WO2022137784A1 - Estimation system, estimation method, and program - Google Patents

Estimation system, estimation method, and program Download PDF

Info

Publication number
WO2022137784A1
WO2022137784A1 PCT/JP2021/039459 JP2021039459W WO2022137784A1 WO 2022137784 A1 WO2022137784 A1 WO 2022137784A1 JP 2021039459 W JP2021039459 W JP 2021039459W WO 2022137784 A1 WO2022137784 A1 WO 2022137784A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
transmitter
virtual
signal
point
Prior art date
Application number
PCT/JP2021/039459
Other languages
French (fr)
Japanese (ja)
Inventor
真理 中西
厚志 武居
一弘 松本
伸之 柴野
尚樹 本間
和希 小野寺
敬 勝又
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022571914A priority Critical patent/JPWO2022137784A1/ja
Publication of WO2022137784A1 publication Critical patent/WO2022137784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to an estimation system, an estimation method and a program, and more particularly to an estimation system having a plurality of antennas, an estimation method and a program.
  • Patent Document 1 describes a communication terminal device that estimates the arrival direction of a beacon signal (radio signal).
  • the communication terminal device (receiver) described in Patent Document 1 is a beacon signal transmitted by a beacon device (transmitter) based on the signal strength (RSSI: Received Signal Strength Indicator) of a radio signal received by a plurality of antennas. Estimate the direction of arrival.
  • RSSI Received Signal Strength Indicator
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-216567
  • a plurality of (for example, four) receivers are required when estimating the transmission position of the radio signal.
  • the present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide an estimation system, an estimation method, and a program capable of reducing the number of antennas when estimating the position of a target device.
  • the estimation system includes a receiver, an estimation unit, a first storage unit, and a second storage unit.
  • the receiver has a plurality of antennas.
  • the plurality of antennas receive the radio signal transmitted from the transmitter.
  • the receiver performs phase synthesis processing on the radio signals received by the plurality of antennas to generate a plurality of composite signals.
  • the estimation unit estimates the position of the transmitter in a predetermined area.
  • the first storage unit stores a plurality of position information.
  • the plurality of position information indicates a plurality of positions at a plurality of candidate points for estimating the position of the transmitter.
  • the second storage unit stores a plurality of quasi-theoretical values.
  • the plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points.
  • the estimation unit estimates the position of the transmitter in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the plurality of signal intensities in the plurality of synthesized signals.
  • the estimation system includes a transmitter, an acquisition unit, an estimation unit, a first storage unit, and a second storage unit.
  • the transmitter performs phase synthesis processing on a plurality of original signals to generate a plurality of radio signals, and transmits the plurality of radio signals from a plurality of antennas.
  • the acquisition unit acquires information on a plurality of signal strengths in the plurality of radio signals received by a receiver existing in a predetermined area.
  • the estimation unit estimates the position of the receiver within the predetermined area.
  • the first storage unit stores a plurality of position information.
  • the plurality of position information indicates a plurality of positions at a plurality of candidate points for estimating the position of the receiver.
  • the second storage unit stores a plurality of quasi-theoretical values.
  • the plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is received at each of the plurality of candidate points.
  • the estimation unit determines the position of the receiver in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the information of the plurality of signal strengths acquired by the acquisition unit. To estimate.
  • the estimation method includes a reception step, a generation step, and an estimation step.
  • the reception step the receiver receives the radio signal transmitted by the transmitter.
  • the receiver has a plurality of antennas.
  • a phase synthesis process is performed on the radio signal received in the reception step to generate a plurality of composite signals.
  • the estimation step the position of the transmitter within a predetermined area is estimated.
  • the position of the transmitter in the predetermined region is estimated based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in the plurality of synthesized signals.
  • the plurality of position information indicates the positions of a plurality of candidate points for estimating the position of the transmitter in the predetermined area.
  • the plurality of position information is information stored in advance.
  • the plurality of quasi-theoretical values have a one-to-one correspondence with each of the plurality of position information.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points.
  • the plurality of quasi-theoretical values are stored in advance.
  • the estimation method includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step.
  • the receiver receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter installed in the predetermined area.
  • the receiver has a plurality of antennas.
  • a virtual receiving point or a virtual transmitting point is set from the position information of the receiver and the reference transmitter and the signal strength of the reference signal.
  • the virtual receiving point can be regarded as having received the reflected wave.
  • the virtual transmission point can be regarded as transmitting the reflected wave.
  • a plurality of quasi-theoretical values are stored in the storage unit based on the position information of the receiver and the position information of the virtual receiving point or the virtual transmitting point.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the transmitter transmits a radio signal at each of the plurality of candidate points in the predetermined region.
  • the receiver receives the radio signal transmitted by the transmitter.
  • the position of the candidate point corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver in the second receiving step is determined. , Presumed to be the position of the transmitter.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the estimation method.
  • FIG. 1A is a schematic diagram showing an outline of the estimation system and the transmitter according to the first embodiment.
  • FIG. 1B is an enlarged schematic view of the estimation system in FIG. 1A.
  • FIG. 2 is a block diagram showing the functional configuration of the estimation system of the same.
  • FIG. 3 is a schematic diagram showing an outline of a virtual receiving point according to the estimation system of the same.
  • FIG. 4 is a schematic diagram showing an outline of a plurality of virtual receiving points related to the above estimation system.
  • FIG. 5 is a schematic diagram showing an outline of a plurality of candidate points and a plurality of virtual receiving points related to the same estimation system.
  • FIG. 6 is a schematic diagram showing an outline of a plurality of virtual receiving points according to the estimation system of the modified example.
  • FIG. 7 is a schematic diagram showing an outline of virtual transmission points according to the estimation system of the modified example.
  • FIG. 8A is a schematic diagram showing an outline of the estimation system and the receiver according to the second embodiment.
  • FIG. 8B is an enlarged schematic view of the estimation system in FIG. 8A.
  • FIG. 9 is a block diagram showing the functional configuration of the estimation system as described above.
  • FIG. 10 is a schematic diagram showing an outline of a virtual receiving point according to the estimation system of the same.
  • the estimation system 1 is used as a positioning system (LPS: Local Positioning System) for measuring the position of a transmitter 5 that transmits a radio signal using radio waves as a medium in a predetermined area A1 in the facility.
  • LPS Local Positioning System
  • the "facility" referred to in the present disclosure is, for example, an office building, a factory, a commercial complex, a museum, a play facility, a theme park, an airport, a railway station, a dome stadium, a hotel, a residence, etc., and the site and its site. Including buildings built in.
  • the "facility” may be, for example, a moving body such as a ship or a railroad vehicle.
  • the "predetermined area” referred to in the present disclosure is a room or the like in a facility, and is an area including a reflector that reflects a radio signal transmitted by the transmitter 5.
  • a case where the estimation system 1 is applied in a predetermined area A1 which is a room in a facility such as an office building will be described as an example.
  • the four corners of the room are surrounded by the wall 6.
  • the wall 6 of the present embodiment is a reflector that reflects a radio signal transmitted by the transmitter 5.
  • the transmitter 5 of the present embodiment is composed of, for example, a beacon device that transmits a beacon signal (wireless signal) according to the standard of BLE (Bluetooth (registered trademark) Low Energy) (hereinafter, referred to as “BLE”). Will be done.
  • BLE Bluetooth (registered trademark) Low Energy)
  • the transmitter 5 transmits a wireless signal from the transmitting antenna.
  • the radio signal transmitted by the transmitter 5 of the present embodiment includes information such as identification information of the transmitter 5.
  • the estimation system 1 includes a plurality of antennas 21 (three in the example of FIG. 1B) for receiving the radio signal transmitted by the transmitter 5.
  • the three antennas 21 of the present embodiment are array antennas including the antenna 21a, the antenna 21b, and the antenna 21c.
  • the antennas 21a, 21b, and 21c are described separately. Further, when each of the three antennas 21 is described without distinction, it is simply described as the antenna 21.
  • the estimation system 1 of the present embodiment is composed of a system capable of receiving a radio signal according to the BLE standard with three antennas 21.
  • the estimation system 1 of the present embodiment can estimate the position of the transmitter 5 that has transmitted the radio signal based on the signal strength (RSSI) of the radio signal received by the three antennas 21.
  • RSSI signal strength
  • the estimation system 1 of the present embodiment includes a receiver 2, an estimation unit 3, and a storage unit 4.
  • the receiver 2 receives the radio signal transmitted by the transmitter 5 (see FIG. 1A). Upon receiving the radio signal, the receiver 2 generates a plurality of (four in the example of FIG. 2) combined signals SS1 to SS4 for estimating the position of the transmitter 5 based on the radio signal. The receiver 2 outputs the four generated combined signals SS1 to SS4 to the estimation unit 3. The details of the receiver 2 will be described in the column of "(2.3) Configuration of receiver".
  • the estimation unit 3 is a transmitter based on the four signal strengths of the four synthetic signals SS1 to SS4 output from the receiver 2 and the position information 41 and the quasi-theoretical value information 42 stored in the storage unit 4. Estimate the position of 5 (see FIG. 1A). The details of the estimation method in which the estimation unit 3 estimates the position of the transmitter 5 will be described in the column of "(3) Estimation method".
  • the storage unit 4 includes, for example, a non-temporary storage device such as a hard disk drive (HDD), a solid state drive (SSD), or an optical disk drive.
  • the storage unit 4 stores the position information 41 and the quasi-theoretical value information 42.
  • the position information 41 includes information indicating the positions of the receiver 2 (estimation system 1) and the reference transmitter 7 (see FIG. 3) described later in the predetermined area A1 (see FIG. 1A). As shown in FIG. 1A, the position information 41 of the present embodiment is coordinate information in a three-dimensional coordinate system. For example, the estimation system 1 of this embodiment is located at coordinates (1,1,1).
  • the quasi-theoretical value information 42 has a plurality of one-to-one correspondences with the position information indicating the positions of the plurality of candidate points P0 for estimating the position of the transmitter 5 in the predetermined area A1 (36 in the example of FIG. 1A).
  • Information on quasi-theoretical values (see Table 1).
  • the position information of the plurality of candidate points P0 of the present embodiment is the coordinate information in the three-dimensional coordinate system. For example, the coordinates of the candidate point P11 are (1,1,1), and the coordinates of the candidate point P66 are (6,6,1).
  • the quasi-theoretical value is a steering vector for obtaining the degree of correlation between the signal strength of the radio signal received by the estimation system 1 and the plurality of candidate points P0.
  • the quasi-theoretical value in this embodiment is calculated in advance using the reference transmitter 7 (reference beacon) arranged in the predetermined area A1.
  • the reference transmitter 7 is composed of, for example, a beacon device that transmits a beacon signal (radio signal) according to the BLE standard from a transmitting antenna.
  • the radio signal transmitted by the reference transmitter 7 is referred to as a "reference signal”.
  • the reference signal transmitted by the reference transmitter 7 of the present embodiment includes information such as identification information of the reference transmitter 7.
  • the reference transmitter 7 arranged at the coordinates (X1, Y1, Z1) in the predetermined region A1 including the wall 6 as a reflector transmits a reference signal
  • a part of the transmitted reference signal is directly transmitted.
  • a part of the reference signal transmitted after reaching the receiver 2 is reflected by the wall 6 and reaches the receiver 2.
  • a part of the radio signal transmitted by the reference transmitter 7 is reflected at the reflection point 8 of the wall 62 and reaches the receiver 2. Therefore, the signal strength of the reference signal observed by the receiver 2 is the sum of the direct wave and the reflected wave.
  • the "direct wave” is a radio signal (reference signal) transmitted by the transmitter 5 or the reference transmitter 7 directly from the source of the radio signal such as the transmitter 5 or the reference transmitter 7 (that is,). It is a radio signal received by the receiver 2 (without being reflected by a reflector such as a wall 6).
  • the "reflected wave” is a radio signal (reference signal) transmitted by the transmitter 5 and the reference transmitter 7, which is reflected by a reflector such as a wall 6 and then received by the receiver 2. ..
  • the direct wave is the reference signal received by the receiver 2 through the path a1
  • the reflected wave is the receiver through the paths a21 and a23. It is a reference signal received by 2.
  • the "path” referred to in the present disclosure is a path of a radio signal (reference signal). Further, the path between one point (first point) and another point (second point) is a vector from the first point to the second point, or the second point to the first point. It may be represented by a vector up to a point.
  • the estimation system 1 can estimate the arrival direction ⁇ 1 (see FIG. 1B) of the radio signal based on the signal strength of the received radio signal (reference signal), the radio signal obtained by adding the direct wave and the reflected wave. Path a0 can be estimated. Further, in the present embodiment, the information indicating the position (coordinates) of the receiver 2 and the information indicating the position of the reference transmitter 7 are included in the position information 41. Therefore, the estimation system 1 can calculate the direct wave path a1 in the reference signal transmitted from the reference transmitter 7 based on the position information of the receiver 2 and the reference transmitter 7.
  • the estimation system 1 can calculate the path a2 of the reflected wave based on the path a0 of the reference signal obtained by adding the direct wave and the reflected wave and the path a1 of the direct wave.
  • the estimation system 1 has a reflected wave path having the highest correlation between the signal strength of the received reference signal and the path a0 obtained by adding the direct wave path a1 and the reflected wave path a2.
  • the path a2 of the reflected wave in the present embodiment is a path between the virtual reception point V1 that can be regarded as having received the reference signal without the wall 62 (reflector) and the reference transmitter 7.
  • the virtual reception point V1 is located at a position facing the reference transmitter 7 via the reflection point 8 of the wall 62 that reflects the reference signal, and the length of the reference signal path a23 between the reflection point 8 and the receiver 2 and the length of the reference signal path a23. It is equal to the length of the reference signal path a22 between the reflection point 8 and the virtual reception point V1.
  • the reference transmitter 7, the reflection point 8 of the wall 62 that reflects the reference signal, and the virtual reception point V1 are aligned with each other.
  • the coordinates (X2, Y2, Z2) of the virtual receiving point V1 receive the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7, and the reference signal transmitted by the reference transmitter 7. It is set based on the signal strength when 2 is received.
  • the quasi-theoretical value is the sum of the radio signal path a1 between the candidate point P0 and the receiver 2 and the radio signal path a2 between the candidate point P0 and the virtual receiving point V1 corresponding to the candidate point P0. It is a combination.
  • the quasi-theoretical value information 42 is information in which such a quasi-theoretical value is associated with each candidate point P0. That is, a virtual receiving point V1 corresponding to each of the plurality of candidate points P0 is set in each of the plurality of candidate points P0 of the present embodiment.
  • each of the four reference transmitters 7a to 7d is not particularly distinguished, it is simply referred to as "reference transmitter 7".
  • the predetermined region A1 is divided into four regions A11 to A14 by two intersecting alternate long and short dash lines (two diagonal lines in the predetermined region A1).
  • the area A11 is an area in which many radio signals are reflected by the wall 61 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A11.
  • a reference transmitter 7a is installed in the area A11, and information indicating the position of the reference transmitter 7a is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7a, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7a.
  • the position of point V2 is set.
  • the virtual receiving point V2 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7a if there is no wall 61 (reflector).
  • the virtual receiving point V2 is a virtual receiving point corresponding to the area A11. Then, in each of the plurality of candidate points P0 in the region 11, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V2 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, the candidate point P36 has a radio signal path a1 between the candidate point P36 and the receiver 2 (estimation system 1), and between the candidate point P36 and the virtual reception point V2. A quasi-theoretical value obtained by adding the paths a2 of the radio signal is associated.
  • the area A12 is an area in which many radio signals are reflected by the wall 62 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A12.
  • a reference transmitter 7b is installed in the area A12, and information indicating the position of the reference transmitter 7b is included in the position information 41.
  • the position of the point V3 is set.
  • the virtual receiving point V3 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7b if there is no wall 62 (reflector).
  • the virtual receiving point V3 is a virtual receiving point corresponding to the area A12. Then, in each of the plurality of candidate points P0 in the region 12, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V3 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, at the candidate point P63, the wireless signal path a1 between the candidate point P63 and the receiver 2 and the wireless signal path a2 between the candidate point P63 and the virtual receiving point V3. The quasi-theoretical value obtained by adding the above is associated.
  • the area A13 is an area in which many radio signals are reflected by the wall 63 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A13.
  • a reference transmitter 7c is installed in the area A13, and information indicating the position of the reference transmitter 7c is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7c, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7c.
  • the position of the point V4 is set.
  • the virtual receiving point V4 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7c if there is no wall 63 (reflector).
  • the virtual receiving point V4 is a virtual receiving point corresponding to the area A13. Then, in each of the plurality of candidate points P0 in the region 13, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V4 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, at the candidate point P51, the wireless signal path a1 between the candidate point P51 and the receiver 2 and the wireless signal path a2 between the candidate point P51 and the virtual receiving point V4. The quasi-theoretical value obtained by adding the above is associated.
  • the area A14 is an area in which many radio signals are reflected by the wall 64 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A14.
  • a reference transmitter 7d is installed in the area A14, and information indicating the position of the reference transmitter 7d is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7d, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7d.
  • the position of the point V5 is set.
  • the virtual receiving point V5 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7d if there is no wall 64 (reflector).
  • the virtual receiving point V5 is a virtual receiving point corresponding to the area A14.
  • the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V5 A quasi-theoretical value obtained by adding the path a2 is associated.
  • the quasi-theoretical value obtained by adding the above is associated.
  • the estimation unit 3 Since the quasi-theoretical value is a value considering not only the direct wave received by the receiver 2 but also the reflected wave received by the receiver 2, the estimation unit 3 is not in the position direction of the transmitter 5 but in the position of the transmitter 5 (the position of the transmitter 5 ( It is a value that can be estimated (coordinates).
  • the estimation system 1 of the present embodiment estimates the position of the transmitter 5 in the predetermined region A1 by using such a quasi-theoretical value as a steering vector.
  • the receiver 2 includes three antennas 21, a phase synthesizer 22, and an output unit 24.
  • the three antennas 21 receive the radio signal transmitted by the transmitter 5 (see FIG. 1A).
  • the three antennas 21 When the three antennas 21 receive the radio signal, they output a plurality of (three in the example of FIG. 2) input signals IS1 to IS3 based on the radio signal to the phase synthesizer 22.
  • the antenna 21a outputs the input signal IS1 to the phase combiner 23a
  • the antenna 21b outputs the input signal IS2 to the phase synthesizer 23b
  • the antenna 21c outputs the input signal IS3 to the phase synthesizer 23c.
  • the phase synthesizing unit 22 performs synthesis processing on the three input signals IS1 to IS3 input from the three antennas 21, and a plurality of (four in the example of FIG. 2) for estimating the position of the transmitter 5. Generates the combined signals SS1 to SS4.
  • the phase synthesizer 22 includes a phase synthesizer 23a, a phase synthesizer 23b, a phase synthesizer 23c, a phase synthesizer 23d, and a phase synthesizer 23e.
  • the phase synthesizer 23 is composed of, for example, a 90-degree hybrid unit (hybrid element).
  • the phase synthesizer 23 of the present embodiment first outputs a signal having a power value 1 / ⁇ 2 times that of the three input signals IS1 to IS3 input to the first input terminal I1 and the second input terminal I2.
  • phase synthesizer 23 outputs a signal having the same phase from the first output terminal O1 as compared with the three input signals IS1 to IS3 input to the first input terminal I1, and outputs a signal whose phase is delayed by 90 degrees. Output from the second output terminal O2.
  • the phase synthesizer 23a outputs the in-phase signal IS4 from the first output terminal O1 with a power value 1 / ⁇ 2 times that of the input signal IS1 input to the first input terminal I1.
  • the phase synthesizer 23b outputs a signal IS5 whose power value is 1 / ⁇ 2 times and whose phase is delayed by 90 degrees as compared with the input signal IS2 input to the first input terminal I1 from the second output terminal O2. Further, the phase synthesizer 23b outputs a signal IS6 having a power value 1 / ⁇ 2 times that of the input signal IS2 and having the same phase from the first output terminal O1.
  • the phase synthesizer 23c outputs the in-phase signal IS7 from the second output terminal O2 with a power value 1 / ⁇ 2 times that of the input signal IS3 input to the second input terminal I2.
  • the phase synthesizer 23d receives the signal IS4 at the second input terminal I2 and the signal IS5 at the first input terminal I1.
  • the phase synthesizer 23d produces a signal having a power value 1 / ⁇ 2 times that of the signal IS4 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS5 and having the same phase.
  • the added combined signal SS1 is output from the first output terminal O1.
  • the phase synthesizer 23d has a signal having a power value of 1 / ⁇ 2 times that of the signal IS4 and having the same phase, and a signal having a power value of 1 / ⁇ 2 times and having a phase delay of 90 degrees as compared with the signal IS5.
  • the combined signal SS2 is output from the second output terminal O2.
  • the phase synthesizer 23e receives the signal IS6 at the second input terminal I2 and the signal IS7 at the first input terminal I1.
  • the phase synthesizer 23e produces a signal having a power value 1 / ⁇ 2 times that of the signal IS6 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS7 and having the same phase.
  • the added combined signal SS3 is output from the first output terminal O1.
  • the phase synthesizer 23e has a signal having a power value of 1 / ⁇ 2 times that of the signal IS6 and having the same phase, and a signal having a power value of 1 / ⁇ 2 times and having a phase delay of 90 degrees as compared with the signal IS7.
  • the combined signal SS4 is output from the second output terminal O2.
  • the output unit 24 outputs the four composite signals SS1 to SS4 generated by the phase synthesis unit 22 to the estimation unit 3.
  • the complex propagation channel between the antenna 21a and the transmitting antenna of the transmitter 5 is h1
  • the complex propagation channel between the antenna 21b and the transmitting antenna is h2
  • the complex propagation channel between the antenna 21c and the transmitting antenna is Let h3 be the complex propagation channel.
  • the distance between the antenna 21a and the antenna 21b and the distance between the antenna 21b and the antenna 21c are defined as d1.
  • the transmitter 5 is present at a position at an angle ⁇ 1 with respect to the broadside direction (X direction) of the array antenna composed of the antenna 21a, the antenna 21b, and the antenna 21c.
  • Propagation channels can be collectively expressed as Eq. (1).
  • the correlation matrix of this transmission channel can be expressed by Eq. (2).
  • the symbol H represents the complex conjugate transpose
  • the symbol * represents the complex conjugate.
  • the diagonal term of the correlation matrix R is a real number
  • the off-diagonal term is a complex number.
  • represents the amplitude of the combined signal SS1 output from the first output terminal O1 of the phase synthesizer 23d.
  • represents the amplitude of the combined signal SS2 output from the second output terminal O2 of the phase synthesizer 23d.
  • represents the amplitude of the combined signal SS3 output from the first output terminal O1 of the phase synthesizer 23e.
  • represents the amplitude of the combined signal SS4 output from the second output terminal O2 of the phase synthesizer 23e.
  • the gain of the channel on the left side of the equations (3) to (6) can be expressed as the equations (7) to (10) from the signal strength.
  • the equation (13) can be obtained from the relation of the additive geometric mean.
  • the correlation matrix related to the composite signals SS1 and SS2 output from the phase synthesizer 23d is defined as R1.
  • the correlation matrix R1 is expressed using A and ⁇ , the equation (16) is obtained.
  • the equation (18) can be obtained from the relation of the additive geometric mean.
  • the propagation loss of the antenna 21b from the transmitting antenna of the transmitter 5 is equal to the propagation loss of the antenna 21c from the transmitting antenna, and
  • R13 represents the correlation of the radio signal between the antenna 21a and the antenna 21c.
  • R13 can be expressed by the equation (22) using the obtained
  • the estimated correlation matrix R can be expressed by the equation (23).
  • the estimation unit 3 can estimate the direction of the transmitter 5 by using various arrival direction estimation algorithms for the correlation matrix R. Specifically, when the beamformer method is used, the estimation unit 3 determines the correlation between the correlation matrix R and the steering vector from the product of the correlation matrix R and the stelling vector (theoretical value) represented by the equation (24). By taking this, the direction of the transmitter 5 can be estimated.
  • d is the antenna spacing
  • k is the wave number
  • k 2 ⁇ / ⁇ .
  • is the wavelength.
  • the evaluation function P ( ⁇ ) can be expressed by the equation (25) using this steering vector and the correlation matrix R.
  • the estimation unit 3 substitutes various values for ⁇ in the equation (25), and determines that the direction in which the evaluation function P ( ⁇ ) is maximized is the starting direction of the radio signal.
  • the estimation unit 3 of the present embodiment uses the quasi-theoretical value (see Table 1) included in the quasi-theoretical value information 42 instead of the theoretical value represented by the equation (24), whereby the transmitter 5 is used. Estimate the position.
  • the direction estimation example by the beam former method is shown here, the direction of the transmitter 5 may be calculated by the MUSIC method. Alternatively, the direction of the transmitter 5 may be calculated using the CAPON method. Alternatively, the direction of the transmitter 5 may be calculated using the compressed sensing method.
  • the estimation unit 3 estimates the position of the transmitter 5 from the quasi-theoretical values corresponding to the correlation matrix R and the steering vector by using any of the above-mentioned arrival direction estimation algorithms.
  • the estimation unit 3 selects the quasi-theoretical value that maximizes the evaluation function (correlation degree) from the plurality of quasi-theoretical values and the correlation matrix R included in the quasi-theoretical value information 42. Then, the estimation unit 3 refers to the position information of the candidate point P0 corresponding to the selected quasi-theoretical value, and estimates the position of the candidate point P0 in the predetermined region A1 as the position of the transmitter 5.
  • the estimation system 1 includes a receiver 2, an estimation unit 3, and a storage unit 4 (first storage unit, second storage unit).
  • the storage unit 4 stores the position information 41 and the quasi-theoretical value information 42 in advance.
  • the receiver 2 has three antennas 21 that receive radio signals, and a phase synthesizer 22 that performs phase synthesis processing on the radio signals received by the three antennas 21 to generate four synthetic signals SS1 to SS4.
  • the estimation unit 3 is based on the four signal intensities of the four combined signals SS1 to SS4, the position information of the plurality of candidate points P0, and the plurality of quasi-theoretical values corresponding to the position information of the plurality of candidate points on a one-to-one basis.
  • the position of the transmitter 5 in the predetermined area A1 is estimated. Since a plurality of quasi-theoretical values in consideration of the reflected wave component of the radio signal have a one-to-one correspondence with the position information of the plurality of candidate points, the position of the transmitter 5 can be estimated. Thereby, for example, the position of the transmitter 5 can be estimated by one receiver 2, and the number of a plurality of antennas 21 included in the estimation system 1 can be reduced.
  • the plurality of position information of the plurality of candidate points P0, the position information of the receiver 2, and the position information of the reference transmitters 7 (7a to 7d) are position information indicating the position in three dimensions. be. Therefore, the estimation unit 3 of the present embodiment can estimate the position of the transmitter 5 in the predetermined region A1 in three dimensions.
  • the estimation unit 3 of the present embodiment selects a quasi-theoretical value having the highest degree of correlation with the correlation matrix R regarding the signal intensities of the four combined signals SS1 to SS4 from the plurality of candidate points P0, and the quasi-theoretical value.
  • the position (coordinates) of the candidate point P0 corresponding to is estimated as the position of the transmitter 5.
  • the estimation accuracy of the position estimation of the transmitter 5 by the estimation unit 3 can be improved.
  • the plurality of quasi-theoretical values of the present embodiment include the radio signal (direct wave) path a1 between each of the plurality of candidate points P0 and the receiver 2, each of the plurality of candidate points P0, and four virtual values. It is the sum of one or more paths a2 of the radio signal (reflected wave) between each of the receiving points V2 to V5.
  • the positions of the four virtual receiving points V2 to V5 include the position information indicating the position of the receiver 2, the position information indicating the positions of the four reference transmitters 7a to 7d, and the four reference transmitters 7a to 7d. It is set based on the signal strength when the receiver 2 receives the reference signal to be transmitted. Since the plurality of quasi-theoretical values are the sum of the direct wave path a1 and the reflected wave path a2, the estimation unit 3 is, for example, the position of the transmitter 5 from the radio signal received by one receiver 2. Can be estimated.
  • the virtual point of the present embodiment is located at a position facing the reference transmitter 7 via the wall 6 (reflection point 8) that reflects the reference signal, and if there is no wall 6, it is considered that the reflected wave of the reference signal has been received. It is a virtual point that can be created. Further, the length of the radio signal path a22 between the virtual reception point V1 and the reflection point 8 is equal to the length of the radio signal path a23 between the receiver 2 and the reflection point 8. By determining the quasi-theoretical value after setting such a virtual receiving point V1, the quasi-theoretical value becomes a value considering the path a2 of the reflected wave.
  • the same function as the estimation system 1 may be embodied by an estimation method, a program, a recording medium on which the program is recorded, or the like.
  • the estimation method includes a reception step, a generation step, and an estimation step.
  • the reception step the radio signal transmitted by the transmitter 5 is received by the plurality of antennas 21.
  • the generation step the radio signals received in the reception step are subjected to phase synthesis processing to generate a plurality of composite signals SS1 to SS4.
  • the position of the transmitter 5 in the predetermined area A1 is estimated.
  • the position of the transmitter 5 in the predetermined region A1 is estimated based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in the plurality of synthetic signals SS1 to SS4.
  • the plurality of position information indicates the positions of the plurality of candidate points P0 for estimating the position of the transmitter 5 in the predetermined area A1.
  • the plurality of position information is information stored in advance.
  • the plurality of quasi-theoretical values have a one-to-one correspondence with each of the plurality of position information.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the plurality of antennas 21 when the radio signal is transmitted at each of the plurality of candidate points P0.
  • a plurality of quasi-theoretical values are stored in advance.
  • the estimation method includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step.
  • the receiver 2 receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter 7 installed in the predetermined area A1.
  • the receiver 2 has a plurality of antennas 21.
  • the virtual receiving point V1 or the virtual transmitting point V8 is set from the position information of the receiver 2 and the reference transmitter 7 and the signal strength of the reference signal.
  • the virtual reception point V1 can be regarded as having received the reflected wave.
  • the virtual transmission point V8 can be regarded as transmitting the reflected wave.
  • a plurality of quasi-theoretical values are stored in the storage unit 4 based on the position information of the receiver 2 and the position information of the virtual reception point V1 or the virtual transmission point V8.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver 2 when the transmitter 5 transmits a radio signal at each of the plurality of candidate points P0 in the predetermined region A1.
