WO2022137689A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2022137689A1
WO2022137689A1 PCT/JP2021/035287 JP2021035287W WO2022137689A1 WO 2022137689 A1 WO2022137689 A1 WO 2022137689A1 JP 2021035287 W JP2021035287 W JP 2021035287W WO 2022137689 A1 WO2022137689 A1 WO 2022137689A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
battery pack
circuit
discharge
Prior art date
Application number
PCT/JP2021/035287
Other languages
English (en)
French (fr)
Inventor
清敬 隈本
洋祐 齋藤
恭行 勝部
一裕 樋渡
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to US18/268,507 priority Critical patent/US20240055886A1/en
Priority to CA3205665A priority patent/CA3205665A1/en
Priority to EP21909847.2A priority patent/EP4266539A1/en
Publication of WO2022137689A1 publication Critical patent/WO2022137689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/243Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with on/off action

Definitions

  • the present invention relates to a power supply device.
  • the uninterruptible power supply has a power supply device that supplies power from a precharged secondary battery to the load device, and when the power supply from the external power source to the load device is stopped due to a power failure or the like, the load device is not stopped. Supply power.
  • the secondary battery of the uninterruptible power supply is charged with the electric power supplied from the external power source during normal operation.
  • an alkaline secondary battery such as a nickel hydrogen secondary battery is known.
  • alkaline secondary batteries need to be charged at a voltage higher than the outputable voltage.
  • an uninterruptible power supply it is common to always connect a battery to a power line that supplies power to the load device. Therefore, the terminal voltage of the battery is restricted by the outputable voltage, that is, the voltage of the load device even during charging, and is not fully charged. As a result, the amount of power that can be discharged is lower than the original battery capacity.
  • the uninterruptible power supply supplies power from the battery to the load device when a power failure occurs, it is essential to detect the power failure state, connect the switch to the connected state, and connect the battery to the power supply line.
  • the output voltage of the battery becomes higher than the upper limit of the allowable voltage of the load device immediately after full charge, and the battery is temporarily connected to the load device. May be in a state where it cannot be done.
  • Patent Document 1 discloses a technique of switching a power source that efficiently controls electric power in a power control device in which an external power supply and a power storage device are connected to one load device.
  • the switch connection signal is transmitted after making various judgments, and it takes time to switch the switch connection state. Therefore, the load device may stop before the battery supplies power to the load device. There is.
  • the present invention has been made in view of such a problem, and an object of the present invention is to charge an alkaline secondary battery to a fully charged state to secure an amount of electric power that can be discharged, and to detect the occurrence of a power failure. It is an object of the present invention to provide a power supply device capable of instantaneously starting discharging from an alkaline secondary battery to a load device.
  • the embodiments of the power supply device of the present disclosure include a power supply line for supplying power from an external power source to the load device, and a battery unit connected to the power supply line and connected in parallel with the external power supply, wherein the battery unit has a charging voltage.
  • the battery pack has a voltage higher than the voltage of the external power supply, the buck-boost circuit that boosts the voltage of the external power supply to the charging voltage of the battery pack, the charging circuit that charges the battery pack with the charging voltage, and the voltage drop of the external power supply. It is equipped with a discharge circuit that detects and discharges from the battery pack to the load device through the power supply line, and a control circuit that controls the charging circuit and the discharge circuit.
  • the discharge circuit is connected in series between the battery pack and the power supply line.
  • the first discharge switch has a first discharge switch and a second discharge switch, the first discharge switch is switched on / off by receiving a changeover signal from the control circuit, and the second discharge switch is an external power supply without passing through the control circuit. It has the feature that it can be switched on / off directly based on the voltage.
  • the alkaline secondary battery is charged to a fully charged state to secure the amount of electric power that can be discharged, and the occurrence of a power failure is detected to instantly discharge the alkaline secondary battery to the load device.
  • FIG. 1 is a block diagram of a power supply device according to an embodiment.
  • FIG. 2 is a circuit diagram of a part of the power supply device of one embodiment.
