WO2022138321A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2022138321A1
WO2022138321A1 PCT/JP2021/046009 JP2021046009W WO2022138321A1 WO 2022138321 A1 WO2022138321 A1 WO 2022138321A1 JP 2021046009 W JP2021046009 W JP 2021046009W WO 2022138321 A1 WO2022138321 A1 WO 2022138321A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical laminate
light absorption
absorption anisotropic
light
Prior art date
Application number
PCT/JP2021/046009
Other languages
French (fr)
Japanese (ja)
Inventor
健裕 笠原
直也 柴田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022572188A priority Critical patent/JPWO2022138321A1/ja
Publication of WO2022138321A1 publication Critical patent/WO2022138321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the structure has a structure that converts 1% to 20% of straight light in an oblique direction, a retardation film, and a light absorption anisotropic film, and the structures have different refractive indexes.
  • the retardation film having the function of a ⁇ / 4 wavelength plate, and the light absorption anisotropic film satisfying a transmittance of 43.5% to 52%, the oblique direction It was found that the color of the light can be neutralized and the front brightness can be increased.
  • the cross-sectional shape of the portion 22 is a substantially trapezoidal shape in which the side of the support base material 21 has a long bottom and the side facing the support base material 21 has a short bottom.
  • a large number of sites 22 are formed on the support base material 21.
  • the length of the portion 22 on the side of the support base material 21 is, for example, 0.1 ⁇ m or more and 20 ⁇ m or less, and the length of the side facing the support base material 21 is, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the portion 23 is a portion having a lower refractive index than the portion 22, and flattens the uneven shape formed by the portion 22 on the support base material 21. That is, the portion 23 has a large number of recesses corresponding to the portion 22 on the surface on the support base material 21 side, and the surface on the side opposite to the support base material 21 is a substantially flat surface.
  • Examples of the monofunctional monomer having a benzene ring skeleton in the molecule include ethoxylated O-phenylphenol (meth) acrylate, O-phenylphenol glycidyl ether (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, and 2-.
  • the portion 23 flattens the uneven shape formed by the support base material 21 and the portion 22. Further, the portion 23 may have a high visible light transmittance and adhesiveness (adhesive). This makes it possible to adhere to, for example, an OLED base material.
  • a portion 23 can be formed by, for example, an acrylic pressure-sensitive adhesive film, an ultraviolet curable adhesive, or the like.
  • the refractive index of the portion 22 is higher than that of the portion 23.
  • the difference in refractive index between the portion 22 and the portion 23 is preferably 0.11 or more.
  • the refractive index of the portion 22 is preferably 1.49 or more, and more preferably 1.58 or more.
  • the refractive index of the portion 23 is preferably 1.49 or less, more preferably 1.45 or less.
  • the comparison of the refractive indexes of the portion 22 and the portion 23 can be confirmed by the refraction direction of the light incident on the interface, the total reflection condition, and the like.
  • the specific numerical value of the refractive index can be measured by, for example, an Abbe refractive index meter (for example, RX-7000 ⁇ manufactured by Atago Co., Ltd.).
  • an Abbe refractive index meter for example, RX-7000 ⁇ manufactured by Atago Co., Ltd.
  • fine particles having a low refractive index In particular, in order to reduce the refractive index, it is preferable to use fine particles (hollow particles) having a porous or hollow structure.
  • the light absorption anisotropic film used in the present invention is a polarizing element, an absorption type polarizing element having iodine or a dichroic organic dye, and is a so-called linear polarization having a function of converting light into a specific linear polarization. I'm a child.
  • a polyvinyl alcohol (PVA) -based polarizing element in which iodine is adsorbed on a polyvinyl alcohol-based film such as polyvinyl alcohol and partially formalized polyvinyl alcohol and oriented in one direction is used.
  • a PVA splitter can be obtained by subjecting a polyvinyl alcohol-based film to iodine dyeing and stretching.
  • a PVA polarizing element having iodine treatments such as washing with water, swelling, and crosslinking may be performed, if necessary. Stretching may be performed before or after iodine staining, or stretching may be performed while staining. The stretching may be either stretching in the air (dry stretching) or stretching in water or an aqueous solution containing boric acid, potassium iodide or the like (wet stretching), and these may be used in combination.
  • the film thickness is not particularly limited, but is generally about 1 to 50 ⁇ m.
  • a PVA splitter having a dichroic organic dye As the light absorption anisotropic film, a PVA splitter having a dichroic organic dye can also be used.
  • a PVA splitter having a dichroic organic dye can be produced by adsorbing a dichroic organic dye on a polyvinyl alcohol-based resin and stretching the dye.
  • the polyvinyl alcohol-based resin is a resin containing a repeating unit of -CH 2 -CHOH-, and examples thereof include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer.
  • a liquid crystal compound and a dichroism are used without using polyvinyl alcohol as a decoder (light absorption anisotropic film) as a binder.
  • a coating type polarizing element produced by coating using an organic dye for example, a dichroic azo dye used for a light-absorbing anisotropic film described in WO2017 / 195833 is more preferable.
  • the liquid crystal compound preferably has a polymerizable group from the viewpoint of film strength, and the solid content ratio with respect to the coating composition is preferably 60% or more. It is more preferable that the liquid crystal compound and / or the dichroic organic dye contained in the composition liquid for forming a polarizing element layer for forming a polarizing element has a radically polymerizable group.
  • the relationship between the transmission axis of the substituent and the slow axis of the optically anisotropic layer (phase difference film) is not particularly limited.
  • the retardation film is a ⁇ / 4 plate, and the angle between the transmission axis of the substituent and the slow axis of the retardation film is 45.
  • the range of ⁇ 10 ° (35 to 55 °) is preferable.
  • the pressure-sensitive adhesive layer is, for example, a method in which a solution of a pressure-sensitive adhesive is applied on a release sheet, dried, and then transferred to the surface of the transparent resin layer; the solution of the pressure-sensitive adhesive is directly applied to the surface of the transparent resin layer and dried. It can be formed by a method of making it; etc.
  • the pressure-sensitive adhesive solution is prepared as a solution of about 10 to 40% by mass in which the pressure-sensitive adhesive is dissolved or dispersed in a solvent such as toluene and ethyl acetate.
  • a roll coating method such as reverse coating and gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, a spray method and the like can be adopted.
  • a synthetic resin film such as polyethylene, polypropylene, polyethylene terephthalate; rubber sheet; paper; cloth; non-woven fabric; net; foam sheet; metal leaf; Can be mentioned.
  • the above-mentioned structure, retardation film, and light absorption anisotropic film may be laminated by laminating with an adhesive, or laminated by laminating and laminating.
  • the bonding order and the stacking order are not particularly limited, but it is preferable in terms of the process that the structure and the retardation film are bonded first and then the light absorption anisotropic film is bonded.
  • OLED display device As an organic EL display device (OLED display device) which is an example of an image display device having the optical laminate of the present invention, as shown in FIG. 2, for example, from the visual recognition side, the above-mentioned optical laminate of the present invention and the above-mentioned optical laminate can be used.
  • An embodiment having an organic EL display panel (OLED panel) in this order is preferable.
  • the optical laminate is arranged from the visual side, a light absorption anisotropic film, an adhesive layer or an adhesive layer to be arranged as needed, a retardation film, and if necessary. It is preferable that the adhesive layer, the adhesive layer, and the structure are arranged in this order.
  • the optical laminate of the present invention can also be used for flexible devices such as flexible displays. In that case, it is preferable that the optical laminate does not crack when the 180 ° bending test is repeated 300,000 times with a radius of curvature of 2 mm.
  • flexible is synonymous with having flexibility in a general interpretation, and means that it can be bent and bent, specifically, without causing breakage and damage. , Indicates that it can be bent and stretched.
  • the structure (site 22 and / or site 23) contains a compound having a silsesquioxane structure, and the site 23 having a large volume is silled. It is more preferable to contain a compound having a sesquioxane structure.
  • Example 1 (Light absorption anisotropic film) [Making a transparent support]
  • Core layer Cellulose acylate dope ⁇ 100 parts by mass of cellulose acetate having an acetyl substitution degree of 2.88 ⁇ 12 parts by mass of polyester compound B described in Examples of JP-A-2015-227955 ⁇ 2 parts by mass of the following compound F ⁇ Methylene chloride (first solvent) 430 Parts by mass / methanol (second solvent) 64 parts by mass ⁇
  • the composition for forming a light absorption anisotropic film P1 having the following composition was continuously applied with a wire bar onto the obtained pattern-exposed TAC film with a light alignment film to form a coating layer P. Then, the coating layer P was heated at 140 ° C. for 15 seconds, and the coating layer P was cooled to room temperature (23 ° C.). It was then heated at 75 ° C. for 60 seconds and cooled again to room temperature.
  • a light absorption anisotropic film was produced by irradiating with an LED (light emitting diode) lamp (center wavelength 365 nm) for 2 seconds under an irradiation condition of an illuminance of 200 mW / cm 2 .
  • the film thickness of the light absorption anisotropic film was 1.0 ⁇ m, the transmittance was 43.5%, and the degree of polarization was 99%.
  • Dichroic substance C-1 (maximum absorption wavelength: 570 nm)
  • the coating liquid PA2 for forming a photoalignment film having the following composition was continuously coated on the above-mentioned cellulose acylate film 1 with a wire bar.
  • the support on which the coating film was formed was dried with warm air at 140 ° C. for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to 0.2 ⁇ m.
  • a photo-alignment film PA2 having a thickness of 1 was formed, and a TAC film with a photo-alignment film was obtained.
  • PA2 for forming a photoalignment film
  • PA-2 100.00 parts by mass-The acid generator PAG-1 5.00 parts by mass-The acid generator CPI-110TF 0.005 parts by mass-Isopropyl alcohol 16.50 parts by mass-Butyl acetate 1072 .00 parts by mass, methyl ethyl ketone 268.00 parts by mass ⁇
  • composition A-1 ⁇ -The following polymerizable liquid crystal compound LA-1 43.50 parts by mass-The following polymerizable liquid crystal compound LA-2 43.50 parts by mass-The following polymerizable liquid crystal compound LA-3 8.00 parts by mass-The following polymerizable liquid crystal Sex compound LA-4 5.00 parts by mass ⁇
  • Polymerization initiator PI-1 0.55 parts by mass below ⁇
  • Leveling agent T-1 0.20 parts by mass below ⁇ Cyclopentanone 235.00 parts by mass ⁇ ⁇
  • Polymerizable liquid crystal compound LA-4 (Me represents a methyl group)
  • the cellulose acylate film 1 of the retardation film A is peeled off, and an Opteria D692 (thickness 15 ⁇ m) pressure-sensitive adhesive manufactured by Lintec Corporation is attached to the photoalignment film side of the retardation film A, and the cellulose acylate film of the structure A is attached.
  • an Opteria D692 thickness 15 ⁇ m
  • One side was bonded to obtain an optical laminate A.
  • the portion 23 (adhesive) side of the structure A in the optical laminate A was attached to the OLED panel, and the temporary transfer support 1 was peeled off.
  • Measurement method of front brightness of OLED display device >> Using a spectro-luminance meter (SR3 manufactured by Topcon Techno House Co., Ltd.), the OLED panel of the manufactured OLED display device was turned on, and the brightness was measured from a distance of 700 mm from the display surface of the OLED display device.
  • SR3 spectro-luminance meter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention addresses the problem of making a color tone in an oblique direction neutral and improving front luminance. Provided is an optical laminate having a structure that diffracts in an oblique direction and transmits part of light vertically incident on a principal surface, a phase difference film, and a light absorption anisotropic film, wherein the structure has regions with different refractive indexes, the oblique light transmittance of the structure is 1-20%, the phase difference film has the function of a λ/4 wavelength plate, and the light absorption anisotropic film satisfies a transmittance of 43.5-52%. The oblique light transmittance is expressed by: (oblique light transmittance) = (total light transmittance)-(parallel transmittance).

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 有機発光素子(organic light emitting diode;OLED)は、アノード、有機発光層及びカソードを含んで形成される。ここで、アノードとカソードとの間に電圧を印加すれば、正孔は、アノードから有機発光層内に注入され、電子は、カソードから有機発光層内に注入される。この時、有機発光層内に注入された正孔及び電子は、有機発光層で再結合して励起子(exciton)を生成し、このような励起子が励起状態から基底状態で遷移しつつ光を放出する。 The organic light emitting diode (OLED) is formed to include an anode, an organic light emitting layer, and a cathode. Here, if a voltage is applied between the anode and the cathode, holes are injected from the anode into the organic light emitting layer, and electrons are injected from the cathode into the organic light emitting layer. At this time, the holes and electrons injected into the organic light emitting layer recombine in the organic light emitting layer to generate excitons, and such excitons transition from the excited state to the ground state while illuminating. Is released.