  • the receiver 2 receives the radio signal transmitted by the transmitter 5.
  • the position of the candidate point P0 corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver 2 in the second receiving step is set by the transmitter. It is estimated to be the position of 5.
  • the (computer) program according to the first embodiment is a program for causing one or more processors to execute the above-mentioned reception step, generation step, and estimation step.
  • the (computer) program according to the first embodiment is a program for causing one or more processors to execute the above-mentioned first reception step, setting step, storage step, second reception step, and estimation step.
  • the execution subject of the estimation system 1 and the estimation method includes a computer system.
  • the computer system mainly consists of a processor and a memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the function as the execution subject of the estimation system 1 and the estimation method is realized.
  • the program may be pre-recorded in the memory of the computer system. Further, the program may be provided through a telecommunication line, or may be recorded and provided on a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer system.
  • the processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). A plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. The plurality of chips may be integrated into one device, or may be distributed and provided in the plurality of devices.
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • the estimation system 1 is realized by one system including the receiver 2 and the estimation unit 3, but may be realized by two or more systems.
  • the functions of the receiver 2 and the estimation unit 3 may be distributed in two or more systems.
  • at least one function of the receiver 2 and the estimation unit 3 may be distributed in two or more systems.
  • the functions of the receiver 2 and the estimation unit 3 may be distributed to a plurality of devices.
  • the functions of the receiver 2 for example, the three antennas 21 and the phase synthesizer 22
  • the functions of the estimation system 1 may be realized by, for example, cloud computing.
  • the transmitter 5 is not limited to the beacon device that transmits a beacon signal according to the BLE standard.
  • the transmitter 5 may be, for example, a device that transmits a radio signal according to the standard of Wi-Fi (registered trademark).
  • the estimation system 1 is not limited to a system capable of receiving a radio signal according to the BLE standard.
  • the estimation system 1 may be, for example, a system capable of receiving a radio signal according to a Wi-Fi standard.
  • the position information 41 of the storage unit 4 includes the position information of the reference transmitter 7 (reference transmitters 7a to 7d).
  • the reference transmitter 7 may transmit a radio signal including its own position information, and the receiver 2 may acquire the position information of the reference transmitter 7 from the radio signal.
  • the estimation system 1 includes a storage unit 4, but the estimation system 1 may include a first storage unit and a second storage unit instead of the storage unit 4.
  • the position information 41 is stored in the first storage unit
  • the quasi-theoretical value information 42 is stored in the second storage unit.
  • the candidate points such as the candidate points P44 located at the boundary between the two regions A11 and A12 are reflected by the reflected wave reflected by the wall 61 of the region A11 and by the wall 62 of the region A12.
  • a quasi-theoretical value may be set in consideration of the reflected wave.
  • the candidate point P44 includes a radio signal path between the candidate point P44 and the receiver 2, a radio signal path between the candidate point P44 and the virtual reception point V2, and a candidate point P44 and the virtual reception point V3.
  • a quasi-theoretical value obtained by adding the path of the radio signal between the two is associated.
  • a quasi-theoretical value may be set in each of the plurality of candidate points P0 in consideration of the reflected wave reflected by each of the four walls 61 to 64.
  • the quasi-theoretical value is all four paths of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the four virtual receiving points V2 to V5. It is the sum of and.
  • the four virtual receiving points V2 to V5 transmit the position information of the receiver 2, the four position information of the four reference transmitters 7a to 7d (see FIG. 4), and the four reference transmitters 7a to 7d. It is set based on the four reference signals.
  • each candidate point P0 there are four walls 61 to 64 (four reflection points 8a to 8d) for reflecting the reference signal between the four virtual reception points V2 to V5 and the plurality of candidate points P0.
  • the accuracy with which the estimation system 1 estimates the position of the transmitter 5 is improved.
  • a plurality of (two in the example of FIG. 6) virtual receiving points V6 and V7 may be set.
  • the quasi-theoretical value is the radio between the plurality of paths a1 between each of the plurality of candidate points P0 and the receiver 2, and between each of the plurality of candidate points P0 and the two virtual receiving points V6 and V7. It is the sum of the two paths a2 of the signal.
  • the estimation unit 3 uses the sum of a plurality of steering vectors for the equation (24) in consideration of the reflected wave reflected by the wall 6 or the like. Improve direction estimation accuracy. Assuming that the directions of the radio waves arriving at the L virtual receiving points from the transmitting antenna are ⁇ 1 to ⁇ L (L is the number of arriving waves), the ideal signal vector obtained by adding up the plurality of steering vectors can be expressed by Eq. (26). can.
  • Al is an amplitude correction coefficient of the incoming wave, and is a complex number value in consideration of attenuation and phase rotation due to reflection on the wall 6 through which the incoming wave passes.
  • the estimation unit 3 can improve the positioning accuracy in consideration of multiple reflections.
  • ⁇ 1 to ⁇ L are directions of radio waves arriving at each virtual receiving point.
  • the quasi-theoretical value may be a value obtained by setting a virtual transmission point V8 instead of a virtual reception point.
  • the virtual transmission point V8 is located at a position facing the reference transmitter 7 via the wall 6 that reflects the reference signal (at a position facing the receiver 2 via the reflection point 8), and if there is no wall 6, the reference signal is present. It is a virtual point that can be regarded as transmitting the reflected wave of.
  • the virtual transmission point V8, the reflection point 8 of the wall 6 that reflects the reference signal, and the receiver 2 are aligned with each other.
  • the length of the radio signal path a24 between the virtual transmission point V8 and the reflection point 8 is equal to the length of the radio signal path a21 between the reference transmitter 7 and the reflection point 8.
  • the quasi-theoretical value becomes a value considering the path a2 of the reflected wave.
  • the plurality of quasi-theoretical values are the path a1 of the radio signal (direct wave) between each of the plurality of candidate points P0 and the receiver 2, and the receiver 2 and the virtual transmission point V8. It is the sum of the path a2 of the radio signal (reflected wave) between and.
  • the position of the virtual transmission point V8 is when the receiver 2 receives the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7, and the reference signal transmitted by the reference transmitter 7. It is set based on the signal strength of. Since the plurality of quasi-theoretical values are the sum of the direct wave path a1 and the reflected wave path a2, the estimation unit 3 is, for example, the position of the transmitter 5 from the radio signal received by one receiver 2. Can be estimated.
  • the virtual transmission point V8 may be a plurality of virtual transmission points V8 set for one reference transmitter 7. Further, the virtual transmission point V8 may be four virtual transmission points V8 set in each of the four reference transmitters 7a to 7d.
  • the case where the same number of reference transmitters 7 as the number of reflectors (walls 61 to 64) is installed in the predetermined area A1 is illustrated, but the number of the reference transmitters 7 to be installed in the predetermined area A1 is determined. It is not limited to the same number of reflectors. That is, the number of reference transmitters 7 installed in the predetermined area A1 may be larger than the number of reflectors.
  • a plurality of reference transmitters 7 may be evenly installed in a predetermined area A1. For example, the reference transmitters 7 may be installed at all positions of a plurality of candidate points P0.
  • the quasi-theoretical value corresponding to each of the plurality of candidate points P0 is a virtual reception point V1 set by using the reference transmitter 7 that is not close to each candidate point P0 (at a position far from each candidate point P0). Is irrelevant.
  • one virtual point may be set by using a plurality of reference transmitters 7.
  • the reference transmitter 7 when the reference transmitter 7 is installed at all positions of the plurality of candidate points P0, it is considered that a plurality of virtual points that can be observed by using the plurality of reference transmitters 7 that are close to each other are close to each other. Will be.
  • the position of the virtual point is estimated for each of the three frequencies of 37ch, 38ch, and 39ch of the Bluetooth advertisement channel, and the position that can be estimated in common with the three frequencies is used.
  • the virtual point may be set as a virtual point.
  • the transmitter 5a included in the estimation system 1a of the present embodiment includes a plurality of antennas 51 (three in the illustrated example) for transmitting a plurality of radio signals.
  • the plurality of antennas 51 of the present embodiment are array antennas including the antenna 51a, the antenna 51b, and the antenna 51c.
  • the antennas 51a, 51b, and 51c are described separately. Further, when each of the plurality of antennas 51 is described without distinction, it is simply described as the antenna 51.
  • the receiver 2a of the present embodiment includes a receiving antenna that receives a plurality of radio signals transmitted from the plurality of antennas 51.
  • the receiver 2a of the present embodiment is a smartphone or the like possessed by a user in the predetermined area A1.
  • the estimation system 1a of the present embodiment can estimate the position of the receiver 2a that has received the plurality of radio signals based on the signal strength of the plurality of radio signals received by the receiving antenna of the receiver 2a.
  • the estimation system 1a of the present embodiment includes a transmitter 5a, an acquisition unit 10, an estimation unit 3a, and a storage unit 4a.
  • the transmitter 5a is composed of, for example, a beacon device that transmits a beacon signal (wireless signal) according to the BLE standard.
  • the radio signal transmitted by the transmitter 5a of the present embodiment includes information such as identification information of the transmitter 5a.
  • the transmitter 5a of the present embodiment transmits a plurality of (three in the example of FIG. 9) radio signals RS1 to RS3 from three antennas 51.
  • the three radio signals RS1 to RS3 transmitted by the transmitter 5a may be simply referred to as "radio signals”.
  • the details of the transmitter 5a will be described in the column of "(2.3) Configuration of the transmitter".
  • the acquisition unit 10 acquires information on the signal strengths of the three radio signals RS1 to RS3 received by the receiver 2a (see FIG. 8A) existing in the predetermined area A1. In other words, the acquisition unit 10 acquires information on the signal strengths of the four original signals BS1 to BS4 included in the three radio signals RS1 to RS3 received by the receiver 2a existing in the predetermined area A1.
  • the acquisition unit 10 performs wireless communication with the receiver 2a in the predetermined area A1, for example, to provide information on the signal strengths of the three wireless signals RS1 to RS3 (signal strengths of the four original signals BS1 to BS4) from the receiver 2a. To get.
  • the acquisition unit 10 outputs the signal strength information acquired from the receiver 2a to the estimation unit 3.
  • the estimation unit 3a of the receiver 2a (see FIG. 8A) is based on the signal strength information of the three radio signals RS1 to RS3 and the position information 41 and the quasi-theoretical value information 42 stored in the storage unit 4a. Estimate the position. The details of the estimation method in which the estimation unit 3a estimates the position of the receiver 2a will be described in the column of "(3) Estimation method".
  • the storage unit 4a stores the position information 41 and the quasi-theoretical value information 42.
  • the position information 41 includes information indicating the positions of the transmitter 5a (estimation system 1a) and the reference receiver 9 (see FIG. 10) described later in the predetermined area A1 (see FIG. 8A).
  • the quasi-theoretical value information 42 has a plurality of one-to-one correspondences with the position information indicating the positions of the plurality of candidate points P0 for estimating the positions of the receivers 2a in the predetermined area A1 (36 in the example of FIG. 8A). Information on quasi-theoretical values.
  • the quasi-theoretical value in this embodiment is calculated in advance using the reference receiver 9 arranged in the predetermined area A1.
  • the reference receiver 9 is a device that receives the three radio signals RS1 to RS3 (see FIG. 9) transmitted by the transmitter 5a.
  • the transmitter 5a when the transmitter 5a outputs a radio signal in the predetermined region A1 including the wall 6 which is a reflector, a part of the transmitted radio signal directly reaches the reference receiver 9, and the transmitter 5a A part of the transmitted radio signal is reflected by the wall 6 and reaches the reference receiver 9.
  • a part of the radio signal transmitted by the transmitter 5a is reflected at the reflection point 8 of the wall 64 and reaches the reference receiver 9. Therefore, the signal strength of the radio signal observed by the reference receiver 9 is the sum of the direct wave and the reflected wave.
  • the "direct wave” is a radio signal transmitted by the transmitter 5a that is directly received from the transmitter 5a (that is, without being reflected by a reflector such as a wall 6) to the reference receiver 9. It is a signal.
  • the "reflected wave” is a radio signal transmitted by the transmitter 5a, which is reflected by a reflector such as a wall 6 and then received by the reference receiver 9.
  • the direct wave is the radio signal received by the reference receiver 9 through the path a1
  • the reflected wave is the reference reception through the paths a21 and a23. It is a radio signal received by the machine 9.
  • the estimation system 1a can estimate the arrival direction ⁇ 2 (see FIG. 8B) of the radio signal based on the signal strength of the radio signal received by the reference receiver 9, the radio obtained by adding the direct wave and the reflected wave.
  • the signal path a0 can be estimated.
  • the information indicating the position (coordinates) of the transmitter 5a and the information indicating the position of the reference receiver 9 are included in the position information 41. Therefore, the estimation system 1a can calculate the direct wave path a1 in the radio signal transmitted from the transmitter 5a based on the position information of the transmitter 5a and the reference receiver 9.
  • the estimation system 1a can calculate the path a2 of the reflected wave based on the path a0 of the radio signal obtained by adding the direct wave and the reflected wave and the path a1 of the direct wave.
  • the path a2 of the reflected wave in the present embodiment is a path between the virtual reception point V9, which can be regarded as having received the radio signal without the wall 62 (reflector), and the transmitter 5a.
  • the virtual reception point V9 is located at a position facing the transmitter 5a via the reflection point 8 of the wall 64 that reflects the radio signal, and the length of the radio signal path a23 between the reflection point 8 and the reference receiver 9 and the length of the radio signal path a23.
  • the reference receiver 9 receives the position information indicating the position of the transmitter 5a, the position information indicating the position of the reference receiver 9, and the radio signal transmitted by the transmitter 5a. It is set based on the signal strength of the radio signal in the case.
  • the quasi-theoretical value is a radio signal path a1 between the candidate point P0 and the reference receiver 9, and a radio signal path a2 between the candidate point P0 and the virtual reception point V9 corresponding to the candidate point P0. It is a combination.
  • the quasi-theoretical value information 42 is information in which such a quasi-theoretical value is associated with each candidate point P0. That is, since the quasi-theoretical value is a value considering not only the direct wave received by the receiver 2a (see FIG. 8A) but also the reflected wave received by the receiver 2a, the estimation unit 3a (see FIG. 9) is the receiver. It is a value that can estimate the position (coordinates) of the receiver 2a instead of the position direction of 2a.
  • the estimation system 1a of the present embodiment estimates the position of the receiver 2a in the predetermined region A1 by using such a quasi-theoretical value as a steering vector.
  • the transmitter 5a includes three antennas 51, a phase synthesis unit 52, and a source signal generation unit 54.
  • the original signal generation unit 54 is a processing unit that generates original signals BS1 to BS4 that are sources of three radio signals RS1 to RS3 transmitted by a plurality of antennas 51 and include predetermined information such as identification information. Is.
  • the original signal generator 54 includes the original signal generators 54a to 54d.
  • the original signal generator 54a is electrically connected to the first input terminal I1 of the phase synthesizer 53d of the phase synthesizer 52 to generate the original signal BS1.
  • the original signal generator 54b is electrically connected to the second input terminal I2 of the phase synthesizer 53d to generate the original signal BS2.
  • the original signal generator 54c is electrically connected to the first input terminal I1 of the phase synthesizer 53e to generate the original signal BS3.
  • the original signal generator 54d is electrically connected to the second input terminal I2 of the phase synthesizer 53e to generate the original signal BS4.
  • the phase synthesizing unit 52 performs synthesis processing on a plurality of (four in the example of FIG. 9) input signals IS8 to IS11 (signals IS12 to IS15) based on the four original signals BS1 to BS4, and performs synthesis processing on the three radio signals RS1.
  • This is a processing unit that generates RS3.
  • the phase synthesizer 52 includes a phase synthesizer 53a, a phase synthesizer 53b, a phase synthesizer 53c, a phase synthesizer 53d, and a phase synthesizer 53e.
  • the phase synthesizer 53 is composed of, for example, a 90-degree hybrid unit (hybrid element). Since the basic operation of the phase synthesizer 53 is the same as the basic operation of the phase synthesizer 23 described in the column of "(2.3) Configuration of receiver in (Embodiment 1)", the description thereof will be omitted.
  • the phase synthesizer 53d receives the input signal IS8 at the first input terminal I1 and the input signal IS9 at the second input terminal I2.
  • the phase combiner 53d has a power value of 1 / ⁇ 2 times that of the input signal IS8 and a signal having the same phase, and a signal having a power value of 1 / ⁇ 2 times and a phase delay of 90 degrees as compared with the input signal IS9. , Is added together, and the signal IS12 is output from the first output terminal O1.
  • the phase synthesizer 53d has a signal having a power value 1 / ⁇ 2 times that of the input signal IS8 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS9 and having the same phase.
  • the signal IS13 which is the sum of the signal and the signal, is output from the second output terminal O2.
  • the phase synthesizer 53e receives the input signal IS10 at the first input terminal I1 and the input signal IS11 at the second input terminal I2.
  • the phase combiner 53e has a power value of 1 / ⁇ 2 times that of the input signal IS10 and a signal having the same phase, and a signal having a power value of 1 / ⁇ 2 times and a phase delay of 90 degrees as compared with the input signal IS11. , Is added together, and the signal IS14 is output from the first output terminal O1.
  • the phase combiner 53e has a signal having a power value 1 / ⁇ 2 times that of the input signal IS10 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the input signal IS11 and having the same phase.
  • the signal IS15 which is the sum of the signal and the signal, is output from the second output terminal O2.
  • the phase synthesizer 53a outputs a radio signal RS1 having a power value 1 / ⁇ 2 times that of the signal IS12 input to the second input terminal I2 and having the same phase from the second output terminal O2.
  • the phase synthesizer 53b receives the signal IS13 at the first input terminal I1 and the signal IS14 at the second input terminal I2.
  • the phase synthesizer 53b produces a signal having a power value 1 / ⁇ 2 times that of the signal IS13 and a phase delay of 90 degrees, and a signal having a power value of 1 / ⁇ 2 times that of the signal IS14 and having the same phase.
  • the added radio signal RS2 is output from the second output terminal O2.
  • the phase synthesizer 53c outputs a radio signal RS3 having a power value 1 / ⁇ 2 times that of the signal IS15 input to the first input terminal I1 and having the same phase from the first output terminal O1.
  • the three antennas 51 transmit the three radio signals RS1 to RS3 output from the phase synthesizer 52. Specifically, the antenna 51a transmits the radio signal RS1, the antenna 51b transmits the radio signal RS2, and the antenna 51c transmits the radio signal RS3.
  • the complex propagation channel between the antenna 51a and the receiving antenna of the receiver 2a is h4
  • the complex propagation channel between the antenna 51b and the receiving antenna is h5
  • the complex propagation channel between the antenna 51c and the transmitting antenna is Let h6 be the complex propagation channel.
  • the distance between the antenna 51a and the antenna 51b and the distance between the antenna 51b and the antenna 51c are defined as d2.
  • the receiver 2a exists at a position of an angle ⁇ 2 with respect to the broadside direction (X direction) of the array antenna composed of the antenna 51a, the antenna 51b, and the antenna 51c.
  • Propagation channels can be collectively expressed as Eq. (27).
  • the correlation matrix of this propagation channel can be expressed by Eq. (27).
  • the estimation unit 3a can estimate the positional direction of the receiver 2a.
  • the estimation unit 3a obtains the correlation matrix R based on the information regarding the signal strength.
  • the amplitudes of the four source signals BS1 to BS4 measured by the receiver 2a can be expressed as equations (29) to (32).
  • the apparent propagation channel can be represented by the equations (34) to (37).
  • the estimation system 1a includes a transmitter 5a, an estimation unit 3, a storage unit 4a (first storage unit, second storage unit), and an acquisition unit 10. It is equipped with.
  • the storage unit 4a stores the position information 41 and the quasi-theoretical value information 42 in advance.
  • the transmitter 5a performs phase synthesis processing on the four original signals BS1 to BS4 to generate three radio signals RS1 to RS3, and transmits the three radio signals RS1 to RS3 from the three antennas 51.
  • the acquisition unit 10 acquires information on the signal strengths of the four original signals BS1 to BS4 received by the receiver 2a existing in the predetermined area A1.
  • the estimation unit 3a has information on the signal strengths of the four original signals BS1 to BS4, the position information of the plurality of candidate points P0, and a plurality of quasi-theoretical values corresponding to the position information of the plurality of candidate points P0 on a one-to-one basis. Based on this, the position of the receiver 2a in the predetermined area A1 is estimated. Since the plurality of quasi-theoretical values have a one-to-one correspondence with the position information of the plurality of candidate points P0, the position of the receiver 2a can be estimated.
  • the quasi-theoretical value may be a value obtained by setting a virtual transmission point V10 instead of the virtual reception point V9.
  • the virtual transmission point V10 is located at a position facing the reference receiver 9 via the reflection point 8 of the wall 64 that reflects the radio signal, and if there is no wall 64, it can be considered that the reflected wave of the radio signal is transmitted. It is a point.
  • the virtual transmission point V10, the reflection point 8 of the wall 64 that reflects the radio signal, and the reference receiver 9 are arranged in a straight line. Further, the length of the radio signal path a24 between the virtual transmission point V10 and the reflection point 8 is equal to the length of the radio signal path a21 between the transmitter 5a and the reflection point 8.
  • the estimation system (1) includes a receiver (2), an estimation unit (3), a first storage unit (storage unit 4), and a second storage unit (memory). It is provided with a part 4).
  • the receiver (2) has a plurality of antennas (21).
  • the plurality of antennas (21) receive the radio signal transmitted from the transmitter (5).
  • the receiver (2) performs phase synthesis processing on the radio signals received by the plurality of antennas (21) to generate a plurality of composite signals (SS1, SS2, SS3, SS4).
  • the estimation unit (3) estimates the position of the transmitter (5) in the predetermined area (A1).
  • the first storage unit (storage unit 4) stores a plurality of position information.
  • the plurality of position information indicates a plurality of positions at a plurality of candidate points (P0) for estimating the position of the transmitter (5).
  • the second storage unit stores a plurality of quasi-theoretical values.
  • the plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points (P0).
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver (2) when the radio signal is transmitted at each of the plurality of candidate points (P0).
  • the estimation unit (3) is in a predetermined region (A1) based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in a plurality of synthetic signals (SS1, SS2, SS3, SS4). Estimate the position of the transmitter (5).
  • the position of the transmitter (5) is estimated based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to a plurality of position information of a plurality of candidate points (P0) on a one-to-one basis. Therefore, the estimation unit (3) can estimate the position of the transmitter (5) based on the radio signal received by, for example, one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
  • the estimation unit (3) has a quasi-theoretical value having the highest degree of correlation with a plurality of signal strengths among the plurality of candidate points (P0).
  • the position of the transmitter (5) is estimated based on the position information indicating the position of the corresponding candidate point (P0).
  • the estimation system (1) in order to estimate the position of the transmitter (5) from the position information of the candidate point (P0) corresponding to the quasi-theoretical value having the highest correlation with a plurality of signal intensities, the estimation system (1) is estimated.
  • the accuracy can be improved.
  • the reference transmitter (7) for transmitting the reference signal is arranged in the predetermined area (A1), and the receiver (2) has a reference transmitter (2).
  • a virtual point is set based on the position information indicating the position, the position information indicating the position of the reference transmitter (7), and the signal strength when the receiver (2) receives the reference signal.
  • the virtual point is a virtual receiving point (V1) or a virtual transmitting point (V8).
  • the virtual receiving point (V1) is located at a position facing the reference transmitter (7) via a reflector (wall 6) that reflects the reference signal, and if there is no reflector (wall 6), the reference signal is received. It is a virtual point that can be regarded.
  • the virtual transmission point (V8) is located at a position facing the receiver (2) via the reflector (wall 6) that reflects the reference signal, and if there is no reflector (wall 6), the reference is made to the receiver (2). It is a virtual point that can be regarded as transmitting a signal.
  • the plurality of quasi-theoretical values are the radio signal path (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and the virtual reception point (V1). ), Or the radio signal path (a2) between the receiver (2) and the virtual transmission point (V8).
  • the estimation unit (3) may receive, for example, one.
  • the position of the transmitter (5) can be estimated from the radio signal received by the machine (2).
  • the virtual point is a virtual receiving point (V1).
  • the distance between the virtual receiving point (V1) and the reflector (wall 6) is equal to the distance between the receiver (2) and the reflector (wall 6).
  • the estimation unit (3) Since the distance between the virtual receiving point (V1) and the reflector (wall 6) is equal to the distance between the receiver (2) and the reflector (wall 6), the estimation unit (3) The accuracy when estimating the position of the transmitter (5) is improved.
  • the virtual point is a virtual transmission point (V8).
  • the distance between the virtual transmission point (V8) and the reflector (wall 6) is equal to the distance between the reference transmitter (7) and the reflector (wall 6).
  • the estimation unit (3) improves the accuracy of estimating the position of the transmitter (5).
  • a plurality of virtual reception points (V1) or virtual transmission points (V8) are set with respect to the reference transmitter (7) in any of the third to fifth aspects. Will be done.
  • the plurality of quasi-theoretical values are a plurality of paths (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and a plurality of virtual reception points (
  • the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of virtual transmission points (V8) are added together. It is a thing.
  • the estimation unit (3) is more accurate than the case where there is one virtual point of the transmitter (5).
  • the position can be estimated.
  • a plurality of reference transmitters (7) are arranged in a predetermined area (A1), and a plurality of reference transmitters (7a) are arranged. , 7b, 7c, 7d), a virtual reception point (V1) or a virtual transmission point (V8) is set.
  • the plurality of quasi-theoretical values are a plurality of paths (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and a plurality of virtual reception points (
  • the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of virtual transmission points (V8) are added together. It is a thing.
  • the estimation unit (3) is more accurate than the case where there is one virtual point.
  • the position of the transmitter (5) can be estimated.
  • the plurality of quasi-theoretical values are a plurality of quasi-theoretical values between each of the plurality of candidate points (P0) and the receiver (2). All of the radio signal paths (a1) and all of the radio signal paths (a2) between each of the plurality of candidate points (P0) and the plurality of virtual reception points (V1), or the receiver (2). It is the sum of all of the plurality of paths (a2) of the radio signal between the plurality of virtual transmission points (V8) and the plurality of virtual transmission points (V8).
  • the estimation unit (3) estimates the position of the transmitter (5) more accurately. can do.
  • the position information of the transmitter (7) is the position information indicating the position in the predetermined area (A1) in three dimensions.
  • the virtual point is set by the position information indicating the position in three dimensions.
  • the estimation unit (3) can estimate the three-dimensional position of the transmitter (5) based on the position information indicating the position in three dimensions.
  • Configurations other than the first aspect are not essential configurations for the estimation system (1) and can be omitted as appropriate.
  • the estimation system (1a) includes a transmitter (5a), an acquisition unit (10), an estimation unit (3a), a first storage unit (storage unit 4a), and a second storage unit ( A storage unit 4a) is provided.
  • the transmitter (5a) performs phase synthesis processing on a plurality of original signals (BS1, BS2, BS3, BS4) to generate a plurality of radio signals (RS1, RS2, RS3), and a plurality of radio signals (RS1, RS1, RS3).
  • RS2, RS3) are transmitted from a plurality of antennas (51).
  • the acquisition unit (10) acquires information on the signal strength of the plurality of radio signals (RS1, RS2, RS3) received by the receiver (2a) existing in the predetermined area (A1).
  • the estimation unit (3a) estimates the position of the receiver (2a) in the predetermined area (A1).
  • the first storage unit stores a plurality of position information.
  • the plurality of position information indicates a plurality of positions at a plurality of candidate points (P0) for estimating the position of the receiver (2).
  • the second storage unit stores a plurality of quasi-theoretical values.
  • the plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points (P0).
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver (2a) when the radio signal is received at each of the plurality of candidate points (P0).
  • the estimation unit (3a) is a receiver in a predetermined region (A1) based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal strength information acquired by the acquisition unit (10).
  • the position of (2a) is estimated.
  • the receiver (2a) is based on information on a plurality of signal strengths and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis.
  • the estimation unit (3a) determines the position of the receiver (2a) based on the signal strength of a plurality of radio signals (RS1, RS2, RS3) transmitted by one transmitter (5a), for example. Can be estimated. This makes it possible to reduce the number of antennas (51) when estimating the position of the target device (receiver).
  • the estimation method includes a reception step, a generation step, and an estimation step.
  • the reception step the radio signal transmitted by the transmitter (5) is received by the plurality of antennas (21).
  • the generation step the radio signal received in the reception step is subjected to phase synthesis processing to generate a plurality of composite signals (SS1, SS2, SS3, SS4).
  • the position of the transmitter (5) in the predetermined area (A1) is estimated.
  • the transmitter in the predetermined region (A1) is based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in a plurality of synthetic signals (SS1, SS2, SS3, SS4).
  • the plurality of position information indicates the positions of the plurality of candidate points (P0) for estimating the position of the transmitter (5) in the predetermined area (A1).
  • the plurality of position information is information stored in advance.
  • the plurality of quasi-theoretical values correspond one-to-one with each of the plurality of position information.
  • the plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the plurality of antennas (21) when the radio signal is transmitted at each of the plurality of candidate points (P0).
  • a plurality of quasi-theoretical values are stored in advance.
  • the position of the transmitter (5) is determined based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis.
  • the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
  • the estimation method includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step.
  • the receiver (2) receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter (7) installed in the predetermined area (A1).
  • the receiver (2) has a plurality of antennas (21).
  • the virtual receiving point (V1) or the virtual transmitting point (V8) is set from the position information of the receiver (2) and the reference transmitter (7) and the signal strength of the reference signal.
  • the virtual receiving point (V1) can be regarded as having received the reflected wave.
  • the virtual transmission point (V8) can be regarded as transmitting the reflected wave.
  • a plurality of quasi-theoretical values are stored in the storage unit (4) based on the position information of the receiver (2) and the position information of the virtual reception point (V1) or the virtual transmission point (V8).
  • the plurality of quasi-theoretical values are the direct wave and the reflected wave received by the receiver (2) when the transmitter (5) transmits a radio signal at each of the plurality of candidate points (P0) in the predetermined region (A1). The value for.
  • the receiver (2) receives the radio signal transmitted by the transmitter (5).
  • the position of the transmitter (5) is determined based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis.
  • the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
  • the program according to the thirteenth aspect is a program for causing one or more processors to execute the estimation method according to the eleventh or twelfth aspect.
  • the position of the transmitter (5) is estimated based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to the position information of each of the plurality of candidate points (P0) on a one-to-one basis. Therefore, for example, the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

