WO2022141314A1 - 航线规划方法、装置、设备、无人机及可读存储介质 - Google Patents

航线规划方法、装置、设备、无人机及可读存储介质 Download PDF

Info

Publication number
WO2022141314A1
WO2022141314A1 PCT/CN2020/141839 CN2020141839W WO2022141314A1 WO 2022141314 A1 WO2022141314 A1 WO 2022141314A1 CN 2020141839 W CN2020141839 W CN 2020141839W WO 2022141314 A1 WO2022141314 A1 WO 2022141314A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
segment
area
main
operation area
Prior art date
Application number
PCT/CN2020/141839
Other languages
English (en)
French (fr)
Inventor
黄振昊
马跃涛
石仁利
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/141839 priority Critical patent/WO2022141314A1/zh
Priority to CN202080075417.8A priority patent/CN114867986A/zh
Publication of WO2022141314A1 publication Critical patent/WO2022141314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures

Definitions

  • the present application relates to the technical field of route planning, and in particular, to a route planning method, device, device, unmanned aerial vehicle, and readable storage medium.
  • the operation area of the drone above the plot can be determined through three points, and the route planning can be carried out in the operation area.
  • the operation area determined by the point is inconsistent with the terrain fluctuation of the plot, resulting in the planned route being unable to meet the terrain fluctuation requirements of the plot, affecting the operation effect of the UAV.
  • the embodiments of the present application provide a route planning method, device, device, UAV, and a readable storage medium, which aim to improve the reliability of route planning, so as to improve the operation effect of the UAV.
  • an embodiment of the present application provides a route planning method, including:
  • the second position information estimate the second position information of the surface area corresponding to the image formed by the drone at any of the shooting points on the target plot
  • a shooting operation route of the UAV in the target plot is planned.
  • an embodiment of the present application further provides a route planning method, which is applied to a terminal device, where the terminal device is connected to a UAV in communication and is used to control the UAV, and the method includes:
  • the embodiments of the present application further provide a method for controlling operations, which is applied to an unmanned aerial vehicle, wherein the unmanned aerial vehicle includes a photographing device, and the method includes:
  • the drone is controlled to perform the shooting operation according to the shooting operation route.
  • an embodiment of the present application further provides a route planning device, where the route planning device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the second position information estimate the second position information of the surface area corresponding to the image formed by the drone at any of the shooting points on the target plot
  • a shooting operation route of the UAV in the target plot is planned.
  • an embodiment of the present application further provides a route planning device, which is applied to a terminal device, where the terminal device is communicatively connected to an unmanned aerial vehicle for controlling the unmanned aerial vehicle, and the route planning device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • an embodiment of the present application further provides an operation control device, which is applied to an unmanned aerial vehicle, wherein the unmanned aerial vehicle includes a photographing device, and the unmanned aerial vehicle is communicatively connected to a terminal device, and the terminal device is used to control
  • the operation control device includes a memory and a processor
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the drone is controlled to perform the shooting operation according to the shooting operation route.
  • an embodiment of the present application further provides a terminal device, where the terminal device includes the above-mentioned route planning apparatus.
  • an embodiment of the present application further provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising:
  • a photographing device arranged on the body, for photographing the target plot
  • a power system arranged on the body, for providing flight power for the drone;
  • the above-mentioned operation control device is provided in the body, and is used for controlling the drone to perform the photographing operation.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned The steps of the route planning method, or the steps of implementing the operation control method as described above.
  • the embodiments of the present application provide a route planning method, device, device, unmanned aerial vehicle, and readable storage medium.
  • acquiring the first position information of multiple shooting points in the initial planning of the shooting operation and based on the first position information, Estimate the second position information of the surface area covered by the image formed by the drone shooting the target plot at any shooting point, and then determine the normal information of the surface area according to the second position information, and adjust the shooting based on the normal information.
  • FIG. 1 is a schematic diagram of a scenario for implementing the route planning method provided by the embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of a route planning method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the first working area and the second working area in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of an initial shooting operation route in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a scene of an initially planned shooting point in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another scene of the initially planned shooting point in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a scene for determining normal information of the ground surface in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a scene of adjusting a shooting point in the implementation of the present application.
  • FIG. 9 is a schematic diagram of a shooting operation route obtained based on the adjusted multiple shooting point planning in the implementation of the present application.
  • FIG. 10 is a schematic diagram of the first operation area, the second operation area and the connection area in the implementation of the present application;
  • Fig. 11 is another schematic diagram of the shooting operation route in the implementation of the present application.
  • Fig. 12 is another schematic diagram of the shooting operation route in the implementation of the present application.
  • Fig. 13 is another schematic diagram of the shooting operation route in the implementation of the present application.
  • Fig. 14 is another schematic diagram of the shooting operation route in the implementation of the present application.
  • 15 is a schematic flowchart of steps of another route planning method provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of the working route in the embodiment of the present application.
  • 17 is a schematic flowchart of steps of a job control method provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of the structure of a route planning apparatus provided by an embodiment of the present application.
  • 19 is a schematic block diagram of the structure of another route planning apparatus provided by an embodiment of the present application.
  • 20 is a schematic structural block diagram of a job control device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of the structure of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the operation area of the drone above the plot can be determined through three points, and the route planning can be carried out in the operation area.
  • the operation area determined by the point is inconsistent with the terrain fluctuation of the plot, resulting in the planned route being unable to meet the terrain fluctuation requirements of the plot, affecting the operation effect of the UAV.
  • the embodiments of the present application provide a route planning method, device, device, unmanned aerial vehicle, and readable storage medium.
  • the first position information is to estimate the second position information of the surface area covered by the image formed by the drone at any shooting point on the target plot, and then determine the normal information of the surface area according to the second position information, and based on the The normal information adjusts the shooting points so that the normal distance between each adjusted shooting point and the corresponding surface area is roughly equal.
  • plan the shooting of the drone in the target plot The operation route enables the planned shooting operation route to meet the terrain fluctuation requirements of the plot, thereby improving the reliability of the route planning and improving the operation effect of the UAV.
  • FIG. 1 is a schematic diagram of a scenario for implementing the route planning method provided by the embodiment of the present application.
  • the scene includes a drone 100 and a terminal device 200 , the drone 100 is connected in communication with the terminal device 200 , and the terminal device 200 is used to control the drone 100 .
  • the drone 100 includes a body 110, a power system 120 provided on the body 110, a photographing device 130 and a control system (not shown in FIG. 1 ).
  • the power system 120 is used to provide the drone 100 with flight power.
  • Apparatus 130 is used to acquire images.
  • the power system 120 may include one or more propellers 121 , one or more motors 122 corresponding to the one or more propellers, and one or more electronic governors (referred to as ESCs for short).
  • the motor 122 is connected between the electronic governor and the propeller 121, and the motor 122 and the propeller 121 are arranged on the body 110 of the UAV 100; the electronic governor is used to receive the driving signal generated by the control system, and provide the driving signal according to the driving signal.
  • Driving current is supplied to the motor 122 to control the rotational speed of the motor 122 .
  • the motor 122 is used to drive the propeller 121 to rotate, thereby providing power for the flight of the UAV 100, and the power enables the UAV 100 to achieve one or more degrees of freedom movement.
  • the drone 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the control system may include a controller and a sensing system.
  • the sensing system is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 100 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the controller is used to control the movement of the UAV 100, for example, the movement of the UAV 100 can be controlled according to the attitude information measured by the sensing system. It should be understood that the controller can control the UAV 100 according to pre-programmed instructions.
  • the terminal device 200 includes a display device 210 , and the terminal device 200 displays the image sent by the movable platform 100 through the display device 210 for the user to watch.
  • the display device 210 includes a display screen disposed on the terminal device 200 or a display independent of the terminal device 200, and the display independent of the terminal device 200 may include a mobile phone, a tablet computer, a personal computer, etc. Other electronic equipment with a display screen.
  • the display screen includes an LED display screen, an OLED display screen, an LCD display screen, and the like.
  • the terminal device 200 is further configured to obtain the first position information of multiple shooting points in the initial planning of the shooting operation; The image corresponding to the second position information of the covered surface area; the normal information of the surface area is determined according to the second position information; the shooting point is adjusted according to the normal information, so that the adjusted shooting point and the corresponding surface area The normal distances are approximately equal; according to the adjusted multiple shooting points, the shooting operation route of the UAV 100 in the target plot is planned.
  • the terminal device 200 sends the shooting operation route to the unmanned aerial vehicle 100, and the controller in the unmanned aerial vehicle 100 is further used to obtain the shooting operation route of the unmanned aerial vehicle 100, And control the drone 100 to perform the shooting operation according to the shooting operation route.
  • the drone 100 reaches the shooting point in the shooting operation route, the normal vector of the surface area corresponding to the shooting point is obtained, and according to the normal vector, the shooting direction of the shooting device 130 at the shooting point is adjusted, so that the adjusted shooting The photographing direction of the device 130 is substantially perpendicular to the surface area corresponding to the photographing point.
  • the UAV 100 may include a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, a fixed-wing UAV, or a rotary-wing and fixed-wing UAV.
  • a rotary-wing UAV such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, a fixed-wing UAV, or a rotary-wing and fixed-wing UAV.
  • the combination of drones is not limited here.
  • Terminal device 200 may include, but is not limited to, smart phones/mobile phones, tablet computers, personal digital assistants (PDAs), desktop computers, media content players, video game stations/systems, virtual reality systems, augmented reality systems, wearable devices (eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMDs), headbands), pendants, armbands, leg loops, shoes, vest), gesture recognition device, microphone, any electronic device capable of providing or rendering image data, or any other type of device.
  • the terminal device 200 may be a handheld terminal, and the terminal device 200 may be portable.
  • the terminal device 200 may be carried by a human user. In some cases, the end device 200 may be remote from the human user, and the user may control the end device 200 using wireless and/or wired communications.
  • the route planning method provided by the embodiments of the present application will be described in detail with reference to the scenario in FIG. 1 .
  • the scenario in FIG. 1 is only used to explain the route planning method provided by the embodiment of the present application, but does not constitute a limitation on the application scenario of the route planning method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of steps of a route planning method provided by an embodiment of the present application.
  • the route planning method includes steps S101 to S105.
  • Step S101 acquiring first position information of multiple shooting points in the initial planning of the shooting operation.
  • an initial photographing operation route of the UAV initially planned in the target plot is obtained; a plurality of photographing points are determined from the initial photographing operation route, and first position information of the plurality of photographing points is obtained.
  • the initial shooting operation route includes a plurality of initial main route segments, the distances between each shooting point in the initial main route segment are equal, and the number of photographing points determined from each initial main route segment is the same or different. The separation distance between the points may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the manner of obtaining the initial shooting operation route may be: determining the first reference point, the second reference point and the third reference point; and determining the target plot according to the first reference point, the second reference point and the third reference point. determine the fourth reference point, and determine the second operation area of the target plot according to the fourth reference point and the boundary of the first operation area;
  • the route of the drone is initially planned, and the initial shooting route of the drone is obtained.
  • the reference line between the first reference point and the second reference point is a boundary line of the first operation area
  • the third reference point is located at another boundary line of the second operation area
  • the third reference point is not a boundary point.
  • One work area can be accurately determined by three reference points, and another work area can be determined by one work area and one reference point, which is convenient for users to determine the work area in the land with slope.
  • a route planning page is displayed, wherein the route planning page displays a reference point setting control and a target plot; the drone is controlled to fly over the target plot, and in response to a user triggering an operation on the reference point setting control, Determine the current position of the UAV as the first reference point; continue to control the UAV to fly over the target plot, and determine the current position of the UAV as the user's trigger operation on the reference point setting control The second reference point; continue to control the drone to fly over the target plot, and determine the current position of the drone as the third reference point in response to the user's triggering operation on the reference point setting control.
  • the first working area can be determined by taking the reference line between the first reference point and the second reference point as the first boundary, and determining a second boundary that is parallel to the first boundary and includes the third reference point. Boundary; determine a first expansion point corresponding to the first reference point and a second expansion point corresponding to the second reference point on the second boundary; set the first reference point, the second reference point, and the first expansion point The area enclosed with the second outward expansion point is determined as the first operation area.
  • the expansion distance between the first expansion point or the second expansion point and the third reference point can be set by the user, which is not specifically limited in the embodiment of the present application.
  • the working area can be accurately determined by three reference points.
  • the second operation area may be determined by: determining a third boundary parallel to the second boundary and including the fourth reference point; determining an area between the second boundary and the third boundary as the second operation area, Alternatively, a third expansion point corresponding to the first expansion point and a fourth expansion point corresponding to the second expansion point are determined on the third boundary, and the second boundary, the third expansion point and the fourth expansion point are determined.
  • the area formed by the outer expansion points is determined as the second operation area.
  • the second operation area may be an open area or a closed area. Another working area can be accurately determined by a working area and a reference point.
  • the first reference point 11 , the second reference point 12 and the third reference point 13 may form a triangular work area, and the third reference point 13 faces the direction along the boundary where the third reference point 13 is located.
  • the first expansion point 131 corresponding to the first reference point 11 can be obtained.
  • Expanding a certain distance in the direction can obtain the second expanding point 132 corresponding to the second reference point 12. Therefore, the first reference point 11, the second reference point 12, the first expanding point 131 and the second expanding point 132 are enclosed to form The area is the first work area A.
  • the user controls the drone to continue flying through the control terminal, and when the user's triggering operation on the reference point setting control is detected, the current position of the drone is determined as
  • the fourth reference point 14 is then determined to be parallel to the second boundary between the first expanded point 131 and the second expanded point 132 and including the third boundary of the fourth reference point 14, by passing along the fourth reference point 40 where the From the fourth reference point 14 to the direction of the first expansion point 131, the boundary can be expanded for a certain distance, and the third expansion point 141 corresponding to the first expansion point 131 can be obtained.
  • the fourth external expansion point 142 corresponding to the second external expansion point 132 can be obtained by expanding the four reference points 14 in the direction of the second external expansion point 132 for a certain distance. Therefore, the first external expansion point 131 and the second external expansion point 132 The area enclosed by the third outer expansion point 141 and the fourth outer expansion point 142 is the second operation area B.
  • the route of the UAV is initially planned in the first operation area and the second operation area
  • the method of obtaining the initial shooting operation route of the UAV may be: obtaining the first operation area and the second operation area.
  • the side length ratio of the target boundary if the side length ratio is greater than or equal to the preset side length ratio, the first operation area and the second operation area are taken as a whole to initially plan the UAV's route, and the UAV is obtained. the initial shooting route.
  • the preset side length ratio may be set based on the actual situation, which is not specifically limited in this embodiment of the present application. For example, the preset side length ratio is 0.8.
  • the connecting edge is located between the first expansion point 131 and the second expansion point 132
  • the target boundary is located between the third expansion point 141 and the fourth expansion point 142
  • the first expansion point 142 The distance between the point 131 and the second expansion point 132 is 6 meters, that is, the length of the first side is 6 meters
  • the distance between the third expansion point 141 and the fourth expansion point 142 is 7 meters, that is, the second
  • the side length is 7 meters
  • the side length ratio is 0.86
  • the side length ratio of 0.86 is greater than the preset side length ratio of 0.8. Therefore, the first operation area A and the second operation area B are taken as a whole.
  • the initial shooting operation route including the starting waypoint 15 and the ending waypoint 16 as shown in FIG. 4 is obtained.
  • the initial photographing operation route including the starting waypoint 15 and the ending waypoint 16 includes 15 initial main route segments, and each initial main route segment may include 8 photographing points.
  • the first reference point, the second reference point and the third reference point are determined; according to the first reference point, the second reference point and the third reference point, the first operation area of the target plot is determined; Four reference points, and according to the fourth reference point and the boundary of the first operation area, determine the second operation area of the target plot; initially plan multiple shooting points in the first operation area and the second operation area, and obtain each The first position information of the shooting point. As shown in FIG. 6 , 120 shooting points 17 are initially planned in the first work area A and the second work area B.
  • Step S102 According to the first position information, estimate the second position information of the surface area corresponding to the covered surface area of the image formed by the drone at any of the shooting points shooting the target plot.
  • the first position information includes longitude, latitude, and altitude information of the shooting point
  • the altitude information includes absolute height and relative altitude.
