WO2022141111A1 - 无人飞行器及其控制方法、装置、控制终端和存储介质 - Google Patents

无人飞行器及其控制方法、装置、控制终端和存储介质 Download PDF

Info

Publication number
WO2022141111A1
WO2022141111A1 PCT/CN2020/141068 CN2020141068W WO2022141111A1 WO 2022141111 A1 WO2022141111 A1 WO 2022141111A1 CN 2020141068 W CN2020141068 W CN 2020141068W WO 2022141111 A1 WO2022141111 A1 WO 2022141111A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
mode
unmanned aerial
aerial vehicle
initial position
Prior art date
Application number
PCT/CN2020/141068
Other languages
English (en)
French (fr)
Inventor
陆城富
陈师
严晓斌
靖俊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/141068 priority Critical patent/WO2022141111A1/zh
Priority to CN202080105449.8A priority patent/CN116261699A/zh
Publication of WO2022141111A1 publication Critical patent/WO2022141111A1/zh
Priority to US18/341,285 priority patent/US20230359201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0061Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to an unmanned aerial vehicle and its control method, device, control terminal and storage medium.
  • Unmanned aerial vehicles can be widely used in consumer drones and industrial drones. At present, users mainly control the drone to complete a series of actions by controlling the control components on the terminal. And the convenience of control puts forward higher requirements. Therefore, how to propose a control strategy that is safer, more convenient to operate, and better flight experience is an urgent problem to be solved.
  • the present application provides an unmanned aerial vehicle and a control method, device, control terminal and storage medium thereof, which can provide a control strategy with safety, operability and good flight experience.
  • an embodiment of the present application provides a method for controlling an unmanned aerial vehicle, where the unmanned aerial vehicle is communicatively connected to the control terminal; the method includes:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • an embodiment of the present application provides a control terminal capable of being communicatively connected to an unmanned aerial vehicle, and the control terminal further includes one or more processors, which work individually or together, and are configured to perform the following steps:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • the embodiments of the present application provide a control device for an unmanned aerial vehicle, which can be mounted on the unmanned aerial vehicle and can be connected to a control terminal in communication;
  • the control device includes one or more processors, operating individually or collectively, for performing the steps of:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • the embodiments of the present application provide an unmanned aerial vehicle that can be connected to a control terminal in communication, and the unmanned aerial vehicle includes:
  • a power system arranged on the body, for providing flight power for the unmanned aerial vehicle
  • the UAV also includes one or more processors, operating individually or collectively, for performing the steps of:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the foregoing method.
  • the embodiments of the present application provide an unmanned aerial vehicle and its control method, device, control terminal, and storage medium, which are switched to a first control mode or a second control mode by responding to a user's mode switching operation;
  • the position adjustment of the control part is to adjust the position or attitude of the unmanned aerial vehicle in the control direction corresponding to the control part; wherein, in the first control mode, if the control part is in the preset first initial position, the unmanned aerial vehicle is controlled in the control mode Keep the position or attitude unchanged in the direction; in the second control mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV in the control direction corresponding to the control part
  • the second initial position of at least one control member is different from the first initial position, and at least in the second control mode, the control member cannot automatically return to the first initial position. It can eliminate potential safety hazards, improve flight safety and enhance flight reliability.
  • FIG. 1 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario of a control method for an unmanned aerial vehicle in an embodiment
  • FIG. 3 is a schematic structural diagram of an angle of a control terminal in an embodiment
  • Fig. 4 is the structural representation of another angle of the control terminal in Fig. 3;
  • FIG. 5 is a schematic block diagram of a control terminal in an embodiment
  • FIG. 6 is a schematic structural diagram of a detection device on a control terminal
  • FIG. 7 is a schematic flowchart of a control method in an embodiment
  • FIG. 8 is a schematic block diagram of a control terminal provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method can be applied to a control terminal or an unmanned aerial vehicle for controlling the unmanned aerial vehicle to perform a preset task to adjust the position and/or attitude and other processes.
  • FIG. 2 is a schematic diagram of a scenario for implementing the control method provided by the embodiment of the present application.
  • the scene includes the unmanned aerial vehicle 100 and a control terminal 200 , the unmanned aerial vehicle 100 is connected in communication with the control terminal 200 , and the control terminal 200 is used to control the unmanned aerial vehicle 100 .
  • the UAV 100 includes a body 110 and a power system 120 disposed on the body 100.
  • the power system 120 may include one or more propellers 121, one or more motors 122 corresponding to the one or more propellers, One or more electronic governors (referred to as ESCs for short).
  • the motor 122 is connected between the electronic governor and the propeller 121, and the motor 122 and the propeller 121 are arranged on the body 110 of the unmanned aerial vehicle 100; the electronic governor is used to receive the driving signal generated by the control system, and provide according to the driving signal Driving current is supplied to the motor 122 to control the rotational speed of the motor 122 .
  • the unmanned aerial vehicle 100 further includes a controller and a sensing system (not shown in FIG. 2 ), the sensing system is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the unmanned aerial vehicle 100 in space , for example, 3D position, 3D angle, 3D velocity, 3D acceleration, 3D angular velocity, etc.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the controller is used to control the movement of the unmanned aerial vehicle 100, for example, the movement of the unmanned aerial vehicle 100 can be controlled according to the attitude information measured by the sensing system. It should be understood that the controller may control the UAV 100 according to pre-programmed instructions.
  • control terminal 200 may include a physical manipulation part 210 .
  • the control part 210 is used to control the UAV 100 to fly in the horizontal direction, control the UAV 100 to turn, control the UAV 100 to roll, or control the UAV 100 to fly in the vertical direction.
  • the manipulation component 210 may be a physical joystick, a physical dial, a physical button, or the like.
  • control terminal 200 may further include a display device 220 , and the display device 220 can provide a virtual control part 210 , for example, the control part 210 may also be a virtual joystick, a slider, a virtual key, a virtual control part in the display device 220 dial etc.
  • the number of the manipulation part 210 may be one or more.
  • it may include control components for controlling the flight of the UAV 100 in the horizontal direction, for controlling the steering of the UAV 100, for controlling the roll of the UAV 100, and for controlling the flight of the UAV 100 in the vertical direction 210.
  • the control terminal 200 includes at least one of a remote controller, a ground control platform, a mobile phone, a tablet computer, a notebook computer, a PC computer, etc.
  • the unmanned aerial vehicle 100 includes a rotary-wing drone, such as a quad-rotor drone, a hexa-rotor UAVs, octa-rotor UAVs, fixed-wing UAVs, or a combination of rotary-wing and fixed-wing UAVs, are not limited here.
  • the unmanned aerial vehicle 100 can be used as both an aerial photography machine and a traversing machine, for example, it can be called an experience machine.
  • the control method of the unmanned aerial vehicle provided by the embodiments of the present application will be introduced in detail in conjunction with the scene in FIG. 2 .
  • the scene in FIG. 2 is only used to explain the control method of the unmanned aerial vehicle provided by the embodiment of the present application, but does not constitute a limitation on the application scenario of the control method of the unmanned aerial vehicle provided by the embodiment of the present application.
  • control method for an unmanned aerial vehicle includes steps S110 to S120.
  • control terminal further includes a control component for setting a control mode of the unmanned aerial vehicle, for example, the control mode of the unmanned aerial vehicle includes a first control mode and a second control mode.
  • the control component may be a physical key, a physical sliding key, or a virtual key or a virtual sliding key, which is not specifically limited in this embodiment of the present application.
  • the mode switching operation includes a user's triggering operation on the control component.
  • the control mode is set to the first control mode or the second control mode.
  • the control mode is set to the second control mode in response to the user's triggering operation on the control component; on the contrary, when the control mode is the second control mode, the control mode is set to the second control mode in response to the user's control
  • the trigger operation of the component sets the control mode to the first control mode.
  • the trigger manipulation includes a single-click operation, a double-click operation or a long-press operation.
  • the control component in the first control mode, is used to control the moving speed and/or the attitude angle of the UAV.
  • the first control mode may be referred to as an angle mode or an aerial photography mode.
  • the control component is used to control the acceleration and/or the angular velocity of attitude adjustment of the unmanned aerial vehicle.
  • the second control mode may be referred to as a fly-through mode or a manual mode (Acro mode).
  • the control terminal includes a control component, and the control component is used to control the position or attitude of the unmanned aerial vehicle in a corresponding control direction.
  • the manipulation components may include physical manipulation components and/or virtual manipulation components.
  • the control terminal can provide a human-computer interaction interface, and the human-computer interaction interface includes several manipulation components.
  • the manipulation component includes at least one of the following: a physical rocker, a physical dial, a physical button, a virtual rocker, a slider, a virtual button, and a virtual dial.
  • the manipulation direction corresponding to the manipulation component includes at least one of the following: up-down direction, front-rear direction, left-right direction, yaw direction, roll direction, and pitch direction.
  • Different control components are used to control the UAV to adjust the flight state in different directions.
  • the left joystick of the remote control is used to control the movement of the unmanned aerial vehicle in the horizontal direction, such as the forward and backward movement and/or the left and right movement in the left and right directions
  • the right joystick of the remote control is used to control the unmanned aerial vehicle.
  • the ascending and descending of the aircraft in the up and down direction and/or the yaw direction of the UAV, so that the UAV rotates clockwise or counterclockwise on the spot, this operation mode can be called the Chinese manual operation mode.
  • the American hand operation mode is also supported, the left joystick of the remote control is used to control the ascent and descent and/or clockwise/counterclockwise rotation of the unmanned aerial vehicle, and the right joystick of the remote control is used to control the unmanned aerial vehicle Back and forth movement and/or left and right movement in the horizontal direction.
  • the Japanese hand operation mode is also supported, the left joystick of the remote control is used to control the forward and backward movement and/or clockwise/counterclockwise rotation of the unmanned aerial vehicle in the front-to-back direction, and the right joystick of the remote control is used to control the unmanned aerial vehicle. Control the ascent and descent of the UAV and/or the left-right movement in the left-right direction.
  • the manipulation direction corresponding to the manipulation component may be determined according to the current operation mode of the control terminal.
  • the current operation mode mode may be determined according to the mode switching operation of the user on the control terminal, such as a Chinese hand operation mode, and the manipulation direction corresponding to each of the manipulation components may be determined according to the operation mode mode.
  • control component in the first control mode, is used to control the moving speed and/or the attitude angle of the UAV.
  • the UAV in response to the position adjustment of the control part of the control terminal, the UAV is adjusted in the up-down direction, the front-rear direction, or the left-right direction target moving speed, or adjust the target attitude angle of the UAV in the yaw direction, roll direction or pitch direction.
  • the target moving speed of the UAV in the up-down direction is adjusted.
  • the control mode is the first control mode
  • the target moving speed or the target attitude angle of the unmanned aerial vehicle is determined according to the adjustment range of the position of the control part; the unmanned aerial vehicle is controlled to fly at the target moving speed or adjust the attitude according to the target attitude angle.
  • different magnitudes of position adjustment can be mapped to different target moving speeds or target attitude angles. It is convenient for users to control the unmanned aerial vehicle more safely in scenarios with low moving speed such as take-off and landing, improving control convenience and user experience.
  • the magnitude of the position adjustment of the manipulation member includes the magnitude of the deviation from the initial position when the user triggers the manipulation member to move in the corresponding direction.
  • the magnitude by which the user triggers the manipulation component to deviate from the initial position toward the first direction may be referred to as the magnitude of position adjustment in the first direction.
  • the extent by which the user triggers the manipulation component to deviate from the initial position toward the second direction may be referred to as the extent of position adjustment in the second direction.
  • the position adjustment range in the first control mode includes the range by which the manipulation component deviates from the first initial position.
  • the first initial position is located in the middle of the movement stroke of the manipulation member.
  • the first initial position includes a middle position of the movement stroke of the control member.
  • the target movement speed or target attitude angle of the UAV in one direction can be determined according to the position adjustment range in the first direction; it can be adjusted according to the position adjustment in the second direction
  • the amplitude determines the target movement speed or target attitude angle of the UAV in another direction.
  • the movement speed in the other direction may be the backward movement speed.
  • the target moving speed or target attitude angle of the unmanned aerial vehicle has a positive correlation with the magnitude of the position adjustment of the control member.
  • the positive correlation between the target moving speed or target attitude angle of the UAV and the magnitude of the position adjustment of the control component includes a linear positive correlation or a nonlinear positive correlation. Since the target movement speed or target attitude angle of the UAV is positively correlated with the position adjustment range of the control part, the greater the adjustment range of the control part position, the larger the target movement speed or target attitude angle of the UAV, The smaller the magnitude of the position adjustment, the smaller the target moving speed or the target attitude angle of the UAV.
  • the target moving speed or the target attitude angle of the unmanned aerial vehicle in the corresponding control direction is zero.
  • the UAV in the first control mode, if the control component is in a preset first initial position, the UAV is controlled to keep the position or attitude unchanged in the control direction.
  • the controlling the unmanned aerial vehicle to keep the position or attitude unchanged in the steering direction includes: determining that the target moving speed of the unmanned aerial vehicle in the steering direction is zero or the target attitude angle is: zero.
  • the position adjustment range of the control member is zero, and the unmanned aerial vehicle in the corresponding control direction is adjusted.
  • the target moving speed or the target attitude angle is zero, so that the UAV keeps the position or attitude unchanged in the control direction.