  • FIG. 3 is a timing chart when the power supply device of one embodiment is operated as an uninterruptible power supply.
  • FIG. 1 is a block diagram of an embodiment.
  • the power supply device 1 includes a power supply line 4 that supplies electric power from the external power supply 2 to the load device 3.
  • a battery unit 10 is connected to the power supply line 4, and the battery unit 10 is connected in parallel with the external power supply 2. With this configuration, it is possible to supply electric power from the external power source 2 to the load device 3 normally, and to supply electric power from the battery unit 10 to the load device 3 when the supply from the external power source 2 is stopped.
  • the input / output terminals 5 may be provided in the battery unit 10, and power may be supplied between the power supply line 4 and the battery unit 10 through the input / output terminals 5.
  • the battery unit 10 includes a first battery pack 11, a buck-boost circuit 12, a first charging circuit 13, a first discharging circuit 14, and a control circuit 15.
  • the external power supply 2 can charge the first battery pack 11 through the power supply line 4. Further, the first battery pack 11 can supply electric power to the load device 3 by discharging to the power supply line 4.
  • the first charging circuit 13 and the first discharging circuit 14 are connected in parallel between the power supply line 4 and the first battery pack 11.
  • a buck-boost circuit 12 is further connected in series between the power supply line 4 and the first charging circuit 13.
  • the control circuit 15 constantly keeps track of the internal state of the battery unit 10 based on the voltage and input / output current of the power supply line 4, the voltage, current, temperature, and other necessary information when the first battery pack 11 is charged and discharged. While monitoring, the operation of the buck-boost circuit 12, the first charging circuit 13, and the first discharging circuit 14 is controlled.
  • the battery unit 10 includes a second battery pack 21, a second charging circuit 23, and a second discharging circuit 24.
  • the external power supply 2 can charge the second battery pack 21 through the power supply line 4.
  • the second battery pack 21 can supply electric power to the load device 3 by discharging to the power supply line 4.
  • the second battery pack 21 and the first battery pack 11 are connected in parallel to the power supply line 4, and discharge to the power supply line 4 is performed from either the first battery pack 11 or the second battery pack 21. , Or both can be done at the same time.
  • a second charging circuit 23 and a second discharging circuit 24 are connected in parallel between the power supply line 4 and the second battery pack 21.
  • a buck-boost circuit 12 is further connected in series between the power supply line 4 and the second charging circuit 23.
  • the control circuit 15 constantly monitors the internal status of the battery unit 10 based on the voltage and input / output current of the power supply line 4, the voltage, current, temperature, and other necessary information when the second battery pack 21 is charged and discharged. At the same time, the operation of the second charging circuit 23 and the second discharging circuit 24 is controlled.
  • the power supply to the power supply line 4 is performed by switching between the external power supply 2 and one or both of the first battery pack 11 and the second battery pack 21. Therefore, the supply voltage from the external power supply 2 and the output voltage from the first battery pack 11 and the second battery pack 21 are set to be about the same.
  • the charging voltage of the first battery pack 11 and the second battery pack 21 composed of the secondary battery needs to be higher than the output voltage at the time of discharging. Therefore, when charging the first battery pack 11 and the second battery pack 21, the voltage supplied from the external power supply 2 to the power supply line 4 is applied to the first battery pack 11 and the second battery pack 21 by using the step-up / down circuit 12. Boosts to the charging voltage of.
  • the first charging circuit 13 charges the first battery pack 11 with the boosted voltage.
  • the second charging circuit 23 charges the second battery pack 21 with the boosted voltage.
  • the first discharge circuit 14 detects a stoppage of power supply from the external power supply 2, that is, a voltage drop in the power supply line 4, connects the first battery pack 11 to the power supply line 4, and supplies power to the load device 3. Can be supplied.
  • the second discharge circuit 24 detects that the power supply from the external power supply 2 is stopped, that is, the voltage drop of the power supply line 4, connects the second battery pack 21 to the power supply line 4, and connects the second battery pack 21 to the load device 3. It can supply power.