  • the image formed by the photographing of the land corresponds to the target height of the covered surface area, and then the height information in the first position information of the photographing point is replaced with the target height, and the image formed by photographing the target land by the photographing point corresponds to the covered surface.
  • the second location information of the area The latitude and longitude in the first location information is the same as the latitude and longitude in the second location information.
  • a digital surface model (DSM) of the target plot is obtained; according to the first position information and the digital surface model, the corresponding coverage of the image formed by the drone shooting the target plot at any shooting point is estimated.
  • the second location information of the surface area is estimated.
  • the digital surface model of the target plot includes height information of vegetation, buildings, trees, etc. located in the target plot.
  • the latitude and longitude in the first position information and the digital surface model determine the target height of the surface area covered by the image formed by the drone shooting the target plot at the shooting point;
  • the height information in the information is replaced with the target height, and the second position information of the surface area corresponding to the coverage of the image formed by the photographing point on the target plot is obtained.
  • the height information corresponding to the latitude and longitude can be obtained by querying the digital surface model, and the height information obtained by the query is determined as the target height of the surface area.
  • the relative height in the first position information and the viewing angle of the camera mounted on the drone determine the theoretical area of the surface area corresponding to the image formed by the drone at the corresponding shooting point shooting the target plot; Determine the longitude and latitude range of the surface area according to the longitude and latitude in the first location information and the theoretical area; determine a plurality of target longitude and latitude from the longitude and latitude range, and preset longitude and latitude between two adjacent target longitude and latitude; from the digital surface model Obtain the height information corresponding to each target longitude and latitude; determine the target longitude and latitude and the height information corresponding to the longitude and latitude as the position information of a feature point, so that the positions of multiple feature points located in the surface area can be obtained. information.
  • Step S103 Determine the normal information of the surface area according to the second position information.
  • the second location information includes location information of multiple landmarks located in the surface area, and according to the location information of the multiple landmarks located in the surface area, the plane equation of the surface area is determined; according to the surface area The plane equation of the area, which determines the normal information of the surface area.
  • the method of determining the normal information of the surface area may be: determining the normal vector of the plane equation of the surface area, and determining the normal vector of the plane equation as the normal information of the surface area .
  • the coefficients of the normal vector are in one-to-one correspondence with the coefficients of the plane equation corresponding to each axis, and they are in a linear relationship.
  • a is the first coefficient of the plane equation on the X axis
  • b is the second coefficient on the Y axis
  • the third coefficient on the Z axis is 1
  • d is the partial so the normal vector of the plane equation is
  • the second position information of the target feature point adjacent to the feature point P n is obtained; according to the second position information of the feature point P n and The second position information of the target object point is to determine the normal vector of the straight line formed by the object point P n and the target object point; to information.
  • the target feature point includes a first feature point P n -1 adjacent to the feature point P n, and/or a second feature point P n +1 adjacent to the feature point P n,
  • the normal vector of the straight line formed by the object point P n and the target feature point includes the first normal vector of the straight line formed by the feature point P n and the first feature point P n-1 , and/or, the feature point P n and The second normal vector of the straight line formed by the second feature point P n+1 .
  • the first straight line equation is determined, and the normal vector of the first straight line equation is determined, and the The normal vector of the first straight line equation is determined as the first normal vector of the straight line formed by the feature point P n and the first feature point P n-1 ; and according to the second position information of the feature point P n and the second feature The second position information of the point P n+1 , determine the second straight line equation, and determine the normal vector of the second straight line equation, and determine the normal vector of the second straight line equation as the feature point P n and the second feature point P The second normal vector of the line formed by n+1 .
  • the first normal vector of the straight line formed by the feature point P n and the first feature point P n-1 is determined as the normal information of the surface area.
  • the second normal vector of the straight line formed by the feature point P n and the second feature point P n+1 is determined as the normal information of the surface area.
  • the center line of the angle between the normal vectors and the third angle of the horizontal plane that is, determine the difference between the second angle and the first angle, and determine the difference between the second angle and the first angle as the third angle. Included angle; according to the third included angle, determine the normal information of the surface area.
  • the direction vector corresponding to the horizontal plane is obtained; the first angle between the first normal vector and the horizontal plane is determined based on the direction vector corresponding to the horizontal plane and the first normal vector, and the first angle between the first normal vector and the horizontal plane is determined based on the direction vector corresponding to the horizontal plane and the second normal vector. The second angle between the two normal vectors and the horizontal plane.
  • the photographing point C n corresponds to the feature point P n located in the target plot 22
  • the second normal vector of the straight line formed by the feature point P n and the second feature point P n+1 is first normal vector
  • the first angle with the horizontal plane 21 is ⁇
  • the second angle with the horizontal plane 21 is ⁇
  • Step S104 adjusting the photographing points according to the normal information, so that the normal distance between each of the adjusted photographing points and the corresponding surface area is approximately equal.
  • the movement displacement of the second position information corresponding to the shooting point is determined according to the normal information of the surface area and the preset distance; the target position information is determined according to the second position information corresponding to the shooting point and the movement displacement, and the The target shooting point corresponding to the target position information is determined as the adjusted shooting point.
  • the moving displacement includes a moving direction and a moving distance, the moving direction is the normal direction indicated by the normal information, the moving distance is equal to the preset distance, and the preset distance can be set by the user. This is not specifically limited.
  • the photographing point C n corresponds to the feature point P n located in the target plot 22 , and the normal information at the feature point P n is passed through. and the preset distance, the movement displacement of the second position information corresponding to the object point P n can be known, and then based on the second position information corresponding to the object point P n and the movement displacement, the target position information can be determined, and the target position information
  • the corresponding target shooting point is D n , therefore, the target shooting point D n is determined as the adjusted shooting point, and the normal distance between the target shooting point D n and the object point P n is approximately equal to the preset distance.
  • the normal distance between each adjusted shooting point and the corresponding surface area can be approximately equal.
  • Step S105 planning a photographing operation route of the drone in the target plot according to the adjusted plurality of photographing points.
  • the planned shooting operation route is shown in FIG. 9 , and the normal direction between each shooting point 24 on the shooting operation route 23 and the corresponding surface area of the target parcel 22 The distances are roughly equal.
  • the target plot at least includes a first operation area, a second operation area, and a connection area for connecting the first operation area and the second operation area
  • the connection area is an arc area
  • the first operation area and The second working area is all inclined.
  • the first operation area is a closed area
  • the second operation area is an open area
  • both the first operation area and the second operation area are closed areas
  • the connecting edge between the first operation area and the second operation area is the same as the
  • the side length ratio of the target boundary of the second operation area is greater than or equal to the preset side length ratio, and the connecting side is in a relative relationship with the target boundary.
  • the target plot includes a first work area A enclosed by reference point 31 , reference point 32 , reference point 33 and reference point 34 , reference point 35 , reference point 36 , and reference point 34 .
  • 37 and the reference point 38 enclosed by the second operation area B the connection area C enclosed by the reference point 33, the reference point 34, the reference point 35 and the reference point 36, the center line 39 in the connection area C and the reference point 33 and the reference point 33.
  • the area between the boundaries of the point 34 is a part of the first work area A
  • the area between the center line 39 in the connecting area C and the boundaries of the reference points 35 and 36 is a part of the second work area B.
  • the photographing operation route includes a plurality of main route segments, and the plurality of main route segments are all horizontal route segments, and the absolute heights of two adjacent photographing points on the main route segment are different.
  • the main route segment includes a first route segment located in the first operation area, a second route segment located in the second operation area, and a connecting route segment located in the connecting area, and the connecting route segment is used to connect the first route segment and the second route segment.
  • Route segment, the connecting route segment is an arc-shaped route segment.
  • the shooting operation route includes 11 horizontal main route segments between the starting waypoint 41 and the ending waypoint 42 , and the route segment between the starting waypoint 41 and the waypoint 43 .
  • the route segment between waypoint 44 and waypoint 45 is the second route segment located in the second operation area B
  • the route segment between waypoint 43 and waypoint 44 is the connecting route segment located in the connecting area C
  • the connecting route segment is an arc-shaped route segment.
  • the photographing interval between two adjacent photographing points on the connecting route segment is determined according to the angle between the first operation area and the second operation area and the preset overlap rate.
  • the preset overlap ratio may be set by the user, which is not specifically limited in this embodiment of the present application. Through the angle between the first operation area and the second operation area and the preset overlap rate, the photographing interval between two adjacent photographing points on the connecting route segment can be accurately determined, which is convenient for the drone to use the photographing route based on the photographing route. When shooting, ensure the overlap rate between shooting points and improve the stitching effect of images.
  • the angle between the first operation area and the second operation area is obtained, and the theoretical size of the surface area corresponding to the image formed by the drone at the shooting point of the target plot is obtained; according to the angle, The theoretical size and the preset turning radius determine the target angle corresponding to the image formed by the drone at the shooting point of the target plot; according to the target angle, the flying speed of the drone on the connecting route segment and the preset turning radius , to determine the photographing interval between two adjacent photographing points.
  • the preset turning radius can be set by the user, which is not specifically limited in this embodiment of the present application.
  • E.g, in is the target angle corresponding to the image formed by the drone shooting the target plot at the shooting point
  • L is the theoretical size of the surface area covered by the image formed by the drone shooting the target plot at the shooting point
  • R is the preset turn Radius
  • N is the number of shots taken by the UAV in the connection area
  • is the angle between the first operation area and the second operation area
  • k is the preset overlap rate
  • v is the UAV on the connection route segment.
  • ⁇ T is the interval time between photos.
  • the multiple main flight segments are all vertical flight segments, and the absolute heights of the shooting points on two adjacent main flight segments are different.
  • the multiple main flight segments include a first part of the main flight segment located in the first operation area, a second part of the main flight segment located in the second operation area, and a third part of the main flight segment located in the connecting area.
  • the second part of the main flight segment and the third part of the main flight segment are parallel to each other, and the third part of the main flight segment includes several main flight segments.
  • the shooting route includes 13 longitudinal main route segments between the starting waypoint 45 and the ending waypoint 46 , and 5 between the starting waypoint 45 and the waypoint 47 .
  • the longitudinal main route segment is the first part of the main route segment located in the first operation area A
  • the five longitudinal main route segments between the waypoint 48 and the end waypoint 46 are the second part of the main route segment located in the second operation area B
  • the three longitudinal main flight segments between waypoint 47 and waypoint 48 are the third main flight segment located in the connecting area.
  • the separation distance between two adjacent main flight segments in the third main flight segment is determined according to the angle between the first operation area and the second operation area and a preset overlap ratio. For example, obtain the angle between the first operation area and the second operation area, and obtain the theoretical size of the surface area covered by the image formed by the drone at the shooting point of the target plot; according to the angle, the theory Size and preset turning radius, determine the target angle corresponding to the image formed by the drone shooting the target plot at the shooting point; according to the target angle and the angle between the first operation area and the second operation area, determine the number of shots ; According to the number of shots and the size information of the connecting area, determine the separation distance between two adjacent main flight segments in the third part of the main flight segment.
  • the first part of the main route segment and the second part of the main route segment are parallel to each other, the ending waypoint of the first part of the main route segment is connected with the starting waypoint of the third part of the main route segment, and the third part of the main route segment The ending waypoint is connected to the starting waypoint of the second part of the main route segment, and the third part of the main route segment includes an arc-shaped main route segment.
  • the separation distance and the shooting interval time between two adjacent shooting points on the main flight segment in the third part of the main flight segment are based on the angle between the first operation area and the second operation area and the preset overlap rate determined.
  • the shooting operation route includes 13 longitudinal main route segments between the starting waypoint 45 and the ending waypoint 46 , and 6 between the starting waypoint 45 and the waypoint 47 .
  • the longitudinal main route segment is the first part of the main route segment located in the first operation area A
  • the six longitudinal main route segments between the waypoint 48 and the end waypoint 46 are the second part of the main route segment located in the second operation area B
  • the arc-shaped longitudinal main flight segment between waypoint 47 and waypoint 48 is the third part of the main flight segment located in the connecting area.
  • the photographing operation route includes a horizontal first main flight segment and a vertical longitudinal second main flight segment.
  • the first main route segment includes a horizontal route segment between the waypoint 48 and the end waypoint 46
  • the first main route segment is located in the second operation area B
  • the second main route segment is located in the second operation area B.
  • the first position information of multiple shooting points in the initial planning of the shooting operation is obtained, and based on the first position information, the image formed by the drone shooting the target plot at any shooting point is estimated.
  • the second position information of the covered surface area corresponds to the second position information of the covered surface area.
  • determine the normal information of the surface area according to the second position information and adjust the shooting point based on the normal information, so that each adjusted shooting point and the corresponding surface area are consistent. The normal distance between them is roughly the same.
  • plan the shooting operation route of the drone in the target plot so that the planned shooting operation route can meet the terrain fluctuation requirements of the plot, thereby improving the The reliability of route planning to improve the operational effect of UAVs.
  • FIG. 15 is a schematic flowchart of steps of another route planning method provided by an embodiment of the present application.
  • the route planning method includes steps S201 to S204.
  • Step S201 Determine a first reference point, a second reference point and a third reference point.
  • a route planning page displays a reference point setting control and a target plot; control the drone to fly over the target plot, and respond to a user triggering operation on the reference point setting control , determine the current position of the UAV as the first reference point; continue to control the UAV to fly over the target plot, and determine the current position of the UAV in response to the user's triggering operation on the reference point setting control is the second reference point; continue to control the drone to fly over the target plot, and determine the current position of the drone as the third reference point in response to the user's triggering operation on the reference point setting control.
  • Step S202 Determine a first work area according to the first reference point, the second reference point and the third reference point.
  • a reference line between the first reference point and the second reference point is used as the first boundary, and a second boundary that is parallel to the first boundary and includes the third reference point is determined;
  • a first expansion point corresponding to a reference point and a second expansion point corresponding to the second reference point; an area formed by enclosing the first reference point, the second reference point, the first expansion point and the second expansion point Determined as the first work area.
  • the expansion distance between the first expansion point or the second expansion point and the third reference point can be set by the user, which is not specifically limited in the embodiment of the present application.
  • the working area can be accurately determined by three reference points.
  • the first reference point 11 , the second reference point 12 and the third reference point 13 may form a triangular work area, and the third reference point 13 faces the direction along the boundary where the third reference point 13 is located.
  • the first expansion point 131 corresponding to the first reference point 11 can be obtained.
  • Expanding a certain distance in the direction can obtain the second expanding point 132 corresponding to the second reference point 12. Therefore, the first reference point 11, the second reference point 12, the first expanding point 131 and the second expanding point 132 are enclosed to form The area is the first work area A.
  • Step S203 Determine a fourth reference point, and determine a second operation area according to the fourth reference point and the boundary of the first operation area.
  • a third expansion point corresponding to the first expansion point and a fourth expansion point corresponding to the second expansion point, and the area formed by the second boundary, the third expansion point and the fourth expansion point is determined as the first expansion point.
  • the second operation area may be an open area or a closed area. Another working area can be accurately determined by a working area and a reference point.
  • the user controls the drone to continue flying through the control terminal, and when the user's triggering operation on the reference point setting control is detected, the current position of the drone is Determined as the fourth reference point 14, and then determined to be parallel to the second boundary between the first expanded point 131 and the second expanded point 132 and including the third boundary of the fourth reference point 14, by passing along the fourth reference point
  • the boundary where 40 is located is expanded by a distance from the fourth reference point 14 to the direction of the first expansion point 131, and the third expansion point 141 corresponding to the first expansion point 131 can be obtained.
  • the fourth expanding point 142 corresponding to the second expanding point 132 can be obtained. Therefore, the first expanding point 131 and the second expanding point 131 and the second expanding The area enclosed by the point 132 , the third outer expansion point 141 and the fourth outer expansion point 142 is the second operation area B.
  • Step S204 planning the operation route of the UAV in the first operation area and the second operation area.
  • the first operation area is a closed area
  • the second operation area is an open area
  • both the first operation area and the second operation area are closed areas.