  • the target moving speed is less than or equal to a preset upper speed limit value, and/or the target attitude angle is less than or equal to a preset angle upper limit value. It can be understood that in the first control mode, the UAV is limited by the maximum speed and/or the attitude angle when flying, which can improve the flight safety.
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled according to the sensor data of the sensor mounted on the unmanned aerial vehicle in the unmanned aerial vehicle. Keep the position or attitude unchanged in the control direction.
  • the senor includes at least one of the following: a GPS receiver, an inertial measurement unit, a barometer, and a time-of-flight sensor.
  • the UAV in the first control mode, if the control member is in a preset first initial position, the UAV is controlled to maintain a horizontal attitude according to the sensor data.
  • the UAV can rely on the sensor data of the GPS receiver, the inertial measurement unit, the barometer, the time-of-flight sensor and the sensor fusion algorithm to pass the flight controller.
  • the algorithm controls the unmanned aerial vehicle to maintain a horizontal attitude, and the user does not need to frequently manually correct the attitude of the unmanned aerial vehicle, so as to achieve self-stable flight.
  • the UAV maintains the position or attitude in the corresponding control direction, and when the control part automatically returns to the first initial position or is triggered by the user to return to the first initial position
  • the unmanned aerial vehicle is controlled according to the sensor data to keep the position or attitude unchanged in the control direction.
  • control component in the second control mode, is used to control the acceleration and/or the angular velocity of attitude adjustment of the unmanned aerial vehicle.
  • the UAV in response to the position adjustment of the control part of the control terminal, the UAV is adjusted in the up-down direction, the front-rear direction, or the left-right direction target acceleration, or adjust the target angular velocity of the UAV in the yaw direction, roll direction or pitch direction.
  • the target acceleration of the unmanned aerial vehicle in the up-down direction is adjusted, so that the unmanned aerial vehicle takes off, raises the altitude or lowers the altitude.
  • the position adjustment range in the second control mode includes the range by which the manipulation component deviates from a preset second initial position.
  • the second initial position of at least one actuating member is different from the first initial position.
  • the first initial position is located in the middle of the movement stroke of the control member
  • the second initial position of the at least one control member is located at one of the two sides of the movement stroke of the control member.
  • the first initial position includes the middle position of the movement stroke of the control member
  • the second initial position of the at least one control member includes the position of the control member at one end of the movement stroke
  • the at least one manipulation component may include an X-axis on the left-hand side of the remote control (American hand operation mode) and/or an X-axis on the right-hand side (Chinese hand operation mode).
  • the initial position of at least one control member is placed at one end of the movement stroke, such as the bottom, and the position adjustment of the control member is unidirectional.
  • the control part can be used as the throttle of the unmanned aerial vehicle, when the control part is in the second initial position, the throttle is 0, and the acceleration of the unmanned aerial vehicle in the corresponding control direction is 0; the control part is in the motion stroke.
  • the unmanned aerial vehicle has the maximum acceleration in the corresponding control direction, for example, the unmanned aerial vehicle can be made to take off against the action of gravitational acceleration; the control part is at the one end of the motion stroke and the first initial Between positions, or at the first initial position, or between the first initial position and the other end of the motion stroke, the unmanned aerial vehicle just hovers against the acceleration of gravity. In some embodiments, when the control member is in the first initial position, the UAV hovers or accelerates up.
  • the second initial position of the control member may be the same as the first initial position.
  • the second initial position of the control member corresponding to the front-rear direction and the left-right direction may also be the movement stroke of the control member. in the middle.
  • the target acceleration or target angular velocity of the unmanned aerial vehicle is determined according to the adjustment range of the position of the control component; the unmanned aerial vehicle is controlled to fly according to the target acceleration or adjust the attitude angle according to the target angular velocity.
  • different magnitudes of position adjustments can be mapped to different target accelerations or target angular velocities.
  • the target acceleration or target angular velocity of the UAV in one direction can be determined according to the position adjustment range in the first direction;
  • the target acceleration or target angular velocity of the human aircraft in another direction, when the second direction is opposite to the first direction, the moving speed in the other direction may be backward acceleration, or may be referred to as deceleration.
  • the target acceleration or target angular velocity of the unmanned aerial vehicle has a positive correlation with the magnitude of the position adjustment of the control member.
  • the positive correlation between the target acceleration or target angular velocity of the UAV and the magnitude of the position adjustment of the control member includes a linear positive correlation or a nonlinear positive correlation. Since the target acceleration or target angular velocity of the UAV has a positive correlation with the position adjustment range of the control part, the greater the position adjustment range of the control part, the larger the target acceleration or target angular velocity of the UAV, and the position adjustment range. The smaller it is, the smaller the target acceleration or target angular velocity of the UAV is.
  • the position adjustment of the control part can cause the acceleration or attitude adjustment angular velocity of the UAV to change, and the user can manually trigger the position adjustment of the control part to continuously correct the flight state of the UAV.
  • the target acceleration or target angular velocity of the unmanned aerial vehicle in the corresponding control direction is zero.
  • the unmanned aerial vehicle if the unmanned aerial vehicle is in a flying state, in the second control mode, the unmanned aerial vehicle will continue to fly in a certain direction when the position adjustment range of the corresponding control member in the front-rear direction or the left-right direction is zero.
  • the position of the control part when the position of the control part is adjusted so that the speed of the UAV in one direction is V, the position of the control part is adjusted to a preset intermediate position, and then the UAV can continue to move at the speed V in this direction.
  • the UAV in the second control mode, if the UAV is in an initial state in the control direction and the control member is in a preset second initial position, the UAV is controlled
  • the position or attitude remains unchanged in the manipulation direction.
  • the unmanned aerial vehicle being in the initial state in the control direction includes: the position or attitude of the unmanned aerial vehicle in the control direction is unchanged, for example, the unmanned aerial vehicle is in a state of not taking off.
  • the initial state in the steering direction includes a state of not taking off.
  • the unmanned aerial vehicle when the unmanned aerial vehicle is in the state of not taking off, if the control member corresponding to the up and down direction is in the preset second initial position, the unmanned aerial vehicle does not have upward acceleration and thus maintains the state of not taking off.
  • the controlling the unmanned aerial vehicle to keep the position or attitude unchanged in the manipulation direction corresponding to the manipulation component includes: determining that the target acceleration of the unmanned aerial vehicle in the manipulation direction is zero or a target Angular velocity is zero.
  • the control part in the second control mode, if the unmanned aerial vehicle is in an initial state in the control direction, such as a state of not taking off and the control part is in a preset second initial position, the control part is in an initial state.
  • the magnitude of the position adjustment is zero, and the target acceleration or target angular velocity of the UAV in the corresponding control direction is zero, so that the UAV keeps the position or attitude unchanged in the control direction.
  • control direction corresponding to the control part is the up and down direction, that is, it is used to control the rise and fall of the unmanned aerial vehicle
  • increasing the position adjustment range of the control part deviating from the second initial position such as increasing the throttle
  • the position adjustment range of the control part deviating from the second initial position is reduced.
  • the method further includes: if the unmanned aerial vehicle is in a flying state and the corresponding control component is in a preset second initial position, controlling the descending speed of the unmanned aerial vehicle to be no higher than drop threshold.
  • the unmanned aerial vehicle usually has a certain height with the ground when flying.
  • the throttle can be reduced to zero, and the unmanned aerial vehicle can Descends under the action of gravitational acceleration.
  • the descending speed of the unmanned aerial vehicle can be controlled not to be higher than the descending threshold, so that the unmanned aerial vehicle can be prevented from being bombed due to the excessive descending speed.
  • the attitude angle of the UAV in the second control mode, has no range display, for example, it can support 360-degree rotation, which is more flexible than the first control mode.
  • the unmanned aerial vehicle in the second control mode, may not be controlled to maintain a horizontal attitude in the control direction according to the sensor data of the sensor mounted on the unmanned aerial vehicle, for example, the enabling may be canceled Sensors can save computing resources and power, and flight control is more flexible.
  • the at least one control member is in a non-centering state, and in the non-centering state, the control member cannot automatically return to the first initial position .
  • the position adjustment of the control part is triggered by the user and does not adjust by itself. For example, wherever the user dials the control part, the control part remains at that position until the user dials it to another position.
  • the at least one manipulation component can automatically return to the first initial position, for example, from a second initial position different from the first initial position Automatically returning to the first initial position, the range of the position adjustment of the control component is different due to the difference of the initial position, so the return of the at least one control component to the first initial position will make the range of the position adjustment not zero , so that the unmanned aerial vehicle has a non-zero acceleration or angular velocity in the control direction corresponding to the at least one control component, and the unmanned aerial vehicle may have unexpected acceleration or angular velocity.
  • control member defined as the accelerator from the middle position of the motion stroke to one end of the motion stroke, and switches to the second control mode
  • the control member starts from the one end.
  • Automatically return to the middle position so that the throttle is increased from 0 to the throttle value corresponding to the middle position of the movement stroke, so that the unmanned aerial vehicle is soaring into the out of control state.
  • the control member By at least in the second control mode, the control member is in a non-centering state, that is, it cannot automatically return to the first initial position, and the second control mode can be switched to the second control mode safely and reliably, such as switching To manual mode or through-aircraft mode, it can eliminate potential safety hazards, greatly improve flight safety and enhance flight reliability.
  • the method further includes: determining, by means of a detection device on the control terminal, that the manipulation component is in a centering state or a non-centering state; in the centering state, the manipulation component is not operated by the user. automatically return to the first initial position.
  • the manipulation component when the manipulation component is in a non-returning state, in response to a user's mode switching operation, it switches to the first control mode or the second control mode.
  • the control part when the control part is in a non-centering state, it can be switched to the second control mode safely and reliably, so it can be switched to the second control mode according to the user's mode switching operation, and in some embodiments, the The second control mode is switched to the first control mode.
  • the control mode when the manipulation member is in a non-centering state, the control mode may be set to the first control mode or the second control mode in response to a user's triggering operation on the control member on the manipulation member.
  • the control component may be a physical key, a physical sliding key, or a virtual key or a virtual sliding key, which is not specifically limited in this embodiment of the present application.
  • the method further includes: when the manipulation component is in a non-centering state, outputting second prompt information, where the second prompt information is used to prompt that the manipulation component is in a non-centering state, and/or outputting a second prompt message.
  • the third prompt information is used to prompt that the current mode is the first control mode or the second control mode.
  • the control component when the control component is in the non-returning state, it outputs third prompt information for prompting that the current mode is the first control mode, and/or output prompt information for prompting the user that it is possible to switch to the second control mode, The user can switch to the second control mode through a mode switching operation according to the prompt information.
  • control member when the control member is in the neutral state, it switches to the first control mode. It can prevent the unmanned aerial vehicle from having unexpected acceleration or angular velocity when the control part automatically returns to the first initial position in the second control mode when it is in the return-to-center state.
  • control part when the control part is in the back-to-center state, if the user's mode switching operation is acquired, first prompt information is output, and the first prompt information is used to prompt that the control part is in the back-to-center state and/or It is not possible to switch to the second control mode.
  • the control part In order for the user to set the control part to the non-centering state, for example, the control part is set to the non-centering state by adjusting the state of the centering device, and the second control mode is switched to the second control mode through a mode switching operation in the non-centering state.
  • the aforementioned prompt information may be output through at least one of a screen, a speaker, and an LED of the control terminal.
  • control terminal may include a remote control.
  • the left rocker assembly 510 includes a rocker structure (with an XY axis magnet) 511, an X axis tension spring 512, a Y axis tension spring 513, an X axis Hall sensor 514, a Y axis Hall sensor 515, a return Middle screw 516, damping screw 517, left-back middle detection switch 518, etc.
  • the structure of the right rocker assembly 520 is exactly the same as that of the left rocker assembly 510 , and the right rocker assembly 520 and the left rocker assembly 510 may be centrally symmetrically distributed.
  • the interconnection mode of the right back center detection switch 521 in the right rocker assembly 520 is consistent with the left back center detection switch 518 .
  • the implementation manner of the rocker structure can be diversified, and the structure form of the rocker can be a tension spring, but is not limited to a tension spring, for example, a torsion spring.
  • the angle sensors of X-axis and Y-axis are not limited to linear Hall sensors, for example, potentiometers, 3D Hall sensors, etc. can also be used.
  • the rocker structure 511 includes a rocker, and the lower side of the rocker is provided with a magnet for generating a stable magnetic field.
  • the rocker is fixed in the X-axis direction by the X-axis tension spring 512 , and in the Y-axis direction by the Y-axis tension spring 513 .
  • the rocker assembly is arranged with linear Hall sensors in the X-axis and Y-axis directions respectively, which are used to measure the rotation angle of the rocker in the two axial directions.
  • the X-axis Hall sensor 514 and the Y-axis Hall sensor 515 are in communication with the controller 550, respectively.
  • the joystick when the joystick rotates in the X-axis direction, it drives the X-axis magnet to rotate, and the X-axis magnetic field changes, which is detected by the X-axis Hall sensor 514, and the X-axis Hall sensor 514 transmits information to the controller 550, so that the controller The 550 can get the rotation angle of the joystick in two axes in real time. The same is true for the Y axis.
