WO2022138511A1 - Production method of fluorine-containing polyether compound - Google Patents

Production method of fluorine-containing polyether compound Download PDF

Info

Publication number
WO2022138511A1
WO2022138511A1 PCT/JP2021/046850 JP2021046850W WO2022138511A1 WO 2022138511 A1 WO2022138511 A1 WO 2022138511A1 JP 2021046850 W JP2021046850 W JP 2021046850W WO 2022138511 A1 WO2022138511 A1 WO 2022138511A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
fluorine
compound
compound represented
formula
Prior art date
Application number
PCT/JP2021/046850
Other languages
French (fr)
Japanese (ja)
Inventor
啓吾 松浦
誠人 宇野
元志 青山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022571416A priority Critical patent/JPWO2022138511A1/ja
Priority to CN202180087063.3A priority patent/CN116710422A/en
Publication of WO2022138511A1 publication Critical patent/WO2022138511A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives

Definitions

  • This disclosure relates to a method for producing a fluorine-containing polyether compound.
  • Fluorine-containing polyether compounds are used as surface treatment agents or lubricants because they exhibit high lubricity, water repellency, oil repellency and the like. Fluorine-containing polyether compounds are produced by various methods.
  • Patent Document 1 discloses that a fluorine-containing polyether compound is produced by reacting tetrafluoroethylene with oxygen in the presence of a compound having a fluorooxy group or the like.
  • Patent Document 2 a fluorine-containing polyether compound is produced by ring-opening polymerization of 2,2,3,3-tetrafluorooxetane, and the fluorine-containing polyether compound is chlorinated and fluorinated to contain halogen. It is disclosed to produce a polyether compound.
  • PFPE perfluoropolyether
  • CF2-CF 2 O the structural units contained in PFPE
  • CF 2 O the structural units can be freely selected.
  • the structural unit included in PFPE cannot be freely selected.
  • the present disclosure has been made in view of the above requirements, and the problem to be solved is a method for producing a fluorine-containing polyether compound having functional groups at both ends and having few restrictions when selecting a structural unit. Is to provide.
  • the fluorine-containing diacyloxypolyether compound represented by the following general formula (4) is fluorinated to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
  • R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ...
  • R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
  • R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen.
  • R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond.
  • R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
  • each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 1 to 20.
  • RF1 independently represents a fluorine atom when R 1 is a fluorine atom, and represents a fluorine atom when R 1 is a hydrogen atom.
  • R 1 is a monovalent hydrocarbon group
  • the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
  • RF2 is a divalent perfluorocarbonated product having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated independently of each other. Represents a hydrogen group.
  • RF3 independently represents a single bond when R 3 is a single bond, and represents an ether bond when R 3 is an ether bond.
  • R 3 is a divalent hydrocarbon group
  • the divalent hydrocarbon group represented by R 3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
  • RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
  • a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (6) all represent the same value.
  • Fluorination of the fluorine-containing diacyloxypolyether compound represented by the general formula (4) is introduced into a solvent by introducing a fluorine gas and a fluorine-containing diacyloxypolyether compound represented by the general formula (4) into a solvent.
  • the introduction rate of the fluorine gas on the molar basis is the general formula (4).
  • the introduction rate of the fluorine-containing diacyloxypolyether compound represented by 4) on a molar basis can be replaced with a fluorine atom by the fluorine gas contained in the fluorine-containing diacyloxypolyether compound represented by the general formula (4).
  • the esterification of the hydroxyl group contained in the fluorine-containing dihydroxypolyether compound represented by the general formula (3) is represented by the acid fluoride represented by the following general formula (7) by the general formula (3).
  • R 4 COF ... (7)
  • R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom.
  • the number of carbon atoms is 2 to 20.
  • ⁇ 7> The method for producing a fluorine-containing polyether compound according to any one of ⁇ 1> to ⁇ 6>, wherein a in the general formula (3) to the general formula (6) is an integer of 1 or more. .. ⁇ 8>
  • the reaction temperature at the time of reacting the fluorine-containing divinyl ether compound represented by the general formula (1) with the diol compound represented by the general formula (2) is 80 ° C to 160 ° C. 1>
  • R 1 is a monovalent having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom independently of each other. Represents the hydrocarbon group of.
  • R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and the hydrogen atom is replaced by a fluorine atom.
  • R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond.
  • a represents 0 or an integer of 1 or more.
  • the fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1).
  • the diol compound represented by the following general formula (2) was reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
  • R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
  • R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
  • R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen.
  • R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond.
  • R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
  • a represents an integer of 0 or 1 or more, and a in the general formula (3) and the general formula (4) both show the same value.
  • the fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1).
  • the diol compound represented by the following general formula (2) was reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
  • the hydroxyl group contained in the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) is esterified to produce a fluorine-containing diacyloxypolyether compound represented by the following general formula (4).
  • a method for producing a fluorine-containing polyether compound which comprises fluorinating a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
  • R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ...
  • R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
  • R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen.
  • R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond.
  • R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
  • R F1 independently represents a fluorine atom when R 1 is a fluorine atom, represents a fluorine atom when R 1 is a hydrogen atom, and R 1 is monovalent.
  • the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
  • RF2 independently represents a divalent perfluorohydrocarbon group having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated.
  • R F 3 independently represents a single bond when R 3 is a single bond, represents an ether bond when R 3 is an ether bond, and R 3 is divalent.
  • the divalent hydrocarbon group represented by R3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
  • RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
  • a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (5) all show the same value.
  • a method for producing a fluorine-containing polyether compound which has functional groups at both ends and has few restrictions when selecting a structural unit.
  • the numerical range indicated by using “-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the "fluoroalkylene group” includes a perfluoroalkylene group in which all hydrogen atoms are substituted with fluorine atoms and a fluoroalkylene group in which a part of hydrogen atoms is substituted with fluorine atoms. Further, in the present disclosure, not only the perfluorocycloalkane in which all the hydrogen atoms of the cycloalkane are replaced with the fluorine atom but also a part of the hydrogen atom is replaced with the fluorine atom in the description of "fluorocycloalkane” and the like. Cycloalkanes are also included.
  • each component may contain a plurality of applicable compounds.
  • the mol ratio in the reaction between the fluorine-containing divinyl ether compound represented by the general formula (1) and the diol compound represented by the general formula (2) is calculated based on the total of the compounds corresponding to each component.
  • the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • the number of carbon atoms means the total number of carbon atoms contained in the entire group, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group, and the group. When has a substituent, it represents the total number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
  • perfluorocarbonated of a monovalent or divalent hydrocarbon group means that the hydrocarbon group has been fluorinated to the following states.
  • the monovalent or divalent hydrocarbon group is a saturated hydrocarbon group, all the hydrogen atoms bonded to the carbon atoms constituting the monovalent or divalent hydrocarbon group are fluorinated.
  • Hydrocarbon groups are referred to as "perfluoroylated”.
  • the monovalent or divalent hydrocarbon group is an unsaturated hydrocarbon group
  • all the fluorinated hydrogen atoms bonded to the carbon atoms constituting the monovalent or divalent hydrocarbon group are fluorinated and , A fluorine atom was added to each of the two carbon atoms forming a carbon-carbon unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond, and the carbon-carbon unsaturated bond disappeared.
  • the state is referred to as the hydrocarbon group being "perfluoroylated".
  • -C ⁇ C- perfluorolated
  • it becomes -CF 2 -CF 2- when -C ⁇ C- is perfluorolated, it becomes -CF 2 -CF 2- .
  • a hydrogen atom that can be fluorinated may be bonded to the atom group that can be fluorinated.
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are measured by gel permeation chromatography (hereinafter, also referred to as “GPC”).
  • GPC gel permeation chromatography
  • the method for producing the first fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the first production method of the present disclosure) is a fluorine-containing divinyl ether compound represented by the following general formula (1) (hereinafter, may be referred to as the first production method of the present disclosure).
  • a compound of formula (1) may be referred to as a compound of formula (1)
  • a diol compound represented by the following general formula (2) hereinafter, may be referred to as a compound of formula (2)).
  • the compound of the formula (2) is reacted with 1 mol at a ratio of more than 1 mol, and the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) (hereinafter, may be referred to as a compound of the formula (3)).
  • the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) (hereinafter, may be referred to as a compound of the formula (3)).
  • the hydroxyl group contained in the compound of the formula (3) is esterified to obtain a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) (hereinafter, may be referred to as a compound of the formula (4)).
  • the compound of the formula (4) is fluorinated to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5) (hereinafter, may be referred to as a compound of the formula (5)), and the formula (5) is produced.
  • a fluorine-containing dialkoxycarbonylpolyether compound represented by the following general formula (6) (hereinafter, may be referred to as a compound of formula (6)) is produced by allowing an alcohol to act on the compound.
  • R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ...
  • R 1 has independently, and the fluorine atom, the hydrogen atom, or the hydrogen atom may be substituted with the fluorine atom.
  • R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen.
  • R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond.
  • R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
  • each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 1 to 20.
  • RF1 independently represents a fluorine atom when R 1 is a fluorine atom, and represents a fluorine atom when R 1 is a hydrogen atom.
  • R 1 is a monovalent hydrocarbon group
  • the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
  • RF2 is a divalent perfluorocarbonated product having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated independently of each other. Represents a hydrogen group.
  • RF3 independently represents a single bond when R 3 is a single bond, and represents an ether bond when R 3 is an ether bond.
  • R 3 is a divalent hydrocarbon group
  • the divalent hydrocarbon group represented by R 3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
  • RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
  • a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (6) all represent the same value.
  • the present disclosure it is possible to provide a method for producing a fluorine-containing polyether compound which has functional groups at both ends and has few restrictions when selecting a structural unit.
  • the reason why the above effect is exhibited is presumed to be, for example, as follows, but is not limited to this.
  • the compound of the formula (1) and the compound of the formula (2) are used as the monomer which is a raw material of the fluorine-containing polyether compound.
  • the compound of the formula (2) when the compound of the formula (1) and the compound of the formula (2) are reacted to obtain the compound of the formula (3), the compound of the formula (2) is obtained with respect to 1 mol of the compound of the formula (1). Is reacted at a ratio of more than 1 mol, so that a hydroxyl group is likely to be generated at the terminal of the compound of the formula (3).
  • ester groups can be generated at both ends of the fluorine-containing polyether compound obtained by the first production method of the present disclosure. Therefore, unlike the methods described in Patent Documents 2 and 3, in the first production method of the present disclosure, both ends of the fluorine-containing polyether compound can be functionalized.
  • the compound of formula (1) used in the present disclosure is a specific fluorine-containing divinyl ether compound represented by the following general formula (1).
  • R 1 independently represents a monovalent hydrocarbon group having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom. From the viewpoint of lubricity, it is preferable that at least one of R 1 is a hydrogen atom, and it is more preferable that both of R 1 are hydrogen atoms.
  • R 2 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom and has 1 to 20 carbon atoms.
  • the number of carbon atoms of the divalent hydrocarbon group represented by R2 is preferably 15 or less, more preferably 10 or less.
  • the number of carbon atoms of the divalent hydrocarbon group represented by R2 is preferably 3 or more, and more preferably 4 or more, from the viewpoint of preventing a cyclization reaction.
  • Examples of the divalent hydrocarbon group represented by R 2 include an alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group, a fluoromethylene group and a fluoroethylene group.
  • Examples thereof include fluoroalkylene groups such as fluorotrimethylene group, fluorotetramethylene group, fluoropentamethylene group and fluorohexamethylene group.
  • the divalent hydrocarbon group represented by R 2 may be a group represented by the following general formula (X). * -R x- (OR x ) n- * ... (X)
  • R x represents an ethylene group, a trimethylene group, a propylene group, a fluoroethylene group, a fluorotrimethylene group, or a fluoropropylene group
  • n represents an integer of 1 or more.
  • * represents a bonding portion with an oxygen atom.
  • the divalent hydrocarbon group represented by R 2 may be a group represented by the following general formula (A). * -R b -OR a -OR b- * ... (A)
  • Ra represents a cycloalkanediyl group, a fluorocycloalkandyl group, or an arylene group.
  • Examples of the cycloalkanediyl group and the fluorocycloalkanediyl group represented by Ra include a cyclobutanediyl group, a fluorocyclobutanediyl group, a cyclopentanediyl group, a fluorocyclopentanediyl group, a cyclohexanediyl group, and a fluorocyclohexanediyl group. Examples thereof include an adamantandiyl group and a norbornandyl group.
  • the cycloalkandyl group, the fluorocycloalkandyl group and the arylene group may have an alkyl group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a fluorine atom as a substituent.
  • R b may independently contain a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom, which is a divalent group having 1 to 10 carbon atoms. Represents a hydrocarbon group.
  • Examples of the divalent hydrocarbon group represented by R b include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group, a fluorotetramethylene group and the like. Be done.
  • * represents a bonding portion with an oxygen atom.
  • Examples of the divalent hydrocarbon group represented by the general formula (A) include, but are not limited to, the following groups.
  • the divalent hydrocarbon group represented by R 2 may be a group represented by the following general formulas (B) to (D).
  • the group represented by Ra in the general formulas (B) and (C) is the same as the above general formula ( A ).
  • the group represented by R b in the general formula (D) is the same as that in the general formula (A).
  • R c may independently contain a single bond, a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom.
  • Examples of the divalent hydrocarbon group represented by R c include a methylene group, an ethylene group, a trimethylene group, a propyridene group, an isopropyridene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group and a fluoropropyridene group. , Fluoroisopropylidene group and the like.
  • R d represents a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms.
  • * represents a bonding portion with an oxygen atom.
  • Examples of the group satisfying any of the general formulas (B) to (D) include, but are not limited to, the following groups.
  • the compound of formula (2) used in the present disclosure is a specific diol compound represented by the following general formula (2). HO-CH 2 R 3 CH 2 -OH ... (2)
  • R 3 may contain a single bond, an ether bond, a ring structure or a branched structure, may contain an ether bond, or the hydrogen atom may be substituted with a fluorine atom.
  • the acidity (pKa) of the compound of the formula (2) is preferably 8 to 18, and more preferably 9 to 14. When the pKa of the compound of the formula (2) is within the above numerical range, the reaction with the compound of the formula (1) proceeds satisfactorily.
  • pKa is a numerical value in water at 25 ° C., and is calculated by the method described in Revised 5th Edition II-331 to II-343 (edited by The Chemical Society of Japan, published by Maruzen Co., Ltd.).
  • a divalent hydrocarbon group represented by "-CH 2 R 3 CH 2- " including R 3 (hereinafter referred to as "-CH 2 R 3 CH 2- " group may be referred to.
  • the number of carbon atoms in (1) is preferably 15 or less, more preferably 10 or less.
  • the carbon number of the "-CH 2 R 3 CH 2- " group is preferably 2 or more, and more preferably 3 or more, from the viewpoint of synthetic handling.
  • Examples of the "-CH 2 R 3 CH 2- " group include an alkylene group such as an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group, a fluorotrimethylene group, a fluorotetramethylene group and a fluoropenta. Fluoroalkylene groups such as a methylene group and a fluorohexamethylene group, and the like can be mentioned. However, when the "-CH 2 R 3 CH 2- " group is a fluoroalkylene group, both ends of the fluoroalkylene group have a methylene structure.
  • the "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (X'). * -CH 2 R X1- (OR X2 ) n1 -OR X1 CH 2- * ... (X')
  • RX1 represents a single bond, a methylene group, an ethylene group, a methylmethylene group, a fluoromethylene group, a fluoroethylene group, and a fluoromethylmethylene group.
  • RX2 represents an ethylene group, a trimethylene group, a propylene group, a fluoroethylene group, a fluorotrimethylene group, or a fluoropropylene group.
  • n1 represents 0 or an integer greater than or equal to 1.
  • * represents a bonding portion with an oxygen atom.
  • the "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (A'). * -R b2 -OR a -OR b2- * ... (A')
  • Ra represents a cycloalkanediyl group, a fluorocycloalkanediyl group, or an arylene group, and specific examples thereof and the like are the same as in the case of the general formula (A).
  • R b2 independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
  • R b2 is a divalent hydrocarbon group having 2 to 10 carbon atoms in which a hydrogen atom is substituted with a fluorine atom
  • the end on the * side of R b2 has a methylene structure.
  • R b2 is a hydrocarbon group having 1 carbon atom
  • R b2 is a methylene group.
  • * represents a bonding portion with an oxygen atom.
  • Examples of the divalent hydrocarbon group represented by the general formula (A') include, but are not limited to, the following groups.
  • the "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (B') or (D'). * -R c2 -R a -R c2- * ... (B') * -R b2 -R d -R b2- * ... (D')
  • the group represented by Ra in the general formula (B') is the same as that in the general formula ( A ).
  • R c2 independently represents a linear alkylene group having 1 to 10 carbon atoms, preferably a linear alkylene group having 1 to 5 carbon atoms, and preferably 1 to 2 carbon atoms.
  • the straight chain alkylene group of is more preferable.
  • R b2 in the general formula (D') is the same as the above general formula (A'). Further, in the general formula (D'), R d represents a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms. In the general formula (B') and the general formula (D'), * represents a bonding portion with an oxygen atom.
  • Examples of the group satisfying either the general formula (B') or the general formula (D') include, but are not limited to, the following groups.
  • a represents 0 or an integer of 1 or more, preferably an integer of 1 or more, more preferably an integer of 3 or more, and further preferably an integer of 5 or more. Further, a is preferably an integer of 20 or less, more preferably an integer of 15 or less, and even more preferably an integer of 12 or less.
  • the reaction between the compound of formula (1) and the compound of formula (2) may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent is preferably a fluorinated organic solvent, and examples thereof include a fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether. ..
  • the ratio of the compound of the formula (1) to the compound of the formula (2) is preferably adjusted according to the molecular weight of the target fluorine-containing polyether compound, but from the viewpoint of controlling the molecular weight, the ratio is relative to 1 mol of the compound of the formula (1).
  • the compound of the formula (2) is preferably 1.01 mol or more, more preferably 1.10 mol or more.
  • the ratio of the compound of the formula (1) to the compound of the formula (2) is based on 1 mol of the compound of the formula (1) from the viewpoint of saving extra raw materials while controlling the molecular weight of the target fluorine-containing polyether compound.
  • the compound of the formula (2) is preferably 2.00 mol or less, more preferably 1.90 mol or less, further preferably 1.70 mol or less, and particularly preferably 1.50 mol or less.
  • the reaction between the compound of formula (1) and the compound of formula (2) is preferably carried out in the presence of an alkaline catalyst.
  • an alkaline catalyst By reacting the compound of formula (1) with the compound of formula (2) in the presence of an alkaline catalyst, the molecular weight and yield of the produced compound of formula (3) can be further improved.
  • the alkaline catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate, cesium fluoride, potassium carbonate and the like, and potassium carbonate is preferable from the viewpoint of the molecular weight and yield of the compound of the formula (3).
  • the reaction temperature of the compound of the formula (1) and the compound of the formula (2) is preferably 80 ° C. to 160 ° C., more preferably 90 ° C. to 140 ° C.
  • the reaction time of the compound of the formula (1) and the compound of the formula (2) is preferably 1 hour to 72 hours, more preferably 2 hours to 48 hours.
  • the compound of the formula (3) may be produced by a batch method or a continuous method, and a known method can be appropriately adopted.
  • the compound of formula (3) is produced by a batch method, for example, the compound of formula (2) may be previously contained in a reactor and the compound of formula (1) may be directly added into the reactor, or the compound of formula (1) may be added directly to the reactor.
  • a diluted solution of the compound may be added.
  • the addition of the compound of the formula (1) to the compound of the formula (2) is carried out by the formula (2).
  • the reaction solution After reacting the compound of formula (1) and the compound of formula (2), at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution and separated. , The organic phase may be concentrated to obtain the compound of formula (3). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (3).
  • the combination of the formula (1) compound and the formula (2) compound used when producing the formula (3) compound is not particularly limited.
  • the compound of formula (1) may be selected from the perfluorodivinyl ether compound.
  • the compound of formula (4) is produced by esterifying the hydroxyl group contained in the compound of formula (3).
  • R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ...
  • the details of R 1 , R 2 , R 3 and a in the general formula (4) are as described above. In the general formula (4), the details of R4 will be described later together with the description of acid fluoride.
  • the method for esterifying the hydroxyl group contained in the compound of the formula (3) is not particularly limited, and a conventionally known reaction may be used.
  • a method of allowing a carboxylic acid compound to act on a hydroxyl group a method of allowing a carboxylic acid anhydride to act on a hydroxyl group, a method of allowing an acid halide to act on a hydroxyl group, and the like can be mentioned.
  • a method of allowing an acid halide to act on the hydroxyl group is preferable from the viewpoint of high reactivity, a method of allowing an acid halide to act on the hydroxyl group is more preferable, and the acid fluoride is described below.
  • a method in which an acid halide represented by the general formula (7) (hereinafter, may be referred to as a compound of the formula (7)) is allowed to act on the compound of the formula (3) is more preferable.
  • R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom and has 2 to 20 carbon atoms.
  • the carbon number of the monovalent hydrocarbon group represented by R4 is preferably 20 or less, more preferably 10 or less, from the viewpoint of ease of purification.
  • the carbon number of the monovalent hydrocarbon group represented by R4 is preferably 3 or more, and more preferably 4 or more, from the viewpoint of suppressing side reactions during fluorination.
  • the fluorine atom content is preferably 50 mol% or more, more preferably 75 mol% or more, and 100 mol% ( Perfluorohydrocarbon groups) are more preferred.
  • the fluorine atom content is the ratio at which the hydrogen atom contained in the hydrocarbon group is replaced with the fluorine atom.
  • the esterification of the hydroxyl group contained in the compound of the formula (3) may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent is preferably a fluorinated organic solvent, and examples thereof include fluorinated alkanes, fluorinated aromatic compounds, and fluoroalkyl ethers.
  • the compound of formula (7) When the compound of formula (7) is allowed to act on the compound of formula (3), it is preferably carried out in the presence of a catalyst. By allowing the compound of formula (7) to act on the compound of formula (3) in the presence of a catalyst, the yield of the produced compound of formula (4) can be further improved.
  • the catalyst include sodium fluoride, triethylamine and the like, and sodium fluoride is preferable from the viewpoint of ease of post-treatment.
  • the reaction temperature is preferably ⁇ 10 ° C. to 100 ° C., more preferably 0 ° C. to 60 ° C. from the viewpoint of the yield of the compound of the formula (4).
  • the reaction time between the compound of formula (3) and the compound of formula (7) is 1 hour to 40 hours from the viewpoint of the yield of the compound of formula (4). Is preferable, and 2 hours to 20 hours are more preferable.
  • the reaction pressure when reacting the compound of formula (3) with the compound of formula (7) is large from the viewpoint of the yield of the compound of formula (4). Atmospheric pressure to 2 MPa (gauge pressure) is preferable.
  • the compound of the formula (4) may be produced by a batch method or a continuous method, and a known method can be appropriately adopted.
  • the compound of formula (4) is produced by a batch method, for example, the compound of formula (3) may be previously contained in a reactor and the compound of formula (7) may be directly added into the reactor.
  • the internal temperature of the reactor is 40 when the compound of formula (7) is added to the compound of formula (3) from the viewpoint of suppressing the generation of by-products. It is preferably performed at a rate not exceeding ° C., and more preferably performed at a rate at which the internal temperature does not exceed 20 ° C.
  • hydrogen fluoride is generated by the reaction between the compound of formula (3) and the compound of formula (7), so that hydrogen fluoride is generated in the reaction system.
  • a scavenger present.
  • the hydrogen fluoride scavenger include alkali metal fluorides and trialkylamines.
  • NaF or KF is preferable.
  • the HF scavenger it is preferable to carry out the reaction at a reaction temperature at which the HF can be vaporized, and to accompany the HF with a nitrogen stream and discharge the HF out of the reaction system.
  • the amount of the HF scavenger used is preferably 1 to 10 times by mole with respect to the compound of the formula (7).
  • the reaction solution After allowing the compound of formula (7) to act on the compound of formula (3), at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution and the solution is separated.
  • the reaction solution may be solid-liquid separated and then the organic phase may be concentrated to obtain the compound of formula (4). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (4).
  • the compound of formula (5) is produced by fluorinating the compound of formula (4).
  • R F1 independently represents a fluorine atom when R 1 is a fluorine atom, represents a fluorine atom when R 1 is a hydrogen atom, and R 1 is monovalent.
  • the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
  • RF2 independently represents a divalent perfluorohydrocarbon group having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated.
  • R F 3 independently represents a single bond when R 3 is a single bond, represents an ether bond when R 3 is an ether bond, and R 3 is divalent.
  • the divalent hydrocarbon group represented by R3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
  • RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated. The details of a in the general formula (5) are as described above.
  • the method for fluorinating the compound of the formula (4) is not particularly limited, and can be carried out by a conventionally known method.
  • fluorination can be performed by contacting the compound of formula (4) with a fluorine gas.
  • the method for fluorinating the compound of the formula (4) may be a batch method or a continuous method.
  • the fluorination reaction is preferably carried out by the following ⁇ Method 1> or ⁇ Method 2>, and ⁇ Method 2> is more preferable from the viewpoint of the reaction yield and selectivity of the compound of the formula (5).
  • the fluorine gas may be diluted with an inert gas such as nitrogen gas before use in either the batch method or the continuous method.
  • Method 1 the compound of formula (4) and a solvent are charged into a reactor, stirring is started, and then, under a predetermined reaction temperature and reaction pressure, a fluorine gas diluted with an inert gas is continuously added to the solvent. It is a method of reacting while supplying.
  • Method 2 the solvent is charged into the reactor, stirred, and then the fluorine gas diluted with the inert gas, the compound of formula (4), and the solvent are continuously mixed at a predetermined molar ratio under a predetermined reaction temperature and reaction pressure. This is a method of reacting while supplying the gas to the fluorination reaction solvent.
  • a solvent is continuously introduced into the tubular reactor and circulated in the tubular reactor, and then a fluorine gas diluted with an inert gas and a solution in which the compound of the formula (4) is dissolved are mixed with the fluorine gas.
  • the compound of formula (4) are continuously supplied to the flow of the solvent in the tubular reactor and mixed at a ratio of a predetermined molar ratio, and the fluorine gas and the compound of formula (4) are mixed in the tubular reactor.
  • a solvent containing a reaction product is taken out from a tubular reactor by contacting and reacting.
  • the fluorination reaction can be carried out in a continuous manner by circulating the solvent and extracting the reaction product from the circulating solvent.
  • the amount of the solvent with respect to the compound of the formula (4) is preferably 5 times or more, more preferably 7 times or more on a mass basis.
  • the inert gas examples include rare gases such as helium gas, neon gas, and argon gas, and nitrogen gas. Nitrogen gas and helium gas are preferable, and nitrogen gas is more preferable because it is economically advantageous.
  • the ratio of the fluorine gas (hereinafter, also referred to as “fluorine gas amount”) is preferably 10% by volume to 60% by volume in the total 100% by volume of the fluorine gas and the inert gas.
  • the amount of the fluorine gas used is preferably 1.1 mol to 10 mol, more preferably 1.2 mol to 5 mol, with respect to 1 mol of the hydrogen atom to be substituted with fluorine in the compound of the formula (4).
  • the solvent may be previously substituted with nitrogen in order to reduce the oxygen content in the solvent. Further, when the compound of the formula (4) is introduced into the solvent, the solvent may be substituted with nitrogen in advance, and then the solvent may be further substituted with fluorine.
  • the fluorination of the compound of the formula (4) is carried out by introducing a fluorine gas and the compound of the formula (4) into the solvent
  • the molar-based introduction rate of the compound of the formula (4) into the solvent is 1.
  • the molar-based introduction rate of fluorine gas was obtained by multiplying the molar-based introduction rate of the compound of formula (4) by the number of hydrogen atoms that could be replaced by fluorine atoms by the fluorine gas contained in the compound of formula (4). It may be in the range of 1 to 10 times the speed, or may be in the range of 2 to 7 times the speed.
  • a CH bond-containing compound other than the compound of the formula (4) it is preferable to add a CH bond-containing compound other than the compound of the formula (4) to the solvent or to irradiate the solvent with ultraviolet rays. .. These are preferably performed in the latter stage of the fluorination reaction.
  • the compound of the formula (4) existing in the solvent can be efficiently fluorinated, and the yield of the compound of the formula (5) can be improved.
  • the CH bond-containing compound aromatic hydrocarbons are preferable, and benzene, toluene and the like can be mentioned.
  • the amount of the CH bond-containing compound added is preferably 0.1 mol% to 10 mol%, preferably 0.1 mol% to 5 mol%, based on the hydrogen atom in the compound of formula (4). Is more preferable.
  • the CH bond-containing compound is preferably added in a solvent in which fluorine gas is present. Further, when the CH bond-containing compound is added, it is preferable to pressurize the reaction system.
  • the reaction pressure during pressurization is preferably 0.01 MPa to 5 MPa (gauge pressure).
  • the irradiation time is preferably 0.1 hour to 3 hours.
  • the inside of the system may be replaced with an inert gas such as nitrogen gas, and then the organic phase may be concentrated to obtain the compound of formula (5). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (5).
  • the compound of formula (6) is produced by allowing an alcohol to act on the compound of formula (5).
  • the details of RF1 , RF2, RF3, RF4 and a in the general formula (6) are as described above.
  • each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom.
  • the terminal of the compound of formula (5) is esterified to obtain the compound of formula (6).
  • the alcohol acting on the compound of formula (5) is not particularly limited. Examples of the alcohol include methanol, ethanol, isopropanol and the like.
  • the reaction of the compound of the formula (5) with an alcohol may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent is preferably a fluorinated organic solvent, and examples thereof include fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether.
  • the amount of alcohol used for the compound of formula (5) is preferably 2 mol to 20 mol, more preferably 2.1 mol to 15 mol, still more preferably 2.2 mol to 10 mol, relative to 1 mol of the compound of formula (5).
  • the reaction temperature of the compound of the formula (5) and the alcohol is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time of the compound of the formula (5) with the alcohol is preferably 0.5 hours to 48 hours, more preferably 1 hour to 24 hours.
  • the addition of alcohol to the compound of formula (5) should be carried out at a rate at which the internal temperature of the reactor does not exceed 40 ° C. Is preferable, and it is more preferable to carry out at a rate at which the internal temperature does not exceed 20 ° C.
  • the reaction solution After reacting the compound of formula (5) with an alcohol, at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution to separate the layers, and then the organic phase is obtained.
  • the compound of formula (6) may be obtained by concentration. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (6).
  • the number average molecular weight (Mn) of the compound of formula (6) obtained by the first production method of the present disclosure is preferably 1000 to 30,000, more preferably 1500 to 20000, and even more preferably 2000 to 10000. Further, the molecular weight distribution (Mw / Mn) of the compound of the formula (6) obtained by the first production method of the present disclosure is preferably 1 to 3, more preferably 1 to 2.5, still more preferably 1 to 2.
  • the method for producing the second fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the second production method of the present disclosure) is a formula (1) compound and a formula (2) compound. 1) The compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3).
  • the details of the formula (1) to the compound (3) and the step of synthesizing the compound of the formula (3) in the second production method of the present disclosure are the same as those of the first production method of the present disclosure. Is.
  • the method for producing the third fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the third production method of the present disclosure) is a formula (1) compound and a formula (2) compound. 1) The compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3), and the hydroxyl group contained in the compound of the formula (3) is esterified to obtain the compound of the formula (4). It is manufactured.
  • the formula (1) compound and the formula (2) compound are expressed in the formula (1).
  • the compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3), and the hydroxyl group contained in the compound of the formula (3) is esterified to obtain the compound of the formula (4). It is produced and the compound of the formula (4) is fluorinated to produce the compound of the formula (5).
  • the details of the formula (1) to the compound (5) and the details of the steps for synthesizing the formula (3) to the compound (5) in the fourth production method of the present disclosure are described in the first of the present disclosure. This is the same as in the case of the manufacturing method.
  • Synthesis Examples 1-1 to 3-4 are examples, and synthesis example 4 is a comparative example.
  • the molar-based introduction rate of compound A-4 into the solvent is 1
  • the molar-based introduction rate of fluorine gas is set to the molar-based introduction rate of compound A-4, and the fluorine contained in compound A-4.
  • the rate was doubled by multiplying the number of hydrogen atoms that could be replaced by fluorine atoms by the gas.
  • the CFE-419 solution of compound A-4 was completed, the CFE-419 solution of benzene (concentration: 0.1% by mass, benzene: 0.1 g) was added intermittently.
  • fluorine gas was blown over for 1 hour, and finally the inside of the reactor was sufficiently replaced with nitrogen gas.
  • the solvent was distilled off to obtain 20 g (yield 94%) of compound A-5 corresponding to the compound of formula (5).
  • the Mn of compound A-6 was 3700, and the Mw / Mn was 1.7.
  • the obtained crude reaction solution was separated, and then the organic phase was concentrated.
  • the reaction crude solution obtained by concentrating the organic phase was purified by column chromatography to obtain 25 g (yield 85%) of compound B-1 corresponding to the compound of formula (3).
  • the average of a was 5.
  • the Mn of compound B-4 was 4000, and the Mw / Mn was 2.
  • the rate was doubled by multiplying the number of hydrogen atoms that could be replaced by fluorine atoms by the gas.
  • the CFE-419 solution of compound C-2 was completed, the CFE-419 solution of benzene (concentration: 0.1% by mass, benzene: 0.1 g) was added intermittently.
  • fluorine gas was blown over for 1 hour, and finally the inside of the reactor was sufficiently replaced with nitrogen gas.
  • the solvent was distilled off to obtain 44 g (yield 96%) of the compound C-3 corresponding to the compound of the formula (5).
  • the average of a was 4.
  • * represents a bond with an oxygen atom
  • ** represents a bond with a carbon atom.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

