WO2022137995A1 - 光照射システム及び照明ユニット - Google Patents

光照射システム及び照明ユニット Download PDF

Info

Publication number
WO2022137995A1
WO2022137995A1 PCT/JP2021/043630 JP2021043630W WO2022137995A1 WO 2022137995 A1 WO2022137995 A1 WO 2022137995A1 JP 2021043630 W JP2021043630 W JP 2021043630W WO 2022137995 A1 WO2022137995 A1 WO 2022137995A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
irradiation pattern
pattern
road surface
lighting unit
Prior art date
Application number
PCT/JP2021/043630
Other languages
English (en)
French (fr)
Inventor
勝 佐々木
由希子 北澤
壮宜 鬼頭
賢 渡邉
裕一 柴田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022572017A priority Critical patent/JPWO2022137995A1/ja
Publication of WO2022137995A1 publication Critical patent/WO2022137995A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction

Definitions

  • This disclosure relates to a light irradiation system and a lighting unit.
  • Irradiating an irradiation pattern on the road surface around the vehicle in order to present information indicating the operation of the vehicle (for example, information indicating left turn, right turn, reverse movement, etc.) of the vehicle to pedestrians and the like existing around the vehicle. It is currently being studied in various countries around the world to mount a light irradiation system configured to do so (see, for example, Patent Document 1).
  • the purpose of this disclosure is to improve the visibility of sequential irradiation patterns for objects such as pedestrians.
  • the light irradiation system is A lighting unit configured to irradiate the road surface with a sequential irradiation pattern, A control unit configured to control the lighting unit so that the sequential irradiation pattern irradiates the road surface is provided.
  • the sequential irradiation pattern has a first irradiation pattern and a second irradiation pattern that is irradiated at a position farther from the lighting unit than the first irradiation pattern.
  • the second irradiation pattern irradiates the road surface after the first irradiation pattern irradiates the road surface.
  • the control unit is configured to control the lighting unit so as to improve the visibility of the second irradiation pattern for an object existing around the lighting unit.
  • the lighting unit is controlled so as to improve the visibility of the second irradiation pattern for an object such as a pedestrian.
  • the visibility of the sequential irradiation pattern for pedestrians and the like existing around the lighting unit is improved. Therefore, a pedestrian or the like can clearly grasp the existence and operation of the vehicle by visually recognizing the sequential irradiation pattern.
  • the lighting unit is configured to irradiate the road surface with a sequential irradiation pattern.
  • the sequential irradiation pattern has a first irradiation pattern and a second irradiation pattern that is irradiated at a position farther from the lighting unit than the first irradiation pattern.
  • the second irradiation pattern irradiates the road surface after the first irradiation pattern irradiates the road surface.
  • the lighting unit is configured to irradiate the sequential irradiation pattern so as to improve the visibility of the second irradiation pattern on an object existing around the lighting unit.
  • the visibility of the second irradiation pattern for an object such as a pedestrian existing around the lighting unit is improved, so that the visibility of the sequential irradiation pattern for a pedestrian or the like is improved. Therefore, a pedestrian or the like can clearly grasp the existence and operation of the vehicle by visually recognizing the sequential irradiation pattern.
  • the light irradiation system is A lighting unit configured to irradiate the road surface with an irradiation pattern, A control unit configured to control the lighting unit so that the irradiation pattern irradiates the road surface is provided.
  • the control unit has the irradiation in which the visibility of the irradiation pattern during a predetermined time from the start time when the irradiation of the irradiation pattern is started is from the predetermined time to the stop time when the irradiation of the irradiation pattern is stopped.
  • the lighting unit is configured to be controlled so as to be higher than the visibility of the pattern.
  • the visibility of the irradiation pattern from the start time when the irradiation of the irradiation pattern is started to the predetermined time is the visibility of the irradiation pattern from the predetermined time to the stop time when the irradiation of the irradiation pattern is stopped. It will be higher than sex. Therefore, the pedestrian or the like can easily notice the existence of the irradiation pattern irradiated on the road surface, and the visibility of the irradiation pattern to the pedestrian or the like is improved.
  • the lighting unit is configured to irradiate the road surface with an irradiation pattern.
  • the illumination unit has the irradiation in which the visibility of the irradiation pattern during a predetermined time from the start time when the irradiation of the irradiation pattern is started is from the predetermined time to the stop time when the irradiation of the irradiation pattern is stopped.
  • the irradiation pattern is configured to irradiate the road surface so as to be higher than the visibility of the pattern.
  • FIG. 1 It is a front view of the vehicle which mounted the vehicle system which concerns on embodiment of this invention (hereinafter, simply referred to as this embodiment). It is a block diagram of the vehicle system which concerns on this embodiment. It is a figure which shows the state that the proximal side irradiation pattern was irradiated on the road surface among the sequential irradiation patterns. It is a figure which shows the state that the proximal side irradiation pattern and the intermediate side irradiation pattern are irradiated on the road surface among the sequential irradiation patterns.
  • the "left-right direction” is a direction including the “left direction” and the “right direction”, and is also the vehicle width direction of the vehicle 1.
  • the "vertical direction” is a direction including “upward” and “downward”.
  • the "front-back direction” is a direction including the "forward direction” and the “rear direction”.
  • the front-back direction is not shown in FIG. 1, but is a direction orthogonal to the left-right direction and the up-down direction.
  • FIG. 1 is a front view of a vehicle 1 equipped with a vehicle system 2.
  • FIG. 2 is a block diagram of the vehicle system 2.
  • the vehicle 1 is, for example, a vehicle (automobile) capable of traveling in a manual driving mode or an automatic driving mode.
  • the vehicle system 2 includes a vehicle control unit 3, a left side light irradiation system 4L (hereinafter, simply referred to as a light irradiation system 4L), and a right side light irradiation system 4R (hereinafter, simply referred to as a light irradiation system 4R). .), A sensor 5, a camera 6, and a radar 7. Further, the vehicle system 2 includes an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, a storage device 11, a steering actuator 12, a steering device 13, and a brake actuator 14. , A brake device 15, an accelerator actuator 16, and an accelerator device 17.
  • HMI Human Machine Interface
  • GPS Global Positioning System
  • the vehicle control unit 3 is configured to control the running of the vehicle 1.
  • the vehicle control unit 3 is composed of, for example, at least one electronic control unit (ECU: Electronic Control Unit).
  • the electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements.
  • the processor includes, for example, at least one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit).
  • the CPU may be composed of a plurality of CPU cores.
  • the GPU may be composed of a plurality of GPU cores.
  • the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the vehicle control program may be stored in the ROM.
  • the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
  • the RAM may temporarily store a vehicle control program, vehicle control data, and / or peripheral environment information indicating the surrounding environment of the vehicle.
  • the processor may be configured to develop a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
  • the computer system may be configured by a non-Von Neumann computer such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). Further, the computer system may be composed of a combination of a Von Neumann computer and a non-Von Neumann computer.
  • the light irradiation system 4L has a lighting unit 45L and a control unit 46L.
  • the lighting unit 45L is configured to irradiate the road surface around the vehicle 1 with a sequential irradiation pattern P (see FIG. 3C) so as to present information indicating the operation of the vehicle 1 to the outside of the vehicle 1. ..
  • the information indicating the operation of the vehicle 1 is, for example, information indicating a left turn of the vehicle 1.
  • the lighting unit 45L irradiates the road surface with the sequential irradiation pattern P in order to present the left turn of the vehicle 1 to the outside.
  • the sequential irradiation pattern P the irradiation pattern to be irradiated on the road surface changes continuously with the passage of time. Specific examples of the sequential irradiation pattern P will be described later.
  • the location, drawing method, and configuration of the lighting unit 45L are not particularly limited.
  • the lighting unit 45L may be arranged in the lighting chamber of the left headlamp 20L. Further, the lighting unit 45L may be arranged on the roof 100A. Further, a projection method or a scanning method may be adopted as the drawing method of the lighting unit 45L.
  • the lighting unit 45L forms a sequential irradiation pattern P based on a light source unit configured to emit light and light emitted from the light source unit, and then irradiates the sequential irradiation pattern P toward the road surface. It may be configured by an optical system configured in.
  • the light source unit may be composed of, for example, a plurality of LED (Light Emitting Diode) elements or LD (Laser Diode) elements.
  • the optical system may be composed of, for example, a projection lens and / or a reflector configured to control the deflection of the light emitted from the light source unit.
  • the lighting unit 45L may be composed of a light source unit that emits light, a drive mirror, and an optical system such as a lens or a mirror.
  • the drive mirror is configured to form a sequential irradiation pattern P that irradiates the road surface based on the light emitted from the light source unit.
  • the drive mirror may be configured by, for example, a MEMS (MicroElectromechanical Systems) mirror, a DMD (Digital Mirror Device), or a blade mirror.
  • the light emitted from the light source unit may be scanned onto the road surface by the MEMS mirror. In this way, the irradiation pattern may be projected onto the road surface by scanning the light with the MEMS mirror.
  • the control unit 46L is configured to control the lighting unit 45L so that the sequential irradiation pattern P irradiates the road surface around the vehicle 1.
  • the location of the control unit 46L is not particularly limited.
  • the control unit 46L includes a microcontroller and an analog drive control circuit.
  • the microcontroller has a processor such as a CPU and a memory such as a ROM.
  • the analog drive control circuit includes a current control circuit configured to control the current supplied to the light source unit and / or a mirror drive circuit configured to control the drive mirror. In this respect, if the lighting unit 45L does not include a drive mirror, the analog drive control circuit is configured by a current control circuit.
  • the vehicle control unit 3 determines the left turn of the vehicle 1 or when the left turn of the vehicle is determined according to the operation of the turn signal lever by the driver, the vehicle control unit 3 instructs the irradiation of the sequential irradiation pattern P.
  • the instruction signal for this is transmitted to the control unit 46L.
  • the control unit 46L controls the drive of the lighting unit 45L so that the sequential irradiation pattern P is irradiated on the road surface based on the instruction signal transmitted from the vehicle control unit 3.
  • the control unit 46L may be separated from the vehicle control unit 3 or may be integrally configured with the vehicle control unit 3.
  • the light irradiation system 4R has the same configuration as the above-mentioned light irradiation system 4L.
  • the light irradiation system 4R has a lighting unit 45R and a control unit 46R.
  • the lighting unit 45R is configured to irradiate the road surface around the vehicle 1 with a sequential irradiation pattern so as to present information indicating the operation of the vehicle 1 to the outside of the vehicle 1.
  • the information indicating the operation of the vehicle 1 is, for example, information indicating a right turn of the vehicle 1.
  • the lighting unit 45R irradiates the road surface with a sequential irradiation pattern in order to present the right turn of the vehicle 1 to the outside.
  • the characteristics of the sequential irradiation pattern emitted from the lighting unit 45R are basically the same as the characteristics of the sequential irradiation pattern P emitted from the illumination unit 45L.
  • the location, drawing method, and configuration of the lighting unit 45R are not particularly limited.
  • the lighting unit 45R may be arranged in the lighting chamber of the right headlamp 20R. Further, the lighting unit 45R may be arranged on the roof 100A.
  • the light irradiation systems 4L and 4R arranged on the front side of the vehicle 1 are described, but the light irradiation system may also be arranged on the rear side of the vehicle 1.
  • the lighting unit 30L of the left rear light irradiation system may be arranged in the lighting chamber of the left rear combination lamp 60L of the vehicle 1.
  • the lighting unit 30R of the right rear light irradiation system may be arranged in the lighting chamber of the right rear combination lamp 60R of the vehicle 1.
  • the lighting units 30L and 30R are configured to irradiate the road surface with a sequential irradiation pattern in order to present information indicating the backward movement of the vehicle 1 toward the outside of the vehicle 1.