  • the control terminal includes a centering device, and the user can adjust the state of the centering device to enable the control member to automatically return to the first initial position, or to prevent the control member from automatically returning to the first initial position. initial position.
  • the centering device includes a centering screw 516.
  • the left rocker assembly 510 further includes a centering screw 516, or can be referred to as a mode-switching centering screw. The centering screw can prevent the rocker from returning to the center when it is locked.
  • the centering screw 516 is connected to the Y-axis tension spring 513 .
  • the Y-axis tension spring 513 will be locked, and the rocker will not return to the center in the Y-axis direction.
  • the rocker cannot automatically return to the middle position in the Y-axis direction.
  • the position adjustment in the axis direction is triggered by the user and does not adjust by itself. For example, to which position the user moves the joystick in the Y-axis direction, the joystick remains at that position in the Y-axis direction until the user moves it to another position. .
  • the remote control supports "American Hand”, “Japanese Hand” or “Chinese Hand”. If the user uses the American hand to control the UAV, in order to adjust the remote control to enter the drone mode, the user should lock the centering screw 516 of the left joystick assembly 510 to lock the Y-axis tension spring 513. The joystick is no longer centered in the Y-axis direction. If the user controls the UAV with Japanese hands or Chinese hands, in order to adjust the remote control to enter the drone mode, the user should lock the centering screw of the right joystick assembly 520 to lock the Y-axis tension spring. The right stick is no longer centered in the Y-axis direction.
  • the left rocker assembly 510 further includes a damping screw 517 .
  • the damping screw 517 can adjust the damping of the joystick in the state of not returning to the center in the Y-axis direction, so as to satisfy the user's hand feeling requirement in the flying machine mode.
  • the detection device of the control terminal can detect the state of the centering device, and determine whether the manipulation component is in the centering state or the non-centering state according to the state of the centering device.
  • the detection device may include the left center detection switch 518 and/or the right center detection switch 521 on the remote control, and the manipulation may be determined according to the switch state of the center return detection switch. Parts, such as the joystick in the Y-axis direction, is in the centering state or not in the centering state.
  • the rocker structure 511 when the user locks the centering screw 516 to set the rocker not to center, the rocker structure 511 will contact the left centering detection switch 518. For example, with the locking of the centering screw 516, the rocker structure A part of 511 moves toward the left center detection switch 518 to trigger the change of the switch state of the left center detection switch 518. At this time, the controller 550 can detect that the left center detection switch 518 is pressed, and determine that the joystick is in the non-center state. .
  • the return-to-center detection switch includes, for example, a micro switch.
  • the centering screw 516 is connected to the Y-axis tension spring 513 and the left centering detection switch 518 .
  • the Y-axis tension spring 513 will be locked, and the rocker will not return to the center in the Y-axis direction.
  • tightening the centering screw 516 will trigger the left-centering detection switch 518, and the upper switch signal of the left-centering detection switch 518 triggers the controller 550 to inform the controller 550 that the joystick is in a non-centering state at this time, and the controller 550 executes subsequent logic control , eg, in response to a user's mode switching operation, switching to the first control mode or the second control mode.
  • the detection device of the control terminal is not limited to include a center return detection switch in the form of a switch button, for example, a photoelectric switch, a Hall switch, and the like.
  • the control component of the control terminal includes an aerial photography mode/transit plane mode switching button 530 .
  • the controller 550 can set the control mode to the first control mode or the second control mode in response to the user's triggering operation on the aerial photography mode/travel mode switching button 530 .
  • the aerial photography mode/traversing aircraft mode switching button 530 is not limited to the three-speed boat switch, any button, switch, or even a virtual button on the screen can be used.
  • the remote control can switch from the fly-through mode to the aerial mode. At this time, the user can be prompted by the screen or voice that the remote control is not in the center of the joystick. state, the system enters the aerial photography mode and uses the aerial photography machine control logic. If the joystick does not return to center, when the user presses the switch button of aerial photography mode/pilot mode, the remote control can switch from aerial photography mode to fly-through mode, and the user can be prompted by the screen or voice that the joystick does not return to center, and the system is successful Enter the ride-through mode and use the ride-through control logic.
  • the control logic of the aerial photography machine includes: control components, such as joysticks, used to control the moving speed and/or attitude angle of the unmanned aerial vehicle.
  • the traversing aircraft control logic includes: manipulation components, such as joysticks, used to control the acceleration and/or the angular velocity of attitude adjustment of the UAV.
  • the Y-axis of the remote control can be adjusted to a non-centering state, and at the same time, the centering screw can trigger the centering detection switch.
  • the controller can simultaneously know the rotation angle of the X and Y axes of the joystick, the return state and the mode switching state in real time, and provides a set of closed-loop detection control logic to achieve reliable switching between the aerial photography mode and the drone mode. It can be understood that the control modes that can be entered in each state are different by detecting whether the joystick can be returned to the center and whether the mode switching button is pressed. The corresponding remote control peripherals will perform different user reminder operations.
  • control mode of the UAV is not limited to include the first control mode or the second control mode, for example, it may also include the third control mode. This enables the UAV to have more diverse control modes, enriching the user's interest and experience.
  • the method further includes: switching to a third control mode in response to a user's mode switching operation when the manipulation component is in a non-centering state.
  • a third control mode if the magnitude of the position adjustment of the control member is less than or equal to the magnitude threshold, switch to the first control mode, and if the magnitude of the position adjustment of the control member is greater than the magnitude threshold, Switch to the second control mode.
  • the third control mode may also be referred to as a semi-autonomous mode, and the range of adjustment of the position of the control component is less than or equal to a preset range, for example, when the joystick of the remote control is within a certain angle, the first control mode, that is, self-stabilizing mode control; the adjustment range of the position of the control part is greater than the preset range, such as when the amount of the joystick exceeds a certain angle of travel, the second control mode, that is, manual mode control, can make the ride-through machine flip over 90 degrees Spend.
  • the third control mode the difficulty of operation and control can be reduced, and the excitement of flying can also be increased.
  • control mode of the unmanned aerial vehicle may further include an opportunity-seeking chirping mode.
  • the motor of the UAV will emit a beep of a certain frequency, which is convenient for the user to find the UAV when the UAV hits or falls on the ground.
  • control mode of the UAV may also include an anti-turtle mode.
  • the UAV When the UAV hits or falls and causes the UAV to be upside down on the ground, it can switch to the anti-turtle mode, and adjust the position of any or preset control components of the control terminal to make the UAV roll to a horizontal state and continue to fly.
  • the unmanned aerial vehicle is adjusted to the first control mode or the second control mode by responding to the user's mode switching operation; and in response to the position adjustment of the control part of the control terminal The position or attitude in the control direction corresponding to the control part; wherein, in the first control mode, if the control part is in the preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the first control mode In the second control mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to keep the position or attitude unchanged in the control direction corresponding to the control part; at least one of them
  • the second initial position of the manipulation member is different from the first initial position, and at least in the second control mode, the manipulation member cannot automatically return to the first initial position. It can eliminate potential safety hazards, improve flight safety and enhance flight reliability.
  • FIG. 8 is a schematic block diagram of a control terminal 600 provided by an embodiment of the present application.
  • the control terminal 600 may include at least one of a remote control, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a wearable device, and the like.
  • the control terminal 600 can be connected with the unmanned aerial vehicle for communication.
  • the control terminal 600 includes one or more processors 601, and the one or more processors 601 work individually or together to execute the aforementioned control method of the unmanned aerial vehicle.
  • control terminal 600 further includes a memory 602 .
  • the processor 601 and the memory 602 are connected through a bus 603, and the bus 603 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 601 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 601 is configured to run a computer program stored in the memory 602, and implement the following steps when executing the computer program:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • control terminal The specific principles and implementation manners of the control terminal provided by the embodiments of the present application are similar to the control methods of the unmanned aerial vehicles in the foregoing embodiments, which will not be repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to implement the unmanned aerial vehicle provided by the foregoing embodiments.
  • the steps of the control method are described in detail below.
  • the computer-readable storage medium may be an internal storage unit of the control terminal described in any of the foregoing embodiments, such as a hard disk or a memory of the control terminal.
  • the computer-readable storage medium may also be an external storage device of the control terminal, such as a plug-in hard disk equipped on the control terminal, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) ) card, Flash Card, etc.
  • control method of the unmanned aerial vehicle of the foregoing embodiments can also be used in the unmanned aerial vehicle and/or the control device of the unmanned aerial vehicle, for interacting with the control terminal to perform preset tasks, such as adjusting the position and / or posture, etc. process.
  • the control terminal uses the information used to indicate the user's mode switching operation, the information used to indicate the position adjustment of the control part of the control terminal, the information used to indicate that the control part is in the returning state or the non-returning state, and the control At least one of the status information of the detection device on the terminal, the rod amount corresponding to the position of the control part, etc. is sent to the unmanned aerial vehicle and/or the control device of the unmanned aerial vehicle through the uplink channel, the unmanned aerial vehicle and/or the unmanned aerial vehicle The control device of the aircraft executes the preset task according to the information sent by the control terminal.
  • control method for the unmanned aerial vehicle and/or the control device of the unmanned aerial vehicle are similar to the control method for the terminal unmanned aerial vehicle in the foregoing embodiment, and will not be repeated here.
  • FIG. 9 is a schematic block diagram of an unmanned aerial vehicle 700 provided by an embodiment of the present application.
  • the UAV may be a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, or a fixed-wing UAV.
  • the unmanned aerial vehicle 700 can be used as both an aerial photography aircraft and a traversing aircraft, for example, it can be called an experience aircraft.
  • the unmanned aerial vehicle 700 includes one or more processors 701, and the one or more processors 701 work individually or collectively to execute the aforementioned control method of the unmanned aerial vehicle.
  • UAV 700 also includes memory 702 .
  • the processor 701 and the memory 702 are connected through a bus 703, and the bus 703 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 701 is configured to run the computer program stored in the memory 702, and implement the aforementioned control method of the unmanned aerial vehicle when the computer program is executed.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the following steps when executing the computer program:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and when the computer program is executed by a processor, the processor implements the The steps of the control method of the unmanned aerial vehicle provided by the above embodiments.
  • the computer-readable storage medium may be an internal storage unit of the unmanned aerial vehicle described in any of the foregoing embodiments, such as a hard disk or a memory of the unmanned aerial vehicle.
  • the computer-readable storage medium may also be an external storage device of the unmanned aerial vehicle, such as a plug-in hard disk equipped on the unmanned aerial vehicle, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) , SD) card, flash memory card (Flash Card), etc.
  • FIG. 10 is a schematic block diagram of a control apparatus 800 for an unmanned aerial vehicle provided by an embodiment of the present application.
  • the UAV may be a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, or a fixed-wing UAV.
  • the control device 800 is, for example, a flight control component of an unmanned aerial vehicle.
  • the control device 800 includes one or more processors 801, and the one or more processors 801 work individually or together to execute the aforementioned control method of the unmanned aerial vehicle.
  • control device 800 further includes a memory 802 .
  • the processor 801 and the memory 802 are connected through a bus 803, and the bus 803 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 801 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 802 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • ROM Read-Only Memory
  • the memory 802 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • the processor 801 is configured to run the computer program stored in the memory 802, and implement the aforementioned control method of the unmanned aerial vehicle when the computer program is executed.
  • the processor 801 is configured to run a computer program stored in the memory 802, and implement the following steps when executing the computer program:
  • the unmanned aerial vehicle in the first control mode, if the control component is in a preset first initial position, the unmanned aerial vehicle is controlled to keep the position or attitude unchanged in the control direction; in the second control In the mode, if the UAV is in the initial state in the control direction and the control part is in the preset second initial position, control the UAV to maintain the position in the control direction corresponding to the control part or the posture remains unchanged; the second initial position of at least one manipulation component is different from the first initial position;
  • the at least one manipulation member is in a non-centering state, and the manipulation member cannot automatically return to the first initial position in the non-centering state.
  • control device for the unmanned aerial vehicle provided by the embodiment of the present application are similar to the control method of the unmanned aerial vehicle in the foregoing embodiments, and are not repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and when the computer program is executed by a processor, the processor implements the The steps of the control method of the unmanned aerial vehicle provided by the above embodiments.
  • the computer-readable storage medium may be an internal storage unit of the control device described in any of the foregoing embodiments, such as a hard disk or a memory of the control device.
  • the computer-readable storage medium may also be an external storage device of the control device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the control device ) card, Flash Card, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人飞行器的控制方法,包括:响应于用户的模式切换操作,切换至第一控制模式或第二控制模式(S110);响应于控制终端的操控部件的位置调整,调整无人飞行器在操控部件对应的操控方向上的位置或姿态(S120);在第二控制模式时,若无人飞行器在操控方向上处于初始状态且操控部件处于第二初始位置,控制无人飞行器在对应的操控方向上保持位置或姿态不变;在第二控制模式时,至少一个操控部件不能够自动回到第一控制模式的第一初始位置。本申请能够提高安全性。还提供了无人飞行器及其控制装置、控制终端和存储介质。