  • the first side length of the connecting side between the first working area and the second working area is obtained; the second side length of the target boundary in the second working area is obtained, and the target boundary is opposite to the connecting side; determining The ratio of the length of the first side to the length of the second side is obtained to obtain the side length ratio of the connecting side and the target boundary; if the side length ratio is greater than or equal to the preset side length ratio, the first operation area and the second operation area are regarded as one
  • the overall route planning is carried out to obtain the operation route of the UAV; if the side length ratio is less than the preset side length ratio, the route planning is performed for the first operation area and the second operation area respectively, and the operation route of the UAV is obtained.
  • the preset side length ratio may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the user may continue to determine the remaining operation areas through the second operation area and the new reference point, and the application does not specifically limit the number of operation areas.
  • the reference point 51 , the reference point 52 , the reference point 53 and the reference point 54 are enclosed to form the first work area A
  • the reference point 53 , the reference point 54 , the reference point 55 and the reference point 56 are enclosed to form the second work area
  • Working area B, reference point 55, reference point 56, reference point 57 and reference point 58 are enclosed to form a third working area D, and the length of the side between the first reference side 61, the second reference side 62 and the third reference side 63
  • the ratio is greater than or equal to the preset side length ratio
  • the first operation area A, the second operation area B and the third operation area D can be used as a whole for route planning, and the difference between the starting waypoint 64 and the ending waypoint 65 can be obtained. operating routes between.
  • the operation route includes a plurality of main route segments, and the plurality of main route segments are all lateral route segments.
  • the main route segment includes a first route segment, a second route segment and a connecting route segment.
  • the first route segment is located in the first operation area
  • the second route segment is located in the second operation area
  • the connecting route segment is located in the first operation area and the second operation area.
  • the connecting area between the operation areas, the connecting route segment is used to connect the first route segment and the second route segment
  • the connecting route segment is an arc-shaped route segment.
  • the photographing interval between two adjacent photographing points on the connecting route segment is determined according to the angle between the first operation area and the second operation area and the preset overlap rate.
  • the preset overlap ratio may be set by the user, which is not specifically limited in this embodiment of the present application. Through the angle between the first operation area and the second operation area and the preset overlap rate, the photographing interval between two adjacent photographing points on the connecting route segment can be accurately determined, which is convenient for the drone to use the photographing route based on the photographing route. When shooting, ensure the overlap rate between shooting points and improve the stitching effect of images.
  • the UAV includes a spraying device, and the spraying device does not perform spraying operations in the connecting flight segment.
  • the spraying device does not perform the spraying operation in the connecting route segment, and performs the spraying operation in the first route segment and the second route segment, which can improve the efficiency and effect of the spraying operation.
  • the spraying speed of the spraying device of the drone is determined according to the angle between the first operation area and the second operation area.
  • the spraying speed is positively correlated with the angle, that is, the larger the angle between the first operation area and the second operation area, the faster the spraying speed, and the distance between the first operation area and the second operation area is higher.
  • the smaller the angle the slower the spraying speed.
  • the spraying speed of the spraying device is adaptively determined by the included angle between the first working area and the second working area, so that the efficiency and effect of the spraying operation can be improved.
  • the multiple main flight segments are all vertical flight segments, and the absolute heights of the shooting points on two adjacent main flight segments are different.
  • the multiple main flight segments include a first part of the main flight segment located in the first operation area, a second part of the main flight segment located in the second operation area, and a third part of the main flight segment located in the connecting area.
  • the second part of the main flight segment and the third part of the main flight segment are parallel to each other, and the third part of the main flight segment includes several main flight segments.
  • the separation distance between two adjacent main flight segments in the third main flight segment is determined according to the angle between the first operation area and the second operation area and a preset overlap ratio. For example, obtain the angle between the first operation area and the second operation area, and obtain the theoretical size of the surface area covered by the image formed by the drone at the shooting point of the target plot; according to the angle, the theory Size and preset turning radius, determine the target angle corresponding to the image formed by the drone shooting the target plot at the shooting point; according to the target angle and the angle between the first operation area and the second operation area, determine the number of shots ; According to the number of shots and the size information of the connecting area, determine the separation distance between two adjacent main flight segments in the third part of the main flight segment.
  • the first part of the main route segment and the second part of the main route segment are parallel to each other, the ending waypoint of the first part of the main route segment is connected with the starting waypoint of the third part of the main route segment, and the third part of the main route segment The ending waypoint is connected to the starting waypoint of the second part of the main route segment, and the third part of the main route segment includes an arc-shaped main route segment.
  • the separation distance and the shooting interval time between two adjacent shooting points on the main flight segment in the third part of the main flight segment are based on the angle between the first operation area and the second operation area and the preset overlap rate determined.
  • the operation route includes a first horizontal main route segment and a longitudinal second main route segment, the first main route segment is located in the first operation area, and the second main route segment is located in the second operation area, or, the first main route segment is located in the second operation area.
  • a main route segment is located in the second operation area, and the second main route segment is located in the first operation area.
  • the first main route segment includes a horizontal route segment between the waypoint 48 and the end waypoint 46
  • the first main route segment is located in the second operation area B
  • the second main route segment is located in the second operation area B.
  • one operation area can be determined through the determined three reference points, and then another operation area can be determined through the determined operation area and another reference point, and no operation area can be planned in all the determined operation areas.
  • the operation route of man-machine can improve the convenience and accuracy of route planning, so that when the UAV performs the operation according to the planned operation route, it can improve the operation efficiency and operation effect.
  • FIG. 17 is a schematic flowchart of steps of a job control method provided by an embodiment of the present application.
  • the job control method is applied to the UAV.
  • the route planning method includes steps S301 to S302.
  • Step S301 acquiring the photographing operation route of the drone.
  • the terminal device is connected to the drone in communication, and the terminal device obtains the first position information of multiple shooting points in the initial planning of the shooting operation; according to the first position information, it is estimated that the image formed by the drone shooting the target plot at any shooting point
  • the second position information corresponding to the covered surface area; the normal information of the surface area is determined according to the second position information; the shooting point is adjusted according to the normal information, so that each adjusted shooting point is consistent with the corresponding surface area.
  • the normal distance between them is roughly equal; according to the adjusted multiple shooting points, plan the shooting operation route of the drone in the target plot; send the shooting operation route to the drone, and the drone receives the shooting sent by the terminal equipment. work route.
  • Step S302 controlling the UAV to perform the photographing operation according to the photographing operation route.
  • the resolution of the images collected by the shooting device can be guaranteed to be roughly the same. It is convenient for subsequent stitching of images with approximately the same resolution, which can improve the effect of shooting operations.
  • the normal vector of the surface area corresponding to the shooting point is obtained; according to the normal vector, the shooting direction of the shooting device at the shooting point is adjusted, so that the adjusted The photographing direction of the photographing device is substantially perpendicular to the surface area corresponding to the photographing point.
  • the normal vector is used to adjust the shooting direction of the shooting device at the shooting point, so that the adjusted shooting direction of the shooting device is roughly perpendicular to the surface area corresponding to the shooting point, thereby ensuring that the image collected by the shooting device is an overhead image, which is convenient for subsequent resolution adjustments. Stitching the same pitch images can improve the effect of shooting operations.
  • the method of adjusting the shooting direction of the shooting device at the shooting point may be: according to the normal vector, determine the target attitude of the gimbal, and adjust the gimbal based on the target attitude.
  • the photographing direction of the photographing device can be changed with the change of the posture of the gimbal. Therefore, the photographing direction of the photographing device can be adjusted by adjusting the posture of the gimbal.
  • the UAV stores the mapping relationship between the normal vector and the attitude of the gimbal. Through the mapping relationship and the normal vector of the surface area corresponding to the shooting point, the target attitude of the gimbal at the shooting point can be determined.
  • the mapping relationship between the gestures of the gimbal may be set based on the actual situation, which is not specifically limited in this embodiment of the present application.
  • the route planning method by acquiring a photographing operation route with approximately equal normal distances between the photographing point and the corresponding surface area, and controlling the UAV to perform the photographing operation according to the photographing operation route, it can ensure that the UAV is in the shooting operation.
  • the resolutions of the images collected at each shooting point are approximately the same, which facilitates subsequent stitching of images with approximately the same resolution, which can improve the effect of the shooting operation.
  • FIG. 18 is a schematic structural block diagram of a route planning apparatus provided by an embodiment of the present application.
  • the route planning apparatus 400 includes a processor 410 and a memory 420.
  • the processor 410 and the memory 420 are connected through a bus 430, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 410 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 420 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 420 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 410 is configured to run the computer program stored in the memory 420, and implement the following steps when executing the computer program:
  • the second position information estimate the second position information of the surface area corresponding to the image formed by the drone at any of the shooting points on the target plot
  • a shooting operation route of the UAV in the target plot is planned.
  • the processor estimates the second position information of the surface area corresponding to the surface area covered by the image formed by the drone at any of the shooting points on the target plot according to the first position information, Used to implement:
  • the first position information and the digital surface model estimate the second position information of the surface area covered by the image formed by the drone at any of the shooting points on the target plot.
  • the second location information includes location information of a plurality of feature points located in the surface area
  • the processor is implementing determining the normal direction of the surface area according to the second location information. information, used to achieve:
  • the processor when the processor determines the normal information of the surface area according to the plane equation, the processor is configured to:
  • a normal vector of the plane equation is determined, and the normal vector of the plane equation is determined as normal information of the surface area.
  • the processor when the processor determines the normal information of the surface area according to the second position information, the processor is configured to:
  • the second position information of the feature point Pn and the second position information of the target feature point determine the normal vector of the straight line formed by the feature point Pn and the target feature point;
  • normal information of the surface area is determined.
  • the target feature point includes a first feature point Pn-1 adjacent to the feature point Pn, and/or a second feature point adjacent to the feature point Pn point Pn+1;
  • the normal vector includes the first normal vector of the straight line formed by the feature point Pn and the first feature point Pn-1, and/or, the feature point Pn and the second feature point Pn The second normal vector of the line formed by +1.
  • the processor when determining the normal information of the surface area according to the normal vector, is configured to:
  • the first included angle and the second included angle determine the third included angle between the center line of the included angle between the first normal vector and the second normal vector and the horizontal plane;
  • the normal information of the surface area is determined.
  • the processor when the processor adjusts the shooting point according to the normal information, the processor is configured to:
  • target position information is determined, and the target shooting point corresponding to the target position information is determined as the adjusted shooting point.
  • the processor when the processor obtains the first position information of the multiple shooting points in the initial planning of the shooting operation, the processor is configured to:
  • a plurality of photographing points are determined from the initial photographing operation route, and first position information of the plurality of photographing points is acquired.
  • the initial photographing operation route includes a plurality of initial main route segments, and the distances between the photographing points located in the initial main route segments are equal.
  • the number of shooting points determined from each of the initial main flight segments is the same.
  • the target plot at least includes a first operation area, a second operation area, and a connection area for connecting the first operation area and the second operation area, and the connection area is an arc surface area, the first working area and the second working area are both inclined planes.
  • the first working area is a closed area
  • the second working area is an open area
  • both the first working area and the second working area are closed areas.
  • a side length ratio between the connecting edge of the first operation area and the second operation area and the target boundary of the second operation area is greater than or equal to a preset side length ratio, and the connecting edge and The target boundaries are in a relative relationship.
  • the shooting operation route includes a plurality of main route segments, and the plurality of main route segments are all horizontal route segments.
  • the main route segment includes a first route segment located in the first operation area, a second route segment located in the second operation area, and a connecting route segment located in the connecting area.
  • the connecting route segment is used to connect the first route segment and the second route segment.
  • the connecting route segment is an arc-shaped route segment.
  • the photographing interval between two adjacent photographing points on the connecting route segment is based on the angle between the first operation area and the second operation area and a preset overlap ratio. definite.
  • the plurality of main flight segments are all longitudinal flight segments, and the absolute heights of photographing points on two adjacent main flight segments are different.
  • the plurality of main flight segments include a first partial main flight segment located in the first operation area, a second main flight segment located in the second operation area, and a first main flight segment located in the connecting area. Three main flight segments.
  • the first part of the main flight segment, the second part of the main flight segment and the third part of the main flight segment are parallel to each other, and the third part of the main flight segment includes several of the main flight segments .
  • the separation distance between two adjacent main flight segments in the third main flight segment is based on the included angle between the first operation area and the second operation area and the preset overlap rate is determined.
  • the first part of the main flight segment and the second part of the main flight segment are parallel to each other, and the ending waypoint of the first part of the main flight segment and the starting waypoint of the third part of the main flight segment are connection, the termination waypoint of the third main flight segment is connected with the starting waypoint of the second main flight segment, and the third main flight segment includes an arc-shaped main flight segment.
  • the separation distance and the shooting interval time between two adjacent shooting points on the main flight segment in the third main flight segment are based on the first operation area and the The angle between the two working areas and the preset overlap ratio are determined.
  • the photographing operation route includes a horizontal first main route segment and a longitudinal longitudinal second main route segment.
  • FIG. 19 is a schematic structural block diagram of another route planning apparatus provided by an embodiment of the present application.
  • the route planning device is applied to terminal equipment, and the terminal equipment is connected with the UAV for communication and used to control the UAV.
  • the route planning apparatus 500 includes a processor 510 and a memory 520.
  • the processor 510 and the memory 520 are connected by a bus 530, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 510 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 520 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 520 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 510 is used for running the computer program stored in the memory 520, and implements the following steps when executing the computer program:
  • the processor when the processor determines the first reference point, the second reference point and the third reference point, the processor is configured to:
  • route planning page displays a reference point setting control and a target plot
  • the processor when the processor determines the first work area according to the first reference point, the second reference point and the third reference point, the processor is configured to:
  • An area enclosed by the first reference point, the second reference point, the first expansion point and the second expansion point is determined as a first operation area.
  • the first working area is a closed area
  • the second working area is an open area
  • both the first working area and the second working area are closed areas.
  • the processor when implementing the planning of the operation route of the UAV in the first operation area and the second operation area, the processor is configured to implement:
  • route planning is performed using the first operation area and the second operation area as a whole to obtain the operation route of the UAV.
  • the processor is further configured to implement the following steps:
  • route planning is performed on the first operation area and the second operation area respectively, so as to obtain the operation route of the unmanned aerial vehicle.
  • the operation route includes a plurality of main route segments, and the plurality of main route segments are all lateral route segments.
  • the main route segment includes a first route segment, a second route segment and a connecting route segment, the first route segment is located in the first operation area, and the second route segment is located in the first route segment.
  • Two operation areas, the connecting route segment is located in the connecting area between the first operation area and the second operation area.
  • the connecting route segment is used to connect the first route segment and the second route segment.
  • the connecting route segment is an arc-shaped route segment.
  • the photographing interval between two adjacent photographing points on the connecting route segment is based on the angle between the first operation area and the second operation area and a preset overlap ratio. definite.
  • the drone includes a spraying device that does not perform spraying operations on the connecting flight segment.
  • the spraying speed of the spraying device is determined according to the angle between the first working area and the second working area.
  • the plurality of main flight segments are all longitudinal flight segments, and the absolute heights of photographing points on two adjacent main flight segments are different.
  • the plurality of main flight segments include a first part of the main flight segment located in the first operation area, a second part of the main flight segment located in the second operation area, and a first part of the main flight segment located in the first operation area.
  • the first part of the main flight segment, the second part of the main flight segment and the third part of the main flight segment are parallel to each other, and the third part of the main flight segment includes several of the main flight segments .
  • the separation distance between two adjacent main flight segments in the third main flight segment is based on the included angle between the first operation area and the second operation area and the preset overlap rate is determined.
  • the first part of the main flight segment and the second part of the main flight segment are parallel to each other, and the ending waypoint of the first part of the main flight segment and the starting waypoint of the third part of the main flight segment are connection, the termination waypoint of the third main flight segment is connected with the starting waypoint of the second main flight segment, and the third main flight segment includes an arc-shaped main flight segment.
  • the separation distance and the shooting interval time between two adjacent shooting points on the main flight segment in the third main flight segment are based on the first operation area and the The angle between the two working areas and the preset overlap ratio are determined.
  • the operation route includes a first lateral main route segment and a longitudinal second main route segment, the first main route segment is located in the first operation area, and the second main route segment is located in the first operation area.
  • the second operation area, or the first main route segment is located in the second operation area, and the second main route segment is located in the first operation area.