This production method of a fluorine-containing polyether compound involves producing the compound of formula (3) by reacting the compound of expression (1) and the compound of expression (2) in a ratio such that the compound of formula (2) exceeds 1 mol per 1 mol of the compound of expression (1), esterifying, fluorinating and subsequently reacting with an alcohol to produce a fluorine-containing polyether compound in which both terminals have been functionalized. Here, R1 represents a fluorine atom, etc., R2 and R3 represent a divalent hydrocarbon group of 1-20 carbons. (1) ... CF2=CR1-O-R2-O-CR1=CF2, (2) ... HO-CH2R3CH2-OH

Description

含フッ素ポリエーテル化合物の製造方法Method for Producing Fluorine-Containing Polyether Compound
 本開示は、含フッ素ポリエーテル化合物の製造方法に関する。 This disclosure relates to a method for producing a fluorine-containing polyether compound.
 含フッ素ポリエーテル化合物は、高い潤滑性及び撥水撥油性等を示すことから、表面処理剤又は潤滑剤等に使用される。
 含フッ素ポリエーテル化合物は種々の方法により製造される。例えば、特許文献1においては、テトラフルオロエチレンを、フルオロオキシ基を有する化合物等の存在下において、酸素と反応させることにより、含フッ素ポリエーテル化合物を製造することが開示されている。
 また、特許文献2においては、2,2,3,3-テトラフルオロオキセタンの開環重合による含フッ素ポリエーテル化合物を製造すること、並びにこの含フッ素ポリエーテル化合物を塩素化及びフッ素化して含ハロゲンポリエーテル化合物を製造することが開示されている。
 また、特許文献3においては、CF=CFO-CFCFCFCHOHで表される化合物とA-OH(Aはメチル基等を表す。)で表されるアルコールとを反応させてA-O-(CFCFHO-CFCFCFCHO)n+1-Hで表される含ハロゲンポリエーテル化合物を製造することが開示されている。
Fluorine-containing polyether compounds are used as surface treatment agents or lubricants because they exhibit high lubricity, water repellency, oil repellency and the like.
Fluorine-containing polyether compounds are produced by various methods. For example, Patent Document 1 discloses that a fluorine-containing polyether compound is produced by reacting tetrafluoroethylene with oxygen in the presence of a compound having a fluorooxy group or the like.
Further, in Patent Document 2, a fluorine-containing polyether compound is produced by ring-opening polymerization of 2,2,3,3-tetrafluorooxetane, and the fluorine-containing polyether compound is chlorinated and fluorinated to contain halogen. It is disclosed to produce a polyether compound.
Further, in Patent Document 3, a compound represented by CF 2 = CFO-CF 2 CF 2 CF 2 CH 2 OH and an alcohol represented by A 1 -OH (A 1 represents a methyl group or the like) are referred to. It is disclosed that the reaction is carried out to produce a halogen-containing polyether compound represented by A1 - O- (CF 2 CFHO-CF 2 CF 2 CF 2 CH 2 O) n + 1 -H.
米国特許第5258110号US Pat. No. 5,258110 米国特許第4845268号US Pat. No. 4,845,268 国際公開第2013/121984号International Publication No. 2013/121984
 特許文献1に記載の方法では、テトラフルオロエチレンと酸素とを溶媒中に導入する方法により両末端がエステル又は還元されたアルコールであるペルフルオロポリエーテル(PFPE)を得ることができる。しかしながら、特許文献1に記載の方法では、PFPEに含まれる構造単位は主に(CF-CFO)及び(CFO)等であるランダム重合体が得られ、構造単位を自在に選択できない。
 また、特許文献2に記載の方法では、PFPEに含まれる構造単位を自在に選択できない。また、PFPEの両末端を官能基化することが困難な場合がある。
 また、特許文献3に記載されているPFPEの製造方法では、PFPEの両末端を官能基化することが困難である。
In the method described in Patent Document 1, perfluoropolyether (PFPE), which is an alcohol having both ends ester or reduced, can be obtained by a method of introducing tetrafluoroethylene and oxygen into a solvent. However, in the method described in Patent Document 1, random polymers in which the structural units contained in PFPE are mainly (CF2-CF 2 O) and (CF 2 O ) can be obtained, and the structural units can be freely selected. Can not.
Further, in the method described in Patent Document 2, the structural unit included in PFPE cannot be freely selected. In addition, it may be difficult to functionalize both ends of PFPE.
Further, in the method for producing PFPE described in Patent Document 3, it is difficult to functionalize both ends of PFPE.
 本開示は、上記要求に鑑みてなされたものであり、その解決しようとする課題は、両末端に官能基を有し、構造単位を選択する際の制約が少ない含フッ素ポリエーテル化合物の製造方法を提供することである。 The present disclosure has been made in view of the above requirements, and the problem to be solved is a method for producing a fluorine-containing polyether compound having functional groups at both ends and having few restrictions when selecting a structural unit. Is to provide.
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
 下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造し、
 下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物をフッ素化して下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物を製造し、
 下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物にアルコールを作用させて下記一般式(6)で表される含フッ素ジアルコキシカルボニルポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
 CF=CR-O-R-O-CR=CF・・・(1)
 HO-CHCH-OH・・・(2)
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
 RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
 RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
 R-O-CORF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CO-O-R・・・(6)
(一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
 一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 一般式(6)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の1価の炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
 一般式(3)~一般式(6)中、aは、0又は1以上の整数を表し、且つ一般式(3)~一般式(6)におけるaはいずれも同じ値を示す。)
  <2> 前記一般式(1)で表される含フッ素ジビニルエーテル化合物と前記一般式(2)で表されるジオール化合物との反応を、アルカリ触媒の存在下において行う、<1>に記載の含フッ素ポリエーテル化合物の製造方法。
  <3> 前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のフッ素化において、フッ素ガスを、前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物中におけるフッ素置換する水素原子1molに対して、1.1mol~10molの比率で使用する、<1>又は<2>に記載の含フッ素ポリエーテル化合物の製造方法。
  <4> 前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のフッ素化を、フッ素ガス及び前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を溶媒内に導入することにより行い、
 前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物の前記溶媒内へのモル基準の導入速度を1としたときに、前記フッ素ガスのモル基準の導入速度が、前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のモル基準の導入速度に前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物に含まれる前記フッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の1倍~10倍の範囲である、<1>~<3>のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
  <5> 前記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基のエステル化が、下記一般式(7)で表される酸フルオリドを前記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に作用させるものである、<1>~<4>のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
 RCOF・・・(7)
(一般式(7)中、Rは、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。)
  <6> 前記一般式(2)で表されるジオール化合物の酸性度が、8~18である、<1>~<5>のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
  <7> 前記一般式(3)~前記一般式(6)におけるaが、1以上の整数である、<1>~<6>のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
  <8> 前記一般式(1)で表される含フッ素ジビニルエーテル化合物と前記一般式(2)で表されるジオール化合物とを反応させる際の反応温度が、80℃~160℃である、<1>~<7>のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
  <9> 下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
 CF=CR-O-R-O-CR=CF・・・(1)
 HO-CHCH-OH・・・(2)
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
(一般式(1)及び一般式(3)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
 一般式(1)及び一般式(3)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(2)及び一般式(3)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(3)中、aは、0又は1以上の整数を表す。)
  <10> 下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
 下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
 CF=CR-O-R-O-CR=CF・・・(1)
 HO-CHCH-OH・・・(2)
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
 RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
(一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
 一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 一般式(3)及び一般式(4)中、aは、0又は1以上の整数を表し、且つ一般式(3)及び一般式(4)におけるaはいずれも同じ値を示す。)
  <11> 下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
 下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造し、
 下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物をフッ素化して下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
 CF=CR-O-R-O-CR=CF・・・(1)
 HO-CHCH-OH・・・(2)
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
 RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
 RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
(一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
 一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 一般式(5)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
 一般式(3)~一般式(5)中、aは、0又は1以上の整数を表し、且つ一般式(3)~一般式(5)におけるaはいずれも同じ値を示す。)
Specific means for achieving the above-mentioned problems are as follows.
<1> The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) was reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
The hydroxyl group contained in the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) is esterified to produce a fluorine-containing diacyloxypolyether compound represented by the following general formula (4).
The fluorine-containing diacyloxypolyether compound represented by the following general formula (4) is fluorinated to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
A fluorine-containing polyether compound for producing a fluorine-containing dialkoxycarbonyl polyether compound represented by the following general formula (6) by allowing an alcohol to act on the perfluorodiacyloxypolyether compound represented by the following general formula (5). Production method.
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
HO-CH 2 R 3 CH 2 -OH ... (2)
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
R 5 -O-COR F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CO-O-R 5 ... (6)
(In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
In the general formula (6), each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 1 to 20.
In the general formula (5) and the general formula (6), RF1 independently represents a fluorine atom when R 1 is a fluorine atom, and represents a fluorine atom when R 1 is a hydrogen atom. When R 1 is a monovalent hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
In the general formula (5) and the general formula (6), RF2 is a divalent perfluorocarbonated product having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated independently of each other. Represents a hydrogen group.
In the general formula (5) and the general formula (6), RF3 independently represents a single bond when R 3 is a single bond, and represents an ether bond when R 3 is an ether bond. When R 3 is a divalent hydrocarbon group, the divalent hydrocarbon group represented by R 3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
In the general formulas (3) to (6), a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (6) all represent the same value. )
<2> The reaction according to <1>, wherein the reaction between the fluorine-containing divinyl ether compound represented by the general formula (1) and the diol compound represented by the general formula (2) is carried out in the presence of an alkaline catalyst. A method for producing a fluorine-containing polyether compound.
<3> In the fluorination of the fluorine-containing diacyloxypolyether compound represented by the general formula (4), the fluorine gas is substituted with fluorine in the fluorine-containing diacyloxypolyether compound represented by the general formula (4). The method for producing a fluorine-containing polyether compound according to <1> or <2>, which is used at a ratio of 1.1 mol to 10 mol with respect to 1 mol of hydrogen atoms.
<4> Fluorination of the fluorine-containing diacyloxypolyether compound represented by the general formula (4) is introduced into a solvent by introducing a fluorine gas and a fluorine-containing diacyloxypolyether compound represented by the general formula (4) into a solvent. Do by doing
When the molar-based introduction rate of the fluorine-containing diacyloxypolyether compound represented by the general formula (4) into the solvent is 1, the introduction rate of the fluorine gas on the molar basis is the general formula (4). The introduction rate of the fluorine-containing diacyloxypolyether compound represented by 4) on a molar basis can be replaced with a fluorine atom by the fluorine gas contained in the fluorine-containing diacyloxypolyether compound represented by the general formula (4). The method for producing a fluorine-containing polyether compound according to any one of <1> to <3>, which is in the range of 1 to 10 times the rate obtained by multiplying the number of hydrogen atoms.
<5> The esterification of the hydroxyl group contained in the fluorine-containing dihydroxypolyether compound represented by the general formula (3) is represented by the acid fluoride represented by the following general formula (7) by the general formula (3). The method for producing a fluorine-containing polyether compound according to any one of <1> to <4>, which acts on the fluorine-containing dihydroxypolyether compound.
R 4 COF ... (7)
(In the general formula (7), R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom. The number of carbon atoms is 2 to 20. Represents a monovalent hydrocarbon group of.)
<6> The method for producing a fluorine-containing polyether compound according to any one of <1> to <5>, wherein the acidity of the diol compound represented by the general formula (2) is 8 to 18.
<7> The method for producing a fluorine-containing polyether compound according to any one of <1> to <6>, wherein a in the general formula (3) to the general formula (6) is an integer of 1 or more. ..
<8> The reaction temperature at the time of reacting the fluorine-containing divinyl ether compound represented by the general formula (1) with the diol compound represented by the general formula (2) is 80 ° C to 160 ° C. 1> The method for producing a fluorine-containing polyether compound according to any one of <7>.
<9> The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). A fluorinated polyether compound represented by the following general formula (2) is reacted with a diol compound represented by the following general formula (2) at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3). Manufacturing method.
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
HO-CH 2 R 3 CH 2 -OH ... (2)
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
(In the general formula (1) and the general formula (3), R 1 is a monovalent having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom independently of each other. Represents the hydrocarbon group of.
In the general formula (1) and the general formula (3), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and the hydrogen atom is replaced by a fluorine atom. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be used.
In the general formula (2) and the general formula (3), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
In the general formula (3), a represents 0 or an integer of 1 or more. )
<10> The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) was reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
A fluorine-containing polyether compound for producing a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) by esterifying a hydroxyl group contained in the fluorine-containing dihydroxypolyether compound represented by the following general formula (3). Manufacturing method.
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
HO-CH 2 R 3 CH 2 -OH ... (2)
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
(In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
In the general formula (3) and the general formula (4), a represents an integer of 0 or 1 or more, and a in the general formula (3) and the general formula (4) both show the same value. )
<11> The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are combined with 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) was reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
The hydroxyl group contained in the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) is esterified to produce a fluorine-containing diacyloxypolyether compound represented by the following general formula (4).
A method for producing a fluorine-containing polyether compound, which comprises fluorinating a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
HO-CH 2 R 3 CH 2 -OH ... (2)
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
(In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
In the general formula (5), R F1 independently represents a fluorine atom when R 1 is a fluorine atom, represents a fluorine atom when R 1 is a hydrogen atom, and R 1 is monovalent. In the case of a hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
In the general formula (5), RF2 independently represents a divalent perfluorohydrocarbon group having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated.
In the general formula (5), R F 3 independently represents a single bond when R 3 is a single bond, represents an ether bond when R 3 is an ether bond, and R 3 is divalent. In the case of a hydrocarbon group , the divalent hydrocarbon group represented by R3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
In the general formulas (3) to (5), a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (5) all show the same value. )
 本開示によれば、両末端に官能基を有し、構造単位を選択する際の制約が少ない含フッ素ポリエーテル化合物の製造方法が提供される。 According to the present disclosure, there is provided a method for producing a fluorine-containing polyether compound which has functional groups at both ends and has few restrictions when selecting a structural unit.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, the mode for implementing the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit this disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本開示において、「フルオロアルキレン基」には、水素原子が全てフッ素原子に置換されたペルフルオロアルキレン基及び水素原子の一部がフッ素原子に置換されたフルオロアルキレン基が包含される。また、本開示において、「フルオロシクロアルカン」等の記載にも、シクロアルカンが有する水素原子が全てフッ素原子に置換されたペルフルオロシクロアルカンだけではなく、水素原子の一部がフッ素原子に置換されたシクロアルカンも包含される。 In the present disclosure, the "fluoroalkylene group" includes a perfluoroalkylene group in which all hydrogen atoms are substituted with fluorine atoms and a fluoroalkylene group in which a part of hydrogen atoms is substituted with fluorine atoms. Further, in the present disclosure, not only the perfluorocycloalkane in which all the hydrogen atoms of the cycloalkane are replaced with the fluorine atom but also a part of the hydrogen atom is replaced with the fluorine atom in the description of "fluorocycloalkane" and the like. Cycloalkanes are also included.
 本開示において各成分は該当する化合物を複数種含んでいてもよい。例えば、一般式(1)で表される含フッ素ジビニルエーテル化合物と一般式(2)で表されるジオール化合物との反応におけるmol比は、各成分に該当する化合物の合計に基づき算出する。 In the present disclosure, each component may contain a plurality of applicable compounds. For example, the mol ratio in the reaction between the fluorine-containing divinyl ether compound represented by the general formula (1) and the diol compound represented by the general formula (2) is calculated based on the total of the compounds corresponding to each component.
 本開示の基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。 In the notation of the group (atomic group) of the present disclosure, the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