Description

无人飞行器及其控制方法、装置、控制终端和存储介质 技术领域
本申请涉及无人飞行器技术领域,尤其涉及一种无人飞行器及其控制方法、装置、控制终端和存储介质。
背景技术
无人飞行器可以广泛应用于消费类无人机和行业类无人机领域。目前,用户主要通过控制终端上的操控部件来控制无人机完成一系列动作,随着使用无人机的用户的不断增多,越来越多的专业用户对无人机的飞行体验、飞行安全以及操控便捷性提出了更高的要求。因此,如何提出一种更加安全、操作性更便利、飞行体验更好的控制策略是目前亟待解决的问题。
发明内容
本申请提供了一种无人飞行器及其控制方法、装置、控制终端和存储介质,能够提供安全、操作性便利、飞行体验好的控制策略。
第一方面,本申请实施例提供了一种无人飞行器的控制方法,所述无人飞行器与所述控制终端通信连接;所述方法包括:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初 始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
第二方面,本申请实施例提供了一种控制终端,能够与无人飞行器通信连接,所述控制终端还包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
第三方面,本申请实施例提供了一种无人飞行器的控制装置,能够搭载于所述无人飞行器,以及能够与控制终端通信连接;
所述控制装置包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
第四方面,本申请实施例提供了一种无人飞行器,能够与控制终端通信连接,所述无人飞行器包括:
机体;
动力***,设于所述机体上,用于为所述无人飞行器提供飞行动力;
所述无人飞行器还包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法。
本申请实施例提供了一种无人飞行器及其控制方法、装置、控制终端和存储介质,通过响应于用户的模式切换操作切换至第一控制模式或第二控制模式;以及响应于控制终端的操控部件的位置调整,调整无人飞行器在操控部件对应的操控方向上的位置或姿态;其中,在第一控制模式时,若操控部件处于预设的第一初始位置,控制无人飞行器在操控方向上保持位置或姿态不变;在第二控制模式时,若无人飞行器在操控方向上处于初始状态且操控部件处于预设的第二初始位置,控制无人飞行器在操控部件对应的操控方向上保持位置或姿态不变;其中至少一个操控部件的第二初始位置与第一初始位置不同,且至少在 第二控制模式时,该操控部件不能够自动回到第一初始位置。可以消除安全隐患,提高飞行安全,增强飞行可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行器的控制方法的流程示意图;
图2是一实施方式中无人飞行器的控制方法的应用场景的示意图;
图3是一实施方式中控制终端一角度的结构示意图;
图4是图3中控制终端另一角度的结构示意图;
图5是一实施方式中控制终端的示意性框图;
图6是控制终端上的检测装置的结构示意图;
图7是一实施方式中控制方法的流程示意图;
图8是本申请实施例提供的一种控制终端的示意性框图;
图9是本申请实施例提供的一种无人飞行器的示意性框图;
图10是本申请实施例提供的一种无人飞行器的控制装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种无人飞行器的控制方法的流程示意图。该控制方法可以应用于控制终端或无人飞行器,用于控制无人飞行器执行预设任务以调整位置和/或姿态等过程。
请参阅图2,图2是实施本申请实施例提供的控制方法的一场景示意图。如图2所示,该场景包括无人飞行器100和控制终端200,无人飞行器100与控制终端200通信连接,控制终端200用于控制无人飞行器100。
其中,该无人飞行器100包括机体110和设于机体100上的动力***120,该动力***120可以包括一个或多个螺旋桨121、与一个或多个螺旋桨相对应的一个或多个电机122、一个或多个电子调速器(简称为电调)。其中,电机122连接在电子调速器与螺旋桨121之间,电机122和螺旋桨121设置在无人飞行器100的机体110上;电子调速器用于接收控制***产生的驱动信号,并根据驱动信号提供驱动电流给电机122,以控制电机122的转速。电机122用于驱动螺旋桨121旋转,从而为无人飞行器100的飞行提供动力,该动力使得无人飞行器100能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
其中,无人飞行器100还包括控制器和传感***(图2中未示出),该传感***用于测量无人飞行器的姿态信息,即无人飞行器100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感***例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。控制器用于控制无人飞行器100的移动,例如,可以根据传感***测量的姿态信息控制无人飞行器100的移动。应理解,控制器可以按照预先编好的程序指令对无人飞行器100进行控制。
其中,控制终端200可以包括实体的操控部件210。该操控部件210用于控制无人飞行器100在水平方向的飞行、控制无人飞行器100转向、控制无人 飞行器100翻滚或控制无人飞行器100在垂直方向的飞行。该操控部件210可以是物理摇杆、物理拨轮、物理按键等。
在一些实施方式中,控制终端200还可以包括显示装置220,显示装置220能够提供虚拟的操控部件210,例如操控部件210也可以是显示装置220中的虚拟摇杆、滑条、虚拟按键、虚拟拨轮等。
操控部件210的数量可以是一个,也可以是多个。例如,可以包括用于控制无人飞行器100在水平方向的飞行、用于控制无人飞行器100转向、用于控制无人飞行器100翻滚,用于控制无人飞行器100在垂直方向的飞行的操控部件210。
其中,控制终端200包括遥控器、地面控制平台、手机、平板电脑、笔记本电脑和PC电脑等中的至少一种,无人飞行器100包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。在一些实施方式中,所述无人飞行器100既可以作为航拍机,又可以作为穿越机,例如可以称为体验机。
以下,将结合图2中的场景对本申请的实施例提供的无人飞行器的控制方法进行详细介绍。需知,图2中的场景仅用于解释本申请实施例提供的无人飞行器的控制方法,但并不构成对本申请实施例提供的无人飞行器的控制方法应用场景的限定。
如图1所示,本申请实施例的无人飞行器的控制方法包括步骤S110至步骤S120。
S110、响应于用户的模式切换操作,切换至第一控制模式或第二控制模式。
在一些实施方式中,控制终端还包括控制部件,该控制部件用于设置无人飞行器的控制模式,无人飞行器的控制模式例如包括第一控制模式和第二控制模式。其中,控制部件可以是物理按键、物理滑动键、也可以是虚拟按键、虚拟滑动键,本申请实施例对此不做具体限定。
示例性的,模式切换操作包括用户对该控制部件的触发操作。响应于用户对该控制部件的触发操作,将控制模式设置为第一控制模式或第二控制模式。例如,在控制模式为第一控制模式时,响应于用户对该控制部件的触发操作,将控制模式设置为第二控制模式,反之,在控制模式为第二控制模式时,响应于用户对控制部件的触发操作,将控制模式设置为第一控制模式。其中,该触 发操控包括单击操作、双击操作或长按操作。通过该控制部件可以方便用户快速的切换控制模式,提高用户体验。当然也不限于此,例如可以通过不同的触发操作来切换至不同的所述控制模式,可以方便用户快速的切换控制模式,提高用户体验。
示例性的,在第一控制模式下,操控部件用于控制无人飞行器的移动速度和/或姿态角度。在一些实施方式中,第一控制模式可以称为自稳模式(Angle mode)或者航拍模式。
示例性的,在第二控制模式下,操控部件用于控制无人飞行器的加速度和/或姿态调整的角速度。在一些实施方式中,第二控制模式可以称为穿越机模式或者手动模式(Acro mode)。
S120、响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态。
在一些实施方式中,所述控制终端包括操控部件,所述操控部件用于控制所述无人飞行器在对应的操控方向上的位置或姿态。可以理解的,操控部件可以包括实体的操控部件和/或虚拟的操控部件。示例性的,所述控制终端能够提供人机交互界面,人机交互界面包括若干操控部件。示例性的,操控部件包括以下至少一种:物理摇杆、物理拨轮、物理按键、虚拟摇杆、滑条、虚拟按键、虚拟拨轮。
在一些实施方式中,所述操控部件对应的操控方向包括以下至少一种:上下方向、前后方向、左右方向、偏航方向、翻滚方向、俯仰方向。不同的操控部件用于操控无人飞行器在不同的方向上调整飞行状态。
示例性的,遥控器的左摇杆用于控制无人飞行器在水平方向上的移动,如前后方向的前后移动和/或左右方向上的左右移动,遥控器的右摇杆用于控制无人飞行器在上下方向的上升下降和/或无人飞行器的偏航方向,以使无人飞行器原地顺时针或者逆时针旋转,这种操作方式可以称为中国手操作方式。
示例性的,还支持美国手操作方式,遥控器的左摇杆用于控制无人飞行器的上升下降和/或原地顺时针/逆时针旋转,遥控器的右摇杆用于控制无人飞行器在水平方向上的前后移动和/或左右移动。示例性的,还支持日本手操作方式,遥控器的左摇杆用于控制无人飞行器在前后方向上的前后移动和/或原地顺时针/逆时针旋转,遥控器的右摇杆用于控制无人飞行器的上升下降和/或在左右 方向上的左右移动。
在一些实施方式中,可以根据所述控制终端当前的操作方式模式,确定所述操控部件对应的操控方向。示例性性的,可以根据用户在控制终端上的模式切换操作确定当前的操作方式模式,如中国手操作方式,根据所述操作方式模式确定各所述操控部件对应的操控方向。
示例性的,在第一控制模式下,操控部件用于控制无人飞行器的移动速度和/或姿态角度。
在一些实施方式中,在所述第一控制模式时,响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述上下方向、所述前后方向或者所述左右方向上目标移动速度,或者调整所述无人飞行器在所述偏航方向、翻滚方向或者俯仰方向上的目标姿态角度。例如,响应于所述控制终端的其中一个操控部件的位置调整,调整所述无人飞行器在所述上下方向上的目标移动速度。
示例性的,若控制模式为第一控制模式,则根据操控部件位置调整的幅度确定无人飞行器的目标移动速度或目标姿态角度;控制无人飞行器按照目标移动速度飞行或按照目标姿态角度调整姿态。在第一控制模式下,不同的位置调整的幅度可以映射为不同的目标移动速度或目标姿态角度。可以方便用户在起飞和降落等移动速度较小的场景下更安全的操控无人飞行器,提高控制便利性和用户体验。
具体的,操控部件的位置调整的幅度包括用户触发操控部件向着对应方向运动而偏离初始位置的幅度。
示例性的,用户触发操控部件向着第一方向偏离初始位置的幅度,可以称为第一方向的位置调整幅度。用户触发操控部件向着第二方向偏离初始位置的幅度,可以称为第二方向的位置调整幅度。
示例性的,在第一控制模式下的位置调整幅度包括操控部件偏离第一初始位置的幅度。
在一些实施方式中,所述第一初始位置位于所述操控部件运动行程的中部。示例性的,所述第一初始位置包括操控部件运动行程的中间位置。
在第一控制模式下,可以根据所述第一方向的位置调整幅度确定无人飞行器在一方向上的目标移动速度或目标姿态角度,例如前向移动速度;可以根据所述第二方向的位置调整幅度确定无人飞行器在另一方向上的目标移动速度或 目标姿态角度,当第二方向与第一方向相反时,所述另一方向上的移动速度可以为后向移动速度。
示例性的,在第一控制模式下,无人飞行器的目标移动速度或目标姿态角度与操控部件的位置调整的幅度呈正相关关系。例如,无人飞行器的目标移动速度或目标姿态角度与操控部件的位置调整的幅度之间的正相关关系包括线性的正相关关系或非线性的正相关关系。由于无人飞行器的目标移动速度或目标姿态角度与操控部件的位置调整的幅度呈正相关关系,因此,操控部件位置调整的幅度越大,则无人飞行器的目标移动速度或目标姿态角度越大,位置调整的幅度越小,则无人飞行器的目标移动速度或目标姿态角度越小。
