WO2022141454A1 - 液晶显示面板 - Google Patents

液晶显示面板 Download PDF

Info

Publication number
WO2022141454A1
WO2022141454A1 PCT/CN2020/142285 CN2020142285W WO2022141454A1 WO 2022141454 A1 WO2022141454 A1 WO 2022141454A1 CN 2020142285 W CN2020142285 W CN 2020142285W WO 2022141454 A1 WO2022141454 A1 WO 2022141454A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
liquid crystal
color filter
display panel
Prior art date
Application number
PCT/CN2020/142285
Other languages
English (en)
French (fr)
Inventor
张桂洋
石腾腾
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/281,799 priority Critical patent/US20230418111A1/en
Publication of WO2022141454A1 publication Critical patent/WO2022141454A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • the present application relates to the field of display technology, and in particular, to a liquid crystal display panel.
  • optical fingerprint recognition technology does not affect the display function while realizing the fingerprint recognition function, because the optical fingerprint recognition uses light signals to illuminate the recognized targets, such as fingerprints, palm prints, 3D faces, etc., by detecting the different reflection intensities of the recognized targets. characteristic signal to identify objects.
  • the technology is used in portable electronic devices without the need for an external light source. Therefore, optical fingerprint recognition technology can avoid information leakage and ensure personal privacy without affecting the display, and can maintain a high screen ratio.
  • the optical fingerprint identification technology combined with Liquid Crystal Display currently has two major technical difficulties, which are the sensor receiving unit and the optical path structure.
  • the optical signal receiving element can be combined with low temperature polysilicon technology (Low Temperature Poly-Silicon, LTPS) to develop, there are related research and reports, but the current effective optical path structure is relatively rare.
  • LTPS Low Temperature Poly-Silicon
  • the backlight reflected by the fingerprint will generate more interference signals in the fingerprint recognition area, which is mainly manifested as a large number of large-angle reflected light directed to the fingerprint recognition module, and the fingerprint recognition module can recognize the accuracy of the fingerprint.
  • the signal-to-noise ratio refers to the ratio of small-angle reflected light to large-angle reflected light. The accuracy is reduced, and even the fingerprint cannot be recognized.
  • the embodiments of the present application provide a liquid crystal display panel, which can solve the problems of low signal-to-noise ratio and low fingerprint recognition accuracy due to the influence of interference signals in the existing liquid crystal display panels, overcome the problem of optical path design, and can effectively filter the interference signals , to improve the signal-to-noise ratio of the fingerprint signal, thereby improving the fingerprint recognition accuracy.
  • an embodiment of the present application provides a liquid crystal display panel, which includes:
  • the color filter substrate is provided with a plurality of optical path openings
  • a driving substrate arranged opposite to the color filter substrate
  • liquid crystal layer located between the color filter substrate and the driving substrate
  • a plurality of photosensitive sensor units formed on the surface of the driving substrate on the side close to the liquid crystal layer or formed inside the driving substrate;
  • a plurality of blocking wall structures are arranged in the liquid crystal layer; the blocking wall structures are hollow, and the top and bottom of the blocking wall structures are both openings; the top opening of each blocking wall structure is aligned with at least one of the The optical path is opened, and the bottom opening of each of the retaining wall structures is aligned with one of the photosensitive sensor units;
  • the material of the retaining wall structure is black light absorbing material, the hollow part of the retaining wall structure is filled with transparent material, and the height of the retaining wall structure is the same as the thickness of the liquid crystal layer.
  • the transparent material is transparent optical glue.
  • the transparent material has selective absorption.
  • the transparent material has selective absorption in the visible light band.
  • the transparent material has filtering properties for red light.
  • the color filter substrate includes: a transparent substrate, a filter layer and a black matrix layer; the filter layer includes a plurality of color filter units, which are located in the The transparent substrate is close to one side of the liquid crystal layer; the black matrix layer is arranged between any two adjacent color filter units; wherein, the plurality of optical path openings are located on the black matrix layer.
  • the color filter substrate further includes at least one light-shielding layer, and each layer of the light-shielding layer is provided with a plurality of first light-transmitting regions and a plurality of second light-transmitting regions.
  • Each first light-transmitting area on the light-shielding layer of each layer corresponds to the position of one or more adjacent color filter units, and the one or more adjacent color filter units
  • the projection of the unit and its corresponding first light-transmitting area in the vertical direction at least partially overlaps
  • the plurality of second light-transmitting areas on each layer of the light-shielding layer correspond to the positions of the plurality of light path openings one-to-one , and the projections of each of the light path openings, the corresponding second light-transmitting regions, and the top openings of the blocking wall structures corresponding thereto in the vertical direction at least partially overlap.
  • the color filter substrate further includes a plurality of optical microlenses, and the plurality of optical microlenses are located on the transparent substrate and are close to one side of the black matrix layer, The positions of the plurality of optical microlenses and the plurality of optical path openings are in one-to-one correspondence.
  • At least one flat layer is further filled between the plurality of optical microlenses and the liquid crystal layer; the refractive index of the flat layer is the same as the refractive index of the optical microlenses.
  • the indices of refraction are not equal.
  • At least one light-shielding layer is further provided between the optical microlens and the liquid crystal layer; each layer of the light-shielding layer is provided with a plurality of first light-transmitting layers area and a plurality of second light-transmitting areas; each of the first light-transmitting areas on each layer of the light-shielding layer corresponds to the position of one or more adjacent color filter units, and the one or a plurality of adjacent color filter units and their corresponding first light-transmitting regions in the vertical direction at least partially overlap; the plurality of second light-transmitting regions on each layer of the light-shielding layer One-to-one correspondence with the positions of the plurality of optical path openings, and each of the optical path openings, the second light-transmitting area corresponding to it, the optical microlens corresponding to it, and the corresponding optical microlens.
  • the projections of the top opening of the retaining wall structure in the vertical direction at least partially overlap.
  • the embodiments of the present application further provide a liquid crystal display panel, which includes:
  • the color filter substrate is provided with a plurality of optical path openings
  • a driving substrate arranged opposite to the color filter substrate
  • liquid crystal layer located between the color filter substrate and the driving substrate
  • a plurality of photosensitive sensor units formed on the surface of the driving substrate on the side close to the liquid crystal layer or formed inside the driving substrate;
  • a plurality of blocking wall structures are arranged in the liquid crystal layer; the blocking wall structures are hollow, and the top and bottom of the blocking wall structures are both openings; the top opening of each blocking wall structure is aligned with at least one of the The light path is opened, and the bottom opening of each of the blocking wall structures is aligned with one of the photosensitive sensor units.
  • the material of the retaining wall structure is a black light-absorbing material.
  • the height of the blocking wall structure is the same as the thickness of the liquid crystal layer.
  • the cross-section of the retaining wall structure is a zigzag shape, a ring shape, or a wrapping structure composed of multiple strip shapes.
  • the color filter substrate includes: a transparent substrate, a filter layer and a black matrix layer; the filter layer includes a plurality of color filter units, which are located in the The transparent substrate is close to one side of the liquid crystal layer; the black matrix layer is arranged between any two adjacent color filter units; wherein, the plurality of optical path openings are located on the black matrix layer.
  • the color filter substrate further includes at least one light-shielding layer, and each layer of the light-shielding layer is provided with a plurality of first light-transmitting regions and a plurality of second light-transmitting regions.
  • Each first light-transmitting area on the light-shielding layer of each layer corresponds to the position of one or more adjacent color filter units, and the one or more adjacent color filter units
  • the projection of the unit and its corresponding first light-transmitting area in the vertical direction at least partially overlaps
  • the plurality of second light-transmitting areas on each layer of the light-shielding layer correspond to the positions of the plurality of light path openings one-to-one , and the projections of each of the light path openings, the corresponding second light-transmitting regions, and the top openings of the blocking wall structures corresponding thereto in the vertical direction at least partially overlap.
  • the light shielding layer is located between the transparent substrate and the black matrix layer and/or between the black matrix layer and the liquid crystal layer.
  • the color filter substrate further includes a plurality of optical microlenses, and the plurality of optical microlenses are located on the transparent substrate and are close to one side of the black matrix layer, The positions of the plurality of optical microlenses and the plurality of optical path openings are in one-to-one correspondence.
  • At least one flat layer is further filled between the plurality of optical microlenses and the liquid crystal layer; the refractive index of the flat layer is the same as the refractive index of the optical microlenses.
  • the indices of refraction are not equal.
  • At least one light-shielding layer is further provided between the optical microlens and the liquid crystal layer; each layer of the light-shielding layer is provided with a plurality of first light-transmitting layers area and a plurality of second light-transmitting areas; each of the first light-transmitting areas on each layer of the light-shielding layer corresponds to the position of one or more adjacent color filter units, and the one or a plurality of adjacent color filter units and their corresponding first light-transmitting regions in the vertical direction at least partially overlap; the plurality of second light-transmitting regions on each layer of the light-shielding layer One-to-one correspondence with the positions of the plurality of optical path openings, and each of the optical path openings, the second light-transmitting area corresponding to it, the optical microlens corresponding to it, and the corresponding optical microlens.
  • the projections of the top opening of the retaining wall structure in the vertical direction at least partially overlap.
  • the embodiment of the present application adopts a blocking wall structure to prevent the large-angle photosensitive light signal from being received by the photosensitive sensor unit, and effectively absorbs the interference light signal, thereby improving the signal-to-noise ratio of the fingerprint signal and the fingerprint recognition accuracy.
  • the retaining wall structure of the present application can also be matched with a shielding layer having a light-transmitting area, through which the large-angle interference signal can be further reduced.
  • the light signal has a collimation effect, so that the light signal is more accurately incident on the blocking wall structure to be received by the photosensitive sensor unit, thereby further improving the signal-to-noise ratio.
  • the retaining wall structure of the present application can also be equipped with an optical microlens, through which the optical signals in the area above the photosensitive sensor unit can be collected and injected into the retaining wall structure to be received by the photosensitive sensor unit, while the interfering light signals can be captured by the microlens.
  • the lens is scattered and absorbed by the retaining wall structure, thereby further improving the signal-to-noise ratio.
  • FIG. 1 is a schematic top view of several examples of black matrix layers of the liquid crystal display panel according to the first embodiment of the present application.
  • FIG. 2 is a schematic top view of other examples of black matrix layers of the liquid crystal display panel according to the first embodiment of the present application.
  • FIG. 3 is a schematic diagram of the projection relationship in the vertical direction between several photosensitive sensors and color filter units of the liquid crystal display panel according to the first embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the liquid crystal display panel according to the first embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • FIG. 5 is a schematic three-dimensional structural diagram of several structural examples of the retaining wall of the liquid crystal display panel according to the first embodiment of the present application.
  • FIG. 6 is a cross-sectional view of the liquid crystal display panel according to the second embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • FIG. 7 is a cross-sectional view of the liquid crystal display panel according to the second embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • FIG. 8 is a schematic diagram showing the correspondence between the light-sensing sensor of the liquid crystal display panel according to the second embodiment of the present application, the optical path opening and the second light-transmitting area.