  • FIG. 20 is a schematic structural block diagram of an operation control apparatus provided by an embodiment of the present application.
  • the operation control device is applied to an unmanned aerial vehicle, the unmanned aerial vehicle includes a photographing device, the unmanned aerial vehicle is communicated with a terminal device, and the terminal device is used to control the unmanned aerial vehicle.
  • the job control apparatus 600 includes a processor 610 and a memory 620.
  • the processor 610 and the memory 620 are connected by a bus 630, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 610 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 620 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 620 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 610 is configured to run the computer program stored in the memory 620, and implement the following steps when executing the computer program:
  • the drone is controlled to perform the shooting operation according to the shooting operation route.
  • the processor is further configured to implement the following steps:
  • the photographing direction of the photographing device at the photographing point is adjusted, so that the adjusted photographing direction of the photographing device is substantially perpendicular to the surface area corresponding to the photographing point.
  • FIG. 21 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 700 includes a route planning apparatus 710 .
  • the route planning device 710 may be the route planning device in FIG. 18 or FIG. 19 .
  • FIG. 22 is a schematic structural block diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the drone 800 includes:
  • the photographing device 820 is arranged on the body 810 and is used for photographing the target plot;
  • the power system 830 which is arranged on the body 810, is used to provide the flying power for the UAV 800;
  • the operation control device 840 is arranged in the body 810 and is used for controlling the drone 800 to perform the photographing operation.
  • the drone 800 further includes a pan/tilt, which is arranged on the body 810 and is used for carrying the photographing device 820.
  • the operation control device 840 may be the operation control device in FIG. 20 .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and the processor executes the program instructions, so as to realize the provision of the above embodiments.
  • the steps of the route planning method are described in detail below.
  • the computer-readable storage medium may be an internal storage unit of the terminal device or the drone described in any of the foregoing embodiments, such as a hard disk or memory of the terminal device or the drone.
  • the computer-readable storage medium can also be an external storage device of the terminal device or the drone, such as a plug-in hard disk equipped on the terminal device or the drone, a smart memory card (Smart Media Card, SMC), Secure Digital (SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种航线规划方法、装置、设备、无人机及可读存储介质,其中该方法包括:获取拍摄作业的初始规划的多个拍摄点的第一位置信息(S101);根据第一位置信息,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息(S102);根据第二位置信息确定地表区域的法向信息(S103);根据法向信息调整拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等(S104);根据调整后的多个拍摄点,规划无人机在目标地块内的拍摄作业航线(S105),该方法能够提高航线规划的可靠性。

Description

航线规划方法、装置、设备、无人机及可读存储介质 技术领域
本申请涉及航线规划技术领域,尤其涉及一种航线规划方法、装置、设备、无人机及可读存储介质。
背景技术
随着无人机技术的快速发展,越来越多的用户使用无人机进行航测、航拍、植保等作业,可以极大的提高作业效率。目前,对于起伏较大的地块,例如连绵的梯田、山地或建筑等,可以通过三个点确定无人机在地块上方的作业区域,并在作业区域内进行航线规划,然而通过三个点确定的作业区域与地块的地形起伏不一致,导致规划的航线无法满足地块的地形起伏要求,影响无人机的作业效果。
发明内容
基于此,本申请实施例提供了一种航线规划方法、装置、设备、无人机及可读存储介质,旨在提高航线规划的可靠性,以提高无人机的作业效果。
第一方面,本申请实施例提供了一种航线规划方法,包括:
获取拍摄作业的初始规划的多个拍摄点的第一位置信息;
根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;
根据所述第二位置信息确定所述地表区域的法向信息;
根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等;
根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
第二方面,本申请实施例还提供了一种航线规划方法,应用于终端设备,所述终端设备与无人机通信连接,用于控制所述无人机,所述方法包括:
确定第一参考点、第二参考点和第三参考点;
根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域;
确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确 定第二作业区域;
在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
第三方面,本申请实施例还提供了一种作业控制方法,应用于无人机,所述无人机包括拍摄装置,所述方法包括:
获取所述无人机的拍摄作业航线,其中,所述拍摄作业航线是根据如上所述的航线规划方法规划得到的;
控制所述无人机按照所述拍摄作业航线执行拍摄作业。
第四方面,本申请实施例还提供了一种航线规划装置,所述航线规划装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取拍摄作业的初始规划的多个拍摄点的第一位置信息;
根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;
根据所述第二位置信息确定所述地表区域的法向信息;
根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等;
根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
第五方面,本申请实施例还提供了一种航线规划装置,应用于终端设备,所述终端设备与无人机通信连接,用于控制所述无人机,所述航线规划装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
确定第一参考点、第二参考点和第三参考点;
根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域;
确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确定第二作业区域;
在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
第六方面,本申请实施例还提供了一种作业控制装置,应用于无人机,所述无人机包括拍摄装置,所述无人机与终端设备通信连接,所述终端设备用于控制所述无人机,所述作业控制装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述无人机的拍摄作业航线,其中,所述拍摄作业航线是根据如上所述的航线规划方法规划得到的;
控制所述无人机按照所述拍摄作业航线执行拍摄作业。
第七方面,本申请实施例还提供了一种终端设备,所述终端设备包括如上所述的航线规划装置。
第八方面,本申请实施例还提供了一种无人机,所述无人机包括:
机体;
拍摄装置,设于所述机体上,用于对目标地块进行拍摄;
动力***,设于所述机体上,用于为所述无人机提供飞行动力;
如上所述的作业控制装置,设于所述机体内,用于控制所述无人机执行拍摄作业。
第九方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的航线规划方法的步骤,或者实现如上所述的作业控制方法的步骤。
本申请实施例提供了一种航线规划方法、装置、设备、无人机及可读存储介质,通过获取拍摄作业的初始规划的多个拍摄点的第一位置信息,并基于第一位置信息,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息,然后根据第二位置信息确定该地表区域的法向信息,并基于该法向信息调整拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等,最后根据调整后的多个拍摄点,规划无人机在目标地块内的拍摄作业航线,使得规划得到的拍摄作业航线可以满足地块的地形起伏要求,从而提高航线规划的可靠性,以提高无人机的作业效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施本申请实施例提供的航线规划方法的一场景示意图;
图2是本申请实施例提供的一种航线规划方法的步骤示意流程图;
图3是本申请实施例中的第一作业区域和第二作业区域的一示意图;
图4是本申请实施例中的初始拍摄作业航线的一示意图;
图5是本申请实施例中初始规划的拍摄点的一场景示意图;
图6是本申请实施例中初始规划的拍摄点的另一场景示意图;
图7是本申请实施例中确定地表的法向信息的一场景示意图;
图8是本申请实施中的调整拍摄点的一场景示意图;
图9是本申请实施中的基于调整后的多个拍摄点规划得到的拍摄作业航线的一示意图;
图10是本申请实施中的第一作业区域、第二作业区域和衔接区域的一示意图;
图11是本申请实施中的拍摄作业航线的另一示意图;
图12是本申请实施中的拍摄作业航线的另一示意图;
图13是本申请实施中的拍摄作业航线的另一示意图;
图14是本申请实施中的拍摄作业航线的另一示意图;
图15是本申请实施例提供的另一种航线规划方法的步骤示意流程图;
图16是本申请实施例中的作业航线的一示意图;
图17是本申请实施例提供的一种作业控制方法的步骤示意流程图;
图18是本申请实施例提供的一种航线规划装置的结构示意性框图;
图19是本申请实施例提供的另一种航线规划装置的结构示意性框图;
图20是本申请实施例提供的一种作业控制装置的结构示意性框图;
图21是本申请实施例提供的一种终端设备的结构示意性框图;
图22是本申请实施例提供的一种无人机的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
随着无人机技术的快速发展,越来越多的用户使用无人机进行航测、航拍、植保等作业,可以极大的提高作业效率。目前,对于起伏较大的地块,例如连绵的梯田、山地或建筑等,可以通过三个点确定无人机在地块上方的作业区域,并在作业区域内进行航线规划,然而通过三个点确定的作业区域与地块的地形起伏不一致,导致规划的航线无法满足地块的地形起伏要求,影响无人机的作业效果。
为解决上述问题,本申请实施例提供了一种航线规划方法、装置、设备、无人机及可读存储介质,通过获取拍摄作业的初始规划的多个拍摄点的第一位置信息,并基于第一位置信息,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息,然后根据第二位置信息确定该地表区域的法向信息,并基于该法向信息调整拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等,最后根据调整后的多个拍摄点,规划无人机在目标地块内的拍摄作业航线,使得规划得到的拍摄作业航线可以满足地块的地形起伏要求,从而提高航线规划的可靠性,以提高无人机的作业效果。
请参阅图1,图1是实施本申请实施例提供的航线规划方法的一场景示意图。如图1所示,该场景包括无人机100和终端设备200,无人机100与终端设备200通信连接,终端设备200用于控制无人机100。无人机100包括机体110、设于机体110上的动力***120、拍摄装置130和控制***(图1中未示出),该动力***120用于为无人机100提供飞行动力,该拍摄装置130用于采集图像。
其中,动力***120可以包括一个或多个螺旋桨121、与一个或多个螺旋桨相对应的一个或多个电机122、一个或多个电子调速器(简称为电调)。其中,电机122连接在电子调速器与螺旋桨121之间,电机122和螺旋桨121设 置在无人机100的机体110上;电子调速器用于接收控制***产生的驱动信号,并根据驱动信号提供驱动电流给电机122,以控制电机122的转速。电机122用于驱动螺旋桨121旋转,从而为无人机100的飞行提供动力,该动力使得无人机100能够实现一个或多个自由度的运动。在某些实施例中,无人机100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
其中,控制***可以包括控制器和传感***。传感***用于测量无人机的姿态信息,即无人机100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。控制器用于控制无人机100的移动,例如,可以根据传感***测量的姿态信息控制无人机100的移动。应理解,控制器可以按照预先编好的程序指令对无人机100进行控制。
其中,终端设备200包括显示装置210,终端设备200通过显示装置210显示可移动平台100发送的图像,以供用户观看。需要说明的是,显示装置210包括设置在终端设备200上的显示屏或者独立于终端设备200的显示器,独立于终端设备200的显示器可以包括手机、平板电脑或者个人电脑等,或者也可以是带有显示屏的其他电子设备。其中,该显示屏包括LED显示屏、OLED显示屏、LCD显示屏等等。
在一实施例中,终端设备200还用于获取拍摄作业的初始规划的多个拍摄点的第一位置信息;根据第一位置信息,估计无人机100在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;根据第二位置信息确定地表区域的法向信息;根据法向信息调整拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等;根据调整后的多个拍摄点,规划无人机100在目标地块内的拍摄作业航线。
在一实施例中,终端设备200在规划好拍摄作业航线后,将该拍摄作业航线发送给无人机100,无人机100中的控制器还用于获取无人机100的拍摄作业航线,并控制无人机100按照该拍摄作业航线执行拍摄作业。其中,在无人机100达到拍摄作业航线中的拍摄点时,获取拍摄点对应的地表区域的法向量, 并根据法向量,调整拍摄装置130在拍摄点的拍摄方向,以使调整后的拍摄装置130的拍摄方向与拍摄点对应的地表区域大致垂直。
其中,无人机100可以包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。终端设备200可以包括但不限于:智能电话/手机、平板电脑、个人数字助理(PDA)、台式计算机、媒体内容播放器、视频游戏站/***、虚拟现实***、增强现实***、可穿戴式装置(例如,手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马甲)、手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置、或者任何其他类型的装置。该终端设备200可以是手持终端,终端设备200可以是便携式的。该终端设备200可以由人类用户携带。在一些情况下,终端设备200可以远离人类用户,并且用户可以使用无线和/或有线通信来控制终端设备200。
以下,将结合图1中的场景对本申请的实施例提供的航线规划方法进行详细介绍。需知,图1中的场景仅用于解释本申请实施例提供的航线规划方法,但并不构成对本申请实施例提供的航线规划方法应用场景的限定。
请参阅图2,图2是本申请实施例提供的一种航线规划方法的步骤示意流程图。
如图2所示,该航线规划方法包括步骤S101至步骤S105。
步骤S101、获取拍摄作业的初始规划的多个拍摄点的第一位置信息。
在一实施例中,获取在目标地块内初始规划的无人机的初始拍摄作业航线;从初始拍摄作业航线中确定多个拍摄点,并获取多个拍摄点的第一位置信息。其中,初始拍摄作业航线包括多条初始主航线段,位于初始主航线段中的各个拍摄点之间的间隔距离相等,从每条初始主航线段中确定的拍摄点的数量相同或不同,拍摄点之间的间隔距离可基于实际情况进行设置,本申请实施例对此不做具体限定。
示例性的,获取初始拍摄作业航线的方式可以为:确定第一参考点、第二参考点和第三参考点;根据第一参考点、第二参考点和第三参考点,确定目标地块的第一作业区域;确定第四参考点,并根据第四参考点和第一作业区域的边界,确定目标地块的第二作业区域;在第一作业区域和第二作业区域内对无人机的航线进行初始规划,得到无人机的初始拍摄作业航线。其中,第一参考点与第二参考点之间从参考线为第一作业区域的一边界线,第三参考点位于第 二作业区域的另一边界线,且第三参考点不是边界点。通过三个参考点可以准确的确定一个作业区域,通过一个作业区域和一个参考点可以确定另一作业区域,便于用户在具有坡度的地块中确定作业区域。
