WO2022139186A1 - 분말 사출성형을 위한 피드스톡의 제조방법 - Google Patents

분말 사출성형을 위한 피드스톡의 제조방법 Download PDF

Info

Publication number
WO2022139186A1
WO2022139186A1 PCT/KR2021/016912 KR2021016912W WO2022139186A1 WO 2022139186 A1 WO2022139186 A1 WO 2022139186A1 KR 2021016912 W KR2021016912 W KR 2021016912W WO 2022139186 A1 WO2022139186 A1 WO 2022139186A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedstock
powder
injection molding
screw extruder
binder
Prior art date
Application number
PCT/KR2021/016912
Other languages
English (en)
French (fr)
Inventor
오종회
민두식
Original Assignee
코오롱플라스틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210156045A external-priority patent/KR20220089624A/ko
Application filed by 코오롱플라스틱 주식회사 filed Critical 코오롱플라스틱 주식회사
Publication of WO2022139186A1 publication Critical patent/WO2022139186A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/22Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded by screw or worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/24Extrusion presses; Dies therefor using screws or worms

Definitions

  • the present invention relates to a method for manufacturing a feedstock for powder injection molding, and more particularly, to a method for manufacturing a feedstock for powder injection molding with improved dispersibility by going through a second kneading step.
  • Powder injection molding refers to a technology for manufacturing metal products or ceramics products through injection molding by mixing powders such as metals or ceramics with a binder made of organic materials, removing the binder, and finally sintering.
  • This powder injection molding method is a fusion of powder metallurgy technology and plastic injection molding technology, and it is a technology that can be applied when manufacturing complex and fine tolerance parts. Also, depending on the material, it can be classified into metal injection molding (MIM) and ceramic injection molding (CIM).
  • MIM metal injection molding
  • CIM ceramic injection molding
  • Such powder injection molding includes a step of preparing a feedstock by kneading metal or ceramic powder and a binder, injection molding the feedstock, a degreasing step of removing the binder, and a sintering step.
  • metal or ceramic powder usually occupies 85 wt% or more, and the remaining amount is included as a binder.
  • the composition of the binder contained in the binder and the particle size of the powder used are important, it can be said that the preparation of a feedstock in which the metal or ceramic powder and the binder are uniformly dispersed in the kneading step is the most important.
  • the method used for feedstock production so far is first kneaded in a kneader, a ball mill, or a Bambari mixer, and pulverized in a grinder using the process of 1).
  • a method of manufacturing by second kneading using a single screw extruder or a twin screw extruder, and then cutting is first kneaded in a kneader, a ball mill, or a Bambari mixer, and pulverized in a grinder using the process of 1).
  • second kneading using a single screw extruder or a twin screw extruder, and then cutting.
  • FIG. 2 there is a method of manufacturing a feedstock by passing through a single screw extruder or a twin screw extruder and then cutting with a cutter.
  • the method can produce feedstock in a continuous process, but in the case of a single screw extruder, the kneading function is insufficient, and in the case of a twin screw extruder, kneading is possible, but the residence time is too short, so there is a problem of insufficient kneading.
  • a step of preparing a nano-sized Fe-Ni alloy metal powder having a Ni content of 2 wt% to 80 wt%, a soluble organic binder A feedstock for molding nano-sized metal powder comprising mixing 2 wt% to 50 wt% of a binder solution including a solvent and a metal powder, and wet milling the mixture so that aggregates of the metal powder are uniformly formed method is presented.
  • the feedstock for molding of nano-sized metal powder can maintain a uniform microstructure inside the molded body, a fully densified thread-like nano-structured product can be manufactured without deformation such as distortion or cracking even after sintering.
  • the mixing step and wet milling step are not exposed to external air, and are characterized in that they are carried out in an inert gas or protective gas atmosphere.
  • a small amount of alkali metal ions are contained in a container containing either water or an organic solvent, and at the same time, two or more metal electrodes are spaced apart in the container and time passes
  • a first step of producing metal microparticles with a size of 100 nm or less by applying an electric current whose size and direction change periodically according to the , powder injection molding comprising a third step of dissolving the added organic binder and uniformly mixing it with the fine particles, and a fourth step of pulverizing the organic binder and fine particle mixture in the container after removing the water or organic solvent inside the container
  • a method for manufacturing a metal microparticle feedstock is presented.
  • the method for producing a feedstock for powder injection molding includes a first step of first kneading a mixture of powder and a binder through a single screw or twin screw extruder, and a shear roll mixer ( and a second step of secondary kneading in a shear roll mixer).
  • the single screw extruder may have a screw diameter of 20 mm to 70 mm, and a length/diameter (L/D) of 30 to 40.
  • the twin screw extruder may rotate the screw in the same direction or in the opposite direction.
  • the twin screw extruder may have a screw diameter of 20 mm to 70 mm, and a length/diameter (L/D) of 30 to 40.
  • the shear roll mixer has two rollers rotating in different directions, and the roller diameter may be 80 mm to 350 mm.
  • the distance between the two rollers of the shear roll mixer may be 20 mm to 60 mm.
  • a single screw extruder, a twin screw extruder, and a shear roll mixer have a knife attached to the end thereof, and the mixture passing therethrough can be cut into pellets.
  • the process of kneading the powder and the binder can be continuously performed, so that the feedstock manufacturing time can be reduced.
  • 1 and 2 are flowcharts illustrating a process for manufacturing a feedstock according to a conventional method.
  • FIG. 3 is a flowchart illustrating a process for manufacturing a feedstock according to an embodiment of the present invention.
  • the present invention relates to a method of manufacturing a feedstock for powder injection molding, which will be described in detail below with reference to FIG. 3 .
  • the method for producing a feedstock for powder injection molding includes a first step of first kneading a mixture of powder and a binder through a single screw or twin screw extruder, and a shear roll mixer for the first kneaded mixture Including a second step of secondary kneading in.
  • the powder and binder are kneaded with a single screw or twin screw extruder, and then the feedstock that is not uniformly dispersed is produced uniformly dispersed feedstock in the second step using a shear roll mixer capable of continuous processing.
  • a shear roll mixer capable of continuous processing.
  • 'powder injection molding means used for injection molding of powders such as metal or ceramic.
  • the powder may be a metal or ceramic powder.
  • the metal powder may be, for example, a powder of stainless steel, aluminum, iron, in particular iron carbonyl powder, chromium, cobalt, copper, nickel, silicon, titanium and tungsten.
  • the metal powder may be a powdered metal alloy, for example, high-alloy steel or low-alloy steel and metal alloy based on aluminum, iron, titanium, copper, nickel, tungsten or cobalt. These include powders of already finished alloys, for example superalloys such as IN713C, GMR 235 and IN 100, and alloys known from magnet technology using the main constituents Nd-Fe-B and Sm-Co, and individual alloy constituents. It may contain both powder mixtures of Furthermore, the metal powder may be a metal carbonyl powder, a metal oxide, a metal carbide, and also a metal nitride.
  • the ceramic powder may be, for example, an oxide ceramic powder such as Al 2 O 3 , ZrO 2 , or Y 2 O 3 ; non-oxide ceramic powders such as SiC, or Si 3 N 4 ; further complex oxide powders such as NiZnFe 2 O 4 ; or an inorganic color pigment such as CoAl 2 O 4 .
  • oxide ceramic powder such as Al 2 O 3 , ZrO 2 , or Y 2 O 3
  • non-oxide ceramic powders such as SiC, or Si 3 N 4
  • further complex oxide powders such as NiZnFe 2 O 4
  • an inorganic color pigment such as CoAl 2 O 4 .
  • the average particle size of the powder may be 1 ⁇ m to 20 ⁇ m.
  • the binder may include one or more organic materials commonly used in feedstock for powder injection molding.