This invention addresses the problem of reducing the number of antennas for estimating the position of a device in question. This estimation system (1) comprises a receiver (2), an estimation unit (3), a first storage unit, and a second storage unit. The receiver (2) comprises a plurality of antennas (21) for receiving a wireless signal transmitted from a transmitter. The first storage unit stores a plurality of items of position information for estimating the position of the transmitter. The second storage unit stores a plurality of semi-theoretical values relating to direct waves and reflected waves in one-to-one correspondence with a plurality of candidate points. The estimation unit (3) uses the plurality of items of position information, the plurality of semi-theoretical values, and a plurality of signal intensities of a plurality of combined signals (SS1, SS2, SS3, SS4) to estimate the position of the transmitter within a prescribed area.

Description

推定システム、推定方法及びプログラムEstimating system, estimation method and program
 本開示は推定システム、推定方法及びプログラムに関し、より詳細には、複数のアンテナを有する推定システム、推定方法及びプログラムに関する。 The present disclosure relates to an estimation system, an estimation method and a program, and more particularly to an estimation system having a plurality of antennas, an estimation method and a program.
 特許文献1には、ビーコン信号(無線信号)の到来方向を推定する通信端末装置が記載されている。特許文献1に記載の通信端末装置(受信機)は、複数のアンテナで受信した無線信号の信号強度(RSSI:Received Signal Strength Indicator)に基づいて、ビーコン装置(発信機)が発信したビーコン信号の到来方向を推定する。 Patent Document 1 describes a communication terminal device that estimates the arrival direction of a beacon signal (radio signal). The communication terminal device (receiver) described in Patent Document 1 is a beacon signal transmitted by a beacon device (transmitter) based on the signal strength (RSSI: Received Signal Strength Indicator) of a radio signal received by a plurality of antennas. Estimate the direction of arrival.
特開2017-216567号公報 しかしながら、特許文献1に記載の受信機では、無線信号の発信位置を推定する場合に受信機が複数(例えば4個)必要であった。Japanese Patent Application Laid-Open No. 2017-216567 However, in the receiver described in Patent Document 1, a plurality of (for example, four) receivers are required when estimating the transmission position of the radio signal.
 本開示は、上記事由に鑑みてなされており、対象機器の位置を推定する際のアンテナの数を低減することができる推定システム、推定方法及びプログラムを提供することを目的とする。 The present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide an estimation system, an estimation method, and a program capable of reducing the number of antennas when estimating the position of a target device.
 上記の課題を解決するために、本開示の一態様に係る推定システムは、受信機と、推定部と、第1記憶部と、第2記憶部とを備える。前記受信機は、複数のアンテナを有している。前記複数のアンテナは、発信機から発信される無線信号を受信する。前記受信機は、前記複数のアンテナで受信した無線信号に対して、位相合成処理を行って複数の合成信号を生成する。前記推定部は、所定領域内における前記発信機の位置を推定する。前記第1記憶部は、複数の位置情報を記憶している。前記複数の位置情報は、前記発信機の位置を推定するための複数の候補点における複数の位置を示す。前記第2記憶部は、複数の準理論値を記憶している。前記複数の準理論値は、前記複数の候補点の各々と一対一で対応する。前記複数の準理論値は、前記複数の候補点の各々において無線信号が発信されたとした場合に前記受信機が受信する直接波及び反射波に関する値である。前記推定部は、前記複数の位置情報と、前記複数の準理論値と、前記複数の合成信号における複数の信号強度と、に基づいて前記所定領域内における前記発信機の位置を推定する。 In order to solve the above problems, the estimation system according to one aspect of the present disclosure includes a receiver, an estimation unit, a first storage unit, and a second storage unit. The receiver has a plurality of antennas. The plurality of antennas receive the radio signal transmitted from the transmitter. The receiver performs phase synthesis processing on the radio signals received by the plurality of antennas to generate a plurality of composite signals. The estimation unit estimates the position of the transmitter in a predetermined area. The first storage unit stores a plurality of position information. The plurality of position information indicates a plurality of positions at a plurality of candidate points for estimating the position of the transmitter. The second storage unit stores a plurality of quasi-theoretical values. The plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points. The estimation unit estimates the position of the transmitter in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the plurality of signal intensities in the plurality of synthesized signals.
 本開示の一態様に係る推定システムは、発信機と、取得部と、推定部と、第1記憶部と、第2記憶部と、を備える。前記発信機は、複数の元信号に対して位相合成処理を行い複数の無線信号を生成し、前記複数の無線信号を複数のアンテナから発信する。前記取得部は、所定領域内に存在する受信機によって受信された前記複数の無線信号における複数の信号強度の情報を取得する。前記推定部は、前記所定領域内における前記受信機の位置を推定する。前記第1記憶部は、複数の位置情報を記憶する。前記複数の位置情報は、前記受信機の位置を推定するための複数の候補点における複数の位置を示す。前記第2記憶部は、複数の準理論値を記憶する。前記複数の準理論値は、前記複数の候補点の各々と一対一で対応する。前記複数の準理論値は、前記複数の候補点の各々において無線信号が受信されたとした場合に前記受信機が受信する直接波及び反射波に関する値である。前記推定部は、前記複数の位置情報と、前記複数の準理論値と、前記取得部によって取得される前記複数の信号強度の情報と、に基づいて、前記所定領域内における前記受信機の位置を推定する。 The estimation system according to one aspect of the present disclosure includes a transmitter, an acquisition unit, an estimation unit, a first storage unit, and a second storage unit. The transmitter performs phase synthesis processing on a plurality of original signals to generate a plurality of radio signals, and transmits the plurality of radio signals from a plurality of antennas. The acquisition unit acquires information on a plurality of signal strengths in the plurality of radio signals received by a receiver existing in a predetermined area. The estimation unit estimates the position of the receiver within the predetermined area. The first storage unit stores a plurality of position information. The plurality of position information indicates a plurality of positions at a plurality of candidate points for estimating the position of the receiver. The second storage unit stores a plurality of quasi-theoretical values. The plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is received at each of the plurality of candidate points. The estimation unit determines the position of the receiver in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the information of the plurality of signal strengths acquired by the acquisition unit. To estimate.
 本開示の一態様に係る推定方法は、受信ステップと、生成ステップと、推定ステップと、を有する。前記受信ステップでは、発信機が発信する無線信号を受信機で受信する。前記受信機は複数のアンテナを有する。前記生成ステップでは、前記受信ステップにおいて受信した前記無線信号に対して位相合成処理を行って複数の合成信号を生成する。前記推定ステップでは、所定領域内における前記発信機の位置を推定する。前記推定ステップでは、複数の位置情報と、複数の準理論値と、前記複数の合成信号における複数の信号強度と、に基づいて、前記所定領域内における前記発信機の位置を推定する。前記複数の位置情報は、前記所定領域内における前記発信機の位置を推定するための複数の候補点の位置を示す。前記複数の位置情報は、あらかじめ記憶されている情報である。前記複数の準理論値は、前記複数の位置情報の各々と一対一で対応する。前記複数の準理論値は、前記複数の候補点の各々において無線信号が発信された場合の前記受信機が受信する直接波及び反射波に関する値である。前記複数の準理論値は、あらかじめ記憶されている。 The estimation method according to one aspect of the present disclosure includes a reception step, a generation step, and an estimation step. In the reception step, the receiver receives the radio signal transmitted by the transmitter. The receiver has a plurality of antennas. In the generation step, a phase synthesis process is performed on the radio signal received in the reception step to generate a plurality of composite signals. In the estimation step, the position of the transmitter within a predetermined area is estimated. In the estimation step, the position of the transmitter in the predetermined region is estimated based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in the plurality of synthesized signals. The plurality of position information indicates the positions of a plurality of candidate points for estimating the position of the transmitter in the predetermined area. The plurality of position information is information stored in advance. The plurality of quasi-theoretical values have a one-to-one correspondence with each of the plurality of position information. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points. The plurality of quasi-theoretical values are stored in advance.
 本開示の一態様に係る推定方法は、第1受信ステップと、設定ステップと、記憶ステップと、第2受信ステップと、推定ステップと、を有している。前記第1受信ステップでは、所定領域内に設置された基準発信機が発信する基準信号の直接波及び反射波を、受信機で受信する。前記受信機は複数のアンテナを有する。前記設定ステップでは、前記受信機及び前記基準発信機の位置情報と、基準信号の信号強度から、仮想受信点、又は、仮想送信点を設定する。前記仮想受信点は、前記反射波を受信したとみなすことができる。前記仮想送信点は、前記反射波を発信したとみなすことができる。前記記憶ステップでは、前記受信機の位置情報、及び、前記仮想受信点又は前記仮想送信点の位置情報に基づいて、複数の準理論値を記憶部に記憶させる。前記複数の準理論値は、前記所定領域内における複数の候補点の各々において発信機が無線信号を発信した場合に前記受信機が受信する直接波及び反射波に関する値である。前記第2受信ステップでは、前記発信機が発信する無線信号を前記受信機で受信する。前記推定ステップでは、前記複数の準理論値のうち、前記第2受信ステップにおいて前記受信機が受信した前記無線信号の信号強度との相関度が最も高い準理論値に対応する候補点の位置を、前記発信機の位置と推定する。 The estimation method according to one aspect of the present disclosure includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step. In the first reception step, the receiver receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter installed in the predetermined area. The receiver has a plurality of antennas. In the setting step, a virtual receiving point or a virtual transmitting point is set from the position information of the receiver and the reference transmitter and the signal strength of the reference signal. The virtual receiving point can be regarded as having received the reflected wave. The virtual transmission point can be regarded as transmitting the reflected wave. In the storage step, a plurality of quasi-theoretical values are stored in the storage unit based on the position information of the receiver and the position information of the virtual receiving point or the virtual transmitting point. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver when the transmitter transmits a radio signal at each of the plurality of candidate points in the predetermined region. In the second reception step, the receiver receives the radio signal transmitted by the transmitter. In the estimation step, among the plurality of quasi-theoretical values, the position of the candidate point corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver in the second receiving step is determined. , Presumed to be the position of the transmitter.
 本開示の一態様に係るプログラムは、前記推定方法を、1以上のプロセッサに実行させるためのプログラムである。 The program according to one aspect of the present disclosure is a program for causing one or more processors to execute the estimation method.
図1Aは、実施形態1に係る推定システム及び発信機の概要を示す概略図である。図1Bは、図1Aにおける推定システムを拡大した拡大概略図である。FIG. 1A is a schematic diagram showing an outline of the estimation system and the transmitter according to the first embodiment. FIG. 1B is an enlarged schematic view of the estimation system in FIG. 1A. 図2は、同上の推定システムの機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of the estimation system of the same. 図3は、同上の推定システムに係る仮想受信点の概要を示す概略図である。FIG. 3 is a schematic diagram showing an outline of a virtual receiving point according to the estimation system of the same. 図4は、同上の推定システムに係る複数の仮想受信点の概要を示す概略図である。FIG. 4 is a schematic diagram showing an outline of a plurality of virtual receiving points related to the above estimation system. 図5は、同上の推定システムに係る複数の候補点と複数の仮想受信点の概要を示す概略図である。FIG. 5 is a schematic diagram showing an outline of a plurality of candidate points and a plurality of virtual receiving points related to the same estimation system. 図6は、変形例の推定システムに係る複数の仮想受信点の概要を示す概略図である。FIG. 6 is a schematic diagram showing an outline of a plurality of virtual receiving points according to the estimation system of the modified example. 図7は、変形例の推定システムに係る仮想送信点の概要を示す概略図である。FIG. 7 is a schematic diagram showing an outline of virtual transmission points according to the estimation system of the modified example. 図8Aは、実施形態2に係る推定システム及び受信機の概要を示す概略図である。図8Bは、図8Aにおける推定システムを拡大した拡大概略図である。FIG. 8A is a schematic diagram showing an outline of the estimation system and the receiver according to the second embodiment. FIG. 8B is an enlarged schematic view of the estimation system in FIG. 8A. 図9は、同上の推定システムの機能構成を示すブロック図である。FIG. 9 is a block diagram showing the functional configuration of the estimation system as described above. 図10は、同上の推定システムに係る仮想受信点の概要を示す概略図である。FIG. 10 is a schematic diagram showing an outline of a virtual receiving point according to the estimation system of the same.
 以下、本開示に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. In the embodiments described below, the elements that are common to each other are designated by the same reference numerals, and duplicate description of the common elements will be omitted.
 (実施形態1)
 (1)概要
 まず、本実施形態に係る推定システム1の概要について、図1Aを参照して説明する。推定システム1は、施設内の所定領域A1において、電波を媒体とする無線信号を発信する発信機5の位置を測定する測位システム(LPS:Local Positioning System)に用いられる。本開示でいう「施設」は、例えば、オフィスビル、工場、複合商業施設、美術館、博物館、遊戯施設、テーマパーク、空港、鉄道駅、ドーム球場、ホテル、住宅等であって、敷地とその敷地に建てられた建物とを含む。その他、「施設」は、例えば、船舶、鉄道車両等の移動体であってもよい。また、本開示でいう「所定領域」は、施設内における部屋等であり、発信機5が発信する無線信号を反射させる反射体を含む領域である。本実施形態では、例えばオフィスビルのような施設内の部屋である所定領域A1において、推定システム1が適用された場合を例に説明する。図1Aに示すように本実施形態の所定領域A1は、部屋の4隅が壁6によって囲まれている。本実施形態の壁6は、発信機5が発信する無線信号を反射する反射体である。
(Embodiment 1)
(1) Outline First, an outline of the estimation system 1 according to the present embodiment will be described with reference to FIG. 1A. The estimation system 1 is used as a positioning system (LPS: Local Positioning System) for measuring the position of a transmitter 5 that transmits a radio signal using radio waves as a medium in a predetermined area A1 in the facility. The "facility" referred to in the present disclosure is, for example, an office building, a factory, a commercial complex, a museum, a play facility, a theme park, an airport, a railway station, a dome stadium, a hotel, a residence, etc., and the site and its site. Including buildings built in. In addition, the "facility" may be, for example, a moving body such as a ship or a railroad vehicle. Further, the "predetermined area" referred to in the present disclosure is a room or the like in a facility, and is an area including a reflector that reflects a radio signal transmitted by the transmitter 5. In the present embodiment, a case where the estimation system 1 is applied in a predetermined area A1 which is a room in a facility such as an office building will be described as an example. As shown in FIG. 1A, in the predetermined area A1 of the present embodiment, the four corners of the room are surrounded by the wall 6. The wall 6 of the present embodiment is a reflector that reflects a radio signal transmitted by the transmitter 5.
 本実施形態の発信機5は、例えばBLE(Bluetooth(登録商標)Low Energy)(以下、「BLE」と記載する。)の規格に従ったビーコン信号(無線信号)を発信するビーコン装置などで構成される。なお、発信機5は送信アンテナから無線信号を発信する。本実施形態の発信機5が発信する無線信号には、例えば発信機5の識別情報等の情報が含まれている。 The transmitter 5 of the present embodiment is composed of, for example, a beacon device that transmits a beacon signal (wireless signal) according to the standard of BLE (Bluetooth (registered trademark) Low Energy) (hereinafter, referred to as “BLE”). Will be done. The transmitter 5 transmits a wireless signal from the transmitting antenna. The radio signal transmitted by the transmitter 5 of the present embodiment includes information such as identification information of the transmitter 5.
 図1Bに示すように、推定システム1は、発信機5が発信する無線信号を受信するための複数(図1Bの例では3つ)のアンテナ21を備えている。本実施形態の3つのアンテナ21は、アンテナ21aとアンテナ21bとアンテナ21cとを含むアレーアンテナである。以下の説明において、3つのアンテナ21のうち特定のアンテナ21について説明する場合は、アンテナ21a,21b,21cを区別して記載する。また、3つのアンテナ21の各々を区別せずに説明する場合は、単にアンテナ21と記載する。 As shown in FIG. 1B, the estimation system 1 includes a plurality of antennas 21 (three in the example of FIG. 1B) for receiving the radio signal transmitted by the transmitter 5. The three antennas 21 of the present embodiment are array antennas including the antenna 21a, the antenna 21b, and the antenna 21c. In the following description, when a specific antenna 21 is described among the three antennas 21, the antennas 21a, 21b, and 21c are described separately. Further, when each of the three antennas 21 is described without distinction, it is simply described as the antenna 21.
 本実施形態の推定システム1は、3つのアンテナ21でBLEの規格に従った無線信号を受信可能なシステムで構成される。本実施形態の推定システム1は、3つのアンテナ21で受信した無線信号の信号強度(RSSI)に基づいて、無線信号を発信した発信機5の位置を推定することができる。 The estimation system 1 of the present embodiment is composed of a system capable of receiving a radio signal according to the BLE standard with three antennas 21. The estimation system 1 of the present embodiment can estimate the position of the transmitter 5 that has transmitted the radio signal based on the signal strength (RSSI) of the radio signal received by the three antennas 21.
 (2)詳細
 以下、本実施形態に係る推定システム1の詳細について図1A~図5を参照しつつ説明する。
(2) Details Hereinafter, the details of the estimation system 1 according to the present embodiment will be described with reference to FIGS. 1A to 5.
 (2.1)推定システムの構成
 図2に示すように、本実施形態の推定システム1は、受信機2と、推定部3と、記憶部4とを備えている。
(2.1) Configuration of the estimation system As shown in FIG. 2, the estimation system 1 of the present embodiment includes a receiver 2, an estimation unit 3, and a storage unit 4.
 受信機2は、発信機5(図1A参照)が発信する無線信号を受信する。受信機2は、無線信号を受信すると、無線信号に基づいて、発信機5の位置を推定するための複数(図2の例では4つ)の合成信号SS1~SS4を生成する。受信機2は、生成した4つの合成信号SS1~SS4を推定部3に出力する。受信機2の詳細については、「(2.3)受信機の構成」の欄で説明する。 The receiver 2 receives the radio signal transmitted by the transmitter 5 (see FIG. 1A). Upon receiving the radio signal, the receiver 2 generates a plurality of (four in the example of FIG. 2) combined signals SS1 to SS4 for estimating the position of the transmitter 5 based on the radio signal. The receiver 2 outputs the four generated combined signals SS1 to SS4 to the estimation unit 3. The details of the receiver 2 will be described in the column of "(2.3) Configuration of receiver".
 推定部3は、受信機2から出力される4つの合成信号SS1~SS4における4つの信号強度と、記憶部4に記憶されている位置情報41及び準理論値情報42とに基づいて、発信機5(図1A参照)の位置を推定する。推定部3が発信機5の位置を推定する推定方法の詳細については、「(3)推定方法」の欄で説明する。 The estimation unit 3 is a transmitter based on the four signal strengths of the four synthetic signals SS1 to SS4 output from the receiver 2 and the position information 41 and the quasi-theoretical value information 42 stored in the storage unit 4. Estimate the position of 5 (see FIG. 1A). The details of the estimation method in which the estimation unit 3 estimates the position of the transmitter 5 will be described in the column of "(3) Estimation method".
 記憶部4は、例えば、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)、光学ディスクドライブなどの非一時的な記憶装置を含む。記憶部4には、位置情報41と、準理論値情報42とが記憶されている。 The storage unit 4 includes, for example, a non-temporary storage device such as a hard disk drive (HDD), a solid state drive (SSD), or an optical disk drive. The storage unit 4 stores the position information 41 and the quasi-theoretical value information 42.
 位置情報41は、所定領域A1(図1A参照)内における受信機2(推定システム1)、及び後述する基準発信機7(図3参照)の位置を示す情報を含んでいる。図1Aに示すように、本実施形態の位置情報41は、3次元の座標系における座標の情報である。例えば、本実施形態の推定システム1は、座標(1,1,1)に位置している。 The position information 41 includes information indicating the positions of the receiver 2 (estimation system 1) and the reference transmitter 7 (see FIG. 3) described later in the predetermined area A1 (see FIG. 1A). As shown in FIG. 1A, the position information 41 of the present embodiment is coordinate information in a three-dimensional coordinate system. For example, the estimation system 1 of this embodiment is located at coordinates (1,1,1).
 準理論値情報42は、所定領域A1内における発信機5の位置を推定するための複数(図1Aの例では36個)の候補点P0の位置を示す位置情報と一対一で対応する複数の準理論値の情報である(表1参照)。本実施形態の複数の候補点P0の位置情報は、3次元の座標系における座標の情報である。例えば、候補点P11の座標は(1,1,1)であり、候補点P66の座標は(6,6,1)である。準理論値は、推定システム1が受信する無線信号の信号強度と複数の候補点P0との相関度を求めるためのステアリングベクトルである。 The quasi-theoretical value information 42 has a plurality of one-to-one correspondences with the position information indicating the positions of the plurality of candidate points P0 for estimating the position of the transmitter 5 in the predetermined area A1 (36 in the example of FIG. 1A). Information on quasi-theoretical values (see Table 1). The position information of the plurality of candidate points P0 of the present embodiment is the coordinate information in the three-dimensional coordinate system. For example, the coordinates of the candidate point P11 are (1,1,1), and the coordinates of the candidate point P66 are (6,6,1). The quasi-theoretical value is a steering vector for obtaining the degree of correlation between the signal strength of the radio signal received by the estimation system 1 and the plurality of candidate points P0.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 (2.2)準理論値
 次に、準理論値の詳細について図3~図5を参照しつつ説明する。
(2.2) Semi-theoretical value Next, the details of the quasi-theoretical value will be described with reference to FIGS. 3 to 5.
 本実施形態における準理論値は、所定領域A1に配置される基準発信機7(リファレンスビーコン)を用いて予め算出されている。基準発信機7は、例えばBLEの規格に従ったビーコン信号(無線信号)を送信アンテナから発信するビーコン装置などで構成される。なお、以下の説明では、基準発信機7が発信する無線信号のことを「基準信号」という。本実施形態の基準発信機7が発信する基準信号には、例えば基準発信機7の識別情報等の情報が含まれている。 The quasi-theoretical value in this embodiment is calculated in advance using the reference transmitter 7 (reference beacon) arranged in the predetermined area A1. The reference transmitter 7 is composed of, for example, a beacon device that transmits a beacon signal (radio signal) according to the BLE standard from a transmitting antenna. In the following description, the radio signal transmitted by the reference transmitter 7 is referred to as a "reference signal". The reference signal transmitted by the reference transmitter 7 of the present embodiment includes information such as identification information of the reference transmitter 7.
 図3のように、反射体である壁6を含む所定領域A1における座標(X1,Y1,Z1)に配置された基準発信機7が基準信号を発信すると、発信した基準信号の一部は直接受信機2に到達し、発信した基準信号の一部は壁6で反射して受信機2に到達する。図3の例では、基準発信機7が発信した無線信号の一部は、壁62の反射点8で反射し、受信機2に到達している。そのため、受信機2が観測する基準信号の信号強度は、直接波と反射波とを足し合わせたものになる。ここで、「直接波」とは、発信機5や基準発信機7が発信する無線信号(基準信号)のうち、発信機5や基準発信機7等の無線信号の発信源から直接(つまり、壁6等の反射体で反射せずに)受信機2に受信される無線信号である。また、「反射波」とは、発信機5や基準発信機7が発信する無線信号(基準信号)のうち、壁6等の反射体で反射した後に受信機2に受信される無線信号である。図3の例では、基準発信機7が発信する基準信号のうち、直接波は経路a1を通って受信機2によって受信される基準信号であり、反射波は経路a21及びa23を通って受信機2によって受信される基準信号である。なお、本開示でいう「経路」とは、無線信号(基準信号)のパスのことである。また、ある点(第1の点)と他の点(第2の点)との間の経路を、第1の点から第2の点までのベクトル、又は、第2の点から第1の点までのベクトルで表現してもよい。 As shown in FIG. 3, when the reference transmitter 7 arranged at the coordinates (X1, Y1, Z1) in the predetermined region A1 including the wall 6 as a reflector transmits a reference signal, a part of the transmitted reference signal is directly transmitted. A part of the reference signal transmitted after reaching the receiver 2 is reflected by the wall 6 and reaches the receiver 2. In the example of FIG. 3, a part of the radio signal transmitted by the reference transmitter 7 is reflected at the reflection point 8 of the wall 62 and reaches the receiver 2. Therefore, the signal strength of the reference signal observed by the receiver 2 is the sum of the direct wave and the reflected wave. Here, the "direct wave" is a radio signal (reference signal) transmitted by the transmitter 5 or the reference transmitter 7 directly from the source of the radio signal such as the transmitter 5 or the reference transmitter 7 (that is,). It is a radio signal received by the receiver 2 (without being reflected by a reflector such as a wall 6). The "reflected wave" is a radio signal (reference signal) transmitted by the transmitter 5 and the reference transmitter 7, which is reflected by a reflector such as a wall 6 and then received by the receiver 2. .. In the example of FIG. 3, among the reference signals transmitted by the reference transmitter 7, the direct wave is the reference signal received by the receiver 2 through the path a1, and the reflected wave is the receiver through the paths a21 and a23. It is a reference signal received by 2. The "path" referred to in the present disclosure is a path of a radio signal (reference signal). Further, the path between one point (first point) and another point (second point) is a vector from the first point to the second point, or the second point to the first point. It may be represented by a vector up to a point.