  • the sensor 5 includes at least one of an acceleration sensor, a speed sensor, and a gyro sensor.
  • the sensor 5 is configured to detect the traveling state of the vehicle 1 and output the traveling state information to the vehicle control unit 3.
  • the sensor 5 includes a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects the external weather condition, and whether or not there is a person in the vehicle.
  • a motion sensor or the like for detection may be further provided.
  • the camera 6 is, for example, a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS).
  • the camera 6 is configured to acquire image data indicating the surrounding environment of the vehicle 1 and then transmit the image data to the vehicle control unit 3.
  • the vehicle control unit 3 acquires surrounding environment information based on the transmitted image data.
  • the surrounding environment information may include information on an object (pedestrian, other vehicle, sign, etc.) existing outside the vehicle 1.
  • the surrounding environment information may include information on the attributes of the object existing outside the vehicle 1 and information on the distance and position of the object with respect to the vehicle 1.
  • Radar 7 includes at least one of millimeter wave radar, microwave radar and LiDAR unit.
  • the LiDAR unit is configured to detect the surrounding environment of the vehicle 1.
  • the LiDAR unit is configured to acquire point cloud data indicating the surrounding environment of the vehicle 1 and then transmit the point cloud data to the vehicle control unit 3.
  • the vehicle control unit 3 identifies the surrounding environment information based on the transmitted point cloud data.
  • the HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs the driving information of the vehicle 1 to the driver.
  • the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like.
  • the output unit is a display device (for example, HUD or the like) that displays various traveling information.
  • the HUD is configured to display the traveling information of the vehicle 1 on the front window 60.
  • the GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
  • the wireless communication unit 10 receives information about other vehicles around the vehicle 1 (for example, driving information) from the other vehicle, and transmits information about the vehicle 1 (for example, driving information) to the other vehicle. It is configured (vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the infrastructure equipment (road-to-vehicle communication). Further, the wireless communication unit 10 receives information about the pedestrian from the portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 1 to the portable electronic device. It is configured to do (pedestrian-to-vehicle communication).
  • the vehicle 1 may directly communicate with another vehicle, infrastructure equipment, or a portable electronic device in an ad hoc mode, or may communicate via an access point. Further, the vehicle 1 may communicate with another vehicle, infrastructure equipment, or a portable electronic device via a communication network such as the Internet.
  • the storage device 11 is an external storage device such as a hard disk drive (HDD) or SSD (Solid State Drive).
  • the storage device 11 may store two-dimensional or three-dimensional map information and / or a vehicle control program.
  • the three-dimensional map information may be composed of point cloud data.
  • the storage device 11 is configured to output map information and a vehicle control program to the vehicle control unit 3 in response to a request from the vehicle control unit 3.
  • the map information and the vehicle control program may be updated via the wireless communication unit 10 and the communication network.
  • the vehicle control unit 3 When the vehicle 1 travels in the automatic driving mode, the vehicle control unit 3 has at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
  • the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
  • the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
  • the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal.
  • the vehicle control unit 3 when the vehicle 1 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver with respect to the accelerator pedal, the brake pedal, and the steering wheel.
  • the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the traveling of the vehicle 1 is controlled by the driver.
  • FIG. 3A is a diagram showing a state in which the proximal side irradiation pattern Pa (an example of the first irradiation pattern) of the sequential irradiation pattern P is irradiated on the road surface.
  • FIG. 3B is a diagram showing a state in which the proximal side irradiation pattern Pa and the intermediate side irradiation pattern Pb (an example of the third irradiation pattern) of the sequential irradiation patterns P are irradiated on the road surface.
  • FIG. 3A is a diagram showing a state in which the proximal side irradiation pattern Pa (an example of the first irradiation pattern) of the sequential irradiation pattern P is irradiated on the road surface.
  • FIG. 3B is a diagram showing a state in which the proximal side irradiation pattern Pa and the intermediate side irradiation pattern Pb (an example of the third irradiation pattern) of
  • FIG. 3C is a diagram showing a state in which the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc (an example of the second irradiation pattern) of the sequential irradiation patterns P are irradiated on the road surface. ..
  • FIG. 3D is a diagram showing a state in which irradiation of the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc is stopped.
  • irradiation patterns Pa, Pb, and Pc are diagrams showing a timing chart for explaining the irradiation timings of the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc.
  • the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc may be referred to as irradiation patterns Pa, Pb, and Pc, respectively.
  • the illumination unit 45L has a light source unit 120 and a projection lens 125 configured to irradiate the sequential irradiation pattern P toward the road surface based on the light emitted from the light source unit 120. ..
  • the light source unit 120 includes light emitting elements 121 to 123 and a submount substrate 124 on which the light emitting elements 121 to 123 are mounted.
  • the light emitting elements 121 to 123 are composed of, for example, LEDs.
  • the projection lens 125 is configured to form an irradiation pattern Pa on the road surface S based on the light emitted from the light emitting element 121. Further, the projection lens 125 is configured to form an irradiation pattern Pb on the road surface S based on the light emitted from the light emitting element 122. Further, the projection lens 125 is configured to form an irradiation pattern Pc on the road surface S based on the light emitted from the light emitting element 123.
  • the brightness (illuminance) of the irradiation patterns Pa to Pc projected on the road surface S increases in the order of Pa> Pb> Pc. That is, the farther the irradiation pattern is from the vehicle 1, the lower the brightness of the irradiation pattern.
  • the control unit 46L has a microcontroller 43L and a current control circuit 42L.
  • the microcontroller 43L is configured to transmit a predetermined control signal to the current control circuit 42L in response to receiving an instruction signal from the vehicle control unit 3.
  • the current control circuit 42L is configured to control the current supplied to the light emitting elements 121 to 123 of the light source unit 120.
  • the current control circuit 42L may supply a direct current to each light emitting element 121 to 123 and adjust the value of the direct current supplied to each light emitting element.
  • the current control circuit 42L may supply a pulse current to each light emitting element 121 to 123, and may adjust the value of the pulse current supplied to each light emitting element and the duty ratio.
  • the pulse of the ON time (High state) and the pulse of the OFF time (Low state) are continuous in a predetermined cycle.
  • the duty ratio is the ratio of the pulse ON time to the pulse current cycle%.
  • the current control circuit 42L when the current control circuit 42L supplies a direct current to the light emitting elements 121 to 123, the current control circuit 42L includes a power supply circuit such as a DC / DC converter and a peaking circuit shown in FIG. 9B. It may be (this will be described later). Further, when the current control circuit 42L supplies a pulse current to the light emitting elements 121 to 123, the current control circuit 42L may include a power supply circuit such as a DC / DC converter and a PWM control circuit.
  • the control unit 46L controls the drive of the lighting unit 45L so that the sequential irradiation pattern P is irradiated on the road surface based on the instruction signal transmitted from the vehicle control unit 3. do.
  • the sequential irradiation pattern P has a proximal side irradiation pattern Pa, an intermediate side irradiation pattern Pb, and a distal side irradiation pattern Pc.
  • the lighting unit 45L When the sequential irradiation pattern P is irradiated on the road surface, the lighting unit 45L first irradiates the proximal side irradiation pattern Pa on the road surface in front of the vehicle 1 (see FIG. 3A). Next, as shown in FIG. 3B, the lighting unit 45L is located on the intermediate side at a position away from the vehicle 1 (lighting unit 45L) from the proximal side irradiation pattern Pa while maintaining the irradiation of the proximal side irradiation pattern Pa. Irradiate the irradiation pattern Pb. In the state shown in FIG.
  • the proximal side irradiation pattern Pa and the intermediate side irradiation pattern Pb irradiated on the road surface are aligned in the D1 direction.
  • the D1 direction is the extension direction of the sequential irradiation pattern P.
  • the lighting unit 45L is separated from the vehicle 1 (lighting unit 45L) from the intermediate side irradiation pattern Pb while maintaining the irradiation of the proximal side irradiation pattern Pa and the intermediate side irradiation pattern Pb. Irradiate the distal irradiation pattern Pc at the above position.
  • the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc irradiated on the road surface are aligned in the D1 direction.
  • the shapes of the irradiation patterns Pa to Pc are rectangular, but the shapes of the irradiation patterns Pa to Pc are not particularly limited. Further, in the example of FIG. 3C, the irradiation patterns Pa to Pc are separated from each other, but the irradiation patterns Pa to Pc may be in contact with each other.
  • the lighting unit 45L stops the irradiation of the irradiation patterns Pa to Pc.
  • the sequential irradiation pattern P in which the irradiation pattern changes continuously with the passage of time all of the irradiation patterns Pa to Pc are sequentially irradiated on the road surface in one cycle Ts of the sequential irradiation pattern P. Irradiation is stopped.
  • the period Ts of the sequential irradiation pattern P is, for example, in the range of 100 ms to 500 ms. That is, the number of irradiations of the sequential irradiation pattern P in one minute is, for example, in the range of 60 to 600 times.
  • the cycle Ts of the sequential irradiation pattern P may be the same as the sequential lighting cycle of the sequential turn lamp.
  • the irradiation time in which only the irradiation pattern Pa is irradiated on the road surface is Ta
  • the irradiation time in which the two irradiation patterns Pa and Pb are irradiated on the road surface is Tb
  • all of the irradiation patterns Pa to Pc are on the road surface.
  • the brightness (illuminance) of the irradiation pattern Pc irradiated at the position farthest from the lighting unit 45L is lower than the brightness (illuminance) of the irradiation pattern Pa irradiated at the position closest to the lighting unit 45L. Therefore, the visibility of the irradiation pattern Pc for the pedestrian H (see FIG. 3C and the like) existing around the vehicle 1 tends to be relatively low as compared with the visibility of the irradiation pattern Pa. Therefore, the pedestrian H existing in the blind spot of the vehicle 1 is less likely to notice the existence of the sequential irradiation pattern P, and is less likely to notice the existence of the vehicle 1.
  • the control unit 46L is configured to control the lighting unit 45L so that the visibility of the irradiation pattern Pc is improved. Specifically, the control unit 46L controls the illumination unit 45L so that the irradiation time Tc on which the irradiation pattern Pc is irradiated is longer than the irradiation times Ta and Tb. In this way, since the irradiation time Tc is set to be longer than the irradiation times Ta and Tb, the visibility of the irradiation pattern Pc for the pedestrian H existing around the vehicle 1 is improved, and the visibility for the pedestrian H is improved. The visibility of the sequential irradiation pattern P is improved. As a result, the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • Tc> Toff> Ta Tb.
  • the irradiation times Ta and Tb are each smaller than Ts / 4.
  • the irradiation time Tc is set to be larger than Ts / 4. In this way, it is possible to improve the visibility of the irradiation pattern Pc with respect to the visibility of the irradiation patterns Pa and Pb.
  • FIG. 5 is a diagram showing how the distal irradiation pattern Pc irradiated on the road surface is vibrating.
  • the control unit 46L may control the lighting unit 45L so that the irradiation pattern Pc vibrates in the D2 direction orthogonal to the D1 direction.
  • the control unit 46L may vibrate the irradiation pattern Pc in the D2 direction by physically vibrating the housing constituting the lighting unit 45L. Further, when the scanning method is adopted as the drawing method of the lighting unit 45L, the control unit 46L may control the driving of the drive mirror provided in the lighting unit 45L so that the irradiation pattern Pc vibrates in the D2 direction. good.
  • the vibration frequency of the irradiation pattern Pc may be in the range of, for example, 5 Hz to 10 Hz. In this respect, when the vibration frequency is set in the range of 5 Hz to 10 Hz, the vibrating irradiation pattern Pc can easily attract the attention of a person, and the visibility of the irradiation pattern Pc can be further improved.
  • the visibility of the irradiation pattern Pc for the pedestrian H can be further improved.