  • the binder may include polyolefin (such as polyethylene or polypropylene), polyoxymethylene, polyvinyl alcohol, stearic acid, waxes, and the like.
  • the binder may include 10% to 50% by weight of the high-viscosity polyoxymethylene polymer and 50% to 90% by weight of the low-viscosity polyoxymethylene polymer.
  • the content of the high-viscosity polyoxymethylene polymer is less than 10% by weight, it is impossible to control the rate of decomposition in the acid in gaseous state, which may result in poor degreasing. If it exceeds 50% by weight, the viscosity increases and injection molding may be difficult. .
  • the high-viscosity polyoxymethylene polymer has a melt flow index of 1 g/10 min to 10 g/10 min when measured at a temperature of 190 ° C and a load of 2.16 kg in accordance with ASTM D1238, and the low-viscosity polyoxymethylene polymer is in accordance with ASTM D1238 Therefore, the melt flow index may be 40 g/10min to 300 g/10min when measured with a load of 2.16 kg at a temperature of 190 °C.
  • the injection speed should be basically increased when injecting small and complex shapes. It can be difficult to do. Therefore, injection failure may occur, and the kneading with the powder is not uniform, and the product may collapse in the degreasing and sintering process.
  • melt flow index of the high-viscosity polyoxymethylene polymer exceeds 10 g/10 min, the polymer that can serve as a desired support during degreasing may be decomposed and the product may collapse in the degreasing and sintering process.
  • melt flow index of the low-viscosity polyoxymethylene polymer is less than 40 g/10min, the overall viscosity of the composition obtained by kneading the high-viscosity and low-viscosity polyoxymethylene is lowered, so a high injection pressure is required. There may be difficulties.
  • melt flow index exceeds 300 g/10min, it is a low molecular weight polymer, so it may be easy to establish injection process conditions, but the product may collapse due to rapid decomposition during degreasing.
  • the high-viscosity and low-viscosity polyoxymethylene polymers are oxymethylene homopolymers containing oxymethylene-(OCH 2 )n- groups as repeating units and capped at both ends by ester or ether groups, or in a polymer chain composed of oxymethylene monomer units. It may be an oxymethylene-based copolymer or terpolymer in which oxyalkylene units having 2 to 10 carbon atoms are randomly inserted and both ends of the polymer are blocked by ester or ether groups.
  • the feedstock for powder injection molding may contain 20 to 80% by volume of the binder, and 20 to 80% by volume of the powder, based on the total volume.
  • the feedstock for powder injection molding may further include an additive selected from the group consisting of a lubricant and a dispersant.
  • the lubricant is distributed so that the powdery inorganic material is uniformly and evenly spaced in the metal powder injection molding binder to improve dimensional stability after sintering, and includes stearic acid, ethylene oxide, diethanolamine, glycerin, Sorbitol (Sorbitol), or behenic acid (Behenic Acid) and the like can be exemplified.
  • dispersant a dispersing agent commonly used may be used, and stearic acid, Zinc-Stearate, Calcium-Stearate, and the like may be exemplified.
  • the feedstock for powder injection molding may contain less than 3% by volume of a lubricant and a dispersant, respectively, based on the total volume.
  • a feedstock in the form of primary pellets is prepared by first kneading a mixture of powder and binder using a single screw or twin screw extruder.
  • the extruder is a device that heats and fluidizes powder and binder in a barrel to form primary pellets through continuous extrusion.
  • an extruder may include a feeder, a screw carrying the raw material, a barrel surrounding the screw, and a die as an outlet.
  • the extruder may be divided into a single screw extruder and a twin screw extruder according to the number of screws.
  • the screw diameter may be 20 mm to 70 mm, and the length/diameter (L/D) may be 30 to 40 mm.
  • the screw diameter of the single screw extruder is smaller than 20 mm, the mixture of powder and binder entering between the diameters may be too small, which may decrease productivity, and if the screw diameter of the single screw extruder exceeds 70 mm, mass production may be possible. .
  • the screw diameter may be 20 mm to 70 mm, and the length/diameter (L/D) may be 30 to 40 mm.
  • the screw diameter of the twin-screw extruder is smaller than 20 mm, the mixture of powder and binder that enters between the diameters may be too small, which may decrease productivity, and if the screw diameter of the twin-screw extruder exceeds 70 mm, mass production may be possible .
  • Both the single-screw compressor and the twin-screw compressor have rotary knives attached to their ends, so that the mixture that has passed through the compressor is cut into pellets and can be manufactured as a feedstock.
  • the primary kneading conditions may control the kneading temperature, screw rotation speed, kneading time, etc. according to the type or additive of the binder used.
  • the first kneaded mixture is second kneaded in a shear roll mixer.
  • the shear roll mixer includes two rollers rotating in opposite directions, and for example, by rotating the two rollers at different rotational speeds, in the gap between the two rollers according to the roller running direction A shear force may be applied to the mixture.
  • the diameter of the rollers of the shear roll mixer may be 80 mm to 350 mm. If the roller diameter of the shear roll mixer is less than 80 mm, the mixture of powder and binder between the two rollers may be too small, which may decrease productivity. .
  • the distance between the two rollers of the shear roll mixer may be 20 mm to 60 mm. If the gap between the two rollers of the shear roll mixer is less than 20 mm, the amount of feed stock fed may decrease, and productivity may decrease. If it is exceeded, the amount of feedstock to be fed increases as well as shear force received by the feedstock is lowered, so dispersion may not be effective.
  • a knife is provided at the end of the shear roll mixer, it can be automatically cut into pellets without the need for a separate cutting facility.
  • the present invention can reduce the feedstock manufacturing time by continuously performing the process of kneading the powder and the binder in one process, and prepare a uniformly dispersed feedstock compared to the feedstock manufactured in the conventional process This can prevent the possibility of defects occurring in the accompanying injection, degreasing, and sintering processes in advance.
  • the prepared metal powder and binder are first kneaded with a single screw extruder, and then kneaded with a shear roll mixer secondarily.
  • the prepared metal powder and binder are first kneaded with a twin-screw extruder, and then kneaded second with a shear roll mixer.
  • the prepared metal powder and binder are first kneaded with a kneader and then pulverized.
  • the prepared metal powder and binder are first kneaded with a kneader, then pulverized, and then kneaded secondarily with a single screw extruder.
  • the prepared metal powder and binder are first kneaded with a kneader, then pulverized, and then kneaded secondarily with a twin screw extruder.
  • the prepared metal powder and binder are first kneaded with a twin-screw extruder.
  • the prepared metal powder and binder are first kneaded with a Bambari mixer, then pulverized, and then kneaded secondarily with a single screw extruder.
  • the prepared metal powder and binder are first kneaded with a Bambari mixer and then pulverized.
  • Table 1 shows the results of measuring the flexural strength of the prepared specimens, and the standard deviation and bondability of the flexural strength.
  • Flexural strength is a three-point flexural strength measurement using Instron equipment, and the section where actual physical properties are measured is cylindrical with a radius of 2.25 mm, the length of the specimen support span is 64 mm, and the test speed is 2.00 mm/ is min.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Flexural strength (average, MPa) 22.439 22.709 21.701 21.785 21.905 21.724 22.001 22.015 standard deviation (MPa) 0.704 0.690 0.882 0.821 0.801 0.874 0.784 0.795 compatibility O O X X X X X X X X
  • the feedstocks prepared in Examples 1 and 2 have excellent flexural strength compared to the feedstocks prepared in Comparative Examples 1 to 6, and the standard deviation of the flexural strength is less than 0.750 MPa. You can see this excellence.
  • the present invention relates to a method of manufacturing a feedstock for powder injection molding, and since the process of kneading the powder and the binder can be continuously performed, the effect of reducing the feedstock manufacturing time can be obtained.