 本開示において、炭素数とは、ある基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は当該基の骨格を形成する炭素原子の数を表し、該基が置換基を有する場合は当該基の骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。 In the present disclosure, the number of carbon atoms means the total number of carbon atoms contained in the entire group, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group, and the group. When has a substituent, it represents the total number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
 本開示において、1価又は2価の炭化水素基が「ペルフルオロ化された」とは、当該炭化水素基が以下の状態にまでフッ素化されたことをいう。
 1価又は2価の炭化水素基が飽和炭化水素基である場合、1価又は2価の炭化水素基を構成する炭素原子に結合したフッ素化されうる水素原子の全てがフッ素化された状態を、炭化水素基が「ペルフルオロ化された」と称する。
 1価又は2価の炭化水素基が不飽和炭化水素基である場合、1価又は2価の炭化水素基を構成する炭素原子に結合したフッ素化されうる水素原子の全てがフッ素化され、且つ、炭素-炭素二重結合又は炭素-炭素三重結合等の炭素-炭素間の不飽和結合を形成する2つの炭素原子の各々にフッ素原子が付加されて炭素-炭素間の不飽和結合が消滅した状態を、炭化水素基が「ペルフルオロ化された」と称する。例えば、>C=C<がペルフルオロ化されると>CF-CF<に、-C≡C-がペルフルオロ化されると-CF-CF-になる。また、フッ素化されうる原子団にはフッ素化されうる水素原子が結合していてもよく、たとえば、-CH=CH-がペルフルオロ化されると-CF-CF-になる。
In the present disclosure, the term "perfluorocarbonated" of a monovalent or divalent hydrocarbon group means that the hydrocarbon group has been fluorinated to the following states.
When the monovalent or divalent hydrocarbon group is a saturated hydrocarbon group, all the hydrogen atoms bonded to the carbon atoms constituting the monovalent or divalent hydrocarbon group are fluorinated. , Hydrocarbon groups are referred to as "perfluoroylated".
When the monovalent or divalent hydrocarbon group is an unsaturated hydrocarbon group, all the fluorinated hydrogen atoms bonded to the carbon atoms constituting the monovalent or divalent hydrocarbon group are fluorinated and , A fluorine atom was added to each of the two carbon atoms forming a carbon-carbon unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond, and the carbon-carbon unsaturated bond disappeared. The state is referred to as the hydrocarbon group being "perfluoroylated". For example, when> C = C <is perfluorolated, it becomes> CF-CF <, and when -C≡C- is perfluorolated, it becomes -CF 2 -CF 2- . Further, a hydrogen atom that can be fluorinated may be bonded to the atom group that can be fluorinated. For example, when -CH = CH- is perfluorolated, it becomes -CF 2 -CF 2- .
 本開示において、数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(以下、「GPC」ともいう。)により測定する。GPCによる測定は、特開2001-208736号公報に記載する方法に従い、下記条件にて行う。
・移動相:R-225(AGC株式会社製、商品名: アサヒクリン(登録商標)AK-225SECグレード1)及びヘキサフルオロイソプロピルアルコール(HFIP)の混合溶媒(R-225:HFIP=99:1(体積比))
・分析カラム:PLgel MIXED-Eカラム(ポリマーラボラトリーズ社製)を2 本直列に連結したもの
・分子量測定用標準試料:分子量分布(Mw/Mn)が1.1未満且つMnが2,000~10,000のペルフルオロポリエーテル4種、及びMw/Mnが1.1以上且つMnが1,300のペルフルオロポリエーテル1種
・移動相流速:1.0mL/分
・カラム温度:37℃
・検出器:蒸発光散乱検出器
In the present disclosure, the number average molecular weight (Mn) and the mass average molecular weight (Mw) are measured by gel permeation chromatography (hereinafter, also referred to as “GPC”). The measurement by GPC is carried out under the following conditions according to the method described in Japanese Patent Application Laid-Open No. 2001-208736.
-Mobile phase: R-225 (manufactured by AGC Inc., trade name: Asahiclean (registered trademark) AK-225SEC grade 1) and a mixed solvent of hexafluoroisopropyl alcohol (HFIP) (R-225: HFIP = 99: 1 ( Volume ratio))
-Analytical column: PLgel MIXED-E column (manufactured by Polymer Laboratories) connected in series-Standard sample for molecular weight measurement: Molecular weight distribution (Mw / Mn) is less than 1.1 and Mn is 2,000 to 10 4 types of perfluoropolyether of 000, and 1 type of perfluoropolyether with Mw / Mn of 1.1 or more and Mn of 1,300 ・ Mobile phase flow velocity: 1.0 mL / min ・ Column temperature: 37 ° C.
・ Detector: Evaporation light scattering detector
<第1の含フッ素ポリエーテル化合物の製造方法>
 本開示の第1の含フッ素ポリエーテル化合物の製造方法(以下、本開示の第1の製造方法と称することがある。)は、下記一般式(1)で表される含フッ素ジビニルエーテル化合物(以下、式(1)化合物と称することがある。)と下記一般式(2)で表されるジオール化合物(以下、式(2)化合物と称することがある。)とを、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物(以下、式(3)化合物と称することがある。)を製造し、式(3)化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物(以下、式(4)化合物と称することがある。)を製造し、式(4)化合物をフッ素化して下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物(以下、式(5)化合物と称することがある。)を製造し、式(5)化合物にアルコールを作用させて下記一般式(6)で表される含フッ素ジアルコキシカルボニルポリエーテル化合物(以下、式(6)化合物と称することがある。)を製造するものである。
<Method for Producing First Fluorine-Containing Polyether Compound>
The method for producing the first fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the first production method of the present disclosure) is a fluorine-containing divinyl ether compound represented by the following general formula (1) (hereinafter, may be referred to as the first production method of the present disclosure). Hereinafter, a compound of formula (1) may be referred to as a compound of formula (1), and a diol compound represented by the following general formula (2) (hereinafter, may be referred to as a compound of formula (2)). The compound of the formula (2) is reacted with 1 mol at a ratio of more than 1 mol, and the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) (hereinafter, may be referred to as a compound of the formula (3)). Is produced, and the hydroxyl group contained in the compound of the formula (3) is esterified to obtain a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) (hereinafter, may be referred to as a compound of the formula (4)). The compound of the formula (4) is fluorinated to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5) (hereinafter, may be referred to as a compound of the formula (5)), and the formula (5) is produced. ) A fluorine-containing dialkoxycarbonylpolyether compound represented by the following general formula (6) (hereinafter, may be referred to as a compound of formula (6)) is produced by allowing an alcohol to act on the compound.
 CF=CR-O-R-O-CR=CF・・・(1)
 HO-CHCH-OH・・・(2)
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
 RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
 RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
 R-O-CORF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CO-O-R・・・(6)
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
HO-CH 2 R 3 CH 2 -OH ... (2)
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
R 5 -O-COR F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CO-O-R 5 ... (6)
 一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
 一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 一般式(6)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の1価の炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)及び一般式(6)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
 一般式(3)~一般式(6)中、aは、0又は1以上の整数を表し、且つ一般式(3)~一般式(6)におけるaはいずれも同じ値を示す。
In the general formula (1), the general formula (3), and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the hydrogen atom may be substituted with the fluorine atom. Represents a monovalent hydrocarbon group of ~ 3.
In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
In the general formula (6), each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 1 to 20.
In the general formula (5) and the general formula (6), RF1 independently represents a fluorine atom when R 1 is a fluorine atom, and represents a fluorine atom when R 1 is a hydrogen atom. When R 1 is a monovalent hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
In the general formula (5) and the general formula (6), RF2 is a divalent perfluorocarbonated product having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated independently of each other. Represents a hydrogen group.
In the general formula (5) and the general formula (6), RF3 independently represents a single bond when R 3 is a single bond, and represents an ether bond when R 3 is an ether bond. When R 3 is a divalent hydrocarbon group, the divalent hydrocarbon group represented by R 3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
In the general formulas (3) to (6), a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (6) all represent the same value.
 本開示によれば、両末端に官能基を有し、構造単位を選択する際の制約が少ない含フッ素ポリエーテル化合物の製造方法を提供できる。
 上記効果が奏される理由としては、例えば、以下のように推察されるが、これに限定されない。
 本開示の第1の製造方法では、含フッ素ポリエーテル化合物の原料となるモノマーとして、式(1)化合物及び式(2)化合物が用いられる。式(1)化合物及び式(2)化合物の種類を適宜選択することで、特許文献1及び特許文献2に記載の方法に比較して、構造単位を選択する際の制約を少なくできる。
 また、本開示の第1の製造方法では、式(1)化合物及び式(2)化合物を反応させて式(3)化合物を得るに際し、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させることから、式(3)化合物の末端に水酸基を生じさせやすい。水酸基を有する式(3)化合物の末端に化学修飾を施すことで、本開示の第1の製造方法で得られる含フッ素ポリエーテル化合物の両末端にエステル基を生じさせることができる。そのため、特許文献2及び特許文献3に記載の方法とは異なり、本開示の第1の製造方法では、含フッ素ポリエーテル化合物の両末端を官能基化することが可能になる。
According to the present disclosure, it is possible to provide a method for producing a fluorine-containing polyether compound which has functional groups at both ends and has few restrictions when selecting a structural unit.
The reason why the above effect is exhibited is presumed to be, for example, as follows, but is not limited to this.
In the first production method of the present disclosure, the compound of the formula (1) and the compound of the formula (2) are used as the monomer which is a raw material of the fluorine-containing polyether compound. By appropriately selecting the type of the compound of the formula (1) and the compound of the formula (2), restrictions on selecting the structural unit can be reduced as compared with the methods described in Patent Document 1 and Patent Document 2.
Further, in the first production method of the present disclosure, when the compound of the formula (1) and the compound of the formula (2) are reacted to obtain the compound of the formula (3), the compound of the formula (2) is obtained with respect to 1 mol of the compound of the formula (1). Is reacted at a ratio of more than 1 mol, so that a hydroxyl group is likely to be generated at the terminal of the compound of the formula (3). By chemically modifying the ends of the compound of formula (3) having a hydroxyl group, ester groups can be generated at both ends of the fluorine-containing polyether compound obtained by the first production method of the present disclosure. Therefore, unlike the methods described in Patent Documents 2 and 3, in the first production method of the present disclosure, both ends of the fluorine-containing polyether compound can be functionalized.
 以下、本開示の第1の製造方法に用いられる各種材料及び反応工程の詳細について説明する。 Hereinafter, the details of various materials and reaction processes used in the first production method of the present disclosure will be described.
-式(1)化合物-
 本開示で用いられる式(1)化合物は、下記一般式(1)で表される特定含フッ素ジビニルエーテル化合物である。
 CF=CR-O-R-O-CR=CF・・・(1)
 一般式(1)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表し、潤滑性の観点から、Rの少なくとも一方がフッ素原子であることが好ましく、Rの両方がフッ素原子であることがより好ましい。
-Formula (1) compound-
The compound of formula (1) used in the present disclosure is a specific fluorine-containing divinyl ether compound represented by the following general formula (1).
CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
In the general formula (1), R 1 independently represents a monovalent hydrocarbon group having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom. From the viewpoint of lubricity, it is preferable that at least one of R 1 is a hydrogen atom, and it is more preferable that both of R 1 are hydrogen atoms.
 一般式(1)中、Rは、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 Rで表される2価の炭化水素基の炭素数は、15以下が好ましく、10以下がより好ましい。Rで表される2価の炭化水素基の炭素数を15以下とすることにより、重合反応がより良好に進行するため、高分子量の含フッ素ポリエーテル化合物を高収率で製造できる。
 Rで表される2価の炭化水素基の炭素数は、環化反応を防止する観点から、3以上が好ましく、4以上がより好ましい。
In the general formula (1), R 2 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom and has 1 to 20 carbon atoms. Represents a divalent hydrocarbon group.
The number of carbon atoms of the divalent hydrocarbon group represented by R2 is preferably 15 or less, more preferably 10 or less. By setting the number of carbon atoms of the divalent hydrocarbon group represented by R2 to 15 or less, the polymerization reaction proceeds more satisfactorily, so that a high molecular weight fluorine-containing polyether compound can be produced in high yield.
The number of carbon atoms of the divalent hydrocarbon group represented by R2 is preferably 3 or more, and more preferably 4 or more, from the viewpoint of preventing a cyclization reaction.
 Rで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基及びヘキサメチレン基等のアルキレン基、フルオロメチレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロテトラメチレン基、フルオロペンタメチレン基及びフルオロヘキサメチレン基等のフルオロアルキレン基、などが挙げられる。 Examples of the divalent hydrocarbon group represented by R 2 include an alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group, a fluoromethylene group and a fluoroethylene group. Examples thereof include fluoroalkylene groups such as fluorotrimethylene group, fluorotetramethylene group, fluoropentamethylene group and fluorohexamethylene group.
 Rで表される2価の炭化水素基は、以下の一般式(X)で表される基であってもよい。
*-R-(O-R-*・・・(X)
 一般式(X)中、Rはエチレン基、トリメチレン基、プロピレン基、フルオロエチレン基、フルオロトリメチレン基、又はフルオロプロピレン基を表し、nは1以上の整数を表す。
 なお、一般式(X)中、*は、酸素原子との結合部分を表す。
The divalent hydrocarbon group represented by R 2 may be a group represented by the following general formula (X).
* -R x- (OR x ) n- * ... (X)
In the general formula (X), R x represents an ethylene group, a trimethylene group, a propylene group, a fluoroethylene group, a fluorotrimethylene group, or a fluoropropylene group, and n represents an integer of 1 or more.
In the general formula (X), * represents a bonding portion with an oxygen atom.
 Rで表される2価の炭化水素基は、以下の一般式(A)で表される基であってもよい。
*-R-O-R-O-R-*・・・(A)
 一般式(A)中、Rは、シクロアルカンジイル基、フルオロシクロアルカンジイル基、又はアリーレン基を表す。
 Rで表されるシクロアルカンジイル基及びフルオロシクロアルカンジイル基としては、例えば、シクロブタンジイル基、フルオロシクロブタンジイル基、シクロペンタンジイル基、フルオロシクロペンタンジイル基、シクロヘキサンジイル基、フルオロシクロヘキサンジイル基、アダマンタンジイル基、ノルボルナンジイル基等が挙げられる。シクロアルカンジイル基、フルオロシクロアルカンジイル基及びアリーレン基は、水素原子がフッ素原子により置換されていてもよい炭素数1~3のアルキル基を置換基として有していてもよい。
 一般式(A)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい、炭素数1~10の2価の炭化水素基を表す。
 Rで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フルオロメチレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロテトラメチレン基等が挙げられる。
 なお、一般式(A)中、*は、酸素原子との結合部分を表す。
The divalent hydrocarbon group represented by R 2 may be a group represented by the following general formula (A).
* -R b -OR a -OR b- * ... (A)
In the general formula (A), Ra represents a cycloalkanediyl group, a fluorocycloalkandyl group, or an arylene group.
Examples of the cycloalkanediyl group and the fluorocycloalkanediyl group represented by Ra include a cyclobutanediyl group, a fluorocyclobutanediyl group, a cyclopentanediyl group, a fluorocyclopentanediyl group, a cyclohexanediyl group, and a fluorocyclohexanediyl group. Examples thereof include an adamantandiyl group and a norbornandyl group. The cycloalkandyl group, the fluorocycloalkandyl group and the arylene group may have an alkyl group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a fluorine atom as a substituent.
In the general formula (A), R b may independently contain a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom, which is a divalent group having 1 to 10 carbon atoms. Represents a hydrocarbon group.
Examples of the divalent hydrocarbon group represented by R b include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group, a fluorotetramethylene group and the like. Be done.
In the general formula (A), * represents a bonding portion with an oxygen atom.
 一般式(A)で表される2価の炭化水素基としては、以下のような基が挙げられるが、これに限定されない。 Examples of the divalent hydrocarbon group represented by the general formula (A) include, but are not limited to, the following groups.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、Rで表される2価の炭化水素基は、以下の一般式(B)乃至(D)で表される基であってもよい。
*-R-R-R-*・・・(B)
*-R-R-R-*・・・(C)
*-R-R-R-*・・・(D)
 一般式(B)及び(C)中におけるRが表す基は、上記一般式(A)と同様である。
 一般式(D)中におけるRが表す基は、上記一般式(A)と同様である。
 また、一般式(B)及び(C)中、Rは、それぞれ独立して、単結合、又は環構造や分岐構造を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい、炭素数1~10の2価の炭化水素基を表す。
 Rで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピリデン基、イソプロピリデン基、フルオロメチレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロプロピリデン基、フルオロイソプロピリデン基等が挙げられる。
 また、一般式(D)中、Rは、炭素数3~6のシクロアルカン-1,1-ジイル基を表す。
 なお、一般式(B)~一般式(D)中、*は、酸素原子との結合部分を表す。
Further, the divalent hydrocarbon group represented by R 2 may be a group represented by the following general formulas (B) to (D).
* -R c -R a -R c- * ... (B)
* -R a -R c -R a- * ... (C)
* -R b -R d -R b- * ... (D)
The group represented by Ra in the general formulas (B) and (C) is the same as the above general formula ( A ).
The group represented by R b in the general formula (D) is the same as that in the general formula (A).
Further, in the general formulas (B) and (C), R c may independently contain a single bond, a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom. , Represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
Examples of the divalent hydrocarbon group represented by R c include a methylene group, an ethylene group, a trimethylene group, a propyridene group, an isopropyridene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group and a fluoropropyridene group. , Fluoroisopropylidene group and the like.
Further, in the general formula (D), R d represents a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms.
In the general formulas (B) to (D), * represents a bonding portion with an oxygen atom.
 一般式(B)~一般式(D)のいずれかを満たす基としては、以下のような基が挙げられるが、これに限定されない。 Examples of the group satisfying any of the general formulas (B) to (D) include, but are not limited to, the following groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上述のRで表される2価の炭化水素基の具体例を踏まえ、式(1)化合物の具体例としては、以下のような化合物が挙げられるが、これに限定されない。 Based on the specific example of the divalent hydrocarbon group represented by R2 described above, specific examples of the compound of the formula (1) include, but are not limited to, the following compounds.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
-式(2)化合物-
 本開示で用いられる式(2)化合物は、下記一般式(2)で表される特定ジオール化合物である。
 HO-CHCH-OH・・・(2)
 一般式(2)中、Rは、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
 式(2)化合物の酸性度(pKa)は、8~18であることが好ましく、9~14であることがより好ましい。式(2)化合物のpKaが上記数値範囲内であることにより、式(1)化合物との反応が良好に進行する。
 本開示において、pKaは、25℃、水中における数値であり、化学便覧基礎編改訂5版II-331~II-343(日本化学会編、丸善株式会社発行)に記載の方法により算出する。
-Formula (2) compound-
The compound of formula (2) used in the present disclosure is a specific diol compound represented by the following general formula (2).
HO-CH 2 R 3 CH 2 -OH ... (2)
In the general formula (2), R 3 may contain a single bond, an ether bond, a ring structure or a branched structure, may contain an ether bond, or the hydrogen atom may be substituted with a fluorine atom. Represents a good divalent hydrocarbon group with 1 to 20 carbon atoms.
The acidity (pKa) of the compound of the formula (2) is preferably 8 to 18, and more preferably 9 to 14. When the pKa of the compound of the formula (2) is within the above numerical range, the reaction with the compound of the formula (1) proceeds satisfactorily.
In the present disclosure, pKa is a numerical value in water at 25 ° C., and is calculated by the method described in Revised 5th Edition II-331 to II-343 (edited by The Chemical Society of Japan, published by Maruzen Co., Ltd.).