 推定システム1は、受信した無線信号(基準信号)の信号強度に基づいて、無線信号の到来方向θ1(図1B参照)を推定することができるため、直接波及び反射波を足し合わせた無線信号の経路a0を推定することができる。また、本実施形態では、受信機2の位置(座標)を示す情報、及び、基準発信機7の位置を示す情報は、位置情報41に含まれている。そのため、推定システム1は、受信機2及び基準発信機7の位置情報に基づいて、基準発信機7から発信される基準信号における直接波の経路a1を算出することができる。そして、推定システム1は、直接波及び反射波を足し合わせた基準信号の経路a0と、直接波の経路a1と、に基づいて、反射波の経路a2を算出することができる。言い換えると、推定システム1は、受信した基準信号の信号強度と、直接波の経路a1及び反射波の経路a2とを足し合わせた経路a0と、の相関度が最も高くなるような反射波の経路a2を推定する。本実施形態における反射波の経路a2は、壁62(反射体)がなければ基準信号を受信したとみなすことができる仮想受信点V1と、基準発信機7との間の経路である。仮想受信点V1は基準信号を反射させる壁62の反射点8を介して基準発信機7と対向する位置にあり、反射点8と受信機2との間における基準信号の経路a23の長さと、反射点8と仮想受信点V1との間における基準信号の経路a22の長さとは等しい。なお、基準発信機7と、基準信号を反射させる壁62の反射点8と、仮想受信点V1とは、一直線上に並んでいる。仮想受信点V1の座標(X2,Y2,Z2)は、受信機2の位置を示す位置情報と、基準発信機7の位置を示す位置情報と、基準発信機7が発信する基準信号を受信機2が受信した場合の信号強度とに基づいて設定されている。 Since the estimation system 1 can estimate the arrival direction θ1 (see FIG. 1B) of the radio signal based on the signal strength of the received radio signal (reference signal), the radio signal obtained by adding the direct wave and the reflected wave. Path a0 can be estimated. Further, in the present embodiment, the information indicating the position (coordinates) of the receiver 2 and the information indicating the position of the reference transmitter 7 are included in the position information 41. Therefore, the estimation system 1 can calculate the direct wave path a1 in the reference signal transmitted from the reference transmitter 7 based on the position information of the receiver 2 and the reference transmitter 7. Then, the estimation system 1 can calculate the path a2 of the reflected wave based on the path a0 of the reference signal obtained by adding the direct wave and the reflected wave and the path a1 of the direct wave. In other words, the estimation system 1 has a reflected wave path having the highest correlation between the signal strength of the received reference signal and the path a0 obtained by adding the direct wave path a1 and the reflected wave path a2. Estimate a2. The path a2 of the reflected wave in the present embodiment is a path between the virtual reception point V1 that can be regarded as having received the reference signal without the wall 62 (reflector) and the reference transmitter 7. The virtual reception point V1 is located at a position facing the reference transmitter 7 via the reflection point 8 of the wall 62 that reflects the reference signal, and the length of the reference signal path a23 between the reflection point 8 and the receiver 2 and the length of the reference signal path a23. It is equal to the length of the reference signal path a22 between the reflection point 8 and the virtual reception point V1. The reference transmitter 7, the reflection point 8 of the wall 62 that reflects the reference signal, and the virtual reception point V1 are aligned with each other. The coordinates (X2, Y2, Z2) of the virtual receiving point V1 receive the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7, and the reference signal transmitted by the reference transmitter 7. It is set based on the signal strength when 2 is received.
 準理論値は、候補点P0と受信機2との間における無線信号の経路a1、及び、候補点P0と候補点P0に対応する仮想受信点V1との間における無線信号の経路a2とを足し合わせたものである。準理論値情報42は、このような準理論値と各候補点P0とを対応付けた情報である。すなわち、本実施形態の複数の候補点P0の各々には、複数の候補点P0の各々に対応する仮想受信点V1が設定されている。 The quasi-theoretical value is the sum of the radio signal path a1 between the candidate point P0 and the receiver 2 and the radio signal path a2 between the candidate point P0 and the virtual receiving point V1 corresponding to the candidate point P0. It is a combination. The quasi-theoretical value information 42 is information in which such a quasi-theoretical value is associated with each candidate point P0. That is, a virtual receiving point V1 corresponding to each of the plurality of candidate points P0 is set in each of the plurality of candidate points P0 of the present embodiment.
 本実施形態では、図4に示すように、所定領域A1に4つの基準発信機7a~7dを設置して、複数の候補点P0の各々に対応する4つの仮想受信点V2~V5を設定している。なお、以下の説明において、4つの基準発信機7a~7dの各々を特に区別しない場合は、単に「基準発信機7」という。図4のように、所定領域A1には、反射体(壁61~64)の数と同じ数の基準発信機7を設置することが好ましい。所定領域A1は、図4に示すように、交差する2本の一点鎖線(所定領域A1における2本の対角線)によって4つの領域A11~A14に区別されている。 In the present embodiment, as shown in FIG. 4, four reference transmitters 7a to 7d are installed in the predetermined area A1, and four virtual reception points V2 to V5 corresponding to each of the plurality of candidate points P0 are set. ing. In the following description, when each of the four reference transmitters 7a to 7d is not particularly distinguished, it is simply referred to as "reference transmitter 7". As shown in FIG. 4, it is preferable to install the same number of reference transmitters 7 as the number of reflectors (walls 61 to 64) in the predetermined area A1. As shown in FIG. 4, the predetermined region A1 is divided into four regions A11 to A14 by two intersecting alternate long and short dash lines (two diagonal lines in the predetermined region A1).
 領域A11は、領域A11内に存在する複数の候補点P0において発信機5が無線信号を発信した場合に、壁61で反射する無線信号が多い領域である。領域A11には基準発信機7aが設置されており、基準発信機7aの位置を示す情報は位置情報41に含まれている。受信機2の位置を示す位置情報と、基準発信機7aの位置を示す位置情報と、基準発信機7aが発信する基準信号を受信機2が受信した場合の信号強度とに基づいて、仮想受信点V2の位置が設定される。なお、仮想受信点V2は、壁61(反射体)がなければ、基準発信機7aが発信した基準信号を受信することができたとみなせる仮想点である。仮想受信点V2と基準発信機7aとの間には壁61の反射点8aがある。仮想受信点V2は、領域A11に対応する仮想受信点である。そして、領域11内の複数の候補点P0の各々には、候補点P0と受信機2との間における無線信号の経路a1、及び、候補点P0と仮想受信点V2との間における無線信号の経路a2とを足し合わせた準理論値が対応付けられる。図5に示すように、例えば候補点P36には、候補点P36と受信機2(推定システム1)との間における無線信号の経路a1、及び、候補点P36と仮想受信点V2との間における無線信号の経路a2を足し合わせた準理論値が対応付けられる。 The area A11 is an area in which many radio signals are reflected by the wall 61 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A11. A reference transmitter 7a is installed in the area A11, and information indicating the position of the reference transmitter 7a is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7a, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7a. The position of point V2 is set. The virtual receiving point V2 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7a if there is no wall 61 (reflector). There is a reflection point 8a on the wall 61 between the virtual reception point V2 and the reference transmitter 7a. The virtual receiving point V2 is a virtual receiving point corresponding to the area A11. Then, in each of the plurality of candidate points P0 in the region 11, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V2 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, the candidate point P36 has a radio signal path a1 between the candidate point P36 and the receiver 2 (estimation system 1), and between the candidate point P36 and the virtual reception point V2. A quasi-theoretical value obtained by adding the paths a2 of the radio signal is associated.
 図4に示すように、領域A12は、領域A12内に存在する複数の候補点P0において発信機5が無線信号を発信した場合に、壁62で反射する無線信号が多い領域である。領域A12には基準発信機7bが設置されており、基準発信機7bの位置を示す情報は位置情報41に含まれている。受信機2の位置を示す位置情報と、基準発信機7bの位置を示す位置情報と、基準発信機7bが発信する基準信号を受信機2が受信した場合の信号強度とに基づいて、仮想受信点V3の位置が設定される。なお、仮想受信点V3は、壁62(反射体)がなければ、基準発信機7bが発信した基準信号を受信することができたとみなせる仮想点である。仮想受信点V3と基準発信機7bとの間には壁62の反射点8bがある。仮想受信点V3は、領域A12に対応する仮想受信点である。そして、領域12内の複数の候補点P0の各々には、候補点P0と受信機2との間における無線信号の経路a1、及び、候補点P0と仮想受信点V3との間における無線信号の経路a2とを足し合わせた準理論値が対応付けられる。図5に示すように、例えば候補点P63には、候補点P63と受信機2との間における無線信号の経路a1、及び、候補点P63と仮想受信点V3との間における無線信号の経路a2を足し合わせた準理論値が対応付けられる。 As shown in FIG. 4, the area A12 is an area in which many radio signals are reflected by the wall 62 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A12. A reference transmitter 7b is installed in the area A12, and information indicating the position of the reference transmitter 7b is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7b, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7b. The position of the point V3 is set. The virtual receiving point V3 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7b if there is no wall 62 (reflector). There is a reflection point 8b on the wall 62 between the virtual reception point V3 and the reference transmitter 7b. The virtual receiving point V3 is a virtual receiving point corresponding to the area A12. Then, in each of the plurality of candidate points P0 in the region 12, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V3 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, at the candidate point P63, the wireless signal path a1 between the candidate point P63 and the receiver 2 and the wireless signal path a2 between the candidate point P63 and the virtual receiving point V3. The quasi-theoretical value obtained by adding the above is associated.
 図4に示すように、領域A13は、領域A13内に存在する複数の候補点P0において発信機5が無線信号を発信した場合に、壁63で反射する無線信号が多い領域である。領域A13には基準発信機7cが設置されており、基準発信機7cの位置を示す情報は位置情報41に含まれている。受信機2の位置を示す位置情報と、基準発信機7cの位置を示す位置情報と、基準発信機7cが発信する基準信号を受信機2が受信した場合の信号強度とに基づいて、仮想受信点V4の位置が設定される。なお、仮想受信点V4は、壁63(反射体)がなければ、基準発信機7cが発信した基準信号を受信することができたとみなせる仮想点である。仮想受信点V4と基準発信機7cとの間には壁63の反射点8cがある。仮想受信点V4は、領域A13に対応する仮想受信点である。そして、領域13内の複数の候補点P0の各々には、候補点P0と受信機2との間における無線信号の経路a1、及び、候補点P0と仮想受信点V4との間における無線信号の経路a2とを足し合わせた準理論値が対応付けられる。図5に示すように、例えば候補点P51には、候補点P51と受信機2との間における無線信号の経路a1、及び、候補点P51と仮想受信点V4との間における無線信号の経路a2を足し合わせた準理論値が対応付けられる。 As shown in FIG. 4, the area A13 is an area in which many radio signals are reflected by the wall 63 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A13. A reference transmitter 7c is installed in the area A13, and information indicating the position of the reference transmitter 7c is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7c, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7c. The position of the point V4 is set. The virtual receiving point V4 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7c if there is no wall 63 (reflector). There is a reflection point 8c on the wall 63 between the virtual reception point V4 and the reference transmitter 7c. The virtual receiving point V4 is a virtual receiving point corresponding to the area A13. Then, in each of the plurality of candidate points P0 in the region 13, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V4 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, at the candidate point P51, the wireless signal path a1 between the candidate point P51 and the receiver 2 and the wireless signal path a2 between the candidate point P51 and the virtual receiving point V4. The quasi-theoretical value obtained by adding the above is associated.
 図4に示すように、領域A14は、領域A14内に存在する複数の候補点P0において発信機5が無線信号を発信した場合に、壁64で反射する無線信号が多い領域である。領域A14には基準発信機7dが設置されており、基準発信機7dの位置を示す情報は位置情報41に含まれている。受信機2の位置を示す位置情報と、基準発信機7dの位置を示す位置情報と、基準発信機7dが発信する基準信号を受信機2が受信した場合の信号強度とに基づいて、仮想受信点V5の位置が設定される。なお、仮想受信点V5は、壁64(反射体)がなければ、基準発信機7dが発信した基準信号を受信することができたとみなせる仮想点である。仮想受信点V5と基準発信機7dの間には壁64の反射点8dがある。仮想受信点V5は、領域A14に対応する仮想受信点である。そして、領域14内の複数の候補点P0の各々には、候補点P0と受信機2との間における無線信号の経路a1、及び、候補点P0と仮想受信点V5との間における無線信号の経路a2とを足し合わせた準理論値が対応付けられる。図5に示すように、例えば候補点P13には、候補点P13と受信機2との間における無線信号の経路a1、及び、候補点P13と仮想受信点V5との間における無線信号の経路a2を足し合わせた準理論値が対応付けられる。準理論値は、受信機2が受信する直接波だけでなく受信機2が受信する反射波も考慮した値であるため、推定部3が発信機5の位置方向ではなく発信機5の位置(座標)を推定することができる値となっている。 As shown in FIG. 4, the area A14 is an area in which many radio signals are reflected by the wall 64 when the transmitter 5 transmits a radio signal at a plurality of candidate points P0 existing in the area A14. A reference transmitter 7d is installed in the area A14, and information indicating the position of the reference transmitter 7d is included in the position information 41. Virtual reception based on the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7d, and the signal strength when the receiver 2 receives the reference signal transmitted by the reference transmitter 7d. The position of the point V5 is set. The virtual receiving point V5 is a virtual point that can be regarded as being able to receive the reference signal transmitted by the reference transmitter 7d if there is no wall 64 (reflector). There is a reflection point 8d on the wall 64 between the virtual reception point V5 and the reference transmitter 7d. The virtual receiving point V5 is a virtual receiving point corresponding to the area A14. Then, in each of the plurality of candidate points P0 in the region 14, the path a1 of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the virtual reception point V5 A quasi-theoretical value obtained by adding the path a2 is associated. As shown in FIG. 5, for example, at the candidate point P13, the wireless signal path a1 between the candidate point P13 and the receiver 2 and the wireless signal path a2 between the candidate point P13 and the virtual receiving point V5. The quasi-theoretical value obtained by adding the above is associated. Since the quasi-theoretical value is a value considering not only the direct wave received by the receiver 2 but also the reflected wave received by the receiver 2, the estimation unit 3 is not in the position direction of the transmitter 5 but in the position of the transmitter 5 (the position of the transmitter 5 ( It is a value that can be estimated (coordinates).
 後述するように、本実施形態の推定システム1は、このような準理論値をステアリングベクトルとして用いることで、所定領域A1内における発信機5の位置を推定する。 As will be described later, the estimation system 1 of the present embodiment estimates the position of the transmitter 5 in the predetermined region A1 by using such a quasi-theoretical value as a steering vector.
 (2.3)受信機の構成
 次に、受信機2の詳細について、図1A~図2を参照しつつ説明する。
(2.3) Configuration of Receiver Next, the details of the receiver 2 will be described with reference to FIGS. 1A and 2.
 受信機2は、図2に示すように、3つのアンテナ21と、位相合成部22と、出力部24とを備えている。 As shown in FIG. 2, the receiver 2 includes three antennas 21, a phase synthesizer 22, and an output unit 24.
 3つのアンテナ21は、発信機5(図1A参照)が発信する無線信号を受信する。3つのアンテナ21は、無線信号を受信すると、無線信号に基づく複数(図2の例では3つ)の入力信号IS1~IS3を位相合成部22に出力する。具体的には、アンテナ21aが入力信号IS1を位相合成器23aに出力し、アンテナ21bが入力信号IS2を位相合成器23bに出力し、アンテナ21cが入力信号IS3を位相合成器23cに出力する。 The three antennas 21 receive the radio signal transmitted by the transmitter 5 (see FIG. 1A). When the three antennas 21 receive the radio signal, they output a plurality of (three in the example of FIG. 2) input signals IS1 to IS3 based on the radio signal to the phase synthesizer 22. Specifically, the antenna 21a outputs the input signal IS1 to the phase combiner 23a, the antenna 21b outputs the input signal IS2 to the phase synthesizer 23b, and the antenna 21c outputs the input signal IS3 to the phase synthesizer 23c.
 位相合成部22は、3つのアンテナ21から入力される3つの入力信号IS1~IS3に対して合成処理を行い、発信機5の位置を推定するための複数(図2の例では4つ)の合成信号SS1~SS4を生成する。 The phase synthesizing unit 22 performs synthesis processing on the three input signals IS1 to IS3 input from the three antennas 21, and a plurality of (four in the example of FIG. 2) for estimating the position of the transmitter 5. Generates the combined signals SS1 to SS4.
 位相合成部22は、位相合成器23aと、位相合成器23bと、位相合成器23cと、位相合成器23dと、位相合成器23eとを備えている。以下の説明において、位相合成器23a,23b,23c,23d,23eを区別せずに説明する場合は、単に位相合成器23と記載する。位相合成器23は、例えば90度ハイブリッドユニット(ハイブリッド素子)などで構成される。本実施形態の位相合成器23は、第1入力端子I1及び第2入力端子I2に入力される3つの入力信号IS1~IS3と比べて、電力値が1/√2倍の信号を第1出力端子O1及び第2出力端子O2から出力する。また、位相合成器23は、第1入力端子I1に入力される3つの入力信号IS1~IS3と比べて、同位相の信号を第1出力端子O1から出力し、位相が90度遅れた信号を第2出力端子O2から出力する。 The phase synthesizer 22 includes a phase synthesizer 23a, a phase synthesizer 23b, a phase synthesizer 23c, a phase synthesizer 23d, and a phase synthesizer 23e. In the following description, when the phase synthesizers 23a, 23b, 23c, 23d, and 23e are described without distinction, they are simply referred to as the phase synthesizer 23. The phase synthesizer 23 is composed of, for example, a 90-degree hybrid unit (hybrid element). The phase synthesizer 23 of the present embodiment first outputs a signal having a power value 1 / √2 times that of the three input signals IS1 to IS3 input to the first input terminal I1 and the second input terminal I2. Output from terminal O1 and second output terminal O2. Further, the phase synthesizer 23 outputs a signal having the same phase from the first output terminal O1 as compared with the three input signals IS1 to IS3 input to the first input terminal I1, and outputs a signal whose phase is delayed by 90 degrees. Output from the second output terminal O2.
 位相合成器23aは、第1入力端子I1に入力される入力信号IS1と比べて、電力値が1/√2倍で同相の信号IS4を第1出力端子O1から出力する。 The phase synthesizer 23a outputs the in-phase signal IS4 from the first output terminal O1 with a power value 1 / √2 times that of the input signal IS1 input to the first input terminal I1.
 位相合成器23bは、第1入力端子I1に入力される入力信号IS2と比べて、電力値が1/√2倍で位相が90度遅れた信号IS5を、第2出力端子O2から出力する。また、位相合成器23bは、入力信号IS2と比べて、電力値が1/√2倍で同位相の信号IS6を、第1出力端子O1から出力する。 The phase synthesizer 23b outputs a signal IS5 whose power value is 1 / √2 times and whose phase is delayed by 90 degrees as compared with the input signal IS2 input to the first input terminal I1 from the second output terminal O2. Further, the phase synthesizer 23b outputs a signal IS6 having a power value 1 / √2 times that of the input signal IS2 and having the same phase from the first output terminal O1.
 位相合成器23cは、第2入力端子I2に入力される入力信号IS3と比べて、電力値が1/√2倍で同相の信号IS7を第2出力端子O2から出力する。 The phase synthesizer 23c outputs the in-phase signal IS7 from the second output terminal O2 with a power value 1 / √2 times that of the input signal IS3 input to the second input terminal I2.
 位相合成器23dは、第2入力端子I2で信号IS4を受け付け、第1入力端子I1で信号IS5を受け付ける。位相合成器23dは、信号IS4と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS5と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた合成信号SS1を第1出力端子O1から出力する。また、位相合成器23dは、信号IS4と比べて電力値が1/√2倍で同位相の信号と、信号IS5と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた合成信号SS2を第2出力端子O2から出力する。 The phase synthesizer 23d receives the signal IS4 at the second input terminal I2 and the signal IS5 at the first input terminal I1. The phase synthesizer 23d produces a signal having a power value 1 / √2 times that of the signal IS4 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the signal IS5 and having the same phase. The added combined signal SS1 is output from the first output terminal O1. Further, the phase synthesizer 23d has a signal having a power value of 1 / √2 times that of the signal IS4 and having the same phase, and a signal having a power value of 1 / √2 times and having a phase delay of 90 degrees as compared with the signal IS5. , And the combined signal SS2 is output from the second output terminal O2.
 位相合成器23eは、第2入力端子I2で信号IS6を受け付け、第1入力端子I1で信号IS7を受け付ける。位相合成器23eは、信号IS6と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS7と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた合成信号SS3を第1出力端子O1から出力する。また、位相合成器23eは、信号IS6と比べて電力値が1/√2倍で同位相の信号と、信号IS7と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた合成信号SS4を第2出力端子O2から出力する。 The phase synthesizer 23e receives the signal IS6 at the second input terminal I2 and the signal IS7 at the first input terminal I1. The phase synthesizer 23e produces a signal having a power value 1 / √2 times that of the signal IS6 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the signal IS7 and having the same phase. The added combined signal SS3 is output from the first output terminal O1. Further, the phase synthesizer 23e has a signal having a power value of 1 / √2 times that of the signal IS6 and having the same phase, and a signal having a power value of 1 / √2 times and having a phase delay of 90 degrees as compared with the signal IS7. , And the combined signal SS4 is output from the second output terminal O2.
 出力部24は、位相合成部22によって生成される4つの合成信号SS1~SS4を、推定部3に出力する。 The output unit 24 outputs the four composite signals SS1 to SS4 generated by the phase synthesis unit 22 to the estimation unit 3.
 (3)推定方法
 次に、推定部3が所定領域A1内における発信機5の位置を推定する推定方法について、図1A~図2を参照しつつ説明する。
(3) Estimating Method Next, an estimation method in which the estimation unit 3 estimates the position of the transmitter 5 in the predetermined area A1 will be described with reference to FIGS. 1A and 2.
 図1Bに示すように、アンテナ21aと発信機5の送信アンテナとの間の複素伝播チャネルをh1、アンテナ21bと送信アンテナとの間の複素伝播チャネルをh2、アンテナ21cと送信アンテナとの間の複素伝播チャネルをh3とする。また、アンテナ21aとアンテナ21bとの距離、及び、アンテナ21bとアンテナ21cとの距離をd1とする。また、アンテナ21aとアンテナ21bとアンテナ21cとで構成されるアレーアンテナのブロードサイド方向(X方向)を基準として角度θ1の位置に発信機5が存在するものとする。 As shown in FIG. 1B, the complex propagation channel between the antenna 21a and the transmitting antenna of the transmitter 5 is h1, the complex propagation channel between the antenna 21b and the transmitting antenna is h2, and the complex propagation channel between the antenna 21c and the transmitting antenna is Let h3 be the complex propagation channel. Further, the distance between the antenna 21a and the antenna 21b and the distance between the antenna 21b and the antenna 21c are defined as d1. Further, it is assumed that the transmitter 5 is present at a position at an angle θ1 with respect to the broadside direction (X direction) of the array antenna composed of the antenna 21a, the antenna 21b, and the antenna 21c.
 伝播チャネルはまとめて、式(1)と表すことができる。 Propagation channels can be collectively expressed as Eq. (1).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 この伝番チャネルの相関行列は、式(2)と表すことができる。 The correlation matrix of this transmission channel can be expressed by Eq. (2).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 ここで、記号Hは複素共役転置を、記号*は複素共役を表す。通常、相関行列Rの対角項は実数となり、非対角項は複素数となる。相関行列Rを求めることで、推定部3は、無線信号の到来方向を推定することができる。推定部3は、信号強度に関する情報に基づいて、相関行列Rを求める。式(1)の伝播チャネルを用いると、推定部3に入力される4つの合成信号SS1~SS4の振幅は、式(3)~式(6)と表すことができる。 Here, the symbol H represents the complex conjugate transpose, and the symbol * represents the complex conjugate. Usually, the diagonal term of the correlation matrix R is a real number, and the off-diagonal term is a complex number. By obtaining the correlation matrix R, the estimation unit 3 can estimate the arrival direction of the radio signal. The estimation unit 3 obtains the correlation matrix R based on the information regarding the signal strength. Using the propagation channel of the equation (1), the amplitudes of the four combined signals SS1 to SS4 input to the estimation unit 3 can be expressed as the equations (3) to (6).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 |y1|は、位相合成器23dの第1出力端子O1から出力される合成信号SS1の振幅を表している。|y2|は、位相合成器23dの第2出力端子O2から出力される合成信号SS2の振幅を表している。|y3|は、位相合成器23eの第1出力端子O1から出力される合成信号SS3の振幅を表している。|y4|は、位相合成器23eの第2出力端子O2から出力される合成信号SS4の振幅を表している。また、信号強度から式(3)~(6)の左辺のチャネルの利得は、式(7)~式(10)と表すことができる。 | Y1 | represents the amplitude of the combined signal SS1 output from the first output terminal O1 of the phase synthesizer 23d. | Y2 | represents the amplitude of the combined signal SS2 output from the second output terminal O2 of the phase synthesizer 23d. | Y3 | represents the amplitude of the combined signal SS3 output from the first output terminal O1 of the phase synthesizer 23e. | Y4 | represents the amplitude of the combined signal SS4 output from the second output terminal O2 of the phase synthesizer 23e. Further, the gain of the channel on the left side of the equations (3) to (6) can be expressed as the equations (7) to (10) from the signal strength.
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000011
 