Abstract

본 발명은 분말과 결합제의 혼합물을 일축 또는 이축 압출기를 통해 1차 혼련시키는 제1 단계, 및 1차 혼련된 혼합물을 쉬어 롤 믹서(Shear roll mixer)에서 2차 혼련시키는 제2 단계를 포함하는 분말 사출성형을 위한 피드스톡의 제조방법에 관한 것이다.

Description

분말 사출성형을 위한 피드스톡의 제조방법
본 발명은 분말 사출성형을 위한 피드스톡의 제조방법에 관한 것으로, 상세하게는 2차에 걸친 혼련 단계를 거침으로써 분산성이 향상된 분말 사출성형을 위한 피드스톡의 제조방법에 관한 것이다.
분말 사출성형이란 금속 혹은 세라믹 등의 분말을 유기재료로 만들어진 결합제(binder)와 혼합하여 사출성형한 후, 결합제를 제거하고, 최종적인 소결을 거쳐 금속 제품이나 세라믹스 제품을 제조하는 기술을 말한다.
이러한 분말 사출성형법은 분말 야금기술과 플라스틱 사출성형 기술이 융합된 것으로, 복잡하고 공차가 미세한 부품을 제조할 때 적용이 가능한 기술이다. 또한 재료에 따라 금속 분말사출성형(Metal injection molding, MIM)과 세라믹 분말사출성형(Ceramic injection molding, CIM) 등으로 분류될 수 있다.
이러한 분말 사출성형법(Powder injection molding, PIM)은 금속 또는 세라믹 분말과 결합제를 혼련시켜 피드스톡을 제조하는 단계, 피드스톡을 사출성형시키는 단계, 결합제를 제거하는 탈지단계, 및 소결 단계로 이루어진다.
한편, 피드스톡은 통상적으로 금속이나 세라믹 분말이 85 중량% 이상을 차지하고, 잔량이 결합제로 포함된다. 결합제로 포함되는 바인더 조성과 사용되는 분말의 입자 크기 등도 중요하지만, 혼련 단계에서 금속이나 세라믹 분말과 결합제가 균일하게 분산된 피드스톡의 제조가 가장 중요하다고 할 수 있다.
현재까지 피드스톡 제조에 사용되고 있는 방법은 도 1에 제시된 바와 같이, 니더(Kneader), 볼 밀(Ball mills), 또는 밤바리 믹서에서 1차 혼련시키고, 1)의 과정을 이용하여 분쇄기에서 분쇄시킨 다음, 다시 일축 압출기, 또는 이축 압출기를 이용하여 2차 혼련시킨 후, 커팅하여 제조하는 방법이 있다.
또는, 상기와 같이 1차 혼련시킨 다음, 분쇄 과정을 생략하고 곧바로 일축 압출기, 또는 이축 압출기를 이용하여 2차 혼련시키는 2)의 과정을 이용하는 방법도 있다.
또는, 상기와 같이 1차 혼련시키고, 분쇄 과정만 거쳐 피드스톡을 제조하는 3)의 과정을 이용할 수도 있다.
그러나, 이 방법들은 1차 혼련시키는 공정에서 짧게는 30 분, 길게는 3 시간이 소요되기 때문에 피드스톡을 제조하는 시간이 오래 걸리거나, 배치 형태의 공정이기 때문에 인력 투입이 많은 단점이 있다.
다른 방법으로는 도 2에 제시된 바와 같이, 일축 압출기 또는 이축 압출기를 거친 다음 커터로 커팅시켜 피드스톡을 제조하는 방법이 있다. 방법은 연속공정으로 피드스톡을 제조할 수 있으나, 일축 압출기의 경우 혼련 기능이 미흡하고, 이축 압출기의 경우 혼련은 가능하나 체류시간이 너무 짧아 혼련이 부족한 문제가 있다.
결과적으로 종래 방법을 이용하여 연속공정으로 피드스톡을 제조할 경우 분말과 결합제 간의 분산이 균일하지 않는 문제가 있다. 따라서, 피드스톡 제조 이후 공정인 사출, 탈지, 및 소결 공정에서 불량이 발생할 가능성이 높다.
이러한 피드스톡의 제조방법과 관련된 특허로서, 일 예로 한국등록특허 제10-0660653호에서는 Ni 함량이 2 중량% 내지 80 중량%인 나노 크기의 Fe-Ni 합금 금속분말을 마련하는 단계, 가용성 유기바인더와 용매를 포함한 바인더액 2 중량% 내지 50 중량%와 금속분말을 혼합하는 단계, 및 금속분말의 응집체가 균일하게 형성되도록 혼합물을 습식 밀링하는 단계를 포함하는 나노 크기 금속분말의 성형용 피드스톡 제조방법을 제시하고 있다.
상기 특허에서는 나노 크기 금속분말의 성형용 피드스톡은 성형체 내부의 균일한 미세구조를 유지할 수 있으므로, 소결 후에도 뒤틀림이나 균열과 같은 변형없이 완전 치밀화된 실형상 나노 구조 제품을 제조할 수 있으며, 공정의 단순화와 비용의 절감효과를 위하여 혼합단계 및 습식밀링단계는 외부공기에 노출되지 않은 상태에서, 불활성 가스 또는 보호성 가스분위기에서 실시되는 것을 특징으로 하고 있다.
또한, 한국등록특허 제10-0707855호에서는 1) 물 또는 유기 용매 중 어느 하나가 담겨진 용기 내에 소량의 알카리 금속 이온을 함유시킴과 동시에 그 용기 내에 두 개 이상의 금속 전극을 이격 배치한 후 시간이 경과함에 따라 크기와 방향이 주기적으로 변하는 전류를 인가하여 100 nm 크기 이하의 금속 미세입자를 제조하는 제1 단계와, 제 1 단계를 거친 용기 내에서 분말 사출성형용 유기결합제를 첨가하는 제2 단계와, 첨가된 유기결합제를 용해시켜 미세입자와 균일하게 혼합하는 제3 단계와, 용기 내부의 물 또는 유기 용매를 제거한 다음 그 용기 내의 유기결합제와 미세입자 혼합물을 분쇄하는 제4 단계로 이루어지는 분말 사출성형용 금속 미세입자 피드스톡의 제조방법을 제시하고 있다.
