YZ轴所在平面的截面结构示意图。
如图13所示,在本申请实施例中,盖板110包括多个第一光学成像部,即包括多个第一成像透镜1101,该多个第一成像透镜1101相互连接,形成盖板110的整体结构。
镜头组件120包括多个第二光学成像部,作为示例,图13中的每个第二光学成像部包括一个第二成像透镜1201和一个第三成像透镜1202。该多个第一光学成像部一一对应于多个第二光学成像部,一组相互对应的一个第一光学成像部和一个第二光学成像部形成一个镜头部1301,盖板110和镜头组件120共形成多个镜头部1301,以进行光学指纹成像。
可选地,多个镜头部1301沿Y轴方向排列为一排或多排,每一排镜头部的数量为一个或多个。
作为示例,如图13所示,若多个镜头部1301沿Y轴方向排列为一排,即多个镜头部1101沿电子设备的侧面的长边排列成一排。在一些实施例中,图12和图13可分别为同一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
基于多个镜头部1301在X轴方向和Y轴方向上的设置,通过图12和图13可以看出,光学指纹检测装置100在Y轴方向上的长度大于在X轴方向上的长度。具体地,在XY轴所在平面上,若盖板110、指纹传感器130和第一基板140的截面形状为四边形,则其在Y方向上的长度大于在X方向上的长度。
作为一种示例,如图12和图13所示,光学指纹检测装置100包括一个指纹传感器130,该一个指纹传感器130对应于多个镜头部1301,具体地,指纹传感器130中包括多个成像区域131,上述多个镜头部1301一一对应的设置于该多个成像区域131的上方,即,指纹传感器130中,多个成像区域131中每个成像区域用于接收经过与其对应的一个镜头部1301后的光信号。该多个镜头部1301和多个成像区域131均沿电子设备的侧面的长边排列。
可以理解的是,若指纹传感器130上方设置有滤光层170,其需覆盖指纹传感器130中所有的成像区域131。
如图13所示,在镜头组件120中,多个第二成像透镜1201相互连接,形成一个成像透镜阵列组件,类似地,多个第三成像透镜1202相互连接,同样形成一个成像透镜阵列组件。采用该实施方式,在成像透镜阵列组件面积较大的情况下,其中心区域可能受到重力作用发生形成,从而影响其成像效果。
基于该问题,图14示出了光学指纹检测装置100的另一结构示意图。该图12和图14可分别为另一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
如图14所示,多个第二成像透镜1201以及多个第三成像透镜1202可分离设置,该多个第二成像透镜1201以及多个第三成像透镜1202可通过支撑件150固定支撑,具体地,可通过支撑件150中的第一支撑部151相互连接,并通过第二支撑部152固定设置于第一基板140上方。
作为另一示例,图15示出了光学指纹检测装置100的另一结构示意图。该图12和图15可分别为另一光学指纹检测装置100沿XZ轴所在平面的截面示意图和沿YZ轴所在平面的截面示意图。
如图12和图15所示,光学指纹检测装置100包括:多个指纹传感器130。
具体地,在本申请实施例中,上述多个镜头部1301一一对应的设置于该多个指纹传感器130的上方,即,每个指纹传感器130用于接收经过与其对应的一个镜头部1301后的光信号。该多个镜头部1301和多个指纹传感器130均沿电子设备的侧面的长边排列。
可以理解的是,该镜头部1301的相关光学特征可以参见图12至图14中的相关描述,此处不再赘述。
还可以理解的是,若多个指纹传感器130上方设置有滤光层170,该滤光层170可以包括多个滤光片或者多个滤光层,该多个滤光片或者多个滤光层一一对应的设置于多个指纹传感器130上方。
在本申请实施例中,采用上文图12至图15中所示的技术方案,充分利用电子设备的侧面空间,在电子设备侧面配合设置长条形的容置区域,可以在沿电子设备的长边方向,即上文中的Y方向上,设置多个镜头部,以扩大指纹检测区域,从而提高指纹检测效果。
可以理解的是,图12至图15中所示的实施例中,除了镜头组件120和盖板110的形态与图3至图11中所示实施例不同以外,光学指纹检测装置 100中的其它部件,例如指纹传感器130、第一基板140、支撑件150、光源160以及滤光层170的相关设计均可以参见上文相关描述,此处不再具体赘述。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
本申请实施例还提供了一种电子设备,该电子设备可以包括:上述任一申请实施例的光学指纹检测装置。