 このような有機発光素子の場合、発光体が有機物であるために有する劣化による寿命問題は、OLED技術開発において核心的な部分であり、これを乗り越えるために多くの技術が行われつつある。その一つである微細空洞構造(microcavity structure)を用いる技術は、発光する特定波長の光を共鳴(resonance)させて強度を高め、外部に出させる技術である。すなわち、アノードとカソードとの距離を赤色(R)、緑色(G)、青色(B)それぞれの代表波長にマッチングさせて設計し、それに相応する光のみ共鳴させて外部に出し、それ以外の光は弱める構造であり、結果的に外部に出た光の強度が強くなってシャープになり、これによって輝度、色純度が増加するという長所を持つ。そして、このような輝度の増加は低電力消費をもたらし、これは寿命延長につながる。 In the case of such an organic light emitting element, the life problem due to deterioration that the light emitting body has because it is an organic substance is a core part in the development of OLED technology, and many technologies are being used to overcome it. One of them, a technique using a microcavity structure, is a technique for resonating light of a specific wavelength to be emitted to increase its intensity and let it go out. That is, the distance between the anode and the cathode is designed to match the representative wavelengths of red (R), green (G), and blue (B), and only the corresponding light is resonated to the outside, and the other light is emitted. Is a weakening structure, and as a result, the intensity of the light emitted to the outside becomes stronger and sharper, which has the advantage of increasing the brightness and color purity. And such an increase in brightness results in low power consumption, which leads to an extension of life.
 しかしながら、微細空洞構造は、発光層を構成する有機蒸着物の膜厚によって増幅する波長が定められるが、正面ではない側面では光の経路長が変わり、これは蒸着物の膜厚が変わることと類似した効果を奏し、増幅する波長が変わる結果をもたらすという問題がある。すなわち、視聴角度が正面から側面にチルトするほど短波長側で最大共振波長を示すようになって、短波長側に色変化(color shift)が現れる。例えば、正面ではホワイトを示したとしても、側面ではブルーシフト(blue shift)現象のためホワイトが青色を帯びる(bluish)現象が現われるという問題がある。 However, in the microcavity structure, the wavelength to be amplified is determined by the film thickness of the organic vapor deposition constituting the light emitting layer, but the path length of light changes on the side surface other than the front surface, which means that the film thickness of the vapor deposition material changes. There is a problem that it produces a similar effect and results in a change in the wavelength to be amplified. That is, as the viewing angle tilts from the front to the side, the maximum resonance wavelength is exhibited on the short wavelength side, and a color shift appears on the short wavelength side. For example, even if white is shown on the front side, there is a problem that white becomes bluish due to the blue shift phenomenon on the side surface.
特開2014-123568号公報Japanese Unexamined Patent Publication No. 2014-123568
 例えば、特許文献1には、ブルーシフトを改良する方法として、屈折率の異なる構造を含む構造体を用い、直進光の一部を斜め方向に変換し、斜め方向に様々な波長の光を拡散させることで、斜めから見た際の色味をニュートラルに調整する方法が提案されている。
 しかしながら、従来の直進光の一部を斜め方向に変換する方法では、正面の輝度が低下してしまう問題があった。
 そこで本発明は、斜め方向の色味をニュートラルにし、かつ正面輝度を上げることを課題とする。
For example, in Patent Document 1, as a method for improving blue shift, a structure containing structures having different refractive indexes is used, a part of straight light is converted in an oblique direction, and light of various wavelengths is diffused in the oblique direction. A method of adjusting the color tones when viewed from an angle to neutral has been proposed.
However, the conventional method of converting a part of straight light in an oblique direction has a problem that the brightness of the front surface is lowered.
Therefore, it is an object of the present invention to make the tint in the diagonal direction neutral and to increase the front luminance.
 本発明者らが鋭意検討の結果、直進光のうち1%~20%を斜め方向に変換する構造体と位相差膜と光吸収異方性膜を有し、前記構造体が屈折率の異なる領域を有し、前記位相差膜がλ/4波長板の機能を有し、前記光吸収異方性膜が透過率43.5%~52%を満たす光学積層体を用いることで、斜め方向の色味をニュートラルにし、かつ正面輝度を上げることができることを見出した。 As a result of diligent studies by the present inventors, the structure has a structure that converts 1% to 20% of straight light in an oblique direction, a retardation film, and a light absorption anisotropic film, and the structures have different refractive indexes. By using an optical laminate having a region, the retardation film having the function of a λ / 4 wavelength plate, and the light absorption anisotropic film satisfying a transmittance of 43.5% to 52%, the oblique direction It was found that the color of the light can be neutralized and the front brightness can be increased.
(1) 主面に垂直に入射する光の一部を斜め方向に回折して透過する構造体と位相差膜と光吸収異方性膜を有し、
 構造体が屈折率の異なる領域を有し、
 前記構造体の斜め光透過率が1%~20%であり、
 位相差膜がλ/4波長板の機能を有し、
 光吸収異方性膜が透過率43.5%~52%を満たす、
 光学積層体。
 ここで、前記斜め光透過率は、斜め光透過率=全光線透過率―平行透過率で表される。
(2) 光吸収異方性膜の偏光度が80%以上である、(1)に記載の光学積層体。
(3) 光吸収異方性膜が有機二色性色素を有する、(1)または(2)に記載の光学積層体。
(4) 光吸収異方性膜が液晶化合物を有する、(1)~(3)のいずれかに記載の光学積層体。
(5) 構造体と位相差膜を先に貼合した後、光吸収異方性膜を貼合することで形成された、(1)~(4)のいずれかに記載の光学積層体。
(6) 光吸収異方性膜/位相差膜/構造体が、この順に積層された、(1)~(5)のいずれかに記載の光学積層体。
(7) 光吸収異方性膜/構造体/位相差膜が、この順に積層された、(1)~(5)のいずれかに記載の光学積層体。
(8) 構造体/光吸収異方性膜/位相差膜が、この順に積層された、(1)~(4)のいずれかに記載の光学積層体。
(9) 曲率半径2mmで180°折り曲げ試験を30万回繰り返し行った場合にクラックが発生しない、(1)~(8)のいずれかに記載の光学積層体。
(10) 構造体がシルセスキオキサンを含む、(1)~(9)のいずれかに記載の光学積層体。
(11) フォルダブル機器に用いられる、(1)~(10)のいずれかに記載の光学積層体。
(12) さらに、逆分散のポジティブCプレート層を有する、(1)~(11)のいずれかに記載の光学積層体。
(13) 構造体が酸化ジルコニウム粒子を有する、(1)~(12)のいずれかに記載の光学積層体。
(14) 構造体が粘着剤からなる領域を有し、粘着剤が中空粒子を含有する、(1)~(13)のいずれかに記載の光学積層体。
(1) It has a structure that diffracts and transmits a part of light perpendicularly incident on the main surface in an oblique direction, a retardation film, and a light absorption anisotropic film.
The structure has regions with different refractive indexes and
The oblique light transmittance of the structure is 1% to 20%, and the structure has an oblique light transmittance of 1% to 20%.
The retardation film has the function of a λ / 4 wave plate,
The light absorption anisotropic film satisfies the transmittance of 43.5% to 52%.
Optical laminate.
Here, the diagonal light transmittance is expressed by diagonal light transmittance = total light transmittance-parallel transmittance.
(2) The optical laminate according to (1), wherein the light absorption anisotropic film has a degree of polarization of 80% or more.
(3) The optical laminate according to (1) or (2), wherein the light absorption anisotropic film has an organic dichroic dye.
(4) The optical laminate according to any one of (1) to (3), wherein the light absorption anisotropic film has a liquid crystal compound.
(5) The optical laminate according to any one of (1) to (4), which is formed by first laminating a structure and a retardation film and then laminating a light absorption anisotropic film.
(6) The optical laminate according to any one of (1) to (5), wherein the light absorption anisotropic film / retardation film / structure is laminated in this order.
(7) The optical laminate according to any one of (1) to (5), wherein the light absorption anisotropic film / structure / retardation film is laminated in this order.
(8) The optical laminate according to any one of (1) to (4), wherein the structure / light absorption anisotropic film / retardation film are laminated in this order.
(9) The optical laminate according to any one of (1) to (8), wherein cracks do not occur when a 180 ° bending test is repeated 300,000 times with a radius of curvature of 2 mm.
(10) The optical laminate according to any one of (1) to (9), wherein the structure contains silsesquioxane.
(11) The optical laminate according to any one of (1) to (10), which is used for a foldable device.
(12) The optical laminate according to any one of (1) to (11), further having a reverse-dispersed positive C plate layer.
(13) The optical laminate according to any one of (1) to (12), wherein the structure has zirconium oxide particles.
(14) The optical laminate according to any one of (1) to (13), wherein the structure has a region made of a pressure-sensitive adhesive and the pressure-sensitive adhesive contains hollow particles.
 本発明によれば、斜め方向の色味をニュートラルにし、かつ正面輝度を上げることができる。 According to the present invention, it is possible to neutralize the tint in the diagonal direction and increase the front luminance.
本発明の光学積層体の実施形態の例を示す模式的な断面図である。It is a schematic sectional drawing which shows the example of embodiment of the optical laminated body of this invention. 本発明の光学積層体を有する表示装置の実施形態の例を示す模式的な断面図である。It is a schematic cross-sectional view which shows the example of the embodiment of the display device which has the optical laminated body of this invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の総称であり、「(メタ)アクリル」は、「アクリル」および「メタクリル」の総称であり、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の総称である。
 また、本明細書において、角度に関する「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとし、角度に関する「同一」および「異なる」は、その差が5°未満であるか否かを基準に判断できる。
 また、本明細書において、「可視光」とは、380~780nmのことをいう。
 また、本明細書において、測定波長について特に付記がない場合は、測定波長は550nmである。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the present specification, as each component, a substance corresponding to each component may be used alone or in combination of two or more. Here, when two or more kinds of substances are used in combination for each component, the content of the component means the total content of the substances used in combination unless otherwise specified.
Further, in the present specification, "(meth) acrylate" is a general term for "acrylate" and "methacrylate", and "(meth) acrylic" is a general term for "acrylic" and "methacrylic", and "(meth) acrylic" is a general term. ) Acryloyl is a general term for "acryloyl" and "methacrylic".
Further, in the present specification, "orthogonal" and "parallel" with respect to an angle mean a range of a strict angle of ± 10 °, and "same" and "different" with respect to an angle have a difference of less than 5 °. It can be judged based on whether or not it is.
Further, in the present specification, "visible light" means 380 to 780 nm.
Further, in the present specification, unless otherwise specified, the measurement wavelength is 550 nm.
 また、本明細書において、液晶性組成物、液晶性化合物とは、硬化等により、もはや液晶性を示さなくなったものも概念として含まれる。 Further, in the present specification, the liquid crystal composition and the liquid crystal compound include those which no longer show liquid crystal property due to curing or the like as a concept.
<光学積層体>
 図1は本発明の光学積層体の実施形態の例を示す模式的な断面図である。本発明の光学積層体1は、直進光(主面に垂直に入射する光)のうち1%~20%を斜め方向に変換する構造体2、位相差膜4、光吸収異方性膜6を有する。また、構造体2と位相差膜4は粘着層3で貼合されており、位相差膜4と光吸収異方性膜6は粘着層5で貼合されている。
 構造体2は、屈折率の異なる領域を有しており、主面に垂直に入射する光の一部を斜め方向に回折して透過するものであり、斜め光透過率が1%~20%である、ということもできる。ここで、斜め光透過率は、斜め光透過率=全光線透過率―平行透過率で表される。
<Optical laminate>
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the optical laminate of the present invention. The optical laminate 1 of the present invention includes a structure 2, a retardation film 4, and a light absorption anisotropic film 6 that convert 1% to 20% of straight light (light incident perpendicular to the main surface) in an oblique direction. Has. Further, the structure 2 and the retardation film 4 are bonded by the adhesive layer 3, and the retardation film 4 and the light absorption anisotropic film 6 are bonded by the adhesive layer 5.
The structure 2 has regions having different refractive indexes, and a part of the light vertically incident on the main surface is diffracted in the diagonal direction and transmitted, and the oblique light transmittance is 1% to 20%. It can also be said that. Here, the diagonal light transmittance is expressed by diagonal light transmittance = total light transmittance-parallel transmittance.