본 발명에서는 분말 사출성형의 공급원이 되는 피드스톡을 구성하는 분말과 결합제가 효과적으로 혼련될 수 있는 분말 사출성형을 위한 피드스톡의 제조방법을 제공하는 데 그 목적이 있다.
본 발명의 일 실시예에 따른 분말 사출성형을 위한 피드스톡의 제조방법은 분말과 결합제의 혼합물을 일축 또는 이축 압출기를 통해 1차 혼련시키는 제1 단계, 및 1차 혼련된 혼합물을 쉬어 롤 믹서(Shear roll mixer)에서 2차 혼련시키는 제2 단계를 포함한다.
일축 압출기는 스크류의 직경이 20 mm 내지 70 mm이며, 길이/직경(L/D)이 30 내지 40일 수 있다.
이축 압출기는 스크류의 회전 방식이 같은 방향인 것이거나, 또는 반대 방향일 수 있다.
이축 압출기는 스크류의 직경이 20 mm 내지 70 mm이며, 길이/직경(L/D)이 30 내지 40일 수 있다.
쉬어 롤 믹서는 두개의 롤러가 다른 방향으로 회전하고, 롤러 직경이 80 mm 내지 350 mm일 수 있다.
쉬어 롤 믹서의 두 개의 롤러 사이의 간격은 20 mm 내지 60 mm일 수 있다.
일축 압출기, 이축 압출기, 및 쉬어 롤 믹서(Shear roll mixer)는 그 끝단부에 나이프가 부착되어 이를 통과한 혼합물이 펠렛 형태로 절단될 수 있다.
본 발명의 제조방법에 따르면, 분말과 결합제를 혼련하는 공정을 연속적으로 수행할 수 있어 피드스톡 제조시간이 줄어드는 효과를 얻을 수 있다. 또한, 종래 공정으로 제조되는 피드스톡 대비 균일하게 분산된 피드스톡을 제조할 수 있고, 이로 인해 수반되는 사출, 탈지, 소결 공정에서의 불량 발생 가능성을 사전에 방지할 수 있는 효과를 가진다.
도 1과 도 2는 종래 방법에 따른 피드스톡의 제조 공정을 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 피드스톡의 제조 공정을 나타낸 순서도이다.
본 발명은 분말 사출성형을 위한 피드스톡의 제조방법에 관한 것으로, 도 3을 참조하여 이하에서 상세히 설명한다.
본 발명에 따른 분말 사출성형을 위한 피드스톡의 제조방법은 분말과 결합제의 혼합물을 일축 또는 이축 압출기를 통해 1차 혼련시키는 제1 단계, 및 1차 혼련된 혼합물을 쉬어 롤 믹서(Shear roll mixer)에서 2차 혼련시키는 제2 단계를 포함한다.
즉, 제1 단계로 일축 또는 이축 압출기로 분말과 결합제를 혼련한 다음, 균일하게 분산되지 않은 피드스톡을 연속공정이 가능한 쉬어 롤 믹서를 활용하여 제2 단계로 균일하게 분산된 피드스톡을 제조하는 것이다.
본 발명에서 ‘분말 사출성형’이란 금속(metal)이나 세라믹(ceramic)과 같은 분말의 사출성형(injection molding)에 사용되는 것을 의미한다.
일 예로, 분말은 금속 또는 세라믹 분말일 수 있다.
금속 분말은 예를 들어 스테인레스, 알루미늄, 철, 특히 철 카보닐 분말, 크롬, 코발트, 구리, 니켈, 실리콘, 티타늄 및 텅스텐의 분말일 수 있다. 또한, 금속 분말은 분말상의 금속 합금일 수 있고, 예를 들어 알루미늄, 철, 티타늄, 구리, 니켈, 텅스텐 또는 코발트를 주재료로 하는 고-합금강 또는 저-합금강 및 금속 합금일 수 있다. 이들은 이미 완성된 합금, 예를 들면, IN713C, GMR 235 및 IN 100과 같은 초합금, 및 주 구성성분 Nd-Fe-B 및 Sm-Co를 사용하여 자석 기술로부터 알려진 합금의 분말, 및 개개 합금 구성성분의 분말 혼합물 둘 다를 포함할 수 있다. 또한, 금속 분말은 금속 카보닐 분말, 금속 옥사이드, 금속 카바이드, 또한 금속 나이트라이드일 수 있다.
세라믹 분말은 예를 들어 Al2O3, ZrO2, 또는 Y2O3과 같은 산화물 세라믹 분말; SiC, 또는 Si3N4와 같은 비산화물 세라믹 분말; NiZnFe2O4와 같은 추가 복합 산화물 분말; 또는 CoAl2O4와 같은 무기 컬러 안료일 수 있다.
일 예로, 분말의 평균 입도는 1 ㎛ 내지 20 ㎛일 수 있다.
일 예로, 결합제는 분말 사출성형용 피드스톡에 통상적으로 사용되는 한가지 이상의 유기물을 포함할 수 있다. 예를 들어, 결합제는 폴리올레핀(폴리에틸렌 또는 폴리프로필렌 등), 폴리옥시메틸렌, 폴리비닐알콜, 스테아린산, 왁스류 등을 포함할 수 있다.
일 예로, 결합제는 고점도 폴리옥시메틸렌 중합체 10 중량% 내지 50 중량% 및 저점도 폴리옥시메틸렌 중합체 50 중량% 내지 90 중량%를 포함할 수 있다.
고점도 폴리옥시메틸렌 중합체의 함량이 10 중량% 미만일 경우, 기상 상태의 산에서 분해되는 속도를 조절하지 못하여 탈지 불량이 날 수 있으며, 50 중량%를 초과할 경우, 점도가 높아져 사출 성형이 어려울 수 있다.