  • the buck-boost circuit 12 is composed of, for example, a DC / DC converter, and boosts the voltage Vin supplied from the external power supply 2 to the charging voltage V1 for charging the first battery pack 11.
  • the first charging circuit 13 includes a first charging switch 19 and a diode element D11 that limits the current direction. At the time of charging, the first charging switch 19 is turned on, and the charging voltage V1 supplied from the buck-boost circuit 12 is applied to the first battery pack 11. When charging is not performed, the first charging switch 19 is turned off, and the path from the power supply line 4 via the first charging circuit 13 to the first battery pack 11 is opened.
  • the second charging circuit 23 includes a second charging switch 29 and a diode element D12 that limits the current direction.
  • the second charging switch 29 is turned on, and the charging voltage V1 supplied from the buck-boost circuit 12 is applied to the second battery pack 21.
  • the second charging switch 29 is turned off, and the path from the power supply line 4 via the second charging circuit 23 to the second battery pack 21 is opened.
  • the first discharge circuit 14 has a first discharge switch 16 and a second discharge switch 17, which, together with a diode element D21 limiting the current direction, are between the first battery pack 11 and the power supply line 4. They are connected in series. Therefore, when both the first discharge switch 16 and the second discharge switch 17 are in the ON state, the first battery pack 11 is connected to the power supply line 4, and power is supplied from the first battery pack 11 to the load device 3. ..
  • the first discharge switch 16 is switched on / off by receiving a switching signal from the control circuit 15.
  • the second discharge switch 17 is directly switched on / off based on the voltage of the power supply line 4 without passing through the control circuit 15.
  • the second discharge switch 17 detects that the voltage of the power supply line 4 drops below a predetermined voltage, that is, the external power supply 2 is in a power failure state, and is switched on.
  • the second discharge circuit 24 has a third discharge switch 26 and a fourth discharge switch 27, which, together with a diode element D22 limiting the current direction, are between the first battery pack 11 and the power supply line 4. They are connected in series. Therefore, when both the third discharge switch 26 and the fourth discharge switch 27 are in the ON state, the second battery pack 21 is connected to the power supply line 4, and power is supplied from the second battery pack 21 to the load device 3. ..
  • the third discharge switch 26 is switched on / off by receiving a switching signal from the control circuit 15.
  • the fourth discharge switch 27 is directly switched on / off based on the voltage of the external power supply 2 without passing through the control circuit 15.
  • the fourth discharge switch 27 detects when the voltage of the power supply line 4 drops below a predetermined voltage, that is, the external power supply 2 is in a power failure state, and is switched on.
  • a switch is connected in parallel to the diode element D21, and when discharging from the first battery pack 11, this switch is turned on to short-circuit between the terminals of the diode element D21, so that the forward voltage of the diode element D21 is obtained. It is possible to avoid a drop in the supply voltage to the power supply line 4 due to the drop.
  • a switch is connected in parallel to the diode element D22, and when discharging from the second battery pack 21, this switch is turned on to short-circuit the terminals of the diode element D22 in order of the diode element D22. It is possible to avoid a drop in the supply voltage to the power supply line 4 due to a voltage drop in the direction.
  • the control circuit 15 controls the on / off switching of these switches.
  • the control circuit 15 monitors the first output voltage Vbat1 of the first battery pack 11 and holds the first discharge switch 16 in the on state when the first output voltage Vbat1 of the first battery pack 11 is in the dischargeable range. By doing so, the battery unit 10 is in a dischargeable state. Further, when the first output voltage Vbat1 is out of the dischargeable range, the first discharge switch 16 can be held in the off state to put the battery unit 10 in the discharge prohibition state.
  • control circuit 15 monitors the second output voltage Vbat2 of the second battery pack 21 and turns on the third discharge switch 26 when the second output voltage Vbat2 of the second battery pack 21 is in the dischargeable range. By holding the battery unit 10 in the state, the battery unit 10 can be discharged. Further, when the second output voltage Vbat2 is out of the dischargeable range, the third discharge switch 26 can be held in the off state to put the battery unit 10 in the discharge prohibition state.