示例性的,显示航线规划页面,其中,该航线规划页面显示有参考点设置控件和目标地块;控制无人机在目标地块上空飞行,并响应于用户对参考点设置控件的触发操作,将无人机的当前位置点确定为第一参考点;继续控制无人机在目标地块上空飞行,并响应于用户对参考点设置控件的触发操作,将无人机的当前位置点确定为第二参考点;继续控制无人机在目标地块上空飞行,并响应于用户对参考点设置控件的触发操作,将无人机的当前位置点确定为第三参考点。
示例性的,第一作业区域的确定方式可以为:以第一参考点与第二参考点之间的参考线为第一边界,并确定与第一边界平行且包含第三参考点的第二边界;在第二边界上确定与第一参考点对应的第一外扩点以及与第二参考点对应的第二外扩点;将第一参考点、第二参考点、第一外扩点和第二外扩点合围形成的区域确定为第一作业区域。其中,第一外扩点或第二外扩点与第三参考点之间的外扩距离可由用户自行设置,本申请实施例对此不做具体限定。通过三个参考点可以准确的确定作业区域。
示例性的,第二作业区域的确定方式可以为:确定与第二边界平行且包含第四参考点的第三边界;将第二边界与第三边界之间的区域确定为第二作业区域,或者,在第三边界上确定与第一外扩点对应的第三外扩点以及与第二外扩点对应的第四外扩点,并将第二边界、第三外扩点和第四外扩点合围形成的区域确定为第二作业区域。其中,第二作业区域可以为开放的区域,也可以为封闭的区域。通过一个作业区域和一个参考点可以准确的确定另一个作业区域。
例如,如图3所示,第一参考点11、第二参考点12和第三参考点13可以形成一个三角形的作业区域,通过沿第三参考点13所在的边界由第三参考点13向着第一参考点11的方向外扩一段距离可以得到第一参考点11对应的第一外扩点131,通过沿第三参考点13所在的边界由第三参考点13向着第二参考点12的方向外扩一段距离可以得到第二参考点12对应的第二外扩点132,因此,第一参考点11、第二参考点12、第一外扩点131和第二外扩点132合围形成的区域为第一作业区域A。
如图3所示,在确定第一作业区域A后,用户通过控制终端控制无人机继续飞行,并在检测到用户对参考点设置控件的触发操作时,将无人机的当前位 置确定为第四参考点14,然后确定与第一外扩点131和第二外扩点132之间的第二边界平行,且包含第四参考点14的第三边界,通过沿第四参考点40所在的边界由第四参考点14向着第一外扩点131的方向外扩一段距离可以得到第一外扩点131对应的第三外扩点141,通过沿第四参考点14所在的边界由第四参考点14向着第二外扩点132的方向外扩一段距离可以得到第二外扩点132对应的第四外扩点142,因此,将第一外扩点131、第二外扩点132、第三外扩点141和第四外扩点142合围形成的区域为第二作业区域B。
在一实施例中,在第一作业区域和第二作业区域内对无人机的航线进行初始规划,得到无人机的初始拍摄作业航线的方式可以为:获取第一作业区域与第二作业区域之间的衔接边的第一边长;获取第二作业区域中的目标边界的第二边长,目标边界与衔接边相对;确定第一边长与第二边长的比例,得到衔接边与目标边界的边长比;若该边长比大于或等于预设边长比例,则将第一作业区域和第二作业区域作为一个整体对无人机的航线进行初始规划,得到无人机的初始拍摄作业航线。其中,预设边长比例可基于实际情况进行设置,本申请实施例对此不做具体限定,例如,预设边长比例为0.8。
例如,如图4所示,衔接边位于第一外扩点131与第二外扩点132之间,目标边界位于第三外扩点141与第四外扩点142之间,第一外扩点131与第二外扩点132之间的距离为6米,即第一边长为6米,第三外扩点141与第四外扩点142之间的距离为7米,即第二边长为7米,则边长比为0.86,边长比0.86大于预设边长比例0.8,因此,将第一作业区域A和第二作业区域B作为一个整体对无人机的航线进行初始规划,得到如图4中的包含起始航点15和结束航点16的初始拍摄作业航线。示例性的,如图5所示,包含起始航点15和结束航点16的初始拍摄作业航线包括15条初始主航线段,每条初始主航线段可以包括8个拍摄点。
在一实施例中,确定第一参考点、第二参考点和第三参考点;根据第一参考点、第二参考点和第三参考点,确定目标地块的第一作业区域;确定第四参考点,并根据第四参考点和第一作业区域的边界,确定目标地块的第二作业区域;在第一作业区域和第二作业区域内初始规划多个拍摄点,并获取每个拍摄点的第一位置信息。如图6所示,在第一作业区域A和第二作业区域B内初始规划了120个拍摄点17。
步骤S102、根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。
示例性的,第一位置信息包括拍摄点的经度、纬度和高度信息,该高度信息包括绝对高度和相对高度,基于拍摄点的绝对高度和相对高度,可以估计无人机在该拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的目标高度,然后将拍摄点的第一位置信息中的高度信息替换为该目标高度,得到该拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。其中,第一位置信息中的经纬度与第二位置信息中的经纬度相同。
在一实施例中,获取目标地块的数字地表模型(Digital Surface Model,DSM);根据第一位置信息和数字地表模型,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。其中,目标地块的数字地表模型包括位于目标地块内的植被、建筑物、树木等的高度信息。
示例性的,根据第一位置信息中的经纬度和该数字地表模型,确定无人机在该拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的目标高度;将拍摄点的第一位置信息中的高度信息替换为该目标高度,得到该拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。其中,基于第一位置信息中的经纬度,可以从数字地表模型中查询得到该经纬度对应的高度信息,并将查询得到的高度信息确定为地表区域的目标高度。
示例性的,根据第一位置信息中的相对高度和无人机搭载的拍摄装置的视角大小,确定无人机在对应拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的理论面积;根据第一位置信息中的经纬度和该理论面积,确定该地表区域的经纬度范围;从经纬度范围中确定多个目标经纬度,相邻的两个目标经纬度之间间隔预设经纬度;从该数字地表模型中获取与每个目标经纬度各自对应的高度信息;将目标经纬度以及与该经纬度对应的高度信息确定为一个地物点的位置信息,从而可以得到位于该地表区域内的多个地物点的位置信息。
步骤S103、根据所述第二位置信息确定所述地表区域的法向信息。
示例性的,第二位置信息包括位于地表区域内的多个地物点的位置信息,根据位于该地表区域内的多个地物点的位置信息,确定该地表区域的平面方程;根据该地表区域的平面方程,确定该地表区域的法向信息。其中,基于该地表区域的平面方程,确定该地表区域的法向信息的方式可以为:确定该地表区域的平面方程的法向量,并将该平面方程的法向量确定为地表区域的法向信息。
示例性的,获取该地表区域的平面方程在X轴上的第一系数、在Y轴上的第二系数和在Z轴上的第三系数;根据第一系数、第二系数和第三系数,确定平面方程的法向量。其中,法向量的各项系数与平面方程对应各轴的系数一一 对应,且分别呈线性关系。例如,平面方程为z=ax+by+d,a为平面方程在X轴上的第一系数,b在Y轴上的第二系数,在Z轴上的第三系数为1,d为偏置项,因此,平面方程的法向量为
Figure PCTCN2020141839-appb-000001
在一实施例中,对于第二位置信息对应的地物点P n,获取与地物点P n相邻的目标地物点的第二位置信息;根据地物点P n的第二位置信息和目标地物点的第二位置信息,确定地物点P n与目标地物点形成的直线的法向量;根据地物点P n与目标地物点形成的直线的法向量,确定地表区域的法向信息。其中,目标地物点包括与地物点P n相邻的第一地物点P n-1,和/或,与地物点P n相邻的第二地物点P n+1,地物点P n与目标地物点形成的直线的法向量包括地物点P n与第一地物点P n-1形成的直线的第一法向量,和/或,地物点P n与第二地物点P n+1形成的直线的第二法向量。
示例性的,根据地物点P n的第二位置信息和第一地物点P n-1的第二位置信息,确定第一直线方程,并确定第一直线方程的法向量,且将第一直线方程的法向量确定为地物点P n与第一地物点P n-1形成的直线的第一法向量;以及根据地物点P n的第二位置信息和第二地物点P n+1的第二位置信息,确定第二直线方程,并确定第二直线方程的法向量,且将第二直线方程的法向量确定为地物点P n与第二地物点P n+1形成的直线的第二法向量。
示例性的,将地物点P n与第一地物点P n-1形成的直线的第一法向量确定为地表区域的法向信息。或者,将地物点P n与第二地物点P n+1形成的直线的第二法向量确定为地表区域的法向信息。或者,确定第一法向量与水平面之间的第一夹角和第二法向量与水平面之间的第二夹角;根据第一夹角和第二夹角,确定第一法向量与第二法向量之间的夹角的中线与水平面的第三夹角,即确定第二夹角与第一夹角的差值,并将第二夹角与第一夹角的差值确定为第三夹角;根据第三夹角,确定地表区域的法向信息。
示例性的,获取水平面对应的方向向量;基于水平面对应的方向向量和第一法向量确定第一法向量与水平面之间的第一夹角,基于水平面对应的方向向量和第二法向量确定第二法向量与水平面之间的第二夹角。
如图7所示,拍摄点C n与位于目标地块22内的地物点P n对应,地物点P n相邻的第一地物点P n-1形成的直线的第一法向量为
Figure PCTCN2020141839-appb-000002
地物点P n与第二地物点P n+1形成的直线的第二法向量为
Figure PCTCN2020141839-appb-000003
第一法向量
Figure PCTCN2020141839-appb-000004
与水平面21之间的第一夹角为α,第二法向量
Figure PCTCN2020141839-appb-000005
与水平面21之间的第二夹角为β,第一法向量
Figure PCTCN2020141839-appb-000006
与第二法向量
Figure PCTCN2020141839-appb-000007
之间的夹角的中线与水平面的第三夹角为θ,则θ=β-α,则地表区域的 法向信息
Figure PCTCN2020141839-appb-000008
步骤S104、根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等。
示例性的,根据地表区域的法向信息和预设距离,确定拍摄点对应的第二位置信息的移动位移;根据拍摄点对应的第二位置信息和该移动位移,确定目标位置信息,并将该目标位置信息对应的目标拍摄点确定为调整后的拍摄点。其中,该移动位移包括移动方向和移动距离,该移动方向为该法向信息指示的法向方向,该移动距离与该预设距离相等,该预设距离可由用户自行设置,本申请实施例对此不做具体限定。
如图8所示,拍摄点C n与位于目标地块22内的地物点P n对应,通过地物点P n处的法向信息
Figure PCTCN2020141839-appb-000009
和预设距离,可以知道地物点P n对应的第二位置信息的移动位移,然后基于地物点P n对应的第二位置信息和该移动位移,可以确定目标位置信息,且目标位置信息对应的目标拍摄点为D n,因此,将目标拍摄点D n确定为调整后的拍摄点,目标拍摄点D n与地物点P n之间的法向距离大致等于预设距离。按照类似的方式调整拍摄点,可以使得调整后的每个拍摄点与对应地表区域之间的法向距离大致相等。
步骤S105、根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
示例性的,基于调整后的多个拍摄点,规划得到的拍摄作业航线如图9所示,拍摄作业航线23上的每个拍摄点24与目标地块22的对应地表区域之间的法向距离大致相等。
在一实施例中,目标地块至少包括第一作业区域、第二作业区域和用于衔接第一作业区域和第二作业区域的衔接区域,该衔接区域为弧面区域,第一作业区域和第二作业区域均为斜面。其中,第一作业区域为封闭的区域,第二作业区域为开放的区域,或者,第一作业区域和第二作业区域均为封闭的区域,第一作业区域与第二作业区域的衔接边与第二作业区域的目标边界的边长比大于或等于预设边长比,该衔接边与目标边界呈相对关系。
示例性的,如图10所示,目标地块包括由参考点31、参考点32、参考点33和参考点34合围形成的第一作业区域A、由参考点35、参考点36、参考点37和参考点38合围形成的第二作业区域B、由参考点33、参考点34、参考点35和参考点36合围形成的衔接区域C,衔接区域C中的中线39与参考点33和参考点34所处边界之间的区域为第一作业区域A的一部分,衔接区域C中 的中线39与参考点35和参考点36所处边界之间的区域为第二作业区域B的一部分。
在一实施例中,该拍摄作业航线包括多条主航线段,多条主航线段均为横向的航线段,主航线段上的相邻两个拍摄点的绝对高度不同。其中,该主航线段包括位于第一作业区域的第一航线段、位于第二作业区域的第二航线段和位于衔接区域的衔接航线段,衔接航线段用于连接第一航线段和第二航线段,衔接航线段为弧形的航线段。通过规划横向的拍摄作业航线,且在衔接区域内规划衔接航线段,使得无人机在按照横向的拍摄作业航线进行作业时,可以提高作业效率和效果。
示例性的,如图11所示,该拍摄作业航线的起始航点41与结束航点42之间包括11条横向的主航线段,起始航点41与航点43之间的航线段为位于第一作业区域A的第一航线段,航点44与航点45之间的航线段为位于第二作业区域B的第二航线段,航点43与航点44之间的航线段为位于衔接区域C的衔接航线段,且衔接航线段为弧形的航线段。
在一实施例中,衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。其中,预设重叠率可由用户自行设置,本申请实施例对此不做具体限定。通过第一作业区域与第二作业区域之间的夹角和预设重叠率可以准确的确定衔接航线段上的相邻两个拍摄点之间的拍照间隔时间,便于在无人机基于拍摄航线作业进行拍摄作业时,保证拍摄点之间的重叠率,提高图像的拼接效果。
示例性的,获取第一作业区域与第二作业区域之间的夹角,并获取无人机在拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的理论尺寸;根据该夹角、该理论尺寸和预设转弯半径,确定无人机在拍摄点对目标地块拍摄形成的图像对应的目标角度;根据该目标角度、无人机在衔接航线段上的飞行速度和预设转弯半径,确定相邻两个拍摄点之间的拍照间隔时间。其中,预设转弯半径可由用户自行设置,本申请实施例对此不做具体限定。
例如,
Figure PCTCN2020141839-appb-000010
其中,
Figure PCTCN2020141839-appb-000011
为无人机在拍摄点对目标地块拍摄形成的图像对应的目标角度,L为无人机在拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的理论尺寸,R为预设转弯半径,N为无人机在衔接区域内的拍摄次数,γ为第一作业区域与第二作业区域之间的夹角,k为预设重叠率,v为无人机在衔接航线段上的飞行速度,ΔT为拍照间隔时间。
在一实施例中,多条主航线段均为纵向的航线段,相邻两条主航线段上的拍摄点的绝对高度不同。该多条主航线段包括位于第一作业区域的第一部分主航线段、位于第二作业区域的第二部分主航线段和位于衔接区域的第三部分主航线段,第一部分主航线段、第二部分主航线段和第三部分主航线段相互平行,第三部分主航线段包括若干条主航线段。通过规划纵向的拍摄作业航线,使得航线的规划不受各个作业区域边缘的长短限制,可以便利的规划拍摄作业航线。
示例性的,如图12所示,该拍摄作业航线的起始航点45与结束航点46之间包括13条纵向的主航线段,起始航点45与航点47之间的5条纵向主航线段为位于第一作业区域A的第一部分主航线段,航点48与结束航点46之间的5条纵向主航线段为位于第二作业区域B的第二部分主航线段,航点47与航点48之间的3条纵向主航线段为位于衔接区域的第三部分主航线段。
在一实施例中,第三部分主航线段中的相邻两条主航线段之间的间隔距离是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。例如,获取第一作业区域与第二作业区域之间的夹角,并获取无人机在拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的理论尺寸;根据该夹角、该理论尺寸和预设转弯半径,确定无人机在拍摄点对目标地块拍摄形成的图像对应的目标角度;根据该目标角度和第一作业区域与第二作业区域之间的夹角,确定拍摄次数;根据该拍摄次数和该衔接区域的尺寸信息,确定第三部分主航线段中的相邻两条主航线段之间的间隔距离。
在一实施例中,第一部分主航线段与第二部分主航线段相互平行,第一部分主航线段的终止航点与第三部分主航线段的起始航点连接,第三部分主航线段的终止航点与第二部分主航线段的起始航点连接,第三部分主航线段包括弧形的主航线段。其中,第三部分主航线段中的主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。
示例性的,如图13所示,该拍摄作业航线的起始航点45与结束航点46之间包括13条纵向的主航线段,起始航点45与航点47之间的6条纵向主航线段为位于第一作业区域A的第一部分主航线段,航点48与结束航点46之间的6条纵向主航线段为位于第二作业区域B的第二部分主航线段,航点47与航点48之间的弧形的纵向主航线段为位于衔接区域的第三部分主航线段。
在一实施例中,该拍摄作业航线包括横向的第一主航线段和纵向的第二主航线段。示例性的,如图14所示,第一主航线段包括航点48与结束航点46 之间的横向的航线段,且第一主航线段位于第二作业区域B,第二主航线段包括起始航点45与航点47之间的6条纵向主航线段,且第二主航线段位于第一作业区域A,航点47与航点48之间的弧形的纵向主航线段为位于衔接区域的衔接航线段。
上述实施例提供的航线规划方法,通过获取拍摄作业的初始规划的多个拍摄点的第一位置信息,并基于第一位置信息,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息,然后根据第二位置信息确定该地表区域的法向信息,并基于该法向信息调整拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等,最后根据调整后的多个拍摄点,规划无人机在目标地块内的拍摄作业航线,使得规划得到的拍摄作业航线可以满足地块的地形起伏要求,从而提高航线规划的可靠性,以提高无人机的作业效果。
请参阅图15,图15是本申请实施例提供的另一种航线规划方法的步骤示意流程图。
如图15所示,该航线规划方法包括步骤S201至S204。
步骤S201、确定第一参考点、第二参考点和第三参考点。
示例性的,显示航线规划页面,其中,该航线规划页面显示有参考点设置控件和目标地块;控制无人机在目标地块上空飞行,并响应于用户对该参考点设置控件的触发操作,将无人机的当前位置点确定为第一参考点;继续控制无人机在目标地块上空飞行,并响应于用户对参考点设置控件的触发操作,将无人机的当前位置点确定为第二参考点;继续控制无人机在目标地块上空飞行,并响应于用户对参考点设置控件的触发操作,将无人机的当前位置点确定为第三参考点。
步骤S202、根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域。
示例性的,以第一参考点与第二参考点之间的参考线为第一边界,并确定与第一边界平行且包含第三参考点的第二边界;在第二边界上确定与第一参考点对应的第一外扩点以及与第二参考点对应的第二外扩点;将第一参考点、第二参考点、第一外扩点和第二外扩点合围形成的区域确定为第一作业区域。其中,第一外扩点或第二外扩点与第三参考点之间的外扩距离可由用户自行设置,本申请实施例对此不做具体限定。通过三个参考点可以准确的确定作业区域。
例如,如图3所示,第一参考点11、第二参考点12和第三参考点13可以 形成一个三角形的作业区域,通过沿第三参考点13所在的边界由第三参考点13向着第一参考点11的方向外扩一段距离可以得到第一参考点11对应的第一外扩点131,通过沿第三参考点13所在的边界由第三参考点13向着第二参考点12的方向外扩一段距离可以得到第二参考点12对应的第二外扩点132,因此,第一参考点11、第二参考点12、第一外扩点131和第二外扩点132合围形成的区域为第一作业区域A。