 位相合成器23dを介して得られる利得の差に注目すると、式(11)が得られる。 Focusing on the difference in gain obtained via the phase synthesizer 23d, Eq. (11) can be obtained.
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000012
 
 また、式(11)の関係より、式(12)が得られ、R12及びR21の実部を求めることができる。ここで、αはR12の偏角を表す。 Further, from the relationship of the equation (11), the equation (12) can be obtained, and the real part of R12 and R21 can be obtained. Here, α represents the declination angle of R12.
Figure JPOXMLDOC01-appb-M000013
 
Figure JPOXMLDOC01-appb-M000013
 
 また、位相合成器23dを介して得られる利得の和に注目すると、相加相乗平均の関係より、式(13)が得られる。 Further, paying attention to the sum of the gains obtained via the phase synthesizer 23d, the equation (13) can be obtained from the relation of the additive geometric mean.
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000014
 
 ここで、発信機5の送信アンテナからアンテナ21aまでの伝播損と、送信アンテナからアンテナ21bまでの伝播損とが等しく、|h1|と|h2|とがほぼ等しいとする。|h1|と|h2|とがほぼ等しい場合、R12の偏角であるαは、式(14)で表すことができる。 Here, it is assumed that the propagation loss from the transmitting antenna of the transmitter 5 to the antenna 21a and the propagation loss from the transmitting antenna to the antenna 21b are equal, and | h1 | and | h2 | are substantially equal. When | h1 | and | h2 | are substantially equal, α, which is the declination angle of R12, can be expressed by the equation (14).
Figure JPOXMLDOC01-appb-M000015
 
Figure JPOXMLDOC01-appb-M000015
 
 また、|h1|と|h2|とがほぼ等しい場合、式(15)が得られる。 Further, when | h1 | and | h2 | are substantially equal, the equation (15) is obtained.
Figure JPOXMLDOC01-appb-M000016
 
Figure JPOXMLDOC01-appb-M000016
 
 ここでAは実数の定数である。式(2)に示される相関行列Rのうち、位相合成器23dから出力される合成信号SS1,SS2に関する相関行列をR1と定義する。相関行列R1をA及びαを用いて表すと、式(16)が得られる。 Here, A is a real number constant. Among the correlation matrices R shown in the equation (2), the correlation matrix related to the composite signals SS1 and SS2 output from the phase synthesizer 23d is defined as R1. When the correlation matrix R1 is expressed using A and α, the equation (16) is obtained.
Figure JPOXMLDOC01-appb-M000017
 
Figure JPOXMLDOC01-appb-M000017
 
 次に、位相合成器23eを介して得られる利得の差に注目すると、式(17)が得られ、R23及びR32の虚部を求めることができる。ここで、βはR23の偏角を表す。 Next, paying attention to the difference in gain obtained via the phase synthesizer 23e, the equation (17) can be obtained, and the imaginary part of R23 and R32 can be obtained. Here, β represents the argument of R23.
Figure JPOXMLDOC01-appb-M000018
 
Figure JPOXMLDOC01-appb-M000018
 
 また、位相合成器23eを介して得られる利得の和に注目すると、相加相乗平均の関係より、式(18)が得られる。ここで、発信機5の送信アンテナからアンテナ21bの伝播損と、送信アンテナからアンテナ21cの伝播損とが等しく、|h2|と|h3|とがほぼ等しいとする。 Further, paying attention to the sum of the gains obtained via the phase synthesizer 23e, the equation (18) can be obtained from the relation of the additive geometric mean. Here, it is assumed that the propagation loss of the antenna 21b from the transmitting antenna of the transmitter 5 is equal to the propagation loss of the antenna 21c from the transmitting antenna, and | h2 | and | h3 | are substantially the same.
Figure JPOXMLDOC01-appb-M000019
 
Figure JPOXMLDOC01-appb-M000019
 
 |h2|と|h3|とがほぼ等しい場合、R23の偏角であるβは、式(19)で表すことができる。 When | h2 | and | h3 | are substantially equal, β, which is the argument of R23, can be expressed by the equation (19).
Figure JPOXMLDOC01-appb-M000020
 
Figure JPOXMLDOC01-appb-M000020
 
 同様に、|h2|と|h3|とがほぼ等しい場合、式(20)が得られる。ここで、Bは実数の定数である。相関行列Rのうち、位相合成器23eから出力される合成信号SS3,SS4に関する相関行列をR2と定義する。 Similarly, when | h2 | and | h3 | are substantially equal, the equation (20) is obtained. Here, B is a real number constant. Of the correlation matrix R, the correlation matrix related to the composite signals SS3 and SS4 output from the phase synthesizer 23e is defined as R2.
Figure JPOXMLDOC01-appb-M000021
 
Figure JPOXMLDOC01-appb-M000021
 
 相関行列R2をB及びβを用いて表すと、式(21)が得られ、相関行列Rが推定される。 When the correlation matrix R2 is expressed using B and β, the equation (21) is obtained, and the correlation matrix R is estimated.
Figure JPOXMLDOC01-appb-M000022
 
Figure JPOXMLDOC01-appb-M000022
 
 また、R13は、アンテナ21aとアンテナ21cとの間の無線信号の相関を表している。R13は、求めた|R23|を用いて、式(22)で表すことができる。 Further, R13 represents the correlation of the radio signal between the antenna 21a and the antenna 21c. R13 can be expressed by the equation (22) using the obtained | R23 |.
Figure JPOXMLDOC01-appb-M000023
 
Figure JPOXMLDOC01-appb-M000023
 
 以上より、推定された相関行列Rは、式(23)で表すことができる。 From the above, the estimated correlation matrix R can be expressed by the equation (23).
Figure JPOXMLDOC01-appb-M000024
 
Figure JPOXMLDOC01-appb-M000024
 
 推定部3は、相関行列Rに様々な到来方向推定アルゴリズムを用いることにより、発信機5の方向推定を行うことができる。具体的には,ビームフォーマ法を用いる場合、推定部3は、相関行列Rと式(24)で表されるステリングベクトル(理論値)との積から、相関行列Rとステアリングベクトルとの相関をとることで発信機5の方向推定を行うことができる。 The estimation unit 3 can estimate the direction of the transmitter 5 by using various arrival direction estimation algorithms for the correlation matrix R. Specifically, when the beamformer method is used, the estimation unit 3 determines the correlation between the correlation matrix R and the steering vector from the product of the correlation matrix R and the stelling vector (theoretical value) represented by the equation (24). By taking this, the direction of the transmitter 5 can be estimated.
Figure JPOXMLDOC01-appb-M000025
 
Figure JPOXMLDOC01-appb-M000025
 
 ここで、dはアンテナの間隔、kは波数であり、k=2π/λである.なお,λは波長である。このステアリングベクトルと相関行列Rを用いて評価関数P(θ)は式(25)で表すことができる。 Here, d is the antenna spacing, k is the wave number, and k = 2π / λ. Note that λ is the wavelength. The evaluation function P (θ) can be expressed by the equation (25) using this steering vector and the correlation matrix R.
Figure JPOXMLDOC01-appb-M000026
 
Figure JPOXMLDOC01-appb-M000026
 
 推定部3は、式(25)のθに様々な値を代入し、評価関数P(θ)が最大になる方向が無線信号の出発方向であると判断する。 The estimation unit 3 substitutes various values for θ in the equation (25), and determines that the direction in which the evaluation function P (θ) is maximized is the starting direction of the radio signal.
 また、本実施形態の推定部3は、式(24)で表される理論値の代わりに、準理論値情報42に含まれる準理論値(表1参照)を用いることにより、発信機5の位置を推定する。なお、ここでは、ビームフォーマ法による方向推定例を示したが、MUSIC法によって発信機5の方向を算出しても良い。または、CAPON法を用いて発信機5の方向を算出しても良い。または、圧縮センシング法を用いて発信機5の方向を算出しても良い。 Further, the estimation unit 3 of the present embodiment uses the quasi-theoretical value (see Table 1) included in the quasi-theoretical value information 42 instead of the theoretical value represented by the equation (24), whereby the transmitter 5 is used. Estimate the position. Although the direction estimation example by the beam former method is shown here, the direction of the transmitter 5 may be calculated by the MUSIC method. Alternatively, the direction of the transmitter 5 may be calculated using the CAPON method. Alternatively, the direction of the transmitter 5 may be calculated using the compressed sensing method.
 推定部3は、相関行列Rとステアリングベクトルに対応する準理論値から、上記何れかの到来方向推定アルゴリズムを用いて発信機5の位置推定を行う。推定部3は、準理論値情報42に含まれる複数の準理論値と相関行列Rから、評価関数(相関度)が最大になる準理論値を選択する。そして、推定部3は、選択した準理論値に対応する候補点P0の位置情報を参照し、所定領域A1内における当該候補点P0の位置を、発信機5の位置として推定する。 The estimation unit 3 estimates the position of the transmitter 5 from the quasi-theoretical values corresponding to the correlation matrix R and the steering vector by using any of the above-mentioned arrival direction estimation algorithms. The estimation unit 3 selects the quasi-theoretical value that maximizes the evaluation function (correlation degree) from the plurality of quasi-theoretical values and the correlation matrix R included in the quasi-theoretical value information 42. Then, the estimation unit 3 refers to the position information of the candidate point P0 corresponding to the selected quasi-theoretical value, and estimates the position of the candidate point P0 in the predetermined region A1 as the position of the transmitter 5.
 (4)作用効果
 上述のように、本実施形態に係る推定システム1は、受信機2と、推定部3と、記憶部4(第1記憶部,第2記憶部)を備えている。記憶部4には、位置情報41及び準理論値情報42があらかじめ記憶されている。受信機2は、無線信号を受信する3つのアンテナ21と、3つのアンテナ21で受信した無線信号に対して位相合成処理を行って4つの合成信号SS1~SS4を生成する位相合成部22とを有している。推定部3は、4つの合成信号SS1~SS4の4つの信号強度と、複数の候補点P0の位置情報と、複数の候補点の位置情報と一対一で対応する複数の準理論値とに基づいて、所定領域A1内における発信機5の位置を推定する。無線信号の反射波成分が考慮された複数の準理論値が複数の候補点の位置情報と一対一で対応しているため、発信機5の位置を推定することができる。これにより、例えば1つの受信機2で発信機5の位置を推定することができ、推定システム1が有する複数のアンテナ21の数を低減することが可能である。
(4) Action and Effect As described above, the estimation system 1 according to the present embodiment includes a receiver 2, an estimation unit 3, and a storage unit 4 (first storage unit, second storage unit). The storage unit 4 stores the position information 41 and the quasi-theoretical value information 42 in advance. The receiver 2 has three antennas 21 that receive radio signals, and a phase synthesizer 22 that performs phase synthesis processing on the radio signals received by the three antennas 21 to generate four synthetic signals SS1 to SS4. Have. The estimation unit 3 is based on the four signal intensities of the four combined signals SS1 to SS4, the position information of the plurality of candidate points P0, and the plurality of quasi-theoretical values corresponding to the position information of the plurality of candidate points on a one-to-one basis. The position of the transmitter 5 in the predetermined area A1 is estimated. Since a plurality of quasi-theoretical values in consideration of the reflected wave component of the radio signal have a one-to-one correspondence with the position information of the plurality of candidate points, the position of the transmitter 5 can be estimated. Thereby, for example, the position of the transmitter 5 can be estimated by one receiver 2, and the number of a plurality of antennas 21 included in the estimation system 1 can be reduced.
 また、本実施形態では、複数の候補点P0の複数の位置情報、受信機2の位置情報、及び基準発信機7(7a~7d)の位置情報は、3次元での位置を示す位置情報である。そのため、本実施形態の推定部3は、所定領域A1内における発信機5の3次元での位置を推定することができる。 Further, in the present embodiment, the plurality of position information of the plurality of candidate points P0, the position information of the receiver 2, and the position information of the reference transmitters 7 (7a to 7d) are position information indicating the position in three dimensions. be. Therefore, the estimation unit 3 of the present embodiment can estimate the position of the transmitter 5 in the predetermined region A1 in three dimensions.
 また、本実施形態の推定部3は、複数の候補点P0のうち、4つの合成信号SS1~SS4の信号強度に関する相関行列Rと最も相関度の高い準理論値を選択し、当該準理論値に対応する候補点P0の位置(座標)を発信機5の位置として推定する。これにより、推定部3による発信機5の位置推定の推定精度を向上させることができる。 Further, the estimation unit 3 of the present embodiment selects a quasi-theoretical value having the highest degree of correlation with the correlation matrix R regarding the signal intensities of the four combined signals SS1 to SS4 from the plurality of candidate points P0, and the quasi-theoretical value. The position (coordinates) of the candidate point P0 corresponding to is estimated as the position of the transmitter 5. As a result, the estimation accuracy of the position estimation of the transmitter 5 by the estimation unit 3 can be improved.
 また、本実施形態の複数の準理論値は、複数の候補点P0の各々と受信機2との間における無線信号(直接波)の経路a1と、複数の候補点P0の各々と4つの仮想受信点V2~V5の各々との間における無線信号(反射波)の1以上の経路a2とを足し合わせたものである。また、4つの仮想受信点V2~V5の位置は、受信機2の位置を示す位置情報と、4つの基準発信機7a~7dの位置を示す位置情報と、4つの基準発信機7a~7dが発信する基準信号を受信機2が受信した場合の信号強度とに基づいて設定されている。複数の準理論値が、直接波の経路a1と反射波の経路a2とを足し合わせたものであるため、推定部3は、例えば1つの受信機2で受信した無線信号から発信機5の位置を推定することができる。 Further, the plurality of quasi-theoretical values of the present embodiment include the radio signal (direct wave) path a1 between each of the plurality of candidate points P0 and the receiver 2, each of the plurality of candidate points P0, and four virtual values. It is the sum of one or more paths a2 of the radio signal (reflected wave) between each of the receiving points V2 to V5. Further, the positions of the four virtual receiving points V2 to V5 include the position information indicating the position of the receiver 2, the position information indicating the positions of the four reference transmitters 7a to 7d, and the four reference transmitters 7a to 7d. It is set based on the signal strength when the receiver 2 receives the reference signal to be transmitted. Since the plurality of quasi-theoretical values are the sum of the direct wave path a1 and the reflected wave path a2, the estimation unit 3 is, for example, the position of the transmitter 5 from the radio signal received by one receiver 2. Can be estimated.
 本実施形態の仮想点は、基準信号を反射させる壁6(反射点8)を介して基準発信機7と対向する位置にあり、壁6がなければ基準信号の反射波を受信したとみなすことができる仮想点である。また、仮想受信点V1と反射点8との間における無線信号の経路a22の長さは、受信機2と反射点8との間における無線信号の経路a23の長さと等しい。このような仮想受信点V1を設定したうえで準理論値を決定することで、準理論値が反射波の経路a2を考慮した値となる。 The virtual point of the present embodiment is located at a position facing the reference transmitter 7 via the wall 6 (reflection point 8) that reflects the reference signal, and if there is no wall 6, it is considered that the reflected wave of the reference signal has been received. It is a virtual point that can be created. Further, the length of the radio signal path a22 between the virtual reception point V1 and the reflection point 8 is equal to the length of the radio signal path a23 between the receiver 2 and the reflection point 8. By determining the quasi-theoretical value after setting such a virtual receiving point V1, the quasi-theoretical value becomes a value considering the path a2 of the reflected wave.
 (5)変形例
 推定システム1と同様の機能は、推定方法、プログラム又はプログラムを記録した記録媒体などで具現化されてもよい。
(5) Modification Example The same function as the estimation system 1 may be embodied by an estimation method, a program, a recording medium on which the program is recorded, or the like.
 実施形態1に係る推定方法は、受信ステップと、生成ステップと、推定ステップと、を有する。受信ステップでは、発信機5が発信する無線信号を複数のアンテナ21で受信する。生成ステップでは、受信ステップにおいて受信した無線信号に対して位相合成処理を行って複数の合成信号SS1~SS4を生成する。推定ステップでは、所定領域A1内における発信機5の位置を推定する。推定ステップでは、複数の位置情報と、複数の準理論値と、複数の合成信号SS1~SS4における複数の信号強度と、に基づいて、所定領域A1内における発信機5の位置を推定する。複数の位置情報は、所定領域A1内における発信機5の位置を推定するための複数の候補点P0の位置を示す。複数の位置情報は、あらかじめ記憶された情報である。複数の準理論値は、複数の位置情報の各々と一対一で対応する。複数の準理論値は、複数の候補点P0の各々において無線信号が発信された場合の複数のアンテナ21が受信する直接波及び反射波に関する値である。複数の準理論値は、あらかじめ記憶されている。 The estimation method according to the first embodiment includes a reception step, a generation step, and an estimation step. In the reception step, the radio signal transmitted by the transmitter 5 is received by the plurality of antennas 21. In the generation step, the radio signals received in the reception step are subjected to phase synthesis processing to generate a plurality of composite signals SS1 to SS4. In the estimation step, the position of the transmitter 5 in the predetermined area A1 is estimated. In the estimation step, the position of the transmitter 5 in the predetermined region A1 is estimated based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in the plurality of synthetic signals SS1 to SS4. The plurality of position information indicates the positions of the plurality of candidate points P0 for estimating the position of the transmitter 5 in the predetermined area A1. The plurality of position information is information stored in advance. The plurality of quasi-theoretical values have a one-to-one correspondence with each of the plurality of position information. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the plurality of antennas 21 when the radio signal is transmitted at each of the plurality of candidate points P0. A plurality of quasi-theoretical values are stored in advance.
 また、実施形態1に係る推定方法は、第1受信ステップと、設定ステップと、記憶ステップと、第2受信ステップと、推定ステップと、を有している。第1受信ステップでは、所定領域A1内に設置された基準発信機7が発信する基準信号の直接波及び反射波を、受信機2で受信する。受信機2は複数のアンテナ21を有する。設定ステップでは、受信機2及び基準発信機7の位置情報と、基準信号の信号強度から、仮想受信点V1、又は、仮想送信点V8を設定する。仮想受信点V1は、反射波を受信したとみなすことができる。仮想送信点V8は、反射波を発信したとみなすことができる。記憶ステップでは、受信機2の位置情報、及び、仮想受信点V1又は仮想送信点V8の位置情報に基づいて、複数の準理論値を記憶部4に記憶させる。複数の準理論値は、所定領域A1内における複数の候補点P0の各々において発信機5が無線信号を発信した場合に受信機2が受信する直接波及び反射波に関する値である。第2受信ステップでは、発信機5が発信する無線信号を受信機2で受信する。推定ステップでは、複数の準理論値のうち、第2受信ステップにおいて受信機2が受信した無線信号の信号強度との相関度が最も高い準理論値に対応する候補点P0の位置を、発信機5の位置と推定する。 Further, the estimation method according to the first embodiment includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step. In the first reception step, the receiver 2 receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter 7 installed in the predetermined area A1. The receiver 2 has a plurality of antennas 21. In the setting step, the virtual receiving point V1 or the virtual transmitting point V8 is set from the position information of the receiver 2 and the reference transmitter 7 and the signal strength of the reference signal. The virtual reception point V1 can be regarded as having received the reflected wave. The virtual transmission point V8 can be regarded as transmitting the reflected wave. In the storage step, a plurality of quasi-theoretical values are stored in the storage unit 4 based on the position information of the receiver 2 and the position information of the virtual reception point V1 or the virtual transmission point V8. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver 2 when the transmitter 5 transmits a radio signal at each of the plurality of candidate points P0 in the predetermined region A1. In the second reception step, the receiver 2 receives the radio signal transmitted by the transmitter 5. In the estimation step, among the plurality of quasi-theoretical values, the position of the candidate point P0 corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver 2 in the second receiving step is set by the transmitter. It is estimated to be the position of 5.
 また、実施形態1に係る(コンピュータ)プログラムは、上述した受信ステップ、生成ステップ、及び推定ステップを、1以上のプロセッサに実行させるためのプログラム、である。 Further, the (computer) program according to the first embodiment is a program for causing one or more processors to execute the above-mentioned reception step, generation step, and estimation step.
 また、実施形態1に係る(コンピュータ)プログラムは、上述した第1受信ステップ、設定ステップ、記憶ステップ、第2受信ステップ、及び推定ステップを、1以上のプロセッサに実行させるためのプログラム、である。 Further, the (computer) program according to the first embodiment is a program for causing one or more processors to execute the above-mentioned first reception step, setting step, storage step, second reception step, and estimation step.
 推定システム1及び推定方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって推定システム1及び推定方法の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリにあらかじめ記録されていてもよい。また、プログラムは、電気通信回線を通じて提供されてもよいし、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブなどの記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1又は複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散されて設けられていてもよい。 The execution subject of the estimation system 1 and the estimation method includes a computer system. The computer system mainly consists of a processor and a memory as hardware. When the processor executes the program recorded in the memory of the computer system, the function as the execution subject of the estimation system 1 and the estimation method is realized. The program may be pre-recorded in the memory of the computer system. Further, the program may be provided through a telecommunication line, or may be recorded and provided on a recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer system. The processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). A plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips. The plurality of chips may be integrated into one device, or may be distributed and provided in the plurality of devices.
 また、本実施形態では、推定システム1は、受信機2及び推定部3を含む1つのシステムで実現されているが、2つ以上のシステムで実現されていてもよい。例えば、受信機2及び推定部3の機能が、2つ以上のシステムに分散して設けられていてもよい。また、受信機2及び推定部3のうち少なくとも1つの機能が、2つ以上のシステムに分散して設けられていてもよい。また、受信機2及び推定部3の各機能が、複数の装置に分散して設けられていてもよい。例えば、受信機2の機能(例えば3つのアンテナ21と位相合成部22)が2つ以上の装置に分散されて設けられていてもよい。また、推定システム1の少なくとも一部の機能が、例えばクラウドコンピューティングにより実現されていてもよい。 Further, in the present embodiment, the estimation system 1 is realized by one system including the receiver 2 and the estimation unit 3, but may be realized by two or more systems. For example, the functions of the receiver 2 and the estimation unit 3 may be distributed in two or more systems. Further, at least one function of the receiver 2 and the estimation unit 3 may be distributed in two or more systems. Further, the functions of the receiver 2 and the estimation unit 3 may be distributed to a plurality of devices. For example, the functions of the receiver 2 (for example, the three antennas 21 and the phase synthesizer 22) may be distributed and provided in two or more devices. Further, at least a part of the functions of the estimation system 1 may be realized by, for example, cloud computing.
 発信機5は、BLEの規格に従ったビーコン信号を発信するビーコン装置に限られない。発信機5は、例えばWi-Fi(登録商標)の規格に従った無線信号を発信する装置であってもよい。同様に、推定システム1は、BLEの規格に従った無線信号を受信可能なシステムに限られない。推定システム1は、例えばWi-Fiの規格に従った無線信号を受信可能なシステムであってもよい。 The transmitter 5 is not limited to the beacon device that transmits a beacon signal according to the BLE standard. The transmitter 5 may be, for example, a device that transmits a radio signal according to the standard of Wi-Fi (registered trademark). Similarly, the estimation system 1 is not limited to a system capable of receiving a radio signal according to the BLE standard. The estimation system 1 may be, for example, a system capable of receiving a radio signal according to a Wi-Fi standard.
 記憶部4の位置情報41に、基準発信機7(基準発信機7a~7d)の位置情報が含まれることは必須ではない。例えば、基準発信機7が自己の位置情報を含む無線信号を発信し、受信機2が無線信号から基準発信機7の位置情報を取得してもよい。 It is not essential that the position information 41 of the storage unit 4 includes the position information of the reference transmitter 7 (reference transmitters 7a to 7d). For example, the reference transmitter 7 may transmit a radio signal including its own position information, and the receiver 2 may acquire the position information of the reference transmitter 7 from the radio signal.
 本実施形態では推定システム1は記憶部4を備えているが、推定システム1は、記憶部4の代わりに第1記憶部及び第2記憶部を備えていてもよい。この場合、第1記憶部には位置情報41が記憶され、第2記憶部には準理論値情報42が記憶される。 In the present embodiment, the estimation system 1 includes a storage unit 4, but the estimation system 1 may include a first storage unit and a second storage unit instead of the storage unit 4. In this case, the position information 41 is stored in the first storage unit, and the quasi-theoretical value information 42 is stored in the second storage unit.
 図5に示すように、候補点P44等の、2つの領域A11,A12の境界に位置するような候補点は、領域A11の壁61で反射する反射波と、領域A12の壁62で反射する反射波とを考慮した準理論値が設定されていてもよい。例えば候補点P44には、候補点P44と受信機2との間における無線信号の経路と、候補点P44と仮想受信点V2との間における無線信号の経路及び候補点P44と仮想受信点V3との間における無線信号の経路とを足し合わせた準理論値が対応付けられる。また、複数の候補点P0の各々に、4つの壁61~64の各々で反射する反射波を考慮した準理論値が設定されていてもよい。この場合、例えば準理論値は、候補点P0と受信機2との間の無線信号の経路と、候補点P0と4つの仮想受信点V2~V5との間の無線信号の4つ経路の全てとを足し合わせたものである。また、4つの仮想受信点V2~V5は、受信機2の位置情報と、4つの基準発信機7a~7d(図4参照)の4つの位置情報と、4つの基準発信機7a~7dが発信する4つの基準信号とに基づいて設定されている。また、4つの仮想受信点V2~V5と複数の候補点P0との間には基準信号を反射させる4つの壁61~64(4つの反射点8a~8d)がある。このように、各候補点P0に、複数の反射波を考慮した準理論値が対応付けられることで、推定システム1が発信機5の位置を推定する精度が向上する。 As shown in FIG. 5, the candidate points such as the candidate points P44 located at the boundary between the two regions A11 and A12 are reflected by the reflected wave reflected by the wall 61 of the region A11 and by the wall 62 of the region A12. A quasi-theoretical value may be set in consideration of the reflected wave. For example, the candidate point P44 includes a radio signal path between the candidate point P44 and the receiver 2, a radio signal path between the candidate point P44 and the virtual reception point V2, and a candidate point P44 and the virtual reception point V3. A quasi-theoretical value obtained by adding the path of the radio signal between the two is associated. Further, a quasi-theoretical value may be set in each of the plurality of candidate points P0 in consideration of the reflected wave reflected by each of the four walls 61 to 64. In this case, for example, the quasi-theoretical value is all four paths of the radio signal between the candidate point P0 and the receiver 2 and the radio signal between the candidate point P0 and the four virtual receiving points V2 to V5. It is the sum of and. Further, the four virtual receiving points V2 to V5 transmit the position information of the receiver 2, the four position information of the four reference transmitters 7a to 7d (see FIG. 4), and the four reference transmitters 7a to 7d. It is set based on the four reference signals. Further, there are four walls 61 to 64 (four reflection points 8a to 8d) for reflecting the reference signal between the four virtual reception points V2 to V5 and the plurality of candidate points P0. In this way, by associating each candidate point P0 with a quasi-theoretical value in consideration of a plurality of reflected waves, the accuracy with which the estimation system 1 estimates the position of the transmitter 5 is improved.
 図6に示すように、1つの基準発信機7の位置情報と、受信機2の位置情報と、1つの基準発信機7が発信する基準信号を受信機2が受信した場合の信号強度とに基づいて、複数(図6の例では2つ)の仮想受信点V6,V7が設定されるようにしてもよい。この場合、準理論値は、複数の候補点P0の各々と受信機2との間における複数の経路a1と、複数の候補点P0の各々と2つの仮想受信点V6,V7との間における無線信号の2つの経路a2とを足し合わせたものとなる。このように、各候補点P0に複数の反射波を考慮した準理論値が対応付けられることで、推定システム1が発信機5の位置を推定する精度が向上する。 As shown in FIG. 6, the position information of one reference transmitter 7, the position information of the receiver 2, and the signal strength when the receiver 2 receives the reference signal transmitted by one reference transmitter 7. Based on this, a plurality of (two in the example of FIG. 6) virtual receiving points V6 and V7 may be set. In this case, the quasi-theoretical value is the radio between the plurality of paths a1 between each of the plurality of candidate points P0 and the receiver 2, and between each of the plurality of candidate points P0 and the two virtual receiving points V6 and V7. It is the sum of the two paths a2 of the signal. In this way, by associating each candidate point P0 with a quasi-theoretical value in consideration of a plurality of reflected waves, the accuracy with which the estimation system 1 estimates the position of the transmitter 5 is improved.
 推定部3は、仮想受信点を用いて発信機5の位置を推定する場合、壁6等で反射する反射波を考慮して、式(24)に対して複数のステアリングベクトルの合計を用いて方向推定精度を向上させる。送信アンテナからL個の仮想受信点に到来する電波の方向をθ1~θL(Lは到来波の数)とすると、複数のステアリングベクトルを合算した理想信号ベクトルは、式(26)で表すことができる。 When the estimation unit 3 estimates the position of the transmitter 5 using the virtual receiving point, the estimation unit 3 uses the sum of a plurality of steering vectors for the equation (24) in consideration of the reflected wave reflected by the wall 6 or the like. Improve direction estimation accuracy. Assuming that the directions of the radio waves arriving at the L virtual receiving points from the transmitting antenna are θ1 to θL (L is the number of arriving waves), the ideal signal vector obtained by adding up the plurality of steering vectors can be expressed by Eq. (26). can.
Figure JPOXMLDOC01-appb-M000027
 