 一般式(2)中、Rを包含する「-CHCH-」で表される2価の炭化水素基(以下、「-CHCH-」基と称することがある。)の炭素数は、15以下が好ましく、10以下がより好ましい。「-CHCH-」基の炭素数を15以下とすることにより、重合反応がより良好に進行するため、高分子量の含フッ素ポリエーテル化合物を高収率で製造できる。
 「-CHCH-」基の炭素数は、合成上取り扱いの観点から、2以上が好ましく、3以上がより好ましい。
In the general formula (2), a divalent hydrocarbon group represented by "-CH 2 R 3 CH 2- " including R 3 (hereinafter referred to as "-CH 2 R 3 CH 2- " group may be referred to. The number of carbon atoms in (1) is preferably 15 or less, more preferably 10 or less. By setting the carbon number of the "-CH 2 R 3 CH 2- " group to 15 or less, the polymerization reaction proceeds more satisfactorily, so that a high molecular weight fluorine-containing polyether compound can be produced in high yield.
The carbon number of the "-CH 2 R 3 CH 2- " group is preferably 2 or more, and more preferably 3 or more, from the viewpoint of synthetic handling.
 「-CHCH-」基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基及びヘキサメチレン基等のアルキレン基、フルオロトリメチレン基、フルオロテトラメチレン基、フルオロペンタメチレン基及びフルオロヘキサメチレン基等のフルオロアルキレン基、などが挙げられる。ただし、「-CHCH-」基がフルオロアルキレン基である場合、フルオロアルキレン基の両末端がメチレン構造とされる。 Examples of the "-CH 2 R 3 CH 2- " group include an alkylene group such as an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group, a fluorotrimethylene group, a fluorotetramethylene group and a fluoropenta. Fluoroalkylene groups such as a methylene group and a fluorohexamethylene group, and the like can be mentioned. However, when the "-CH 2 R 3 CH 2- " group is a fluoroalkylene group, both ends of the fluoroalkylene group have a methylene structure.
 「-CHCH-」基は、以下の一般式(X’)で表される基であってもよい。
*-CHX1-(O-RX2n1-O-RX1CH-*・・・(X’)
 一般式(X’)中、RX1は単結合、メチレン基、エチレン基、メチルメチレン基、フルオロメチレン基、フルオロエチレン基、フルオロメチルメチレン基を表す。
 一般式(X’)中、RX2はエチレン基、トリメチレン基、プロピレン基、フルオロエチレン基、フルオロトリメチレン基、又はフルオロプロピレン基を表す。
 一般式(X’)中、n1は0又は1以上の整数を表す。
 なお、一般式(X’)中、*は、酸素原子との結合部分を表す。
The "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (X').
* -CH 2 R X1- (OR X2 ) n1 -OR X1 CH 2- * ... (X')
In the general formula ( X '), RX1 represents a single bond, a methylene group, an ethylene group, a methylmethylene group, a fluoromethylene group, a fluoroethylene group, and a fluoromethylmethylene group.
In the general formula ( X '), RX2 represents an ethylene group, a trimethylene group, a propylene group, a fluoroethylene group, a fluorotrimethylene group, or a fluoropropylene group.
In the general formula (X'), n1 represents 0 or an integer greater than or equal to 1.
In the general formula (X'), * represents a bonding portion with an oxygen atom.
 また、「-CHCH-」基は、以下の一般式(A’)で表される基であってもよい。
*-Rb2-O-R-O-Rb2-*・・・(A’)
 一般式(A’)中、Rは、シクロアルカンジイル基、フルオロシクロアルカンジイル基、又はアリーレン基を表し、その具体例等は、一般式(A)の場合と同様である。
 一般式(A’)中、Rb2は、それぞれ独立して、水素原子がフッ素原子により置換されていてもよい、炭素数1~10の2価の炭化水素基を表す。ただし、Rb2が、水素原子がフッ素原子により置換されている炭素数2~10の2価の炭化水素基である場合、Rb2の*側の末端が、メチレン構造とされる。また、Rb2が、炭素数1の炭化水素基である場合、Rb2はメチレン基とされる。
 なお、一般式(A’)中、*は、酸素原子との結合部分を表す。
Further, the "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (A').
* -R b2 -OR a -OR b2- * ... (A')
In the general formula (A'), Ra represents a cycloalkanediyl group, a fluorocycloalkanediyl group, or an arylene group, and specific examples thereof and the like are the same as in the case of the general formula (A).
In the general formula (A'), R b2 independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom. However, when R b2 is a divalent hydrocarbon group having 2 to 10 carbon atoms in which a hydrogen atom is substituted with a fluorine atom, the end on the * side of R b2 has a methylene structure. When R b2 is a hydrocarbon group having 1 carbon atom, R b2 is a methylene group.
In the general formula (A'), * represents a bonding portion with an oxygen atom.
 一般式(A’)で表される2価の炭化水素基としては、以下のような基が挙げられるが、これに限定されない。 Examples of the divalent hydrocarbon group represented by the general formula (A') include, but are not limited to, the following groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、「-CHCH-」基は、以下の一般式(B’)又は(D’)で表される基であってもよい。
*-Rc2-R-Rc2-*・・・(B’)
*-Rb2-R-Rb2-*・・・(D’)
 一般式(B’)中におけるRが表す基は、上記一般式(A)と同様である。
 また、一般式(B’)中、Rc2は、それぞれ独立して、炭素数1~10の直鎖アルキレン基を表し、炭素数1~5の直鎖アルキレン基が好ましく、炭素数1~2の直鎖アルキレン基がより好ましい。
 一般式(D’)中におけるRb2が表す基は、上記一般式(A’)と同様である。
 また、一般式(D’)中、Rは、炭素数3~6のシクロアルカン-1,1-ジイル基を表す。
 なお、一般式(B’)及び一般式(D’)中、*は、酸素原子との結合部分を表す。
Further, the "-CH 2 R 3 CH 2- " group may be a group represented by the following general formula (B') or (D').
* -R c2 -R a -R c2- * ... (B')
* -R b2 -R d -R b2- * ... (D')
The group represented by Ra in the general formula (B') is the same as that in the general formula ( A ).
Further, in the general formula (B'), R c2 independently represents a linear alkylene group having 1 to 10 carbon atoms, preferably a linear alkylene group having 1 to 5 carbon atoms, and preferably 1 to 2 carbon atoms. The straight chain alkylene group of is more preferable.
The group represented by R b2 in the general formula (D') is the same as the above general formula (A').
Further, in the general formula (D'), R d represents a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms.
In the general formula (B') and the general formula (D'), * represents a bonding portion with an oxygen atom.
 一般式(B’)及び一般式(D’)のいずれかを満たす基としては、以下のような基が挙げられるが、これに限定されない。 Examples of the group satisfying either the general formula (B') or the general formula (D') include, but are not limited to, the following groups.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上述の「-CHCH-」基の具体例を踏まえ、式(2)化合物の具体例としては、以下のような化合物が挙げられるが、これに限定されない。 Based on the specific example of the above-mentioned "-CH 2 R 3 CH 2- " group, specific examples of the compound of the formula (2) include, but are not limited to, the following compounds.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
-式(3)化合物の製造-
 本開示の第1の製造方法では、式(1)化合物と式(2)化合物とを、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させることで、式(3)化合物が製造される。
 HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
 一般式(3)中、R、R及びRの詳細は、上述のとおりである。
 一般式(3)中、aは、0又は1以上の整数を表し、好ましくは1以上の整数を表し、より好ましくは3以上の整数を表し、さらに好ましくは5以上の整数を表す。また、aは、20以下の整数が好ましく、15以下の整数がより好ましく、12以下の整数がさらに好ましい。
-Production of formula (3) compound-
In the first production method of the present disclosure, the compound of the formula (1) and the compound of the formula (2) are reacted at a ratio of the compound of the formula (2) to more than 1 mol with respect to 1 mol of the compound of the formula (1). The compound of formula (3) is produced.
HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
The details of R 1 , R 2 and R 3 in the general formula (3) are as described above.
In the general formula (3), a represents 0 or an integer of 1 or more, preferably an integer of 1 or more, more preferably an integer of 3 or more, and further preferably an integer of 5 or more. Further, a is preferably an integer of 20 or less, more preferably an integer of 15 or less, and even more preferably an integer of 12 or less.
 式(1)化合物と式(2)化合物との反応は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。
 式(1)化合物と式(2)化合物との反応が溶媒中で行われる場合、溶媒としては、フッ素系有機溶媒が好ましく、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。
 式(1)化合物と式(2)化合物との比率は、目的とする含フッ素ポリエーテル化合物の分子量に合わせて調整するのが好ましいが、分子量を制御する観点から式(1)化合物1molに対して式(2)化合物は1.01mol以上が好ましく、1.10mol以上がより好ましい。一方、式(1)化合物と式(2)化合物との比率は、目的とする含フッ素ポリエーテル化合物の分子量を制御しつつ、余分な原料を節約する観点から式(1)化合物1molに対して式(2)化合物は2.00mol以下が好ましく、1.90mol以下がより好ましく、1.70mol以下がさらに好ましく、1.50mol以下が特に好ましい。
The reaction between the compound of formula (1) and the compound of formula (2) may be carried out in a solvent or in a solvent-free state without using a solvent.
When the reaction of the compound of the formula (1) and the compound of the formula (2) is carried out in a solvent, the solvent is preferably a fluorinated organic solvent, and examples thereof include a fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether. ..
The ratio of the compound of the formula (1) to the compound of the formula (2) is preferably adjusted according to the molecular weight of the target fluorine-containing polyether compound, but from the viewpoint of controlling the molecular weight, the ratio is relative to 1 mol of the compound of the formula (1). The compound of the formula (2) is preferably 1.01 mol or more, more preferably 1.10 mol or more. On the other hand, the ratio of the compound of the formula (1) to the compound of the formula (2) is based on 1 mol of the compound of the formula (1) from the viewpoint of saving extra raw materials while controlling the molecular weight of the target fluorine-containing polyether compound. The compound of the formula (2) is preferably 2.00 mol or less, more preferably 1.90 mol or less, further preferably 1.70 mol or less, and particularly preferably 1.50 mol or less.
 式(1)化合物と式(2)化合物との反応は、アルカリ触媒の存在下において行うことが好ましい。アルカリ触媒の存在下、式(1)化合物と式(2)化合物とを反応させることにより、製造される式(3)化合物の分子量及び収率をより向上できる。
 アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、フッ化セシウム及び炭酸カリウム等が挙げられ、式(3)化合物の分子量及び収率の観点からは、炭酸カリウムが好ましい。
The reaction between the compound of formula (1) and the compound of formula (2) is preferably carried out in the presence of an alkaline catalyst. By reacting the compound of formula (1) with the compound of formula (2) in the presence of an alkaline catalyst, the molecular weight and yield of the produced compound of formula (3) can be further improved.
Examples of the alkaline catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate, cesium fluoride, potassium carbonate and the like, and potassium carbonate is preferable from the viewpoint of the molecular weight and yield of the compound of the formula (3).
 式(3)化合物の分子量及び収率の観点から、式(1)化合物と式(2)化合物との反応温度は、80℃~160℃が好ましく、90℃~140℃がより好ましい。
 式(3)化合物の分子量及び収率の観点から、式(1)化合物と式(2)化合物との反応時間は、1時間~72時間が好ましく、2時間~48時間がより好ましい。
From the viewpoint of the molecular weight and yield of the compound of the formula (3), the reaction temperature of the compound of the formula (1) and the compound of the formula (2) is preferably 80 ° C. to 160 ° C., more preferably 90 ° C. to 140 ° C.
From the viewpoint of the molecular weight and yield of the compound of the formula (3), the reaction time of the compound of the formula (1) and the compound of the formula (2) is preferably 1 hour to 72 hours, more preferably 2 hours to 48 hours.
 式(3)化合物の製造は、バッチ方式で行っても連続方式で行ってもよく、公知の方式を適宜採用できる。
 式(3)化合物の製造をバッチ方式により行う場合、例えば、反応器に予め式(2)化合物を収容し、反応器内に式(1)化合物を直接添加してもよいし、式(1)化合物の希釈液を添加してもよい。
 式(3)化合物の分子量及び収率の観点から、式(1)化合物と式(2)化合物との反応において、式(2)化合物への式(1)化合物の添加は、式(2)化合物1モルに対して、0.01倍モル/時間~10倍モル/時間の速度で行うことが好ましく、0.1倍モル/時間~0.5倍モル/時間の速度で行うことがより好ましい。
The compound of the formula (3) may be produced by a batch method or a continuous method, and a known method can be appropriately adopted.
When the compound of formula (3) is produced by a batch method, for example, the compound of formula (2) may be previously contained in a reactor and the compound of formula (1) may be directly added into the reactor, or the compound of formula (1) may be added directly to the reactor. ) A diluted solution of the compound may be added.
From the viewpoint of the molecular weight and yield of the compound of the formula (3), in the reaction between the compound of the formula (1) and the compound of the formula (2), the addition of the compound of the formula (1) to the compound of the formula (2) is carried out by the formula (2). It is preferable to carry out the reaction at a rate of 0.01 times mol / hour to 10 times mol / hour, and more preferably at a rate of 0.1 times mol / hour to 0.5 times mol / hour with respect to 1 mol of the compound. preferable.
 式(1)化合物と式(2)化合物とを反応させた後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液した後、有機相を濃縮して式(3)化合物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して式(3)化合物を得てもよい。 After reacting the compound of formula (1) and the compound of formula (2), at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution and separated. , The organic phase may be concentrated to obtain the compound of formula (3). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (3).
 式(3)化合物を製造する際に用いられる式(1)化合物及び式(2)化合物の組み合わせに特に限定はない。
 例えば、式(1)化合物はペルフルオロジビニルエーテル化合物から選択されてもよい。
The combination of the formula (1) compound and the formula (2) compound used when producing the formula (3) compound is not particularly limited.
For example, the compound of formula (1) may be selected from the perfluorodivinyl ether compound.
-式(4)化合物の製造-
 本開示の第1の製造方法では、式(3)化合物に含まれる水酸基をエステル化することで、式(4)化合物が製造される。
 RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
 一般式(4)中、R、R及びR並びにaの詳細は、上述のとおりである。
 一般式(4)中、Rの詳細は、酸フルオリドの説明と合わせて後述する。
-Production of compound of formula (4)-
In the first production method of the present disclosure, the compound of formula (4) is produced by esterifying the hydroxyl group contained in the compound of formula (3).
R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
The details of R 1 , R 2 , R 3 and a in the general formula (4) are as described above.
In the general formula (4), the details of R4 will be described later together with the description of acid fluoride.
 式(3)化合物に含まれる水酸基をエステル化する方法は特に限定されるものではなく、従来から公知の反応を用いてもよい。例えば、水酸基にカルボン酸化合物を作用させる方法、水酸基にカルボン酸無水物を作用させる方法、水酸基に酸ハロゲン化物を作用させる方法等が挙げられる。 The method for esterifying the hydroxyl group contained in the compound of the formula (3) is not particularly limited, and a conventionally known reaction may be used. For example, a method of allowing a carboxylic acid compound to act on a hydroxyl group, a method of allowing a carboxylic acid anhydride to act on a hydroxyl group, a method of allowing an acid halide to act on a hydroxyl group, and the like can be mentioned.
 式(3)化合物に含まれる水酸基のエステル化は、反応性の高さの観点から水酸基に酸ハロゲン化物を作用させる方法が好ましく、水酸基に酸フルオリドを作用させる方法がより好ましく、酸フルオリドとして下記一般式(7)で表される酸フルオリド(以下、式(7)化合物と称することがある。)を式(3)化合物に作用させる方法がさらに好ましい。
 RCOF・・・(7)
 一般式(7)中、Rは、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 Rで表される1価の炭化水素基の炭素数は、精製のしやすさの観点から20以下が好ましく、10以下がより好ましい。一方、Rで表される1価の炭化水素基の炭素数は、フッ素化時の副反応を抑える観点から、3以上が好ましく、4以上がより好ましい。
 Rで表される1価の炭化水素基における水素原子がフッ素原子により置換されている場合、フッ素原子含有率は、50モル%以上が好ましく、75モル%以上がより好ましく、100モル%(ペルフルオロ炭化水素基)がさらに好ましい。ただし、フッ素原子含有率とは、炭化水素基に含まれる水素原子がフッ素原子に置換されている割合である。
For the esterification of the hydroxyl group contained in the compound of the formula (3), a method of allowing an acid halide to act on the hydroxyl group is preferable from the viewpoint of high reactivity, a method of allowing an acid halide to act on the hydroxyl group is more preferable, and the acid fluoride is described below. A method in which an acid halide represented by the general formula (7) (hereinafter, may be referred to as a compound of the formula (7)) is allowed to act on the compound of the formula (3) is more preferable.
R 4 COF ... (7)
In the general formula (7), R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom and has 2 to 20 carbon atoms. Represents a monovalent hydrocarbon group.
The carbon number of the monovalent hydrocarbon group represented by R4 is preferably 20 or less, more preferably 10 or less, from the viewpoint of ease of purification. On the other hand, the carbon number of the monovalent hydrocarbon group represented by R4 is preferably 3 or more, and more preferably 4 or more, from the viewpoint of suppressing side reactions during fluorination.
When the hydrogen atom in the monovalent hydrocarbon group represented by R4 is substituted with a fluorine atom, the fluorine atom content is preferably 50 mol% or more, more preferably 75 mol% or more, and 100 mol% ( Perfluorohydrocarbon groups) are more preferred. However, the fluorine atom content is the ratio at which the hydrogen atom contained in the hydrocarbon group is replaced with the fluorine atom.
 本開示で使用可能な式(7)化合物の具体例としては、以下のような化合物が挙げられるが、これに限定されない。
・CFCFCF-O-CF(CF)COF
・CFCFCF-O-CF(CF)CF-O-CF(CF)COF
・CF-CF(CF)COF
Specific examples of the compound of formula (7) that can be used in the present disclosure include, but are not limited to, the following compounds.
・ CF 3 CF 2 CF 2 -O-CF (CF 3 ) COF
・ CF 3 CF 2 CF 2 -O-CF (CF 3 ) CF 2 -O-CF (CF 3 ) COF
・ CF 3 -CF (CF 3 ) COF
 式(3)化合物に含まれる水酸基のエステル化は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。式(3)化合物に含まれる水酸基のエステル化が溶媒中で行われる場合、溶媒としては、フッ素系有機溶媒が好ましく、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。 The esterification of the hydroxyl group contained in the compound of the formula (3) may be carried out in a solvent or in a solvent-free state without using a solvent. When the esterification of the hydroxyl group contained in the compound of the formula (3) is carried out in a solvent, the solvent is preferably a fluorinated organic solvent, and examples thereof include fluorinated alkanes, fluorinated aromatic compounds, and fluoroalkyl ethers.
 式(7)化合物を式(3)化合物に作用させる場合、触媒の存在下において行うことが好ましい。触媒の存在下、式(7)化合物を式(3)化合物に作用させることにより、製造される式(4)化合物の収率をより向上できる。
 触媒としては、例えば、フッ化ナトリウム、トリエチルアミン等が挙げられ、後処理の簡便さの観点からは、フッ化ナトリウムが好ましい。
When the compound of formula (7) is allowed to act on the compound of formula (3), it is preferably carried out in the presence of a catalyst. By allowing the compound of formula (7) to act on the compound of formula (3) in the presence of a catalyst, the yield of the produced compound of formula (4) can be further improved.
Examples of the catalyst include sodium fluoride, triethylamine and the like, and sodium fluoride is preferable from the viewpoint of ease of post-treatment.
 式(7)化合物を式(3)化合物に作用させる場合、式(4)化合物の収率の観点から、反応温度は-10℃~100℃が好ましく、0℃~60℃がより好ましい。
 式(7)化合物を式(3)化合物に作用させる場合、式(4)化合物の収率の観点から、式(3)化合物と式(7)化合物との反応時間は、1時間~40時間が好ましく、2時間~20時間がより好ましい。
 式(7)化合物を式(3)化合物に作用させる場合、式(4)化合物の収率の観点から、式(3)化合物と式(7)化合物とを反応させる際の反応圧力は、大気圧~2MPa(ゲージ圧)が好ましい。
When the compound of the formula (7) is allowed to act on the compound of the formula (3), the reaction temperature is preferably −10 ° C. to 100 ° C., more preferably 0 ° C. to 60 ° C. from the viewpoint of the yield of the compound of the formula (4).
When the compound of formula (7) is allowed to act on the compound of formula (3), the reaction time between the compound of formula (3) and the compound of formula (7) is 1 hour to 40 hours from the viewpoint of the yield of the compound of formula (4). Is preferable, and 2 hours to 20 hours are more preferable.
When the compound of formula (7) is allowed to act on the compound of formula (3), the reaction pressure when reacting the compound of formula (3) with the compound of formula (7) is large from the viewpoint of the yield of the compound of formula (4). Atmospheric pressure to 2 MPa (gauge pressure) is preferable.
 式(4)化合物の製造は、バッチ方式で行っても連続方式で行ってもよく、公知の方式を適宜採用できる。
 式(4)化合物の製造をバッチ方式により行う場合、例えば、反応器に予め式(3)化合物を収容し、反応器内に式(7)化合物を直接添加してもよい。
 式(7)化合物を式(3)化合物に作用させる場合、副生成物の発生を抑制する観点から、式(3)化合物への式(7)化合物の添加は、反応器の内温が40℃を超えない速度で行うことが好ましく、内温が20℃を超えない速度で行うことがより好ましい。
The compound of the formula (4) may be produced by a batch method or a continuous method, and a known method can be appropriately adopted.
When the compound of formula (4) is produced by a batch method, for example, the compound of formula (3) may be previously contained in a reactor and the compound of formula (7) may be directly added into the reactor.