示例性的,在第一控制模式下,操控部件的位置调整的幅度为零时,无人飞行器在对应操控方向上的目标移动速度或目标姿态角度为零。
在一些实施方式中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变。
示例性的,所述控制所述无人飞行器在所述操控方向上保持位置或姿态不变,包括:确定所述无人飞行器在所述操控方向上的目标移动速度为零或目标姿态角度为零。
示例性的,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,如中间位置,操控部件的位置调整的幅度为零,无人飞行器在对应操控方向上的目标移动速度或目标姿态角度为零,以使无人飞行器在所述操控方向上保持位置或姿态不变。
在一些实施方式中,在所述第一控制模式时,所述目标移动速度小于或等于预设的速度上限值,和/或所述目标姿态角度小于或等于预设的角度上限值。可以理解的,在所述第一控制模式时,无人飞行器在飞行时由最大速度的限制和/或姿态角度的限制,可以提高飞行的安全性。
在一些实施方式中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,根据所述无人飞行器搭载的传感器的传感器数据控制所述无人飞行器在所述操控方向上保持位置或姿态不变。
示例性的,所述传感器包括如下至少一种:GPS接收器、惯性测量单元、气压计、飞行时间传感器。
示例性的,在所述第一控制模式时,若所述操控部件处于预设的第一初始 位置,根据所述传感器数据控制所述无人飞行器保持水平姿态。
所述第一控制模式下,操控部件处于预设的第一初始位置时,无人飞行器能够依靠GPS接收器、惯性测量单元、气压计、飞行时间传感器的传感器数据和传感器融合算法,通过飞控算法控制所述无人飞行器保持水平姿态,可以不需要用户频繁手动修正无人飞行器的姿态,实现自稳飞行。例如在用户触发操控部件向着第一方向偏离第一初始位置之后,无人飞行器在对应的操控方向上保持位置或姿态,当操控部件自动回到第一初始位置或者由用户触发回到第一初始位置时,根据传感器数据控制所述无人飞行器在所述操控方向上保持位置或姿态不变。
示例性的,在第二控制模式下,操控部件用于控制无人飞行器的加速度和/或姿态调整的角速度。
在一些实施方式中,在所述第二控制模式时,响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述上下方向、所述前后方向或者所述左右方向上的目标加速度,或者调整所述无人飞行器在所述偏航方向、翻滚方向或者俯仰方向上的目标角速度。例如,响应于所述控制终端的其中一个操控部件的位置调整,调整所述无人飞行器在所述上下方向上的目标加速度,以便无人飞行器起飞、提升高度或降低高度。
示例性的,在第二控制模式下的位置调整幅度包括操控部件偏离预设的第二初始位置的幅度。至少一个操控部件的所述第二初始位置与所述第一初始位置不同。
示例性的,所述第一初始位置位于所述操控部件运动行程的中部,所述至少一个操控部件的第二初始位置位于所述操控部件运动行程的两侧中的一侧。
例如,所述第一初始位置包括操控部件运动行程的中间位置,所述至少一个操控部件的第二初始位置包括操控部件处于运动行程一端的位置。
示例性的,所述至少一个操控部件可以包括遥控器左手侧的X轴(美国手操作方式)和/或右手侧的X轴(中国手操作方式)。
示例性的,在第二控制模式下,有至少一个操控部件的初始位置置于运动行程的一端,如底部,该操控部件的位置调整是单方向的。示例性的,该操控部件可以作为无人飞行器的油门,该操控部件处于所述第二初始位置时油门为0,无人飞行器在对应操控方向上的加速度为0;该操控部件处于运动行程的另 一端,如顶部时,无人飞行器在对应操控方向上具有最大的加速度,例如可以使得无人飞行器克服重力加速度的作用而起飞;该操控部件处于运动行程的所述一端和所述第一初始位置之间时,或者处于所述第一初始位置时,或者处于所述第一初始位置和运动行程的所述另一端之间时,所述无人飞行器刚好克服重力加速度而悬停。在一些实施方式中,该操控部件处于所述第一初始位置时,无人飞行器悬停或加速上升。
在一些实施方式中,还可以有操控部件的所述第二初始位置与所述第一初始位置相同,如前后方向、左右方向对应的操控部件的第二初始位置也可以是操控部件运动行程的中间位置。
示例性的,若控制模式为第二控制模式,则根据操控部件位置调整的幅度确定无人飞行器的目标加速度或目标角速度;控制无人飞行器按照目标加速度飞行或按照目标角速度调整姿态角度。在第二控制模式下,不同的位置调整的幅度可以映射为不同的目标加速度或目标角速度。通过根据操控部件的位置调整控制无人飞行器的加速度或体态调整的角速度,用户可以自主控制无人飞行器,如穿越机的姿态,可以给用户带来更快速的飞行体验,从而带来更多的飞行刺激感。
在第二控制模式下,可以根据所述第一方向的位置调整幅度确定无人飞行器在一方向上的目标加速度或目标角速度,例如前向加速度;可以根据所述第二方向的位置调整幅度确定无人飞行器在另一方向上的目标加速度或目标角速度,当第二方向与第一方向相反时,所述另一方向上的移动速度可以为后向加速度,或者可以称为减速度。
示例性的,在第二控制模式下,无人飞行器的目标加速度或目标角速度与操控部件的位置调整的幅度呈正相关关系。例如,无人飞行器的目标加速度或目标角速度与操控部件的位置调整的幅度之间的正相关关系包括线性的正相关关系或非线性的正相关关系。由于无人飞行器的目标加速度或目标角速度与操控部件的位置调整的幅度呈正相关关系,因此,操控部件位置调整的幅度越大,则无人飞行器的目标加速度或目标角速度越大,位置调整的幅度越小,则无人飞行器的目标加速度或目标角速度越小。
在第二控制模式下,操控部件的位置调整可以引起无人飞行器的加速度或姿态调整角速度的变化,用户可以通过手动触发操控部件的位置调整,不断修 正无人飞行器的飞行状态。
示例性的,在第二控制模式下,操控部件的位置调整的幅度为零时,无人飞行器在对应操控方向上的目标加速度或目标角速度为零。
示例性的,若所述无人飞行器处于飞行状态,在第二控制模式下,前后方向或左右方向对应的操控部件的位置调整的幅度为零时,无人飞行器会沿着某方向继续飞行。例如在操控部件的位置调整使无人飞行器在一方向上的速度为V时将操控部件的位置调整至预设的中间位置,之后无人飞行器可以在该方向上继续以速度V移动。
在一些实施方式中,在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变。示例性的,所述无人飞行器在所述操控方向上处于初始状态,包括:所述无人飞行器在所述操控方向上位置或姿态不变,例如包括所述无人飞行器处于未起飞状态。
示例性的,所述在所述操控方向上处于初始状态,包括:未起飞的状态。例如,所述无人飞行器处于未起飞的状态时,若上下方向对应的操控部件处于预设的第二初始位置时,无人飞行器不具有向上的加速度因而保持不起飞的状态。
示例性的,所述控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变,包括:确定所述无人飞行器在所述操控方向上的目标加速度为零或目标角速度为零。
示例性的,在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态,如未起飞的状态且所述操控部件处于预设的第二初始位置,操控部件的位置调整的幅度为零,无人飞行器在对应操控方向上的目标加速度或目标角速度为零,以使无人飞行器在所述操控方向上保持位置或姿态不变。
示例性的,若操控部件对应的操控方向为上下方向,即用于控制无人飞行器的上升下降,增大操控部件偏离所述第二初始位置的位置调整幅度,如加大油门,可以使无人飞行器克服重力加速度上升,减小操控部件偏离所述第二初始位置的位置调整幅度,如减小油门,可以使无人飞行器下降。
在一些实施方式中,所述方法还包括:若所述无人飞行器处于飞行状态,且对应的所述操控部件处于预设的第二初始位置,控制所述无人飞行器的下降 速度不高于下降阈值。
无人飞行器在飞行时通常与地面具有一定的高度,在无人飞行器处于飞行状态时,若上下方向对应的操控部件处于预设的第二初始位置,油门可以减小至零,无人飞行器可以在重力加速度作用下下降。可选的,可以控制所述无人飞行器的下降速度不高于下降阈值,从而可以防止无人飞行器下降速度过大而炸机。
在一些实施方式中,在所述第二控制模式时,无人飞行器的姿态角度没有范围显示,例如可以支持360度旋转,相比第一控制模式更加灵活。
在一些实施方式中,在所述第二控制模式时,可以不根据所述无人飞行器搭载的传感器的传感器数据控制所述无人飞行器在所述操控方向上保持水平姿态,例如可以取消使能传感器以节省计算资源和电能,飞行控制更加灵活。
在一些实施方式中,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。例如操控部件的位置调整由用户触发而不自行调整,例如用户将操控部件拨到哪个位置,操控部件就在该位置保持不动,直至用户将其拨到另一位置。
在用户进行模式切换操作以切换至所述第二控制模式时,若所述至少一个操控部件能够自动回到所述第一初始位置,例如从与所述第一初始位置不同的第二初始位置自动回到所述第一初始位置,由于初始位置的不同使得操控部件的位置调整的幅度也不同,因此所述至少一个操控部件回到所述第一初始位置会使位置调整的幅度不为零,从而使得无人飞行器在所述至少一个操控部件对应的操控方向上具有非零的加速度或角速度,无人飞行器会出现预料之外的加速度或角速度。
例如用户将定义为油门的操控部件从运动行程的中间位置拉到运动行程的一端,以及切换至所述第二控制模式时,在用户松开所述操控部件时,该操控部件从所述一端自动回到所述中间位置,使得油门从0增加到运动行程的中间位置对应的油门值,使无人飞行器一飞冲天进入失控状态。
通过至少在所述第二控制模式时,使所述操控部件处于不回中状态,即不能够自动回到所述第一初始位置,可以安全可靠的切换至所述第二控制模式,如切换至手动模式或穿越机模式,可以消除安全隐患,大大提高飞行安全,增 强飞行可靠性。
在一些实施方式中,所述方法还包括:通过所述控制终端上的检测装置确定所述操控部件处于回中状态或不回中状态;所述回中状态时所述操控部件在用户未操作时自动回到所述第一初始位置。
示例性的,所述操控部件处于不回中状态时,响应于用户的模式切换操作,切换至第一控制模式或第二控制模式。在操控部件处于不回中状态时,可以安全可靠的切换至所述第二控制模式,因此可以根据用户的模式切换操作切换至所述第二控制模式,在一些实施方式中也可以由所述第二控制模式切换至所述第一控制模式。例如所述操控部件处于不回中状态时,可以响应于用户对操控部件上控制部件的触发操作,将控制模式设置为第一控制模式或第二控制模式。其中,控制部件可以是物理按键、物理滑动键、也可以是虚拟按键、虚拟滑动键,本申请实施例对此不做具体限定。
示例性的,所述方法还包括:所述操控部件处于不回中状态时,输出第二提示信息,所述第二提示信息用于提示所述操控部件处于不回中状态,和/或输出第三提示信息,所述第三提示信息用于提示当前模式为第一控制模式或第二控制模式。举例而言,所述操控部件处于不回中状态时输出用于提示当前模式为第一控制模式的第三提示信息,和/或输出用于提示用户可以切换至第二控制模式的提示信息,用户可以根据提示信息通过模式切换操作切换至所述第二控制模式。
示例性的,所述操控部件处于回中状态时,切换至所述第一控制模式。可以防止处于回中状态时在所述第二控制模式时,操控部件自动回到第一初始位置导致无人飞行器出现预料之外的加速度或角速度。
示例性的,所述操控部件处于回中状态时,若获取所述用户的模式切换操作,输出第一提示信息,所述第一提示信息用于提示所述操控部件处于回中状态和/或无法切换至所述第二控制模式。以便用户将操控部件设置为不回中状态,如通过调节回中装置的状态使操控部件设置为不回中状态,以及在不回中状态时通过模式切换操作切换至所述第二控制模式。
示例性的,前述提示信息可以通过控制终端的屏幕、喇叭、LED等中的至少一项输出。
在一些实施方式中,控制终端可以包括遥控器。