 なお、全光線透過率および平行透過率は、分光ヘイズメーターNDH8000(日本電色工業社製)等の市販の測定装置を用いて、JIS K 7361-1(ISO 13468-1)に準拠する方法によって測定することができる。 The total light transmittance and the parallel transmittance are determined by a method conforming to JIS K7361-1 (ISO 13468-1) using a commercially available measuring device such as a spectroscopic haze meter NDH8000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.). Can be measured.
 (光学積層体の態様1)
 態様1は、視認側から、光吸収異方性膜、位相差膜、構造体の順に配置される。この態様においては、構造体由来の虹ムラが抑制される点で好ましい。
(Aspect 1 of the optical laminate)
In the first aspect, the light absorption anisotropic film, the retardation film, and the structure are arranged in this order from the visual recognition side. In this aspect, it is preferable in that rainbow unevenness derived from the structure is suppressed.
 (光学積層体の態様2)
 態様2は、視認側から、光吸収異方性膜、構造体、位相差膜の順に配置される。この態様においては、反射光の斜め方向の色味変化が抑制される。この場合、位相差膜として、ポジティブCプレート層を含まずポジティブAプレート層のみの構成とすることも可能であり、生産性の面から好ましい。
(Aspect 2 of the optical laminate)
In the second aspect, the light absorption anisotropic film, the structure, and the retardation film are arranged in this order from the visual recognition side. In this embodiment, the oblique color change of the reflected light is suppressed. In this case, as the retardation film, it is possible to configure only the positive A plate layer without including the positive C plate layer, which is preferable from the viewpoint of productivity.
(光学積層体の態様3)
 態様3は、視認側から、構造体、光吸収異方性膜、位相差膜の順に配置される。この態様においては、反射光の斜め方向の色味変化が抑制される。この場合、位相差膜として、ポジティブCプレート層を含まずポジティブAプレート層のみの構成とすることも可能であり、生産性の面から好ましい。
(Aspect 3 of the optical laminate)
In the third aspect, the structure, the light absorption anisotropic film, and the retardation film are arranged in this order from the visual recognition side. In this embodiment, the oblique color change of the reflected light is suppressed. In this case, as the retardation film, it is possible to configure only the positive A plate layer without including the positive C plate layer, which is preferable from the viewpoint of productivity.
〔構造体〕
 図1に示す構造体2は、支持基材21と、互いに屈折率の異なる部位(高屈折率部位ともいう)22と部位(低屈折率部位ともいう)23とを有する。構造体2は、部位22と部位23との屈折率の差で直進光のうち1%~20%を斜め方向に変換する。すなわち、構造体2は、主面に垂直に入射する光の一部を斜め方向に回折して透過し、その斜め光透過率が1%~20%となる。支持基材21は部位22および部位23を支持する支持基材である。図1に示すように、部位22の断面形状は支持基材21の側が長い底、支持基材21に対向する側が短い底となっている略台形形状である。部位22は、支持基材21上に多数形成されている。部位22の支持基材21の側の長さは、例えば0.1μm以上20μm以下であり、支持基材21に対向する側の長さは、例えば0.1μm以上20μm以下である。部位23は、部位22よりも屈折率が低い部位であり、支持基材21上に部位22によって形成されている凹凸形状を平坦化している。すなわち、部位23は、支持基材21側の面に部位22に応じた多数の凹部を有し、支持基材21とは反対側の面は略平坦な面である。
〔Structure〕
The structure 2 shown in FIG. 1 has a supporting base material 21, a portion (also referred to as a high refractive index portion) 22 and a portion (also referred to as a low refractive index portion) 23 having different refractive indexes from each other. The structure 2 converts 1% to 20% of the straight light in the oblique direction due to the difference in the refractive index between the portion 22 and the portion 23. That is, the structure 2 diffracts a part of the light perpendicularly incident on the main surface in the diagonal direction and transmits the light, and the oblique light transmittance is 1% to 20%. The support base material 21 is a support base material that supports the site 22 and the site 23. As shown in FIG. 1, the cross-sectional shape of the portion 22 is a substantially trapezoidal shape in which the side of the support base material 21 has a long bottom and the side facing the support base material 21 has a short bottom. A large number of sites 22 are formed on the support base material 21. The length of the portion 22 on the side of the support base material 21 is, for example, 0.1 μm or more and 20 μm or less, and the length of the side facing the support base material 21 is, for example, 0.1 μm or more and 20 μm or less. The portion 23 is a portion having a lower refractive index than the portion 22, and flattens the uneven shape formed by the portion 22 on the support base material 21. That is, the portion 23 has a large number of recesses corresponding to the portion 22 on the surface on the support base material 21 side, and the surface on the side opposite to the support base material 21 is a substantially flat surface.
{支持基材21}
 支持基材21としては、可視光透過率の高いトリアセチルセルロース(TAC)を例示することができる。光透過性、ならびに、高屈折率部位22および低屈折率部位23の適切な支持性等を考慮すると、25μm以上80μm以下の厚みを有していることが望ましい。
{Supporting base material 21}
As the supporting base material 21, triacetyl cellulose (TAC) having a high visible light transmittance can be exemplified. Considering the light transmittance and the appropriate supportability of the high refractive index portion 22 and the low refractive index portion 23, it is desirable to have a thickness of 25 μm or more and 80 μm or less.
{高屈折率部位22}
 高屈折率部位22としては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等の紫外線硬化樹脂を配置し、紫外線を照射して樹脂を効果させることで形成することができる。
 部位23に比べ屈折率を高くするため、部位22として高屈折モノマー、および、高屈折金属微粒子等を用いることも好ましい。
 高屈折モノマーとしては、分子中にベンゼン環骨格を有することが好ましい。分子中にベンゼン環骨格を有する単官能モノマーとしては、例えば、エトキシ化O-フェニルフェノール(メタ)アクリレート、O-フェニルフェノールグリシジルエーテル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、2-メタクリロイロキシエチルフタレート、2-アクリロイロキシエチルフタレート、2-アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-アクリロイロキシプロピルフタレート、フェノキシエチル(メタ)アクリレート、EO変性フェノール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、PO変性ノニルフェノール(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ECH変性フェノキシ(メタ)アクリレート、ベンジル(メタ)アクリレート、ビニルカルバゾール等が挙げられる。
 無機微粒子としては、屈折率の観点から、酸化ジルコニウムの微粒子が好ましい。無機微粒子の量を変化させることで所定の屈折率に調整することができる。層中の無機微粒子の平均粒径は、酸化ジルコニウムを主成分として用いた場合、1~120nmであることが好ましく、さらに好ましくは1~60nm、2~40nmがさらに好ましい。
{High refractive index part 22}
The high refractive index portion 22 is formed by arranging an ultraviolet curable resin such as an epoxy acrylate-based, urethane acrylate-based, polyether acrylate-based, polyester acrylate-based, or polythiol-based resin and irradiating the resin with ultraviolet rays to make the resin effective. can do.
In order to increase the refractive index as compared with the portion 23, it is also preferable to use a highly refracting monomer, highly refracted metal fine particles, or the like as the portion 22.
The high refraction monomer preferably has a benzene ring skeleton in the molecule. Examples of the monofunctional monomer having a benzene ring skeleton in the molecule include ethoxylated O-phenylphenol (meth) acrylate, O-phenylphenol glycidyl ether (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, and 2-. Methacryloyloxyethyl phthalate, 2-acryloyloxyethyl phthalate, 2-acryloyloxyethyl-2-hydroxyethylphthalate, 2-acryloyloxypropylphthalate, phenoxyethyl (meth) acrylate, EO-modified phenol (meth) acrylate, Phenoxydiethylene glycol (meth) acrylate, EO-modified nonylphenol (meth) acrylate, PO-modified nonylphenol (meth) acrylate, phenylglycidyl ether (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, ECH Examples thereof include modified phenoxy (meth) acrylate, benzyl (meth) acrylate, vinyl carbazole and the like.
As the inorganic fine particles, zirconium oxide fine particles are preferable from the viewpoint of refractive index. The refractive index can be adjusted to a predetermined value by changing the amount of the inorganic fine particles. When zirconium oxide is used as a main component, the average particle size of the inorganic fine particles in the layer is preferably 1 to 120 nm, more preferably 1 to 60 nm, and even more preferably 2 to 40 nm.
{低屈折率部位23}
 図1に示すように、部位23は、支持基材21と部位22によって形成されている凹凸形状を平坦化している。また、部位23は可視光透過率が高く、粘着性を有するもの(粘着剤)であってもよい。これによって例えばOLED基材に接着させることが可能である。このような部位23は、例えばアクリル系の粘着フィルムおよび紫外線硬化型接着剤等によって形成することができる。
 部位22の屈折率は部位23より高くなっている。部位22と部位23の屈折率の差は0.11以上であることが好ましい。具体的には、部位22の屈折率は1.49以上が好ましく、1.58以上がさらに好ましい。部位23の屈折率は1.49以下が好ましく、1.45以下がさらに好ましい。なお、部位22と部位23の屈折率の比較は、界面に入射する光の屈折方向および全反射条件等によって確認することができる。なお、屈折率の具体的な数値は、例えばアッベ屈折率計(例えば株式会社アタゴ社製のRX-7000α)で測定することができる。
 部位23の屈折率を低くするために、低屈折率の微粒子を用いることが可能である。特に、低屈折率化を図るには、多孔質又は中空構造の微粒子(中空粒子)を使用することが好ましい。特に中空構造のシリカ粒子を用いることが好ましい。これら粒子の空隙率は、好ましくは10~80%、さらに好ましくは20~60%、最も好ましくは30~60%である。中空粒子の空隙率を上述の範囲にすることが、低屈折率化と粒子の耐久性維持の観点で好ましい。低屈折率微粒子のサイズ(1次粒径)は、5~120nmが好ましく、より好ましくは10~100nm、20~100nm、最も好ましくは40~90nmである。また、部位23として粘着剤を用いる場合に、粘着剤が中空粒子を含有するものとしてもよい。
{Low refractive index part 23}
As shown in FIG. 1, the portion 23 flattens the uneven shape formed by the support base material 21 and the portion 22. Further, the portion 23 may have a high visible light transmittance and adhesiveness (adhesive). This makes it possible to adhere to, for example, an OLED base material. Such a portion 23 can be formed by, for example, an acrylic pressure-sensitive adhesive film, an ultraviolet curable adhesive, or the like.
The refractive index of the portion 22 is higher than that of the portion 23. The difference in refractive index between the portion 22 and the portion 23 is preferably 0.11 or more. Specifically, the refractive index of the portion 22 is preferably 1.49 or more, and more preferably 1.58 or more. The refractive index of the portion 23 is preferably 1.49 or less, more preferably 1.45 or less. The comparison of the refractive indexes of the portion 22 and the portion 23 can be confirmed by the refraction direction of the light incident on the interface, the total reflection condition, and the like. The specific numerical value of the refractive index can be measured by, for example, an Abbe refractive index meter (for example, RX-7000α manufactured by Atago Co., Ltd.).
In order to lower the refractive index of the portion 23, it is possible to use fine particles having a low refractive index. In particular, in order to reduce the refractive index, it is preferable to use fine particles (hollow particles) having a porous or hollow structure. In particular, it is preferable to use silica particles having a hollow structure. The porosity of these particles is preferably 10 to 80%, more preferably 20 to 60%, and most preferably 30 to 60%. It is preferable to set the porosity of the hollow particles in the above range from the viewpoint of lowering the refractive index and maintaining the durability of the particles. The size (primary particle size) of the low refractive index fine particles is preferably 5 to 120 nm, more preferably 10 to 100 nm, 20 to 100 nm, and most preferably 40 to 90 nm. Further, when the pressure-sensitive adhesive is used as the portion 23, the pressure-sensitive adhesive may contain hollow particles.