可选地,电子设备还包括:设置于该电子设备的侧面的容置区域和设置于该容置区域处的载板;其中,光学指纹检测装置固定设置于该载板。
具体地,载板可为电子设备内部的结构件,其具有一定的机械强度以及支撑作用,其可设置于容置区域内部,在同一平面上,该载板的截面面积小于容置区域的截面面积,或者,该载板也可以设置于容置区域靠近电子设备内部的一侧,在同一平面上,该载板的截面面积大于容置区域的截面面积。
可选地,载板包括但不限于是电子设备中的机械结构件,或者也可以是电学结构件,本申请实施例对该载板的具体类型和具体结构不做限定。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种光学指纹检测装置,其特征在于,用于设置在电子设备的侧面,所述光学指纹检测装置包括:
    盖板;
    镜头组件和指纹传感器,依次设置于所述盖板的第一方向,所述第一方向朝向所述电子设备的侧面的内侧;
    第一基板,设置于所述指纹传感器的所述第一方向,并用于支撑所述指纹传感器;
    支撑件,连接所述镜头组件、所述盖板和所述第一基板,用于将所述镜头组件和所述盖板支撑设置于所述指纹传感器的第二方向,所述第二方向朝向所述电子设备侧面的外侧;
    光源,用于发射光信号至所述盖板处的手指,所述光信号经由所述手指反射或透射后形成携带有指纹信息的指纹光信号,所述镜头组件用于将所述指纹光信号成像至所述指纹传感器,以进行指纹检测。
  2. 根据权利要求1所述的光学指纹检测装置,其特征在于,所述盖板为弧面盖板,所述盖板的弧面朝向所述电子设备的外侧。
  3. 根据权利要求1或2所述的光学指纹检测装置,其特征在于,所述镜头组件包括镜头和镜筒,所述镜头设置于所述镜筒内;
    所述支撑件连接于所述镜筒,并支撑所述镜筒设置于所述指纹传感器的所述第二方向。
  4. 根据权利要求3所述的光学指纹检测装置,其特征在于,所述镜头包括非球面透镜或非球面透镜组。
  5. 根据权利要求3或4所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置包括:多个所述镜头组件和多个所述指纹传感器,
    多个所述镜头组件一一对应的设置于多个所述指纹传感器的所述第二方向,且所述多个镜头组件和所述多个指纹传感器均沿所述电子设备的侧面的长边排列。
  6. 根据权利要求3或4所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置包括:多个所述镜头组件和一个所述指纹传感器,所述指纹传感器包括多个成像区域,
    多个所述镜头组件一一对应的设置于所述指纹传感器中所述多个成像 区域的所述第二方向,且所述多个镜头组件和所述多个成像区域均沿所述电子设备的侧面的长边排列。
  7. 根据权利要求1至6中任一项所述的光学指纹检测装置,其特征在于,所述盖板为第一光学成像元件,所述镜头组件为第二光学成像元件;
    所述盖板与所述镜头组件用于将所述指纹光信号成像至所述指纹传感器,以进行指纹检测。
  8. 根据权利要求7所述的光学指纹检测装置,其特征在于,所述第一光学成像元件包括:多个第一光学成像部,所述第二光学成像元件包括:多个第二光学成像部;
    所述多个第一光学成像部一一对应于所述多个第二光学成像部,并形成多个镜头部,所述多个镜头部沿所述电子设备的侧面的长边排列。
  9. 根据权利要求8所述的光学指纹检测装置,其特征在于,所述第一光学成像部为凹透镜,所述第二光学成像部为凸透镜或者凸透镜组。
  10. 根据权利要求8或9所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置包括:多个所述指纹传感器,所述多个镜头部一一对应的设置于多个所述指纹传感器的所述第二方向;或者,
    所述光学指纹检测装置包括:一个所述指纹传感器,所述指纹传感器包括多个成像区域,所述多个镜头部一一对应的设置于所述指纹传感器中所述多个成像区域的所述第二方向。
  11. 根据权利要求1至10中任一项所述的光学指纹检测装置,其特征在于,所述支撑件包括第一支撑部和第二支撑部,所述第一支撑部用于连接并固定所述镜头组件,所述第二支撑部用于固定连接所述第一支撑部和所述第一基板,以使所述镜头组件设置于所述第一基板的所述第二方向。
  12. 根据权利要求11所述的光学指纹检测装置,其特征在于,所述第二支撑部为空心柱状结构,所述指纹传感器设置于所述空心柱状结构内,所述光源设置于所述空心柱状结构外。
  13. 根据权利要求11或12所述的光学指纹检测装置,其特征在于,所述盖板通过胶层固定连接于所述第一支撑部的四周边缘区域,以使所述盖板设置于所述镜头组件的所述第二方向。