  • FIG. 9 is a cross-sectional view of the liquid crystal display panel according to the third embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • FIG. 10 is a cross-sectional view of the liquid crystal display panel according to the third embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • FIG. 11 is a cross-sectional view of the liquid crystal display panel according to the third embodiment of the present application along the R-R direction shown by A in FIG. 1 .
  • Embodiments of the present application provide a liquid crystal display panel. Each of them will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • the liquid crystal display panel includes: a color filter substrate 100 , a driving substrate 300 , a liquid crystal layer 200 , a plurality of photosensitive sensor units 500 and a plurality of A retaining wall structure 400.
  • the color filter substrate 100 is provided with a plurality of optical path openings 131 .
  • the plurality of optical path openings 131 may be arranged in an array; the cross section of the optical path openings 131 may be rectangular ( Including square), circle or hexagon, etc., among which the circle is more preferred, because the circular structure can make the collimation effect of the optical signal in all directions more uniform, but the optical path opening 131 is not limited to the above shape, Other shapes are also applicable to the liquid crystal display panel described in this application.
  • the optical path openings 131 are used to allow the light signal reflected by the fingerprint to pass through the color filter substrate 100 to be finally received by the photosensitive sensor unit 500 . By setting a plurality of the optical paths on the color filter substrate 100 The openings 131 can also form a "small hole-like" collimation effect to a certain extent.
  • the color filter substrate 100 includes a transparent substrate 110 , a filter layer 120 and a black matrix layer 130 .
  • the transparent substrate 110 is transparent, for example, it can be a glass substrate.
  • the filter layer 120 includes a plurality of color filter units 121, and is located on the side of the transparent substrate 110 close to the liquid crystal layer 200;
  • the filter units (RGB), which are respectively a red filter unit (R), a green filter unit (G) and a blue filter unit (B), are used to form display pixels of the liquid crystal display panel.
  • the black matrix layer 130 is disposed between any two adjacent color filter units 121 ; wherein the black matrix layer 130 has light absorbing properties, and can use a black light absorbing material, such as a black organic photoresist material.
  • the plurality of optical path openings 131 are provided on the black matrix layer 130 . It should be noted that, since the plurality of optical path openings 131 are arranged on the black matrix layer 130, and the black matrix layer 130 is arranged between any two adjacent color filter units 121, therefore, the The optical path openings 131 are actually located around the color filter unit 121 , and any one of the optical path openings 131 and the color filter unit 121 do not overlap, in other words, any one of the optical path openings 131 There is no overlap with the display pixel area.
  • the plurality of optical path openings 131 may be disposed between the laterally adjacent color filter units 121 (X direction); in another embodiment, as shown in C to D in FIG. 1 and C to D in FIG. 2 , the plurality of optical path openings 131 may also be arranged in the longitudinally adjacent color filters Between cells 121 (Y direction).
  • FIG. 4 only shows a cross-sectional view corresponding to the liquid crystal display panel shown in A in FIG. 1 , and this embodiment is described by taking it as an example, although this embodiment does not show the corresponding The cross-sectional views of the liquid crystal display panels shown in B to D in FIG. 1 and A to D in FIG. 2 , but the liquid crystal display panels corresponding to B to D in FIG. 1 and A to D in FIG. Conventional variants of the liquid crystal display panel shown in A in FIG. 1 and FIG. 4 still fall within the scope of protection of the present application.
  • the driving substrate 300 is disposed opposite to the color filter substrate 100 .
  • the driving substrate 300 is provided with functional elements such as a plurality of scan lines, a plurality of data lines, a plurality of pixel driving electrodes, and a plurality of thin film transistors (Thin Film Transistors, TFTs).
  • the scan lines and the data lines are vertically interleaved to define a plurality of pixel units, and each pixel unit is provided with at least one of the pixel driving electrodes and at least one of the thin film transistors.
  • the thin film transistors are connected to corresponding scan lines, data lines and pixel driving electrodes, so as to be able to control the display of the pixel unit.
  • the pixel driving electrode may be, for example, an indium tin oxide (ITO) film layer.
  • ITO indium tin oxide
  • the liquid crystal layer 200 is located between the color filter substrate 100 and the driving substrate 300 .
  • the liquid crystal layer 200 contains liquid crystal (LC), and the deflection of the liquid crystal is controlled by the driving substrate 300 to realize the function of the liquid crystal display panel.
  • LC liquid crystal
  • the plurality of photosensitive sensor units 500 may be formed on the surface of the driving substrate 300 on the side close to the liquid crystal layer 200 .
  • the film layer on the top surface of the photosensitive sensor unit 500 close to the liquid crystal layer 200 is higher than the film layer on the top surface of the driving substrate 300 , for example, the photosensitive sensor unit 500 is close to the liquid crystal layer.
  • the topmost indium tin oxide (ITO) film layer on one side of the layer 200 is higher than the top surface of the pixel driving electrodes of the driving substrate 300 .
  • ITO indium tin oxide
  • the plurality of photosensitive sensor units 500 may also be formed inside the driving substrate 300 .
  • the film layer on the top surface of the photosensitive sensor unit 500 close to the liquid crystal layer 200 is lower than the film layer on the top surface of the driving substrate 300.
  • the photosensitive sensor unit 500 is close to the liquid crystal layer.
  • the top indium tin oxide (ITO) film layer on one side of the layer 200 is lower than the top surface of the pixel driving electrode of the driving substrate 300 .
  • the photosensitive sensor unit 500 has the function of recognizing fingerprints, and it can receive optical signals, convert the optical signals into electrical signals, and obtain fingerprint structure features through calculation by the algorithm processing unit to realize fingerprint recognition.
  • the sensor unit 500 is a conventional technology in the art, and is not specifically limited in this application.
  • any one of the photosensitive sensor units 500 is preferably vertically aligned with any one of the color filter units 121/display pixels. None of the projections overlap.
  • the plurality of retaining wall structures 400 are located in the liquid crystal layer 200 .
  • the retaining wall structure 400 is hollow, and its top and bottom are both open. This structure can realize the input and output of fingerprint light signals, and can prevent large-angle interference light signals from entering the retaining wall structure 400. Internally, the signal-to-noise ratio of the fingerprint signal is significantly improved.
  • the retaining wall structure 400 can be made of a black light-absorbing material, such as black photoresist or black photoresist, or other black light-absorbing materials. The black light-absorbing material enables the retaining wall structure 400 to effectively absorb interfering light. signal, further preventing interfering light signals from entering the retaining wall structure 400 and being received by the photosensitive sensor unit 500 .
  • the hollow portion inside the retaining wall structure 400 may also be filled with a transparent material (such as transparent optical glue), and the transparent material may also selectively absorb a certain wavelength band, such as 380nm-780nm for the visible light band It has selectivity, or it has selectivity for the green light band 500nm-600nm, and it can also be a material that can filter out red light.
  • a transparent material such as transparent optical glue
  • the transparent material may also selectively absorb a certain wavelength band, such as 380nm-780nm for the visible light band It has selectivity, or it has selectivity for the green light band 500nm-600nm, and it can also be a material that can filter out red light.
  • the height of the retaining wall structure 400 may be the same as the thickness of the liquid crystal layer 200, which not only enables the top opening of the retaining wall structure 400 to be accurately connected with the optical path opening 131, but also ensures that the The light signal emitted from the color filter substrate 100 can accurately enter the blocking wall structure 400 , and the blocking wall structure 400 can also serve as a support structure for the thickness (cell gap) of the liquid crystal layer 200 .
  • the retaining wall structure 400 can serve as a supporting structure for the fingerprint identification area inside the liquid crystal display panel, while in other Transparent photoresist spacers can be used in the non-fingerprint identification area (photo space, PS) or a black photoresist spacer as a supporting structure, for example, a scale structure is formed in the liquid crystal layer 200 by exposure to support the upper and lower substrates (the driving substrate 300, the color filter substrate 100), and the
  • the same black light-absorbing material such as black photoresist PS
  • the same photomask and the same manufacturing process can be uniformly used to manufacture all the supporting structures, which is more cost-effective.
  • the retaining wall structure 400 may be in the shape of a hollow “rectangular column” with a mouth-shaped cross section; as shown in B in FIG. 5 , the retaining wall structure 400 can also be in the shape of a hollow cylinder, and its cross section is annular; as shown in C in FIG.
  • the retaining wall structure 400 can also be composed of multiple A hollow surrounding structure composed of units, the number of the structural units can be three, four, five, six or more, and the cross-section of the retaining wall structure 400 is a plurality of strips (ie, rectangles)
  • the formed wrapping structure for example, the retaining wall structure 400 may be a wrapping structure formed by four rectangular parallelepiped structures, the cross section of which is a wrapping structure formed by four strips (ie, rectangles).
  • the adjacent structural units may be completely closed, which can better prevent the large-angle photosensitive light signal from entering, but without greatly reducing the effect of blocking the large-angle photosensitive light signal, A certain gap may be allowed between the adjacent structural units.
  • the retaining wall structure 400 is preferably a mouth-shaped structure in cross-section, which can better prevent the photosensitive sensor unit 500 from receiving disturbing light signals, and can prevent the photosensitive sensor unit 500 from receiving interference light signals. Position and process are more concise.
  • each of the retaining wall structures 400 is aligned with at least one of the optical path openings 131 , so that the optical signal reflected by the fingerprint and passing through the color filter substrate 100 can enter the and the bottom opening of each of the retaining wall structures 400 is aligned with one of the photosensitive sensor units 500, so that the light signal emitted from the bottom of the retaining wall structure 400 enters the photosensitive sensor unit 500 middle.
  • the photosensitive sensor units 500 are formed on the surface of the driving substrate 300
  • the bottom opening of each barrier wall structure 400 is aligned with one of the photosensitive sensor units 500 so that the bottom of the barrier wall structure 400 is aligned.
  • the opening is surrounded by one of the photosensitive sensor units 500 , that is, the photosensitive sensor unit 500 is accommodated in the bottom opening of the blocking wall structure 400 , so that the blocking wall structure 400 surrounds the photosensitive sensor unit 500 .
  • a photosensitive area thereby ensuring that the light signal can be accurately received by the photosensitive sensor unit 500; when the plurality of photosensitive sensor units 500 are formed inside the driving substrate 300, the bottom of each of the blocking wall structures 400 is opened Aligning one of the photosensitive sensor units 500 , for example, the bottom opening of the blocking wall structure 400 is set right above the photosensitive sensor unit 500 , so that the blocking wall structure 400 surrounds the photosensitive area of the photosensitive sensor unit 500 , the part between the photosensitive sensor unit 500 and the bottom opening of the blocking wall structure 400 on the driving substrate 300 is light-transmitting, for example, a light-transmitting material is used, or a light-transmitting structure (such as a slit,
  • the gap is preferably less than 0.5 microns), so that the light
  • the size of the bottom opening of the blocking wall structure 400 may be greater than or equal to the size of the photosensitive sensor unit 500 aligned/butted with it;
  • the size of the top opening of the retaining wall structure 400 may be greater than or equal to the size of the optical path opening 131 aligned/butted therewith.
  • the size of the top opening and the bottom opening of the retaining wall structure 400 may both be between 5 and 10 microns, and the size of the optical path opening 131 may be designed according to the top opening of the retaining wall structure 400 .
  • the corresponding relationship between the top opening of the retaining wall structure 400 and the optical path openings 131 may be one-to-one or one-to-many; the bottom opening of the retaining wall structure 400 and all
  • the corresponding relationship between the photosensitive sensor units 500 is one-to-one; furthermore, the corresponding relationship between the photosensitive sensor units 500 and the optical path openings 131 may also be one-to-one or one-to-many.
  • C (or D) in FIG. 2 shows that a plurality of all The optical path opening 131, combined with the schematic diagram of the projection relationship between the photosensitive sensor 500 and the color filter unit 121 in the vertical direction shown in B in FIG. .
  • the liquid crystal display panel may also include any other structures as required.
  • the liquid crystal display panel further includes a glass cover plate 600, an adhesive 700, an upper polarizer 800, The lower polarizer 900 , the backlight 1000 , the reflective sheet 1100 and the backplane structure 1200 constitute the liquid crystal display panel as shown in FIG. 1 .