〔位相差膜〕
 本発明における位相差膜とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
 λ/4板の具体例としては、例えば米国特許出願公開2015/0277006号などが挙げられる。
 例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルム、および、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルム等が挙げられ、また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。また、位相差膜として、水平配向のAプレートと垂直配向のCプレートの組み合わせも好ましい。言い換えると、光学積層体は、λ/4板である位相差膜に加えて、さらにCプレートを有していてもよい。Cプレートとしては、ポジティブCプレートであってもネガティブCプレートであってもよく、ポジティブCプレートが好ましい。
 λ/4機能を有する光学異方性層を設けた位相差フィルムは、ネマチック液晶層またはスメクチック液晶層を発現する液晶モノマーを重合して形成した液晶性化合物(円盤状液晶、棒状液晶性化合物など)の少なくともひとつを含む1層以上の位相差フィルムであることがより好ましい。
 また、光学性能に優れたλ/4板として、逆波長分散性の液晶性化合物を用いることもさらに好ましい。具体的には、国際公開番号WO2017/043438号公報に記載の一般式(II)の液晶性化合物が好ましく用いられる。逆波長分散性の液晶性化合物を用いたλ/4板の作製方法についても、WO2017/043438号公報の実施例1~10、および、特開2016-91022号公報の実施例1の記載を参考にできる。AプレートあるいはCプレートに逆分散を用いることも好ましい。
 特開2014-209219号公報、特開2014-209219号公報、および、WO2014/157079号公報に記載のように、厚み方向を螺旋軸とする捩れ配向した液晶化合物を固定化した層を有する光学要素をλ/4板として用いることも好ましい。
[Phase difference film]
The retardation film in the present invention is a plate having a λ / 4 function, and specifically, a plate having a function of converting linear polarization of a specific wavelength into circular polarization (or circular polarization into linear polarization). Is.
Specific examples of the λ / 4 plate include, for example, US Patent Application Publication No. 2015/0277006.
For example, as an embodiment in which the λ / 4 plate has a single-layer structure, specifically, a stretched polymer film, a retardation film in which an optically anisotropic layer having a λ / 4 function is provided on a support, and the like are used. Further, as an embodiment in which the λ / 4 plate has a multi-layer structure, specifically, a wide band λ / 4 plate formed by laminating a λ / 4 plate and a λ / 2 plate can be mentioned. Further, as the retardation film, a combination of a horizontally oriented A plate and a vertically oriented C plate is also preferable. In other words, the optical laminate may further have a C plate in addition to the retardation film which is a λ / 4 plate. The C plate may be either a positive C plate or a negative C plate, and a positive C plate is preferable.
The retardation film provided with the optically anisotropic layer having a λ / 4 function is a liquid crystal compound (disk-shaped liquid crystal, rod-shaped liquid crystal compound, etc.) formed by polymerizing a liquid crystal monomer expressing a nematic liquid crystal layer or a smectic liquid crystal layer. ), It is more preferable that the retardation film has one or more layers.
Further, it is further preferable to use a liquid crystal compound having a reverse wavelength dispersibility as the λ / 4 plate having excellent optical performance. Specifically, the liquid crystal compound of the general formula (II) described in International Publication No. WO 2017/043438 is preferably used. Regarding the method for producing a λ / 4 plate using a liquid crystal compound having a reverse wavelength dispersibility, refer to the description of Examples 1 to 10 of WO2017 / 043438 and Example 1 of JP-A-2016-91022. Can be done. It is also preferable to use dedispersion for the A plate or C plate.
As described in JP-A-2014-209219, JP-A-2014-209219, and WO2014 / 157079, an optical element having a layer in which a twist-oriented liquid crystal compound having a spiral axis in the thickness direction is immobilized. Is also preferably used as a λ / 4 plate.
〔光吸収異方性膜〕
 本発明に用いられる光吸収異方性膜は、偏光子であり、ヨウ素、あるいは二色性有機色素を有する吸収型偏光子であり、光を特定の直線偏光に変換する機能を有するいわゆる直線偏光子である。
[Light absorption anisotropic film]
The light absorption anisotropic film used in the present invention is a polarizing element, an absorption type polarizing element having iodine or a dichroic organic dye, and is a so-called linear polarization having a function of converting light into a specific linear polarization. I'm a child.
(ヨウ素を有するPVA偏光子)
 光吸収異方性膜として、ポリビニルアルコール、および、部分ホルマール化ポリビニルアルコール等のポリビニルアルコール系フィルムに、ヨウ素を吸着させて一方向に配向させたポリビニルアルコール(PVA)系偏光子が用いられる。例えば、ポリビニルアルコール系フィルムに、ヨウ素染色および延伸を施すことにより、PVA偏光子が得られる。
(PVA modulator with iodine)
As the light absorption anisotropic film, a polyvinyl alcohol (PVA) -based polarizing element in which iodine is adsorbed on a polyvinyl alcohol-based film such as polyvinyl alcohol and partially formalized polyvinyl alcohol and oriented in one direction is used. For example, a PVA splitter can be obtained by subjecting a polyvinyl alcohol-based film to iodine dyeing and stretching.
 ヨウ素を有するPVA偏光子の製造工程においては、必要に応じて、水洗、膨潤、架橋等の処理が行われてもよい。延伸は、ヨウ素染色の前後いずれに行われてもよく、染色しながら延伸が行われてもよい。延伸は、空中での延伸(乾式延伸)、あるいは、水中または、ホウ酸、ヨウ化カリウム等を含む水溶液中での延伸(湿式延伸)のいずれでもよく、これらを併用してもよい。膜厚は特に制限されないが、一般的に、1~50μm程度である。 In the process of manufacturing a PVA polarizing element having iodine, treatments such as washing with water, swelling, and crosslinking may be performed, if necessary. Stretching may be performed before or after iodine staining, or stretching may be performed while staining. The stretching may be either stretching in the air (dry stretching) or stretching in water or an aqueous solution containing boric acid, potassium iodide or the like (wet stretching), and these may be used in combination. The film thickness is not particularly limited, but is generally about 1 to 50 μm.
(二色性有機色素を有するPVA偏光子)
 光吸収異方性膜として、二色性有機色素を有するPVA偏光子を用いることもできる。ポリビニルアルコール系樹脂に二色性有機色素を吸着させ、延伸することで二色性有機色素を有するPVA偏光子を作製することができる。
 ポリビニルアルコール系樹脂は、-CH-CHOH-という繰り返し単位を含む樹脂であり、例えば、ポリビニルアルコール、および、エチレン-ビニルアルコール共重合体が挙げられる。
(PVA splitter with dichroic organic dye)
As the light absorption anisotropic film, a PVA splitter having a dichroic organic dye can also be used. A PVA splitter having a dichroic organic dye can be produced by adsorbing a dichroic organic dye on a polyvinyl alcohol-based resin and stretching the dye.
The polyvinyl alcohol-based resin is a resin containing a repeating unit of -CH 2 -CHOH-, and examples thereof include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer.
 一方で、ポリビニルアルコール系樹脂は非常に親水的で吸水性が高く、偏光板全体の含水量に対する寄与が非常に大きい。偏光子の膜厚低減により含水量を調整することが可能となる。また、特開2015-129826号公報に記載のように、非液晶PET(ポリエチレンテレフタレート)基材に9μm厚のポリビニルアルコール層が製膜された積層体を染色、延伸することで、厚さ4μmのポリビニルアルコール層が得られることが開示されており、このような方法を用いることも好ましい。
 ポリビニルアルコール系樹脂層の厚みは、15μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。偏光子の厚みを薄くすることで、光学積層体を組み込む表示装置を薄型化できるだけでなく、含水量を下げることが可能となり、表示装置の湿熱耐久性を向上することが可能となる。また、偏光子として必要な吸光度を得るためには、ポリビニルアルコール系樹脂層の厚みは、1μm以上が好ましい。
On the other hand, the polyvinyl alcohol-based resin is very hydrophilic and has high water absorption, and contributes very much to the water content of the entire polarizing plate. The water content can be adjusted by reducing the film thickness of the stator. Further, as described in JP-A-2015-129866, a laminate having a 9 μm-thick polyvinyl alcohol layer formed on a non-liquid crystal PET (polyethylene terephthalate) substrate is dyed and stretched to obtain a thickness of 4 μm. It is disclosed that a polyvinyl alcohol layer can be obtained, and it is also preferable to use such a method.
The thickness of the polyvinyl alcohol-based resin layer is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. By reducing the thickness of the polarizing element, not only the display device incorporating the optical laminate can be made thinner, but also the water content can be reduced, and the moist heat durability of the display device can be improved. Further, in order to obtain the absorbance required as a substituent, the thickness of the polyvinyl alcohol-based resin layer is preferably 1 μm or more.
(二色性有機色素と重合性液晶を有する偏光子)
 また、WO2019/131943号公報および特開2017-83843号公報に記載されているように、偏光子(光吸収異方性膜)として、ポリビニルアルコールをバインダーとして用いずに、液晶化合物および二色性有機色素(例えば、WO2017/195833号公報に記載の光吸収性異方性膜に用いられる二色性アゾ色素)を用い、塗布により作製した塗布型偏光子はさらに好ましい。この塗布型偏光子は、ポリビニルアルコール系樹脂層を必要としないため、上記PVA偏光子に対して、さらに偏光板含水量を下げることが可能であり、表示装置の湿熱耐久性を向上することが可能となる。
 液晶化合物は、膜強度の観点で重合性基を有することが好ましく、塗布組成物に対する固形分比は、60%以上が好ましい。偏光子を形成するための偏光子層形成用組成液に含まれる液晶化合物および/または二色性有機色素がラジカル重合性基を有することがより好ましい。偏光子層形成用組成液の固形分重量に対して、ラジカル重合性基のモル含有率が、0.6mmol/g以上であれば、好ましく、1.0mmol/g以上であればより好ましく、1.5mmol/g以上であればさらに好ましい。
 この塗布型偏光子は、液晶化合物の配向を活用して、二色性有機色素を配向させる技術である。特開2012-83734号公報に記載されているように、重合性液晶化合物がスメクチック性を示すと、配向度を高める観点で好ましい。あるいは、WO2018/186503号公報に記載されているように、色素を結晶化させることも配向度を高める観点で好ましい。WO2019/131943号公報には、配向度を高めるために好ましい高分子液晶の構造が記載されている。
 高配向度を実現する観点で、液晶化合物に対する二色性有機色素の比率は、2%~35%が好ましく、5%~30%がより好ましく、10%~25%がさらに好ましい。
(Dipolarizer with dichroic organic dye and polymerizable liquid crystal)
Further, as described in WO2019 / 131942A and JP-A-2017-83843, a liquid crystal compound and a dichroism are used without using polyvinyl alcohol as a decoder (light absorption anisotropic film) as a binder. A coating type polarizing element produced by coating using an organic dye (for example, a dichroic azo dye used for a light-absorbing anisotropic film described in WO2017 / 195833) is more preferable. Since this coated polarizing element does not require a polyvinyl alcohol-based resin layer, it is possible to further reduce the water content of the polarizing plate with respect to the PVA polarizing element, and it is possible to improve the moist heat durability of the display device. It will be possible.
The liquid crystal compound preferably has a polymerizable group from the viewpoint of film strength, and the solid content ratio with respect to the coating composition is preferably 60% or more. It is more preferable that the liquid crystal compound and / or the dichroic organic dye contained in the composition liquid for forming a polarizing element layer for forming a polarizing element has a radically polymerizable group. It is preferable that the molar content of the radically polymerizable group is 0.6 mmol / g or more, and more preferably 1.0 mmol / g or more with respect to the solid content weight of the composition liquid for forming a substituent layer. More preferably, it is 5.5 mmol / g or more.
This coating type polarizing element is a technique for orienting a dichroic organic dye by utilizing the orientation of a liquid crystal compound. As described in JP-A-2012-83734, it is preferable that the polymerizable liquid crystal compound exhibits smectic properties from the viewpoint of increasing the degree of orientation. Alternatively, as described in WO2018 / 186503, it is also preferable to crystallize the dye from the viewpoint of increasing the degree of orientation. WO2019 / 131943 describes a structure of a polymer liquid crystal preferable for increasing the degree of orientation.
From the viewpoint of achieving a high degree of orientation, the ratio of the dichroic organic dye to the liquid crystal compound is preferably 2% to 35%, more preferably 5% to 30%, still more preferably 10% to 25%.
 上記塗布型偏光子の厚みは、0.1~5μmが好ましく、0.3~3μmがより好ましく、0.3~2μmがさらに好ましい。偏光子の厚みを薄くすることで、表示装置の薄型化が可能となる。また、位相差膜と塗布型偏光子を積層塗布することおよび同一支持体の両面にそれぞれ塗布することも、粘接着層を省くことができ、位相差膜と光吸収異方性層膜とからなる円偏光板の薄層化および製造効率化の観点で好ましい。 The thickness of the coated polarizing element is preferably 0.1 to 5 μm, more preferably 0.3 to 3 μm, and even more preferably 0.3 to 2 μm. By reducing the thickness of the splitter, the display device can be made thinner. Further, the adhesive layer can be omitted by laminating and coating the retardation film and the coating type polarizing element on both sides of the same support, and the retardation film and the light absorption anisotropic layer film can be obtained. It is preferable from the viewpoint of thinning the layer of the circular polarizing plate and improving the manufacturing efficiency.