  • the visibility of the sequential irradiation pattern P can be improved by improving the visibility of the irradiation pattern Pc.
  • the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • the irradiation pattern Pc vibrates in the D2 direction, but the irradiation pattern Pc may vibrate in the D1 direction.
  • the direction in which the irradiation pattern Pc vibrates is not particularly limited.
  • the irradiation time Tc does not have to be set longer than the irradiation times Ta and Tb.
  • FIG. 6 is a diagram showing a distal irradiation pattern Pc composed of a plurality of rectangular irradiation patterns Pc1 to Pc3 separated from each other.
  • the shape of the irradiation pattern Pc is different from the shape of the irradiation patterns Pa and Pb.
  • each of the irradiation patterns Pa and Pb is composed of a single rectangular irradiation pattern, while the irradiation pattern Pc is composed of three rectangular irradiation patterns Pc1 to Pc3.
  • the irradiation patterns Pc1 to Pc3 are aligned in the D1 direction and separated from each other.
  • the control unit 46L controls the drive of the lighting unit 45L so that the irradiation patterns Pa and Pb are composed of a single rectangular irradiation pattern and the irradiation patterns Pc are composed of a plurality of irradiation patterns Pc1 to Pc3. You may. Since the irradiation pattern Pc is composed of a plurality of irradiation patterns Pc1 to Pc3, the visibility of the pedestrian H with respect to the irradiation pattern Pc is improved. As a result, the visibility of the sequential irradiation pattern P is improved, so that the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • the irradiation patterns Pc1 to Pc3 may be irradiated on the road surface at the same timing, or may be irradiated on the road surface at different timings.
  • the irradiation patterns Pc1 to Pc3 may be sequentially irradiated on the road surface as a sequential irradiation pattern.
  • the visibility of the irradiation pattern Pc can be further improved.
  • the irradiation pattern Pc when the irradiation pattern Pc is composed of a plurality of irradiation patterns Pc1 to Pc3, the irradiation pattern Pc may be vibrated while adjusting the irradiation time Tc. In this case as well, the visibility of the irradiation pattern Pc can be further improved.
  • the irradiation pattern Pc when the irradiation pattern Pc is composed of a plurality of irradiation patterns Pc1 to Pc3, the irradiation time Tc does not have to be longer than the irradiation times Ta and Tb, and the irradiation pattern Pc does not have to vibrate.
  • FIG. 7 is a diagram showing a timing chart for explaining the irradiation timings of the proximal side irradiation pattern Pa, the intermediate side irradiation pattern Pb, and the distal side irradiation pattern Pc among the sequential irradiation patterns P.
  • the irradiation time in which only the irradiation pattern Pa is irradiated on the road surface is Ta
  • the irradiation time in which the two irradiation patterns Pa and Pb are irradiated on the road surface is Tb
  • all of the irradiation patterns Pa to Pc are on the road surface.
  • the irradiation time Ta is defined by the start time t1 at which the irradiation of the irradiation pattern Pa is started and the start time t2 at which the irradiation of the irradiation pattern Pb is started.
  • the irradiation time Tb is defined by a start time t2 and a start time t3 at which irradiation of the irradiation pattern Pc is started.
  • the irradiation time Tc is defined by a start time t3 and a stop time t4 at which irradiation of the irradiation patterns Pa, Pb, and Pc is stopped.
  • the visibility of the irradiation pattern Pa during the period from the start time t1 to the predetermined time tn is higher than the visibility of the irradiation pattern Pa during the period from the predetermined time tun to the stop time t4.
  • the visibility of the irradiation pattern Pb during the period from the start time t2 to the predetermined time tn is higher than the visibility of the irradiation pattern Pb during the period from the predetermined time tun to the stop time t4.
  • the visibility of the irradiation pattern Pc during the period from the start time t3 to the predetermined time tn is higher than the visibility of the irradiation pattern Pc during the period from the predetermined time tun to the stop time t4.
  • the time zone ⁇ T between the start times t1, t2, t3 and the predetermined time tn is, for example, in the range of 1 ms to 200 ms.
  • a predetermined time zone ⁇ T is set by paying attention to two items, the visibility of the irradiation pattern and the power consumption of the light source unit 120.
  • a method for improving the visibility of the irradiation pattern in the time zone ⁇ T between the start time when the irradiation of the irradiation pattern is started and the predetermined time tun will be described below. do.
  • a method for improving the visibility of the irradiation pattern Pc in the time zone ⁇ T between the start time t3 and the predetermined time tn will be described.
  • the method for improving the visibility of the irradiation patterns Pa and Pb in the time zone ⁇ T is the same as the method for improving the visibility of the irradiation pattern Pc in the time zone ⁇ T. Omit.
  • FIGS. 9A and 9B when the current supplied to the light emitting element 123 of the light source unit 120 is a direct current, the irradiation pattern is formed in the time zone ⁇ T between the start time t3 and the predetermined time tun. A method for improving the visibility of Pc will be described.
  • FIG. 9A illustrates the temporal change of the direct current supplied to the light emitting element 123 in the time zone from the start time t3 when the irradiation of the irradiation pattern Pc is started to the stop time t4 when the irradiation of the irradiation pattern Pc is stopped. It is a conceptual diagram for doing.
  • FIG. 9B is a diagram for explaining a part of the configuration of the current control circuit 42L that supplies a direct current to the light emitting element 123.
  • the visibility of the irradiation pattern Pc from the start time t3 to the predetermined time tun is higher than the visibility of the irradiation pattern Pc from the predetermined time tun to the stop time t4.
  • the current supplied to the light emitting element 123 is adjusted so as to be.
  • the brightness (illuminance) of the irradiation pattern Pc during the period from the start time t3 to the predetermined time tn is the brightness (illuminance) of the irradiation pattern Pc during the period from the predetermined time tn to the stop time t4.
  • the value of the direct current supplied to the light emitting element 123 during the predetermined time tn from the start time t3 is supplied to the light emitting element 123 during the predetermined time tn to the stop time t4.
  • the direct current supplied to the light emitting element 123 is adjusted so as to be larger than the value of the direct current.
  • control unit 46L is configured to increase the value of the direct current supplied to the light emitting element 123 in the time zone ⁇ T in order to improve the visibility of the irradiation pattern Pc in the time zone ⁇ T.
  • the current control circuit 42L momentarily supplies a large direct current to the light emitting element 123 in the time zone ⁇ T to increase the brightness of the irradiation pattern Pc in the time zone ⁇ T. In this way, it is possible to improve the visibility of the irradiation pattern Pc in the time zone ⁇ T.
  • the peak current value I2 in the time zone ⁇ T may be N times (1 ⁇ N ⁇ 5) larger than the current value I1 in the steady state.
  • the current control circuit 42L may include a peaking circuit composed of a resistor and a capacitor (see FIG. 9B). As shown in FIG. 9B, the current value I1 supplied to the light emitting element 123 is determined by the resistor R1. On the other hand, the peak current value I2 is determined by the resistance R2, and the width (attenuation time) of the peak waveform related to the peak current value I2 is determined by the capacitance of the capacitor C1. When the resistance R2 becomes small, the peak current value I2 becomes large, while when the resistance R2 becomes large, the peak current value I2 becomes small.
  • the optimum current waveform can be set in the time zone ⁇ T.
  • the brightness of the irradiation pattern Pc in the time zone ⁇ T becomes large.
  • the pedestrian H existing around the vehicle 1 can easily notice the existence of the irradiation pattern Pc irradiated on the road surface, the visibility of the irradiation pattern Pc to the pedestrian H is improved. As a result, the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • FIG. 10A is a conceptual diagram for explaining an example of the pulse current supplied to the light emitting element 123 in the time zone from the start time t3 to the stop time t4.
  • FIG. 10B is a conceptual diagram for explaining another example of the pulse current supplied to the light emitting element 123 in the time zone from the start time t3 to the stop time t4.
  • the current control circuit 42L of the control unit 46L may include a DC / DC converter (for example, a switching regulator or the like) and a PWM control circuit. ..
  • the control unit 46L supplies a pulse current to the light emitting element 123 in the time zone ⁇ T in order to improve the visibility of the irradiation pattern Pc in the time zone ⁇ T from the start time t3 to the predetermined time tn. It is configured to increase the value I4 of.
  • the value I4 of the pulse current supplied to the light emitting element 123 in the time zone ⁇ T is the value of the pulse current supplied to the light emitting element 123 during the predetermined time tun to the stop time t4.
  • the value I4 of the pulse current in the time zone ⁇ T may be N times (1 ⁇ N ⁇ 5) the value I3 of the pulse current between the predetermined time tn and the stop time t4.
  • the duty ratio of the pulse current in the time zone ⁇ T is the same as the duty ratio of the pulse current between the predetermined time tun and the stop time t4. In this case, the duty ratio is, for example, 50%.
  • the irradiation pattern in the time zone ⁇ T becomes larger than the brightness (illuminance) of the irradiation pattern Pc during the predetermined time tn to the stop time t4, the irradiation pattern in the time zone ⁇ T The visibility of the Pc becomes higher than the visibility of the irradiation pattern Pc during the predetermined time tn to the stop time t4.
  • the value of the pulse current supplied to the light emitting element 123 in the time zone ⁇ T becomes large, the brightness of the irradiation pattern Pc in the time zone ⁇ T becomes large.
  • the pedestrian H existing around the vehicle 1 can easily notice the existence of the irradiation pattern Pc irradiated on the road surface, the visibility of the irradiation pattern Pc to the pedestrian H is improved. As a result, the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • the control unit 46L supplies a pulse current to the light emitting element 123 in the time zone ⁇ T in order to improve the visibility of the irradiation pattern Pc in the time zone ⁇ T from the start time t3 to the predetermined time tn.
  • the value I4 of is increased, while the DUTY ratio of the pulse current is decreased.
  • the value I4 of the pulse current supplied to the light emitting element 123 in the time zone ⁇ T is the value of the pulse current supplied to the light emitting element 123 during the predetermined time tun to the stop time t4.
  • the pulse current control circuit 42L It is configured to adjust the pulse current so that it is larger than I3. Further, in the current control circuit 42L, the DUTY ratio of the pulse current supplied to the light emitting element 123 in the time zone ⁇ T is higher than the DUTY ratio of the pulse current supplied to the light emitting element 123 during the predetermined time tun to the stop time t4. It is configured to adjust the pulse current so that it becomes smaller.
  • the pulse current value I4 in the time zone ⁇ T may be N times (1 ⁇ N ⁇ 5) the pulse current value I3 between the predetermined time tn and the stop time t4.
  • the duty ratio of the pulse current in the time zone ⁇ T may be 1 / N times the duty ratio of the pulse current between the predetermined time tn and the stop time t4.
  • the value calculated by (pulse current value) ⁇ (DUTY ratio) in the time zone ⁇ T is calculated by (pulse current value) ⁇ (DUTY ratio) between the predetermined time tun and the stop time t4. It will be the same as the value. Therefore, the effective brightness of the irradiation pattern Pc in the time zone ⁇ T is the same as the effective brightness of the irradiation pattern P between the predetermined time tun and the stop time t4.
  • the duty ratio of the pulse current in the time zone ⁇ T is 20%, while the predetermined time tun to the stop time t4.
  • the duty ratio of the pulse current may be 50%.
  • the irradiation pattern Pc in the time zone ⁇ T between the start time t3 and the predetermined time tun The visibility can be made higher than the visibility of the irradiation pattern Pc during the predetermined time tn to the stop time t4. Therefore, since the pedestrian H existing around the vehicle 1 can easily notice the existence of the irradiation pattern Pc irradiated on the road surface, the visibility of the irradiation pattern Pc to the pedestrian H is improved. As a result, the pedestrian H can clearly grasp the existence and operation of the vehicle 1 through the sequential irradiation pattern P.
  • the sequential irradiation pattern P that is irradiated on the road surface during the left turn operation of the vehicle 1 is mainly described.
  • the sequential irradiation pattern irradiated on the road surface during other movements of the vehicle 1 has the same characteristics as the sequential irradiation pattern P. That is, even during other operations of the vehicle 1, the sequential irradiation pattern with improved visibility of the distal irradiation pattern is irradiated on the road surface. Further, even in the other operation of the vehicle 1, the visibility of each irradiation pattern is improved in the time zone ⁇ T between the irradiation start time and the predetermined time tn.
  • the light irradiation system is provided in the vehicle 1, but the light irradiation system may be provided in a device other than the vehicle 1 (for example, transportation infrastructure equipment such as a traffic light or a street light).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