When the compound of formula (7) is allowed to act on the compound of formula (3), the internal temperature of the reactor is 40 when the compound of formula (7) is added to the compound of formula (3) from the viewpoint of suppressing the generation of by-products. It is preferably performed at a rate not exceeding ° C., and more preferably performed at a rate at which the internal temperature does not exceed 20 ° C.
 式(7)化合物を式(3)化合物に作用させると、式(3)化合物と式(7)化合物との反応により、フッ化水素(HF)が発生するため、反応系中にフッ化水素捕捉剤を存在させることが好ましい。フッ化水素捕捉剤としては、アルカリ金属フッ化物、トリアルキルアミン等が挙げられる。アルカリ金属フッ化物としては、NaFまたはKFが好ましい。HF捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、かつ、HFを窒素気流に同伴させて反応系外に排出することが好ましい。HF捕捉剤の使用量は、式(7)化合物に対して1倍モル~10倍モルが好ましい。 When the compound of formula (7) is allowed to act on the compound of formula (3), hydrogen fluoride (HF) is generated by the reaction between the compound of formula (3) and the compound of formula (7), so that hydrogen fluoride is generated in the reaction system. It is preferable to have a scavenger present. Examples of the hydrogen fluoride scavenger include alkali metal fluorides and trialkylamines. As the alkali metal fluoride, NaF or KF is preferable. When the HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which the HF can be vaporized, and to accompany the HF with a nitrogen stream and discharge the HF out of the reaction system. The amount of the HF scavenger used is preferably 1 to 10 times by mole with respect to the compound of the formula (7).
 式(7)化合物を式(3)化合物に作用させた後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液するか、又は反応液を固液分離した後、有機相を濃縮して式(4)化合物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して式(4)化合物を得てもよい。 After allowing the compound of formula (7) to act on the compound of formula (3), at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution and the solution is separated. Alternatively, the reaction solution may be solid-liquid separated and then the organic phase may be concentrated to obtain the compound of formula (4). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (4).
-式(5)化合物の製造-
 本開示の第1の製造方法では、式(4)化合物をフッ素化することで、式(5)化合物が製造される。
 RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
 一般式(5)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
 一般式(5)中、aの詳細は、上述のとおりである。
-Production of compound of formula (5)-
In the first production method of the present disclosure, the compound of formula (5) is produced by fluorinating the compound of formula (4).
R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
In the general formula (5), R F1 independently represents a fluorine atom when R 1 is a fluorine atom, represents a fluorine atom when R 1 is a hydrogen atom, and R 1 is monovalent. In the case of a hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
In the general formula (5), RF2 independently represents a divalent perfluorohydrocarbon group having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated.
In the general formula (5), R F 3 independently represents a single bond when R 3 is a single bond, represents an ether bond when R 3 is an ether bond, and R 3 is divalent. In the case of a hydrocarbon group , the divalent hydrocarbon group represented by R3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
The details of a in the general formula (5) are as described above.
 式(4)化合物のフッ素化方法は、特に限定されるものではなく、従来公知の方法により行うことができる。例えば、式(4)化合物にフッ素ガスを接触させることにより、フッ素化を行うことができる。
 式(4)化合物のフッ素化方法は、バッチ方式でもよく連続方式でもよい。フッ素化反応は、下記の<方法1>又は<方法2>により実施することが好ましく、式(5)化合物の反応収率と選択率の点からは、<方法2>がより好ましい。フッ素ガスは、バッチ方式で実施する場合及び連続方式で実施する場合のいずれにおいても、窒素ガス等の不活性ガスで希釈して使用してもよい。
The method for fluorinating the compound of the formula (4) is not particularly limited, and can be carried out by a conventionally known method. For example, fluorination can be performed by contacting the compound of formula (4) with a fluorine gas.
The method for fluorinating the compound of the formula (4) may be a batch method or a continuous method. The fluorination reaction is preferably carried out by the following <Method 1> or <Method 2>, and <Method 2> is more preferable from the viewpoint of the reaction yield and selectivity of the compound of the formula (5). The fluorine gas may be diluted with an inert gas such as nitrogen gas before use in either the batch method or the continuous method.
<方法1>
 方法1は、反応器に、式(4)化合物と溶媒とを仕込み、撹拌を開始し、次いで所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスを溶媒中に連続的に供給しながら反応させる方法である。
<方法2>
 方法2は、反応器に溶媒を仕込み、撹拌し、次いで所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスと式(4)化合物と溶媒とを所定のモル比で連続的にフッ素化反応溶媒中に供給しながら反応させる方法である。
<方法3>
 方法3は、管状反応器に溶媒を連続的に導入して管状反応器内を流通させ、次に、不活性ガスで希釈したフッ素ガスと、式(4)化合物を溶解した溶液とをフッ素ガスと式(4)化合物とが所定のモル比となる割合でそれぞれ連続的に管状反応器内の溶媒の流れに供給して混合し、管状反応器内でフッ素ガスと式(4)化合物とを接触させて反応させ、反応生成物を含む溶媒を管状反応器から取り出す方法である。この方法において、溶媒を循環させ、循環されている溶媒から反応生成物を取り出すことにより、連続方式でフッ素化反応を行うことができる。
<Method 1>
In Method 1, the compound of formula (4) and a solvent are charged into a reactor, stirring is started, and then, under a predetermined reaction temperature and reaction pressure, a fluorine gas diluted with an inert gas is continuously added to the solvent. It is a method of reacting while supplying.
<Method 2>
In method 2, the solvent is charged into the reactor, stirred, and then the fluorine gas diluted with the inert gas, the compound of formula (4), and the solvent are continuously mixed at a predetermined molar ratio under a predetermined reaction temperature and reaction pressure. This is a method of reacting while supplying the gas to the fluorination reaction solvent.
<Method 3>
In method 3, a solvent is continuously introduced into the tubular reactor and circulated in the tubular reactor, and then a fluorine gas diluted with an inert gas and a solution in which the compound of the formula (4) is dissolved are mixed with the fluorine gas. And the compound of formula (4) are continuously supplied to the flow of the solvent in the tubular reactor and mixed at a ratio of a predetermined molar ratio, and the fluorine gas and the compound of formula (4) are mixed in the tubular reactor. It is a method in which a solvent containing a reaction product is taken out from a tubular reactor by contacting and reacting. In this method, the fluorination reaction can be carried out in a continuous manner by circulating the solvent and extracting the reaction product from the circulating solvent.
 方式3の場合と同様に、方法2において、式(4)化合物を供給する際には、溶媒で希釈した式(4)化合物を供給することが、式(5)化合物の選択率を向上させ、副生成物量を抑制させる点で好ましい。また、式(4)化合物を溶媒で希釈する際には、式(4)化合物に対する溶媒の量を質量基準で5倍以上とすることが好ましく、7倍以上とすることがより好ましい。 As in the case of the method 3, in the method 2, when the compound of the formula (4) is supplied, supplying the compound of the formula (4) diluted with a solvent improves the selectivity of the compound of the formula (5). , It is preferable in that the amount of by-products is suppressed. Further, when diluting the compound of the formula (4) with a solvent, the amount of the solvent with respect to the compound of the formula (4) is preferably 5 times or more, more preferably 7 times or more on a mass basis.
 不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス等の希ガスや窒素ガスが挙げられ、窒素ガス、ヘリウムガスが好ましく、経済的に有利である点から窒素ガスがより好ましい。フッ素ガスの割合(以下、「フッ素ガス量」とも記す。)は、フッ素ガスと不活性ガスとの合計100体積%中、10体積%~60体積%が好ましい。 Examples of the inert gas include rare gases such as helium gas, neon gas, and argon gas, and nitrogen gas. Nitrogen gas and helium gas are preferable, and nitrogen gas is more preferable because it is economically advantageous. The ratio of the fluorine gas (hereinafter, also referred to as “fluorine gas amount”) is preferably 10% by volume to 60% by volume in the total 100% by volume of the fluorine gas and the inert gas.
 使用するフッ素ガスの使用量は、式(4)化合物中におけるフッ素置換する水素原子1molに対して、1.1mol~10molの比率が好ましく、1.2mol~5molの比率がより好ましい。フッ素ガス使用量の比率を上記数値範囲内とすることにより、式(5)化合物の収率を向上できる。 The amount of the fluorine gas used is preferably 1.1 mol to 10 mol, more preferably 1.2 mol to 5 mol, with respect to 1 mol of the hydrogen atom to be substituted with fluorine in the compound of the formula (4). By setting the ratio of the amount of fluorine gas used within the above numerical range, the yield of the compound of the formula (5) can be improved.
 式(4)化合物のフッ素化を溶媒内において行う場合、溶媒中の酸素含有量を低減するため、溶媒が予め窒素置換されていてもよい。
 また、式(4)化合物を溶媒内に導入する場合、溶媒を予め窒素置換した後、さらに溶媒をフッ素置換してもよい。
When the fluorination of the compound of the formula (4) is carried out in a solvent, the solvent may be previously substituted with nitrogen in order to reduce the oxygen content in the solvent.
Further, when the compound of the formula (4) is introduced into the solvent, the solvent may be substituted with nitrogen in advance, and then the solvent may be further substituted with fluorine.
 フッ素化反応においては、バッチ方式においても連続方式においても、式(4)化合物中のフッ素化されうる水素原子のすべてに対して、これらをフッ素化するフッ素ガスの量が常に過剰量とすることが好ましい。フッ素ガスの量は、フッ素化されうる水素原子のすべてをフッ素化するために必要な理論量の1.1倍当量以上が好ましく、1.3倍当量以上がより好ましい。 In the fluorination reaction, in both the batch method and the continuous method, the amount of the fluorine gas that fluorinated these hydrogen atoms in the compound of formula (4) should always be excessive with respect to all the hydrogen atoms that can be fluorinated. Is preferable. The amount of fluorine gas is preferably 1.1 times equivalent or more, more preferably 1.3 times equivalent or more, the theoretical amount required for fluorinating all hydrogen atoms that can be fluorinated.
 式(4)化合物のフッ素化を、フッ素ガス及び式(4)化合物を溶媒内に導入することにより行う場合、式(4)化合物の溶媒内へのモル基準の導入速度を1としたときに、フッ素ガスのモル基準の導入速度が、式(4)化合物のモル基準の導入速度に式(4)化合物に含まれるフッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の1倍~10倍の範囲であってもよく、2倍~7倍の範囲であってもよい。導入速度の関係を上記数値範囲内とすることにより、式(5)化合物の収率を向上できる。 When the fluorination of the compound of the formula (4) is carried out by introducing a fluorine gas and the compound of the formula (4) into the solvent, when the molar-based introduction rate of the compound of the formula (4) into the solvent is 1. The molar-based introduction rate of fluorine gas was obtained by multiplying the molar-based introduction rate of the compound of formula (4) by the number of hydrogen atoms that could be replaced by fluorine atoms by the fluorine gas contained in the compound of formula (4). It may be in the range of 1 to 10 times the speed, or may be in the range of 2 to 7 times the speed. By setting the relationship between the introduction speeds within the above numerical range, the yield of the compound of the formula (5) can be improved.
 式(4)化合物のフッ素化反応を効率的に進行させるためには、溶媒中に式(4)化合物以外のC-H結合含有化合物を添加するか、又は溶媒に紫外線を照射することが好ましい。これらはフッ素化反応後期に行うことが好ましい。これにより、溶媒中に存在する式(4)化合物を効率的にフッ素化でき、式(5)化合物の収率を向上させうる。
 C-H結合含有化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエン等が挙げられる。C-H結合含有化合物の添加量は、式(4)化合物中の水素原子に対して0.1モル%~10モル%である量が好ましく、0.1モル%~5モル%である量がより好ましい。
 C-H結合含有化合物は、フッ素ガスが存在する溶媒中に添加することが好ましい。さらに、C-H結合含有化合物を加えた場合には、反応系を加圧することが好ましい。加圧時の反応圧力としては、0.01MPa~5MPa(ゲージ圧)が好ましい。
 反応系に紫外線を照射する場合、照射時間は、0.1時間~3時間が好ましい。
In order to efficiently proceed the fluorination reaction of the compound of the formula (4), it is preferable to add a CH bond-containing compound other than the compound of the formula (4) to the solvent or to irradiate the solvent with ultraviolet rays. .. These are preferably performed in the latter stage of the fluorination reaction. Thereby, the compound of the formula (4) existing in the solvent can be efficiently fluorinated, and the yield of the compound of the formula (5) can be improved.
As the CH bond-containing compound, aromatic hydrocarbons are preferable, and benzene, toluene and the like can be mentioned. The amount of the CH bond-containing compound added is preferably 0.1 mol% to 10 mol%, preferably 0.1 mol% to 5 mol%, based on the hydrogen atom in the compound of formula (4). Is more preferable.
The CH bond-containing compound is preferably added in a solvent in which fluorine gas is present. Further, when the CH bond-containing compound is added, it is preferable to pressurize the reaction system. The reaction pressure during pressurization is preferably 0.01 MPa to 5 MPa (gauge pressure).
When the reaction system is irradiated with ultraviolet rays, the irradiation time is preferably 0.1 hour to 3 hours.
 フッ素化反応の後、窒素ガス等の不活性ガスで系内を置換した後、有機相を濃縮して式(5)化合物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して式(5)化合物を得てもよい。 After the fluorination reaction, the inside of the system may be replaced with an inert gas such as nitrogen gas, and then the organic phase may be concentrated to obtain the compound of formula (5). Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (5).
-式(6)化合物の製造-
 本開示の第1の製造方法では、式(5)化合物にアルコールを作用させることで、式(6)化合物が製造される。
 R-O-CORF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CO-O-R・・・(6)
 一般式(6)中、RF1、RF2、RF3及びRF4並びにaの詳細は、上述のとおりである。
 一般式(6)中、Rは、各々独立に、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の1価の炭化水素基を表す。
-Production of compound of formula (6)-
In the first production method of the present disclosure, the compound of formula (6) is produced by allowing an alcohol to act on the compound of formula (5).
R 5 -O-COR F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CO-O-R 5 ... (6)
The details of RF1 , RF2, RF3, RF4 and a in the general formula (6) are as described above.
In the general formula (6), each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. Represents a monovalent hydrocarbon group of 1 to 20.
 式(5)化合物にアルコールを作用させることで、式(5)化合物の末端がエステル化され、式(6)化合物が得られる。
 式(5)化合物に作用させるアルコールは特に限定されるものではない。アルコールとしては、メタノール、エタノール、イソプロパノール等が挙げられる。
By allowing alcohol to act on the compound of formula (5), the terminal of the compound of formula (5) is esterified to obtain the compound of formula (6).
The alcohol acting on the compound of formula (5) is not particularly limited. Examples of the alcohol include methanol, ethanol, isopropanol and the like.
 式(5)化合物とアルコールとの反応は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。
 式(5)化合物とアルコールとの反応が溶媒中で行われる場合、溶媒としては、フッ素系有機溶媒が好ましく、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。
 式(5)化合物に対するアルコールの使用量は、式(5)化合物1molに対してアルコールは2mol~20molが好ましく、2.1mol~15molがより好ましく、2.2mol~10molがさらに好ましい。
The reaction of the compound of the formula (5) with an alcohol may be carried out in a solvent or in a solvent-free state without using a solvent.
When the reaction of the compound of the formula (5) with an alcohol is carried out in a solvent, the solvent is preferably a fluorinated organic solvent, and examples thereof include fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether.
The amount of alcohol used for the compound of formula (5) is preferably 2 mol to 20 mol, more preferably 2.1 mol to 15 mol, still more preferably 2.2 mol to 10 mol, relative to 1 mol of the compound of formula (5).
 式(6)化合物の収率の観点から、式(5)化合物とアルコールとの反応温度は、-10℃~60℃が好ましく、0℃~40℃がより好ましい。
 式(6)化合物の収率の観点から、式(5)化合物とアルコールとの反応時間は、0.5時間~48時間が好ましく、1時間~24時間がより好ましい。
From the viewpoint of the yield of the compound of the formula (6), the reaction temperature of the compound of the formula (5) and the alcohol is preferably −10 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C.
From the viewpoint of the yield of the compound of the formula (6), the reaction time of the compound of the formula (5) with the alcohol is preferably 0.5 hours to 48 hours, more preferably 1 hour to 24 hours.
 副生成物の発生を抑制する観点から、式(5)化合物とアルコールとの反応において、式(5)化合物へのアルコールの添加は、反応器の内温が40℃を超えない速度で行うことが好ましく、内温が20℃を超えない速度で行うことがより好ましい。 From the viewpoint of suppressing the generation of by-products, in the reaction between the compound of formula (5) and alcohol, the addition of alcohol to the compound of formula (5) should be carried out at a rate at which the internal temperature of the reactor does not exceed 40 ° C. Is preferable, and it is more preferable to carry out at a rate at which the internal temperature does not exceed 20 ° C.
 式(5)化合物とアルコールとを反応させた後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液した後、有機相を濃縮して式(6)化合物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して式(6)化合物を得てもよい。 After reacting the compound of formula (5) with an alcohol, at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution to separate the layers, and then the organic phase is obtained. The compound of formula (6) may be obtained by concentration. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain the compound of the formula (6).
 本開示の第1の製造方法により得られる式(6)化合物の数平均分子量(Mn)は、1000~30000が好ましく、1500~20000がより好ましく、2000~10000がさらに好ましい。
 また、本開示の第1の製造方法により得られる式(6)化合物の分子量分布(Mw/Mn)は、1~3が好ましく、1~2.5がより好ましく、1~2がさらに好ましい。
The number average molecular weight (Mn) of the compound of formula (6) obtained by the first production method of the present disclosure is preferably 1000 to 30,000, more preferably 1500 to 20000, and even more preferably 2000 to 10000.
Further, the molecular weight distribution (Mw / Mn) of the compound of the formula (6) obtained by the first production method of the present disclosure is preferably 1 to 3, more preferably 1 to 2.5, still more preferably 1 to 2.
<第2の含フッ素ポリエーテル化合物の製造方法>
 本開示の第2の含フッ素ポリエーテル化合物の製造方法(以下、本開示の第2の製造方法と称することがある。)は、式(1)化合物と式(2)化合物とを、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させ、式(3)化合物を製造するものである。
 本開示の第2の製造方法における、式(1)化合物~式(3)化合物の詳細、及び式(3)化合物の合成工程等の詳細は、本開示の第1の製造方法の場合と同様である。
<Method for Producing Second Fluorine-Containing Polyether Compound>
The method for producing the second fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the second production method of the present disclosure) is a formula (1) compound and a formula (2) compound. 1) The compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3).
The details of the formula (1) to the compound (3) and the step of synthesizing the compound of the formula (3) in the second production method of the present disclosure are the same as those of the first production method of the present disclosure. Is.
<第3の含フッ素ポリエーテル化合物の製造方法>
 本開示の第3の含フッ素ポリエーテル化合物の製造方法(以下、本開示の第3の製造方法と称することがある。)は、式(1)化合物と式(2)化合物とを、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させ、式(3)化合物を製造し、式(3)化合物に含まれる水酸基をエステル化して式(4)化合物を製造するものである。
 本開示の第3の製造方法における、式(1)化合物~式(4)化合物の詳細、並びに、式(3)化合物及び式(4)化合物の合成工程等の詳細は、本開示の第1の製造方法の場合と同様である。
<Method for Producing Third Fluorine-Containing Polyether Compound>
The method for producing the third fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the third production method of the present disclosure) is a formula (1) compound and a formula (2) compound. 1) The compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3), and the hydroxyl group contained in the compound of the formula (3) is esterified to obtain the compound of the formula (4). It is manufactured.
The details of the compound of the formula (1) to the compound of the formula (4) and the details of the synthetic steps of the compound of the formula (3) and the compound of the formula (4) in the third production method of the present disclosure are described in the first of the present disclosure. It is the same as the case of the manufacturing method of.