 なお、偏光子の透過軸と光学異方性層(位相差膜)の遅相軸との関係は特に制限されない。
 光吸収異方性膜および位相差膜を反射防止用途に適用する場合、位相差膜がλ/4板で、かつ、偏光子の透過軸と位相差膜の遅相軸とのなす角度は45±10°の範囲(35~55°)が好ましい。
The relationship between the transmission axis of the substituent and the slow axis of the optically anisotropic layer (phase difference film) is not particularly limited.
When the light absorption anisotropic film and the retardation film are applied to antireflection applications, the retardation film is a λ / 4 plate, and the angle between the transmission axis of the substituent and the slow axis of the retardation film is 45. The range of ± 10 ° (35 to 55 °) is preferable.
 ここで、本発明においては、光吸収異方性膜は、正面輝度を高めるために、透過率43.5%~52%が必要である。正面輝度の観点から、光吸収異方性膜の透過率は、45%~52%が好ましく、48%~52%がより好ましい。
 光吸収異方性膜において、透過率を上げた設計を行った場合、一般的には偏光度が下がるという弊害を伴う。特に、ヨウ素を有するPVA偏光子は、ヨウ素濃度を下げると二色性発現機能を担うPVA-ヨウ素錯体の制御が困難となり、偏光度が大きく低下する。二色性有機色素を用いた偏光子の方が、高透過でも比較的高い偏光度を維持できる点で好ましい。
 円偏光板の反射防止の観点で、偏光子の偏光度は、本発明においては80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましい。
 なお、偏光度は、例えば、自動偏光フィルム測定装置(日本分光株式会社製、商品名VAP-7070)を用いて、光吸収異方性膜の透過率を測定し、以下の式により算出することができる。
  偏光度[%]=[(MD-TD)/(MD+TD)]×100
   MD:光吸収異方性膜の吸収軸に平行な方向の偏光の透過率
   TD:光吸収異方性膜の吸収軸に垂直な方向の偏光の透過率
 また、光吸収異方性膜の透過率は、上記吸収軸に平行な方向の偏光の透過率MDと、吸収軸に垂直な方向の偏光の透過率TDの平均値とした。
Here, in the present invention, the light absorption anisotropic film needs to have a transmittance of 43.5% to 52% in order to increase the front luminance. From the viewpoint of front luminance, the transmittance of the light absorption anisotropic film is preferably 45% to 52%, more preferably 48% to 52%.
When a light absorption anisotropic film is designed to have a high transmittance, it generally has an adverse effect of lowering the degree of polarization. In particular, in the case of a PVA polarizing element having iodine, when the iodine concentration is lowered, it becomes difficult to control the PVA-iodine complex having a dichroic expression function, and the degree of polarization is greatly lowered. A splitter using a dichroic organic dye is preferable because it can maintain a relatively high degree of polarization even with high transmission.
From the viewpoint of antireflection of the circular polarizing plate, the degree of polarization of the polarizing element is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more in the present invention.
The degree of polarization shall be calculated by measuring the transmittance of the light absorption anisotropic film using, for example, an automatic polarizing film measuring device (manufactured by JASCO Corporation, trade name VAP-7070) and using the following formula. Can be done.
Degree of polarization [%] = [(MD-TD) / (MD + TD)] × 100
MD: Transmittance of polarized light in the direction parallel to the absorption axis of the light absorption anisotropic film TD: Transmittance of polarized light in the direction perpendicular to the absorption axis of the light absorption anisotropic film In addition, the transmittance of the light absorption anisotropic film The rate was taken as the average value of the transmittance MD of the polarized light in the direction parallel to the absorption axis and the transmittance TD of the polarized light in the direction perpendicular to the absorption axis.
〔粘着層〕
 本発明の光学積層体は、各層を貼着する粘着層または接着層を有していてもよい。
 粘着層に含まれる粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等が挙げられる。
 これらのうち、透明性、耐候性、耐熱性などの観点から、アクリル系粘着剤(感圧粘着剤)であるのが好ましい。
[Adhesive layer]
The optical laminate of the present invention may have an adhesive layer or an adhesive layer to which each layer is attached.
Examples of the adhesive contained in the adhesive layer include a rubber adhesive, an acrylic adhesive, a silicone adhesive, a urethane adhesive, a vinyl alkyl ether adhesive, a polyvinyl alcohol adhesive, and a polyvinylpyrrolidone adhesive. , Polyacrylamide-based adhesives, cellulose-based adhesives and the like.
Of these, an acrylic pressure-sensitive adhesive (pressure-sensitive pressure-sensitive adhesive) is preferable from the viewpoint of transparency, weather resistance, heat resistance, and the like.
 粘着層は、例えば、粘着剤の溶液を離型シート上に塗布し、乾燥した後に後、透明樹脂層の表面に転写する方法;粘着剤の溶液を透明樹脂層の表面に直接塗布し、乾燥させる方法;等により形成することができる。
 粘着剤の溶液は、例えば、トルエンおよび酢酸エチル等の溶剤に、粘着剤を溶解または分散させた10~40質量%程度の溶液として調製される。
 塗布法は、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを採用できる。
The pressure-sensitive adhesive layer is, for example, a method in which a solution of a pressure-sensitive adhesive is applied on a release sheet, dried, and then transferred to the surface of the transparent resin layer; the solution of the pressure-sensitive adhesive is directly applied to the surface of the transparent resin layer and dried. It can be formed by a method of making it; etc.
The pressure-sensitive adhesive solution is prepared as a solution of about 10 to 40% by mass in which the pressure-sensitive adhesive is dissolved or dispersed in a solvent such as toluene and ethyl acetate.
As the coating method, a roll coating method such as reverse coating and gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, a spray method and the like can be adopted.
 また、離型シートの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの合成樹脂フィルム;ゴムシート;紙;布;不織布;ネット;発泡シート;金属箔;等の適宜な薄葉体等が挙げられる。 As the constituent material of the release sheet, for example, a synthetic resin film such as polyethylene, polypropylene, polyethylene terephthalate; rubber sheet; paper; cloth; non-woven fabric; net; foam sheet; metal leaf; Can be mentioned.
 本発明においては、任意の粘着層の厚みは特に限定されないが、3μm~50μmであることが好ましく、4μm~40μmであることがより好ましく、5μm~30μmであることがさらに好ましい。 In the present invention, the thickness of any adhesive layer is not particularly limited, but is preferably 3 μm to 50 μm, more preferably 4 μm to 40 μm, and even more preferably 5 μm to 30 μm.
 (その他の層)
 本発明の光学積層体は、上述した構造体、位相差膜、および、光吸収異方性膜以外の各種の機能層を有していてもよい。例えば、光学積層体は、酸素遮断層、ARフィルム(反射防止フィルム)、配向膜、支持体等を有していてもよい。
(Other layers)
The optical laminate of the present invention may have various functional layers other than the above-mentioned structure, retardation film, and light absorption anisotropic film. For example, the optical laminate may have an oxygen blocking layer, an AR film (antireflection film), an alignment film, a support, and the like.
 (光学積層体の製造方法)
 本発明の光学積層体においては、上述した構造体、位相差膜、および、光吸収異方性膜を、粘接着剤で貼合して積層しても良いし、積層塗布して積層しても良く、その貼合順、積層順も特に限定されないが、構造体と位相差膜を先に貼合した後、光吸収異方性膜を貼合することがプロセス上、好ましい。
(Manufacturing method of optical laminate)
In the optical laminated body of the present invention, the above-mentioned structure, retardation film, and light absorption anisotropic film may be laminated by laminating with an adhesive, or laminated by laminating and laminating. The bonding order and the stacking order are not particularly limited, but it is preferable in terms of the process that the structure and the retardation film are bonded first and then the light absorption anisotropic film is bonded.
〔OLED表示装置〕
 本発明の光学積層体を有する画像表示装置の一例である有機EL表示装置(OLED表示装置)としては、図2に示すように、例えば、視認側から、上述した本発明の光学積層体と、有機EL表示パネル(OLEDパネル)と、をこの順で有する態様が好適に挙げられる。この場合には、図2に示すように、光学積層体は、視認側から、光吸収異方性膜、必要に応じて配置される接着層もしくは粘着層、位相差膜、必要に応じて配置される接着層もしくは粘着層、構造体の順に配置されていることが好ましい。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。また、有機EL表示パネルとして、発光する特定波長の光を共鳴させて強度を高め、外部に出射させる微細空洞構造を有するものを用いる際に、本発明の光学積層体と組み合わせることが好ましい。
 なお、図2に示す表示装置は、好ましい態様として、光学積層体1の視認側に反射防止フィルム8を有している。
[OLED display device]
As an organic EL display device (OLED display device) which is an example of an image display device having the optical laminate of the present invention, as shown in FIG. 2, for example, from the visual recognition side, the above-mentioned optical laminate of the present invention and the above-mentioned optical laminate can be used. An embodiment having an organic EL display panel (OLED panel) in this order is preferable. In this case, as shown in FIG. 2, the optical laminate is arranged from the visual side, a light absorption anisotropic film, an adhesive layer or an adhesive layer to be arranged as needed, a retardation film, and if necessary. It is preferable that the adhesive layer, the adhesive layer, and the structure are arranged in this order.
Further, the organic EL display panel is a display panel configured by using an organic EL element formed by sandwiching an organic light emitting layer (organic electroluminescence layer) between electrodes (between a cathode and an anode). The configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted. Further, when using an organic EL display panel having a microcavity structure in which light of a specific wavelength emitted is resonated to increase the intensity and emitted to the outside, it is preferable to combine it with the optical laminate of the present invention.
The display device shown in FIG. 2 has, as a preferred embodiment, an antireflection film 8 on the visual recognition side of the optical laminate 1.
 (フレキシブル用途)
 本発明の光学積層体は、フレキシブルディスプレイ等のフレキシブル性を有する機器に用いることも可能である。その場合、光学積層体は、曲率半径2mmで180°折り曲げ試験を30万回繰り返し行った場合にクラックが発生しないことが、好ましい。なお、フレキシブルとは、一般的な解釈における可撓性を有すると同義であり、曲げること、および、撓めることが可能であることを示し、具体的には、破壊および損傷を生じることなく、曲げ伸ばしができることを示す。
 また、光学積層体がフレキシブル性を有するものとするため、構造体(部位22および/または部位23)が、シルセスキオキサン構造を有する化合物を含むことが好ましく、体積が大きくなる部位23がシルセスキオキサン構造を有する化合物を含むことがより好ましい。
(Flexible use)
The optical laminate of the present invention can also be used for flexible devices such as flexible displays. In that case, it is preferable that the optical laminate does not crack when the 180 ° bending test is repeated 300,000 times with a radius of curvature of 2 mm. In addition, flexible is synonymous with having flexibility in a general interpretation, and means that it can be bent and bent, specifically, without causing breakage and damage. , Indicates that it can be bent and stretched.
Further, in order to make the optical laminate flexible, it is preferable that the structure (site 22 and / or site 23) contains a compound having a silsesquioxane structure, and the site 23 having a large volume is silled. It is more preferable to contain a compound having a sesquioxane structure.
 (フォルダブル用途)
 本発明の光学積層体は、フォルダブル機器の表示装置に好適に用いられる。フォルダブル機器とは、スマートフォン、タブレットPC(personal computer)、モバイルPC等の、携帯可能な、表示装置を有する機器である。
 このようなフォルダブル機器は、表示面を斜めから視認する場合も多く、斜めから見た際のブルーシフトの影響が大きいため、斜め方向の色味をニュートラルにすることができる本発明の光学積層体を好適に適用することができる。
(Foldable use)
The optical laminate of the present invention is suitably used for a display device of a foldable device. A foldable device is a device having a portable display device, such as a smartphone, a tablet PC (personal computer), or a mobile PC.
In such a foldable device, the display surface is often visually recognized from an angle, and the influence of the blue shift when viewed from an angle is large. Therefore, the optical lamination of the present invention can make the color in the diagonal direction neutral. The body can be suitably applied.
 以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。 Hereinafter, the present invention will be specifically described based on examples. The materials, reagents, amounts of substances and their ratios, operations, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the present invention is not limited to the following examples.
[実施例1]
(光吸収異方性膜)
〔透明支持体の作製〕
 <コア層セルロースアシレートドープの作製>
 下記の組成物をミキシングタンクに投入し、攪拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
―――――――――――――――――――――――――――――――――
コア層セルロースアシレートドープ
―――――――――――――――――――――――――――――――――
・アセチル置換度2.88のセルロースアセテート    100質量部
・特開2015-227955号公報の実施例に
記載されたポリエステル化合物B             12質量部
・下記化合物F                      2質量部
・メチレンクロライド(第1溶媒)           430質量部
・メタノール(第2溶媒)                64質量部
―――――――――――――――――――――――――――――――――
[Example 1]
(Light absorption anisotropic film)
[Making a transparent support]
<Preparation of core layer cellulose acylate dope>
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution to be used as a core layer cellulose acylate dope.