  • the blocking wall structure 400 is formed in the photosensitive area of each photosensitive sensor unit 500 , and the blocking wall structure 400 can prevent the light-sensitive light signal from a large angle and effectively absorb the interference light signal. , thereby improving the signal-to-noise ratio of the fingerprint signal, thereby improving the fingerprint recognition accuracy.
  • the present application adds at least one layer in the color filter substrate 100
  • the light-shielding layer 140 with a light-transmitting area can further reduce the interference signal, and can also form a more accurate collimation structure with the optical path opening 131 to collimate the optical signal, thereby improving the reliability of the fingerprint signal. noise ratio.
  • the liquid crystal display panel according to the second embodiment of the present application is provided.
  • the color filter substrate 100 further includes At least one light shielding layer 140 is provided.
  • the quantity of the light shielding layer 140 may be one layer (as shown in FIG. 6 ) or multiple layers (as shown in FIG. 7 ).
  • each layer of the light shielding layer 140 is provided with a plurality of first light-transmitting regions 141 and a plurality of second light-transmitting regions 142 .
  • each first light-transmitting area 141 on each layer of the light-shielding layer 140 corresponds to the position of one or more adjacent color filter units 121 , and The one or more adjacent color filter units 121 , and the first color filter unit 121 corresponding to the one or more adjacent color filter units 121 on each layer of the light shielding layer 140
  • the projections of the light-transmitting regions 141 in the vertical direction at least partially overlap, preferably all overlap. In this way, the light filtered by the color filter unit 121 can pass through the blocking layer 140 , thereby not affecting the display effect of the display pixels of the liquid crystal display panel.
  • the plurality of second light-transmitting areas 142 on each layer of the light shielding layer 140 correspond to the positions of the plurality of optical path openings 131 one-to-one, and each of the optical paths
  • the projections of the openings in the vertical direction overlap at least partially, preferably completely.
  • each of the optical path openings 131 and all the second light-transmitting regions 142 corresponding to the optical path openings 131 are completely aligned, the optical signal can pass through the color filter substrate 100 well. , but due to the influence of factors such as process, it may lead to the phenomenon of small size dislocation due to incomplete alignment, which is allowed.
  • each of the light path openings 131, and the second light transmission area 142 corresponding to the light path openings 131 on each layer of the light shielding layer 140, and the light path openings 142 The top opening of the blocking wall structure 400 corresponding to the hole 131 and the projection in the vertical direction of the photosensitive sensor unit 500 corresponding to the optical path opening 131 overlap at least partially, preferably completely overlap.
  • the overlapping area may be smaller than, equal to or larger than the size of the photosensitive sensor unit 500 .
  • the overlapping area preferably does not overlap with the color filter unit 121 or the projection in the vertical direction of the display pixels formed by it.
  • the second light-transmitting area 142 is matched with the optical path opening 131 to form an optical path structure of the fingerprint optical signal, so that the optical signal reflected by the fingerprint can pass through the color filter substrate 100 and enter the
  • the retaining wall structure 400 also further collimates the optical signal, wherein the more layers of the light shielding layer 140, the better the effect of improving the signal-to-noise ratio of the fingerprint signal.
  • the corresponding relationship between the optical path openings 131 and the second light transmission area 142 is one-to-one, and the photosensitive sensor
  • the correspondence between the unit 500 and the optical path opening 131/the second light-transmitting area 142 may be one-to-many.
  • the size of the photosensitive sensor unit 500 may be larger than, equal to or smaller than the optical path opening 131 .
  • the size of the photosensitive sensor unit 500 is larger than the size of the optical path opening 131, so that even if the optical path opening 131 and the second light-transmitting area 142 are not accurately aligned, the The photosensitive sensor unit 500 can better receive the light signal.
  • the size of the photosensitive sensor unit 500 is large enough to make one side edge of the photosensitive sensor unit 500 and the shielded area of the black matrix layer 130 (except all the The overlapping dimension (L shown in FIG. 8 ) of the projection in the vertical direction of the black area of the optical path opening 31 is greater than 5 ⁇ m.
  • the cross section of the second light transmission area 142 / the first light transmission area 141 may be a rectangle (including a square ), a circle or a hexagon, etc., preferably a circle, and the use of a circle has a more uniform collimation effect on optical signals in all directions.
  • the inside of the second light-transmitting area 142/the first light-transmitting area 141 may be filled with transparent materials, for example, including but not limited to transparent optical glue (OC) (including photosensitive transparent optical glue), transparent photoresist (photo space, PS) and epoxy resin and other transparent adhesives.
  • the light shielding layer 140 is located between the transparent substrate 110 and the black matrix layer 130 and/or between the black matrix layer 130 and the liquid crystal layer 200 .
  • the number of light-shielding layers 140 when the number of light-shielding layers 140 is one layer, it may be disposed between the transparent substrate 110 and the black matrix layer 130 , or may be disposed between the black matrix layer 130 and the liquid crystal layer 200 .
  • the number of the shading 140 layers is multi-layered, all of them can be arranged between the transparent substrate 110 and the black matrix layer 130, or they can all be arranged between the black matrix layer 130 and the liquid crystal layer 200. It can also be disposed between the transparent substrate 110 and the black matrix layer 130 and between the black matrix layer 130 and the liquid crystal layer 200 at the same time.
  • the number of the light-shielding layers 140 is preferably, but not limited to, two layers, which not only meets the requirements of optical path alignment and absorption of interference signals, but also does not make the process too complicated.
  • the blocking layer 140 exists between the black matrix layer 130 and the liquid crystal layer 200 , the top opening of the blocking wall structure 400 can be aligned with the corresponding second light-transmitting region 142 .
  • the light-shielding area of the light-shielding layer 140 (the area other than the first light-transmitting area 141 and the second light-transmitting area 142 ) and the shielding area of the black matrix layer 130 (except the first light-transmitting area 141 and the second light-transmitting area 142 ) Areas other than the optical path opening 131) have light absorption effect, which can absorb large-angle interference light signals and improve the signal-to-noise ratio of fingerprint signals.
  • the same or different black light-absorbing materials (such as black photoresist materials) can be used for both.
  • transparent materials for example, including but not limited to transparent optical glue (OC), photosensitive transparent optical glue (OC), transparent photoresist (photo space, PS) and epoxy resin and other transparent glue materials.
  • the present application also provides another optical path structure, which is to add a plurality of optical microlenses 150 in the color filter substrate 100 .
  • the light signals of the fingerprints in the area above the photosensitive sensor unit 500 are converged and injected into the retaining wall structure 400 , and then received by the photosensitive sensor unit 500 , while the interfering light signals are scattered by the optical microlens 150 , thereby further Improve the signal-to-noise ratio.
  • the color filter substrate 100 further includes a plurality of optical micro-arrays.
  • Lens 150 is provided.
  • the plurality of optical microlenses 150 are located on the transparent substrate 110 and close to one side of the black matrix layer 130 , and the positions of the plurality of optical microlenses 150 correspond to the positions of the plurality of optical path openings 131 one-to-one.
  • the fingerprint light signal can be collected to the photosensitive area of the photosensitive sensor unit 500 surrounded by the blocking wall structure 400 , which can not only improve the signal-to-noise ratio, but also make the photosensitive sensor unit 500
  • the size can be made smaller, and the display aperture ratio can be increased accordingly.
  • the refractive index of the optical microlens 150 is not equal to the refractive index of the surrounding material. The greater the difference between the two within a certain range, the better the effect of the optical microlens 150 in converging optical signals, and the better the fingerprint recognition effect. .
  • at least one flat layer 160 is also filled between the plurality of optical microlenses 150 and the liquid crystal layer 200 .
  • the refractive index of the flat layer 160 and the refractive index of the optical microlens 150 are not equal, and the larger the difference between the two, the better.
  • At least one light shielding layer 140 may be added under the optical microlens 150 to reduce interference light signals at large angles.
  • the light shielding layer 140 is disposed between the optical microlenses 150 and the liquid crystal layer 200 .
  • the light shielding layer 140 may be provided between the optical microlenses 150 and the black matrix layer 130 , or may be provided on the black matrix layer 130 between the liquid crystal layer 200, when the number of the light shielding layers 140 is multi-layered, all of them may be disposed between the optical microlenses 150 and the black matrix layer 130, or all of them may be disposed in the black matrix layer 130.
  • the matrix layer 130 and the liquid crystal layer 200 may also be disposed between the black matrix layer 130 and the liquid crystal layer 200 and between the optical microlenses 150 and the black matrix layer 130 at the same time.
  • Each of the light-shielding layers 140 is provided with a plurality of first light-transmitting regions 141 and a plurality of second light-transmitting regions 142 .
  • each of the first light-transmitting regions 141 on each layer of the light-shielding layer 140 corresponds to the position of one or more adjacent color filter units 121 , and the The one or more adjacent color filter units 121 and the first transmittance corresponding to the one or more adjacent color filter units 121 on each of the light shielding layers 140
  • the projections of the regions 141 in the vertical direction overlap at least partially, preferably completely.
  • the plurality of second light-transmitting regions 142 on each layer of the light-shielding layer 140 correspond to the positions of the plurality of light path openings 131 one-to-one, and each light path opening
  • the projections of the top opening of the blocking wall structure 400 corresponding to the optical path openings 131 in the vertical direction at least partially overlap, preferably all overlap.
  • each of the optical path openings 131 and all the second light-transmitting regions 142 corresponding to the optical path openings 131 on each layer of the light shielding layer 140 and the optical path openings 131 The corresponding optical microlenses 150 , the top opening of the retaining wall structure 400 corresponding to the optical path opening 131 , and the vertical direction of the photosensitive sensor unit 500 corresponding to the optical path opening 131 .
  • the projections overlap at least partially, preferably completely.
  • one layer of the light-shielding layer 140 may also be provided in the same layer as the optical microlenses 150 , and the light-shielding layer 140 is each provided with a plurality of first light-transmitting regions 141 and multiple light-transmitting regions 141 . a second light-transmitting area 142 . As shown in area S2 in FIG.
  • each of the first light-transmitting areas 141 on the light-shielding layer 140 corresponds to the position of one or more adjacent color filter units 121 , and the one or a plurality of adjacent color filter units 121 and the first light transmission area 141 on the light shielding layer 140 corresponding to the one or more adjacent color filter units 121 in a vertical direction.
  • the projections in the directions overlap at least partially, preferably completely. As shown in area S1 in FIG.
  • the optical microlenses 150 are disposed in the second light-transmitting area 142 , and the optical microlenses 150 correspond to the positions of the plurality of optical path openings 131 one-to-one, and each The projections in the vertical direction of each of the optical microlenses 150 , the optical path openings 131 corresponding to the optical microlenses 150 , and the top opening of the retaining wall structure 400 corresponding to the optical path openings 131 are at least Partial overlap, preferably total overlap.
  • each of the optical microlenses 150 , the optical path openings 131 corresponding to the optical microlenses 150 , the top opening of the retaining wall structure 400 corresponding to the optical path openings 131 , and the The projections of the photosensitive sensor units 500 corresponding to the optical path openings 131 in the vertical direction at least partially overlap, preferably all overlap.
  • the other light shielding layers 140 may be disposed between the optical microlenses 150 and the black matrix layer 130, or may be disposed on the black matrix layer 130. Between the matrix layer 130 and the liquid crystal layer 200 , the structure of the light shielding layer 140 can be referred to the above description, which is not repeated here.
  • An embodiment of the present application further provides a display device, where the display device includes the liquid crystal display panel of any one of the above embodiments or a combination of multiple embodiments.
  • the vertical direction in the above embodiments refers to the direction perpendicular to the liquid crystal display panel. It can be understood that the vertical direction is also perpendicular to the color filter substrate 100, the driving substrate 300, etc. orientation of each layer.
  • the cross-section in the following embodiments refers to the cross-section parallel to the direction of the liquid crystal display panel. It can be understood that the direction parallel to the liquid crystal display panel is parallel to the color filter substrate 100, the driving The direction of each film layer such as the substrate 300 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Multimedia (AREA)