<第4の含フッ素ポリエーテル化合物の製造方法>
 本開示の第4の含フッ素ポリエーテル化合物の製造方法(以下、本開示の第4の製造方法と称することがある。)は、式(1)化合物と式(2)化合物とを、式(1)化合物1molに対して式(2)化合物を1mol超となる比率で反応させ、式(3)化合物を製造し、式(3)化合物に含まれる水酸基をエステル化して式(4)化合物を製造し、式(4)化合物をフッ素化して式(5)化合物を製造するものである。
 本開示の第4の製造方法における、式(1)化合物~式(5)化合物の詳細、及び式(3)化合物~式(5)化合物の合成工程等の詳細は、本開示の第1の製造方法の場合と同様である。
<Method for Producing Fourth Fluorine-Containing Polyether Compound>
In the method for producing the fourth fluorine-containing polyether compound of the present disclosure (hereinafter, may be referred to as the fourth production method of the present disclosure), the formula (1) compound and the formula (2) compound are expressed in the formula (1). 1) The compound of the formula (2) is reacted with 1 mol of the compound at a ratio of more than 1 mol to produce the compound of the formula (3), and the hydroxyl group contained in the compound of the formula (3) is esterified to obtain the compound of the formula (4). It is produced and the compound of the formula (4) is fluorinated to produce the compound of the formula (5).
The details of the formula (1) to the compound (5) and the details of the steps for synthesizing the formula (3) to the compound (5) in the fourth production method of the present disclosure are described in the first of the present disclosure. This is the same as in the case of the manufacturing method.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されない。
 合成例1-1~合成例3-4が実施例であり、合成例4が比較例である。
Hereinafter, the above-described embodiment will be specifically described with reference to Examples, but the above-mentioned Embodiment is not limited to these Examples.
Synthesis Examples 1-1 to 3-4 are examples, and synthesis example 4 is a comparative example.
 [評価方法]
(GPC分析)
 数平均分子量(Mn)及び質量平均分子量(Mw)は、GPCによって、測定した。
 GPCによる測定は、上述の方法で行った。
[Evaluation method]
(GPC analysis)
The number average molecular weight (Mn) and the mass average molecular weight (Mw) were measured by GPC.
The measurement by GPC was performed by the above-mentioned method.
(合成例1-1)
 200mLのナスフラスコに、式(2)化合物に該当するエチレングリコールの4.1g、炭酸カリウムの4gを加え、フラスコ内の温度を120℃とした状態でフラスコ内を攪拌し、式(1)化合物に該当する化合物A-1の20gを4時間(式(2)化合物1モルに対して0.21倍モル/時間)かけて加えて120℃で2時間攪拌した。
 その後、フラスコ内の温度を25℃に戻し、フッ素系有機溶媒(AGC株式会社製、アサヒクリン(登録商標)AC-2000、1H-トリデカフルオロヘキサン、以下、AC-2000と記載)及び塩酸をそれぞれ20g加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮した。
 有機相を濃縮して得られた反応粗液をカラムクロマトグラフィにて精製し、式(3)化合物に該当する下記化合物A-2の14g(収率58%)を得た。aの平均は6であった。
CF=CF-O-CFCFCF-O-CF=CF   A-1
(Synthesis Example 1-1)
To a 200 mL eggplant flask, 4.1 g of ethylene glycol corresponding to the compound of formula (2) and 4 g of potassium carbonate were added, and the inside of the flask was stirred while the temperature inside the flask was 120 ° C. to obtain the compound of formula (1). 20 g of the compound A-1 corresponding to the above was added over 4 hours (0.21 times mol / hour with respect to 1 mol of the compound of the formula (2)), and the mixture was stirred at 120 ° C. for 2 hours.
After that, the temperature inside the flask was returned to 25 ° C., and a fluorine-based organic solvent (manufactured by AGC Co., Ltd., Asahiclin (registered trademark) AC-2000, 1H-tridecafluorohexane, hereinafter referred to as AC-2000) and hydrochloric acid were added. 20 g of each was added to obtain a reaction crude liquid separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated.
The crude reaction obtained by concentrating the organic phase was purified by column chromatography to obtain 14 g (yield 58%) of the following compound A-2 corresponding to the compound of formula (3). The average of a was 6.
CF 2 = CF-O-CF 2 CF 2 CF 2 -O-CF = CF 2 A-1
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(合成例1-2)
 200mLのナスフラスコに、化合物A-2の14g、フッ化ナトリウムの1.5g、AC-2000の20mlを加え、氷冷下攪拌し、式(7)化合物に該当する化合物A-3の5.0gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、固体と液体とを濾過で分別し、得られた液体を濃縮後、カラムクロマトグラフィにて精製し式(4)化合物に該当する化合物A-4の16g(収率94%)を得た。
CFCFCF-O-CF(CF)COF   A-3
(Synthesis Example 1-2)
To a 200 mL eggplant flask, 14 g of compound A-2, 1.5 g of sodium fluoride and 20 ml of AC-2000 were added, and the mixture was stirred under ice-cooling. 0 g was added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, the solid and the liquid were separated by filtration, the obtained liquid was concentrated, and then purified by column chromatography to obtain 16 g (yield 94%) of the compound A-4 corresponding to the compound of the formula (4).
CF 3 CF 2 CF 2 -O-CF (CF 3 ) COF A-3
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(合成例1-3)
 500mLのニッケル製反応器に、CFE-419(ClCFCFClCFOCFCFCl)の250mLを加え、窒素ガスを吹き込んだ(バブリング)。
 溶存酸素濃度が充分に下がった後、窒素ガスで希釈された20体積%のフッ素ガスを1時間吹き込んだ。化合物A-4のCFE-419溶液(濃度:10質量%、化合物A-4:17g)を3時間かけて投入した。化合物A-4のCFE-419溶液の投入と共に、フッ素ガスを反応器内に導入した。化合物A-4の溶媒内へのモル基準の導入速度を1としたときに、フッ素ガスのモル基準の導入速度を、化合物A-4のモル基準の導入速度に化合物A-4に含まれるフッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の2倍とした。
 化合物A-4のCFE-419溶液の投入が終わった後、ベンゼンのCFE-419溶液(濃度:0.1質量%、ベンゼン:0.1g)を断続的に投入した。
 ベンゼンのCFE-419溶液の投入が終わった後、フッ素ガスを1時間かけて吹き込み、最後に窒素ガスで反応器内を充分に置換した。溶媒を留去し、式(5)化合物に該当する化合物A-5の20g(収率94%)を得た。
(Synthesis Example 1-3)
250 mL of CFE-419 (ClCF 2 CFClCF 2 OCF 2 CF 2 Cl) was added to a 500 mL nickel reactor, and nitrogen gas was blown into it (bubbling).
After the dissolved oxygen concentration was sufficiently lowered, 20% by volume of fluorine gas diluted with nitrogen gas was blown in for 1 hour. A CFE-419 solution of compound A-4 (concentration: 10% by mass, compound A-4: 17 g) was added over 3 hours. Fluorine gas was introduced into the reactor with the addition of CFE-419 solution of compound A-4. When the molar-based introduction rate of compound A-4 into the solvent is 1, the molar-based introduction rate of fluorine gas is set to the molar-based introduction rate of compound A-4, and the fluorine contained in compound A-4. The rate was doubled by multiplying the number of hydrogen atoms that could be replaced by fluorine atoms by the gas.
After the addition of the CFE-419 solution of compound A-4 was completed, the CFE-419 solution of benzene (concentration: 0.1% by mass, benzene: 0.1 g) was added intermittently.
After the addition of the CFE-419 solution of benzene was completed, fluorine gas was blown over for 1 hour, and finally the inside of the reactor was sufficiently replaced with nitrogen gas. The solvent was distilled off to obtain 20 g (yield 94%) of compound A-5 corresponding to the compound of formula (5).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(合成例1-4)
 200mLのナスフラスコに、化合物A-5の20g、AC-2000の20mlを加え、氷冷下攪拌し、メタノールの1.5gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、水を30ml加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮することで式(6)化合物に該当する化合物A-6の16g(収率98%)を得た。なお、化合物A-6においてMeはメチル基を意味する。
(Synthesis Example 1-4)
To a 200 mL eggplant flask, 20 g of compound A-5 and 20 ml of AC-2000 were added, stirred under ice-cooling, and 1.5 g of methanol was added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, 30 ml of water was added to obtain a reaction crude liquid separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated to obtain 16 g (yield 98%) of compound A-6 corresponding to the compound of formula (6). In compound A-6, Me means a methyl group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物A-6のMnは3700、Mw/Mnは1.7であった。 The Mn of compound A-6 was 3700, and the Mw / Mn was 1.7.
(合成例2-1)
 200mLのナスフラスコに、式(2)化合物に該当する1,4-ベンゼンジメタノールの9.4g、炭酸カリウムの4gを加え、フラスコ内の温度を120℃とした状態でフラスコ内を攪拌し、式(1)化合物に該当する化合物A-1の20gを7時間(式(2)化合物1モルに対して0.12倍モル/時間)かけて加えて120℃で2時間攪拌した。
 その後、フラスコ内の温度を25℃に戻し、AC-2000及び塩酸をそれぞれ20g加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮した。
 有機相を濃縮して得られた反応粗液をカラムクロマトグラフィにて精製し、式(3)化合物に該当する化合物B-1の25g(収率85%)を得た。aの平均は5であった。
(Synthesis Example 2-1)
To a 200 mL eggplant flask, 9.4 g of 1,4-benzenedimethanol corresponding to the compound of formula (2) and 4 g of potassium carbonate were added, and the inside of the flask was stirred with the temperature inside the flask set to 120 ° C. 20 g of the compound A-1 corresponding to the formula (1) compound was added over 7 hours (0.12-fold mol / hour with respect to 1 mol of the formula (2) compound), and the mixture was stirred at 120 ° C. for 2 hours.
Then, the temperature in the flask was returned to 25 ° C., and 20 g each of AC-2000 and hydrochloric acid were added to obtain a crude reaction solution separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated.
The reaction crude solution obtained by concentrating the organic phase was purified by column chromatography to obtain 25 g (yield 85%) of compound B-1 corresponding to the compound of formula (3). The average of a was 5.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(合成例2-2)
 200mLのナスフラスコに、化合物B-1の24g、フッ化ナトリウムの2.5g、AC-2000の30mlを加え、氷冷下攪拌し、式(7)化合物に該当する化合物A-3の7.5gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、固体と液体を濾過で分別し、得られた液体を濃縮後、カラムクロマトグラフィにて精製し式(4)化合物に該当する化合物B-2の29g(収率98%)を得た。aの平均は5であった。
(Synthesis Example 2-2)
To a 200 mL eggplant flask, 24 g of compound B-1, 2.5 g of sodium fluoride, and 30 ml of AC-2000 were added, and the mixture was stirred under ice-cooling. 5 g was added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, the solid and the liquid were separated by filtration, the obtained liquid was concentrated, and then purified by column chromatography to obtain 29 g (yield 98%) of the compound B-2 corresponding to the compound of the formula (4). The average of a was 5.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(合成例2-3)
 500mLのニッケル製反応器に、CFE-419の250mLを加え、窒素ガスを吹き込んだ(バブリング)。
 溶存酸素濃度が充分に下がった後、窒素ガスで希釈された20体積%のフッ素ガスを1時間吹き込んだ。化合物B-2のCFE-419溶液(濃度:10質量%、化合物B-2:17g)を3時間かけて投入した。化合物B-2のCFE-419溶液の投入と共に、フッ素ガスを反応器内に導入した。化合物B-2の溶媒内へのモル基準の導入速度を1としたときに、フッ素ガスのモル基準の導入速度を、化合物B-2のモル基準の導入速度に化合物B-2に含まれるフッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の3倍とした。
 化合物B-2のCFE-419溶液の投入が終わった後、ベンゼンのCFE-419溶液(濃度:0.1質量%、ベンゼン:0.1g)を断続的に投入した。
 ベンゼンのCFE-419溶液の投入が終わった後、フッ素ガスを1時間かけて吹き込み、最後に窒素ガスで反応器内を充分に置換した。溶媒を留去し、式(5)化合物に該当する化合物B-3の16g(収率70%)を得た。aの平均は5であった。
(Synthesis Example 2-3)
To a 500 mL nickel reactor, 250 mL of CFE-419 was added and nitrogen gas was blown into it (bubbling).
After the dissolved oxygen concentration was sufficiently lowered, 20% by volume of fluorine gas diluted with nitrogen gas was blown in for 1 hour. A CFE-419 solution of compound B-2 (concentration: 10% by mass, compound B-2: 17 g) was added over 3 hours. Fluorine gas was introduced into the reactor with the addition of CFE-419 solution of compound B-2. When the molar-based introduction rate of compound B-2 into the solvent is 1, the molar-based introduction rate of fluorine gas is set to the molar-based introduction rate of compound B-2, and the fluorine contained in compound B-2. It was multiplied by the number of hydrogen atoms that could be replaced by fluorine atoms by the gas to obtain 3 times the rate.
After the addition of the CFE-419 solution of compound B-2 was completed, the CFE-419 solution of benzene (concentration: 0.1% by mass, benzene: 0.1 g) was added intermittently.
After the addition of the CFE-419 solution of benzene was completed, fluorine gas was blown over for 1 hour, and finally the inside of the reactor was sufficiently replaced with nitrogen gas. The solvent was distilled off to obtain 16 g (yield 70%) of compound B-3 corresponding to the compound of formula (5). The average of a was 5.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(合成例2-4)
 200mLのナスフラスコに、化合物B-3の16g、AC-2000の20mlを加え、氷冷下攪拌し、メタノールの1.5gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、水を30ml加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮することで式(6)化合物に該当する化合物B-4の14g(収率98%)を得た。aの平均は5であった。なお、化合物B-4においてMeはメチル基を意味する。
(Synthesis Example 2-4)
To a 200 mL eggplant flask, 16 g of compound B-3 and 20 ml of AC-2000 were added, stirred under ice-cooling, and 1.5 g of methanol was added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, 30 ml of water was added to obtain a reaction crude liquid separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated to obtain 14 g (yield 98%) of compound B-4 corresponding to the compound of formula (6). The average of a was 5. In compound B-4, Me means a methyl group.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物B-4のMnは4000、Mw/Mnは2であった。 The Mn of compound B-4 was 4000, and the Mw / Mn was 2.
(合成例3-1)
 200mLのナスフラスコに、式(2)化合物に該当するテトラエチレングリコールの13.6g、炭酸カリウムの4gを加え、フラスコ内の温度を120℃とした状態でフラスコ内を攪拌し、式(1)化合物に該当する化合物A-1の20gを2時間(式(2)化合物1モルに対して0.4倍モル/時間)かけて加えて120℃で2時間攪拌した。
 その後、フラスコ内の温度を25℃に戻し、AC-2000及び塩酸をそれぞれ20g加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮した。
 有機相を濃縮して得られた反応粗液をカラムクロマトグラフィにて精製し、式(3)化合物に該当する下記化合物C-1の26g(収率78%)を得た。aの平均は4であった。式中、*は酸素原子との結合部分を表し、**は炭素原子との結合部分を表す。
(Synthesis Example 3-1)
To a 200 mL eggplant flask, 13.6 g of tetraethylene glycol corresponding to the compound of formula (2) and 4 g of potassium carbonate were added, and the inside of the flask was stirred while the temperature inside the flask was 120 ° C. to formulate (1). 20 g of the compound A-1 corresponding to the compound was added over 2 hours (0.4 times mol / hour with respect to 1 mol of the compound of the formula (2)), and the mixture was stirred at 120 ° C. for 2 hours.
Then, the temperature in the flask was returned to 25 ° C., and 20 g each of AC-2000 and hydrochloric acid were added to obtain a crude reaction solution separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated.
The crude reaction obtained by concentrating the organic phase was purified by column chromatography to obtain 26 g (yield 78%) of the following compound C-1 corresponding to the compound of formula (3). The average of a was 4. In the formula, * represents a bond with an oxygen atom, and ** represents a bond with a carbon atom.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(合成例3-2)
 200mLのナスフラスコに、化合物C-1の26g、フッ化ナトリウムの2.5g、AC-2000の30mlを加え、氷冷下攪拌し、式(7)化合物に該当する化合物A-3の9gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、固体と液体を濾過で分別し、得られた液体を濃縮後、カラムクロマトグラフィにて精製し式(4)化合物に該当する化合物C-2の30g(収率93%)を得た。aの平均は4であった。式中、*は酸素原子との結合部分を表し、**は炭素原子との結合部分を表す。
(Synthesis Example 3-2)
To a 200 mL eggplant flask, 26 g of compound C-1, 2.5 g of sodium fluoride, and 30 ml of AC-2000 were added, and the mixture was stirred under ice-cooling to add 9 g of compound A-3 corresponding to the compound of formula (7). Added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, the solid and the liquid were separated by filtration, the obtained liquid was concentrated, and then purified by column chromatography to obtain 30 g (yield 93%) of the compound C-2 corresponding to the compound of the formula (4). The average of a was 4. In the formula, * represents a bond with an oxygen atom, and ** represents a bond with a carbon atom.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(合成例3-3)
 500mLのニッケル製反応器に、CFE-419の250mLを加え、窒素ガスを吹き込んだ(バブリング)。
 溶存酸素濃度が充分に下がった後、窒素ガスで希釈された20体積%のフッ素ガスを1時間吹き込んだ。化合物C-2のCFE-419溶液(濃度:10質量%、化合物C-2:30g)を3時間かけて投入した。化合物C-2のCFE-419溶液の投入と共に、フッ素ガスを反応器内に導入した。化合物C-2の溶媒内へのモル基準の導入速度を1としたときに、フッ素ガスのモル基準の導入速度を、化合物C-2のモル基準の導入速度に化合物C-2に含まれるフッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の2倍とした。
 化合物C-2のCFE-419溶液の投入が終わった後、ベンゼンのCFE-419溶液(濃度:0.1質量%、ベンゼン:0.1g)を断続的に投入した。
 ベンゼンのCFE-419溶液の投入が終わった後、フッ素ガスを1時間かけて吹き込み、最後に窒素ガスで反応器内を充分に置換した。溶媒を留去し、式(5)化合物に該当する化合物C-3の44g(収率96%)を得た。aの平均は4であった。式中、*は酸素原子との結合部分を表し、**は炭素原子との結合部分を表す。
(Synthesis Example 3-3)
To a 500 mL nickel reactor, 250 mL of CFE-419 was added and nitrogen gas was blown into it (bubbling).
After the dissolved oxygen concentration was sufficiently lowered, 20% by volume of fluorine gas diluted with nitrogen gas was blown in for 1 hour. A CFE-419 solution of compound C-2 (concentration: 10% by mass, compound C-2: 30 g) was added over 3 hours. Fluorine gas was introduced into the reactor with the addition of CFE-419 solution of compound C-2. When the molar-based introduction rate of compound C-2 into the solvent is 1, the molar-based introduction rate of fluorine gas is set to the molar-based introduction rate of compound C-2, and the fluorine contained in compound C-2. The rate was doubled by multiplying the number of hydrogen atoms that could be replaced by fluorine atoms by the gas.
After the addition of the CFE-419 solution of compound C-2 was completed, the CFE-419 solution of benzene (concentration: 0.1% by mass, benzene: 0.1 g) was added intermittently.
After the addition of the CFE-419 solution of benzene was completed, fluorine gas was blown over for 1 hour, and finally the inside of the reactor was sufficiently replaced with nitrogen gas. The solvent was distilled off to obtain 44 g (yield 96%) of the compound C-3 corresponding to the compound of the formula (5). The average of a was 4. In the formula, * represents a bond with an oxygen atom, and ** represents a bond with a carbon atom.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(合成例3-4)
 200mLのナスフラスコに、化合物C-3の44g、AC-2000の20mlを加え、氷冷下攪拌し、メタノールの3gを添加した。その後、25℃に戻し、15時間攪拌した。
 その後、水を30ml加え、有機相と水相とに分離した反応粗液を得た。得られた反応粗液を分液し、次いで、有機相を濃縮することで式(6)化合物に該当する化合物C-4の38g(収率98%)を得た。aの平均は4であった。なお、化合物C-4においてMeはメチル基を意味する。式中、*は酸素原子との結合部分を表し、**は炭素原子との結合部分を表す。
(Synthesis Example 3-4)
To a 200 mL eggplant flask, 44 g of compound C-3 and 20 ml of AC-2000 were added, stirred under ice-cooling, and 3 g of methanol was added. Then, the temperature was returned to 25 ° C., and the mixture was stirred for 15 hours.
Then, 30 ml of water was added to obtain a reaction crude liquid separated into an organic phase and an aqueous phase. The obtained crude reaction solution was separated, and then the organic phase was concentrated to obtain 38 g (yield 98%) of compound C-4 corresponding to the compound of formula (6). The average of a was 4. In compound C-4, Me means a methyl group. In the formula, * represents a bond with an oxygen atom, and ** represents a bond with a carbon atom.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(合成例4)
 式(1)化合物に該当する化合物A-1の1molに対して式(2)化合物に該当するエチレングリコールを1mol以下で反応させると、末端に水酸基を有する重合体が得られず、以後の反応を進められない。
(Synthesis Example 4)
When ethylene glycol corresponding to the compound of the formula (2) is reacted with 1 mol or less of the ethylene glycol corresponding to the compound of the formula (1) with 1 mol of the compound A-1 corresponding to the compound, a polymer having a hydroxyl group at the terminal cannot be obtained, and the subsequent reaction I can't proceed.
 上記した実施例において、本開示によれば、両末端に官能基を有し、構造単位を選択する際の制約が少ない含フッ素ポリエーテル化合物の製造方法が提供されることがわかる。 In the above-described embodiment, according to the present disclosure, it can be seen that a method for producing a fluorine-containing polyether compound having functional groups at both ends and having few restrictions when selecting a structural unit is provided.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference herein.