―――――――――――――――――――――――――――――――――
Core layer Cellulose acylate dope ――――――――――――――――――――――――――――――――――
100 parts by mass of cellulose acetate having an acetyl substitution degree of 2.88 ・ 12 parts by mass of polyester compound B described in Examples of JP-A-2015-227955 ・ 2 parts by mass of the following compound F ・ Methylene chloride (first solvent) 430 Parts by mass / methanol (second solvent) 64 parts by mass ――――――――――――――――――――――――――――――――――
 化合物F
Figure JPOXMLDOC01-appb-C000001
Compound F
Figure JPOXMLDOC01-appb-C000001
 <外層セルロースアシレートドープの作製>
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
<Preparation of outer layer cellulose acylate dope>
10 parts by mass of the following matting agent solution was added to 90 parts by mass of the above-mentioned core layer cellulose acylate dope to prepare a cellulose acetate solution to be used as the outer layer cellulose acylate dope.
―――――――――――――――――――――――――――――――――
マット剤溶液
―――――――――――――――――――――――――――――――――
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)   2質量部
・メチレンクロライド(第1溶媒)            76質量部
・メタノール(第2溶媒)                11質量部
・上記のコア層セルロースアシレートドープ         1質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Matte solution ――――――――――――――――――――――――――――――――――
-Silica particles with an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass-Methylene chloride (first solvent) 76 parts by mass-Methanol (second solvent) 11 parts by mass-The above core layer cellulose acid Rate Dope 1 part by mass ――――――――――――――――――――――――――――――――――
 <セルロースアシレートフィルム1の作製>
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルタでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。
 次いで、溶媒含有率略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。
 その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmの光学フィルム(透明支持体)を作製し、これをセルロースアシレートフィルム1とした。得られたセルロースアシレートフィルム1の面内レターデーションは0nmであった。
<Preparation of Cellulose Achille Film 1>
After filtering the core layer cellulose acylate dope and the outer layer cellulose acylate dope with a filter paper having an average pore diameter of 34 μm and a sintered metal filter having an average pore diameter of 10 μm, the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof. And three layers were simultaneously spread on a drum at 20 ° C. from the spreading port (band spreading machine).
Then, the film was peeled off with a solvent content of about 20% by mass, both ends of the film in the width direction were fixed with tenter clips, and the film was dried while being stretched laterally at a stretching ratio of 1.1 times.
Then, it was further dried by transporting it between the rolls of the heat treatment apparatus to prepare an optical film (transparent support) having a thickness of 40 μm, which was used as a cellulose acylate film 1. The in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
〔光配向膜PA1の形成〕
 後述する光配向膜形成用塗布液PA1を、ワイヤーバーで連続的に上記セルロースアシレートフィルム1上に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜PA1を形成し、光配向膜付きTAC(トリアセチルセルロース)フィルムを得た。光配向膜PA1の膜厚は0.5μmであった。
―――――――――――――――――――――――――――――――――
光配向膜形成用塗布液PA1
―――――――――――――――――――――――――――――――――
・下記重合体PA-1              100.00質量部
・下記酸発生剤PAG-1              8.25質量部
・下記安定化剤DIPEA               0.6質量部
・キシレン                  1126.60質量部
・メチルイソブチルケトン            125.18質量部
―――――――――――――――――――――――――――――――――
[Formation of photoalignment film PA1]
The coating liquid PA1 for forming a photoalignment film, which will be described later, was continuously applied onto the cellulose acylate film 1 with a wire bar. The support on which the coating film was formed was dried with warm air at 140 ° C. for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to obtain a photoalignment film. PA1 was formed to obtain a TAC (triacetyl cellulose) film with a photoalignment film. The film thickness of the photoalignment film PA1 was 0.5 μm.
―――――――――――――――――――――――――――――――――
Coating liquid PA1 for forming a photoalignment film
―――――――――――――――――――――――――――――――――
-The following polymer PA-1 100.00 parts by mass-The following acid generator PAG-1 8.25 parts by mass-The following stabilizer DIPEA 0.6 parts by mass-Xylene 1126.60 parts by mass-Methyl isobutyl ketone 125.18 Mass part ――――――――――――――――――――――――――――――――――
 重合体PA-1
Figure JPOXMLDOC01-appb-C000002
Polymer PA-1
Figure JPOXMLDOC01-appb-C000002
 酸発生剤PAG-1
Figure JPOXMLDOC01-appb-C000003
Acid generator PAG-1
Figure JPOXMLDOC01-appb-C000003
 安定化剤DIPEA
Figure JPOXMLDOC01-appb-C000004
Stabilizer DIPEA
Figure JPOXMLDOC01-appb-C000004
(光吸収異方性膜の作製)
 得られたパターン露光された光配向膜付きTACフィルム上に、下記組成の光吸収異方性膜形成用組成物P1をワイヤーバーで連続的に塗布し、塗布層Pを形成した。
 次いで、塗布層Pを140℃で15秒間加熱し、塗布層Pを室温(23℃)になるまで冷却した。
 次いで、75℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED(発光ダイオード)灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、光吸収異方性膜を作製した。なお、光吸収異方性膜の膜厚は1.0μmであり、透過率は43.5%であり、偏光度は99%だった。
(Preparation of light absorption anisotropic film)
The composition for forming a light absorption anisotropic film P1 having the following composition was continuously applied with a wire bar onto the obtained pattern-exposed TAC film with a light alignment film to form a coating layer P.
Then, the coating layer P was heated at 140 ° C. for 15 seconds, and the coating layer P was cooled to room temperature (23 ° C.).
It was then heated at 75 ° C. for 60 seconds and cooled again to room temperature.
Then, a light absorption anisotropic film was produced by irradiating with an LED (light emitting diode) lamp (center wavelength 365 nm) for 2 seconds under an irradiation condition of an illuminance of 200 mW / cm 2 . The film thickness of the light absorption anisotropic film was 1.0 μm, the transmittance was 43.5%, and the degree of polarization was 99%.
光吸収異方性膜形成用組成物P1の組成
―――――――――――――――――――――――――――――――――
・下記第1の二色性物質C-1            0.65質量部
・下記第2の二色性物質M-1            0.15質量部
・下記第3の二色性物質Y-1            0.52質量部
・下記液晶性化合物L-1              2.68質量部
・下記液晶性化合物L-2              1.15質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)   0.17質量部
・下記界面活性剤S-1              0.020質量部
・シクロペンタノン                92.14質量部
・ベンジルアルコール                2.36質量部
―――――――――――――――――――――――――――――――――
Composition of composition P1 for forming a light absorption anisotropic film ――――――――――――――――――――――――――――――――――
-The following first bicolor substance C-1 0.65 parts by mass-The following second bicolor substance M-1 0.15 parts by mass-The following third bicolor substance Y-1 0.52 mass Parts ・ The following liquid crystal compound L-1 2.68 parts by mass ・ The following liquid crystal compound L-2 1.15 parts by mass ・ Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.17 parts by mass ・ The following surfactant S -1 0.020 parts by mass, cyclopentanone 92.14 parts by mass, benzyl alcohol 2.36 parts by mass ―――――――――――――――――――――――――― ―――――――
 二色性物質C-1(極大吸収波長:570nm)
Figure JPOXMLDOC01-appb-C000005
Dichroic substance C-1 (maximum absorption wavelength: 570 nm)
Figure JPOXMLDOC01-appb-C000005
 二色性物質M-1(極大吸収波長:466nm)
Figure JPOXMLDOC01-appb-C000006
Dichroic substance M-1 (maximum absorption wavelength: 466 nm)
Figure JPOXMLDOC01-appb-C000006
 二色性物質Y-1(極大吸収波長:417nm)
Figure JPOXMLDOC01-appb-C000007
Dichroic substance Y-1 (maximum absorption wavelength: 417 nm)
Figure JPOXMLDOC01-appb-C000007
 液晶性化合物L-1
Figure JPOXMLDOC01-appb-C000008
Liquid crystal compound L-1
Figure JPOXMLDOC01-appb-C000008
 液晶性化合物L-2(下記式中、数値は質量比を表す)
Figure JPOXMLDOC01-appb-C000009
Liquid crystal compound L-2 (in the following formula, the numerical value represents the mass ratio)
Figure JPOXMLDOC01-appb-C000009
 界面活性剤S-1
Figure JPOXMLDOC01-appb-C000010
Surfactant S-1
Figure JPOXMLDOC01-appb-C000010
〔酸素遮断層B1の形成〕
 光吸収異方性膜P1上に、下記組成の塗布液B1をワイヤーバーで連続的に塗布した。その後、80℃の温風で5分間乾燥することにより、厚み1.0μmのポリビニルアルコール(PVA)からなる酸素遮断層B1が形成された光吸収異方性積層体A、すなわち、セルロースアシレートフィルム1(透明支持体)、光配向膜PA1、光吸収異方性膜P1、および、酸素遮断層B1をこの順に隣接して備える光吸収異方性積層体Aを得た。
―――――――――――――――――――――――――――――――――
酸素遮断層形成用塗布液B1の組成
―――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール          3.80質量部
・開始剤Irg2959               0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
[Formation of oxygen blocking layer B1]
The coating liquid B1 having the following composition was continuously coated on the light absorption anisotropic film P1 with a wire bar. Then, by drying with warm air at 80 ° C. for 5 minutes, a light absorption anisotropic laminate A in which an oxygen blocking layer B1 made of polyvinyl alcohol (PVA) having a thickness of 1.0 μm is formed, that is, a cellulose acylate film. A light absorption anisotropic laminated body A having 1 (transparent support), a light alignment film PA1, a light absorption anisotropic film P1 and an oxygen blocking layer B1 adjacent to each other was obtained.
―――――――――――――――――――――――――――――――――
Composition of coating liquid B1 for forming oxygen barrier layer ――――――――――――――――――――――――――――――――
・ The following modified polyvinyl alcohol 3.80 parts by mass ・ Initiator Irg2959 0.20 parts by mass ・ 70 parts by mass of water ・ 30 parts by mass of methanol ―――――――――――――――――――― ―――――――――――――
 変性ポリビニルアルコール
Figure JPOXMLDOC01-appb-C000011
Modified polyvinyl alcohol
Figure JPOXMLDOC01-appb-C000011
(位相差膜)
 下記組成の光配向膜形成用塗布液PA2を、ワイヤーバーで連続的に上述したセルロースアシレートフィルム1上に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、0.2μmの厚みの光配向膜PA2を形成し、光配向膜付きTACフィルムを得た。
(Phase difference film)
The coating liquid PA2 for forming a photoalignment film having the following composition was continuously coated on the above-mentioned cellulose acylate film 1 with a wire bar. The support on which the coating film was formed was dried with warm air at 140 ° C. for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to 0.2 μm. A photo-alignment film PA2 having a thickness of 1 was formed, and a TAC film with a photo-alignment film was obtained.
―――――――――――――――――――――――――――――――――
光配向膜形成用塗布液PA2
―――――――――――――――――――――――――――――――――
・下記重合体PA-2              100.00質量部
・上記酸発生剤PAG-1              5.00質量部
・上記酸発生剤CPI-110TF         0.005質量部
・イソプロピルアルコール             16.50質量部
・酢酸ブチル                 1072.00質量部
・メチルエチルケトン              268.00質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Coating liquid PA2 for forming a photoalignment film
―――――――――――――――――――――――――――――――――
-The following polymer PA-2 100.00 parts by mass-The acid generator PAG-1 5.00 parts by mass-The acid generator CPI-110TF 0.005 parts by mass-Isopropyl alcohol 16.50 parts by mass-Butyl acetate 1072 .00 parts by mass, methyl ethyl ketone 268.00 parts by mass ――――――――――――――――――――――――――――――――――
 重合体PA-2
Figure JPOXMLDOC01-appb-C000012
Polymer PA-2
Figure JPOXMLDOC01-appb-C000012
 下記組成の組成物A-1を、バーコーターを用いて上記光配向膜PA2上に塗布した。光配向膜PA2上に形成された塗膜を温風にて120℃に加熱し、その後60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて波長365nmにて100mJ/cmの紫外線を塗膜に照射し、続いて120℃に加熱しながら500mJ/cmの紫外線を塗膜に照射することで、液晶性化合物の配向を固定化し、ポジティブAプレートA1を有するTACフィルムA1を作製した。これを位相差膜Aとした。
 ポジティブAプレートA1の厚みは2.5μmであり、Re(550)は144nmであった。また、ポジティブAプレートA1は、Re(450)≦Re(550)≦Re(650)の関係を満たしていた。Re(450)/Re(550)は、0.82であった。
The composition A-1 having the following composition was applied onto the photoalignment film PA2 using a bar coater. The coating film formed on the photoalignment film PA2 is heated to 120 ° C. with warm air and then cooled to 60 ° C., and then ultraviolet rays of 100 mJ / cm 2 are emitted at a wavelength of 365 nm using a high-pressure mercury lamp under a nitrogen atmosphere. By irradiating the coating film with ultraviolet rays of 500 mJ / cm 2 while heating to 120 ° C., the orientation of the liquid crystal compound was fixed, and a TAC film A1 having a positive A plate A1 was produced. .. This was designated as the retardation film A.