光照射システムは、路面にシーケンシャル照射パターン(P)を照射するように構成された照明ユニット(45L)と、シーケンシャル照射パターン(P)が路面に照射されるように照明ユニット(45L)を制御するように構成された制御部と、を備える。シーケンシャル照射パターン(P)は、近位側照射パターン(Pa)と、近位側照射パターン(Pa)よりも照明ユニット(45L)から離れた位置に照射される遠位側照射パターン(Pc)とを有する。遠位側照射パターン(Pc)は、近位側照射パターン(Pa)が路面に照射された後に路面に照射される。制御部は、照明ユニット(45L)の周辺に存在する歩行者Hに対する遠位側照射パターン(Pc)の視認性が向上するように照明ユニット(45L)を制御するように構成されている。

Description

光照射システム及び照明ユニット
 本開示は、光照射システム及び照明ユニットに関する。
 車両の周辺に存在する歩行者等に対して車両の動作を示す情報(例えば、車両の左折、右折又は後進等を示す情報)を提示するために、車両の周囲の路面上に照射パターンを照射するように構成された光照射システムを車両に搭載することが世界各国において現在検討されている(例えば、特許文献1を参照)。
国際公開第2020/067113号
 ところで、路面上に照射された複数の照射パターンの視認性が低い場合には、車両の死角に存在する歩行者等は、照射パターンの存在に気付きにくくなる。この結果、歩行者等が車両の存在や動作を明確に把握できないといった状況が想定される。このように、路面に照射される照射パターンの視認性を向上させる点で車両に搭載される光照射システムをさらに改善する余地がある。
 本開示は、歩行者等の対象物に対するシーケンシャル照射パターンの視認性を向上させることを目的とする。
 本開示の一態様に係る光照射システムは、
 路面にシーケンシャル照射パターンを照射するように構成された照明ユニットと、
 前記シーケンシャル照射パターンが前記路面に照射されるように前記照明ユニットを制御するように構成された制御部と、を備える。
 前記シーケンシャル照射パターンは、第1の照射パターンと、前記第1の照射パターンよりも前記照明ユニットから離れた位置に照射される第2の照射パターンとを有する。
 前記第2の照射パターンは、前記第1の照射パターンが前記路面に照射された後に前記路面に照射される。
 前記制御部は、前記照明ユニットの周辺に存在する対象物に対する前記第2の照射パターンの視認性が向上するように前記照明ユニットを制御するように構成されている。
 上記構成によれば、歩行者等の対象物に対する第2の照射パターンの視認性が向上するように照明ユニットが制御されている。この結果として、照明ユニットの周辺に存在する歩行者等に対するシーケンシャル照射パターンの視認性が向上する。このため、歩行者等は、シーケンシャル照射パターンを視認することで車両の存在や動作を明確に把握することができる。
 本開示の一態様に係る照明ユニットは、路面にシーケンシャル照射パターンを照射するように構成されている。
 前記シーケンシャル照射パターンは、第1の照射パターンと、前記第1の照射パターンよりも前記照明ユニットから離れた位置に照射される第2の照射パターンとを有する。
 前記第2の照射パターンは、前記第1の照射パターンが前記路面に照射された後に前記路面に照射される。
 前記照明ユニットは、前記照明ユニットの周辺に存在する対象物に対する前記第2の照射パターンの視認性が向上するように前記シーケンシャル照射パターンを照射するように構成されている。
 上記構成によれば、照明ユニットの周辺に存在する歩行者等の対象物に対する第2の照射パターンの視認性が向上するので、歩行者等に対するシーケンシャル照射パターンの視認性が向上する。このため、歩行者等は、シーケンシャル照射パターンを視認することで車両の存在や動作を明確に把握することができる。
 本開示の別の一態様に係る光照射システムは、
 路面に照射パターンを照射するように構成された照明ユニットと、
 前記照射パターンが前記路面に照射されるように前記照明ユニットを制御するように構成された制御部と、を備える。
 前記制御部は、前記照射パターンの照射が開始された開始時間から所定時間の間における前記照射パターンの視認性が前記所定時間から前記照射パターンの照射が停止される停止時間までの間における前記照射パターンの視認性よりも高くなるように、前記照明ユニットを制御するように構成される。
 上記構成によれば、照射パターンの照射が開始された開始時間から所定時間の間における照射パターンの視認性が所定時間から照射パターンの照射が停止される停止時間までの間における前記照射パターンの視認性よりも高くなる。このため、歩行者等は路面上に照射された照射パターンの存在に気付きやすくなるため、歩行者等に対する照射パターンの視認性が向上する。
 本開示の別の一態様に係る照明ユニットは、路面に照射パターンを照射するように構成されている。
 前記照明ユニットは、前記照射パターンの照射が開始された開始時間から所定時間の間における前記照射パターンの視認性が前記所定時間から前記照射パターンの照射が停止される停止時間までの間における前記照射パターンの視認性よりも高くなるように、前記照射パターンを前記路面に照射するように構成されている。
 本開示によれば、歩行者等の対象物に対するシーケンシャル照射パターンの視認性を向上させることができる。
本発明の実施形態(以下、単に本実施形態という。)に係る車両システムが搭載された車両の正面図である。 本実施形態に係る車両システムのブロック図である。 シーケンシャル照射パターンのうち近位側照射パターンが路面に照射された様子を示す図である。 シーケンシャル照射パターンのうち近位側照射パターン及び中間側照射パターンが路面に照射された様子を示す図である。 シーケンシャル照射パターンのうち近位側照射パターン、中間側照射パターン及び遠位側照射パターンが路面に照射された様子を示す図である。 近位側照射パターン、中間側照射パターン及び遠位側照射パターンの照射が停止された様子を示す図である。 近位側照射パターン、中間側照射パターン及び遠位側照射パターンの照射タイミングを説明するためのタイミングチャートを示す図である。 路面に照射された遠位側照射パターンが振動している様子を示す図である。 互いに分離した複数の矩形状の照射パターンにより構成された遠位側照射パターンを示す図である。 近位側照射パターン、中間側照射パターン及び遠位側照射パターンの照射タイミングを説明するためのタイミングチャートを示す図である。 照明ユニットの構成の一例を説明するための図である。 照射パターンの照射が開始された開始時間から照射パターンの照射が停止される停止時間までの時間帯において、発光素子に供給される直流電流の時間的変化を説明するための概念図である。 直流電流を発光素子に供給する電流制御回路の構成の一部を説明するための図である。 照射パターンの照射が開始された開始時間から照射パターンの照射が停止される停止時間までの時間帯における、光源部に供給されるパルス電流の一例を説明するための概念図である。 照射パターンの照射が開始された開始時間から照射パターンの照射が停止される停止時間までの時間帯における、光源部に供給されるパルス電流の他の一例を説明するための概念図である。
 以下、本発明の実施形態(以下、本実施形態という。)について図面を参照しながら説明する。本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
 また、本実施形態の説明では、説明の便宜上、「左右方向」、「上下方向」、「前後方向」について適宜言及する場合がある。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「左右方向」は、「左方向」及び「右方向」を含む方向であると共に、車両1の車幅方向でもある。「上下方向」は、「上方向」及び「下方向」を含む方向である。「前後方向」は、「前方向」及び「後方向」を含む方向である。前後方向は、図1では示されていないが、左右方向及び上下方向に直交する方向である。
 最初に、図1及び図2を参照して、本実施形態に係る車両システム2について以下に説明する。図1は、車両システム2が搭載された車両1の正面図である。図2は、車両システム2のブロック図である。車両1は、例えば、手動運転モード又は自動運転モードで走行可能な車両(自動車)である。
 図2に示すように、車両システム2は、車両制御部3と、左側光照射システム4L(以下、単に光照射システム4Lという。)と、右側光照射システム4R(以下、単に光照射システム4Rという。)と、センサ5と、カメラ6と、レーダ7とを備える。さらに、車両システム2は、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、記憶装置11と、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。
 車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC(System on a Chip)等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及びTPU(Tensor Processing Unit)のうちの少なくとも一つを含む。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、コンピュータシステムは、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の非ノイマン型コンピュータによって構成されてもよい。さらに、コンピュータシステムは、ノイマン型コンピュータと非ノイマン型コンピュータの組み合わせによって構成されてもよい。
 光照射システム4Lは、照明ユニット45Lと、制御部46Lとを有する。照明ユニット45Lは、車両1の動作を示す情報を車両1の外部に向けて提示するように、車両1の周囲の路面にシーケンシャル照射パターンP(図3C参照)を照射するように構成されている。車両1の動作を示す情報としては、例えば、車両1の左折を示す情報である。例えば、車両1の左折が決定された場合に、照明ユニット45Lは、車両1の左折を外部に向けて提示するためにシーケンシャル照射パターンPを路面に照射する。シーケンシャル照射パターンPでは、時間経過に応じて路面に照射される照射パターンが連続的に変化する。シーケンシャル照射パターンPについての具体例については後述する。
 照明ユニット45Lの配置場所、描画方式、構成は特に限定されるものではない。例えば、図1に示すように、照明ユニット45Lは左側ヘッドランプ20Lの灯室内に配置されてもよい。また、照明ユニット45Lはルーフ100A上に配置されてもよい。また、照明ユニット45Lの描画方式としてプロジェクション方式やスキャン方式が採用されてもよい。照明ユニット45Lは、光を出射するように構成された光源部と、光源部から出射された光に基づいてシーケンシャル照射パターンPを形成した上で、シーケンシャル照射パターンPを路面に向けて照射するように構成された光学系とによって構成されてもよい。光源部は、例えば、複数のLED(Light Emitting Diode)素子又はLD(Laser Diode)素子によって構成されてもよい。光学系は、例えば、光源部から出射された光の偏向を制御するように構成された投影レンズ及び/又はリフレクタによって構成されてもよい。