Abstract

本申请实施例公开一种液晶显示面板,包括:彩膜基板,其上设有多个光路开孔;驱动基板,与彩膜基板相对设置;液晶层,位于彩膜基板与驱动基板之间;及多个感光传感器单元;其中在液晶层内设有多个挡墙结构;挡墙结构呈中空状、且其顶部及底部均为开口;每个挡墙结构的顶部开口对准至少一个光路开孔,且底部开口对准一个感光传感器单元。本申请通过挡墙结构能够提升指纹信号的信噪比。

Description

液晶显示面板 技术领域
本申请涉及显示技术领域,具体涉及一种液晶显示面板。
背景技术
光学指纹识别技术在实现指纹识别功能的同时不影响显示功能,因为光学指纹识别是利用光信号照射到被识别的目标上,如指纹、掌纹、3D面部等,通过探测被识别目标反射强度不同的特征信号,辨别物体。该技术应用在便携式电子设备上,无需外加光源。因此,光学指纹识别技术既能避免信息泄露、保证个人隐私,又不会影响显示,还能保持高屏占比。
结合液晶显示(Liquid Crystal Display,LCD)的光学指纹识别技术目前有两大技术难点,分别为传感器(sensor)接收单元和光路结构。光信号接收元件可结合低温多晶硅技术(Low Temperature Poly-Silicon,LTPS)进行开发,目前已有相关研究和报道,但是目前有效的光路结构比较少见。
由于液晶显示面板需要背光板提供光源,经过指纹反射的背光会在指纹识别区域产生较多的干扰信号,主要表现为出现大量大角度反射光射向指纹识别模块,而指纹识别模块识别指纹的精度受“信噪比”的影响,信噪比是指小角度反射光和大角度反射光的比值,当出现大量的大角度反射光射向指纹识别模块时,会造成信噪比降低,指纹识别精度降低,甚至无法识别指纹的问题。
因此,如何在液晶显示面板中设计有效的光路结构,以提高信噪比和指纹识别精度,是LCD光学指纹识别技术所必然要克服的难题。
技术问题
本申请实施例提供一种液晶显示面板,可以解决现有液晶显示面板中由于受干扰信号影响而导致信噪比低及指纹识别精度低的问题,克服了光路设计的难题,能够有效过滤干扰信号,提升指纹信号的信噪比,进而提高指纹识别精度。
技术解决方案
第一方面,本申请实施例提供一种液晶显示面板,其包括:
彩膜基板,其上设有多个光路开孔;
驱动基板,与所述彩膜基板相对设置;
液晶层,位于所述彩膜基板与所述驱动基板之间;及
多个感光传感器单元,形成在所述驱动基板靠近所述液晶层的一侧的表面上或形成在所述驱动基板的内部;
其中,在所述液晶层内设有多个挡墙结构;所述挡墙结构呈中空状、且其顶部及底部均为开口;每个所述挡墙结构的顶部开口对准至少一个所述光路开孔,且每个所述挡墙结构的底部开口对准一个所述感光传感器单元;
所述挡墙结构的材料为黑色吸光材料,所述挡墙结构的中空部分填充有透明材料,所述挡墙结构的高度与所述液晶层的厚度相同。
可选的,在本申请的一些实施例中,所述透明材料为透明光学胶。
可选的,在本申请的一些实施例中,所述透明材料具有选择吸收性。
可选的,在本申请的一些实施例中,所述透明材料对可见光波段具有选择吸收性。
可选的,在本申请的一些实施例中,所述透明材料对红光具有过滤性。
可选的,在本申请的一些实施例中,所述彩膜基板包括:透明基板,滤光片层及黑矩阵层;所述滤光片层包括多个彩色滤光单元,且位于所述透明基板靠近所述液晶层的一侧;所述黑矩阵层设置在任意两个相邻的彩色滤光单元之间;其中,所述多个光路开孔位于所述黑矩阵层上。
可选的,在本申请的一些实施例中,所述彩膜基板还包括至少一层遮光层,每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
可选的,在本申请的一些实施例中,所述彩膜基板还包括多个光学微透镜,所述多个光学微透镜位于所述透明基板上且靠近所述黑矩阵层的一侧,所述多个光学微透镜与所述多个光路开孔的位置一一对应。
可选的,在本申请的一些实施例中,所述多个光学微透镜与所述液晶层之间还填充有至少一层平坦层;所述平坦层的折射率与所述光学微透镜的折射率不相等。
可选的,在本申请的一些实施例中,在所述光学微透镜与所述液晶层之间还设有至少一层遮光层;每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个所述第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的所述多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述光学微透镜、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
第二方面,本申请实施例还提供一种液晶显示面板,其包括:
彩膜基板,其上设有多个光路开孔;
驱动基板,与所述彩膜基板相对设置;
液晶层,位于所述彩膜基板与所述驱动基板之间;及
多个感光传感器单元,形成在所述驱动基板靠近所述液晶层的一侧的表面上或形成在所述驱动基板的内部;
其中,在所述液晶层内设有多个挡墙结构;所述挡墙结构呈中空状、且其顶部及底部均为开口;每个所述挡墙结构的顶部开口对准至少一个所述光路开孔,且每个所述挡墙结构的底部开口对准一个所述感光传感器单元。
可选的,在本申请的一些实施例中,所述挡墙结构的材料为黑色吸光材料。
可选的,在本申请的一些实施例中,所述挡墙结构的高度与所述液晶层的厚度相同。
可选的,在本申请的一些实施例中,所述挡墙结构的横截面呈口字形、环形或多个条形组成的包绕结构。
可选的,在本申请的一些实施例中,所述彩膜基板包括:透明基板,滤光片层及黑矩阵层;所述滤光片层包括多个彩色滤光单元,且位于所述透明基板靠近所述液晶层的一侧;所述黑矩阵层设置在任意两个相邻的彩色滤光单元之间;其中,所述多个光路开孔位于所述黑矩阵层上。
可选的,在本申请的一些实施例中,所述彩膜基板还包括至少一层遮光层,每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
可选的,在本申请的一些实施例中,所述遮光层位于所述透明基板与所述黑矩阵层之间和/或所述黑矩阵层与所述液晶层之间。
可选的,在本申请的一些实施例中,所述彩膜基板还包括多个光学微透镜,所述多个光学微透镜位于所述透明基板上且靠近所述黑矩阵层的一侧,所述多个光学微透镜与所述多个光路开孔的位置一一对应。
可选的,在本申请的一些实施例中,所述多个光学微透镜与所述液晶层之间还填充有至少一层平坦层;所述平坦层的折射率与所述光学微透镜的折射率不相等。
可选的,在本申请的一些实施例中,在所述光学微透镜与所述液晶层之间还设有至少一层遮光层;每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个所述第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的所述多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述光学微透镜、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
有益效果
相较于现有技术,本申请实施例采用挡墙结构阻止大角度感光光信号被感光传感器单元接收,并且有效吸收干扰光信号,进而提升指纹信号的信噪比及指纹识别精度。本申请的挡墙结构还可以搭配具有透光区域的遮挡层,通过遮挡层能够进一步降低大角度的干扰信号,同时遮挡层的透光区域与黑矩阵层的光路开孔所形成的光路结构对光信号具有准直效果,使得光信号更加准确的射入挡墙结构以被感光传感器单元接收,从而进一步提高信噪比。另外,本申请挡墙结构还可以搭配光学微透镜,通过光学微透镜能够将感光传感器单元上方区域内的光信号汇聚并射入挡墙结构以被感光传感器单元接收,而干扰光信号则被微透镜打散,被挡墙结构吸收,从而进一步提高信噪比。
附图说明
图1为根据本申请第一实施例所述液晶显示面板的几种黑矩阵层实例的俯视示意图。
图2为根据本申请第一实施例所述液晶显示面板的另几种黑矩阵层实例的俯视示意图。
图3为根据本申请第一实施例所述液晶显示面板的几种感光传感器与彩色滤光单元在垂直方向上的投影关系示意图。
图4为根据本申请第一实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
图5为根据本申请第一实施例所述液晶显示面板的几种挡墙结构实例的立体结构示意图。
图6为根据本申请第二实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
图7为根据本申请第二实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
图8为根据本申请第二实施例所述液晶显示面板的感光传感器与光路开孔及第二透光区域的对应关系示意图。
图9为根据本申请第三实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
图10为根据本申请第三实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
图11为根据本申请第三实施例所述液晶显示面板沿图1中A所示的R-R方向的剖视图。
本发明的实施方式
本申请实施例提供一种液晶显示面板。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参考图1至图5,示出了本申请第一实施例的液晶显示面板,所述液晶显示面板包括:彩膜基板100、驱动基板300、液晶层200、多个感光传感器单元500和多个挡墙结构400。