Claims (11)

  1.  下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
     下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造し、
     下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物をフッ素化して下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物を製造し、
     下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物にアルコールを作用させて下記一般式(6)で表される含フッ素ジアルコキシカルボニルポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
     CF=CR-O-R-O-CR=CF・・・(1)
     HO-CHCH-OH・・・(2)
     HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
     RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
     RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
     R-O-CORF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CO-O-R・・・(6)
    (一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
     一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
     一般式(6)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の1価の炭化水素基を表す。
     一般式(5)及び一般式(6)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
     一般式(5)及び一般式(6)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
     一般式(5)及び一般式(6)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
     一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
     一般式(3)~一般式(6)中、aは、0又は1以上の整数を表し、且つ一般式(3)~一般式(6)におけるaはいずれも同じ値を示す。)
    The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) were added to 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) is reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
    The hydroxyl group contained in the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) is esterified to produce a fluorine-containing diacyloxypolyether compound represented by the following general formula (4).
    The fluorine-containing diacyloxypolyether compound represented by the following general formula (4) is fluorinated to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
    A fluorine-containing polyether compound for producing a fluorine-containing dialkoxycarbonyl polyether compound represented by the following general formula (6) by allowing an alcohol to act on the perfluorodiacyloxypolyether compound represented by the following general formula (5). Production method.
    CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
    HO-CH 2 R 3 CH 2 -OH ... (2)
    HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
    R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
    R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
    R 5 -O-COR F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CO-O-R 5 ... (6)
    (In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
    In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
    In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
    In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
    In the general formula (6), each of R 5 independently may contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 1 to 20.
    In the general formula (5) and the general formula (6), RF1 independently represents a fluorine atom when R 1 is a fluorine atom, and represents a fluorine atom when R 1 is a hydrogen atom. When R 1 is a monovalent hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
    In the general formula (5) and the general formula (6), RF2 is a divalent perfluorocarbonated product having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated independently of each other. Represents a hydrogen group.
    In the general formula (5) and the general formula (6), RF3 independently represents a single bond when R 3 is a single bond, and represents an ether bond when R 3 is an ether bond. When R 3 is a divalent hydrocarbon group, the divalent hydrocarbon group represented by R 3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
    In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
    In the general formulas (3) to (6), a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (6) all represent the same value. )
  2.  前記一般式(1)で表される含フッ素ジビニルエーテル化合物と前記一般式(2)で表されるジオール化合物との反応を、アルカリ触媒の存在下において行う、請求項1に記載の含フッ素ポリエーテル化合物の製造方法。 The fluorine-containing poly according to claim 1, wherein the reaction between the fluorine-containing divinyl ether compound represented by the general formula (1) and the diol compound represented by the general formula (2) is carried out in the presence of an alkaline catalyst. A method for producing an ether compound.
  3.  前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のフッ素化において、フッ素ガスを、前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物中におけるフッ素置換する水素原子1molに対して、1.1mol~10molの比率で使用する、請求項1又は請求項2に記載の含フッ素ポリエーテル化合物の製造方法。 In the fluorination of the fluorine-containing diacyloxypolyether compound represented by the general formula (4), a hydrogen atom that replaces fluorine gas with fluorine in the fluorine-containing diacyloxypolyether compound represented by the general formula (4). The method for producing a fluorine-containing polyether compound according to claim 1 or 2, which is used at a ratio of 1.1 mol to 10 mol with respect to 1 mol.
  4.  前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のフッ素化を、フッ素ガス及び前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を溶媒内に導入することにより行い、
     前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物の前記溶媒内へのモル基準の導入速度を1としたときに、前記フッ素ガスのモル基準の導入速度が、前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物のモル基準の導入速度に前記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物に含まれる前記フッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の1倍~10倍の範囲である、請求項1~請求項3のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
    The fluorination of the fluorine-containing diacyloxypolyether compound represented by the general formula (4) is carried out by introducing a fluorine gas and the fluorine-containing diacyloxypolyether compound represented by the general formula (4) into a solvent. Do,
    When the molar-based introduction rate of the fluorine-containing diacyloxypolyether compound represented by the general formula (4) into the solvent is 1, the introduction rate of the fluorine gas on the molar basis is the general formula (4). The introduction rate of the fluorine-containing diacyloxypolyether compound represented by 4) on a molar basis can be replaced with a fluorine atom by the fluorine gas contained in the fluorine-containing diacyloxypolyether compound represented by the general formula (4). The method for producing a fluorine-containing polyether compound according to any one of claims 1 to 3, which is in the range of 1 to 10 times the rate obtained by multiplying the number of hydrogen atoms.
  5.  前記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基のエステル化が、下記一般式(7)で表される酸フルオリドを前記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に作用させるものである、請求項1~請求項4のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。
     RCOF・・・(7)
    (一般式(7)中、Rは、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。)
    The esterification of the hydroxyl group contained in the fluorine-containing dihydroxypolyether compound represented by the general formula (3) is such that the acid fluoride represented by the following general formula (7) is represented by the fluorine-containing general formula (3). The method for producing a fluorine-containing polyether compound according to any one of claims 1 to 4, which is to act on the dihydroxypolyether compound.
    R 4 COF ... (7)
    (In the general formula (7), R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom. The number of carbon atoms is 2 to 20. Represents a monovalent hydrocarbon group of.)
  6.  前記一般式(2)で表されるジオール化合物の酸性度が、8~18である、請求項1~請求項5のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。 The method for producing a fluorine-containing polyether compound according to any one of claims 1 to 5, wherein the acidity of the diol compound represented by the general formula (2) is 8 to 18.
  7.  前記一般式(3)~前記一般式(6)におけるaが、1以上の整数である、請求項1~請求項6のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。 The method for producing a fluorine-containing polyether compound according to any one of claims 1 to 6, wherein a in the general formula (3) to the general formula (6) is an integer of 1 or more.
  8.  前記一般式(1)で表される含フッ素ジビニルエーテル化合物と前記一般式(2)で表されるジオール化合物とを反応させる際の反応温度が、80℃~160℃である、請求項1~請求項7のいずれか一項に記載の含フッ素ポリエーテル化合物の製造方法。 Claims 1 to 160, wherein the reaction temperature at the time of reacting the fluorine-containing divinyl ether compound represented by the general formula (1) with the diol compound represented by the general formula (2) is 80 ° C. to 160 ° C. The method for producing a fluorine-containing polyether compound according to any one of claims 7.
  9.  下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
     CF=CR-O-R-O-CR=CF・・・(1)
     HO-CHCH-OH・・・(2)
     HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
    (一般式(1)及び一般式(3)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
     一般式(1)及び一般式(3)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(2)及び一般式(3)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(3)中、aは、0又は1以上の整数を表す。)
    The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) were added to 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). A method for producing a fluorine-containing polyether compound, which comprises reacting a diol compound represented by the following general formula (2) at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3). ..
    CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
    HO-CH 2 R 3 CH 2 -OH ... (2)
    HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
    (In the general formula (1) and the general formula (3), R 1 is a monovalent having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom independently of each other. Represents the hydrocarbon group of.
    In the general formula (1) and the general formula (3), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and the hydrogen atom is replaced by a fluorine atom. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may be used.
    In the general formula (2) and the general formula (3), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
    In the general formula (3), a represents 0 or an integer of 1 or more. )
  10.  下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
     下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
     CF=CR-O-R-O-CR=CF・・・(1)
     HO-CHCH-OH・・・(2)
     HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
     RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
    (一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
     一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
     一般式(3)及び一般式(4)中、aは、0又は1以上の整数を表し、且つ一般式(3)及び一般式(4)におけるaはいずれも同じ値を示す。)
    The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) are added to 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) is reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
    A fluorine-containing polyether compound for producing a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) by esterifying a hydroxyl group contained in the fluorine-containing dihydroxypolyether compound represented by the following general formula (3). Manufacturing method.
    CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
    HO-CH 2 R 3 CH 2 -OH ... (2)
    HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
    R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
    (In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
    In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
    In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
    In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
    In the general formula (3) and the general formula (4), a represents an integer of 0 or 1 or more, and a in the general formula (3) and the general formula (4) both show the same value. )
  11.  下記一般式(1)で表される含フッ素ジビニルエーテル化合物と下記一般式(2)で表されるジオール化合物とを、下記一般式(1)で表される含フッ素ジビニルエーテル化合物1molに対して下記一般式(2)で表されるジオール化合物を1mol超となる比率で反応させ、下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物を製造し、
     下記一般式(3)で表される含フッ素ジヒドロキシポリエーテル化合物に含まれる水酸基をエステル化して下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物を製造し、
     下記一般式(4)で表される含フッ素ジアシルオキシポリエーテル化合物をフッ素化して下記一般式(5)で表されるペルフルオロジアシルオキシポリエーテル化合物を製造する、含フッ素ポリエーテル化合物の製造方法。
     CF=CR-O-R-O-CR=CF・・・(1)
     HO-CHCH-OH・・・(2)
     HO-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-OH・・・(3)
     RCO-O-CHCH-O-(CF-CHR-O-R-O-CHR-CF-O-CHCH-O)-CF-CHR-O-R-O-CHR-CF-O-CHCH-O-COR・・・(4)
     RF4CO-O-CFF3CF-O-(CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O)-CF-CFRF1-O-RF2-O-CFRF1-CF-O-CFF3CF-O-CORF4・・・(5)
    (一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表す。
     一般式(1)、一般式(3)及び一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(2)~一般式(4)中、Rは、それぞれ独立して、単結合、エーテル結合、又は環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数1~20の2価の炭化水素基を表す。
     一般式(4)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
     一般式(5)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表す。
     一般式(5)中、RF2は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
     一般式(5)中、RF3は、それぞれ独立して、Rが単結合の場合には単結合を表し、Rがエーテル結合の場合にはエーテル結合を表し、Rが2価の炭化水素基の場合にはRで表される2価の炭化水素基がペルフルオロ化された炭素数1~20の2価のペルフルオロ炭化水素基を表す。
     一般式(5)中、RF4は、それぞれ独立して、Rで表される2価の炭化水素基がペルフルオロ化された炭素数2~20の2価のペルフルオロ炭化水素基を表す。
     一般式(3)~一般式(5)中、aは、0又は1以上の整数を表し、且つ一般式(3)~一般式(5)におけるaはいずれも同じ値を示す。)
    The fluorine-containing divinyl ether compound represented by the following general formula (1) and the diol compound represented by the following general formula (2) were added to 1 mol of the fluorine-containing divinyl ether compound represented by the following general formula (1). The diol compound represented by the following general formula (2) is reacted at a ratio of more than 1 mol to produce a fluorine-containing dihydroxypolyether compound represented by the following general formula (3).
    The hydroxyl group contained in the fluorine-containing dihydroxypolyester compound represented by the following general formula (3) is esterified to produce a fluorine-containing diacyloxypolyether compound represented by the following general formula (4).
    A method for producing a fluorine-containing polyether compound, which comprises fluorinating a fluorine-containing diacyloxypolyether compound represented by the following general formula (4) to produce a perfluorodiacyloxypolyether compound represented by the following general formula (5).
    CF 2 = CR 1 -OR 2 -O-CR 1 = CF 2 ... (1)
    HO-CH 2 R 3 CH 2 -OH ... (2)
    HO-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1- O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -OH ... (3)
    R 4 CO-O-CH 2 R 3 CH 2 -O- (CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O) a -CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -O-CH 2 R 3 CH 2 -O-COR 4 ... (4)
    R F4 CO-O-CF 2 R F3 CF 2 -O- (CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O) a -CF 2 -CFR F1 -OR F2 -O-CFR F1 -CF 2 -O-CF 2 R F3 CF 2 -O-COR F4 ... (5)
    (In the general formula (1), the general formula (3) and the general formula (4), R 1 has independently, and the fluorine atom, the hydrogen atom, or the number of carbon atoms in which the hydrogen atom may be substituted by the fluorine atom is allowed. Represents 1 to 3 monovalent hydrocarbon groups.
    In the general formula (1), the general formula (3) and the general formula (4), R 2 may independently contain a ring structure or a branched structure, may contain an ether bond, and may contain hydrogen. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which the atom may be substituted with a fluorine atom.
    In the general formulas (2) to (4), R 3 may independently contain a single bond, an ether bond, or a ring structure or a branched structure, or may contain an ether bond. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
    In the general formula (4), R 4 may independently contain a ring structure or a branched structure, may contain an ether bond, and may have a hydrogen atom substituted with a fluorine atom. It represents a monovalent hydrocarbon group of the number 2 to 20.
    In the general formula (5), R F1 independently represents a fluorine atom when R 1 is a fluorine atom, represents a fluorine atom when R 1 is a hydrogen atom, and R 1 is monovalent. In the case of a hydrocarbon group, the monovalent hydrocarbon group represented by R 1 represents a perfluoroylated monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms.
    In the general formula (5), RF2 independently represents a divalent perfluorohydrocarbon group having 1 to 20 carbon atoms in which a divalent hydrocarbon group represented by R2 is perfluorolated.
    In the general formula (5), R F 3 independently represents a single bond when R 3 is a single bond, represents an ether bond when R 3 is an ether bond, and R 3 is divalent. In the case of a hydrocarbon group , the divalent hydrocarbon group represented by R3 represents a perfluoroylated divalent perfluorohydrocarbon group having 1 to 20 carbon atoms.
    In the general formula (5), RF4 independently represents a divalent perfluorohydrocarbon group having 2 to 20 carbon atoms in which a divalent hydrocarbon group represented by R4 is perfluorolated.
    In the general formulas (3) to (5), a represents an integer of 0 or 1 or more, and a in the general formulas (3) to (5) all show the same value. )
PCT/JP2021/046850 2020-12-25 2021-12-17 Production method of fluorine-containing polyether compound WO2022138511A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571416A JPWO2022138511A1 (en) 2020-12-25 2021-12-17
CN202180087063.3A CN116710422A (en) 2020-12-25 2021-12-17 Process for producing fluoropolyether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217943 2020-12-25
JP2020217943 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138511A1 true WO2022138511A1 (en) 2022-06-30