 また、照明ユニット45Lは、光を出射する光源部と、駆動ミラーと、レンズやミラー等の光学系によって構成されてもよい。駆動ミラーは、光源部から出射された光に基づいて路面に照射されるシーケンシャル照射パターンPを形成するように構成されている。駆動ミラーは、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、DMD(Digital Mirror Device)又はブレードミラーによって構成されてもよい。例えば、光源部から出射された光がMEMSミラーによって路面上に走査されてもよい。このように、MEMSミラーによる光の走査によって照射パターンが路面上に投影されてもよい。
 制御部46Lは、シーケンシャル照射パターンPが車両1の周囲の路面上に照射されるように照明ユニット45Lを制御するように構成されている。制御部46Lの配置場所は特に限定されるものではない。制御部46Lは、マイクロコントローラと、アナログ駆動制御回路とを備える。マイクロコントローラは、CPU等のプロセッサと、ROM等のメモリとを有する。アナログ駆動制御回路は、光源部に供給される電流を制御するように構成された電流制御回路及び/又は駆動ミラーを制御するように構成されたミラー駆動回路を有する。この点において、照明ユニット45Lが駆動ミラーを備えていない場合には、アナログ駆動制御回路は電流制御回路によって構成される。
 例えば、車両制御部3が車両1の左折を決定する場合又は運転者によるウインカーレバーの操作に応じて車両の左折が決定される場合に、車両制御部3は、シーケンシャル照射パターンPの照射を指示するための指示信号を制御部46Lに送信する。その後、制御部46Lは、車両制御部3から送信された指示信号に基づいて、路面上にシーケンシャル照射パターンPが照射されるように照明ユニット45Lの駆動を制御する。尚、本実施形態では、制御部46Lは、車両制御部3から分離されてもよいし、車両制御部3と一体的に構成されてもよい。
 光照射システム4Rは、上記した光照射システム4Lと同様の構成を有する。光照射システム4Rは、照明ユニット45Rと、制御部46Rとを有する。照明ユニット45Rは、車両1の動作を示す情報を車両1の外部に向けて提示するように、車両1の周囲の路面にシーケンシャル照射パターンを照射するように構成されている。車両1の動作を示す情報としては、例えば、車両1の右折を示す情報である。例えば、車両1の右折が決定された場合に、照明ユニット45Rは、車両1の右折を外部に向けて提示するためにシーケンシャル照射パターンを路面に照射する。照明ユニット45Rから出射されるシーケンシャル照射パターンの特徴は、照明ユニット45Lから出射されるシーケンシャル照射パターンPの特徴と基本的には同じものである。
 照明ユニット45Rの配置場所、描画方式、構成は特に限定されるものではない。例えば、図1に示すように、照明ユニット45Rは右側ヘッドランプ20Rの灯室内に配置されてもよい。また、照明ユニット45Rはルーフ100A上に配置されてもよい。
 本実施形態では、説明の便宜上、車両1の前方側に配置された光照射システム4L,4Rについて説明されているが、光照射システムは車両1の後方側にも配置されてもよい。この場合、図3Aに示すように、左後側光照射システムの照明ユニット30Lが車両1の左側リアコンビネーションランプ60Lの灯室内に配置されてもよい。右後側光照射システムの照明ユニット30Rが車両1の右側リアコンビネーションランプ60Rの灯室内に配置されてもよい。照明ユニット30L,30Rは、車両1の後進を示す情報を車両1の外部に向けて提示するためにシーケンシャル照射パターンを路面上に照射するように構成されている。
 図2に戻ると、センサ5は、加速度センサ、速度センサ及びジャイロセンサのうち少なくとも一つを含む。センサ5は、車両1の走行状態を検出して、走行状態情報を車両制御部3に出力するように構成されている。センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。
 カメラ6は、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信するように構成されている。車両制御部3は、送信された画像データに基づいて、周辺環境情報を取得する。ここで、周辺環境情報は、車両1の外部に存在する対象物(歩行者、他車両、標識等)に関する情報を含んでもよい。例えば、周辺環境情報は、車両1の外部に存在する対象物の属性に関する情報と、車両1に対する対象物の距離や位置に関する情報とを含んでもよい。
 レーダ7は、ミリ波レーダ、マイクロ波レーダ及びLiDARユニットのうちの少なくとも一つを含む。例えば、LiDARユニットは、車両1の周辺環境を検出するように構成されている。特に、LiDARユニットは、車両1の周辺環境を示す点群データを取得した上で、当該点群データを車両制御部3に送信するように構成されている。車両制御部3は、送信された点群データに基づいて、周辺環境情報を特定する。
 HMI8は、運転者からの入力操作を受付ける入力部と、車両1の走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示する表示装置(例えば、HUD等)である。HUDは、車両1の走行情報をフロントウィンドウ60上に表示するように構成されている。GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。
 無線通信部10は、車両1の周囲にいる他車に関する情報(例えば、走行情報等)を他車から受信すると共に、車両1に関する情報(例えば、走行情報等)を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部10は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両1の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両1は、他車両、インフラ設備又は携帯型電子機器とアドホックモードにより直接通信してもよいし、アクセスポイントを介して通信してもよい。さらに、車両1は、インターネット等の通信ネットワークを介して他車両、インフラ設備又は携帯型電子機器と通信してもよい。
 記憶装置11は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置11には、2次元又は3次元の地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3次元の地図情報は、点群データによって構成されてもよい。記憶装置11は、車両制御部3からの要求に応じて、地図情報や車両制御プログラムを車両制御部3に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部10と通信ネットワークを介して更新されてもよい。
 車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。
 一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
 次に、図3Aから図4を参照することで、照明ユニット45Lから出射されるシーケンシャル照射パターンPについて以下に詳しく説明する。図3Aは、シーケンシャル照射パターンPのうち近位側照射パターンPa(第1の照射パターンの一例)が路面に照射された様子を示す図である。図3Bは、シーケンシャル照射パターンPのうち近位側照射パターンPa及び中間側照射パターンPb(第3の照射パターンの一例)が路面に照射された様子を示す図である。図3Cは、シーケンシャル照射パターンPのうち近位側照射パターンPa、中間側照射パターンPb及び遠位側照射パターンPc(第2の照射パターンの一例)が路面に照射された様子を示す図である。図3Dは、近位側照射パターンPa、中間側照射パターンPb及び遠位側照射パターンPcの照射が停止された様子を示す図である。図4は、近位側照射パターンPa、中間側照射パターンPb及び遠位側照射パターンPcの照射タイミングを説明するためのタイミングチャートを示す図である。尚、以降では、説明の便宜上、近位側照射パターンPa、中間側照射パターンPb、遠位側照射パターンPcをそれぞれ照射パターンPa,Pb,Pcという場合がある。
 また、図8に示すように、以降の説明では、照明ユニット45Lの描画方式としてプロジェクション方式が採用されているものとする。図8に示すように、照明ユニット45Lは、光源部120と、光源部120から出射された光に基づいてシーケンシャル照射パターンPを路面に向けて照射するように構成された投影レンズ125とを有する。光源部120は、発光素子121~123と、発光素子121~123が搭載されるサブマウント基板124とを有する。発光素子121~123は、例えば、LEDにより構成されている。
 投影レンズ125は、発光素子121から出射された光に基づいて照射パターンPaを路面S上に形成するように構成されている。また、投影レンズ125は、発光素子122から出射された光に基づいて照射パターンPbを路面S上に形成するように構成されている。さらに、投影レンズ125は、発光素子123から出射された光に基づいて照射パターンPcを路面S上に形成するように構成されている。路面S上に投影された照射パターンPa~Pcの明るさ(照度)は、Pa>Pb>Pcの順番で大きくなる。つまり、照射パターンが車両1から離れる程、照射パターンの明るさは低くなる。
 制御部46Lは、マイクロコントローラ43Lと、電流制御回路42Lとを有する。マイクロコントローラ43Lは、車両制御部3からの指示信号の受信に応じて、所定の制御信号を電流制御回路42Lに送信するように構成されている。電流制御回路42Lは、光源部120の各発光素子121~123に供給される電流を制御するように構成されている。電流制御回路42Lは、各発光素子121~123に直流電流を供給すると共に、各発光素子に供給される直流電流の値を調整してもよい。また、電流制御回路42Lは、各発光素子121~123にパルス電流を供給すると共に、各発光素子に供給されるパルス電流の値及びDUTY比を調整してもよい。ここで、パルス電流では、ON時間(High状態)のパルスとOFF時間(Low状態)のパルスが所定の周期で連続する。DUTY比は、パルス電流の周期に対するパルスのON時間の比率%である。
 本実施形態では、電流制御回路42Lが各発光素子121~123に直流電流を供給する場合には、電流制御回路42Lは、DC/DCコンバータ等の電源回路と、図9Bに示すピーキング回路を備えてもよい(これについては後述する)。また、電流制御回路42Lが各発光素子121~123にパルス電流を供給する場合には、電流制御回路42Lは、DC/DCコンバータ等の電源回路と、PWM制御回路を備えてもよい。