举例而言,如图3至图5所示,遥控器500包括左摇杆组件510、右摇杆组件520、航拍模式/穿越机模式切换按键530、遥控器外设540和控制器(MCU)550等,连接方式如图5所示。其中遥控器外设540包括但不限于屏幕、喇叭、LED等。航拍模式/穿越模式切换按键也与控制器550互联。控制器550与各遥控器外设540,例如屏幕,喇叭,LED灯等互联。
示例性的,所述左摇杆组件510包含摇杆结构(带XY轴磁铁)511、X轴拉簧512、Y轴拉簧513、X轴霍尔传感器514、Y轴霍尔传感器515、回中螺丝516、阻尼螺丝517、左回中检测开关518等。
示例性的,右摇杆组件520的构造与左摇杆组件510完全一致,右摇杆组件520可以与左摇杆组件510呈中心对称分布。例如右摇杆组件520中的右回中检测开关521的互联方式与左回中检测开关518一致。可以理解的,摇杆结构的实现方式可以多样化,摇杆的结构形态可以是拉簧,但也不限于是拉簧,例如也可以是扭簧。X轴和Y轴的角度传感器,也不仅限于线性霍尔传感器,例如还可以使用电位器、3D霍尔传感器等。
示例性的,摇杆结构511包括摇杆,摇杆下侧设有磁铁,用于产生稳定磁场。摇杆在X轴方向通过X轴拉簧512固定,在Y轴方向通过Y轴拉簧513固定。摇杆组件在X轴和Y轴方向分别布置线性霍尔传感器,用于测量摇杆在两个轴向的转动角度。X轴霍尔传感器514和Y轴霍尔传感器515分别与控制器550通信。例如,摇杆在X轴方向转动时,带动X轴磁铁转动,X轴磁场变化,被X轴霍尔传感器514检测到,X轴霍尔传感器514将信息传递给控制器550,以使控制器550可以实时得到摇杆在两个轴向的转动角度。Y轴同理。
示例性的,所述控制终端包括回中装置,用户可以调节回中装置的状态,以使能操控部件自动回到所述第一初始位置,或者使操控部件不能够自动回到所述第一初始位置。举例而言,所述回中装置包括回中螺丝516,如图3至图5所示,所述左摇杆组件510还包含回中螺丝516,或可称为模式切换回中螺丝。回中螺丝在锁紧的同时可以使得摇杆不回中。
示例性的,回中螺丝516与Y轴拉簧513连接。用户调节拧紧回中螺丝516时,会将Y轴拉簧513锁死,摇杆在Y轴方向不再回中,例如摇杆在Y轴方向不能够自动回到中间位置,例如摇杆在Y轴方向的位置调整由用户触发而不自行调整,例如用户将摇杆在Y轴方向拨到哪个位置,摇杆在Y轴方向就在该位 置保持不动,直至用户将其拨到另一位置。
示例性的,遥控器支持“美国手”,“日本手”或“中国手”。若用户使用美国手控制无人飞行器,为了调节遥控器进入穿越机模式,则用户应将左摇杆组件510的回中螺丝516锁死,使其将Y轴拉簧513锁死,此时左摇杆在Y轴方向不再回中。若用户使用日本手或中国手控制无人飞行器,为了调节遥控器进入穿越机模式,则用户应将右摇杆组件520的回中螺丝锁死,使其将Y轴拉簧锁死,此时右摇杆在Y轴方向不再回中。
在一些实施方式中,如图3至图5所示,所述左摇杆组件510还包含阻尼螺丝517。示例性的,阻尼螺丝517能够调节摇杆在Y轴方向不在回中状态下的阻尼,使其满足用户的穿越机模式的手感需求。
在一些实施方式中,控制终端的检测装置能够检测回中装置的状态,根据回中装置的状态确定所述操控部件处于回中状态或不回中状态。示例性的,如图5和图6所示,检测装置可以包括遥控器上的左回中检测开关518和/或右回中检测开关521,根据回中检测开关的开关状态可以确定所述操控部件,如摇杆在Y轴方向处于回中状态或不回中状态。
示例性的,当用户锁紧回中螺丝516,设置摇杆不回中的同时,摇杆结构511会接触到左回中检测开关518,例如随着回中螺丝516的锁紧,摇杆结构511的一部分向左回中检测开关518运动以触发左回中检测开关518开关状态的改变,此时控制器550可以检测到左回中检测开关518被按下,确定摇杆处于不回中状态。回中检测开关例如包括微动开关。
示例性的,回中螺丝516与Y轴拉簧513、左回中检测开关518连接。用户调节拧紧回中螺丝516,会将Y轴拉簧513锁死,摇杆在Y轴方向上不再回中。同时拧紧回中螺丝516会触发左回中检测开关518,左回中检测开关518上位开关信号触发控制器550,告知控制器550此时摇杆处于不回中状态,控制器550执行后续逻辑控制,如响应于用户的模式切换操作,切换至第一控制模式或第二控制模式。当然控制终端的检测装置也不限于包括开关按键形式的回中检测开关,例如可以为光电开关、霍尔开关等。
在一些实施方式中,控制终端的控制部件包括航拍模式/穿越机模式切换按键530。控制器550可以响应于用户对航拍模式/穿越机模式切换按键530的触发操作,将控制模式设置为第一控制模式或第二控制模式。航拍模式/穿越机模 式切换按键530不仅限于三档船型开关,任何按键、开关、甚至屏幕虚拟按键均可。
在一些实施方式中,如图7所示为控制方法的流程示意图。
开机后,可以先通过回中检测开关判断用户是否调节了摇杆回中功能(即摇杆是否能回中),若摇杆能回中,则不管用户是否按下航拍/穿越机模式切换按键,用户都只能处于航拍模式。若摇杆能回中,当用户按下切换按键,试图穿越机模式时,可通过屏幕或者声音提示用户,此时处于摇杆回中状态,无法进入穿越机模式,***维持航拍模式。
若摇杆不回中,则当用户按下航拍模式/穿越机模式切换按键,遥控器可以从穿越机模式切换为航拍模式,此时可以通过屏幕或者声音提示用户遥控器处于摇杆不回中状态,***进入航拍模式,使用航拍机控制逻辑。若摇杆不回中,则当用户按下航拍模式/穿越机模式切换按键,遥控器可以从航拍模式切换为穿越机模式,可以通过屏幕或者声音提示用户处于摇杆不回中状态,***成功进入穿越机模式,使用穿越机控制逻辑。其中航拍机控制逻辑包括:操控部件,如摇杆用于控制无人飞行器的移动速度和/或姿态角度。穿越机控制逻辑包括:操控部件,如摇杆用于控制无人飞行器的加速度和/或姿态调整的角速度。
示例性的,通过回中螺丝调节方式,能将遥控器的Y轴调节成为不回中形态,同时回中螺丝能够触发回中检测开关。控制器能够同时实时得知摇杆的X.Y轴旋转角度、回中状态以及模式切换状态,提供了一套闭环检测控制逻辑,实现航拍模式和穿越机模式的可靠切换。可以理解的,通过闭环检测摇杆是否能回中、模式切换按键是否按下这两个状态,各状态下的可以进入的控制模式也不一样。对应的遥控器外设会执行不同的用户提醒操作。
在一些实施方式中,无人飞行器的控制模式不限于包括第一控制模式或第二控制模式,例如还可以包括第三控制模式。使得无人飞行器有更加多样的控制模式,丰富用户的兴趣和体验。
示例性的,所述方法还包括:所述操控部件处于不回中状态时,响应于用户的模式切换操作,切换至第三控制模式。在所述第三控制模式时,若所述操控部件的位置调整的幅度小于或等于幅度阈值,切换至所述第一控制模式,若所述操控部件的位置调整的幅度大于所述幅度阈值,切换至所述第二控制模式。
示例性的,所述第三控制模式也可称为半自稳模式,操控部件位置调整的 幅度小于或等于预设幅度,如遥控器的摇杆在一定角度内时,以所述第一控制模式,即自稳模式控制;操控部件位置调整的幅度大于预设幅度,如当摇杆的杆量超过一定角度行程后,以第二控制模式,即手动模式控制,可以使穿越机翻转超过90度。在所述第三控制模式时既可以降低操作控制难度,也可以增加飞行的刺激性。
在一些实施方式中,无人飞行器的控制模式还可以包括寻机鸣叫模式。处于寻机鸣叫模式时,无人飞行器的电机会发出一定频率的鸣叫声,方便用户在无人飞行器撞击或坠落在地面上时寻找无人飞行器。
在一些实施方式中,无人飞行器的控制模式还可以包括反乌龟模式。当无人飞行器撞击或坠落导致无人飞行器在地面倒置,可以切换至反乌龟模式,根据控制终端的任意或预设的操控部件的位置调整,使无人飞行器翻滚至水平状态,继续飞行。
本申请实施例提供的无人飞行器的控制方法,通过响应于用户的模式切换操作切换至第一控制模式或第二控制模式;以及响应于控制终端的操控部件的位置调整,调整无人飞行器在操控部件对应的操控方向上的位置或姿态;其中,在第一控制模式时,若操控部件处于预设的第一初始位置,控制无人飞行器在操控方向上保持位置或姿态不变;在第二控制模式时,若无人飞行器在操控方向上处于初始状态且操控部件处于预设的第二初始位置,控制无人飞行器在操控部件对应的操控方向上保持位置或姿态不变;其中至少一个操控部件的第二初始位置与第一初始位置不同,且至少在第二控制模式时,该操控部件不能够自动回到第一初始位置。可以消除安全隐患,提高飞行安全,增强飞行可靠性。
请结合上述实施例参阅图8,图8是本申请实施例提供的控制终端600的示意性框图。
其中控制终端600可以包括遥控器、手机、平板电脑、笔记本电脑、台式电脑、穿戴式设备等中的至少一项。控制终端600能够与无人飞行器与通信连接。
该控制终端600包括一个或多个处理器601,一个或多个处理器601单独地或共同地工作,用于执行前述的无人飞行器的控制方法。
示例性的,控制终端600还包括存储器602。
示例性的,处理器601和存储器602通过总线603连接,该总线603比如 为I2C(Inter-integrated Circuit)总线。
具体地,处理器601可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器602可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现前述的无人飞行器的控制方法。
示例性的,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
本申请实施例提供的控制终端的具体原理和实现方式均与前述实施例的无人飞行器的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的无人飞行器的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的控制终端的内部存储单元,例如所述控制终端的硬盘或内存。所述计算机可读存储介质也可以是所述控制终端的外部存储设备,例如所述控制终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪 存卡(Flash Card)等。
在一些实施方式中,前述实施例的无人飞行器的控制方法也可以用于无人飞行器和/或无人飞行器的控制装置中,用于与控制终端交互以执行预设任务,如调整位置和/或姿态等过程。示例性的,控制终端将用于指示用户的模式切换操作的信息、用于指示控制终端的操控部件的位置调整的信息、用于指示操控部件处于回中状态或不回中状态的信息、控制终端上的检测装置的状态信息、操控部件的位置对应的杆量等信息中的至少一种通过上行信道发送给无人飞行器和/或无人飞行器的控制装置,无人飞行器和/或无人飞行器的控制装置根据控制终端发送的信息执行预设任务。
用于无人飞行器和/或无人飞行器的控制装置的控制方法的具体原理和实现方式均与前述实施例的用于控制终端的无人飞行器的控制方法类似,此处不再赘述。
请参阅图9,图9是本申请实施例提供的无人飞行器700的示意性框图。示例性的,所述无人飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。在一些实施方式中,所述无人飞行器700既可以作为航拍机,又可以作为穿越机,例如可以称为体验机。
该无人飞行器700包括一个或多个处理器701,一个或多个处理器701单独地或共同地工作,用于执行前述的无人飞行器的控制方法。
示例性的,无人飞行器700还包括存储器702。
示例性的,处理器701和存储器702通过总线703连接,该总线703比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现前述的无人飞行器的控制方法。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
本申请实施例提供的无人飞行器的具体原理和实现方式均与前述实施例的无人飞行器的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的无人飞行器的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的无人飞行器的内部存储单元,例如所述无人飞行器的硬盘或内存。所述计算机可读存储介质也可以是所述无人飞行器的外部存储设备,例如所述无人飞行器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