  • the dischargeable range is the operable voltage range of the load device 3.
  • the lower limit of the voltage is defined by the discharge end voltage of the first battery pack 11 and the second battery pack 21.
  • the discharge end voltage is generally defined as a lower limit value of the discharge voltage that enables safe discharge in a secondary battery without damaging the internal structure of the battery.
  • a nickel-metal hydride battery can be used as the secondary battery constituting the first battery pack 11 and the second battery pack 21.
  • the nickel-metal hydride battery has a wide output voltage range, and when the discharge end voltage of the battery is set as the lower limit of the operable voltage range of the load device 3, the first output voltage Vbat1 and the second output voltage Vbat2 immediately after full charge are set. It may be higher than the upper limit of the allowable operating voltage of the load device 3. In this case, in order to avoid damage to the load device 3 due to the application of an overvoltage, the upper limit of the dischargeable range of the battery unit 10 is defined by the upper limit of the allowable voltage of the load device 3.
  • the first battery pack 11 is even after the first battery pack 11 reaches full charge.
  • the first discharge switch 16 can be continuously turned off until the first output voltage Vbat1 of the above is lowered to the operation allowable voltage range of the load device 3, and the discharge prohibited state of the battery unit 10 can be maintained.
  • the first voltage drop circuit 18 can be installed between the second discharge switch 17 of the first discharge circuit 14 and the power supply line 4. In this case, the voltage output from the battery unit 10 to the power supply line 4 is lower than the actual first output voltage Vbat1 of the first battery pack 11 by a predetermined voltage by the first voltage drop circuit 18. By inserting this drop circuit, the upper limit of the dischargeable range of the battery unit 10 can be increased by a predetermined voltage to be lowered by the first voltage drop circuit 18. Therefore, it is possible to shorten the period during which the battery unit 10 is prohibited from discharging after the first battery pack 11 is fully charged.
  • the first voltage drop circuit 18 can be configured by connecting a diode element in the forward direction from the first battery pack 11 toward the power supply line 4. For example, when a PN junction type diode is used, the voltage drops according to the built-in potential of the diode. This voltage drop is approximately 0.6V to 0.7V. In this configuration, the value at which the voltage drops can be adjusted by the number of diodes connected in series. Further, a switch is connected in parallel to the diode element of the first voltage drop circuit 18, and when the voltage drop function is not used, the switch can be turned on to short-circuit the terminals of the diode element.
  • the second battery pack 21 when the second output voltage Vbat2 immediately after full charge is higher than the upper limit of the allowable operating voltage of the load device 3, even after the second battery pack 21 reaches full charge, the second battery pack 21 The discharge prohibition state of the battery unit 10 can be maintained by continuing the off state of the third discharge switch 26 until the second output voltage Vbat 2 drops to the operation allowable voltage range of the load device 3.
  • a second voltage drop circuit 28 can be installed between the fourth discharge switch 27 of the second discharge circuit 24 and the power supply line 4.
  • the voltage output from the battery unit 10 to the power supply line 4 is lowered by a predetermined voltage by the second voltage drop circuit 28 than the actual second output voltage Vbat2 of the second battery pack 21.
  • the upper limit of the dischargeable range of the battery unit 10 can be increased by a predetermined voltage to be lowered by the second voltage drop circuit 28. Therefore, it is possible to shorten the period during which the battery unit 10 is prohibited from discharging after the second battery pack 21 is fully charged.
  • the second voltage drop circuit 28 can be configured by connecting the diode element in the forward direction from the second battery pack 21 toward the power supply line 4. For example, when a PN junction type diode is used, the voltage drops according to the built-in potential of the diode. This voltage drop is approximately 0.6V to 0.7V. In this configuration, the value at which the voltage drops can be adjusted by the number of diodes connected in series. Further, a switch is connected in parallel to the diode element of the second voltage drop circuit 28, and when the voltage drop function is not used, the switch can be turned on to short-circuit the terminals of the diode element.