Figure JPOXMLDOC01-appb-M000027
 
 ここで、Alは到来波の振幅補正係数であり、到来波が経由する壁6における反射による減衰や位相回転を考慮した複素数の値である。推定部3は、式(25)においてa(θ)の代わりにa´を用いることで、多重反射を考慮して測位精度を向上させることができる。θ1~θLは各仮想受信点に到来する電波の方向である。基準発信機7(送信点)から発信される基準信号を受信機2(受信点)で受信(観測)した場合、推定部3は、受信した無線信号(観測信号)と、式(26)を用いて算出した予測信号とが最もよく一致するよう、L個の仮想受信点を決定する。 Here, Al is an amplitude correction coefficient of the incoming wave, and is a complex number value in consideration of attenuation and phase rotation due to reflection on the wall 6 through which the incoming wave passes. By using a'instead of a (θ) in the equation (25), the estimation unit 3 can improve the positioning accuracy in consideration of multiple reflections. θ1 to θL are directions of radio waves arriving at each virtual receiving point. When the reference signal transmitted from the reference transmitter 7 (transmission point) is received (observed) by the receiver 2 (reception point), the estimation unit 3 receives the received radio signal (observation signal) and the equation (26). The L virtual receiving points are determined so as to best match the predicted signal calculated using the above.
 図7に示すように、準理論値は、仮想受信点ではなく仮想送信点V8を設定することで得られる値であってもよい。仮想送信点V8は、基準信号を反射させる壁6を介して基準発信機7と対向する位置に(反射点8を介して受信機2と対向する位置に)あり、壁6がなければ基準信号の反射波を送信したとみなすことができる仮想点である。なお、仮想送信点V8と、基準信号を反射させる壁6の反射点8と、受信機2とは一直線上に並んでいる。また、仮想送信点V8と反射点8との間における無線信号の経路a24の長さは、基準発信機7と反射点8との間における無線信号の経路a21の長さと等しい。このような仮想送信点V8を設定したうえで準理論値を設定することで、準理論値が反射波の経路a2を考慮した値となる。仮想送信点V8を設定した場合の複数の準理論値は、複数の候補点P0の各々と受信機2との間における無線信号(直接波)の経路a1と、受信機2と仮想送信点V8との間における無線信号(反射波)の経路a2とを足し合わせたものである。また、仮想送信点V8の位置は、受信機2の位置を示す位置情報と、基準発信機7の位置を示す位置情報と、基準発信機7が発信する基準信号を受信機2が受信した場合の信号強度とに基づいて設定されている。複数の準理論値が、直接波の経路a1と反射波の経路a2とを足し合わせたものであるため、推定部3は、例えば1つの受信機2で受信した無線信号から発信機5の位置を推定することができる。 As shown in FIG. 7, the quasi-theoretical value may be a value obtained by setting a virtual transmission point V8 instead of a virtual reception point. The virtual transmission point V8 is located at a position facing the reference transmitter 7 via the wall 6 that reflects the reference signal (at a position facing the receiver 2 via the reflection point 8), and if there is no wall 6, the reference signal is present. It is a virtual point that can be regarded as transmitting the reflected wave of. The virtual transmission point V8, the reflection point 8 of the wall 6 that reflects the reference signal, and the receiver 2 are aligned with each other. Further, the length of the radio signal path a24 between the virtual transmission point V8 and the reflection point 8 is equal to the length of the radio signal path a21 between the reference transmitter 7 and the reflection point 8. By setting the quasi-theoretical value after setting such a virtual transmission point V8, the quasi-theoretical value becomes a value considering the path a2 of the reflected wave. When the virtual transmission point V8 is set, the plurality of quasi-theoretical values are the path a1 of the radio signal (direct wave) between each of the plurality of candidate points P0 and the receiver 2, and the receiver 2 and the virtual transmission point V8. It is the sum of the path a2 of the radio signal (reflected wave) between and. Further, the position of the virtual transmission point V8 is when the receiver 2 receives the position information indicating the position of the receiver 2, the position information indicating the position of the reference transmitter 7, and the reference signal transmitted by the reference transmitter 7. It is set based on the signal strength of. Since the plurality of quasi-theoretical values are the sum of the direct wave path a1 and the reflected wave path a2, the estimation unit 3 is, for example, the position of the transmitter 5 from the radio signal received by one receiver 2. Can be estimated.
 仮想送信点V8は、1つの基準発信機7に対して複数設定される複数の仮想送信点V8であってもよい。また、仮想送信点V8は、4つの基準発信機7a~7dの各々に設定される4つの仮想送信点V8であってもよい。 The virtual transmission point V8 may be a plurality of virtual transmission points V8 set for one reference transmitter 7. Further, the virtual transmission point V8 may be four virtual transmission points V8 set in each of the four reference transmitters 7a to 7d.
 実施形態1では、所定領域A1に反射体(壁61~64)の数と同じ数の基準発信機7を設置する場合を例示したが、所定領域A1に設置する基準発信機7の数は、反射体の数と同じ数に限られない。すなわち、所定領域A1に設置する基準発信機7の数は、反射体の数より多くてもよい。複数の基準発信機7を所定領域A1内に満遍なく設置していてもよく、例えば、複数の候補点P0の全ての位置に基準発信機7を設置してもよい。 In the first embodiment, the case where the same number of reference transmitters 7 as the number of reflectors (walls 61 to 64) is installed in the predetermined area A1 is illustrated, but the number of the reference transmitters 7 to be installed in the predetermined area A1 is determined. It is not limited to the same number of reflectors. That is, the number of reference transmitters 7 installed in the predetermined area A1 may be larger than the number of reflectors. A plurality of reference transmitters 7 may be evenly installed in a predetermined area A1. For example, the reference transmitters 7 may be installed at all positions of a plurality of candidate points P0.
 複数の基準発信機7を所定領域A1内に満遍なく設置し、複数の基準発信機7を用いて複数の仮想受信点V1を設定するような場合、複数の候補点P0の各々に対応する準理論値は、各候補点P0と、各候補点P0と近接する基準発信機7を用いて設定された仮想受信点V1との間の経路a2が用いられる。言い換えると、複数の候補点P0の各々に対応する準理論値は、各候補点P0と近接しない(各候補点P0から遠い位置にある)基準発信機7を用いて設定された仮想受信点V1と無関係である。 When a plurality of reference transmitters 7 are evenly installed in a predetermined area A1 and a plurality of virtual reception points V1 are set by using the plurality of reference transmitters 7, a quasi-theory corresponding to each of the plurality of candidate points P0. As the value, the path a2 between each candidate point P0 and the virtual reception point V1 set by using the reference transmitter 7 adjacent to each candidate point P0 is used. In other words, the quasi-theoretical value corresponding to each of the plurality of candidate points P0 is a virtual reception point V1 set by using the reference transmitter 7 that is not close to each candidate point P0 (at a position far from each candidate point P0). Is irrelevant.
 また、複数の基準発信機7を用いて、1つの仮想点(仮想受信点V1又は仮想送信点V8)を設定してもよい。例えば、基準発信機7を複数の候補点P0の全ての位置に基準発信機7を設置したような場合、互いに近接する複数の基準発信機7を用いて観測できる複数の仮想点は近接すると考えられる。基準発信機7を用いて仮想点を設定する際、虚像が発生することによって仮想点を設定できない場合があり得るが、互いに近接する複数の基準発信機7を用いて共通する仮想点を選択することで、正しい仮想点を設定することができる。 Further, one virtual point (virtual receiving point V1 or virtual transmitting point V8) may be set by using a plurality of reference transmitters 7. For example, when the reference transmitter 7 is installed at all positions of the plurality of candidate points P0, it is considered that a plurality of virtual points that can be observed by using the plurality of reference transmitters 7 that are close to each other are close to each other. Will be. When setting a virtual point using the reference transmitter 7, it may not be possible to set the virtual point due to the occurrence of a virtual image, but a common virtual point is selected using a plurality of reference transmitters 7 close to each other. By doing so, the correct virtual point can be set.
 また、基準発信機7を用いて仮想点を設定する際、Bluetoothアドバタイズチャネルの37ch,38ch,39chの3周波のそれぞれで仮想点の位置を推定し、3周波で共通して推定できた位置の仮想点を、仮想点として設定するようにしてもよい。 Further, when setting a virtual point using the reference transmitter 7, the position of the virtual point is estimated for each of the three frequencies of 37ch, 38ch, and 39ch of the Bluetooth advertisement channel, and the position that can be estimated in common with the three frequencies is used. The virtual point may be set as a virtual point.
 (実施形態2)
 (1)概要
 実施形態2の推定システム1aの概要について図8A及び図8Bを参照して説明する。本実施形態の推定システム1aが備える発信機5aは、複数の無線信号を発信するための複数(図示例では3つ)のアンテナ51を備えている。本実施形態の複数のアンテナ51は、アンテナ51aとアンテナ51bとアンテナ51cとを含むアレーアンテナである。以下の説明において、複数のアンテナ51のうち特定のアンテナ51について説明する場合は、アンテナ51a,51b,51cを区別して記載する。また、複数のアンテナ51の各々を区別せずに説明する場合は、単にアンテナ51と記載する。
(Embodiment 2)
(1) Outline The outline of the estimation system 1a of the second embodiment will be described with reference to FIGS. 8A and 8B. The transmitter 5a included in the estimation system 1a of the present embodiment includes a plurality of antennas 51 (three in the illustrated example) for transmitting a plurality of radio signals. The plurality of antennas 51 of the present embodiment are array antennas including the antenna 51a, the antenna 51b, and the antenna 51c. In the following description, when a specific antenna 51 is described among a plurality of antennas 51, the antennas 51a, 51b, and 51c are described separately. Further, when each of the plurality of antennas 51 is described without distinction, it is simply described as the antenna 51.
 本実施形態の受信機2aは、複数のアンテナ51から発信される複数の無線信号を受信する受信アンテナを備える。例えば、本実施形態の受信機2aは、所定領域A1内のユーザが所持するスマートフォン等である。 The receiver 2a of the present embodiment includes a receiving antenna that receives a plurality of radio signals transmitted from the plurality of antennas 51. For example, the receiver 2a of the present embodiment is a smartphone or the like possessed by a user in the predetermined area A1.
 本実施形態の推定システム1aは、受信機2aの受信アンテナで受信した複数の無線信号の信号強度に基づいて、複数の無線信号を受信した受信機2aの位置を推定することができる。 The estimation system 1a of the present embodiment can estimate the position of the receiver 2a that has received the plurality of radio signals based on the signal strength of the plurality of radio signals received by the receiving antenna of the receiver 2a.
 (2)詳細
 以下、本実施形態に係る推定システム1aの詳細について図8A~図10を参照しつつ説明する。
(2) Details Hereinafter, the details of the estimation system 1a according to the present embodiment will be described with reference to FIGS. 8A to 10.
 (2.1)推定システムの構成
 図9に示すように、本実施形態の推定システム1aは、発信機5aと、取得部10と、推定部3aと、記憶部4aとを備えている。
(2.1) Configuration of the estimation system As shown in FIG. 9, the estimation system 1a of the present embodiment includes a transmitter 5a, an acquisition unit 10, an estimation unit 3a, and a storage unit 4a.
 発信機5aは、例えばBLEの規格に従ったビーコン信号(無線信号)を発信するビーコン装置などで構成される。本実施形態の発信機5aが発信する無線信号には、例えば発信機5aの識別情報等の情報が含まれている。本実施形態の発信機5aは、複数(図9の例では3つ)の無線信号RS1~RS3を3つのアンテナ51から発信する。なお、以下の説明において、発信機5aが発信する3つの無線信号RS1~RS3のことを、単に「無線信号」ということがある。発信機5aの詳細については、「(2.3)発信機の構成」の欄で説明する。 The transmitter 5a is composed of, for example, a beacon device that transmits a beacon signal (wireless signal) according to the BLE standard. The radio signal transmitted by the transmitter 5a of the present embodiment includes information such as identification information of the transmitter 5a. The transmitter 5a of the present embodiment transmits a plurality of (three in the example of FIG. 9) radio signals RS1 to RS3 from three antennas 51. In the following description, the three radio signals RS1 to RS3 transmitted by the transmitter 5a may be simply referred to as "radio signals". The details of the transmitter 5a will be described in the column of "(2.3) Configuration of the transmitter".
 取得部10は、所定領域A1内に存在する受信機2a(図8A参照)によって受信された3つの無線信号RS1~RS3の信号強度の情報を取得する。言い換えると、取得部10は、所定領域A1内に存在する受信機2aによって受信された3つの無線信号RS1~RS3に含まれる4つの元信号BS1~BS4の信号強度の情報を取得する。取得部10は、所定領域A1内における受信機2aと例えば無線通信を行うことで、受信機2aから3つの無線信号RS1~RS3の信号強度(4つの元信号BS1~BS4の信号強度)の情報を取得する。取得部10は、受信機2aから取得した信号強度の情報を、推定部3に出力する。 The acquisition unit 10 acquires information on the signal strengths of the three radio signals RS1 to RS3 received by the receiver 2a (see FIG. 8A) existing in the predetermined area A1. In other words, the acquisition unit 10 acquires information on the signal strengths of the four original signals BS1 to BS4 included in the three radio signals RS1 to RS3 received by the receiver 2a existing in the predetermined area A1. The acquisition unit 10 performs wireless communication with the receiver 2a in the predetermined area A1, for example, to provide information on the signal strengths of the three wireless signals RS1 to RS3 (signal strengths of the four original signals BS1 to BS4) from the receiver 2a. To get. The acquisition unit 10 outputs the signal strength information acquired from the receiver 2a to the estimation unit 3.
 推定部3aは、3つの無線信号RS1~RS3の信号強度の情報と、記憶部4aに記憶されている位置情報41及び準理論値情報42とに基づいて、受信機2a(図8A参照)の位置を推定する。推定部3aが受信機2aの位置を推定する推定方法の詳細については、「(3)推定方法」の欄で説明する。 The estimation unit 3a of the receiver 2a (see FIG. 8A) is based on the signal strength information of the three radio signals RS1 to RS3 and the position information 41 and the quasi-theoretical value information 42 stored in the storage unit 4a. Estimate the position. The details of the estimation method in which the estimation unit 3a estimates the position of the receiver 2a will be described in the column of "(3) Estimation method".
 記憶部4aには、位置情報41と、準理論値情報42とが記憶されている。位置情報41は、所定領域A1(図8A参照)内における発信機5a(推定システム1a)、及び後述する基準受信機9(図10参照)の位置を示す情報を含んでいる。準理論値情報42は、所定領域A1内における受信機2aの位置を推定するための複数(図8Aの例では36個)の候補点P0の位置を示す位置情報と一対一で対応する複数の準理論値の情報である。 The storage unit 4a stores the position information 41 and the quasi-theoretical value information 42. The position information 41 includes information indicating the positions of the transmitter 5a (estimation system 1a) and the reference receiver 9 (see FIG. 10) described later in the predetermined area A1 (see FIG. 8A). The quasi-theoretical value information 42 has a plurality of one-to-one correspondences with the position information indicating the positions of the plurality of candidate points P0 for estimating the positions of the receivers 2a in the predetermined area A1 (36 in the example of FIG. 8A). Information on quasi-theoretical values.
 (2.2)準理論値
 次に、準理論値の詳細について図8A~図10を参照しつつ説明する。
(2.2) Semi-theoretical value Next, the details of the quasi-theoretical value will be described with reference to FIGS. 8A to 10.
 図10に示すように、本実施形態における準理論値は、所定領域A1に配置される基準受信機9を用いて予め算出されている。基準受信機9は、発信機5aが発信する3つの無線信号RS1~RS3(図9参照)を受信する装置である。 As shown in FIG. 10, the quasi-theoretical value in this embodiment is calculated in advance using the reference receiver 9 arranged in the predetermined area A1. The reference receiver 9 is a device that receives the three radio signals RS1 to RS3 (see FIG. 9) transmitted by the transmitter 5a.
 図10のように、反射体である壁6を含む所定領域A1において、発信機5aが無線信号を出力すると、発信した無線信号の一部は直接基準受信機9に到達し、発信機5aが発信した無線信号の一部は壁6で反射して基準受信機9に到達する。図10の例では、発信機5aが発信した無線信号の一部は、壁64の反射点8で反射し、基準受信機9に到達している。そのため、基準受信機9が観測する無線信号の信号強度は、直接波と反射波とを足し合わせたものになる。ここで、「直接波」とは、発信機5aが発信する無線信号のうち、発信機5aから直接(つまり、壁6等の反射体で反射せずに)基準受信機9に受信される無線信号である。また、「反射波」とは、発信機5aが発信する無線信号のうち、壁6等の反射体で反射した後に基準受信機9に受信される無線信号である。図10の例では、発信機5aが発信する無線信号のうち、直接波は経路a1を通って基準受信機9によって受信される無線信号であり、反射波は経路a21及びa23を通って基準受信機9によって受信される無線信号である。 As shown in FIG. 10, when the transmitter 5a outputs a radio signal in the predetermined region A1 including the wall 6 which is a reflector, a part of the transmitted radio signal directly reaches the reference receiver 9, and the transmitter 5a A part of the transmitted radio signal is reflected by the wall 6 and reaches the reference receiver 9. In the example of FIG. 10, a part of the radio signal transmitted by the transmitter 5a is reflected at the reflection point 8 of the wall 64 and reaches the reference receiver 9. Therefore, the signal strength of the radio signal observed by the reference receiver 9 is the sum of the direct wave and the reflected wave. Here, the "direct wave" is a radio signal transmitted by the transmitter 5a that is directly received from the transmitter 5a (that is, without being reflected by a reflector such as a wall 6) to the reference receiver 9. It is a signal. Further, the "reflected wave" is a radio signal transmitted by the transmitter 5a, which is reflected by a reflector such as a wall 6 and then received by the reference receiver 9. In the example of FIG. 10, among the radio signals transmitted by the transmitter 5a, the direct wave is the radio signal received by the reference receiver 9 through the path a1, and the reflected wave is the reference reception through the paths a21 and a23. It is a radio signal received by the machine 9.
 推定システム1aは、基準受信機9が受信した無線信号の信号強度に基づいて、無線信号の到来方向θ2(図8B参照)を推定することができるため、直接波及び反射波を足し合わせた無線信号の経路a0を推定することができる。また、本実施形態では、発信機5aの位置(座標)を示す情報、及び、基準受信機9の位置を示す情報は、位置情報41に含まれている。そのため、推定システム1aは、発信機5a及び基準受信機9の位置情報に基づいて、発信機5aから発信される無線信号における直接波の経路a1を算出することができる。そして、推定システム1aは、直接波及び反射波を足し合わせた無線信号の経路a0と、直接波の経路a1と、に基づいて、反射波の経路a2を算出することができる。本実施形態における反射波の経路a2は、壁62(反射体)がなければ無線信号を受信したとみなすことができる仮想受信点V9と、発信機5aとの間の経路である。仮想受信点V9は無線信号を反射させる壁64の反射点8を介して発信機5aと対向する位置にあり、反射点8と基準受信機9との間における無線信号の経路a23の長さと、反射点8と仮想受信点V9との間における無線信号の経路a22の長さとは等しい。なお、発信機5aと、無線信号を反射させる壁64の反射点8と、仮想受信点V9とは、一直線上に並んでいる。仮想受信点V9の位置(座標)は、発信機5aの位置を示す位置情報と、基準受信機9の位置を示す位置情報と、発信機5aが発信する無線信号を基準受信機9が受信した場合の無線信号の信号強度とに基づいて設定されている。 Since the estimation system 1a can estimate the arrival direction θ2 (see FIG. 8B) of the radio signal based on the signal strength of the radio signal received by the reference receiver 9, the radio obtained by adding the direct wave and the reflected wave. The signal path a0 can be estimated. Further, in the present embodiment, the information indicating the position (coordinates) of the transmitter 5a and the information indicating the position of the reference receiver 9 are included in the position information 41. Therefore, the estimation system 1a can calculate the direct wave path a1 in the radio signal transmitted from the transmitter 5a based on the position information of the transmitter 5a and the reference receiver 9. Then, the estimation system 1a can calculate the path a2 of the reflected wave based on the path a0 of the radio signal obtained by adding the direct wave and the reflected wave and the path a1 of the direct wave. The path a2 of the reflected wave in the present embodiment is a path between the virtual reception point V9, which can be regarded as having received the radio signal without the wall 62 (reflector), and the transmitter 5a. The virtual reception point V9 is located at a position facing the transmitter 5a via the reflection point 8 of the wall 64 that reflects the radio signal, and the length of the radio signal path a23 between the reflection point 8 and the reference receiver 9 and the length of the radio signal path a23. It is equal to the length of the radio signal path a22 between the reflection point 8 and the virtual reception point V9. The transmitter 5a, the reflection point 8 of the wall 64 that reflects the radio signal, and the virtual reception point V9 are aligned with each other. As for the position (coordinates) of the virtual receiving point V9, the reference receiver 9 receives the position information indicating the position of the transmitter 5a, the position information indicating the position of the reference receiver 9, and the radio signal transmitted by the transmitter 5a. It is set based on the signal strength of the radio signal in the case.
 準理論値は、候補点P0と基準受信機9との間における無線信号の経路a1、及び、候補点P0と候補点P0に対応する仮想受信点V9との間における無線信号の経路a2とを足し合わせたものである。準理論値情報42は、このような準理論値と各候補点P0とを対応付けた情報である。すなわち、準理論値は、受信機2a(図8A参照)が受信する直接波だけでなく受信機2aが受信する反射波も考慮した値であるため、推定部3a(図9参照)が受信機2aの位置方向ではなく受信機2aの位置(座標)を推定することができる値となっている。 The quasi-theoretical value is a radio signal path a1 between the candidate point P0 and the reference receiver 9, and a radio signal path a2 between the candidate point P0 and the virtual reception point V9 corresponding to the candidate point P0. It is a combination. The quasi-theoretical value information 42 is information in which such a quasi-theoretical value is associated with each candidate point P0. That is, since the quasi-theoretical value is a value considering not only the direct wave received by the receiver 2a (see FIG. 8A) but also the reflected wave received by the receiver 2a, the estimation unit 3a (see FIG. 9) is the receiver. It is a value that can estimate the position (coordinates) of the receiver 2a instead of the position direction of 2a.
 後述するように、本実施形態の推定システム1aは、このような準理論値をステアリングベクトルとして用いることで、所定領域A1内における受信機2aの位置を推定する。 As will be described later, the estimation system 1a of the present embodiment estimates the position of the receiver 2a in the predetermined region A1 by using such a quasi-theoretical value as a steering vector.
 (2.3)発信機の構成
 次に、発信機5aの詳細について、図9を参照しつつ説明する。
(2.3) Configuration of Transmitter Next, the details of the transmitter 5a will be described with reference to FIG.
 発信機5aは、図9に示すように、3つのアンテナ51と、位相合成部52と、元信号生成部54と、を備えている。 As shown in FIG. 9, the transmitter 5a includes three antennas 51, a phase synthesis unit 52, and a source signal generation unit 54.
 元信号生成部54は、複数のアンテナ51が発信する3つの無線信号RS1~RS3の元となる信号であって、例えば識別情報などの所定の情報を含む元信号BS1~BS4を生成する処理部である。元信号生成部54は、元信号生成器54a~54dを含んでいる。元信号生成器54aは、位相合成部52の位相合成器53dの第1入力端子I1と電気的に接続され、元信号BS1を生成する。元信号生成器54bは、位相合成器53dの第2入力端子I2と電気的に接続され、元信号BS2を生成する。元信号生成器54cは、位相合成器53eの第1入力端子I1と電気的に接続され、元信号BS3を生成する。元信号生成器54dは、位相合成器53eの第2入力端子I2と電気的に接続され、元信号BS4を生成する。 The original signal generation unit 54 is a processing unit that generates original signals BS1 to BS4 that are sources of three radio signals RS1 to RS3 transmitted by a plurality of antennas 51 and include predetermined information such as identification information. Is. The original signal generator 54 includes the original signal generators 54a to 54d. The original signal generator 54a is electrically connected to the first input terminal I1 of the phase synthesizer 53d of the phase synthesizer 52 to generate the original signal BS1. The original signal generator 54b is electrically connected to the second input terminal I2 of the phase synthesizer 53d to generate the original signal BS2. The original signal generator 54c is electrically connected to the first input terminal I1 of the phase synthesizer 53e to generate the original signal BS3. The original signal generator 54d is electrically connected to the second input terminal I2 of the phase synthesizer 53e to generate the original signal BS4.
 位相合成部52は、4つの元信号BS1~BS4に基づく複数(図9の例では4つ)の入力信号IS8~IS11(信号IS12~IS15)に対して合成処理を行い、3つの無線信号RS1~RS3を生成する処理部である。 The phase synthesizing unit 52 performs synthesis processing on a plurality of (four in the example of FIG. 9) input signals IS8 to IS11 (signals IS12 to IS15) based on the four original signals BS1 to BS4, and performs synthesis processing on the three radio signals RS1. This is a processing unit that generates RS3.
 位相合成部52は、位相合成器53aと、位相合成器53bと、位相合成器53cと、位相合成器53dと、位相合成器53eとを備えている。以下の説明において、位相合成器53a,53b,53c,53d,53eを区別せずに説明する場合は、単に位相合成器53と記載する。位相合成器53は、例えば90度ハイブリッドユニット(ハイブリッド素子)などで構成される。位相合成器53の基本動作については、「(実施形態1)における(2.3)受信機の構成」の欄で説明した位相合成器23の基本動作と同様であるため、説明を省略する。 The phase synthesizer 52 includes a phase synthesizer 53a, a phase synthesizer 53b, a phase synthesizer 53c, a phase synthesizer 53d, and a phase synthesizer 53e. In the following description, when the phase synthesizers 53a, 53b, 53c, 53d, and 53e are described without distinction, they are simply referred to as the phase synthesizer 53. The phase synthesizer 53 is composed of, for example, a 90-degree hybrid unit (hybrid element). Since the basic operation of the phase synthesizer 53 is the same as the basic operation of the phase synthesizer 23 described in the column of "(2.3) Configuration of receiver in (Embodiment 1)", the description thereof will be omitted.
 位相合成器53dは、第1入力端子I1で入力信号IS8を受け付け、第2入力端子I2で入力信号IS9を受け付ける。位相合成器53dは、入力信号IS8と比べて電力値が1/√2倍で同位相の信号と、入力信号IS9と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた信号IS12を第1出力端子O1から出力する。また、位相合成器53dは、入力信号IS8と比べて電力値が1/√2倍で位相が90度遅れた信号と、入力信号IS9と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた信号IS13を第2出力端子O2から出力する。 The phase synthesizer 53d receives the input signal IS8 at the first input terminal I1 and the input signal IS9 at the second input terminal I2. The phase combiner 53d has a power value of 1 / √2 times that of the input signal IS8 and a signal having the same phase, and a signal having a power value of 1 / √2 times and a phase delay of 90 degrees as compared with the input signal IS9. , Is added together, and the signal IS12 is output from the first output terminal O1. Further, the phase synthesizer 53d has a signal having a power value 1 / √2 times that of the input signal IS8 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the input signal IS9 and having the same phase. The signal IS13, which is the sum of the signal and the signal, is output from the second output terminal O2.
 位相合成器53eは、第1入力端子I1で入力信号IS10を受け付け、第2入力端子I2で入力信号IS11を受け付ける。位相合成器53eは、入力信号IS10と比べて電力値が1/√2倍で同位相の信号と、入力信号IS11と比べて電力値が1/√2倍で位相が90度遅れた信号と、を足し合わせた信号IS14を第1出力端子O1から出力する。また、位相合成器53eは、入力信号IS10と比べて電力値が1/√2倍で位相が90度遅れた信号と、入力信号IS11と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた信号IS15を第2出力端子O2から出力する。 The phase synthesizer 53e receives the input signal IS10 at the first input terminal I1 and the input signal IS11 at the second input terminal I2. The phase combiner 53e has a power value of 1 / √2 times that of the input signal IS10 and a signal having the same phase, and a signal having a power value of 1 / √2 times and a phase delay of 90 degrees as compared with the input signal IS11. , Is added together, and the signal IS14 is output from the first output terminal O1. Further, the phase combiner 53e has a signal having a power value 1 / √2 times that of the input signal IS10 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the input signal IS11 and having the same phase. The signal IS15, which is the sum of the signal and the signal, is output from the second output terminal O2.
 位相合成器53aは、第2入力端子I2に入力される信号IS12と比べて、電力値が1/√2倍で同位相の無線信号RS1を、第2出力端子O2から出力する。 The phase synthesizer 53a outputs a radio signal RS1 having a power value 1 / √2 times that of the signal IS12 input to the second input terminal I2 and having the same phase from the second output terminal O2.
 位相合成器53bは、第1入力端子I1で信号IS13を受け付け、第2入力端子I2で信号IS14を受け付ける。位相合成器53bは、信号IS13と比べて電力値が1/√2倍で位相が90度遅れた信号と、信号IS14と比べて電力値が1/√2倍で同位相の信号と、を足し合わせた無線信号RS2を第2出力端子O2から出力する。 The phase synthesizer 53b receives the signal IS13 at the first input terminal I1 and the signal IS14 at the second input terminal I2. The phase synthesizer 53b produces a signal having a power value 1 / √2 times that of the signal IS13 and a phase delay of 90 degrees, and a signal having a power value of 1 / √2 times that of the signal IS14 and having the same phase. The added radio signal RS2 is output from the second output terminal O2.
 位相合成器53cは、第1入力端子I1に入力される信号IS15と比べて、電力値が1/√2倍で同位相の無線信号RS3を、第1出力端子O1から出力する。 The phase synthesizer 53c outputs a radio signal RS3 having a power value 1 / √2 times that of the signal IS15 input to the first input terminal I1 and having the same phase from the first output terminal O1.
 3つのアンテナ51は、位相合成部52から出力される3つの無線信号RS1~RS3を発信する。具体的には、アンテナ51aは無線信号RS1を発信し、アンテナ51bは無線信号RS2を発信し、アンテナ51cは無線信号RS3を発信する。 The three antennas 51 transmit the three radio signals RS1 to RS3 output from the phase synthesizer 52. Specifically, the antenna 51a transmits the radio signal RS1, the antenna 51b transmits the radio signal RS2, and the antenna 51c transmits the radio signal RS3.
 (3)推定方法
 次に、推定部3aが所定領域A1内における受信機2aの位置を推定する推定方法について図8A~図9を参照しつつ説明する。なお、「(実施形態1)における(3)推定方法」の欄で説明した事項については、適宜説明を省略する。
(3) Estimating Method Next, an estimation method in which the estimation unit 3a estimates the position of the receiver 2a in the predetermined region A1 will be described with reference to FIGS. 8A to 9. The matters described in the column of "(3) Estimating method in (Embodiment 1)" will be omitted as appropriate.
 図8Bに示すように、アンテナ51aと受信機2aの受信アンテナとの間の複素伝播チャネルをh4、アンテナ51bと受信アンテナとの間の複素伝播チャネルをh5、アンテナ51cと送信アンテナとの間の複素伝播チャネルをh6とする。また、アンテナ51aとアンテナ51bとの距離、及び、アンテナ51bとアンテナ51cとの距離をd2とする。また、アンテナ51aとアンテナ51bとアンテナ51cとで構成されるアレーアンテナのブロードサイド方向(X方向)を基準として角度θ2の位置に受信機2aが存在するものとする。 As shown in FIG. 8B, the complex propagation channel between the antenna 51a and the receiving antenna of the receiver 2a is h4, the complex propagation channel between the antenna 51b and the receiving antenna is h5, and the complex propagation channel between the antenna 51c and the transmitting antenna is Let h6 be the complex propagation channel. Further, the distance between the antenna 51a and the antenna 51b and the distance between the antenna 51b and the antenna 51c are defined as d2. Further, it is assumed that the receiver 2a exists at a position of an angle θ2 with respect to the broadside direction (X direction) of the array antenna composed of the antenna 51a, the antenna 51b, and the antenna 51c.
 伝搬チャネルはまとめて、式(27)と表すことができる。 Propagation channels can be collectively expressed as Eq. (27).
Figure JPOXMLDOC01-appb-M000028
 