  14. 根据权利要求11或12所述的光学指纹检测装置,其特征在于,所述支撑件还包括第三支撑部,设置于所述第二支撑部远离所述指纹传感器的 一侧,并连接设置于所述第一基板的所述第二方向;
    所述盖板通过胶层固定连接于所述第一支撑部的部分边缘区域以及所述第三支撑部,以使所述盖板设置于所述镜头组件的所述第二方向。
  15. 根据权利要求14所述的光学指纹检测装置,其特征在于,所述光源设置于所述第三支撑部与所述第二支撑部之间,所述盖板设置于所述光源的所述第二方向。
  16. 根据权利要求15所述的光学指纹检测装置,其特征在于,还包括:泡棉,设置于所述光源与所述镜头组件之间。
  17. 根据权利要求16所述的光学指纹检测装置,其特征在于,所述泡棉设置于所述第一支撑部的四周边缘区域,并连接所述第一支撑部与所述盖板。
  18. 根据权利要求1至17中任一项所述的光学指纹检测装置,其特征在于,所述光源设置于所述第一基板的所述第二方向,所述第一基板用于支撑所述光源。
  19. 根据权利要求1至17中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括第二基板,所述第二基板与所述第一基板设置于同一平面上,且所述光源设置于所述第二基板的所述第一方向,所述第二基板用于支撑所述光源。
  20. 根据权利要求1至17中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括第二基板,所述第二基板设置于所述支撑件中第一支撑部的所述第二方向,且所述光源设置于所述第二基板的所述第一方向,所述第一支撑部和所述第二基板用于支撑所述光源。
  21. 根据权利要求18或19所述的光学指纹检测装置,其特征在于,所述盖板、所述镜头组件、所述指纹传感器和所述支撑件设置于所述电子设备的侧面的第一容置区域中,所述光源设置于所述电子设备的侧面的第二容置区域中,所述第一容置区域与所述第二容置区域相邻设置。
  22. 根据权利要求18至20中任一项所述的光学指纹检测装置,其特征在于,所述盖板、所述镜头组件、所述指纹传感器、所述支撑件和所述光源均设置于所述电子设备的侧面的第一容置区域中。
  23. 根据权利要求1至22中任一项所述的光学指纹检测装置,其特征在于,所述盖板的材料为透明材料,或者,所述盖板包括滤光材料,所述滤 光材料用于通过目标波段的光信号,滤除非目标波段的光信号。
  24. 根据权利要求1至23中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置还包括:滤光层,设置于所述镜头组件和所述指纹传感器之间,用于通过目标波段的光信号,滤除非目标波段的光信号。
  25. 根据权利要求23或24所述的光学指纹检测装置,其特征在于,所述光源用于发射红外波段的光信号,所述目标波段包括红外波段。
  26. 根据权利要求1至25中任一项所述的光学指纹检测装置,其特征在于,所述光学指纹检测装置设置于所述电子设备的侧面的按键中。
  27. 根据权利要求26所述的光学指纹检测装置,其特征在于,所述按键仅用于实现指纹检测功能,或者,
    所述按键用于实现指纹检测功能以及所述电子设备的目标功能。
  28. 一种电子设备,其特征在于,包括:如上述权利要求1至27中任一项所述的光学指纹检测装置。
  29. 根据权利要求28所述的电子设备,其特征在于,还包括:
    设置于所述电子设备的侧面的容置区域和设置于所述容置区域处的载板;
    所述光学指纹检测装置固定设置于所述载板。
  30. 根据权利要求29所述的电子设备,其特征在于,所述载板设置于所述容置区域中,或者,
    所述载板设置于所述容置区域的第一方向,其中,所述第一方向朝向所述电子设备侧面的内侧。
  31. 根据权利要求29或30所述的电子设备,其特征在于,所述载板为所述电子设备中的机械结构件或者电学结构件。
PCT/CN2020/142597 2020-12-31 2020-12-31 光学指纹检测装置和电子设备 WO2022141606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142597 WO2022141606A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142597 WO2022141606A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Publications (1)