所述彩膜基板100上设有多个光路开孔131。可选地,如图1中的A至D及图2中的A至D所示,所述多个光路开孔131可以按照阵列排布;所述光路开孔131的横截面可以呈长方形(包括正方形)、圆形或六边形等,其中较优选为圆形,因为圆形的结构可以使得各个方向光信号的准直效果较为均匀,但是所述光路开孔131并不限于上述形状,其他形状同样适用于本申请所述液晶显示面板。所述光路开孔131用于使被指纹反射的光信号穿过所述彩膜基板100,以最终被所述感光传感器单元500接收,通过在所述彩膜基板100上设置多个所述光路开孔131还可以形成一定程度的“类小孔”的准直效果。
如图4所示,在一实施例中,所述彩膜基板100包括透明基板110,滤光片层120和黑矩阵层130。所述透明基板110是可透光的,例如其可以是玻璃基板。所述滤光片层120包括多个彩色滤光单元121,且位于所述透明基板110靠近所述液晶层200的一侧;具体地,所述多个彩色滤光单元121包括三种颜色的滤光单元(RGB),分别为红色滤光单元(R)、绿色滤光单元(G)和蓝色滤光单元(B),用于形成液晶显示面板的显示像素。所述黑矩阵层130设置在任意两个相邻的所述彩色滤光单元121之间;其中所述黑矩阵层130具有吸光性能,其可以采用黑色吸光材料,例如黑色有机光刻胶材料。所述多个光路开孔131设在所述黑矩阵层130上。需要说明的是,由于所述多个光路开孔131设在所述黑矩阵层130上,而所述黑矩阵层130设置在任意两个相邻的彩色滤光单元121之间,因此,所述光路开孔131实际上位于所述彩色滤光单元121的周围,且任意一个所述光路开孔131与所述彩色滤光单元121均无交叠,换言之,任意一个所述光路开孔131和显示像素区域无交叠。在一实施例中,如图1中的A至B和图2中A至B所示,所述多个光路开孔131可以设置在横向相邻的所述彩色滤光单元121之间(X方向);在另一实施例中,如图1中的C至D和图2中的C至D所示,所述多个光路开孔131还可以设置在纵向相邻的所述彩色滤光单元121之间(Y方向)。
需要说明的是,图4仅示出了对应于图1中的A所示的所述液晶显示面板的剖视图,并且本实施例以其为例进行说明,虽然本实施例未一一示出对应于图1中的B至D和图2中的A至D的所述液晶显示面板的剖视图,但是对应于图1中的B至D和图2中的A至D的所述液晶显示面板只是图1中的A和图4所示液晶显示面板的常规变形,它们仍属于本申请的保护范围内。
如图4所示,所述驱动基板300与所述彩膜基板100相对设置。具体地,所述驱动基板300中设有多个扫描线、多个数据线、多个像素驱动电极、及多个薄膜晶体管(Thin Film Transistor,TFT)等功能元件。所述扫描线与数据线垂直交错以定义多个像素单元,每个像素单元内设置至少一个所述像素驱动电极及至少一个所述薄膜晶体管。所述薄膜晶体管连接对应的扫描线、数据线及像素驱动电极,进而能够控制像素单元的显示。所述像素驱动电极可以是例如氧化铟锡(ITO)膜层。
如图4所示,所述液晶层200位于所述彩膜基板100与所述驱动基板300之间。具体地,所述液晶层200中含有液晶(liquid crystal,LC),由所述驱动基板300控制液晶偏转,以实现所述液晶显示面板画面的功能。
如图4所示的位置M,所述多个感光传感器单元500可以形成在所述驱动基板300靠近所述液晶层200的一侧的表面上。具体地,所述感光传感器单元500靠近所述液晶层200一侧的最顶面的膜层高于所述驱动基板300最顶面的膜层,例如,所述感光传感器单元500靠近所述液晶层200一侧的最顶部的氧化铟锡(ITO)膜层高于所述驱动基板300的像素驱动电极的顶面。当所述感光传感器单元500位于位置M时,可以结合LTPS工艺制作所述感光传感器单元500,更省成本。如图1所示的位置N,所述多个感光传感器单元500也可以形成在所述驱动基板300的内部。具体地,所述感光传感器单元500靠近所述液晶层200一侧的最顶面的膜层低于所述驱动基板300最顶面的膜层,例如,所述感光传感器单元500靠近所述液晶层200一侧的顶部氧化铟锡(ITO)膜层低于所述驱动基板300的像素驱动电极的顶面。当所述感光传感器单元500位于位置N时,可以使得所述感光传感器单元500上方的光路设计有更大的利用空间,光路设计难度相对降低。
需要说明的是,所述感光传感器单元500具有识别指纹的功能,其可以接收光信号,并将光信号转换为电信号,并经过算法处理单元计算得到指纹结构特征,实现指纹识别,所述感光传感器单元500为本领域常规技术,本申请不作特殊限定。如图4所示,为了不影响所述彩色滤光单元121形成显示像素的效果,任意一个所述感光传感器单元500优选为与任意一个所述彩色滤光单元121/显示像素在垂直方向上的投影均无交叠。
如图1所示,所述多个挡墙结构400位于所述液晶层200内。所述挡墙结构400呈中空状、且其顶部及底部均为开口,此种结构可以实现指纹光信号的射入及射出,同时能够阻止大角度干扰光信号射入所述挡墙结构400的内部,使得指纹信号的信噪比得到显著提升。较优地,所述挡墙结构400可以采用黑色吸光材料,例如黑色光刻胶或黑色光阻,也可以采用其他黑色吸光材料,通过黑色吸光材料使得所述挡墙结构400能够有效吸收干扰光信号,进一步阻止干扰光信号进入所述挡墙结构400被所述感光传感器单元500接收。可选地,所述挡墙结构400内部的中空部分还可以用透明材料填充(例如透明光学胶),所述透明材料还可以是对某个波段具有选择性吸收,例如对可见光波段380nm-780nm具有选择性,或者对绿光波段500nm-600nm具有选择性,还可以是能够将红光过滤掉的材料。较优地,所述挡墙结构400的高度可以与所述液晶层200的厚度相同,这样不仅可以使得所述挡墙结构400的顶部开口与所述光路开孔131进行精准对接,保证从所述彩膜基板100射出的光信号能够精准射入所述挡墙结构400,还可以使得所述挡墙结构400充当液晶层200厚度(cell gap)的支撑结构。需要说明的是,由于所述挡墙结构400只是存在于所述感光传感器单元500的周围,因此所述挡墙结构400可以充当所述液晶显示面板内部的指纹识别区域的支撑结构,而在其他非指纹识别区域处则可以采用透明光阻间隙物(photo space,PS)或黑色光阻间隙物作为支撑结构,例如,通过曝光在所述液晶层200内形成天秤结构,用以支撑上下基板(所述驱动基板300、所述彩膜基板100),较优地,可以统一采用相同的黑色吸光材料(如黑色光阻PS)、同一张光罩、同一道制成进行制作所有的支撑结构,更节省成本。
可选地,如图5中的A所示,所述挡墙结构400可以呈中空的“矩形柱”状,其横截面呈口字形;如图5中的B所示,所述挡墙结构400也可以呈中空的圆柱体形,其横截面呈环形;如图5中的C所示(C为所述挡墙结构400的***图),所述挡墙结构400还可以是由多个结构单元构成的中空的包绕结构,所述结构单元的数量可以为三个、四个、五个、六个或更多,所述挡墙结构400的横截面为多个条形(即矩形)构成的包绕结构,例如,所述挡墙结构400可以是由四个长方体结构所构成的包绕结构,其横截面为四个条形(即矩矩形)构成的包绕结构。需要说明的是,相邻所述结构单元之间可以是完全闭合的,这样可以更好的阻止大角度感光光信号射入,但是在不大幅度降低阻止大角度感光光信号效果的情况下,相邻所述结构单元之间可以允许有一定缝隙的存在。以上几种所述挡墙结构400的实例中,所述挡墙结构400较优选为横截面呈口字形的结构,其能够更好地阻止所述感光传感器单元500接收干扰光信号,并且在对位、工艺方面更简洁。
如图4所示,每个所述挡墙结构400的顶部开口对准至少一个所述光路开孔131,以使得被指纹反射并穿过所述彩膜基板100的光信号可以射入所述挡墙结构400中;并且每个所述挡墙结构400的底部开口对准一个所述感光传感器单元500,以使得从所述挡墙结构400底部射出的光信号射入所述感光传感器单元500中。具体地,当所述感光传感器单元500形成在所述驱动基板300的表面时,每个所述挡墙结构400的底部开口对准一个所述感光传感器单元500是使所述挡墙结构400底部开口包围在一个所述感光传感器单元500的周围,即所述感光传感器单元500被容纳在所述挡墙结构400的底部开口内,以使得所述挡墙结构400包围所述感光传感器单元500的感光区域,进而保证光信号能够准确地被所述感光传感器单元500接收;当所述多个感光传感器单元500形成在所述驱动基板300的内部时,每个所述挡墙结构400的底部开口对准一个所述感光传感器单元500,例如所述挡墙结构400的底部开口设在所述感光传感器单元500的正上方,以使所述挡墙结构400包围所述感光传感器单元500的感光区域,在所述驱动基板300上所述感光传感器单元500与所述挡墙结构400的底部开口之间的部分是透光的,例如采用透光材料,或者采用可以透光的结构(例如缝隙,所述缝隙优选为0.5微米以下),以使得从所述挡墙结构400射出的光信号能够被所述感光传感器单元500接收。
另外,为了使所述感光传感器单元500更好地接收光信号,所述挡墙结构400的底部开口的尺寸可以大于或等于与其对准/对接的所述感光传感器单元500的尺寸;每个所述挡墙结构400的顶部开口的尺寸可以大于或等于与其对准/对接的所述光路开孔131的尺寸。示例性的,所述挡墙结构400的顶部开口和底部开口的尺寸可以均在5至10微米之间,所述光路开孔131的尺寸可以根据所述挡墙结构400的顶部开口设计。