The thickness of the positive A plate A1 was 2.5 μm, and the Re (550) was 144 nm. Further, the positive A plate A1 satisfied the relationship of Re (450) ≤ Re (550) ≤ Re (650). Re (450) / Re (550) was 0.82.
―――――――――――――――――――――――――――――――――
組成物A-1
―――――――――――――――――――――――――――――――――
・下記重合性液晶性化合物LA-1         43.50質量部
・下記重合性液晶性化合物LA-2         43.50質量部
・下記重合性液晶性化合物LA-3          8.00質量部
・下記重合性液晶性化合物LA-4          5.00質量部
・下記重合開始剤PI-1              0.55質量部
・下記レベリング剤T-1              0.20質量部
・シクロペンタノン               235.00質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Composition A-1
―――――――――――――――――――――――――――――――――
-The following polymerizable liquid crystal compound LA-1 43.50 parts by mass-The following polymerizable liquid crystal compound LA-2 43.50 parts by mass-The following polymerizable liquid crystal compound LA-3 8.00 parts by mass-The following polymerizable liquid crystal Sex compound LA-4 5.00 parts by mass ・ Polymerization initiator PI-1 0.55 parts by mass below ・ Leveling agent T-1 0.20 parts by mass below ・ Cyclopentanone 235.00 parts by mass ―――――― ―――――――――――――――――――――――――――
 重合性液晶性化合物LA-1(tBuはターシャリーブチル基を表す)
Figure JPOXMLDOC01-appb-C000013
Polymerizable liquid crystal compound LA-1 (tBu represents a tertiary butyl group)
Figure JPOXMLDOC01-appb-C000013
 重合性液晶性化合物LA-2
Figure JPOXMLDOC01-appb-C000014
Polymerizable liquid crystal compound LA-2
Figure JPOXMLDOC01-appb-C000014
 重合性液晶性化合物LA-3
Figure JPOXMLDOC01-appb-C000015
Polymerizable liquid crystal compound LA-3
Figure JPOXMLDOC01-appb-C000015
 重合性液晶性化合物LA-4(Meはメチル基を表す)
Figure JPOXMLDOC01-appb-C000016
Polymerizable liquid crystal compound LA-4 (Me represents a methyl group)
Figure JPOXMLDOC01-appb-C000016
 重合開始剤PI-1
Figure JPOXMLDOC01-appb-C000017
Polymerization Initiator PI-1
Figure JPOXMLDOC01-appb-C000017
 レベリング剤T-1
Figure JPOXMLDOC01-appb-C000018
Leveling agent T-1
Figure JPOXMLDOC01-appb-C000018
(構造体)
 セルロースアシレートフィルム1と金型ロールとの間に部位22(高屈折率部位)を構成するウレタンアクリレート組成物(20nm酸化ジルコニウム粒子含有)を供給しながら、金型ロールおよびニップロールを回転させ、該組成物が金型ロールの表面形状に沿ったものを得た。さらに、ウレタンアクリレート側から光照射装置によって硬化させるための光を照射し、組成物を硬化させた。得られたウレタンアクリレートの断面形状は、セルロースアシレートフィルム1の側が15μmであり、セルロースアシレートフィルム1に対向する側の長さが13μmであり、部位22の厚さは10μmであった。部位22の屈折率は1.60であった。また、部位22側にリンテック社製Opteria D692(厚さ15μm)粘着剤を貼合し、これを部位23とした。部位23の屈折率は1.49であった。このようにして得た、セルロースアシレートフィルム1、部位22、部位23の積層体を構造体Aとした。
 構造体Aに直進光を入射し斜め光透過率を測定した。斜め光透過率は5%であった。測定方法は、下記に示す。
(Structure)
The mold roll and the nip roll are rotated while supplying the urethane acrylate composition (containing 20 nm zirconium oxide particles) constituting the portion 22 (high refractive index portion) between the cellulose acylate film 1 and the mold roll. A composition having a composition along the surface shape of the mold roll was obtained. Further, the composition was cured by irradiating the urethane acrylate side with light for curing by a light irradiation device. The cross-sectional shape of the obtained urethane acrylate was 15 μm on the side of the cellulose acylate film 1, 13 μm on the side facing the cellulose acylate film 1, and 10 μm in the thickness of the portion 22. The refractive index of the portion 22 was 1.60. Further, an Opteria D692 (thickness 15 μm) adhesive manufactured by Lintec Corporation was attached to the site 22 side, and this was designated as the site 23. The refractive index of the portion 23 was 1.49. The laminate of the cellulose acylate film 1, the site 22, and the site 23 thus obtained was designated as the structure A.
Straight light was incident on the structure A and the oblique light transmittance was measured. The oblique light transmittance was 5%. The measurement method is shown below.
(構造体の斜め光透過率)
 構造体Aに対して、分光ヘイズメーターNDH8000(日本電色工業社製)を用いて、全光線透過率と平行透過率を測定し、下記式より斜め光透過率を測定した。
  斜め光透過率=全光線透過率―平行透過率
(Diagonal light transmittance of the structure)
The total light transmittance and the parallel transmittance were measured for the structure A using a spectroscopic haze meter NDH8000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the oblique light transmittance was measured from the following formula.
Diagonal light transmittance = total light transmittance-parallel transmittance
(光学積層体およびOLED表示装置)
 仮転写支持体1(藤森工業株式会社製マスタックAS3-304)に光吸収異方性積層体Aの酸素遮断層側を貼合し、光吸収異方性積層体Aのセルロースアシレートフィルム1を剥がした。また、光吸収異方性積層体Aの光配向膜側にリンテック社製Opteria D692(厚さ15μm)粘着剤を貼合し、さらに位相差膜Aを貼合した。その後、位相差膜Aのセルロースアシレートフィルム1を剥がし、位相差膜Aの光配向膜側にリンテック社製Opteria D692(厚さ15μm)粘着剤を貼合し、構造体Aのセルロースアシレートフィルム1側を貼合し、光学積層体Aを得た。その後、光学積層体Aにおける構造体Aの部位23(粘着剤)側をOLEDパネルに貼合し、仮転写支持体1を剥がした。さらに、OLED上の光学積層体Aの表面側に、リンテック社製Opteria D692(厚さ15μm)粘着剤を用いてARフィルム(反射防止フィルム、Dexerials社、AR100;91μm)を貼合し(図2に示す形態を作製した)、OLED表示装置を作製した。
(Optical laminate and OLED display device)
The oxygen blocking layer side of the light absorption anisotropic laminate A is bonded to the temporary transfer support 1 (Musstack AS3-304 manufactured by Fujimori Kogyo Co., Ltd.), and the cellulose acylate film 1 of the light absorption anisotropic laminate A is attached. I peeled it off. Further, an Optiria D692 (thickness 15 μm) pressure-sensitive adhesive manufactured by Lintec Corporation was bonded to the photoalignment film side of the light absorption anisotropic laminated body A, and a retardation film A was further bonded. After that, the cellulose acylate film 1 of the retardation film A is peeled off, and an Opteria D692 (thickness 15 μm) pressure-sensitive adhesive manufactured by Lintec Corporation is attached to the photoalignment film side of the retardation film A, and the cellulose acylate film of the structure A is attached. One side was bonded to obtain an optical laminate A. Then, the portion 23 (adhesive) side of the structure A in the optical laminate A was attached to the OLED panel, and the temporary transfer support 1 was peeled off. Further, an AR film (antireflection film, Dexerials, AR100; 91 μm) is bonded to the surface side of the optical laminate A on the OLED using an Optiria D692 (thickness 15 μm) adhesive manufactured by Lintec Corporation (FIG. 2). The OLED display device was manufactured.
[実施例2]
 実施例1の光吸収異方性膜の組成物を以下に示す光吸収異方性膜形成用組成物P2に変更した以外は、実施例1と同様に作製した。光吸収異方性膜の膜厚は0.35μm、透過率は52%、偏光度は80%だった。
[Example 2]
It was produced in the same manner as in Example 1 except that the composition of the light absorption anisotropic film of Example 1 was changed to the composition for forming a light absorption anisotropic film P2 shown below. The film thickness of the light absorption anisotropic film was 0.35 μm, the transmittance was 52%, and the degree of polarization was 80%.
光吸収異方性膜形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・第1の二色性物質C-1              0.59質量部
・第2の二色性物質M-1              0.36質量部
・第3の二色性物質Y-1              0.24質量部
・液晶性化合物L-1                5.55質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)   0.21質量部
・界面活性剤S-1                0.055質量部
・シクロペンタノン                45.34質量部
・テトラヒドロフラン               45.34質量部
・ベンジルアルコール                2.33質量部
―――――――――――――――――――――――――――――――――
Composition of composition P2 for forming a light absorption anisotropic film ――――――――――――――――――――――――――――――――――
・ First bicolor substance C-1 0.59 parts by mass ・ Second bicolor substance M-1 0.36 parts by mass ・ Third bicolor substance Y-1 0.24 parts by mass ・ Liquid crystal Sex compound L-1 5.55 parts by mass, polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.21 parts by mass, surfactant S-1 0.055 parts by mass, cyclopentanone 45.34 parts by mass, tetrahydrofuran 45.34 parts by mass, benzyl alcohol 2.33 parts by mass ――――――――――――――――――――――――――――――――――
[実施例3]
 実施例1の光吸収異方性膜をポリビニルアルコールフィルムを二色性有機色素により染色したポラテクノ社製の偏光板SHC-115Uとした以外は、実施例1と同様に作製した。光吸収異方性膜の透過率は43.5%、偏光度は93%だった。
[Example 3]
It was produced in the same manner as in Example 1 except that the light absorption anisotropic film of Example 1 was a polarizing plate SHC-115U manufactured by Polatechno Co., Ltd., in which a polyvinyl alcohol film was dyed with a dichroic organic dye. The transmittance of the light absorption anisotropic film was 43.5%, and the degree of polarization was 93%.
[実施例4]
 実施例1での光吸収異方性膜の塗布層Pを140℃で15秒間加熱し、塗布層Pを室温(23℃)になるまで冷却して終了した(75℃で60秒間加熱を行わなかった)以外は、実施例1と同様に作製した。光吸収異方性膜の膜厚は1.0μm、透過率は43.5%、偏光度は75%だった。
[Example 4]
The coating layer P of the light absorption anisotropic film in Example 1 was heated at 140 ° C. for 15 seconds, and the coating layer P was cooled to room temperature (23 ° C.) for completion (heating at 75 ° C. for 60 seconds). It was prepared in the same manner as in Example 1 except that it was not). The film thickness of the light absorption anisotropic film was 1.0 μm, the transmittance was 43.5%, and the degree of polarization was 75%.
[実施例5]
 実施例2での光吸収異方性膜の塗布層Pを130℃で15秒間加熱し、塗布層Pを室温(23℃)になるまで冷却して終了した。それ以外は、実施例2と同様に作製した。光吸収異方性膜の膜厚は0.35μm、透過率は52%、偏光度は75%だった。
[Example 5]
The coating layer P of the light absorption anisotropic film in Example 2 was heated at 130 ° C. for 15 seconds, and the coating layer P was cooled to room temperature (23 ° C.) to finish. Other than that, it was produced in the same manner as in Example 2. The film thickness of the light absorption anisotropic film was 0.35 μm, the transmittance was 52%, and the degree of polarization was 75%.
[比較例1]
 実施例1での光吸収異方性膜の膜厚を1.9μmとした以外は実施例1と同様に作製した。光吸収異方性膜の透過率は42%、偏光度は99%だった。
[Comparative Example 1]
It was produced in the same manner as in Example 1 except that the film thickness of the light absorption anisotropic film in Example 1 was 1.9 μm. The transmittance of the light absorption anisotropic film was 42%, and the degree of polarization was 99%.