步骤S203、确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确定第二作业区域。
示例性的,确定与第二边界平行且包含第四参考点的第三边界;将第二边界与第三边界之间的区域确定为第二作业区域,或者,在第三边界上确定与第一外扩点对应的第三外扩点以及与第二外扩点对应的第四外扩点,并将第二边界、第三外扩点和第四外扩点合围形成的区域确定为第二作业区域。其中,第二作业区域可以为开放的区域,也可以为封闭的区域。通过一个作业区域和一个参考点可以准确的确定另一个作业区域。
例如,如图3所示,在确定第一作业区域A后,用户通过控制终端控制无人机继续飞行,并在检测到用户对参考点设置控件的触发操作时,将无人机的当前位置确定为第四参考点14,然后确定与第一外扩点131和第二外扩点132之间的第二边界平行,且包含第四参考点14的第三边界,通过沿第四参考点40所在的边界由第四参考点14向着第一外扩点131的方向外扩一段距离可以得到第一外扩点131对应的第三外扩点141,通过沿第四参考点14所在的边界由第四参考点14向着第二外扩点132的方向外扩一段距离可以得到第二外扩点132对应的第四外扩点142,因此,将第一外扩点131、第二外扩点132、第三外扩点141和第四外扩点142合围形成的区域为第二作业区域B。
步骤S204、在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
其中,第一作业区域为封闭的区域,第二作业区域为开放的区域,或者第一作业区域和第二作业区域均为封闭的区域。
在一实施例中,获取第一作业区域与第二作业区域之间的衔接边的第一边长;获取第二作业区域中的目标边界的第二边长,目标边界与衔接边相对;确定第一边长与第二边长的比例,得到衔接边与目标边界的边长比;若该边长比大于或等于预设边长比例,则将第一作业区域和第二作业区域作为一个整体进行航线规划,得到无人机的作业航线;若边长比小于预设边长比例,则分别对 第一作业区域和第二作业区域进行航线规划,得到无人机的作业航线。其中,预设边长比例可基于实际情况进行设置,本申请实施例对此不做具体限定。通过在第一作业区域与第二作业区域之间的边长比满足要求时,对第一作业区域和第二作业区域的航线进行联合规划,可以适当规划得到的作业航线更优,使得无人机按照联合规划得到的作业航线进行作业时,可以提高作业效率。
在一实施例中,用户在确定第二作业区域之后,还可以继续通过第二作业区域和新的参考点确定其余的作业区域,本申请对作业区域的数量不做具体限定。例如,如图16所示,参考点51、参考点52、参考点53和参考点54合围形成第一作业区域A,参考点53、参考点54、参考点55和参考点56合围形成第二作业区域B,参考点55、参考点56、参考点57和参考点58合围形成第三作业区域D,且第一参考边61、第二参考边62与第三参考边63之间的边长比大于或等于预设边长比例,则可以将第一作业区域A、第二作业区域B和第三作业区域D作为一个整体进行航线规划,可以得到起始航点64与结束航点65之间的作业航线。
在一实施例中,该作业航线包括多条主航线段,该多条主航线段均为横向的航线段。该主航线段包括第一航线段、第二航线段和衔接航线段,第一航线段位于第一作业区域,第二航线段位于第二作业区域,衔接航线段位于第一作业区域与第二作业区域之间的衔接区域,该衔接航线段用于连接第一航线段和第二航线段,衔接航线段为弧形的航线段。通过规划横向的作业航线,且在衔接区域内规划衔接航线段,使得无人机在按照横向的作业航线进行作业时,可以提高作业效率和效果。
在一实施例中,衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。其中,预设重叠率可由用户自行设置,本申请实施例对此不做具体限定。通过第一作业区域与第二作业区域之间的夹角和预设重叠率可以准确的确定衔接航线段上的相邻两个拍摄点之间的拍照间隔时间,便于在无人机基于拍摄航线作业进行拍摄作业时,保证拍摄点之间的重叠率,提高图像的拼接效果。
在一实施例中,无人机包括喷洒装置,喷洒装置在该衔接航线段不执行喷洒作业。无人机在按照该作业航线进行喷洒作业时,喷洒装置在衔接航线段不执行喷洒作业,在第一航线段和第二航线段执行喷洒作业,可以提高喷洒作业效率和效果。
在一实施例中,无人机在按照该作业航线进行喷洒作业时,在衔接航线段, 无人机的喷洒装置的喷洒速度是根据第一作业区域与第二作业区域之间的夹角确定的。其中,该喷洒速度与该夹角呈正相关关系,也即第一作业区域与第二作业区域之间的夹角越大,则喷洒速度越快,第一作业区域与第二作业区域之间的夹角越小,则喷洒速度越慢。通过第一作业区域与第二作业区域之间的夹角自适应的确定喷洒装置的喷洒速度,可以提高喷洒作业的效率和效果。
在一实施例中,多条主航线段均为纵向的航线段,相邻两条主航线段上的拍摄点的绝对高度不同。该多条主航线段包括位于第一作业区域的第一部分主航线段、位于第二作业区域的第二部分主航线段和位于衔接区域的第三部分主航线段,第一部分主航线段、第二部分主航线段和第三部分主航线段相互平行,第三部分主航线段包括若干条主航线段。通过规划纵向的拍摄作业航线,使得航线的规划不受各个作业区域边缘的长短限制,可以便利的规划拍摄作业航线。
在一实施例中,第三部分主航线段中的相邻两条主航线段之间的间隔距离是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。例如,获取第一作业区域与第二作业区域之间的夹角,并获取无人机在拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的理论尺寸;根据该夹角、该理论尺寸和预设转弯半径,确定无人机在拍摄点对目标地块拍摄形成的图像对应的目标角度;根据该目标角度和第一作业区域与第二作业区域之间的夹角,确定拍摄次数;根据该拍摄次数和该衔接区域的尺寸信息,确定第三部分主航线段中的相邻两条主航线段之间的间隔距离。
在一实施例中,第一部分主航线段与第二部分主航线段相互平行,第一部分主航线段的终止航点与第三部分主航线段的起始航点连接,第三部分主航线段的终止航点与第二部分主航线段的起始航点连接,第三部分主航线段包括弧形的主航线段。其中,第三部分主航线段中的主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据第一作业区域与第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,作业航线包括横向的第一主航线段和纵向的第二主航线段,第一主航线段位于第一作业区域,第二主航线段位于第二作业区域,或者,第一主航线段位于第二作业区域,第二主航线段位于第一作业区域。示例性的,如图14所示,第一主航线段包括航点48与结束航点46之间的横向的航线段,且第一主航线段位于第二作业区域B,第二主航线段包括起始航点45与航点47之间的6条纵向主航线段,且第二主航线段位于第一作业区域A,航点47与航点48之间的弧形的纵向主航线段为位于衔接区域的衔接航线段。
上述实施例提供的航线规划方法,通过确定的三个参考点可以确定一个作业区域,然后通过确定的作业区域和另外一个参考点可以确定另一个作业区域,并在确定的全部作业区域内规划无人机的作业航线,可以提高航线规划的便利性和准确性,使得无人机按照规划后的作业航线执行作业时,可以提高作业效率和作业效果。
请参阅图17,图17是本申请实施例提供的一种作业控制方法的步骤示意流程图。该作业控制方法应用于无人机。
如图17所示,该航线规划方法包括步骤S301至步骤S302。
步骤S301、获取所述无人机的拍摄作业航线。
终端设备与无人机通信连接,终端设备获取拍摄作业的初始规划的多个拍摄点的第一位置信息;根据第一位置信息,估计无人机在任一拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;根据第二位置信息确定所述地表区域的法向信息;根据法向信息调整所述拍摄点,以使调整后的每个拍摄点与对应地表区域之间的法向距离大致相等;根据调整后的多个拍摄点,规划无人机在目标地块内的拍摄作业航线;将拍摄作业航线发送给无人机,无人机接收终端设备发送的拍摄作业航线。
步骤S302、控制所述无人机按照所述拍摄作业航线执行拍摄作业。
由于拍摄作业航线中的拍摄点与对应地表区域之间的法向距离大致相等,因此,无人机按照该拍摄作业航线执行拍摄作业时,可以保证拍摄装置采集到的图像的分辨率大致相同,便于后续对分辨率大致相同的图像进行拼接,可以提高拍摄作业的效果。
在一实施例中,在无人机达到拍摄作业航线中的拍摄点时,获取拍摄点对应的地表区域的法向量;根据法向量,调整拍摄装置在拍摄点的拍摄方向,以使调整后的拍摄装置的拍摄方向与拍摄点对应的地表区域大致垂直。通过法向量来调整拍摄装置在拍摄点的拍摄方向,使得调整后的拍摄装置的拍摄方向与拍摄点对应的地表区域大致垂直,进而保证拍摄装置采集到的图像为俯视图像,便于后续对分辨率相同的俯仰图像进行拼接,可以提高拍摄作业的效果。
在一实施例中,根据法向量,调整拍摄装置在拍摄点的拍摄方向的方式可以为:根据该法向量,确定云台的目标姿态,并基于该目标姿态调整云台,由于拍摄装置搭载于云台上,拍摄装置的拍摄方向可以随着云台的姿态变化而发生变化,因此,通过调整云台的姿态可以调整拍摄装置的拍摄方向。其中,无人机存储有法向量与云台的姿态之间的映射关系,通过该映射关系和拍摄点对 应的地表区域的法向量,可以确定云台在该拍摄点的目标姿态,法向量与云台的姿态之间的映射关系可基于实际情况进行设置,本申请实施例对此不做具体限定。
上述实施例提供的航线规划方法,通过获取拍摄点与对应地表区域之间的法向距离大致相等的拍摄作业航线,并按照该拍摄作业航线控制无人机进行拍摄作业,可以保证无人机在每个拍摄点采集到的图像的分辨率大致相同,便于后续对分辨率大致相同的图像进行拼接,可以提高拍摄作业的效果。
请参阅图18,图18是本申请实施例提供的一种航线规划装置的结构示意性框图。
如图18所示,航线规划装置400包括处理器410和存储器420,处理器410和存储器420通过总线430连接,该总线430比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器410可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器420可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器410用于运行存储在存储器420中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取拍摄作业的初始规划的多个拍摄点的第一位置信息;
根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;
根据所述第二位置信息确定所述地表区域的法向信息;
根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等;
根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
在一实施例中,所述处理器在实现根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息时,用于实现:
获取所述目标地块的数字地表模型;
根据所述第一位置信息和所述数字地表模型,估计无人机在任一所述拍摄 点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。
在一实施例中,所述第二位置信息包括位于所述地表区域内的多个地物点的位置信息,所述处理器在实现根据所述第二位置信息确定所述地表区域的法向信息时,用于实现:
根据位于所述地表区域内的多个地物点的位置信息,确定所述地表区域的平面方程;
根据所述平面方程,确定所述地表区域的法向信息。
在一实施例中,所述处理器在实现根据所述平面方程,确定所述地表区域的法向信息时,用于实现:
确定所述平面方程的法向量,并将所述平面方程的法向量确定为所述地表区域的法向信息。
在一实施例中,所述处理器在实现根据所述第二位置信息确定所述地表区域的法向信息时,用于实现:
对于所述第二位置信息对应的地物点Pn,获取与所述地物点Pn相邻的目标地物点的所述第二位置信息;
根据所述地物点Pn的所述第二位置信息和所述目标地物点的所述第二位置信息,确定所述地物点Pn与所述目标地物点形成的直线的法向量;
根据所述法向量,确定所述地表区域的法向信息。
在一实施例中,所述目标地物点包括与所述地物点Pn相邻的第一地物点Pn-1,和/或,与所述地物点Pn相邻的第二地物点Pn+1;
所述法向量包括所述地物点Pn与所述第一地物点Pn-1形成的直线的第一法向量,和/或,所述地物点Pn与所述第二地物点Pn+1形成的直线的第二法向量。
在一实施例中,所述处理器在实现根据所述法向量,确定所述地表区域的法向信息时,用于实现:
确定所述第一法向量与水平面之间的第一夹角和所述第二法向量与水平面之间的第二夹角;
根据所述第一夹角和所述第二夹角,确定所述第一法向量与所述第二法向量之间的夹角的中线与水平面的第三夹角;
根据所述第三夹角,确定所述地表区域的法向信息。
在一实施例中,所述处理器在实现根据所述法向信息调整所述拍摄点时,用于实现:
根据所述法向信息和预设距离,确定所述拍摄点对应的所述第二位置信息的移动位移;
根据所述拍摄点对应的所述第二位置信息和所述移动位移,确定目标位置信息,并将所述目标位置信息对应的目标拍摄点确定为调整后的拍摄点。
在一实施例中,所述处理器在实现获取所述拍摄作业的初始规划的多个拍摄点的第一位置信息时,用于实现:
获取在所述目标地块内初始规划的所述无人机的初始拍摄作业航线;
从所述初始拍摄作业航线中确定多个拍摄点,并获取所述多个拍摄点的第一位置信息。
在一实施例中,所述初始拍摄作业航线包括多条初始主航线段,位于所述初始主航线段中的各所述拍摄点之间的间隔距离相等。
在一实施例中,从每条所述初始主航线段中确定的拍摄点的数量相同。
在一实施例中,所述目标地块至少包括第一作业区域、第二作业区域和用于衔接所述第一作业区域和所述第二作业区域的衔接区域,所述衔接区域为弧面区域,所述第一作业区域和所述第二作业区域均为斜面。
在一实施例中,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
在一实施例中,所述第一作业区域和所述第二作业区域均为封闭的区域。
在一实施例中,所述第一作业区域与所述第二作业区域的衔接边与所述第二作业区域的目标边界的边长比大于或等于预设边长比,所述衔接边与所述目标边界呈相对关系。
在一实施例中,所述拍摄作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
在一实施例中,所述主航线段包括位于所述第一作业区域的第一航线段、位于第二作业区域的第二航线段和位于所述衔接区域的衔接航线段。
在一实施例中,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
在一实施例中,所述衔接航线段为弧形的航线段。
在一实施例中,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
在一实施例中,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述衔接区域的第三部分主航线段。
在一实施例中,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三部分主航线段包括若干条所述主航线段。
在一实施例中,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
在一实施例中,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,所述拍摄作业航线包括横向的第一主航线段和纵向的第二主航线段。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的航线规划装置的具体工作过程,可以参考前述航线规划方法实施例中的对应过程,在此不再赘述。
请参阅图19,图19是本申请实施例提供的另一种航线规划装置的结构示意性框图。该航线规划装置应用于终端设备,终端设备与无人机通信连接,用于控制无人机。
如图19所示,航线规划装置500包括处理器510和存储器520,处理器510和存储器520通过总线530连接,该总线530比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器510可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器520可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器510用于运行存储在存储器520中的计算机程序,并在 执行所述计算机程序时实现如下步骤:
确定第一参考点、第二参考点和第三参考点;
根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域;
确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确定第二作业区域;
在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
在一实施例中,所述处理器在实现确定第一参考点、第二参考点和第三参考点时,用于实现:
显示航线规划页面,其中,所述航线规划页面显示有参考点设置控件和目标地块;
控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第一参考点;
继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第二参考点;
继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第三参考点。
在一实施例中,所述处理器在实现根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域时,用于实现:
以所述第一参考点与所述第二参考点之间的参考线为第一边界,并确定与所述第一边界平行且包含所述第三参考点的第二边界;
在所述第二边界上确定与所述第一参考点对应的第一外扩点以及与所述第二参考点对应的第二外扩点;
将所述第一参考点、所述第二参考点、所述第一外扩点和所述第二外扩点合围形成的区域确定为第一作业区域。
在一实施例中,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
在一实施例中,所述第一作业区域和所述第二作业区域均为封闭的区域。
在一实施例中,所述处理器在实现在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线时,用于实现:
获取所述第一作业区域与所述第二作业区域之间的衔接边的第一边长;
获取所述第二作业区域中的目标边界的第二边长,所述目标边界与所述衔 接边相对;
确定所述第一边长与所述第二边长的比例,得到所述衔接边与所述目标边界的边长比;
若所述边长比大于或等于预设边长比例,则将所述第一作业区域和所述第二作业区域作为一个整体进行航线规划,得到所述无人机的作业航线。
在一实施例中,所述处理器还用于实现以下步骤:
若所述边长比小于预设边长比例,则分别对所述第一作业区域和所述第二作业区域进行航线规划,得到所述无人机的作业航线。
在一实施例中,所述作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
在一实施例中,所述主航线段包括第一航线段、第二航线段和衔接航线段,所述第一航线段位于所述第一作业区域,所述第二航线段位于所述第二作业区域,所述衔接航线段位于所述第一作业区域与所述第二作业区域之间的衔接区域。
在一实施例中,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
在一实施例中,所述衔接航线段为弧形的航线段。
在一实施例中,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,所述无人机包括喷洒装置,所述喷洒装置在所述衔接航线段不执行喷洒作业。
在一实施例中,所述喷洒装置的喷洒速度是根据所述第一作业区域与所述第二作业区域之间的夹角确定的。
在一实施例中,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
在一实施例中,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述第一作业区域与所述第二作业区域之间的衔接区域的第三部分主航线段。
在一实施例中,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三部分主航线段包括若干条所述主航线段。
在一实施例中,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠 率确定的。