고점도 폴리옥시메틸렌 중합체는 ASTM D1238 규격에 의거하여 온도 190 ℃에서 2.16 kg 하중으로 측정하였을 때 용융흐름지수가 1 g/10min 내지 10 g/10min이고, 저점도 폴리옥시메틸렌 중합체는 ASTM D1238 규격에 의거하여 온도 190 ℃에서 2.16 kg 하중으로 측정하였을 때 용융흐름지수가 40 g/10min 내지 300 g/10min일 수 있다.
고점도 폴리옥시메틸렌 중합체의 용융흐름지수가 1g/10 min 미만이면, 작고 복잡한 형상을 사출할 때 기본적으로 사출속도를 올려야 하는데 고분자량의 중합체이므로 사출압력을 높이더라도 원하는 만큼의 사출속도 및 제품을 사출하기 어려울 수 있다. 따라서, 사출 불량이 발생할 수 있고, 분말과의 혼련이 균일하게 되지 않아, 탈지 및 소결공정에서 제품이 무너질 수 있다.
또한, 고점도 폴리옥시메틸렌 중합체의 용융흐름지수가 10 g/10min 초과이면, 탈지시 원하는 만큼의 지지대 역할을 할 수 있는 중합체가 분해될 수 있어 탈지 및 소결공정에서 제품이 무너질 수 있다.
저점도 폴리옥시메틸렌 중합체의 용융흐름지수가 40 g/10min 미만이면 고점도와 저점도 폴리옥시메틸렌을 혼련한 조성물의 전체 점도가 낮아져 높은 사출압력이 필요하며, 결과적으로 작고 복잡한 형상의 제품을 사출하는데 어려움이 있을 수 있다. 또한, 용융흐름지수가 300 g/10min를 초과할 경우, 저분자량의 중합체이므로 사출 공정 조건 확립은 용이할 수 있으나, 탈지 시 빠른 분해로 인해 제품이 무너질 수 있다.
고점도 및 저점도 폴리옥시메틸렌 중합체는 반복 단위로서 옥시메틸렌 -(OCH2)n- 기를 포함하고, 양 말단이 에스테르 또는 에테르기에 의해 봉쇄된 옥시메틸렌 단독중합체이거나, 옥시메틸렌 모노머 단위로 이루어진 폴리머쇄 중에 탄소수 2 내지 10의 옥시알킬렌 단위가 랜덤하게 삽입되고, 중합체의 양 말단이 에스테르 또는 에테르기에 의해 봉쇄된 옥시메틸렌계 공중합체, 또는 삼원공중합체일 수 있다.
일 예로, 분말 사출성형을 위한 피드스톡은 그 전체 부피에 대하여 결합제를 20 부피% 내지 80 부피%, 및 분말을 20 부피% 내지 80 부피%로 포함할 수 있다.
일 예로, 분말 사출성형을 위한 피드스톡은 윤활제 및 분산제로 구성된 군에서 선택되는 첨가제를 추가로 포함할 수 있다.
윤활제는 금속분말 사출 성형용 결합제 내에 분말형 무기 물질이 균일하면서도 적절한 간격을 가지도록 분포되어, 소결 이후 치수 안정성을 향상시키기 위한 것으로서, 스테아르산(stearic acid), 에틸렌옥사이드, 디에탄올아민, 글리세린, 소르비톨(Sorbitol), 또는 베헨산(Behenic Acid) 등을 예시할 수 있다.
분산제는 통상적으로 사용되는 분산제를 사용할 수 있는데, 스테아린산, Zinc-Stearate, Calcium-Stearate 등을 예시할 수 있다.
분말 사출성형을 위한 피드스톡은 그 전체 부피에 대하여 윤활제 및 분산제를 각각 3 부피% 이내로 포함할 수 있다.
제1 단계에서는 일축 또는 이축 압출기를 사용하여 분말과 결합제의 혼합물을 1차 혼련시켜 1차 펠릿 형태의 피드스톡을 제조한다.
압출기는 분말과 결합제를 배럴 내에서 가열 유동화시켜 연속 압출을 통해 1차 펠릿을 성형하는 기기이다. 일 예로, 압출기는 피더, 원료를 운반하는 스크류, 스크류를 둘러싸는 배럴, 및 출구인 다이를 포함할 수 있다.
압출기는 스크류의 수에 따라 일축 압출기와 이축 압출기로 구분될 수 있다.
일축 압출기를 사용하는 경우, 스크류 직경은 20 mm 내지 70 mm이며, 길이/직경(L/D)은 30 내지 40일 수 있다.
일축 압출기의 스크류 직경이 20 mm 보다 작게 되면 직경 사이에 들어가는 분말과 결합제의 혼합물이 너무 적게 되어 생산성이 떨어질 수 있고, 일축 압출기의 스크류 직경이 70 mm를 초과하게 되면 대량으로만 생산이 가능할 수 있다.
또한, 일축 압축기의 길이/직경(L/D)이 30 내지 40인 경우 효율적으로 제품을 생산할 수 있다.
제1 단계에서 이축 압축기를 사용하는 경우, 스크류의 회전 방식이 같은 방향으로 회전하거나, 반대 방향으로 회전하는 것 모두 가능하다.
이축 압출기를 사용하는 경우, 스크류 직경은 20 mm 내지 70 mm이며, 길이/직경(L/D)은 30 내지 40일 수 있다.
이축 압출기의 스크류 직경이 20 mm 보다 작게 되면 직경 사이에 들어가는 분말과 결합제의 혼합물이 너무 적게 되어 생산성이 떨어질 수 있고, 이축 압출기의 스크류 직경이 70 mm를 초과하게 되면 대량으로만 생산이 가능할 수 있다.
또한, 일축 압축기의 길이/직경(L/D)이 30 내지 40인 경우 효율적으로 제품을 생산할 수 있다.
일축 압축기와 이축 압축기는 모두 그 끝단에 회전형 나이프가 부착되어 있어서 압축기를 통과한 혼합물이 펠렛 형태로 커팅(cutting)되어 피드스탁으로 제조될 수 있다.
또한, 1차 혼련 조건은 사용되는 결합제의 종류나 첨가제에 따라 혼련 온도, 스크류 회전 속도, 혼련 시간 등을 조절할 수 있다.