[評価]
《光吸収異方性膜のムラの評価方法》
 蛍光灯下で、白地の下地上に光吸収異方性膜を置き、目視により評価を行った。
[evaluation]
<< Evaluation method of unevenness of light absorption anisotropic film >>
A light absorption anisotropic film was placed on the ground under a white background under a fluorescent lamp, and the evaluation was performed visually.
《OLED表示装置の正面輝度の測定方法》
 分光輝度計(トプコンテクノハウス社製、SR3)を用い、作製したOLED表示装置のOLEDパネルを点灯させて、OLED表示装置の表示面から700mmの距離から輝度を測定した。
<< Measurement method of front brightness of OLED display device >>
Using a spectro-luminance meter (SR3 manufactured by Topcon Techno House Co., Ltd.), the OLED panel of the manufactured OLED display device was turned on, and the brightness was measured from a distance of 700 mm from the display surface of the OLED display device.
《OLED表示装置の反射率の測定方法》
 OELDパネルを消灯した状態で、分光測色計(コニカミノルタ社製、CM2022)を用い、SCI測定方式におけるYの値をOLED表示装置の表示面の面内の位置を変えて10回測定し、その平均値を反射率として用いた。
<< Measurement method of reflectance of OLED display device >>
With the OLED panel turned off, a spectrocolorimeter (CM2022, manufactured by Konica Minolta) was used to measure the Y value in the SCI measurement method 10 times by changing the position of the display surface of the OLED display device in the plane. The average value was used as the reflectance.
《斜め色味の評価方法》
 OLEDパネルを点灯させて、目視にて、斜め方向から白表示の色味を評価した。
 実施例1~4、および比較例1のいずれも、斜め光透過率が1%~20%の構造体がない場合に比べ、青味が抑制されていた。
 各評価の結果を表1~表2に示す。
<< Evaluation method of diagonal color >>
The OLED panel was turned on, and the tint of the white display was visually evaluated from an oblique direction.
In both Examples 1 to 4 and Comparative Example 1, the bluish tint was suppressed as compared with the case where there was no structure having an oblique light transmittance of 1% to 20%.
The results of each evaluation are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 正面輝度は、比較例1を100%とした場合の相対値とし、
  111%以上の場合をA、
  103%以上111%未満の場合をB、
  103%未満の場合をC、
 と評価した。
The front luminance is a relative value when Comparative Example 1 is 100%.
If it is 111% or more, A,
B, when 103% or more and less than 111%
C, if less than 103%
I evaluated it.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 ムラは、シャーカステン上での目視で
  視認されない場合をA、
  視認される場合をB、
 と評価した。
 また、反射率が、
  1.0%以上1.4%未満の場合をA、
  1.4%以上2.0%未満の場合をB、
  2.0%以上の場合をC、
 と評価した。
Unevenness is A, when it is not visually visible on Shakasten.
When it is visually recognized, B,
I evaluated it.
Also, the reflectance is
A, when 1.0% or more and less than 1.4%
B, when 1.4% or more and less than 2.0%
C, when 2.0% or more
I evaluated it.
 表1から比較例に比べて本発明の実施例は正面輝度が高いことがわかる。
 また、実施例1、3~4と実施例2,5との対比から、光吸収異方性膜の透過率は、45%~52%がより好ましいことがわかる。
 また、表2の反射率について、実施例1,3と実施例2,4,5との対比から、光吸収異方性膜の偏光度は、80%以上が好ましく、90%以上がより好ましいことがわかる。
 なお、透過率が同じ実施例2と実施例5との対比では、偏光度が低い実施例5の反射率は、実施例2に対して0.3%高かった。
From Table 1, it can be seen that the embodiment of the present invention has a higher front luminance than the comparative example.
Further, from the comparison between Examples 1 and 3 to 4 and Examples 2 and 5, it can be seen that the transmittance of the light absorption anisotropic film is more preferably 45% to 52%.
Further, regarding the reflectance in Table 2, from the comparison between Examples 1 and 3 and Examples 2, 4 and 5, the degree of polarization of the light absorption anisotropic film is preferably 80% or more, more preferably 90% or more. You can see that.
In comparison with Example 2 and Example 5 having the same transmittance, the reflectance of Example 5 having a low degree of polarization was 0.3% higher than that of Example 2.
1:光学積層体
2:構造体
21:支持基材
22:高屈折率部位
23:低屈折率部位
3:粘着層
4:位相差膜
5:粘着層
6:光吸収異方性膜
7:粘着層
8:反射防止フィルム
9:OLEDパネル
 
1: Optical laminate 2: Structure 21: Supporting base material 22: High refractive index portion 23: Low refractive index portion 3: Adhesive layer 4: Phase difference film 5: Adhesive layer 6: Light absorption anisotropic film 7: Adhesive Layer 8: Antireflection film 9: OLED panel

Claims (14)

  1.  主面に垂直に入射する光の一部を斜め方向に回折して透過する構造体と位相差膜と光吸収異方性膜を有し、
     前記構造体が屈折率の異なる領域を有し、
     前記構造体の斜め光透過率が1%~20%であり、
     前記位相差膜がλ/4波長板の機能を有し、
     前記光吸収異方性膜が透過率43.5%~52%を満たす、
     光学積層体。
     ここで、前記斜め光透過率は、斜め光透過率=全光線透過率―平行透過率で表される。
    It has a structure that diffracts and transmits a part of the light that is vertically incident on the main surface in an oblique direction, a retardation film, and a light absorption anisotropic film.
    The structure has regions with different refractive indexes and
    The oblique light transmittance of the structure is 1% to 20%, and the structure has an oblique light transmittance of 1% to 20%.
    The retardation film has the function of a λ / 4 wave plate and has the function of a λ / 4 wave plate.
    The light absorption anisotropic film satisfies the transmittance of 43.5% to 52%.
    Optical laminate.
    Here, the diagonal light transmittance is expressed by diagonal light transmittance = total light transmittance-parallel transmittance.
  2.  前記光吸収異方性膜の偏光度が80%以上である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the light absorption anisotropic film has a degree of polarization of 80% or more.
  3.  前記光吸収異方性膜が有機二色性色素を有する、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the light absorption anisotropic film has an organic dichroic dye.
  4.  前記光吸収異方性膜が液晶化合物を有する、請求項1~3のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the light absorption anisotropic film has a liquid crystal compound.
  5.  前記構造体と前記位相差膜を先に貼合した後、前記光吸収異方性膜を貼合することで形成された、請求項1~4のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, which is formed by first laminating the structure and the retardation film and then laminating the light absorption anisotropic film.
  6.  前記光吸収異方性膜/前記位相差膜/前記構造体が、この順に積層された、請求項1~5のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the light absorption anisotropic film / the retardation film / the structure are laminated in this order.
  7.  前記光吸収異方性膜/前記構造体/前記位相差膜が、この順に積層された、請求項1~5のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the light absorption anisotropic film / the structure / the retardation film are laminated in this order.
  8.  前記構造体/前記光吸収異方性膜/前記位相差膜が、この順に積層された、請求項1~4のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the structure / the light absorption anisotropic film / the retardation film are laminated in this order.
  9.  曲率半径2mmで180°折り曲げ試験を30万回繰り返し行った場合にクラックが発生しない、請求項1~8のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 8, wherein cracks do not occur when a 180 ° bending test is repeated 300,000 times with a radius of curvature of 2 mm.
  10.  前記構造体がシルセスキオキサンを含む、請求項1~9のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 9, wherein the structure contains silsesquioxane.
  11.  フォルダブル機器に用いられる、請求項1~10のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 10, which is used for a foldable device.
  12.  さらに、逆分散のポジティブCプレート層を有する、請求項1~11のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 11, further comprising a reverse-dispersed positive C plate layer.
  13.  前記構造体が酸化ジルコニウム粒子を有する、請求項1~12のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 12, wherein the structure has zirconium oxide particles.
  14.  前記構造体が粘着剤からなる領域を有し、前記粘着剤が中空粒子を含有する、請求項1~13のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 13, wherein the structure has a region made of a pressure-sensitive adhesive, and the pressure-sensitive adhesive contains hollow particles.
PCT/JP2021/046009 2020-12-25 2021-12-14 Optical laminate WO2022138321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572188A JPWO2022138321A1 (en) 2020-12-25 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216776 2020-12-25
JP2020-216776 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138321A1 true WO2022138321A1 (en) 2022-06-30

Family

ID=82159153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046009 WO2022138321A1 (en) 2020-12-25 2021-12-14 Optical laminate

Country Status (2)

Country Link
JP (1) JPWO2022138321A1 (en)
WO (1) WO2022138321A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029189A (en) * 2002-06-24 2004-01-29 Dainippon Printing Co Ltd Optical phase conversion body, light selecting/transmitting body, method and system for visualizing latent image
JP2010117381A (en) * 2008-10-14 2010-05-27 Nhk Spring Co Ltd Identification medium and article
JP2014123568A (en) * 2012-12-21 2014-07-03 Samsung Electronics Co Ltd Optical film and organic light-emitting display device including the same
WO2015098906A1 (en) * 2013-12-24 2015-07-02 富士フイルム株式会社 Optical sheet member and display device
JP2016006502A (en) * 2014-05-26 2016-01-14 住友化学株式会社 Composition
WO2019131976A1 (en) * 2017-12-28 2019-07-04 富士フイルム株式会社 Light-absorbing anisotropic film, optical layered product, and image display device
WO2019235107A1 (en) * 2018-06-07 2019-12-12 日東電工株式会社 Polarizing film and polarizing plate with retardation layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029189A (en) * 2002-06-24 2004-01-29 Dainippon Printing Co Ltd Optical phase conversion body, light selecting/transmitting body, method and system for visualizing latent image
JP2010117381A (en) * 2008-10-14 2010-05-27 Nhk Spring Co Ltd Identification medium and article
JP2014123568A (en) * 2012-12-21 2014-07-03 Samsung Electronics Co Ltd Optical film and organic light-emitting display device including the same
WO2015098906A1 (en) * 2013-12-24 2015-07-02 富士フイルム株式会社 Optical sheet member and display device
JP2016006502A (en) * 2014-05-26 2016-01-14 住友化学株式会社 Composition
WO2019131976A1 (en) * 2017-12-28 2019-07-04 富士フイルム株式会社 Light-absorbing anisotropic film, optical layered product, and image display device
WO2019235107A1 (en) * 2018-06-07 2019-12-12 日東電工株式会社 Polarizing film and polarizing plate with retardation layer

Also Published As

Publication number Publication date
JPWO2022138321A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
CN104170525B (en) There is the organic EL display element of optical laminate
JP4827226B2 (en) Manufacturing method of polarizing plate, polarizing plate and image display apparatus using the same
CN104339796B (en) Layered product
TWI406041B (en) A polarizing plate and an image display device with an adhesive optical compensation layer
JP6945529B2 (en) Light guide member and liquid crystal display
JP3980423B2 (en) HARD COAT FILM, ITS MANUFACTURING METHOD, OPTICAL ELEMENT AND IMAGE DISPLAY DEVICE
CN1297827C (en) Light diffusing sheet, optical element and image display unit
WO2003087894A1 (en) Light diffusing sheet, optical device and image display
WO2013191010A1 (en) Polarizing plate, method for manufacturing polarizing plate, and image display device
WO2003085424A1 (en) Light-diffusing sheet, optical device, and image display
JP2006047978A (en) Polarizer, its manufacturing method, polarizing plate, optical film and image display apparatus
JP4420429B2 (en) Laminated optical film, elliptically polarizing plate, and image display device
WO2022075475A1 (en) Laminated optical film and image display device
JP2008040251A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
CN1646949A (en) Light-diffusing sheet, optical element, and image display
US9348075B2 (en) Method of manufacturing polarizing plate, polarizing plate manufactured by the same, and liquid crystal display having the polarizing plate
JP4043263B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, and image display device
WO2006049062A1 (en) Optical film production method and production equipment for use therein
JP2023174691A (en) Laminate and image display device
JP2006023573A (en) Manufacturing method of polarizing plate, polarizing plate, and image display apparatus using polarizing plate
JP4646236B2 (en) Method for producing polarizer and method for producing polarizing plate
JP2003075604A (en) Antireflective antidazzle film, method for manufacturing the same, optical element and image display device
WO2022138321A1 (en) Optical laminate
JP4010542B2 (en) Light diffusing sheet, optical element and image display device
JP2006218449A (en) Method for producing hard coat film, hard coat film, optical device and picture display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910470

Country of ref document: EP

Kind code of ref document: A1