Figure JPOXMLDOC01-appb-M000028
 
 この伝搬チャネルの相関行列は、式(27)と表すことができる。 The correlation matrix of this propagation channel can be expressed by Eq. (27).
Figure JPOXMLDOC01-appb-M000029
 
Figure JPOXMLDOC01-appb-M000029
 
 相関行列Rを求めることで、推定部3aは、受信機2aの位置方向を推定することができる。推定部3aは、信号強度に関する情報に基づいて、相関行列Rを求める。式(27)の伝播チャネルを用いると、受信機2aで測定される4つの元信号BS1~BS4の振幅は、式(29)~式(32)と表すことができる。 By obtaining the correlation matrix R, the estimation unit 3a can estimate the positional direction of the receiver 2a. The estimation unit 3a obtains the correlation matrix R based on the information regarding the signal strength. Using the propagation channel of equation (27), the amplitudes of the four source signals BS1 to BS4 measured by the receiver 2a can be expressed as equations (29) to (32).
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000031
 
Figure JPOXMLDOC01-appb-M000031
 
Figure JPOXMLDOC01-appb-M000032
 
Figure JPOXMLDOC01-appb-M000032
 
Figure JPOXMLDOC01-appb-M000033
 
Figure JPOXMLDOC01-appb-M000033
 
 ここで、式(33)のようにすると、見かけの伝搬チャネルを、式(34)~式(37)で表すことができる。 Here, if the equation (33) is used, the apparent propagation channel can be represented by the equations (34) to (37).
Figure JPOXMLDOC01-appb-M000034
 
Figure JPOXMLDOC01-appb-M000034
 
Figure JPOXMLDOC01-appb-M000035
 
Figure JPOXMLDOC01-appb-M000035
 
Figure JPOXMLDOC01-appb-M000036
 
Figure JPOXMLDOC01-appb-M000036
 
Figure JPOXMLDOC01-appb-M000037
 
Figure JPOXMLDOC01-appb-M000037
 
Figure JPOXMLDOC01-appb-M000038
 
Figure JPOXMLDOC01-appb-M000038
 
 式(34)~式(37)に基づいて、相関行列Rを求め、準理論値を用いて受信機2aを推定する方法は、「(実施形態1)における(3)推定方法」の欄で説明した通りであるため、説明を省略する。 The method of obtaining the correlation matrix R based on the equations (34) to (37) and estimating the receiver 2a using the quasi-theoretical value is described in the column of "(3) Estimating method in (Embodiment 1)". Since it is as described, the description will be omitted.
 (4)作用効果
 上述のように、本実施形態に係る推定システム1aは、発信機5aと、推定部3と、記憶部4a(第1記憶部,第2記憶部)と、取得部10とを備えている。記憶部4aは、位置情報41及び準理論値情報42をあらかじめ記憶している。発信機5aは、4つの元信号BS1~BS4に対して位相合成処理を行い3つの無線信号RS1~RS3を生成し、3つの無線信号RS1~RS3を3つのアンテナ51から発信する。取得部10は、所定領域A1内に存在する受信機2aによって受信された4つの元信号BS1~BS4の信号強度の情報を取得する。推定部3aは、4つの元信号BS1~BS4の信号強度の情報と、複数の候補点P0の位置情報と、複数の候補点P0の位置情報と一対一で対応する複数の準理論値とに基づいて、所定領域A1内における受信機2aの位置を推定する。複数の準理論値が複数の候補点P0の位置情報と一対一で対応しているため、受信機2aの位置を推定することができる。
(4) Action and effect As described above, the estimation system 1a according to the present embodiment includes a transmitter 5a, an estimation unit 3, a storage unit 4a (first storage unit, second storage unit), and an acquisition unit 10. It is equipped with. The storage unit 4a stores the position information 41 and the quasi-theoretical value information 42 in advance. The transmitter 5a performs phase synthesis processing on the four original signals BS1 to BS4 to generate three radio signals RS1 to RS3, and transmits the three radio signals RS1 to RS3 from the three antennas 51. The acquisition unit 10 acquires information on the signal strengths of the four original signals BS1 to BS4 received by the receiver 2a existing in the predetermined area A1. The estimation unit 3a has information on the signal strengths of the four original signals BS1 to BS4, the position information of the plurality of candidate points P0, and a plurality of quasi-theoretical values corresponding to the position information of the plurality of candidate points P0 on a one-to-one basis. Based on this, the position of the receiver 2a in the predetermined area A1 is estimated. Since the plurality of quasi-theoretical values have a one-to-one correspondence with the position information of the plurality of candidate points P0, the position of the receiver 2a can be estimated.
 (5)変形例
 図10に示すように、準理論値は、仮想受信点V9ではなく仮想送信点V10を設定することで得られる値であってもよい。仮想送信点V10は、無線信号を反射させる壁64の反射点8を介して基準受信機9と対向する位置にあり、壁64がなければ無線信号の反射波を送信したとみなすことができる仮想点である。なお、仮想送信点V10と、無線信号を反射させる壁64の反射点8と、基準受信機9とは、一直線上に並んでいる。また、仮想送信点V10と反射点8との間における無線信号の経路a24の長さは、発信機5aと反射点8との間における無線信号の経路a21の長さと等しい。このような仮想送信点V10を設定したうえで準理論値を設定することで、準理論値が反射波の経路a2を考慮した値となる。
(5) Modification Example As shown in FIG. 10, the quasi-theoretical value may be a value obtained by setting a virtual transmission point V10 instead of the virtual reception point V9. The virtual transmission point V10 is located at a position facing the reference receiver 9 via the reflection point 8 of the wall 64 that reflects the radio signal, and if there is no wall 64, it can be considered that the reflected wave of the radio signal is transmitted. It is a point. The virtual transmission point V10, the reflection point 8 of the wall 64 that reflects the radio signal, and the reference receiver 9 are arranged in a straight line. Further, the length of the radio signal path a24 between the virtual transmission point V10 and the reflection point 8 is equal to the length of the radio signal path a21 between the transmitter 5a and the reflection point 8. By setting the quasi-theoretical value after setting such a virtual transmission point V10, the quasi-theoretical value becomes a value considering the path a2 of the reflected wave.
 (まとめ)
 以上説明したように、第1の態様に係る推定システム(1)は、受信機(2)と、推定部(3)と、第1記憶部(記憶部4)と、第2記憶部(記憶部4)とを備える。受信機(2)は、複数のアンテナ(21)を有している。複数のアンテナ(21)は、発信機(5)から発信される無線信号を受信する。受信機(2)は、複数のアンテナ(21)で受信した無線信号に対して、位相合成処理を行って複数の合成信号(SS1,SS2,SS3,SS4)を生成する。推定部(3)は、所定領域(A1)内における発信機(5)の位置を推定する。第1記憶部(記憶部4)は、複数の位置情報を記憶している。複数の位置情報は、発信機(5)の位置を推定するための複数の候補点(P0)における複数の位置を示す。第2記憶部(記憶部4)は、複数の準理論値を記憶している。複数の準理論値は、複数の候補点(P0)の各々と一対一で対応する。複数の準理論値は、複数の候補点(P0)の各々において無線信号が発信されたとした場合に受信機(2)が受信する直接波及び反射波に関する値である。推定部(3)は、複数の位置情報と、複数の準理論値と、複数の合成信号(SS1,SS2,SS3,SS4)における複数の信号強度と、に基づいて所定領域(A1)内における発信機(5)の位置を推定する。
(summary)
As described above, the estimation system (1) according to the first aspect includes a receiver (2), an estimation unit (3), a first storage unit (storage unit 4), and a second storage unit (memory). It is provided with a part 4). The receiver (2) has a plurality of antennas (21). The plurality of antennas (21) receive the radio signal transmitted from the transmitter (5). The receiver (2) performs phase synthesis processing on the radio signals received by the plurality of antennas (21) to generate a plurality of composite signals (SS1, SS2, SS3, SS4). The estimation unit (3) estimates the position of the transmitter (5) in the predetermined area (A1). The first storage unit (storage unit 4) stores a plurality of position information. The plurality of position information indicates a plurality of positions at a plurality of candidate points (P0) for estimating the position of the transmitter (5). The second storage unit (storage unit 4) stores a plurality of quasi-theoretical values. The plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points (P0). The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver (2) when the radio signal is transmitted at each of the plurality of candidate points (P0). The estimation unit (3) is in a predetermined region (A1) based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in a plurality of synthetic signals (SS1, SS2, SS3, SS4). Estimate the position of the transmitter (5).
 この態様によれば、複数の信号強度と、複数の候補点(P0)の複数の位置情報と一対一で対応する複数の準理論値と、に基づいて発信機(5)の位置を推定することで、推定部(3)は、例えば1つの受信機(2)で受信した無線信号に基づいて発信機(5)の位置を推定することができる。これにより、対象機器(発信機)の位置を推定する際のアンテナ(21)の数を低減することができる。 According to this aspect, the position of the transmitter (5) is estimated based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to a plurality of position information of a plurality of candidate points (P0) on a one-to-one basis. Therefore, the estimation unit (3) can estimate the position of the transmitter (5) based on the radio signal received by, for example, one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
 第2の態様に係る推定システム(1)では、第1の態様において、推定部(3)は、複数の候補点(P0)のうち、複数の信号強度と最も相関度の高い準理論値に対応する候補点(P0)の位置を示す位置情報に基づいて、発信機(5)の位置を推定する。 In the estimation system (1) according to the second aspect, in the first aspect, the estimation unit (3) has a quasi-theoretical value having the highest degree of correlation with a plurality of signal strengths among the plurality of candidate points (P0). The position of the transmitter (5) is estimated based on the position information indicating the position of the corresponding candidate point (P0).
 この態様によれば、複数の信号強度と最も相関度の高い準理論値に対応する候補点(P0)の位置情報から発信機(5)の位置を推定するため、推定システム(1)の推定精度を向上させることができる。 According to this aspect, in order to estimate the position of the transmitter (5) from the position information of the candidate point (P0) corresponding to the quasi-theoretical value having the highest correlation with a plurality of signal intensities, the estimation system (1) is estimated. The accuracy can be improved.
 第3の態様に係る推定システム(1)では、第1又は第2の態様において、所定領域(A1)内に基準信号を発信する基準発信機(7)が配置され、受信機(2)の位置を示す位置情報と、基準発信機(7)の位置を示す位置情報と、基準信号を受信機(2)が受信した場合の信号強度と、に基づいて仮想点が設定される。仮想点は、仮想受信点(V1)又は仮想送信点(V8)である。仮想受信点(V1)は、基準信号を反射させる反射体(壁6)を介して基準発信機(7)と対向する位置にあり、反射体(壁6)がなければ基準信号を受信したとみなすことができる仮想点である。仮想送信点(V8)は、基準信号を反射させる反射体(壁6)を介して受信機(2)と対向する位置にあり、反射体(壁6)がなければ受信機(2)に基準信号を発信したとみなすことができる仮想点である。複数の準理論値は、複数の候補点(P0)の各々と受信機(2)との間における無線信号の経路(a1)と、複数の候補点(P0)の各々と仮想受信点(V1)との間における無線信号の経路(a2)、又は、受信機(2)と仮想送信点(V8)との間における無線信号の経路(a2)、とを足し合わせたものである。 In the estimation system (1) according to the third aspect, in the first or second aspect, the reference transmitter (7) for transmitting the reference signal is arranged in the predetermined area (A1), and the receiver (2) has a reference transmitter (2). A virtual point is set based on the position information indicating the position, the position information indicating the position of the reference transmitter (7), and the signal strength when the receiver (2) receives the reference signal. The virtual point is a virtual receiving point (V1) or a virtual transmitting point (V8). The virtual receiving point (V1) is located at a position facing the reference transmitter (7) via a reflector (wall 6) that reflects the reference signal, and if there is no reflector (wall 6), the reference signal is received. It is a virtual point that can be regarded. The virtual transmission point (V8) is located at a position facing the receiver (2) via the reflector (wall 6) that reflects the reference signal, and if there is no reflector (wall 6), the reference is made to the receiver (2). It is a virtual point that can be regarded as transmitting a signal. The plurality of quasi-theoretical values are the radio signal path (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and the virtual reception point (V1). ), Or the radio signal path (a2) between the receiver (2) and the virtual transmission point (V8).
 この態様によれば、複数の準理論値が、直接波の経路(a1)と、反射波の経路(a2)とを足し合わせたものであるため、推定部(3)は、例えば1つの受信機(2)で受信した無線信号から発信機(5)の位置を推定することができる。 According to this aspect, since the plurality of quasi-theoretical values are the sum of the direct wave path (a1) and the reflected wave path (a2), the estimation unit (3) may receive, for example, one. The position of the transmitter (5) can be estimated from the radio signal received by the machine (2).
 第4の態様に係る推定システム(1)では、第3の態様において、仮想点は、仮想受信点(V1)である。仮想受信点(V1)と反射体(壁6)との距離は、受信機(2)と反射体(壁6)との距離と等しい。 In the estimation system (1) according to the fourth aspect, in the third aspect, the virtual point is a virtual receiving point (V1). The distance between the virtual receiving point (V1) and the reflector (wall 6) is equal to the distance between the receiver (2) and the reflector (wall 6).
 この態様によれば、仮想受信点(V1)と反射体(壁6)との距離と、受信機(2)と反射体(壁6)との距離とが等しいため、推定部(3)が発信機(5)の位置を推定する際の精度が向上する。 According to this aspect, since the distance between the virtual receiving point (V1) and the reflector (wall 6) is equal to the distance between the receiver (2) and the reflector (wall 6), the estimation unit (3) The accuracy when estimating the position of the transmitter (5) is improved.
 第5の態様に係る推定システム(1)では、第3の態様において、仮想点は、仮想送信点(V8)である。仮想送信点(V8)と反射体(壁6)との距離は、基準発信機(7)と反射体(壁6)との距離と等しい。 In the estimation system (1) according to the fifth aspect, in the third aspect, the virtual point is a virtual transmission point (V8). The distance between the virtual transmission point (V8) and the reflector (wall 6) is equal to the distance between the reference transmitter (7) and the reflector (wall 6).
 この態様によれば、仮想送信点(V8)と反射体(壁6)との距離と、基準発信機(7)と反射体(壁6)との距離とが等しいため、推定部(3)が発信機(5)の位置を推定する際の精度が向上する。 According to this aspect, since the distance between the virtual transmission point (V8) and the reflector (wall 6) is equal to the distance between the reference transmitter (7) and the reflector (wall 6), the estimation unit (3) Improves the accuracy of estimating the position of the transmitter (5).
 第6の態様に係る推定システム(1)では、第3から第5のいずれかの態様において仮想受信点(V1)又は仮想送信点(V8)が、基準発信機(7)に対して複数設定される。複数の仮想受信点(V1)と基準発信機(7)との間、又は、複数の仮想送信点(V8)と受信機(2)との間には、基準信号を反射させる複数の反射体(壁61,壁62,壁63,壁64)がある。複数の準理論値は、複数の候補点(P0)の各々と受信機(2)との間における複数の経路(a1)と、複数の候補点(P0)の各々と複数の仮想受信点(V1)との間における無線信号の複数の経路(a2)、又は、受信機(2)と複数の仮想送信点(V8)との間における無線信号の複数の経路(a2)、とを足し合わせたものである。 In the estimation system (1) according to the sixth aspect, a plurality of virtual reception points (V1) or virtual transmission points (V8) are set with respect to the reference transmitter (7) in any of the third to fifth aspects. Will be done. A plurality of reflectors that reflect a reference signal between a plurality of virtual receiving points (V1) and a reference transmitter (7), or between a plurality of virtual transmitting points (V8) and a receiver (2). (Wall 61, wall 62, wall 63, wall 64). The plurality of quasi-theoretical values are a plurality of paths (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and a plurality of virtual reception points ( The plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of virtual transmission points (V8) are added together. It is a thing.
 この態様によれば、複数の反射波の経路(a2)を足し合わせたものであるため、仮想点が1つの場合と比べて、推定部(3)は、より精度よく発信機(5)の位置を推定することができる。 According to this aspect, since the paths (a2) of the plurality of reflected waves are added together, the estimation unit (3) is more accurate than the case where there is one virtual point of the transmitter (5). The position can be estimated.
 第7の態様に係る推定システム(1)では、第3から第5のいずれかの態様において、所定領域(A1)内に基準発信機(7)が複数配置され、複数の基準発信機(7a,7b,7c,7d)の各々に仮想受信点(V1)又は仮想送信点(V8)が設定される。複数の基準発信機(7a,7b,7c,7d)と複数の仮想受信点(V1)との間、又は、複数の仮想送信点(V8)と受信機(2)との間には、基準信号を反射させる複数の反射体(壁61,壁62,壁63,壁64)がある。複数の準理論値は、複数の候補点(P0)の各々と受信機(2)との間における複数の経路(a1)と、複数の候補点(P0)の各々と複数の仮想受信点(V1)との間における無線信号の複数の経路(a2)、又は、受信機(2)と複数の仮想送信点(V8)との間における無線信号の複数の経路(a2)、とを足し合わせたものである。 In the estimation system (1) according to the seventh aspect, in any of the third to fifth aspects, a plurality of reference transmitters (7) are arranged in a predetermined area (A1), and a plurality of reference transmitters (7a) are arranged. , 7b, 7c, 7d), a virtual reception point (V1) or a virtual transmission point (V8) is set. A reference between a plurality of reference transmitters (7a, 7b, 7c, 7d) and a plurality of virtual receiving points (V1), or between a plurality of virtual transmitting points (V8) and a receiver (2). There are a plurality of reflectors (wall 61, wall 62, wall 63, wall 64) that reflect the signal. The plurality of quasi-theoretical values are a plurality of paths (a1) between each of the plurality of candidate points (P0) and the receiver (2), and each of the plurality of candidate points (P0) and a plurality of virtual reception points ( The plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of paths (a2) of the radio signal between the receiver (2) and the plurality of virtual transmission points (V8) are added together. It is a thing.
 この態様によれば、複数の準理論値は複数の反射波の経路(a2)を足し合わせたものであるため、仮想点が1つの場合と比べて、推定部(3)は、より精度よく発信機(5)の位置を推定することができる。 According to this aspect, since the plurality of quasi-theoretical values are the sum of the paths (a2) of the plurality of reflected waves, the estimation unit (3) is more accurate than the case where there is one virtual point. The position of the transmitter (5) can be estimated.
 第8の態様に係る推定システム(1)では、第6又は第7の態様において、複数の準理論値は、複数の候補点(P0)の各々と受信機(2)との間の複数の無線信号の経路(a1)と、複数の候補点(P0)の各々と複数の仮想受信点(V1)との間における無線信号の複数の経路(a2)の全て、又は、受信機(2)と複数の仮想送信点(V8)との間における無線信号の複数の経路(a2)の全て、とを足し合わせたものである。 In the estimation system (1) according to the eighth aspect, in the sixth or seventh aspect, the plurality of quasi-theoretical values are a plurality of quasi-theoretical values between each of the plurality of candidate points (P0) and the receiver (2). All of the radio signal paths (a1) and all of the radio signal paths (a2) between each of the plurality of candidate points (P0) and the plurality of virtual reception points (V1), or the receiver (2). It is the sum of all of the plurality of paths (a2) of the radio signal between the plurality of virtual transmission points (V8) and the plurality of virtual transmission points (V8).
 この態様によれば、複数の準理論値は複数の反射波の経路(a2)の全てを足し合わせたものであるため、推定部(3)はより精度よく発信機(5)の位置を推定することができる。 According to this aspect, since the plurality of quasi-theoretical values are the sum of all the paths (a2) of the plurality of reflected waves, the estimation unit (3) estimates the position of the transmitter (5) more accurately. can do.
 第9の態様に係る推定システム(1)では、第3から第8のいずれかの態様において、複数の候補点(P0)の複数の位置情報と、受信機(2)の位置情報と、基準発信機(7)の位置情報は所定領域(A1)内における3次元での位置を示す位置情報である。仮想点は、3次元での位置を示す位置情報で設定される。 In the estimation system (1) according to the ninth aspect, in any of the third to eighth aspects, a plurality of position information of the plurality of candidate points (P0), position information of the receiver (2), and a reference. The position information of the transmitter (7) is the position information indicating the position in the predetermined area (A1) in three dimensions. The virtual point is set by the position information indicating the position in three dimensions.
 この態様によれば、推定部(3)は、3次元での位置を示す位置情報に基づいて発信機(5)の3次元の位置を推定することができる。 According to this aspect, the estimation unit (3) can estimate the three-dimensional position of the transmitter (5) based on the position information indicating the position in three dimensions.
 第1の態様以外の構成については、推定システム(1)に必須の構成ではなく、適宜省略可能である。 Configurations other than the first aspect are not essential configurations for the estimation system (1) and can be omitted as appropriate.
 第10の態様に係る推定システム(1a)は、発信機(5a)と、取得部(10)と、推定部(3a)と、第1記憶部(記憶部4a)と、第2記憶部(記憶部4a)と、を備える。発信機(5a)は、複数の元信号(BS1,BS2,BS3,BS4)に対して位相合成処理を行い複数の無線信号(RS1,RS2,RS3)を生成し、複数の無線信号(RS1,RS2,RS3)を複数のアンテナ(51)から発信する。取得部(10)は、所定領域(A1)内に存在する受信機(2a)によって受信された複数の無線信号(RS1,RS2,RS3)の信号強度の情報を取得する。推定部(3a)は、所定領域(A1)内における受信機(2a)の位置を推定する。第1記憶部は、複数の位置情報を記憶する。複数の位置情報は、受信機(2)の位置を推定するための複数の候補点(P0)における複数の位置を示す。第2記憶部は、複数の準理論値を記憶する。複数の準理論値は、複数の候補点(P0)の各々と一対一で対応する。複数の準理論値は、複数の候補点(P0)の各々において無線信号が受信されたとした場合に受信機(2a)が受信する直接波及び反射波に関する値である。推定部(3a)は、複数の位置情報と、複数の準理論値と、取得部(10)によって取得される複数の信号強度の情報と、に基づいて、所定領域(A1)内における受信機(2a)の位置を推定する。 The estimation system (1a) according to the tenth aspect includes a transmitter (5a), an acquisition unit (10), an estimation unit (3a), a first storage unit (storage unit 4a), and a second storage unit ( A storage unit 4a) is provided. The transmitter (5a) performs phase synthesis processing on a plurality of original signals (BS1, BS2, BS3, BS4) to generate a plurality of radio signals (RS1, RS2, RS3), and a plurality of radio signals (RS1, RS1, RS3). RS2, RS3) are transmitted from a plurality of antennas (51). The acquisition unit (10) acquires information on the signal strength of the plurality of radio signals (RS1, RS2, RS3) received by the receiver (2a) existing in the predetermined area (A1). The estimation unit (3a) estimates the position of the receiver (2a) in the predetermined area (A1). The first storage unit stores a plurality of position information. The plurality of position information indicates a plurality of positions at a plurality of candidate points (P0) for estimating the position of the receiver (2). The second storage unit stores a plurality of quasi-theoretical values. The plurality of quasi-theoretical values correspond one-to-one with each of the plurality of candidate points (P0). The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the receiver (2a) when the radio signal is received at each of the plurality of candidate points (P0). The estimation unit (3a) is a receiver in a predetermined region (A1) based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal strength information acquired by the acquisition unit (10). The position of (2a) is estimated.
 この態様によれば、複数の信号強度の情報と、複数の候補点(P0)における複数の位置情報の各々と一対一で対応する複数の準理論値と、に基づいて受信機(2a)の位置を推定することで、推定部(3a)は、例えば1つの発信機(5a)で発信した複数の無線信号(RS1,RS2,RS3)の信号強度に基づいて受信機(2a)の位置を推定することができる。これにより、対象機器(受信機)の位置を推定する際のアンテナ(51)の数を低減することができる。 According to this aspect, the receiver (2a) is based on information on a plurality of signal strengths and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis. By estimating the position, the estimation unit (3a) determines the position of the receiver (2a) based on the signal strength of a plurality of radio signals (RS1, RS2, RS3) transmitted by one transmitter (5a), for example. Can be estimated. This makes it possible to reduce the number of antennas (51) when estimating the position of the target device (receiver).
 第11の態様に係る推定方法は、受信ステップと、生成ステップと、推定ステップと、を有する。受信ステップでは、発信機(5)が発信する無線信号を複数のアンテナ(21)で受信する。生成ステップでは、受信ステップにおいて受信した無線信号に対して位相合成処理を行って複数の合成信号(SS1,SS2,SS3,SS4)を生成する。推定ステップでは、所定領域(A1)内における発信機(5)の位置を推定する。推定ステップでは、複数の位置情報と、複数の準理論値と、複数の合成信号(SS1,SS2,SS3,SS4)における複数の信号強度と、に基づいて、所定領域(A1)内における発信機(5)の位置を推定する。複数の位置情報は、所定領域(A1)内における発信機(5)の位置を推定するための複数の候補点(P0)の位置を示す。複数の位置情報は、あらかじめ記憶された情報である。複数の準理論値は、複数の位置情報の各々と一対一で対応する。複数の準理論値は、複数の候補点(P0)の各々において無線信号が発信された場合の複数のアンテナ(21)が受信する直接波及び反射波に関する値である。複数の準理論値は、あらかじめ記憶されている。 The estimation method according to the eleventh aspect includes a reception step, a generation step, and an estimation step. In the reception step, the radio signal transmitted by the transmitter (5) is received by the plurality of antennas (21). In the generation step, the radio signal received in the reception step is subjected to phase synthesis processing to generate a plurality of composite signals (SS1, SS2, SS3, SS4). In the estimation step, the position of the transmitter (5) in the predetermined area (A1) is estimated. In the estimation step, the transmitter in the predetermined region (A1) is based on a plurality of position information, a plurality of quasi-theoretical values, and a plurality of signal intensities in a plurality of synthetic signals (SS1, SS2, SS3, SS4). Estimate the position of (5). The plurality of position information indicates the positions of the plurality of candidate points (P0) for estimating the position of the transmitter (5) in the predetermined area (A1). The plurality of position information is information stored in advance. The plurality of quasi-theoretical values correspond one-to-one with each of the plurality of position information. The plurality of quasi-theoretical values are values relating to the direct wave and the reflected wave received by the plurality of antennas (21) when the radio signal is transmitted at each of the plurality of candidate points (P0). A plurality of quasi-theoretical values are stored in advance.
 この態様によれば、複数の信号強度と、複数の候補点(P0)における複数の位置情報の各々と一対一で対応する複数の準理論値と、に基づいて発信機(5)の位置を推定することで、例えば1つの受信機(2)で受信した無線信号に基づいて発信機(5)の位置を推定することができる。これにより、対象機器(発信機)の位置を推定する際のアンテナ(21)の数を低減することができる。 According to this aspect, the position of the transmitter (5) is determined based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis. By estimating, for example, the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
 第12の態様に係る推定方法は、第1受信ステップと、設定ステップと、記憶ステップと、第2受信ステップと、推定ステップと、を有している。第1受信ステップでは、所定領域(A1)内に設置された基準発信機(7)が発信する基準信号の直接波及び反射波を、受信機(2)で受信する。受信機(2)は複数のアンテナ(21)を有する。設定ステップでは、受信機(2)及び基準発信機(7)の位置情報と、基準信号の信号強度から、仮想受信点(V1)、又は、仮想送信点(V8)を設定する。仮想受信点(V1)は、反射波を受信したとみなすことができる。仮想送信点(V8)は、反射波を発信したとみなすことができる。記憶ステップでは、受信機(2)の位置情報、及び、仮想受信点(V1)又は仮想送信点(V8)の位置情報に基づいて、複数の準理論値を記憶部(4)に記憶させる。複数の準理論値は、所定領域(A1)内における複数の候補点(P0)の各々において発信機(5)が無線信号を発信した場合に受信機(2)が受信する直接波及び反射波に関する値である。第2受信ステップでは、発信機(5)が発信する無線信号を受信機(2)で受信する。推定ステップでは、複数の準理論値のうち、第2受信ステップにおいて受信機(2)が受信した無線信号の信号強度との相関度が最も高い準理論値に対応する候補点(P0)の位置を、発信機(5)の位置と推定する。 The estimation method according to the twelfth aspect includes a first reception step, a setting step, a storage step, a second reception step, and an estimation step. In the first reception step, the receiver (2) receives the direct wave and the reflected wave of the reference signal transmitted by the reference transmitter (7) installed in the predetermined area (A1). The receiver (2) has a plurality of antennas (21). In the setting step, the virtual receiving point (V1) or the virtual transmitting point (V8) is set from the position information of the receiver (2) and the reference transmitter (7) and the signal strength of the reference signal. The virtual receiving point (V1) can be regarded as having received the reflected wave. The virtual transmission point (V8) can be regarded as transmitting the reflected wave. In the storage step, a plurality of quasi-theoretical values are stored in the storage unit (4) based on the position information of the receiver (2) and the position information of the virtual reception point (V1) or the virtual transmission point (V8). The plurality of quasi-theoretical values are the direct wave and the reflected wave received by the receiver (2) when the transmitter (5) transmits a radio signal at each of the plurality of candidate points (P0) in the predetermined region (A1). The value for. In the second reception step, the receiver (2) receives the radio signal transmitted by the transmitter (5). In the estimation step, the position of the candidate point (P0) corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver (2) in the second receiving step among the plurality of quasi-theoretical values. Is estimated to be the position of the transmitter (5).
 この態様によれば、複数の信号強度と、複数の候補点(P0)における複数の位置情報の各々と一対一で対応する複数の準理論値と、に基づいて発信機(5)の位置を推定することで、例えば1つの受信機(2)で受信した無線信号に基づいて発信機(5)の位置を推定することができる。これにより、対象機器(発信機)の位置を推定する際のアンテナ(21)の数を低減することができる。 According to this aspect, the position of the transmitter (5) is determined based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to each of the plurality of position information at the plurality of candidate points (P0) on a one-to-one basis. By estimating, for example, the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
 第13の態様に係るプログラムは、第11又は第12の態様に係る推定方法を、1以上のプロセッサに実行させるためのプログラムである。 The program according to the thirteenth aspect is a program for causing one or more processors to execute the estimation method according to the eleventh or twelfth aspect.
 この態様によれば、複数の信号強度と、複数の候補点(P0)の各々の位置情報と一対一で対応する複数の準理論値と、に基づいて発信機(5)の位置を推定することで、例えば1つの受信機(2)で受信した無線信号に基づいて発信機(5)の位置を推定することができる。これにより、対象機器(発信機)の位置を推定する際のアンテナ(21)の数を低減することができる。 According to this aspect, the position of the transmitter (5) is estimated based on a plurality of signal intensities and a plurality of quasi-theoretical values corresponding to the position information of each of the plurality of candidate points (P0) on a one-to-one basis. Therefore, for example, the position of the transmitter (5) can be estimated based on the radio signal received by one receiver (2). This makes it possible to reduce the number of antennas (21) when estimating the position of the target device (transmitter).
1,1a 推定システム
2,2a 受信機
21 アンテナ
3,3a 推定部
4,4a 記憶部(第1記憶部,第2記憶部)
41 位置情報
5,5a 発信機
51 アンテナ
6 壁(反射体)
7 基準発信機
10 取得部
A1 所定領域
P0 候補点
V1 仮想受信点
V8 仮想送信点
1, 1a estimation system 2,2a receiver 21 antenna 3,3a estimation unit 4,4a storage unit (first storage unit, second storage unit)
41 Location information 5,5a Transmitter 51 Antenna 6 Wall (reflector)
7 Reference transmitter 10 Acquisition unit A1 Predetermined area P0 Candidate point V1 Virtual reception point V8 Virtual transmission point