 車両1の左折が決定された場合に、制御部46Lは、車両制御部3から送信された指示信号に基づいて、路面上にシーケンシャル照射パターンPが照射されるように照明ユニット45Lの駆動を制御する。図3Cに示すように、シーケンシャル照射パターンPは、近位側照射パターンPaと、中間側照射パターンPbと、遠位側照射パターンPcとを有する。
 シーケンシャル照射パターンPが路面上に照射される場合、最初に、照明ユニット45Lは、近位側照射パターンPaを車両1の前方の路面上に照射する(図3A参照)。次に、図3Bに示すように、照明ユニット45Lは、近位側照射パターンPaの照射を維持しながら、近位側照射パターンPaよりも車両1(照明ユニット45L)から離れた位置において中間側照射パターンPbを照射する。図3Bに示す状態では、路面上に照射された近位側照射パターンPaと中間側照射パターンPbは、D1方向において整列している。D1方向は、シーケンシャル照射パターンPの延出方向である。
 次に、図3Cに示すように、照明ユニット45Lは、近位側照射パターンPaと中間側照射パターンPbの照射を維持しながら、中間側照射パターンPbよりも車両1(照明ユニット45L)から離れた位置において遠位側照射パターンPcを照射する。図3Cに示す状態では、路面上に照射された近位側照射パターンPaと、中間側照射パターンPbと、遠位側照射パターンPcは、D1方向において整列している。
 照射パターンPa~Pcの形状は、矩形状となっているが、照射パターンPa~Pcの形状は特に限定されるものではない。また、図3Cの例では、照射パターンPa~Pcは互いに分離しているが、照射パターンPa~Pcは互いに接していてもよい。
 次に、図3Dに示すように、照明ユニット45Lは、照射パターンPa~Pcの照射を停止する。時間経過に伴い照射パターンが連続的に変化するシーケンシャル照射パターンPでは、シーケンシャル照射パターンPの一周期Tsにおいて、照射パターンPa~Pcが順番に路面上に照射された後に照射パターンPa~Pcの全ての照射が停止される。シーケンシャル照射パターンPの周期Tsは、例えば、100msから500msの範囲内である。即ち、1分間におけるシーケンシャル照射パターンPの照射回数は、例えば、60回から600回の範囲内となる。特に、シーケンシャル照射パターンPの周期Tsは、シーケンシャルターンランプの順次点灯周期と同一であってもよい。
 図4に示すように、照射パターンPaのみが路面に照射される照射時間をTa、照射パターンPa,Pbの2つが路面に照射される照射時間をTb、照射パターンPa~Pcの全てが路面に照射される照射時間をTc、照射パターンPa~Pcの全ての照射が停止される停止時間をToffとした場合に、シーケンシャル照射パターンPの一周期Tsは、Ts=Ta+Tb+Tc+Toffとなる。
 また、照明ユニット45Lから最も離れた位置に照射される照射パターンPcの明るさ(照度)は、照明ユニット45Lから最も近い位置に照射される照射パターンPaの明るさ(照度)よりも低くなる。このため、車両1の周辺に存在する歩行者H(図3C等参照)に対する照射パターンPcの視認性は、照射パターンPaの視認性と比較すると、相対的に低くなりがちとなる。このため、車両1の死角に存在する歩行者Hは、シーケンシャル照射パターンPの存在に気付きにくくなり、車両1の存在に気付きにくくなる。
 一方、本実施形態では、制御部46Lは、照射パターンPcの視認性が向上するように照明ユニット45Lを制御するように構成されている。具体的には、制御部46Lは、照射パターンPcが照射される照射時間Tcが照射時間Ta,Tbよりも長くなるように、照明ユニット45Lを制御している。このように、照射時間Tcが照射時間Ta,Tbよりも長くなるように設定されているため、車両1の周辺に存在する歩行者Hに対する照射パターンPcの視認性が向上し、歩行者Hに対するシーケンシャル照射パターンPの視認性が向上する。この結果として、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
 また、図4に示すタイミングチャートでは、Tc>Toff>Ta=Tbとなる。特に、Ta+Tb+Tc=3Ts/4となると共に、Toff=Ts/4となるように、各照射時間と停止時間が設定されている。この点において、通常想定されるシーケンシャル照射パターンでは、Ta=Tb=Tc=Toff=Ts/4となるところ、本実施形態では、照射時間Ta,Tbの各々がTs/4よりも小さくなるように設定されると共に、照射時間TcがTs/4よりも大きくなるように設定されている。このように、照射パターンPa,Pbの視認性に対して照射パターンPcの視認性を向上させることが可能となる。
(シーケンシャル照射パターンPcの視認性を向上させるための第2の手法)
 次に、図5を参照して照射パターンPcの視認性を向上させるための第2の手法について以下に説明する。図5は、路面に照射された遠位側照射パターンPcが振動している様子を示す図である。図5に示すように、制御部46Lは、照射パターンPcがD1方向に直交するD2方向において振動するように照明ユニット45Lを制御してもよい。
 例えば、制御部46Lは、照明ユニット45Lを構成するハウジングを物理的に振動させることで、照射パターンPcをD2方向に振動させてもよい。また、照明ユニット45Lの描画方式としてスキャン方式が採用される場合に、制御部46Lは、照射パターンPcがD2方向において振動するように照明ユニット45Lに設けられた駆動ミラーの駆動を制御してもよい。照射パターンPcの振動周波数は、例えば、5Hzから10Hzの範囲内であってもよい。この点において、振動周波数が5Hzから10Hzの範囲内に設定される場合、振動する照射パターンPcが人の注意を引きやすくなり、照射パターンPcの視認性をより向上させることが可能となる。また、照射時間Tcを照射時間Ta,Tcよりも大きくすると共に、照射パターンPcを振動させることで、歩行者Hに対する照射パターンPcの視認性をさらに向上させることができる。このように、照射パターンPcの視認性の向上によってシーケンシャル照射パターンPの視認性を向上させることができる。この結果、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
 尚、本例では、照射パターンPcはD2方向に振動しているが、照射パターンPcはD1方向に振動してもよい。このように、照射パターンPcが振動する方向は特に限定されるものではない。また、照射パターンPcが振動する場合には、照射時間Tcは照射時間Ta,Tbよりも長く設定されなくてもよい。
(シーケンシャル照射パターンPcの視認性を向上させるための第3の手法)
 次に、図6を参照して照射パターンPcの視認性を向上させるための第3の手法について以下に説明する。図6は、互いに分離した複数の矩形状の照射パターンPc1~Pc3により構成された遠位側照射パターンPcを示す図である。図6に示すように、照射パターンPcの形状は、照射パターンPa,Pbの形状とは相違している。特に、照射パターンPa,Pbの各々は、単一の矩形状の照射パターンによって構成されている一方で、照射パターンPcは、3つの矩形状の照射パターンPc1~Pc3により構成されている。照射パターンPc1~Pc3は、D1方向に整列すると共に、互いに分離している。
 制御部46Lは、照射パターンPa,Pbが単一の矩形状の照射パターンによって構成されると共に、照射パターンPcが複数の照射パターンPc1~Pc3によって構成されるように、照明ユニット45Lの駆動を制御してもよい。照射パターンPcが複数の照射パターンPc1~Pc3によって構成されるため、照射パターンPcに対する歩行者Hの視認性が向上する。この結果として、シーケンシャル照射パターンPの視認性が向上するので、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
 本例では、照射パターンPc1~Pc3は、同一タイミングで路面上に照射されてもよいし、異なるタイミングで路面上に照射されてもよい。例えば、照射パターンPc1~Pc3は、シーケンシャル照射パターンとして路面上に順次照射されてもよい。照射パターンPc1~Pc3がシーケンシャル照射パターンとして路面上に順番に照射される場合には、照射パターンPcの視認性をさらに向上させることが可能となる。さらに、照射パターンPcが複数の照射パターンPc1~Pc3によって構成される場合に、照射時間Tcを調整しつつ、照射パターンPcを振動させてもよい。この場合も同様に、照射パターンPcの視認性をさらに向上させることが可能となる。一方で、照射パターンPcが複数の照射パターンPc1~Pc3によって構成される場合に、照射時間Tcは照射時間Ta,Tbよりも長くなくてもよいと共に、照射パターンPcは振動しなくてもよい。
(シーケンシャル照射パターンPcの視認性を向上させるための第4の手法)
 次に、図7から図10Bを参照して、シーケンシャル照射パターンPcの視認性を向上させるための第4の手法について以下に説明する。本例でも同様に、車両1に搭載された照明ユニット45Lは、図3A~図3Dに示すシーケンシャル照射パターンPを路面に照射するものとする。図7は、シーケンシャル照射パターンPのうち近位側照射パターンPa、中間側照射パターンPb及び遠位側照射パターンPcの照射タイミングを説明するためのタイミングチャートを示す図である。
 図7に示すように、照射パターンPaのみが路面に照射される照射時間をTa、照射パターンPa,Pbの2つが路面に照射される照射時間をTb、照射パターンPa~Pcの全てが路面に照射される照射時間をTc、照射パターンPa~Pcの全ての照射が停止される停止時間をToffとした場合に、シーケンシャル照射パターンPの一周期Tsは、Ts=Ta+Tb+Tc+Toffとなる。
 照射時間Taは、照射パターンPaの照射が開始される開始時間t1および照射パターンPbの照射が開始される開始時間t2によって規定される。照射時間Tbは、開始時間t2および照射パターンPcの照射が開始される開始時間t3によって規定される。照射時間Tcは、開始時間t3および照射パターンPa,Pb,Pcの照射が停止される停止時間t4によって規定される。
 照射パターンPaでは、開始時間t1から所定時間tnまでの間における照射パターンPaの視認性が所定時間tnから停止時間t4までの間における照射パターンPaの視認性よりも高くなる。照射パターンPbでも同様に、開始時間t2から所定時間tnまでの間における照射パターンPbの視認性が所定時間tnから停止時間t4までの間における照射パターンPbの視認性よりも高くなる。照射パターンPcにおいても、開始時間t3から所定時間tnまでの間における照射パターンPcの視認性が所定時間tnから停止時間t4までの間における照射パターンPcの視認性よりも高くなる。開始時間t1,t2,t3と所定時間tnとの間の時間帯ΔTは、例えば、1msから200msの範囲内となる。