需要说明的是,所述挡墙结构400的顶部开口与所述光路开孔131之间的对应关系可以为一对一,也可以为一对多;所述挡墙结构400的底部开口与所述感光传感器单元500之间的对应关系为一对一;进而所述感光传感器单元500与所述光路开孔131之间的对应关系也可以为一对一或一对多。例如,同时参考图1中的A(或B)和图3中的A,图1中的A(或B)示出了在两组横向相邻(X方向)的RGB之间设置一个所述光路开孔131,结合图3中的A所示的感光传感器500与彩色滤光单元121在垂直方向上的投影关系示意图可知:一个所述感光传感器单元500对应一个所述光路开孔131;又如,同时参考图2中的C(或D)和图3中的B,图2中的C(或D)示出了在两组纵向相邻(Y方向)的RGB之间设置多个所述光路开孔131,结合图3中的B所示的感光传感器500与彩色滤光单元121在垂直方向上的投影关系示意图可知:一个所述感光传感器单元500对应多个所述光路开孔131。
需要说明的是,除了前述各部件外,所述液晶显示面板还可以根据需要包括任何其他的结构,例如,所述液晶显示面板还包括玻璃盖板600、粘合胶700、上偏光片800、下偏光片900、背光源1000、反射片1100和背板结构1200,所构成的所述液晶显示面板如图1所示,自上而下依次为玻璃盖板600、粘合胶700、上偏光片800、透明基板110、黑矩阵层130、滤光片层120、液晶层200、驱动基板300、下偏光片900、背光源1000、反射片1100和背板结构1200。
综上,本申请实施例的液晶显示面板通过在每个感光传感器单元500的感光区形成所述挡墙结构400,所述挡墙结构400能够阻止大角度感光光信号,并且有效吸收干扰光信号,进而提升指纹信号的信噪比,从而提升指纹识别精度。
为了进一步降低大角度的干扰信号,提升指纹识别光路结构的光路对准效果,进而提高所述感光传感器单元500接收指纹信号的信噪比,本申请在所述彩膜基板100内增加至少一层具有透光区域的遮光层140,所述遮光层140能够进一步降低干扰信号,还能够与所述光路开孔131形成更精准的准直结构,对光信号进行准直,从而提高指纹信号的信噪比。
如图6至图8所示,提供了本申请第二实施例的液晶显示面板,该液晶显示面板除了具有第一实施例的液晶显示面板所描述的结构以外,所述彩膜基板100还包括至少一层遮光层140。所述遮光层140的数量可以为一层(如图6所示),也可以为多层(如图7所示)。
如图6和图7所示,每层所述遮光层140均设有多个第一透光区域141和多个第二透光区域142。
如图6和图7中S2区域所示,每层所述遮光层140上的每个第一透光区域141与一个或多个相邻的所述彩色滤光单元121的位置相对应,且所述一个或多个相邻的所述彩色滤光单元121、及在每层所述遮光层140上与所述一个或多个相邻的所述彩色滤光单元121对应的所述第一透光区域141在垂直方向上的投影至少部分重叠,优选为全部重叠。以使得经过所述彩色滤光单元121过滤的光能够穿过所述遮挡层140,进而不影响所述液晶显示面板的显示像素的显示效果。
如图6和图7中S1区域所示,每层所述遮光层140上的多个第二透光区域142与所述多个光路开孔131的位置一一对应,且每个所述光路开孔131、及在每层所述遮光层140上与所述光路开孔131对应的所述第二透光区域142、以及与所述光路开孔131对应的所述挡墙结构400的顶部开口在垂直方向上的投影至少部分重叠,优选为全部重叠。需要说明的是,当每个所述光路开孔131及与该光路开孔131对应的所有所述第二透光区域142在完全对准时,光信号能够很好地通过所述彩膜基板100,但是由于工艺等因素的影响,可能会导致未完全对准而出现小尺寸错位现象,这种情况是允许存在的。在一优选实施例中,每个所述光路开孔131、及在每层所述遮光层140上与所述光路开孔131对应的所述第二透光区域142、及与所述光路开孔131对应的所述挡墙结构400的顶部开口、以及与所述光路开孔131对应的所述感光传感器单元500在垂直方向上的投影至少部分重叠,优选为全部重叠。可选地,重叠的区域可以小于、等于或大于所述感光传感器单元500的尺寸。为了不影响液晶显示面板的显示效果,重叠的区域与所述彩色滤光单元121或其所形成的显示像素在垂直方向上的投影优选为无交叠。本实施例通过将所述第二透光区域142与所述光路开孔131配合形成指纹光信号的光路结构,使得被指纹反射回来的光信号能够穿过所述彩膜基板100,并射入所述挡墙结构400,同时还对光信号进行了进一步的准直,其中所述遮光层140的层数越多则提高指纹信号信噪比的效果越好。
此外,如图8所示(图中未示出所述挡墙结构400),所述光路开孔131及所述第二透光区域142之间的对应关系为一对一,所述感光传感器单元500与光路开孔131/所述第二透光区域142之间的对应关系可以为一对多。无论对应关系为何,所述感光传感器单元500的尺寸可以大于、等于或小于所述光路开孔131。较优地,所述感光传感器单元500的尺寸大于所述光路开孔131的尺寸,这样即便所述光路开孔131与所述第二透光区域142不是准确对位时,也可以使得所述感光传感器单元500能够较好的接收光信号,例如,所述感光传感器单元500的尺寸足够大到使得所述感光传感器单元500的一侧边缘部分与所述黑矩阵层130的遮挡区域(除了所述光路开孔31的黑色区域)在垂直方向上的投影的重叠尺寸(图8所示L)大于5μm。
如图2和图3所示,可选地,与所述光路开孔131的形状相同,所述第二透光区域142/所述第一透光区域141的横截面可以呈长方形(包括正方形)、圆形或六边形等,较优选为圆形,采用圆形对各个方向光信号的准直效果较为均匀。所述第二透光区域142/所述第一透光区域141的内部可以填充透明材料,例如,包括但不限于透明光学胶(OC)(包括感光透明光学胶)、透明感光光阻(photo space,PS)和环氧树脂等透明胶材。
如图7所示,所述遮光层140位于所述透明基板110与所述黑矩阵层130之间和/或所述黑矩阵层130与所述液晶层200之间。具体的,当遮光层140的数量为一层时,可以设置在所述透明基板110与所述黑矩阵层130之间,也可以设在所述黑矩阵层130与所述液晶层200之间;当所述遮光140层数量为多层时,可以全部设置在所述透明基板110与所述黑矩阵层130之间,也可以全部设在所述黑矩阵层130与所述液晶层200之间,还可以同时设置在所述透明基板110与所述黑矩阵层130之间和所述黑矩阵层130与所述液晶层200之间。所述遮光层140的数量较优为但不限于两层,这样既能够满足光路对准、吸收干扰信号等需求,还不会使工艺过于复杂。另外,当在所述黑矩阵层130与所述液晶层200之间存在所述遮挡层140时,所述挡墙结构400的顶部开口可以对准与其对应的所述第二透光区域142。
需要说明的是,所述遮光层140的遮光区域(除了所述第一透光区域141和所述第二透光区域142以外的区域)与所述黑矩阵层130的遮挡区域(除了所述光路开孔131以外的区域)均具有吸光效果,能够吸收大角度干扰光信号,提高指纹信号信噪比,二者可以采用相同或不同的黑色吸光材料(例如黑色光刻胶材料)。而在不同所述遮光层140之间、所述黑矩阵层130与其靠近的所述遮光层140之间以及所述黑矩阵层130/所述遮光层140与所述液晶层200之间均可以采用透明材料填充,例如,包括但不限于透明光学胶(OC)、感光透明光学胶(OC)、透明感光阻(photo space,PS)和环氧树脂等透明胶材。
除了上面描述的光路结构以外,本申请还提供了另一种光路结构,该结构是在所述彩膜基板100内增加多个光学微透镜150,通过搭配所述光学微透镜150能够将所述感光传感器单元500上方区域内的指纹的光信号汇聚并射入所述挡墙结构400,进而被所述感光传感器单元500接收,而干扰光信号则被所述光学微透镜150打散,从而进一步提高信噪比。
如图9和图10所示,提供了本申请第三实施例的液晶显示面板,该液晶显示面板除了具有第一实施例所描述的结构以外,所述彩膜基板100还包括多个光学微透镜150。
所述多个光学微透镜150位于所述透明基板110上且靠近所述黑矩阵层130的一侧,所述多个光学微透镜150与所述多个光路开孔131的位置一一对应。通过所述光学微透镜150可以将指纹光信号汇聚到由所述挡墙结构400包围的所述感光传感器单元500的感光区,这样不仅可以提高信噪比,还可以使得所述感光传感器单元500的尺寸可以做的更小,而显示开口率可相应的提高。
所述光学微透镜150的折射率与其周边材料的折射率不等,在一定范围内二者的差值越大,所述光学微透镜150汇聚光信号的效果越好,指纹识别效果也越好。例如,如图9所示,所述多个光学微透镜150与所述液晶层200之间还填充有至少一层平坦层160。所述平坦层160的折射率与所述光学微透镜150的折射率不相等,且二者差值越大越好。
如图10所示,可选地,还可以在所述光学微透镜150下方增加至少一层遮光层140,用以降低大角度的干扰光信号。所述遮光层140设在所述光学微透镜150与所述液晶层200之间。具体地,当所述遮光层140的数量为一层时,所述遮光层140可以设在所述光学微透镜150与所述黑矩阵层130之间,也可以设置在所述黑矩阵层130与所述液晶层200之间,当所述遮光层140的数量为多层时,可以全部设在所述光学微透镜150与所述黑矩阵层130之间,也可以全部设在所述黑矩阵层130与所述液晶层200之间,也可以同时设置在所述黑矩阵层130与所述液晶层200之间及所述光学微透镜150与所述黑矩阵层130之间。