Claims (13)

  1.  発信機から発信される無線信号を受信する複数のアンテナを有し、前記複数のアンテナで受信した前記無線信号に対して位相合成処理を行って複数の合成信号を生成する受信機と、
     所定領域内における前記発信機の位置を推定する推定部と、
     前記発信機の位置を推定するための複数の候補点の位置を示す複数の位置情報を記憶している第1記憶部と、
     前記複数の位置情報の各々と一対一で対応し、前記複数の候補点の各々において無線信号が発信されたとした場合に前記受信機が受信する直接波及び反射波に関する値である複数の準理論値を記憶している第2記憶部と、
    を備え、
     前記推定部は、前記複数の位置情報と、前記複数の準理論値と、前記複数の合成信号における複数の信号強度と、に基づいて前記所定領域内における前記発信機の位置を推定する、
     推定システム。
    A receiver having a plurality of antennas for receiving radio signals transmitted from a transmitter and performing phase synthesis processing on the radio signals received by the plurality of antennas to generate a plurality of composite signals.
    An estimation unit that estimates the position of the transmitter in a predetermined area,
    A first storage unit that stores a plurality of position information indicating the positions of a plurality of candidate points for estimating the position of the transmitter, and a first storage unit.
    A plurality of quasi-theories that correspond one-to-one with each of the plurality of position information and are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points. The second storage unit that stores the value and
    Equipped with
    The estimation unit estimates the position of the transmitter in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the plurality of signal intensities in the plurality of synthesized signals.
    Estimating system.
  2.  前記推定部は、前記複数の候補点のうち、前記複数の信号強度と最も相関度の高い準理論値に対応する候補点の位置を示す位置情報に基づいて、前記発信機の位置を推定する、
     請求項1に記載の推定システム。
    The estimation unit estimates the position of the transmitter based on the position information indicating the position of the candidate point corresponding to the quasi-theoretical value having the highest correlation with the plurality of signal intensities among the plurality of candidate points. ,
    The estimation system according to claim 1.
  3.  前記所定領域内に基準信号を発信する基準発信機が配置され、前記受信機の位置を示す位置情報と、前記基準発信機の位置を示す位置情報と、前記基準信号を前記受信機が受信した場合の信号強度と、に基づいて仮想点が設定され、
     前記仮想点は、
      前記基準信号を反射させる反射体を介して前記基準発信機と対向する位置にあり、前記反射体がなければ前記基準信号を受信したとみなすことができる仮想受信点、又は、前記基準信号を反射させる反射体を介して前記受信機と対向する位置にあり、前記反射体がなければ前記受信機に前記基準信号を発信したとみなすことができる仮想送信点であり、
     前記複数の準理論値は、前記複数の候補点の各々と前記受信機との間における無線信号の経路と、前記複数の候補点の各々と前記仮想受信点との間における無線信号の経路、又は、前記受信機と前記仮想送信点との間における無線信号の経路、とを足し合わせたものである、
     請求項1又は2に記載の推定システム。
    A reference transmitter that transmits a reference signal is arranged in the predetermined area, and the receiver receives the position information indicating the position of the receiver, the position information indicating the position of the reference transmitter, and the reference signal. If the signal strength and the virtual point is set based on,
    The virtual point is
    A virtual receiving point that is located at a position facing the reference transmitter via a reflector that reflects the reference signal and can be regarded as having received the reference signal without the reflector, or reflects the reference signal. It is a virtual transmission point that is located at a position facing the receiver via the reflector and can be regarded as transmitting the reference signal to the receiver if there is no reflector.
    The plurality of quasi-theoretical values are a radio signal path between each of the plurality of candidate points and the receiver, and a radio signal path between each of the plurality of candidate points and the virtual receiving point. Alternatively, it is the sum of the radio signal paths between the receiver and the virtual transmission point.
    The estimation system according to claim 1 or 2.
  4.  前記仮想点は、前記仮想受信点であり、
     前記仮想受信点と前記反射体との距離は、前記受信機と前記反射体との距離と等しい、
     請求項3に記載の推定システム。
    The virtual point is the virtual receiving point.
    The distance between the virtual receiving point and the reflector is equal to the distance between the receiver and the reflector.
    The estimation system according to claim 3.
  5.  前記仮想点は、前記仮想送信点であり、
     前記仮想送信点と前記反射体との距離は、前記基準発信機と前記反射体との距離と等しい、
     請求項3に記載の推定システム。
    The virtual point is the virtual transmission point.
    The distance between the virtual transmission point and the reflector is equal to the distance between the reference transmitter and the reflector.
    The estimation system according to claim 3.
  6.  前記仮想受信点又は前記仮想送信点が、前記基準発信機に対して複数設定され、
     前記複数の仮想受信点と前記基準発信機との間、又は、前記複数の仮想送信点と前記受信機との間には、前記基準信号を反射させる複数の反射体があり、
     前記複数の準理論値は、前記複数の候補点の各々と前記受信機との間における前記複数の経路と、前記複数の候補点の各々と前記複数の仮想受信点との間における無線信号の複数の経路、又は、前記受信機と前記複数の仮想送信点との間における無線信号の複数の経路、とを足し合わせたものである、
     請求項3から5のいずれか1項に記載の推定システム。
    A plurality of the virtual receiving point or the virtual transmitting point are set for the reference transmitter, and the virtual receiving point or the virtual transmitting point is set.
    There are a plurality of reflectors that reflect the reference signal between the plurality of virtual receiving points and the reference transmitter, or between the plurality of virtual transmitting points and the receiver.
    The plurality of quasi-theoretical values are the radio signals of the plurality of paths between each of the plurality of candidate points and the receiver, and between each of the plurality of candidate points and the plurality of virtual receiving points. It is the sum of a plurality of paths or a plurality of paths of a radio signal between the receiver and the plurality of virtual transmission points.
    The estimation system according to any one of claims 3 to 5.
  7.  前記所定領域内に前記基準発信機が複数配置され、複数の前記基準発信機の各々に前記仮想受信点又は前記仮想送信点が設定され、
     前記複数の基準発信機と複数の前記仮想受信点との間、又は、複数の前記仮想送信点と前記受信機との間には、前記基準信号を反射させる複数の反射体があり、
     前記複数の準理論値は、前記複数の候補点の各々と前記受信機との間における前記複数の経路と、前記複数の候補点の各々と前記複数の仮想受信点との間における無線信号の複数の経路、又は、前記受信機と前記複数の仮想送信点との間における無線信号の複数の経路、とを足し合わせたものである、
     請求項3から5のいずれか1項に記載の推定システム。
    A plurality of the reference transmitters are arranged in the predetermined area, and the virtual receiving point or the virtual transmitting point is set in each of the plurality of reference transmitters.
    There are a plurality of reflectors that reflect the reference signal between the plurality of reference transmitters and the plurality of virtual receiving points, or between the plurality of virtual transmitting points and the receiver.
    The plurality of quasi-theoretical values are the radio signals of the plurality of paths between each of the plurality of candidate points and the receiver, and between each of the plurality of candidate points and the plurality of virtual receiving points. It is the sum of a plurality of paths or a plurality of paths of a radio signal between the receiver and the plurality of virtual transmission points.
    The estimation system according to any one of claims 3 to 5.
  8.  前記複数の準理論値は、前記複数の候補点の各々と前記受信機との間の前記複数の無線信号の経路と、前記複数の候補点の各々と前記複数の仮想受信点との間における無線信号の複数の経路の全て、又は、前記受信機と前記複数の仮想送信点との間における無線信号の複数の経路の全て、とを足し合わせたものである、
     請求項6又は7に記載の推定システム。
    The plurality of quasi-theoretical values are the path of the plurality of radio signals between each of the plurality of candidate points and the receiver, and between each of the plurality of candidate points and the plurality of virtual receiving points. It is the sum of all of the plurality of paths of the radio signal or all of the plurality of paths of the radio signal between the receiver and the plurality of virtual transmission points.
    The estimation system according to claim 6 or 7.
  9.  前記複数の候補点の前記複数の位置情報と、前記受信機の前記位置情報と、前記基準発信機の前記位置情報は前記所定領域内における3次元での位置を示す位置情報であり、
     前記前記仮想点は、3次元での位置を示す位置情報で設定される、
     請求項3から8のいずれか1項に記載の推定システム。
    The plurality of position information of the plurality of candidate points, the position information of the receiver, and the position information of the reference transmitter are position information indicating a three-dimensional position in the predetermined region.
    The virtual point is set by position information indicating a position in three dimensions.
    The estimation system according to any one of claims 3 to 8.
  10.  複数の元信号に対して位相合成処理を行い複数の無線信号を生成し、前記複数の無線信号を複数のアンテナから発信する発信機と、
     所定領域内に存在する受信機によって受信された前記複数の無線信号における複数の信号強度の情報を取得する取得部と、
     前記所定領域内における前記受信機の位置を推定する推定部と、
     前記受信機の位置を推定するための複数の候補点における複数の位置情報を記憶する第1記憶部と、
     前記複数の位置情報の各々と一対一で対応し、前記複数の候補点の各々において無線信号が受信されたとした場合に前記受信機が受信する直接波及び反射波に関する値である複数の準理論値をあらかじめ記憶する第2記憶部と、
    を備え、
     前記推定部は、前記複数の位置情報と、前記複数の準理論値と、前記取得部によって取得される前記複数の信号強度の情報と、に基づいて前記所定領域内における前記受信機の位置を推定する、
     推定システム。
    A transmitter that performs phase synthesis processing on a plurality of original signals to generate a plurality of radio signals and transmits the plurality of radio signals from a plurality of antennas.
    An acquisition unit that acquires information on a plurality of signal strengths in the plurality of radio signals received by a receiver existing in a predetermined area, and
    An estimation unit that estimates the position of the receiver in the predetermined area, and
    A first storage unit that stores a plurality of position information at a plurality of candidate points for estimating the position of the receiver, and a first storage unit.
    A plurality of quasi-theories that correspond one-to-one with each of the plurality of position information and are values relating to the direct wave and the reflected wave received by the receiver when the radio signal is received at each of the plurality of candidate points. A second storage unit that stores values in advance,
    Equipped with
    The estimation unit determines the position of the receiver in the predetermined region based on the plurality of position information, the plurality of quasi-theoretical values, and the information of the plurality of signal strengths acquired by the acquisition unit. presume,
    Estimating system.
  11.  発信機が発信する無線信号を複数のアンテナを有する受信機で受信する受信ステップと、
     前記受信ステップにおいて受信した無線信号に対して位相合成処理を行って複数の合成信号を生成する生成ステップと、
     所定領域内における前記発信機の位置を推定する推定ステップと、
    を有し、
     前記推定ステップでは、
      前記所定領域内における前記発信機の位置を推定するための複数の候補点の位置を示す、あらかじめ記憶されている複数の位置情報と、
      前記複数の位置情報の各々と一対一で対応し、前記複数の候補点の各々において前記無線信号が発信された場合の前記受信機が受信する直接波及び反射波に関する値であり、あらかじめ記憶されている複数の準理論値と、
      前記複数の合成信号における複数の信号強度と、
    に基づいて、前記所定領域内における前記発信機の位置を推定する、
     推定方法。
    A reception step in which a radio signal transmitted by a transmitter is received by a receiver having multiple antennas,
    A generation step of performing phase synthesis processing on the radio signal received in the reception step to generate a plurality of composite signals, and a generation step.
    An estimation step for estimating the position of the transmitter in a predetermined area, and
    Have,
    In the estimation step,
    A plurality of pre-stored position information indicating the positions of a plurality of candidate points for estimating the position of the transmitter in the predetermined area, and a plurality of pre-stored position information.
    It corresponds one-to-one with each of the plurality of position information, and is a value related to a direct wave and a reflected wave received by the receiver when the radio signal is transmitted at each of the plurality of candidate points, and is stored in advance. With multiple quasi-theoretical values
    A plurality of signal intensities in the plurality of composite signals and
    To estimate the position of the transmitter within the predetermined area, based on
    Estimating method.
  12.  所定領域内に設置された基準発信機が発信する基準信号の直接波及び反射波を、複数のアンテナを有する受信機で受信する第1受信ステップと、
     前記受信機及び前記基準発信機の位置情報と、前記基準信号の信号強度から、前記反射波を受信したとみなすことができる仮想受信点、又は、前記反射波を発信したとみなすことができる仮想送信点を設定する設定ステップと、
     前記受信機の位置情報、及び、前記仮想受信点又は前記仮想送信点の位置情報に基づいて、前記所定領域内における複数の候補点の各々において発信機が無線信号を発信した場合に前記受信機が受信する直接波及び反射波に関する複数の準理論値を記憶部に記憶させる記憶ステップと、
     発信機が発信する無線信号を前記受信機で受信する第2受信ステップと、
     前記複数の準理論値のうち、前記第2受信ステップにおいて前記受信機が受信した前記無線信号の信号強度との相関度が最も高い準理論値に対応する候補点の位置を、前記発信機の位置と推定する推定ステップと、
    を有する、
     推定方法。
    A first reception step in which a receiver having a plurality of antennas receives a direct wave and a reflected wave of a reference signal transmitted by a reference transmitter installed in a predetermined area.
    From the position information of the receiver and the reference transmitter and the signal strength of the reference signal, a virtual receiving point that can be regarded as having received the reflected wave, or a virtual receiving point that can be regarded as transmitting the reflected wave. Setting steps to set the transmission point and
    The receiver when the transmitter transmits a radio signal at each of a plurality of candidate points in the predetermined area based on the position information of the receiver and the position information of the virtual receiving point or the virtual transmitting point. A storage step in which a storage unit stores a plurality of quasi-theoretical values related to the direct wave and the reflected wave received by the storage unit.
    The second reception step of receiving the radio signal transmitted by the transmitter by the receiver, and
    Among the plurality of quasi-theoretical values, the position of the candidate point corresponding to the quasi-theoretical value having the highest correlation with the signal strength of the radio signal received by the receiver in the second receiving step is set in the transmitter. The estimation step to estimate the position and the estimation step
    Have,
    Estimating method.
  13.  請求項11又は12に記載の推定方法を、1以上のプロセッサに実行させるためのプログラム。 A program for causing one or more processors to execute the estimation method according to claim 11 or 12.
PCT/JP2021/039459 2020-12-25 2021-10-26 Estimation system, estimation method, and program WO2022137784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571914A JPWO2022137784A1 (en) 2020-12-25 2021-10-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217937 2020-12-25
JP2020-217937 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022137784A1 true WO2022137784A1 (en) 2022-06-30

Family

ID=82159000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039459 WO2022137784A1 (en) 2020-12-25 2021-10-26 Estimation system, estimation method, and program

Country Status (2)

Country Link
JP (1) JPWO2022137784A1 (en)
WO (1) WO2022137784A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098958A (en) * 2003-08-28 2005-04-14 Advanced Telecommunication Research Institute International Transceiving system
JP2007114144A (en) * 2005-10-24 2007-05-10 Seiko Precision Inc Position identification device and method, and program
JP2012127747A (en) * 2010-12-14 2012-07-05 Panasonic Corp Wireless positioning device and wireless positioning method
JP2017216567A (en) * 2016-05-31 2017-12-07 国立大学法人岩手大学 Beacon device, direction estimation method using beacon device, position estimation method and communication terminal unit
JP2018017695A (en) * 2016-07-29 2018-02-01 国立大学法人東京工業大学 Originating source estimating method and originating source estimating apparatus using the same
JP2018124263A (en) * 2017-01-27 2018-08-09 パナソニックIpマネジメント株式会社 Positioning sensor, sensor, and method
US20190033423A1 (en) * 2008-03-31 2019-01-31 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098958A (en) * 2003-08-28 2005-04-14 Advanced Telecommunication Research Institute International Transceiving system
JP2007114144A (en) * 2005-10-24 2007-05-10 Seiko Precision Inc Position identification device and method, and program
US20190033423A1 (en) * 2008-03-31 2019-01-31 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database
JP2012127747A (en) * 2010-12-14 2012-07-05 Panasonic Corp Wireless positioning device and wireless positioning method
JP2017216567A (en) * 2016-05-31 2017-12-07 国立大学法人岩手大学 Beacon device, direction estimation method using beacon device, position estimation method and communication terminal unit
JP2018017695A (en) * 2016-07-29 2018-02-01 国立大学法人東京工業大学 Originating source estimating method and originating source estimating apparatus using the same
JP2018124263A (en) * 2017-01-27 2018-08-09 パナソニックIpマネジメント株式会社 Positioning sensor, sensor, and method

Also Published As

Publication number Publication date
JPWO2022137784A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US9125165B2 (en) WLAN-based positioning system
EP3187893B1 (en) Method to determine the location of a receiver
CN102308228B (en) Method for locating multiple rays of a source with or without AOA by multi-channel estimation of the TDOA and FDOA
US11940549B2 (en) Positioning method and device
TW201340755A (en) Mobile device position detection
US20210141074A1 (en) Location determination using acoustic models
JP6760592B2 (en) Beacon device, direction estimation method using the beacon device, position estimation method, and communication terminal device
US6996403B2 (en) Method and apparatus for locating a remote unit
WO2022137784A1 (en) Estimation system, estimation method, and program
JP2006201084A (en) Device for tracking targets
JP5355139B2 (en) Terminal position estimation system, terminal position estimation apparatus, wireless terminal apparatus, and terminal position estimation method
JP2019060732A (en) Radar device and phase compensation method
JP6331072B2 (en) White space detection device, white space detection method, and program
WO2015162669A1 (en) Localization device
JP7308454B2 (en) radar equipment
JP4115379B2 (en) Transmission / reception system
JP2015200520A (en) Arrival direction estimation device, arrival direction estimation method, and program
Boiko et al. Design Concepts for Mobile Computing Direction Finding Systems
JP7315349B2 (en) Position estimation device and position estimation method
JP2005260328A (en) Array antenna, arrived wave estimate apparatus, and method of compositing data from planar array
JP2008267973A (en) Positioning system, mobile communication terminal, positioning method, positioning server, positioning ic chip and positioning program
WO2022239055A1 (en) Positioning device
WO2021132432A1 (en) Estimation system, reception system, control system, estimation method, and program
JP2009077078A (en) Position detection system
WO2023273860A1 (en) Positioning method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909941

Country of ref document: EP

Kind code of ref document: A1