Family

ID=82157806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046850 WO2022138511A1 (en) 2020-12-25 2021-12-17 Production method of fluorine-containing polyether compound

Country Status (3)

Country Link
JP (1) JPWO2022138511A1 (en)
CN (1) CN116710422A (en)
WO (1) WO2022138511A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108128A (en) * 1965-06-02 1968-04-03 Du Pont Perfluoro (polyethylene glycol divinyl ethers) and polymers thereof
US3397191A (en) * 1965-06-02 1968-08-13 Du Pont Fluorocarbon ethers
JPH04500827A (en) * 1988-09-28 1992-02-13 エクスフルアー・リサーチ・コーポレーシヨン Fluorination of acetals, ketals and orthoesters
JP2006131514A (en) * 2004-11-04 2006-05-25 Yunimatekku Kk Fluorine-containing vinyl ether having terminal hydroxy group and method for producing the same
JP2010077222A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Fluorine-containing polymer, antireflection coating, antireflection film, and image display device
JP2010535792A (en) * 2007-08-06 2010-11-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated nonionic surfactant
JP2012506458A (en) * 2008-10-21 2012-03-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated polyoxyalkylene glycol diester surfactant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108128A (en) * 1965-06-02 1968-04-03 Du Pont Perfluoro (polyethylene glycol divinyl ethers) and polymers thereof
US3397191A (en) * 1965-06-02 1968-08-13 Du Pont Fluorocarbon ethers
JPH04500827A (en) * 1988-09-28 1992-02-13 エクスフルアー・リサーチ・コーポレーシヨン Fluorination of acetals, ketals and orthoesters
JP2006131514A (en) * 2004-11-04 2006-05-25 Yunimatekku Kk Fluorine-containing vinyl ether having terminal hydroxy group and method for producing the same
JP2010535792A (en) * 2007-08-06 2010-11-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated nonionic surfactant
JP2010077222A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Fluorine-containing polymer, antireflection coating, antireflection film, and image display device
JP2012506458A (en) * 2008-10-21 2012-03-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated polyoxyalkylene glycol diester surfactant

Also Published As

Publication number Publication date
CN116710422A (en) 2023-09-05
JPWO2022138511A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US7709665B2 (en) Processes for producing a fluorosulfonyl group-containing compound and a compound LED from the fluorosulfonyl group-containing compound
USRE41806E1 (en) Process for producing a fluorine atom-containing sulfonyl fluoride compound
JP2945693B2 (en) Liquid phase fluorine substitution
JP4867843B2 (en) Fluorosulfonyl group-containing monomer and polymer thereof, and sulfonic acid group-containing polymer
EP2004722B1 (en) A process for preparing high purity monocarboxylic perfluoropolyethers
US5539059A (en) Perfluorinated polyethers
EP1352892B1 (en) Processes for producing fluorinated ester, fluorinated acyl fluoride, and fluorinated vinyl ether
US20160152545A1 (en) Process for producing fluorinated compound
JP2004339221A (en) Method for producing perfluoropolyether having at least one -ch2oh or -ch(cf3)oh end group
US5506309A (en) Perfluorinates polyethers
WO2022138511A1 (en) Production method of fluorine-containing polyether compound
Turri et al. End group chemistry of fluoro‐oligomers: Highly selective syntheses of diepoxy, diallyl, and tetraol derivatives
RU2268876C2 (en) Fluorinated polyvalent carbonyl compound preparation method
WO2022138510A1 (en) Fluorine-containing polyether compound production method, fluorine-containing divinyl polyether compound production method, and fluorine-containing divinyl polyether compound
WO2022138508A1 (en) Fluorine-containing polyether compound
JP2004231657A (en) Method for producing fluorohalogenoether
WO2022138509A1 (en) Method for manufacturing polyether composition, method for manufacturing fluorine-containing polyether composition, and polyether composition
JPS58164535A (en) Preparation of perfluoro compound
JPH0725876B2 (en) Polyfluoropolyether
WO2024111485A1 (en) Method for producing fluoroester compound
JP2024074672A (en) Method for producing fluorine-containing compound
WO2018008648A1 (en) Method for producing fluoropolyoxyalkylene peroxide compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087063.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910656

Country of ref document: EP

Kind code of ref document: A1