제2 단계에서는, 1차 혼련된 혼합물을 쉬어 롤 믹서(Shear roll mixer)에서 2차 혼련시킨다.
쉬어 롤 믹서는 서로 반대 방향으로 회전하는 두 개의 롤러를 포함하며, 일 예로 두 개의 롤러가 서로 다른 회전 속도로 회전함으로써 롤러 진행 방향(roller running direction)에 따라 두 개의 롤러 사이의 갭(gap)에서 혼합물에 전단력이 가해질 수 있다.
쉬어 롤 믹서의 롤러의 직경은 80 mm 내지 350 mm일 수 있다. 쉬어 롤 믹서의 롤러 직경이 80 mm 보다 작으면 두 개의 롤러 사이에 들어가는 분말과 결합제의 혼합물이 너무 적게 되어 생산성이 떨어질 수 있고, 롤러 직경이 350 mm를 초과하게 되면 대량으로만 생산이 이루어질 수밖에 없다.
쉬어 롤 믹서의 두 개의 롤러 사이의 간격은 20 mm 내지 60 mm일 수 있다. 쉬어 롤 믹서의 두 개의 롤러 사이의 간격이 20 mm 미만인 경우 피딩(Feeding)되는 피드스톡의 투입량이 적어 생산성이 떨어질 수 있고, 피드스톡이 받는 전단력이 커서 결합제의 분해가 생길 수 있고, 60 mm를 초과하는 경우 피딩되는 피드스톡의 양이 많아질 뿐더러 피드스톡이 받는 전단력이 낮아져 분산이 효과적으로 되지 않을 수 있다.
또한, 쉬어 롤 믹서의 끝단부에는 나이프가 구비되어 있어 별도의 커팅 설비가 필요 없이 자동으로 펠렛 상태로 커팅될 수 있도록 할 수 있다.
상세히 설명한 바와 같이 본 발명은 분말과 결합제를 혼련하는 공정을 하나의 공정으로 연속적으로 수행할 수 있어 피드스톡 제조시간을 줄일 수 있고, 종래 공정에서 제조되는 피드스톡 대비 균일하게 분산된 피드스톡을 제조할 수 있고, 이로 인해 수반되는 사출, 탈지, 소결 공정에서의 불량 발생가능성을 사전에 방지할 수 있다.
이하, 본 발명의 실시예를 참조하여 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
[제조예 1: 분말 사출성형을 위한 피드스톡의 제조]
STS316L인 금속 분말 60 부피%와 고점도와 저점도 폴리옥시메틸렌 및 기타 분산제를 포함하는 결합제 40 부피%를 준비한다.
(실시예 1)
준비된 금속 분말과 결합제를 일축 압출기로 1차 혼련시킨 후, 쉬어 롤 믹서로 2차 혼련시킨다.
(실시예 2)
준비된 금속 분말과 결합제를 이축 압출기로 1차 혼련시킨 후 쉬어롤 믹서로 2차 혼련시킨다.
(비교예 1)
준비된 금속 분말과 결합제를 니더로 1차 혼련시킨 후 분쇄한다.
(비교예 2)
준비된 금속 분말과 결합제를 니더로 1차 혼련시킨 후 분쇄한 다음 일축 압출기로 2차 혼련시킨다.
(비교예 3)
준비된 금속 분말과 결합제를 니더로 1차 혼련시킨 후 분쇄한 다음 이축 압출기로 2차 혼련시킨다.
(비교예 4)
준비된 금속 분말과 결합제를 이축 압출기로 1차 혼련시킨다.
(비교예 5)
준비된 금속 분말과 결합제를 밤바리믹서로 1차 혼련시킨 후 분쇄한 다음 일축 압출기로 2차 혼련시킨다.
(비교예 6)
준비된 금속 분말과 결합제를 밤바리믹서로 1차 혼련시킨 후 분쇄한다.
[실험예: 제조된 분말 사출성형을 위한 피드스톡의 물성 측정]
실시예 및 비교예에서 제조된 피드스톡을 형체력 50 Ton의 전동사출기를 이용하여, 덤벨 모양의 Dog bone 시편으로 각각 10 개 사출한다. 이때, 사출 온도는 195 ℃이다.
제조된 시편의 굴곡강도를 측정한 결과, 및 굴곡강도의 표준편차와 접합성을 표 1에 나타낸다.
굴곡강도는 3 점식 굴곡강도 측정으로 인스트론 장비를 사용하여 측정하고, 실제 물성이 측정이 이루어지는 구간은 원통형으로 반지름이 2.25 mm이고, 시편 지지 스팬의 길이는 64 mm이고, 시험 속도는 2.00 mm/min이다.
굴곡강도의 표준편차가 0.750 MPa 미만인 경우를 적합하다고 판단한다.
실시예1 실시예2 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
굴곡강도(평균, MPa) 22.439 22.709 21.701 21.785 21.905 21.724 22.001 22.015
표준편차(MPa) 0.704 0.690 0.882 0.821 0.801 0.874 0.784 0.795
적합성 O O X X X X X X
표 1을 참조하면, 실시예 1 및 실시예 2에서 제조된 피드스톡은 비교예 1 내지 비교예 6에서 제조된 피드스톡에 비하여 굴곡강도가 우수하고, 굴곡강도의 표준편차가 0.750 MPa 미만으로서 적합성이 우수함을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
본 발명은 분말 사출성형을 위한 피드스톡의 제조방법에 관한 것으로, 분말과 결합제를 혼련하는 공정을 연속적으로 수행할 수 있어 피드스톡 제조시간이 줄어드는 효과를 얻을 수 있다. 또한, 종래 공정으로 제조되는 피드스톡 대비 균일하게 분산된 피드스톡을 제조할 수 있고, 이로 인해 수반되는 사출, 탈지, 소결 공정에서의 불량 발생 가능성을 사전에 방지할 수 있는 효과를 가진다.