请参阅图10,图10是本申请实施例提供的无人飞行器的控制装置800的示意性框图。示例性的,所述无人飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。控制装置800例如为无人飞行器的飞控组件。
该控制装置800包括一个或多个处理器801,一个或多个处理器801单独地或共同地工作,用于执行前述的无人飞行器的控制方法。
示例性的,控制装置800还包括存储器802。
示例性的,处理器801和存储器802通过总线803连接,该总线803比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器801可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器802可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现前述的无人飞行器的控制方法。
示例性的,所述处理器801用于运行存储在存储器802中的计算机程序,并在执行所述计算机程序时实现如下步骤:
响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
本申请实施例提供的无人飞行器的控制装置的具体原理和实现方式均与前述实施例的无人飞行器的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的无人飞行器的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的控制装置的内部存储单元,例如所述控制装置的硬盘或内存。所述计算机可读存储介质也可以是所述控制装置的外部存储设备,例如所述控制装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种无人飞行器的控制方法,其特征在于,所述无人飞行器与所述控制终端通信连接;所述方法包括:
    响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
    响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
    其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
    以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
  2. 根据权利要求1所述的控制方法,其特征在于,所述操控部件对应的操控方向包括以下至少一种:上下方向、前后方向、左右方向、偏航方向、翻滚方向、俯仰方向。
  3. 根据权利要求2所述的控制方法,其特征在于,在所述第一控制模式时,所述响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态,包括:
    响应于所述操控部件的位置调整,调整所述无人飞行器在所述上下方向、所述前后方向或者所述左右方向上目标移动速度,或者调整所述无人飞行器在所述偏航方向、翻滚方向或者俯仰方向上的目标姿态角度。
  4. 根据权利要求1-3中任一项所述的控制方法,其特征在于,所述控制所述无人飞行器在所述操控方向上保持位置或姿态不变,包括:
    确定所述无人飞行器在所述操控方向上的目标移动速度为零或目标姿态角度为零。
  5. 根据权利要求3所述的控制方法,其特征在于,所述目标移动速度小于 或等于预设的速度上限值,和/或所述目标姿态角度小于或等于预设的角度上限值。
  6. 根据权利要求1-5中任一项所述的控制方法,其特征在于,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,根据所述无人飞行器搭载的传感器的传感器数据控制所述无人飞行器在所述操控方向上保持位置或姿态不变。
  7. 根据权利要求6所述的控制方法,其特征在于,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,根据所述传感器数据控制所述无人飞行器保持水平姿态。
  8. 根据权利要求6所述的控制方法,其特征在于,所述传感器包括如下至少一种:GPS接收器、惯性测量单元、气压计、飞行时间传感器。
  9. 根据权利要求2所述的控制方法,其特征在于,在所述第二控制模式时,所述响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态,包括:
    响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述上下方向、所述前后方向或者所述左右方向上的目标加速度,或者调整所述无人飞行器在所述偏航方向、翻滚方向或者俯仰方向上的目标角速度。
  10. 根据权利要求1-9中任一项所述的控制方法,其特征在于,所述控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变,包括:
    确定所述无人飞行器在所述操控方向上的目标加速度为零或目标角速度为零。
  11. 根据权利要求1-10中任一项所述的控制方法,其特征在于,所述在所述操控方向上处于初始状态,包括:未起飞的状态。
  12. 根据权利要求11所述的控制方法,其特征在于,所述方法还包括:
    若所述无人飞行器处于飞行状态,且所述操控部件处于预设的第二初始位置,控制所述无人飞行器的下降速度不高于下降阈值。
  13. 根据权利要求1-10中任一项所述的控制方法,其特征在于,所述操控部件处于不回中状态时,响应于用户的模式切换操作,切换至第一控制模式或第二控制模式。
  14. 根据权利要求13任一项所述的控制方法,其特征在于,所述方法还包 括:
    通过所述控制终端上的检测装置确定所述操控部件处于回中状态或不回中状态;
    所述回中状态时所述操控部件在用户未操作时自动回到所述第一初始位置。
  15. 根据权利要求14任一项所述的控制方法,其特征在于,所述操控部件处于回中状态时,切换至所述第一控制模式。
  16. 根据权利要求15任一项所述的控制方法,其特征在于,所述操控部件处于回中状态时,若获取所述用户的模式切换操作,输出第一提示信息,所述第一提示信息用于提示所述操控部件处于回中状态和/或无法切换至所述第二控制模式。
  17. 根据权利要求1-16中任一项所述的控制方法,其特征在于,所述方法还包括:
    所述操控部件处于不回中状态时,输出第二提示信息,所述第二提示信息用于提示所述操控部件处于不回中状态,和/或输出第三提示信息,所述第三提示信息用于提示当前模式为第一控制模式或第二控制模式。
  18. 根据权利要求1-17中任一项所述的控制方法,其特征在于,所述方法还包括:
    所述操控部件处于不回中状态时,响应于用户的模式切换操作,切换至第三控制模式;
    其中,在所述第三控制模式时,若所述操控部件的位置调整的幅度小于或等于幅度阈值,切换至所述第一控制模式,若所述操控部件的位置调整的幅度大于所述幅度阈值,切换至所述第二控制模式。
  19. 根据权利要求2所述的控制方法,其特征在于,所述方法还包括:
    根据所述控制终端当前的操作方式模式,确定所述操控部件对应的操控方向。
  20. 根据权利要求1-19中任一项所述的控制方法,其特征在于,所述第一初始位置位于所述操控部件运动行程的中部,所述至少一个操控部件的第二初始位置位于所述操控部件运动行程的两侧中的一侧。
  21. 根据权利要求20所述的控制方法,其特征在于,所述第一初始位置包括操控部件运动行程的中间位置,所述至少一个操控部件的第二初始位置包括 操控部件处于运动行程一端的位置。
  22. 一种控制终端,其特征在于,能够与无人飞行器通信连接,所述控制终端还包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
    响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
    其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
    以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
  23. 一种无人飞行器的控制装置,其特征在于,能够搭载于所述无人飞行器,以及能够与控制终端通信连接;
    所述控制装置包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
    响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
    其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
    以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
  24. 一种无人飞行器,其特征在于,能够与控制终端通信连接,所述无人飞 行器包括:
    机体;
    动力***,设于所述机体上,用于为所述无人飞行器提供飞行动力;
    所述无人飞行器还包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    响应于用户的模式切换操作,切换至第一控制模式或第二控制模式;
    响应于所述控制终端的操控部件的位置调整,调整所述无人飞行器在所述操控部件对应的操控方向上的位置或姿态;
    其中,在所述第一控制模式时,若所述操控部件处于预设的第一初始位置,控制所述无人飞行器在所述操控方向上保持位置或姿态不变;在所述第二控制模式时,若所述无人飞行器在所述操控方向上处于初始状态且所述操控部件处于预设的第二初始位置,控制所述无人飞行器在所述操控部件对应的操控方向上保持位置或姿态不变;至少一个操控部件的所述第二初始位置与所述第一初始位置不同;
    以及,至少在所述第二控制模式时,所述至少一个操控部件处于不回中状态,所述不回中状态时所述操控部件不能够自动回到所述第一初始位置。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-21中任一项所述的无人飞行器的控制方法。
PCT/CN2020/141068 2020-12-29 2020-12-29 无人飞行器及其控制方法、装置、控制终端和存储介质 WO2022141111A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/141068 WO2022141111A1 (zh) 2020-12-29 2020-12-29 无人飞行器及其控制方法、装置、控制终端和存储介质
CN202080105449.8A CN116261699A (zh) 2020-12-29 2020-12-29 无人飞行器及其控制方法、装置、控制终端和存储介质
US18/341,285 US20230359201A1 (en) 2020-12-29 2023-06-26 Unmanned aerial vehicle, control method and device thereof, control terminal, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141068 WO2022141111A1 (zh) 2020-12-29 2020-12-29 无人飞行器及其控制方法、装置、控制终端和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/341,285 Continuation US20230359201A1 (en) 2020-12-29 2023-06-26 Unmanned aerial vehicle, control method and device thereof, control terminal, and storage medium