Publication Number Publication Date
WO2022141606A1 true WO2022141606A1 (zh) 2022-07-07

Family

ID=82258950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142597 WO2022141606A1 (zh) 2020-12-31 2020-12-31 光学指纹检测装置和电子设备

Country Status (1)

Country Link
WO (1) WO2022141606A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942761A (en) * 1995-06-07 1999-08-24 Tuli; Raja Singh Enhancement methods and devices for reading a fingerprint image
CN101169824A (zh) * 2006-10-25 2008-04-30 原相科技股份有限公司 指纹辨识装置及方法
CN101276406A (zh) * 2007-03-29 2008-10-01 鸿富锦精密工业(深圳)有限公司 指纹识别装置及便携式电子装置
CN101419662A (zh) * 2007-10-24 2009-04-29 巫仁杰 指纹输入模组
CN203909801U (zh) * 2014-05-28 2014-10-29 瑞声光电科技(常州)有限公司 便携式电子设备
CN105787421A (zh) * 2014-12-19 2016-07-20 上海箩箕技术有限公司 指纹识别***
CN108388404A (zh) * 2018-04-24 2018-08-10 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN108959885A (zh) * 2018-06-27 2018-12-07 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN111931659A (zh) * 2018-08-21 2020-11-13 深圳市汇顶科技股份有限公司 镜头***、指纹识别装置和终端设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942761A (en) * 1995-06-07 1999-08-24 Tuli; Raja Singh Enhancement methods and devices for reading a fingerprint image
CN101169824A (zh) * 2006-10-25 2008-04-30 原相科技股份有限公司 指纹辨识装置及方法
CN101276406A (zh) * 2007-03-29 2008-10-01 鸿富锦精密工业(深圳)有限公司 指纹识别装置及便携式电子装置
CN101419662A (zh) * 2007-10-24 2009-04-29 巫仁杰 指纹输入模组
CN203909801U (zh) * 2014-05-28 2014-10-29 瑞声光电科技(常州)有限公司 便携式电子设备
CN105787421A (zh) * 2014-12-19 2016-07-20 上海箩箕技术有限公司 指纹识别***
CN108388404A (zh) * 2018-04-24 2018-08-10 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN108959885A (zh) * 2018-06-27 2018-12-07 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN111931659A (zh) * 2018-08-21 2020-11-13 深圳市汇顶科技股份有限公司 镜头***、指纹识别装置和终端设备

Similar Documents

Publication Publication Date Title
US11501555B2 (en) Under-screen biometric identification apparatus and electronic device
US11818281B2 (en) Handheld electronic device
US12009576B2 (en) Handheld electronic device
US11637919B2 (en) Handheld electronic device
US10963667B2 (en) Under-screen biometric identification apparatus and electronic device
US20220286539A1 (en) Handheld electronic device
US12003657B2 (en) Handheld electronic device
US11783629B2 (en) Handheld electronic device
US20220329678A1 (en) Handheld electronic device
WO2021036703A1 (zh) 一种指纹装置、电子设备及其制造方法
EP4054159A1 (en) Handheld electronic device
US11881046B2 (en) Optical module and mobile terminal
WO2022141606A1 (zh) 光学指纹检测装置和电子设备
WO2022141604A1 (zh) 光学指纹检测装置和电子设备
CN214225938U (zh) 光学指纹检测装置和电子设备
WO2022141603A1 (zh) 光学指纹检测装置和电子设备
CN214225939U (zh) 光学指纹检测装置和电子设备
WO2022141607A1 (zh) 光学指纹检测装置和电子设备
CN213958080U (zh) 光学指纹检测装置和电子设备
CN214225937U (zh) 光学指纹检测装置和电子设备
WO2022141605A1 (zh) 光学指纹检测装置和电子设备
US20220286540A1 (en) Handheld electronic device
CN213958081U (zh) 光学指纹检测装置和电子设备
CN216014312U (zh) 光学指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967944

Country of ref document: EP

Kind code of ref document: A1