  • first voltage drop circuit 18 and the second voltage drop circuit 28 may be configured by a field effect transistor. Further, it may be configured by a well-known voltage dividing circuit composed of a resistance element.
  • the first discharge switch 16 of the first discharge circuit 14 when the first battery pack 11 is charged, the first discharge switch 16 of the first discharge circuit 14 is held in an off state, and the first battery pack 11 is connected to the power supply line 4. The discharge path to reach is open. Further, when the second battery pack 21 is charged, the third discharge switch 26 of the second discharge circuit 24 is held in the off state, and the discharge path from the second battery pack 21 to the power supply line 4 is opened.
  • the first battery pack 11 and the second battery pack 21 can be charged to a fully charged state without the charging voltage being restricted by the set voltage of the power supply line 4. As a result, it is possible to secure the amount of discharge power corresponding to the battery capacity of each of the first battery pack 11 and the second battery pack 21.
  • the battery unit 10 is held in the dischargeable state by holding the first discharge switch 16 in the on state.
  • the drive circuit 20 instantly responds to the voltage drop to switch the second discharge switch 17 to the on state, and immediately discharges from the first battery pack 11 to the power supply line 4. Then, power is supplied to the load device 3.
  • the battery unit 10 is held in the dischargeable state by holding the third discharge switch 26 in the on state.
  • the drive circuit 20 instantly responds to the voltage drop to switch the fourth discharge switch 27 to the on state, and immediately discharges from the second battery pack 21 to the power supply line 4. Then, power is supplied to the load device 3.
  • the first battery pack 11 and the second battery pack 21 are charged to a fully charged state to secure the amount of electric power that can be discharged, and at the same time, the occurrence of a power failure is detected and the first is instantly performed. 1 It is possible to provide a power supply device 1 capable of initiating discharge from the battery pack 11 and the second battery pack 21 to the load device 3.
  • FIG. 2 shows an example of a detailed circuit diagram of the first charging circuit 13 and the first discharging circuit 14.
  • the first charging switch 19 of the first charging circuit 13 is composed of an insulated gate type field effect transistor CQ1.
  • the first charging switch 19 of the first charging circuit 13 is turned on when charging the first battery pack 11, and is fixed to the off state otherwise.
  • the buck-boost circuit 12 When charging the first battery pack 11, first, the buck-boost circuit 12 is activated to output the charging voltage required for charging. Then, a charge permission signal is supplied from the CQ2 terminal of the control circuit 15 to the gate electrode of the first charge switch 19, and the first charge switch 19 is switched to the on state. Therefore, the charging voltage output from the buck-boost circuit 12 is applied to the first battery pack 11, and charging is started.
  • the first charging circuit 13 may have a resistance element R connected in series. By setting the circuit constant of the first charging circuit 13 including the resistance element R, the charging current can be defined and constant current charging can be performed.
  • a charge prohibition signal is supplied from the CQ2 terminal of the control circuit 15 to the gate electrode of the first charge switch 19, so that the first charge switch 19 is activated. It is switched to the off state, and the application of the charging voltage to the first battery pack 11 is stopped.
  • the completion of charging can be determined, for example, by monitoring the terminal voltage of the first battery pack 11.
  • Each of the first discharge switch 16 and the second discharge switch 17 of the first discharge circuit 14 may be composed of insulated gate type field effect transistors DQ1 and DQ2.
  • the gate electrode of the first discharge switch 16 is driven by a switching signal supplied from the DQ1 terminal of the control circuit 15.
  • the control circuit 15 constantly monitors various parameters such as the output voltage and temperature of the first battery pack 11.
  • the first output voltage Vbat1 of the first battery pack 11 is in the dischargeable range, that is, when the load device 3 is in the operable voltage range
  • the first discharge switch 16 is turned on from the DQ1 terminal of the control circuit 15.
  • a signal is supplied and the first discharge switch 16 is held in the on state.
  • the first output voltage Vbat1 is out of the dischargeable range, that is, when the load device 3 is out of the operable voltage range
  • a signal for turning off the first discharge switch 16 is sent from the DQ1 terminal of the control circuit 15. Supplyed, the first discharge switch 16 is held in the off state.