每层所述遮光层140均设有多个第一透光区域141和多个第二透光区域142。如图10中S2区域所示,每层所述遮光层140上的每个所述第一透光区域141与一个或多个相邻的所述彩色滤光单元121的位置相对应,且所述一个或多个相邻的所述彩色滤光单元121及在每层所述遮光层140上与所述一个或多个相邻的所述彩色滤光单元121对应的所述第一透光区域141在垂直方向上的投影至少部分重叠,优选为全部重叠。如图10中S1区域所示,每层所述遮光层140上的所述多个第二透光区域142与所述多个光路开孔131的位置一一对应,且每个所述光路开孔131、及在每层所述遮光层140上与所述光路开孔131对应的所述第二透光区域142、及与所述光路开孔131对应的所述光学微透镜150、以及与所述光路开孔131对应的所述挡墙结构400的顶部开口在垂直方向上的投影至少部分重叠,优选为全部重叠。较优地,每个所述光路开孔131、及在每层所述遮光层140上与所述光路开孔131对应的所有所述第二透光区域142、及与所述光路开孔131对应的所述光学微透镜150、及与所述光路开孔131对应的所述挡墙结构400的顶部开口、以及与所述光路开孔131对应的所述感光传感器单元500在垂直方向上的投影至少部分重叠,优选为全部重叠。
如图11所示,可选地,所述遮光层140中的一层还可以与所述光学微透镜150同层设置,所述遮光层140均设有多个第一透光区域141和多个第二透光区域142。如图11中S2区域所示,所述遮光层140上的每个所述第一透光区域141与一个或多个相邻的所述彩色滤光单元121的位置相对应,且所述一个或多个相邻的所述彩色滤光单元121及在所述遮光层140上与所述一个或多个相邻的所述彩色滤光单元121对应的所述第一透光区域141在垂直方向上的投影至少部分重叠,优选为全部重叠。如图11中S1区域所示,所述光学微透镜150设在所述第二透光区域142中,所述光学微透镜150与所述多个光路开孔131的位置一一对应,且每个所述光学微透镜150、与所述光学微透镜150对应的所述光路开孔131、以及与所述光路开孔131对应的所述挡墙结构400的顶部开口在垂直方向上的投影至少部分重叠,优选为全部重叠。较优地,每个所述光学微透镜150、与所述光学微透镜150对应的所述光路开孔131、与所述光路开孔131对应的所述挡墙结构400的顶部开口、以及与所述光路开孔131对应的所述感光传感器单元500在垂直方向上的投影至少部分重叠,优选为全部重叠。可以理解的是,当所述遮光层140的数量大于一层时,其他所述遮光层140可以设置在所述光学微透镜150与所述黑矩阵层130之间,也可以设置在所述黑矩阵层130与所述液晶层200之间,所述遮光层140的结构可以参考前述描述,在此不作赘述。
本申请实施例还提供一种显示装置,所述显示装置包括以上任意一种实施例或多种实施例组合的所述液晶显示面板。
需要说明的是,以上各个实施例中垂直方向是指垂直于所述液晶显示面板的方向,可以理解的是,所述垂直方向也即垂直于所述彩膜基板100、所述驱动基板300等各膜层的方向。以下各实施例中所述横截面是指平行于所述液晶显示面板方向的截面,可以理解的是,平行于所述液晶显示面板的方向也即平行于所述彩膜基板100、所述驱动基板300等各膜层的方向。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种液晶显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种液晶显示面板,其包括:
    彩膜基板,其上设有多个光路开孔;
    驱动基板,与所述彩膜基板相对设置;
    液晶层,位于所述彩膜基板与所述驱动基板之间;及
    多个感光传感器单元,形成在所述驱动基板靠近所述液晶层的一侧的表面上或形成在所述驱动基板的内部;
    其中,在所述液晶层内设有多个挡墙结构;所述挡墙结构呈中空状、且其顶部及底部均为开口;每个所述挡墙结构的顶部开口对准至少一个所述光路开孔,且每个所述挡墙结构的底部开口对准一个所述感光传感器单元;
    所述挡墙结构的材料为黑色吸光材料,所述挡墙结构的中空部分填充有透明材料,所述挡墙结构的高度与所述液晶层的厚度相同。
  2. 如权利要求1所述的液晶显示面板,其中所述透明材料为透明光学胶。
  3. 如权利要求1所述的液晶显示面板,其中所述透明材料具有选择吸收性。
  4. 如权利要求3所述的液晶显示面板,其中所述透明材料对可见光波段具有选择吸收性。
  5. 如权利要求1所述的液晶显示面板,其中所述透明材料对红光具有过滤性。
  6. 如权利要求1所述的液晶显示面板,其中所述彩膜基板包括:透明基板,滤光片层及黑矩阵层;所述滤光片层包括多个彩色滤光单元,且位于所述透明基板靠近所述液晶层的一侧;所述黑矩阵层设置在任意两个相邻的彩色滤光单元之间;其中,所述多个光路开孔位于所述黑矩阵层上。
  7. 如权利要求6所述的液晶显示面板,其中所述彩膜基板还包括至少一层遮光层,每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
  8. 如权利要求6所述的液晶显示面板,其中所述彩膜基板还包括多个光学微透镜,所述多个光学微透镜位于所述透明基板上且靠近所述黑矩阵层的一侧,所述多个光学微透镜与所述多个光路开孔的位置一一对应。
  9. 如权利要求8所述的液晶显示面板,其中所述多个光学微透镜与所述液晶层之间还填充有至少一层平坦层;所述平坦层的折射率与所述光学微透镜的折射率不相等。
  10. 如权利要求8所述的液晶显示面板,其中在所述光学微透镜与所述液晶层之间还设有至少一层遮光层;每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个所述第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的所述多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述光学微透镜、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
  11. 一种液晶显示面板,其包括:
    彩膜基板,其上设有多个光路开孔;
    驱动基板,与所述彩膜基板相对设置;
    液晶层,位于所述彩膜基板与所述驱动基板之间;及
    多个感光传感器单元,形成在所述驱动基板靠近所述液晶层的一侧的表面上或形成在所述驱动基板的内部;
    其中,在所述液晶层内设有多个挡墙结构;所述挡墙结构呈中空状、且其顶部及底部均为开口;每个所述挡墙结构的顶部开口对准至少一个所述光路开孔,且每个所述挡墙结构的底部开口对准一个所述感光传感器单元。
  12. 如权利要求11所述的液晶显示面板,其中所述挡墙结构的材料为黑色吸光材料。
  13. 如权利要求11所述的液晶显示面板,其中所述挡墙结构的高度与所述液晶层的厚度相同。
  14. 如权利要求11所述的液晶显示面板,其中所述挡墙结构的横截面呈口字形、环形或多个条形组成的包绕结构。
  15. 如权利要求11所述的液晶显示面板,其中所述彩膜基板包括:透明基板,滤光片层及黑矩阵层;所述滤光片层包括多个彩色滤光单元,且位于所述透明基板靠近所述液晶层的一侧;所述黑矩阵层设置在任意两个相邻的彩色滤光单元之间;其中,所述多个光路开孔位于所述黑矩阵层上。
  16. 如权利要求15所述的液晶显示面板,其中所述彩膜基板还包括至少一层遮光层,每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
  17. 根据权利要求16所述的液晶显示面板,其中所述遮光层位于所述透明基板与所述黑矩阵层之间和/或所述黑矩阵层与所述液晶层之间。
  18. 如权利要求15所述的液晶显示面板,其中所述彩膜基板还包括多个光学微透镜,所述多个光学微透镜位于所述透明基板上且靠近所述黑矩阵层的一侧,所述多个光学微透镜与所述多个光路开孔的位置一一对应。
  19. 如权利要求18所述的液晶显示面板,其中所述多个光学微透镜与所述液晶层之间还填充有至少一层平坦层;所述平坦层的折射率与所述光学微透镜的折射率不相等。
  20. 如权利要求18所述的液晶显示面板,其中在所述光学微透镜与所述液晶层之间还设有至少一层遮光层;每层所述遮光层均设有多个第一透光区域和多个第二透光区域;每层所述遮光层上的每个所述第一透光区域与一个或多个相邻的所述彩色滤光单元的位置相对应,且所述一个或多个相邻的所述彩色滤光单元及与其对应的所述第一透光区域在垂直方向上的投影至少部分重叠;每层所述遮光层上的所述多个第二透光区域与所述多个光路开孔的位置一一对应,且每个所述光路开孔、及与其对应的所述第二透光区域、以及与其对应的所述光学微透镜、以及与其对应的所述挡墙结构的顶部开口在垂直方向上的投影至少部分重叠。
PCT/CN2020/142285 2020-12-29 2020-12-31 液晶显示面板 WO2022141454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/281,799 US20230418111A1 (en) 2020-12-29 2020-12-31 Liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011591258.5A CN112666737B (zh) 2020-12-29 2020-12-29 液晶显示面板
CN202011591258.5 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022141454A1 true WO2022141454A1 (zh) 2022-07-07