 この点において、時間帯ΔTが長くなる程、照射パターンの視認性が高くなる一方で、照明ユニット45Lの光源部120によって消費される消費電力が大きくなる。その一方で、時間帯ΔTが短くなる程、照射パターンの視認性が低くなる一方で、光源部120によって消費される消費電力は小さくなる。本実施形態では、照射パターンの視認性と光源部120の消費電力の2つの事項に着目することで、所定の時間帯ΔTが設定されている。
 次に、図9Aから図10Bを参照して、照射パターンの照射が開始される開始時間から所定時間tnとの間の時間帯ΔTにおいて照射パターンの視認性を向上させるための手法について以下に説明する。本例では、開始時間t3から所定時間tnとの間の時間帯ΔTにおいて照射パターンPcの視認性を向上させるための手法について説明する。時間帯ΔTにおける照射パターンPa,Pbの視認性を向上させるための手法は、時間帯ΔTにおける照射パターンPcの視認性を向上させるための手法と同一であるため、その説明については本明細書では割愛する。
(各発光素子に供給される電流が直流電流である場合)
 最初に、図9A及び図9Bを参照して、光源部120の発光素子123に供給される電流が直流電流である場合に、開始時間t3から所定時間tnとの間の時間帯ΔTにおいて照射パターンPcの視認性を向上させるための手法について説明する。図9Aは、照射パターンPcの照射が開始された開始時間t3から照射パターンPcの照射が停止される停止時間t4までの時間帯において、発光素子123に供給される直流電流の時間的変化を説明するための概念図である。図9Bは、直流電流を発光素子123に供給する電流制御回路42Lの構成の一部を説明するための図である。
 図9Aに示すように、制御部46Lは、開始時間t3から所定時間tnまでの間における照射パターンPcの視認性が所定時間tnから停止時間t4までの間における照射パターンPcの視認性よりも高くなるように発光素子123に供給される電流を調整する。具体的には、制御部46Lは、開始時間t3から所定時間tnまでの間における照射パターンPcの明るさ(照度)が所定時間tnから停止時間t4までの間における照射パターンPcの明るさ(照度)よりも大きくなるように発光素子123に供給される電流を調整する。より具体的には、制御部46Lは、開始時間t3から所定時間tnの間における発光素子123に供給される直流電流の値が所定時間tnから停止時間t4の間における発光素子123に供給される直流電流の値よりも大きくなるように、発光素子123に供給される直流電流を調整する。
 即ち、制御部46Lは、時間帯ΔTにおける照射パターンPcの視認性を向上させるために、時間帯ΔTにおける発光素子123に供給される直流電流の値を大きくするように構成されている。図9Aに示すように、電流制御回路42Lは、時間帯ΔTにおいて瞬間的に大きな直流電流を発光素子123に供給することで、時間帯ΔTにおける照射パターンPcの明るさを大きくする。このように、時間帯ΔTにおける照射パターンPcの視認性を高くすることが可能となる。時間帯ΔTにおけるピーク電流値I2は、定常状態における電流値I1のN倍(1<N<5)大きくなってもよい。
 時間帯ΔTにおいてピーク電流値I2を発生させるために、電流制御回路42Lは、抵抗とコンデンサとによって構成されるピーキング回路を含んでもよい(図9B参照)。図9Bに示すように、抵抗R1によって発光素子123に供給される電流値I1が決定される。一方、抵抗R2によってピーク電流値I2が決定されると共に、コンデンサC1の静電容量によってピーク電流値I2に関連するピーク波形の幅(減衰時間)が決定される。抵抗R2が小さくなるとピーク電流値I2が大きくなる一方で、抵抗R2が大きくなるとピーク電流値I2が小さくなる。また、コンデンサC1の静電容量が小さくなるとピーク波形の幅が小さくなる一方で、静電容量が大きくなるとピーク波形の幅が大きくなる。このように、各素子の値を調整することで、時間帯ΔTにおいて最適な電流波形を設定することができる。
 本例によれば、時間帯ΔTにおいて瞬間的に大きな直流電流が発光素子123に供給されるため、時間帯ΔTにおける照射パターンPcの明るさが大きくなる。このように、車両1の周辺に存在する歩行者Hは路面上に照射された照射パターンPcの存在に気付きやすくなるため、歩行者Hに対する照射パターンPcの視認性が向上する。この結果、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
(各発光素子に供給される電流がパルス電流である場合)
 次に、図10A及び図10Bを参照して、光源部120の発光素子123に供給される電流がパルス電流である場合に、開始時間t3から所定時間tnとの間の時間帯ΔTにおいて照射パターンPcの視認性を向上させるための手法について説明する。図10Aは、開始時間t3から停止時間t4までの時間帯における、発光素子123に供給されるパルス電流の一例を説明するための概念図である。図10Bは、開始時間t3から停止時間t4までの時間帯における、発光素子123に供給されるパルス電流の他の一例を説明するための概念図である。
 上記したように、発光素子123にパルス電流が供給される場合には、制御部46Lの電流制御回路42Lは、DC/DCコンバータ(例えば、スイッチングレギュレータ等)と、PWM制御回路を備えてもよい。
 最初に、図10Aに示すようなパルス電流が発光素子123に供給される例について以下に説明する。図10Aに示すように、制御部46Lは、開始時間t3から所定時間tnまでの時間帯ΔTにおける照射パターンPcの視認性を向上させるために、時間帯ΔTにおける発光素子123に供給されるパルス電流の値I4を大きくするように構成されている。具体的には、電流制御回路42Lは、時間帯ΔTにおける発光素子123に供給されるパルス電流の値I4が所定時間tnから停止時間t4までの間における発光素子123に供給されるパルス電流の値I3よりも大きくなるようにパルス電流を調整するように構成されている。ここで、時間帯ΔTにおけるパルス電流の値I4は、所定時間tnから停止時間t4の間におけるパルス電流の値I3のN倍(1<N<5)となってもよい。一方で、時間帯ΔTにおけるパルス電流のDUTY比は、所定時間tnから停止時間t4の間におけるパルス電流のDUTY比と同じとなる。この場合、DUTY比は、例えば50%となる。
 このように、時間帯ΔTにおける照射パターンPcの明るさ(照度)が所定時間tnから停止時間t4までの間における照射パターンPcの明るさ(照度)よりも大きくなるため、時間帯ΔTにおける照射パターンPcの視認性が所定時間tnから停止時間t4までの間における照射パターンPcの視認性よりも高くなる。
 図10Aに示す例によれば、時間帯ΔTにおいて発光素子123に供給されるパルス電流の値が大きくなるため、時間帯ΔTにおける照射パターンPcの明るさが大きくなる。このように、車両1の周辺に存在する歩行者Hは路面上に照射された照射パターンPcの存在に気付きやすくなるため、歩行者Hに対する照射パターンPcの視認性が向上する。この結果、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
 次に、図10Bに示すようなパルス電流が発光素子123に供給される例について以下に説明する。図10Bに示すように、制御部46Lは、開始時間t3から所定時間tnまでの時間帯ΔTにおける照射パターンPcの視認性を向上させるために、時間帯ΔTにおける発光素子123に供給されるパルス電流の値I4を大きくする一方で、当該パルス電流のDUTY比を小さくするように構成されている。具体的には、電流制御回路42Lは、時間帯ΔTにおける発光素子123に供給されるパルス電流の値I4が所定時間tnから停止時間t4までの間における発光素子123に供給されるパルス電流の値I3よりも大きくなるようにパルス電流を調整するように構成されている。さらに、電流制御回路42Lは、時間帯ΔTにおける発光素子123に供給されるパルス電流のDUTY比が所定時間tnから停止時間t4までの間における発光素子123に供給されるパルス電流のDUTY比よりも小さくなるようにパルス電流を調整するように構成されている。
 時間帯ΔTにおけるパルス電流の値I4は、所定時間tnから停止時間t4の間におけるパルス電流の値I3のN倍(1<N<5)となってもよい。一方で、時間帯ΔTにおけるパルス電流のDUTY比は、所定時間tnから停止時間t4の間におけるパルス電流のDUTY比の1/N倍となってもよい。この場合、時間帯ΔTにおける(パルス電流の値)×(DUTY比)によって算出される値は、所定時間tnから停止時間t4の間における(パルス電流の値)×(DUTY比)によって算出される値と同一となる。このため、時間帯ΔTにおける照射パターンPcの実効的な明るさは、所定時間tnから停止時間t4の間における照射パターンPの実効的な明るさと同一となる。
 例えば、パルス電流の値I4がパルス電流の値I3の2.5倍である場合に、時間帯ΔTにおけるパルス電流のDUTY比が20%となる一方で、所定時間tnから停止時間t4の間におけるパルス電流のDUTY比は50%となってもよい。
 また、照射パターンの瞬間的な光強度が高くなる程、人間の目に対する照射パターンの視認性が高くなるとともに、照射パターンの点滅周期が長くなる程、人間の目に対する照射パターンの視認性が高くなることが実験的に知られている。このため、本例では、時間帯ΔTにおいて、パルス電流の値を大きくしつつ、パルス電流のDUTY比を低くしている。
 このように、開始時間t3から停止時間t4までの間における照射パターンPcの実効的な明るさを略一定に維持しつつ、開始時間t3から所定時間tnの間の時間帯ΔTにおける照射パターンPcの視認性を所定時間tnから停止時間t4までの間における照射パターンPcの視認性よりも高くすることができる。したがって、車両1の周辺に存在する歩行者Hは路面上に照射された照射パターンPcの存在に気付きやすくなるため、歩行者Hに対する照射パターンPcの視認性が向上する。この結果、歩行者Hは、シーケンシャル照射パターンPを通じて車両1の存在や動作を明確に把握することができる。
 以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
 例えば、本実施形態では、車両1の動作の一例として、車両1の左折動作の際に路面に照射されるシーケンシャル照射パターンPについて主に説明している。一方で、車両1の他の動作(右折、前進、後進等)の際に路面上に照射されるシーケンシャル照射パターンについても上記シーケンシャル照射パターンPと同様の特徴を有する点に留意されたい。即ち、車両1の他の動作の際においても、遠位側照射パターンの視認性が向上したシーケンシャル照射パターンが路面上に照射される。さらに、車両1の他の動作の際においても、照射開始時間から所定時間tnまでの間の時間帯ΔTにおいて各照射パターンの視認性が向上する。
 また、本実施形態では、光照射システムが車両1に設けられているが、光照射システムは車両1以外の機器(例えば、信号機や街路灯等の交通インフラ設備)に設けられてもよい。
 本出願は、2020年12月25日に出願された日本国特許出願(特願2020-217242号)に開示された内容及び2020年12月25日に出願された日本国特許出願(特願2020-217243号)に開示された内容を適宜援用する。