Publications (1)

Publication Number Publication Date
WO2022141111A1 true WO2022141111A1 (zh) 2022-07-07

Family

ID=82259888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141068 WO2022141111A1 (zh) 2020-12-29 2020-12-29 无人飞行器及其控制方法、装置、控制终端和存储介质

Country Status (3)

Country Link
US (1) US20230359201A1 (zh)
CN (1) CN116261699A (zh)
WO (1) WO2022141111A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517656A (zh) * 2014-09-30 2016-04-20 深圳市大疆创新科技有限公司 拨轮组件、遥控器以及无人机控制方法
CN105599894A (zh) * 2016-02-25 2016-05-25 南京航空航天大学 一种飞机主动侧杆***的杆力控制方法
CN106809386A (zh) * 2015-11-30 2017-06-09 松下电器(美国)知识产权公司 无人飞行器及其飞行控制方法
CN108663929A (zh) * 2017-10-12 2018-10-16 深圳禾苗通信科技有限公司 一种基于路径规划的无人机刹车改进方法
US20200363199A1 (en) * 2018-06-01 2020-11-19 Rumfert, Llc Altitude initialization and monitoring system and method for remote identification systems (remote id) monitoring and tracking unmanned aircraft systems (uas) in the national airspace system (nas)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517656A (zh) * 2014-09-30 2016-04-20 深圳市大疆创新科技有限公司 拨轮组件、遥控器以及无人机控制方法
CN106809386A (zh) * 2015-11-30 2017-06-09 松下电器(美国)知识产权公司 无人飞行器及其飞行控制方法
CN105599894A (zh) * 2016-02-25 2016-05-25 南京航空航天大学 一种飞机主动侧杆***的杆力控制方法
CN108663929A (zh) * 2017-10-12 2018-10-16 深圳禾苗通信科技有限公司 一种基于路径规划的无人机刹车改进方法
US20200363199A1 (en) * 2018-06-01 2020-11-19 Rumfert, Llc Altitude initialization and monitoring system and method for remote identification systems (remote id) monitoring and tracking unmanned aircraft systems (uas) in the national airspace system (nas)

Also Published As

Publication number Publication date
CN116261699A (zh) 2023-06-13
US20230359201A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US11281205B2 (en) Radio controlled aircraft, remote controller and methods for use therewith
CN107000839B (zh) 无人机的控制方法、装置、设备和无人机的控制***
TWI459234B (zh) 手持裝置及利用其控制無人飛行載具的方法
WO2018099260A1 (zh) 一种云台姿态控制方法及***
JP6212788B2 (ja) 無人航空機を稼働する方法及び無人航空機
JP5432277B2 (ja) 無人機を操縦する装置
WO2021078165A1 (zh) 一种无人机的飞行控制方法、装置、无人机和存储介质
US9457861B2 (en) Inverted pendulum type vehicle
EP3399380B1 (en) Headless control method
US10331120B2 (en) Remote control device, control system and method of controlling
WO2018214029A1 (zh) 用于操纵可移动装置的方法和设备
JP2000118498A (ja) 無人ヘリコプタの飛行制御システム
JP2004268730A (ja) 無人ヘリコプタの姿勢制御方法
EP3269639B1 (en) Aircraft and roll method thereof
CN113994292A (zh) 无人飞行器的控制方法和设备
WO2017000907A1 (zh) 遥控装置和遥控***
US20210181769A1 (en) Movable platform control method, movable platform, terminal device, and system
KR101887314B1 (ko) 무인 항공기의 원격 제어 장치 및 방법과, 무인 항공기에 부착되는 움직임 제어 장치
WO2022141111A1 (zh) 无人飞行器及其控制方法、装置、控制终端和存储介质
US20230305556A1 (en) Method of controlling movable platform, motion sensing remote controller and storage medium
US20230341875A1 (en) Unmanned aerial vehicle, control method and control system thereof, handheld control device, and head-mounted device
WO2022141311A1 (zh) 无人机控制方法、装置、无人机、终端、***及存储介质
WO2022134321A1 (zh) 可移动平台的控制方法、体感遥控器及存储介质
WO2018072693A1 (zh) 飞行器的控制方法、装置及飞行器
CN114641744A (zh) 控制方法、设备、***及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967459

Country of ref document: EP

Kind code of ref document: A1