Family

ID=75411768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142285 WO2022141454A1 (zh) 2020-12-29 2020-12-31 液晶显示面板

Country Status (3)

Country Link
US (1) US20230418111A1 (zh)
CN (1) CN112666737B (zh)
WO (1) WO2022141454A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189805B (zh) * 2021-04-28 2023-04-07 维沃移动通信(杭州)有限公司 显示模组、电子设备、拍摄控制方法和拍摄控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187546A (zh) * 2019-05-28 2019-08-30 厦门天马微电子有限公司 显示面板及指纹识别显示装置
CN110501839A (zh) * 2019-07-30 2019-11-26 武汉华星光电技术有限公司 显示面板及显示装置
CN111752028A (zh) * 2020-07-09 2020-10-09 武汉华星光电技术有限公司 液晶显示面板
CN111983841A (zh) * 2020-08-21 2020-11-24 武汉华星光电技术有限公司 显示面板
CN112018157A (zh) * 2020-08-05 2020-12-01 武汉华星光电技术有限公司 显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802041B2 (ja) * 2011-04-12 2015-10-28 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 情報処理装置、計算方法、プログラムおよび記録媒体
CN106405946A (zh) * 2016-11-29 2017-02-15 深圳市华星光电技术有限公司 框胶固化方法及液晶面板制造方法
CN109445161B (zh) * 2018-12-27 2021-07-09 厦门天马微电子有限公司 显示面板和显示装置
CN110309705B (zh) * 2019-04-30 2022-04-19 厦门天马微电子有限公司 显示面板和显示装置
CN110161739B (zh) * 2019-06-19 2022-09-16 厦门天马微电子有限公司 一种显示面板及显示装置
CN113168061A (zh) * 2019-11-07 2021-07-23 京东方科技集团股份有限公司 显示面板及显示面板的制作方法
CN211403022U (zh) * 2020-03-05 2020-09-01 昆山龙腾光电股份有限公司 一种液晶显示面板及显示装置
CN111708205A (zh) * 2020-07-20 2020-09-25 京东方科技集团股份有限公司 阵列基板及显示装置、彩膜基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187546A (zh) * 2019-05-28 2019-08-30 厦门天马微电子有限公司 显示面板及指纹识别显示装置
CN110501839A (zh) * 2019-07-30 2019-11-26 武汉华星光电技术有限公司 显示面板及显示装置
CN111752028A (zh) * 2020-07-09 2020-10-09 武汉华星光电技术有限公司 液晶显示面板
CN112018157A (zh) * 2020-08-05 2020-12-01 武汉华星光电技术有限公司 显示装置
CN111983841A (zh) * 2020-08-21 2020-11-24 武汉华星光电技术有限公司 显示面板

Also Published As

Publication number Publication date
CN112666737A (zh) 2021-04-16
US20230418111A1 (en) 2023-12-28
CN112666737B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
TWI719738B (zh) 顯示面板及顯示裝置
US11594063B2 (en) Display module including light-shielding layer, and display apparatus
CN109307962B (zh) 一种液晶显示面板、液晶显示屏及电子设备
WO2021012428A1 (zh) 显示面板及显示装置
US8926157B2 (en) Light diffusing member and method of manufacturing the same, and display device
CN110286514B (zh) 一种显示面板及显示装置
TWI289710B (en) Electro-optical device, and method of manufacturing the electro-optical device
WO2021017194A1 (zh) 显示面板及显示装置
CN107703670B (zh) 一种显示面板和显示装置
CN108845460B (zh) 一种背光模组及显示装置
WO2014024815A1 (ja) 光拡散タッチパネルおよびその製造方法、表示装置
WO2021249178A1 (zh) 显示面板和显示装置
CN113994253B (zh) 显示装置及其制造方法
CN109445176B (zh) 液晶显示面板及其制备方法、液晶显示装置
CN211403022U (zh) 一种液晶显示面板及显示装置
US20220310701A1 (en) Display device and touch controller
WO2022241826A1 (zh) 光线控制膜和显示面板
JP2007004156A (ja) 基板アセンブリ及びこれを有する表示装置
US11694472B2 (en) Display panel, display apparatus, and method for preparing display panel
US11740503B2 (en) Display screen and electronic device
CN110908174A (zh) 一种显示面板及显示装置
WO2022141454A1 (zh) 液晶显示面板
CN111723781B (zh) 显示面板及显示装置
CN110596946A (zh) 一种显示面板及显示装置
CN112908165A (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967793

Country of ref document: EP

Kind code of ref document: A1