Claims (18)

  1.  光照射システムであって、
     路面にシーケンシャル照射パターンを照射するように構成された照明ユニットと、
     前記シーケンシャル照射パターンが前記路面に照射されるように前記照明ユニットを制御するように構成された制御部と、を備え、
     前記シーケンシャル照射パターンは、第1の照射パターンと、前記第1の照射パターンよりも前記照明ユニットから離れた位置に照射される第2の照射パターンとを有し、
     前記第2の照射パターンは、前記第1の照射パターンが前記路面に照射された後に前記路面に照射され、
     前記制御部は、前記照明ユニットの周辺に存在する対象物に対する前記第2の照射パターンの視認性が向上するように前記照明ユニットを制御するように構成されている、光照射システム。
  2.  前記照明ユニットは、前記第1の照射パターンを前記路面に照射した後に前記第1の照射パターン及び前記第2の照射パターンの両方を前記路面に照射するように構成され、
     前記シーケンシャル照射パターンの一周期において、前記第1の照射パターン及び前記第2の照射パターンの両方が前記路面に照射される照射時間T2は、前記第1の照射パターンが前記路面に照射される照射時間T1よりも長い、請求項1に記載の光照射システム。
  3.  前記照明ユニットは、前記シーケンシャル照射パターンの一周期において、前記第1の照射パターンを前記路面に照射した後に前記第1の照射パターン及び前記第2の照射パターンの両方を前記路面に照射し、その後前記第1の照射パターン及び前記第2の照射パターンの両方の照射を停止するように構成され、
     前記シーケンシャル照射パターンの一周期において、前記第1の照射パターン及び前記第2の照射パターンの両方の照射が停止される停止時間Toffと、前記照射時間T1,T2は、T2>Toff>T1の関係を満たす、請求項1又は2に記載の光照射システム。
  4.  前記光照射システムは、車両に設けられ、
     前記照明ユニットは、前記車両の右折、左折若しくは後進を示す情報を前記車両の外部に向けて提示するように、前記車両の周囲の路面に前記シーケンシャル照射パターンを照射するように構成されている、請求項1から3のうちいずれか一項に記載の光照射システム。
  5.  前記制御部は、前記路面に照射された前記第2の照射パターンが振動するように前記照明ユニットを制御するように構成されている、請求項1から4のうちいずれか一項に記載の光照射システム。
  6.  前記路面に照射された前記第2の照射パターンは、前記シーケンシャル照射パターンの延出方向に直交する方向において振動する、請求項5に記載の光照射システム。
  7.  前記制御部は、前記第2の照射パターンの形状が前記第1の照射パターンの形状とは異なるように前記照明ユニットを制御するように構成されている、請求項1から6のうちいずれか一項に記載の光照射システム。
  8.  前記第2の照射パターンは、互いに分離した複数の矩形状の照射パターンによって構成され、
     前記第1の照射パターンは、単一の矩形状の照射パターンにより構成されている、
    請求項7に記載の光照射システム。
  9.  路面にシーケンシャル照射パターンを照射するように構成された照明ユニットであって、
     前記シーケンシャル照射パターンは、第1の照射パターンと、前記第1の照射パターンよりも前記照明ユニットから離れた位置に照射される第2の照射パターンとを有し、
     前記第2の照射パターンは、前記第1の照射パターンが前記路面に照射された後に前記路面に照射され、
     前記照明ユニットは、前記照明ユニットの周辺に存在する対象物に対する前記第2の照射パターンの視認性が向上するように前記シーケンシャル照射パターンを照射するように構成されている、照明ユニット。
  10.  路面に照射パターンを照射するように構成された照明ユニットと、
     前記照射パターンが前記路面に照射されるように前記照明ユニットを制御するように構成された制御部と、を備え、
     前記制御部は、前記照射パターンの照射が開始された開始時間から所定時間の間における前記照射パターンの視認性が前記所定時間から前記照射パターンの照射が停止される停止時間までの間における前記照射パターンの視認性よりも高くなるように、前記照明ユニットを制御するように構成される、光照射システム。
  11.  前記照明ユニットは、前記照射パターンを形成する光を出射するように構成された光源部を備え、
     前記制御部は、前記開始時間から前記所定時間の間における前記照射パターンの視認性が前記所定時間から前記停止時間までの間における前記照射パターンの視認性よりも高くなるように前記光源部に供給される電流を調整するように構成されている、請求項10に記載の光照射システム。
  12.  前記光源部に供給される電流は、直流電流であって、
     前記制御部は、前記開始時間から前記所定時間の間における前記照射パターンの明るさが前記所定時間から前記停止時間までの間における前記照射パターンの明るさよりも大きくなるように前記光源部に供給される直流電流を調整するように構成されている、請求項11に記載の光照射システム。
  13.  前記制御部は、前記開始時間から前記所定時間の間における前記光源部に供給される直流電流の値が前記所定時間から前記停止時間の間における前記光源部に供給される直流電流の値よりも大きくなるように、前記光源部に供給される直流電流を調整するように構成されている、請求項12に記載の光照射システム。
  14.  前記光源部に供給される電流は、パルス電流である、
    請求項11に記載の光照射システム。
  15.  前記制御部は、前記開始時間から前記所定時間の間における前記光源部に供給されるパルス電流の値が前記所定時間から前記停止時間の間における前記光源部に供給されるパルス電流の値よりも大きくなるように、前記光源部に供給されるパルス電流を調整するように構成されている、請求項14に記載の光照射システム。
  16.  前記制御部は、前記開始時間から前記所定時間の間における前記光源部に供給されるパルス電流のDUTY比が前記所定時間から前記停止時間の間における前記光源部に供給されるパルス電流のDUTY比よりも小さくなるように、前記光源部に供給されるパルス電流を調整するように構成されている、請求項15に記載の光照射システム。
  17.  前記開始時間から前記所定時間までの間の時間帯は、1msから200msの範囲内である、請求項10から16のうちいずれか一項に記載の光照射システム。
  18.  路面に照射パターンを照射するように構成された照明ユニットであって、
     前記照明ユニットは、前記照射パターンの照射が開始された開始時間から所定時間の間における前記照射パターンの視認性が前記所定時間から前記照射パターンの照射が停止される停止時間までの間における前記照射パターンの視認性よりも高くなるように、前記照射パターンを前記路面に照射するように構成されている、照明ユニット。
     
     
PCT/JP2021/043630 2020-12-25 2021-11-29 光照射システム及び照明ユニット WO2022137995A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572017A JPWO2022137995A1 (ja) 2020-12-25 2021-11-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020217242 2020-12-25
JP2020-217242 2020-12-25
JP2020217243 2020-12-25
JP2020-217243 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022137995A1 true WO2022137995A1 (ja) 2022-06-30

Family

ID=82157695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043630 WO2022137995A1 (ja) 2020-12-25 2021-11-29 光照射システム及び照明ユニット

Country Status (2)

Country Link
JP (1) JPWO2022137995A1 (ja)
WO (1) WO2022137995A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149152A (ja) * 2007-12-19 2009-07-09 Toyota Central R&D Labs Inc 情報表示装置
JP2009248598A (ja) * 2008-04-01 2009-10-29 Toyota Motor Corp 路面描写装置
JP2017222259A (ja) * 2016-06-15 2017-12-21 スタンレー電気株式会社 車両用灯具の点灯制御装置、車両用灯具システム
WO2018138842A1 (ja) * 2017-01-26 2018-08-02 三菱電機株式会社 照射制御装置および照射方法
WO2019053890A1 (ja) * 2017-09-15 2019-03-21 三菱電機株式会社 照射装置および照射方法
JP2019182275A (ja) * 2018-04-12 2019-10-24 マクセル株式会社 光学装置および進行方向表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149152A (ja) * 2007-12-19 2009-07-09 Toyota Central R&D Labs Inc 情報表示装置
JP2009248598A (ja) * 2008-04-01 2009-10-29 Toyota Motor Corp 路面描写装置
JP2017222259A (ja) * 2016-06-15 2017-12-21 スタンレー電気株式会社 車両用灯具の点灯制御装置、車両用灯具システム
WO2018138842A1 (ja) * 2017-01-26 2018-08-02 三菱電機株式会社 照射制御装置および照射方法
WO2019053890A1 (ja) * 2017-09-15 2019-03-21 三菱電機株式会社 照射装置および照射方法
JP2019182275A (ja) * 2018-04-12 2019-10-24 マクセル株式会社 光学装置および進行方向表示装置

Also Published As

Publication number Publication date
JPWO2022137995A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US10676023B2 (en) Vehicle lighting system, vehicle system, and vehicle
US10602331B2 (en) Inter-vehicle communication system, vehicle system, vehicle illumination system and vehicle
JP7152413B2 (ja) センシングシステム及び車両
JP7235659B2 (ja) 車両用照明システム及び車両
JP6970612B2 (ja) 車両用照明システム及び車両
JP7043256B2 (ja) 車両用照明システム及び車両
US10933802B2 (en) Vehicle illumination system and vehicle
JP7282789B2 (ja) 車両用表示システム、車両システム及び車両
JPWO2020031917A1 (ja) 車両用表示システム及び車両
WO2018123429A1 (ja) 照明装置
WO2021065617A1 (ja) 車両用表示システム及び車両
JP7273839B2 (ja) 灯具システム
JP7295863B2 (ja) 車両用表示システム及び車両
WO2022137995A1 (ja) 光照射システム及び照明ユニット
JP6980553B2 (ja) 車両用照明システム及び車両
WO2023085000A1 (ja) 路面描画ランプおよび路面描画ランプシステム
JP2019159772A (ja) 車両システム
US20240059214A1 (en) Vehicle projection device, control method therefor, and vehicle lamp
JP2022022556A (ja) 車両用灯具
JP2020144777A (ja) 車両システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910147

Country of ref document: EP

Kind code of ref document: A1