在一实施例中,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
在一实施例中,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
在一实施例中,所述作业航线包括横向的第一主航线段和纵向的第二主航线段,所述第一主航线段位于所述第一作业区域,所述第二主航线段位于所述第二作业区域,或者,所述第一主航线段位于所述第二作业区域,所述第二主航线段位于所述第一作业区域。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的航线规划装置的具体工作过程,可以参考前述航线规划方法实施例中的对应过程,在此不再赘述。
请参阅图20,图20是本申请实施例提供的一种作业控制装置的结构示意性框图。该作业控制装置应用于无人机,无人机包括拍摄装置,无人机与终端设备通信连接,终端设备用于控制无人机。
如图20所示,作业控制装置600包括处理器610和存储器620,处理器610和存储器620通过总线630连接,该总线630比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器610可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器620可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器610用于运行存储在存储器620中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述无人机的拍摄作业航线,其中,所述拍摄作业航线是根据如上所述的航线规划方法规划得到的;
控制所述无人机按照所述拍摄作业航线执行拍摄作业。
在一实施例中,所述处理器还用于实现以下步骤:
在所述无人机达到所述拍摄作业航线中的拍摄点时,获取所述拍摄点对应的地表区域的法向量;
根据所述法向量,调整所述拍摄装置在所述拍摄点的拍摄方向,以使调整后的所述拍摄装置的拍摄方向与所述拍摄点对应的地表区域大致垂直。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的作用控制装置的具体工作过程,可以参考前述作业控制方法实施例中的对应过程,在此不再赘述。
请参阅图21,图21是本申请实施例提供的一种终端设备的结构示意性框图。如图21所示,终端设备700包括航线规划装置710。其中,航线规划装置710可以是图18或图19中的航线规划装置。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的终端设备的具体工作过程,可以参考前述航线规划方法实施例中的对应过程,在此不再赘述。
请参阅图22,图22是本申请实施例提供的一种无人机的结构示意性框图。
如图22所示,无人机800包括:
机体810;
拍摄装置820,设于机体810上,用于对目标地块进行拍摄;
动力***830,设于机体810上,用于为无人机800提供飞行动力;
作业控制装置840,设于机体810内,用于控制无人机800执行拍摄作业。
其中,无人机800还包括云台,设于机体810上,用于搭载拍摄装置820,作业控制装置840可以为图20中的作业控制装置。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的无人机的具体工作过程,可以参考前述作业控制方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的航线规划方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的终端设备或无人机的内部存储单元,例如所述终端设备或无人机的硬盘或内存。所述计算机可读存储介质也可以是所述终端设备或无人机的外部存储设备,例如所述终端设备或无人机上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (104)

  1. 一种航线规划方法,其特征在于,包括:
    获取拍摄作业的初始规划的多个拍摄点的第一位置信息;
    根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;
    根据所述第二位置信息确定所述地表区域的法向信息;
    根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等;
    根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
  2. 根据权利要求1所述的航线规划方法,其特征在于,所述根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息,包括:
    获取所述目标地块的数字地表模型;
    根据所述第一位置信息和所述数字地表模型,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。
  3. 根据权利要求1所述的航线规划方法,其特征在于,所述第二位置信息包括位于所述地表区域内的多个地物点的位置信息,所述根据所述第二位置信息确定所述地表区域的法向信息,包括:
    根据位于所述地表区域内的多个地物点的位置信息,确定所述地表区域的平面方程;
    根据所述平面方程,确定所述地表区域的法向信息。
  4. 根据权利要求3所述的航线规划方法,其特征在于,所述根据所述平面方程,确定所述地表区域的法向信息,包括:
    确定所述平面方程的法向量,并将所述平面方程的法向量确定为所述地表区域的法向信息。
  5. 根据权利要求1所述的航线规划方法,其特征在于,所述根据所述第二位置信息确定所述地表区域的法向信息,包括:
    对于所述第二位置信息对应的地物点P n,获取与所述地物点P n相邻的目标地物点的所述第二位置信息;
    根据所述地物点P n的所述第二位置信息和所述目标地物点的所述第二位 置信息,确定所述地物点P n与所述目标地物点形成的直线的法向量;
    根据所述法向量,确定所述地表区域的法向信息。
  6. 根据权利要求5所述的航线规划方法,其特征在于,所述目标地物点包括与所述地物点P n相邻的第一地物点P n-1,和/或,与所述地物点P n相邻的第二地物点P n+1
    所述法向量包括所述地物点P n与所述第一地物点P n-1形成的直线的第一法向量,和/或,所述地物点P n与所述第二地物点P n+1形成的直线的第二法向量。
  7. 根据权利要求6所述的航线规划方法,其特征在于,所述根据所述法向量,确定所述地表区域的法向信息,包括:
    确定所述第一法向量与水平面之间的第一夹角和所述第二法向量与水平面之间的第二夹角;
    根据所述第一夹角和所述第二夹角,确定所述第一法向量与所述第二法向量之间的夹角的中线与水平面的第三夹角;
    根据所述第三夹角,确定所述地表区域的法向信息。
  8. 根据权利要求1所述的航线规划方法,其特征在于,所述根据所述法向信息调整所述拍摄点,包括:
    根据所述法向信息和预设距离,确定所述拍摄点对应的所述第二位置信息的移动位移;
    根据所述拍摄点对应的所述第二位置信息和所述移动位移,确定目标位置信息,并将所述目标位置信息对应的目标拍摄点确定为调整后的拍摄点。
  9. 根据权利要求1-8中任一项所述的航线规划方法,其特征在于,所述获取所述拍摄作业的初始规划的多个拍摄点的第一位置信息,包括:
    获取在所述目标地块内初始规划的所述无人机的初始拍摄作业航线;
    从所述初始拍摄作业航线中确定多个拍摄点,并获取所述多个拍摄点的第一位置信息。
  10. 根据权利要求9所述的航线规划方法,其特征在于,所述初始拍摄作业航线包括多条初始主航线段,位于所述初始主航线段中的各所述拍摄点之间的间隔距离相等。
  11. 根据权利要求9所述的航线规划方法,其特征在于,从每条所述初始主航线段中确定的拍摄点的数量相同。
  12. 根据权利要求1-8中任一项所述的航线规划方法,其特征在于,所述目标地块至少包括第一作业区域、第二作业区域和用于衔接所述第一作业区域 和所述第二作业区域的衔接区域,所述衔接区域为弧面区域,所述第一作业区域和所述第二作业区域均为斜面。
  13. 根据权利要求12所述的航线规划方法,其特征在于,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
  14. 根据权利要求12所述的航线规划方法,其特征在于,所述第一作业区域和所述第二作业区域均为封闭的区域。
  15. 根据权利要求14所述的航线规划方法,其特征在于,所述第一作业区域与所述第二作业区域的衔接边与所述第二作业区域的目标边界的边长比大于或等于预设边长比,所述衔接边与所述目标边界呈相对关系。
  16. 根据权利要求12所述的航线规划方法,其特征在于,所述拍摄作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
  17. 根据权利要求16所述的航线规划方法,其特征在于,所述主航线段包括位于所述第一作业区域的第一航线段、位于第二作业区域的第二航线段和位于所述衔接区域的衔接航线段。
  18. 根据权利要求17所述的航线规划方法,其特征在于,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
  19. 根据权利要求17所述的航线规划方法,其特征在于,所述衔接航线段为弧形的航线段。
  20. 根据权利要求17所述的航线规划方法,其特征在于,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  21. 根据权利要求16所述的航线规划方法,其特征在于,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
  22. 根据权利要求21所述的航线规划方法,其特征在于,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述衔接区域的第三部分主航线段。
  23. 根据权利要求22所述的航线规划方法,其特征在于,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三部分主航线段包括若干条所述主航线段。
  24. 根据权利要求23所述的航线规划方法,其特征在于,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  25. 根据权利要求22所述的航线规划方法,其特征在于,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
  26. 根据权利要求25所述的航线规划方法,其特征在于,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  27. 根据权利要求12所述的航线规划方法,其特征在于,所述拍摄作业航线包括横向的第一主航线段和纵向的第二主航线段。
  28. 一种航线规划方法,其特征在于,应用于终端设备,所述终端设备与无人机通信连接,用于控制所述无人机,所述方法包括:
    确定第一参考点、第二参考点和第三参考点;
    根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域;
    确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确定第二作业区域;
    在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
  29. 根据权利要求28所述的航线规划方法,其特征在于,所述确定第一参考点、第二参考点和第三参考点,包括:
    显示航线规划页面,其中,所述航线规划页面显示有参考点设置控件和目标地块;
    控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第一参考点;
    继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第二参考点;
    继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第三参考点。
  30. 根据权利要求28所述的航线规划方法,其特征在于,所述根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域,包括:
    以所述第一参考点与所述第二参考点之间的参考线为第一边界,并确定与所述第一边界平行且包含所述第三参考点的第二边界;
    在所述第二边界上确定与所述第一参考点对应的第一外扩点以及与所述第二参考点对应的第二外扩点;
    将所述第一参考点、所述第二参考点、所述第一外扩点和所述第二外扩点合围形成的区域确定为第一作业区域。
  31. 根据权利要求28所述的航线规划方法,其特征在于,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
  32. 根据权利要求28所述的航线规划方法,其特征在于,所述第一作业区域和所述第二作业区域均为封闭的区域。
  33. 根据权利要求28所述的航线规划方法,其特征在于,所述在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线,包括:
    获取所述第一作业区域与所述第二作业区域之间的衔接边的第一边长;
    获取所述第二作业区域中的目标边界的第二边长,所述目标边界与所述衔接边相对;
    确定所述第一边长与所述第二边长的比例,得到所述衔接边与所述目标边界的边长比;
    若所述边长比大于或等于预设边长比例,则将所述第一作业区域和所述第二作业区域作为一个整体进行航线规划,得到所述无人机的作业航线。
  34. 根据权利要求33所述的航线规划方法,其特征在于,所述方法还包括:
    若所述边长比小于预设边长比例,则分别对所述第一作业区域和所述第二作业区域进行航线规划,得到所述无人机的作业航线。
  35. 根据权利要求28-34中任一项所述的航线规划方法,其特征在于,所述作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
  36. 根据权利要求35所述的航线规划方法,其特征在于,所述主航线段包括第一航线段、第二航线段和衔接航线段,所述第一航线段位于所述第一作业区域,所述第二航线段位于所述第二作业区域,所述衔接航线段位于所述第一作业区域与所述第二作业区域之间的衔接区域。
  37. 根据权利要求36所述的航线规划方法,其特征在于,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
  38. 根据权利要求36所述的航线规划方法,其特征在于,所述衔接航线段为弧形的航线段。
  39. 根据权利要求36所述的航线规划方法,其特征在于,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二 作业区域之间的夹角和预设重叠率确定的。
  40. 根据权利要求36所述的航线规划方法,其特征在于,所述无人机包括喷洒装置,所述喷洒装置在所述衔接航线段不执行喷洒作业。
  41. 根据权利要求40所述的航线规划方法,其特征在于,所述喷洒装置的喷洒速度是根据所述第一作业区域与所述第二作业区域之间的夹角确定的。
  42. 根据权利要求35所述的航线规划方法,其特征在于,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
  43. 根据权利要求42所述的航线规划方法,其特征在于,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述第一作业区域与所述第二作业区域之间的衔接区域的第三部分主航线段。
  44. 根据权利要求43所述的航线规划方法,其特征在于,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三部分主航线段包括若干条所述主航线段。
  45. 根据权利要求44所述的航线规划方法,其特征在于,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  46. 根据权利要求43所述的航线规划方法,其特征在于,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
  47. 根据权利要求46所述的航线规划方法,其特征在于,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  48. 根据权利要求28-34中任一项所述的航线规划方法,其特征在于,所述作业航线包括横向的第一主航线段和纵向的第二主航线段,所述第一主航线段位于所述第一作业区域,所述第二主航线段位于所述第二作业区域,或者,所述第一主航线段位于所述第二作业区域,所述第二主航线段位于所述第一作业区域。
  49. 一种作业控制方法,其特征在于,应用于无人机,所述无人机包括拍摄装置,所述方法包括:
    获取所述无人机的拍摄作业航线,其中,所述拍摄作业航线是根据权利要求1-27中任一项所述的航线规划方法规划得到的;
    控制所述无人机按照所述拍摄作业航线执行拍摄作业。
  50. 根据权利要求49所述的作业控制方法,其特征在于,所述方法还包括:
    在所述无人机达到所述拍摄作业航线中的拍摄点时,获取所述拍摄点对应的地表区域的法向量;
    根据所述法向量,调整所述拍摄装置在所述拍摄点的拍摄方向,以使调整后的所述拍摄装置的拍摄方向与所述拍摄点对应的地表区域大致垂直。
  51. 一种航线规划装置,其特征在于,所述航线规划装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取拍摄作业的初始规划的多个拍摄点的第一位置信息;
    根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息;
    根据所述第二位置信息确定所述地表区域的法向信息;
    根据所述法向信息调整所述拍摄点,以使调整后的每个所述拍摄点与对应所述地表区域之间的法向距离大致相等;
    根据调整后的多个所述拍摄点,规划所述无人机在所述目标地块内的拍摄作业航线。
  52. 根据权利要求51所述的航线规划装置,其特征在于,所述处理器在实现根据所述第一位置信息,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息时,用于实现:
    获取所述目标地块的数字地表模型;
    根据所述第一位置信息和所述数字地表模型,估计无人机在任一所述拍摄点对目标地块拍摄形成的图像对应覆盖的地表区域的第二位置信息。
  53. 根据权利要求51所述的航线规划装置,其特征在于,所述第二位置信息包括位于所述地表区域内的多个地物点的位置信息,所述处理器在实现根据所述第二位置信息确定所述地表区域的法向信息时,用于实现:
    根据位于所述地表区域内的多个地物点的位置信息,确定所述地表区域的平面方程;
    根据所述平面方程,确定所述地表区域的法向信息。
  54. 根据权利要求53所述的航线规划装置,其特征在于,所述处理器在实现根据所述平面方程,确定所述地表区域的法向信息时,用于实现:
    确定所述平面方程的法向量,并将所述平面方程的法向量确定为所述地表区域的法向信息。
  55. 根据权利要求51所述的航线规划装置,其特征在于,所述处理器在实现根据所述第二位置信息确定所述地表区域的法向信息时,用于实现:
    对于所述第二位置信息对应的地物点Pn,获取与所述地物点Pn相邻的目标地物点的所述第二位置信息;
    根据所述地物点Pn的所述第二位置信息和所述目标地物点的所述第二位置信息,确定所述地物点Pn与所述目标地物点形成的直线的法向量;
    根据所述法向量,确定所述地表区域的法向信息。
  56. 根据权利要求55所述的航线规划装置,其特征在于,所述目标地物点包括与所述地物点Pn相邻的第一地物点Pn-1,和/或,与所述地物点Pn相邻的第二地物点Pn+1;
    所述法向量包括所述地物点Pn与所述第一地物点Pn-1形成的直线的第一法向量,和/或,所述地物点Pn与所述第二地物点Pn+1形成的直线的第二法向量。
  57. 根据权利要求56所述的航线规划装置,其特征在于,所述处理器在实现根据所述法向量,确定所述地表区域的法向信息时,用于实现:
    确定所述第一法向量与水平面之间的第一夹角和所述第二法向量与水平面之间的第二夹角;
    根据所述第一夹角和所述第二夹角,确定所述第一法向量与所述第二法向量之间的夹角的中线与水平面的第三夹角;
    根据所述第三夹角,确定所述地表区域的法向信息。
  58. 根据权利要求51所述的航线规划装置,其特征在于,所述处理器在实现根据所述法向信息调整所述拍摄点时,用于实现:
    根据所述法向信息和预设距离,确定所述拍摄点对应的所述第二位置信息的移动位移;
    根据所述拍摄点对应的所述第二位置信息和所述移动位移,确定目标位置信息,并将所述目标位置信息对应的目标拍摄点确定为调整后的拍摄点。
  59. 根据权利要求51-58中任一项所述的航线规划装置,其特征在于,所 述处理器在实现获取所述拍摄作业的初始规划的多个拍摄点的第一位置信息时,用于实现:
    获取在所述目标地块内初始规划的所述无人机的初始拍摄作业航线;
    从所述初始拍摄作业航线中确定多个拍摄点,并获取所述多个拍摄点的第一位置信息。
  60. 根据权利要求59所述的航线规划装置,其特征在于,所述初始拍摄作业航线包括多条初始主航线段,位于所述初始主航线段中的各所述拍摄点之间的间隔距离相等。
  61. 根据权利要求59所述的航线规划装置,其特征在于,从每条所述初始主航线段中确定的拍摄点的数量相同。
  62. 根据权利要求51-58中任一项所述的航线规划装置,其特征在于,所述目标地块至少包括第一作业区域、第二作业区域和用于衔接所述第一作业区域和所述第二作业区域的衔接区域,所述衔接区域为弧面区域,所述第一作业区域和所述第二作业区域均为斜面。
  63. 根据权利要求62所述的航线规划装置,其特征在于,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
  64. 根据权利要求62所述的航线规划装置,其特征在于,所述第一作业区域和所述第二作业区域均为封闭的区域。
  65. 根据权利要求64所述的航线规划装置,其特征在于,所述第一作业区域与所述第二作业区域的衔接边与所述第二作业区域的目标边界的边长比大于或等于预设边长比,所述衔接边与所述目标边界呈相对关系。
  66. 根据权利要求62所述的航线规划装置,其特征在于,所述拍摄作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
  67. 根据权利要求66所述的航线规划装置,其特征在于,所述主航线段包括位于所述第一作业区域的第一航线段、位于第二作业区域的第二航线段和位于所述衔接区域的衔接航线段。
  68. 根据权利要求67所述的航线规划装置,其特征在于,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
  69. 根据权利要求67所述的航线规划装置,其特征在于,所述衔接航线段为弧形的航线段。
  70. 根据权利要求67所述的航线规划装置,其特征在于,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二 作业区域之间的夹角和预设重叠率确定的。
  71. 根据权利要求66所述的航线规划装置,其特征在于,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
  72. 根据权利要求71所述的航线规划装置,其特征在于,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述衔接区域的第三部分主航线段。
  73. 根据权利要求72所述的航线规划装置,其特征在于,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三部分主航线段包括若干条所述主航线段。
  74. 根据权利要求73所述的航线规划装置,其特征在于,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  75. 根据权利要求72所述的航线规划装置,其特征在于,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
  76. 根据权利要求75所述的航线规划装置,其特征在于,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  77. 根据权利要求62所述的航线规划装置,其特征在于,所述拍摄作业航线包括横向的第一主航线段和纵向的第二主航线段。
  78. 一种航线规划装置,其特征在于,应用于终端设备,所述终端设备与无人机通信连接,用于控制所述无人机,所述航线规划装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    确定第一参考点、第二参考点和第三参考点;
    根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域;
    确定第四参考点,并根据所述第四参考点和所述第一作业区域的边界,确 定第二作业区域;
    在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线。
  79. 根据权利要求78所述的航线规划装置,其特征在于,所述处理器在实现确定第一参考点、第二参考点和第三参考点时,用于实现:
    显示航线规划页面,其中,所述航线规划页面显示有参考点设置控件和目标地块;
    控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第一参考点;
    继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第二参考点;
    继续控制所述无人机在所述目标地块上空飞行,并响应于用户对所述参考点设置控件的触发操作,将所述无人机的当前位置点确定为第三参考点。
  80. 根据权利要求78所述的航线规划装置,其特征在于,所述处理器在实现根据所述第一参考点、所述第二参考点和所述第三参考点,确定第一作业区域时,用于实现:
    以所述第一参考点与所述第二参考点之间的参考线为第一边界,并确定与所述第一边界平行且包含所述第三参考点的第二边界;
    在所述第二边界上确定与所述第一参考点对应的第一外扩点以及与所述第二参考点对应的第二外扩点;
    将所述第一参考点、所述第二参考点、所述第一外扩点和所述第二外扩点合围形成的区域确定为第一作业区域。
  81. 根据权利要求78所述的航线规划装置,其特征在于,所述第一作业区域为封闭的区域,所述第二作业区域为开放的区域。
  82. 根据权利要求78所述的航线规划装置,其特征在于,所述第一作业区域和所述第二作业区域均为封闭的区域。
  83. 根据权利要求78所述的航线规划装置,其特征在于,所述处理器在实现在所述第一作业区域和所述第二作业区域内规划所述无人机的作业航线时,用于实现:
    获取所述第一作业区域与所述第二作业区域之间的衔接边的第一边长;
    获取所述第二作业区域中的目标边界的第二边长,所述目标边界与所述衔接边相对;
    确定所述第一边长与所述第二边长的比例,得到所述衔接边与所述目标边 界的边长比;
    若所述边长比大于或等于预设边长比例,则将所述第一作业区域和所述第二作业区域作为一个整体进行航线规划,得到所述无人机的作业航线。
  84. 根据权利要求83所述的航线规划装置,其特征在于,所述处理器还用于实现以下步骤:
    若所述边长比小于预设边长比例,则分别对所述第一作业区域和所述第二作业区域进行航线规划,得到所述无人机的作业航线。
  85. 根据权利要求78-84中任一项所述的航线规划装置,其特征在于,所述作业航线包括多条主航线段,所述多条主航线段均为横向的航线段。
  86. 根据权利要求85所述的航线规划装置,其特征在于,所述主航线段包括第一航线段、第二航线段和衔接航线段,所述第一航线段位于所述第一作业区域,所述第二航线段位于所述第二作业区域,所述衔接航线段位于所述第一作业区域与所述第二作业区域之间的衔接区域。
  87. 根据权利要求86所述的航线规划装置,其特征在于,所述衔接航线段用于连接所述第一航线段和所述第二航线段。
  88. 根据权利要求86所述的航线规划装置,其特征在于,所述衔接航线段为弧形的航线段。
  89. 根据权利要求86所述的航线规划装置,其特征在于,所述衔接航线段上的相邻两个拍摄点之间的拍照间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  90. 根据权利要求86所述的航线规划装置,其特征在于,所述无人机包括喷洒装置,所述喷洒装置在所述衔接航线段不执行喷洒作业。
  91. 根据权利要求90所述的航线规划装置,其特征在于,所述喷洒装置的喷洒速度是根据所述第一作业区域与所述第二作业区域之间的夹角确定的。
  92. 根据权利要求85所述的航线规划装置,其特征在于,所述多条主航线段均为纵向的航线段,相邻两条所述主航线段上的拍摄点的绝对高度不同。
  93. 根据权利要求92所述的航线规划装置,其特征在于,所述多条主航线段包括位于所述第一作业区域的第一部分主航线段、位于所述第二作业区域的第二部分主航线段和位于所述第一作业区域与所述第二作业区域之间的衔接区域的第三部分主航线段。
  94. 根据权利要求93所述的航线规划装置,其特征在于,所述第一部分主航线段、所述第二部分主航线段和所述第三部分主航线段相互平行,所述第三 部分主航线段包括若干条所述主航线段。
  95. 根据权利要求94所述的航线规划装置,其特征在于,所述第三部分主航线段中的相邻两条所述主航线段之间的间隔距离是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  96. 根据权利要求93所述的航线规划装置,其特征在于,所述第一部分主航线段与所述第二部分主航线段相互平行,所述第一部分主航线段的终止航点与所述第三部分主航线段的起始航点连接,所述第三部分主航线段的终止航点与所述第二部分主航线段的起始航点连接,所述第三部分主航线段包括弧形的主航线段。
  97. 根据权利要求96所述的航线规划装置,其特征在于,所述第三部分主航线段中的所述主航线段上的相邻两个拍摄点之间的间隔距离和拍摄间隔时间是根据所述第一作业区域与所述第二作业区域之间的夹角和预设重叠率确定的。
  98. 根据权利要求78-84中任一项所述的航线规划装置,其特征在于,所述作业航线包括横向的第一主航线段和纵向的第二主航线段,所述第一主航线段位于所述第一作业区域,所述第二主航线段位于所述第二作业区域,或者,所述第一主航线段位于所述第二作业区域,所述第二主航线段位于所述第一作业区域。
  99. 一种作业控制装置,其特征在于,应用于无人机,所述无人机包括拍摄装置,所述无人机与终端设备通信连接,所述终端设备用于控制所述无人机,所述作业控制装置包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述无人机的拍摄作业航线,其中,所述拍摄作业航线是根据权利要求1-27中任一项所述的航线规划方法规划得到的;
    控制所述无人机按照所述拍摄作业航线执行拍摄作业。
  100. 根据权利要求99所述的作业控制装置,其特征在于,所述处理器还用于实现以下步骤:
    在所述无人机达到所述拍摄作业航线中的拍摄点时,获取所述拍摄点对应的地表区域的法向量;
    根据所述法向量,调整所述拍摄装置在所述拍摄点的拍摄方向,以使调整后的所述拍摄装置的拍摄方向与所述拍摄点对应的地表区域大致垂直。
  101. 一种终端设备,其特征在于,所述终端设备包括权利要求51-98中任一项所述的航线规划装置。
  102. 一种无人机,其特征在于,所述无人机包括:
    机体;
    拍摄装置,设于所述机体上,用于对目标地块进行拍摄;
    动力***,设于所述机体上,用于为所述无人机提供飞行动力;
    权利要求99-100中任一项所述的作业控制装置,设于所述机体内,用于控制所述无人机执行拍摄作业。
  103. 根据权利要求101所述的无人机,其特征在于,所述无人机还包括:
    云台,设于所述机体上,用于搭载所述拍摄装置。
  104. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-48中任一项所述的航线规划方法的步骤,或者实现如权利要求49-50中任一项所述的作业控制方法的步骤。
PCT/CN2020/141839 2020-12-30 2020-12-30 航线规划方法、装置、设备、无人机及可读存储介质 WO2022141314A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/141839 WO2022141314A1 (zh) 2020-12-30 2020-12-30 航线规划方法、装置、设备、无人机及可读存储介质
CN202080075417.8A CN114867986A (zh) 2020-12-30 2020-12-30 航线规划方法、装置、设备、无人机及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141839 WO2022141314A1 (zh) 2020-12-30 2020-12-30 航线规划方法、装置、设备、无人机及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022141314A1 true WO2022141314A1 (zh) 2022-07-07

Family

ID=82260026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141839 WO2022141314A1 (zh) 2020-12-30 2020-12-30 航线规划方法、装置、设备、无人机及可读存储介质

Country Status (2)

Country Link
CN (1) CN114867986A (zh)
WO (1) WO2022141314A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116595119A (zh) * 2023-07-17 2023-08-15 广东省通信产业服务有限公司 形状自适应的等距膨胀禁区安全线的划定及闯入识别方法
CN117470199A (zh) * 2023-12-27 2024-01-30 天津云圣智能科技有限责任公司 一种摆动摄影控制的方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150242767A1 (en) * 2014-02-26 2015-08-27 Achillefs Chatzinikos Aerial view, web-based trip planning techniques using geotagged video and images syncd to a map
CN107504957A (zh) * 2017-07-12 2017-12-22 天津大学 利用无人机多视角摄像快速进行三维地形模型构建的方法
CN110006407A (zh) * 2019-04-16 2019-07-12 武汉大学 基于旋翼无人机的贴近摄影测量方法
CN110345925A (zh) * 2019-08-06 2019-10-18 陕西土豆数据科技有限公司 一种针对五目航拍照片质量检测及空三处理方法
CN111504273A (zh) * 2020-05-09 2020-08-07 王军 一种基于无人机航拍的三维数字沙盘引擎技术及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150242767A1 (en) * 2014-02-26 2015-08-27 Achillefs Chatzinikos Aerial view, web-based trip planning techniques using geotagged video and images syncd to a map
CN107504957A (zh) * 2017-07-12 2017-12-22 天津大学 利用无人机多视角摄像快速进行三维地形模型构建的方法
CN110006407A (zh) * 2019-04-16 2019-07-12 武汉大学 基于旋翼无人机的贴近摄影测量方法
CN110345925A (zh) * 2019-08-06 2019-10-18 陕西土豆数据科技有限公司 一种针对五目航拍照片质量检测及空三处理方法
CN111504273A (zh) * 2020-05-09 2020-08-07 王军 一种基于无人机航拍的三维数字沙盘引擎技术及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116595119A (zh) * 2023-07-17 2023-08-15 广东省通信产业服务有限公司 形状自适应的等距膨胀禁区安全线的划定及闯入识别方法
CN116595119B (zh) * 2023-07-17 2023-09-19 广东省通信产业服务有限公司 形状自适应的等距膨胀禁区安全线的划定及闯入识别方法
CN117470199A (zh) * 2023-12-27 2024-01-30 天津云圣智能科技有限责任公司 一种摆动摄影控制的方法、装置、存储介质及电子设备
CN117470199B (zh) * 2023-12-27 2024-03-15 天津云圣智能科技有限责任公司 一种摆动摄影控制的方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN114867986A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US11644832B2 (en) User interaction paradigms for a flying digital assistant
US20210072745A1 (en) Systems and methods for uav flight control
US20210116944A1 (en) Systems and methods for uav path planning and control
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
US20190011921A1 (en) Systems and methods for uav interactive instructions and control
EP3398022A1 (en) Systems and methods for adjusting uav trajectory
US20200320886A1 (en) Information processing device, flight control instruction method, program and recording medium
JP2009173263A (ja) 無人航空機(uav)によって移動目標物を自律的に追跡するための方法及びシステム
WO2022141314A1 (zh) 航线规划方法、装置、设备、无人机及可读存储介质
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制***
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
WO2021168819A1 (zh) 无人机的返航控制方法和设备
WO2018112848A1 (zh) 飞行控制方法和装置
WO2022227097A1 (zh) 无人机的航线规划方法、装置、设备、***及存储介质
WO2018209557A1 (zh) 用于设备控制的方法、设备和计算机可读存储介质
CN111164958A (zh) 用于基于姿态信息处理和显示图像数据的***及方法
Sedlmajer et al. Effective Remote Drone Control using Augmented Virtuality.
CN110892353A (zh) 控制方法、控制装置、无人飞行器的控制终端
WO2023082066A1 (zh) 作业规划方法、控制装置、控制终端及存储介质
WO2022094808A1 (zh) 拍摄控制方法、装置、无人机、设备及可读存储介质
WO2022061615A1 (zh) 待跟随目标的确定方法、装置、***、设备及存储介质
US20240037759A1 (en) Target tracking method, device, movable platform and computer-readable storage medium
US20230245397A1 (en) Information processing method, program, and system
WO2024000189A1 (zh) 控制方法、头戴式显示设备、控制***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967653

Country of ref document: EP

Kind code of ref document: A1