Claims (7)

  1. 분말과 결합제의 혼합물을 일축 또는 이축 압출기를 통해 1차 혼련시키는 제1 단계, 및
    상기 1차 혼련된 혼합물을 쉬어 롤 믹서(Shear roll mixer)에서 2차 혼련시키는 제2 단계
    를 포함하는 분말 사출성형을 위한 피드스톡의 제조방법.
  2. 제1항에 있어서,
    상기 일축 압출기는 스크류의 직경이 20 mm 내지 70 mm이며, 길이/직경(L/D)이 30 내지 40인 분말 사출성형을 위한 피드스톡의 제조방법.
  3. 제1항에 있어서,
    상기 이축 압출기는 스크류의 회전 방식이 같은 방향인 것이거나, 또는 반대 방향인 분말 사출성형을 위한 피드스톡의 제조방법.
  4. 제1항에 있어서,
    상기 이축 압출기는 스크류의 직경이 20 mm 내지 70 mm이며, 길이/직경(L/D)이 30 내지 40인 것인 분말 사출성형을 위한 피드스톡의 제조방법.
  5. 제1항에 있어서,
    상기 쉬어 롤 믹서는 두 개의 롤러가 반대 방향으로 회전하고, 롤러 직경이 80 mm 내지 350 mm인 분말 사출성형을 위한 피드스톡의 제조방법.
  6. 제5항에 있어서,
    상기 쉬어 롤 믹서의 두 개의 롤러 사이의 간격은 20 mm 내지 60 mm인 분말 사출성형을 위한 피드스톡의 제조방법.
  7. 제1항에 있어서,
    상기 일축 압출기, 이축 압출기, 및 쉬어 롤 믹서는 그 끝단부에 나이프가 부착되어 이를 통과한 혼합물이 펠렛 형태로 절단되는 것인 분말 사출성형을 위한 피드스톡의 제조방법.
PCT/KR2021/016912 2020-12-21 2021-11-17 분말 사출성형을 위한 피드스톡의 제조방법 WO2022139186A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0179178 2020-12-21
KR20200179178 2020-12-21
KR1020210156045A KR20220089624A (ko) 2020-12-21 2021-11-12 분말 사출성형을 위한 피드스톡의 제조방법
KR10-2021-0156045 2021-11-12

Publications (1)

Publication Number Publication Date
WO2022139186A1 true WO2022139186A1 (ko) 2022-06-30

Family

ID=82158127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016912 WO2022139186A1 (ko) 2020-12-21 2021-11-17 분말 사출성형을 위한 피드스톡의 제조방법

Country Status (2)

Country Link
TW (1) TW202239499A (ko)
WO (1) WO2022139186A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145294A (ja) * 2001-06-29 2003-05-20 Dainippon Ink & Chem Inc 含水顔料ペーストの脱水方法および脱水装置
KR20070005992A (ko) * 2005-07-05 2007-01-11 주식회사 엔씨메탈 분말사출성형용 금속 미세입자 피드스톡의 제조방법
US20090029128A1 (en) * 2005-07-04 2009-01-29 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
KR20170087253A (ko) * 2016-01-20 2017-07-28 주식회사 엘지화학 카본나노튜브 펠렛 제조방법
KR101918755B1 (ko) * 2017-09-07 2018-11-14 주식회사 경신전선 조사가교 epdm 조성물 및 이것에 의해 제조된 케이블

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145294A (ja) * 2001-06-29 2003-05-20 Dainippon Ink & Chem Inc 含水顔料ペーストの脱水方法および脱水装置
US20090029128A1 (en) * 2005-07-04 2009-01-29 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
KR20070005992A (ko) * 2005-07-05 2007-01-11 주식회사 엔씨메탈 분말사출성형용 금속 미세입자 피드스톡의 제조방법
KR20170087253A (ko) * 2016-01-20 2017-07-28 주식회사 엘지화학 카본나노튜브 펠렛 제조방법
KR101918755B1 (ko) * 2017-09-07 2018-11-14 주식회사 경신전선 조사가교 epdm 조성물 및 이것에 의해 제조된 케이블

Also Published As

Publication number Publication date
TW202239499A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
EP0094591B1 (de) Polykristalline, praktisch porenfreie Sinterkörper aus Alpha-Siliciumcarbid, Borcarbid und freiem Kohlenstoff und Verfahren zu ihrer Herstellung
EP3317078B1 (de) Verfahren zur verarbeitung von produkten im extruder
WO2018056595A1 (ko) 단일벽 탄소나노튜브 강화 금속기지 복합재료 제조를 위한 방전 플라즈마 소결 방법 및 이에 의해 제조된 복합재료
CN101511914A (zh) 聚合物配混方法
CN109534828A (zh) 一种碳化硅复合陶瓷材料的造粒方法
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
WO2022139186A1 (ko) 분말 사출성형을 위한 피드스톡의 제조방법
CN106674886A (zh) 一种增强型抗静电聚醚醚酮复合材料及其制备方法
CA1217209A (en) Polyacetal binders for injection molding of ceramics
WO2018066721A1 (ko) 3차원 프린트용 금속 분말 원료 공급 장치
KR102275122B1 (ko) 금속분말 사출 성형용 결합제 조성물
KR20220089624A (ko) 분말 사출성형을 위한 피드스톡의 제조방법
WO2021132854A1 (ko) 금속분말 사출 성형용 결합제 조성물
EP0353523B1 (en) Composition for extrusion molding of green body for sintering
US7094821B2 (en) Method of making tungsten carbide based hard metal tools or components
WO2019107816A1 (ko) 텅스텐-몰리브덴 합금 제조방법
WO2022139258A1 (ko) 플라스틱 기반 방사선 차폐체의 제조방법, 그의 방사선 차폐체 및 그를 이용한 방사선 차폐장치
WO2018066724A1 (ko) 은 분말의 제조방법
WO2020032777A1 (ko) 유무기혼련조성물을 원료로 하는 산화물 분산강화 합금 제조 방법
DE4407760A1 (de) Thermoplastische Formmassen sowie deren Verwendung
KR20130058983A (ko) 치수안정성이 우수한 폴리페닐렌에테르/탄소섬유 복합재 및 그 제조방법
WO2018164541A1 (ko) 열가소성 고분자 입자의 제조방법
EP1742726B1 (de) Verfahren zur dispergierung und passivierung von feinteiligen pulvern in wasser und wässrigen medien
WO2011049361A4 (ko) 탄화물계 내마모 복합소재
WO2018062872A1 (ko) 은-다이아몬드 복합 재료의 제조를 위한 방전플라즈마소결 방법 및 이에 의해 제조된 은-다이아몬드 복합 재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911253

Country of ref document: EP

Kind code of ref document: A1