  • a drive circuit 20 that operates in response to a voltage supplied from the external power supply 2 to the power supply line 4 is connected to the gate electrode of the second discharge switch 17.
  • the second discharge switch 17 is held in the off state while the power is supplied from the external power source 2 at a predetermined voltage.
  • the drive circuit 20 detects a voltage drop of the external power supply 2, that is, a voltage drop of the power supply line 4, the drive circuit 20 responds instantaneously to switch the gate electrode of the second discharge switch 17 to the on state.
  • the first charging circuit 13 and the first discharging circuit 14 can be configured by the circuit diagram shown in FIG. Further, although omitted in FIG. 2, the second charging circuit 23 and the second discharging circuit 24 also have the same circuit operation as the first charging circuit 13 and the first discharging circuit 14, respectively. Can be done.
  • FIG. 3 is a timing chart showing an example of a charging / discharging procedure when the power supply device 1 of one embodiment is operated as an uninterruptible power supply.
  • the first discharge switch 16 is SW1
  • the second discharge switch 17 is SW2
  • the third discharge switch 26 is SW3
  • the fourth discharge switch 27 is SW4
  • the first charge switch 19 is SW5
  • the second charge switch 29 is. It is described as SW6.
  • the dischargeable state means a state in which the power of the load device 3 can be immediately supplied from the battery unit via the power supply line 4 when the power supply from the external power supply 2 is stopped. Therefore, in the dischargeable state, the first discharge switch 16: SW1 and the third discharge switch 26: SW3 are held in the on state, respectively.
  • both the second discharge switch 17: SW2 and the fourth discharge switch 27: SW4 are in a power failure detection waiting state.
  • the notation of ON / OFF in FIG. 3 means that the external power supply 2 is kept in the OFF state while operating, and when the external power supply 2 fails, that is, the voltage of the power supply line 4 falls below a predetermined voltage. It indicates that it switches to the on state when it detects.
  • both the second discharge switch 17: SW2 and the fourth discharge switch 27: SW4 are always in a power failure detection waiting state in order to perform uninterruptible operation, but there is a special reason.
  • Charging is continued, for example, when the second output voltage Vbat2 of the second battery pack 21 reaches the upper limit of the operable voltage of the load device 3 (at the time of T1), some switches are switched.
  • the second battery pack 21 is not fully charged, but the second charging switch 29: SW6 is switched to the off state and charging is temporarily stopped. Since the third discharge switch 26: SW3 of the second discharge circuit 24 is in the ON state and the fourth discharge switch 27: SW4 is still in the power failure detection waiting state, the dischargeable state is maintained.
  • the fourth discharge switch 27: SW4 of the second discharge circuit 24 of the second battery pack 21 detects the voltage drop of the power supply line 4 and instantly switches to the on state. , Power is supplied from the second battery pack 21 to the power supply line 4 via the second discharge circuit 24, and the operation of the load device 3 is continued.
  • the uninterruptible operation of the power supply device 1 can be realized by always holding the second battery pack 21 in the dischargeable state while the first battery pack 11 is in the discharge prohibited state.
  • the first voltage drop circuit 18 can be used in the operation of this section.
  • the first voltage drop circuit 18 can supply the power supply line 4 by lowering the voltage of the first output voltage Vbat1 of the first battery pack 11, for example. Therefore, even if the first output voltage Vbat1 exceeds the upper limit of the operable voltage of the load device 3, if the excess amount is within the voltage drop range in the first voltage drop circuit 18, the first voltage drop circuit 18 is available.
  • 1 Discharge switch 16 With the SW1 turned on, the dischargeable state of the first battery pack 11 can be continued.
  • the first charge switch 19: SW5 is switched to the off state to stop charging.
  • each switch of the second battery pack 21 continues to be in a dischargeable state without being switched.
  • the first output voltage Vbat1 gradually decreases due to self-discharge.
  • a load circuit may be provided inside the first battery pack 11 for discharging. By discharging through the load circuit, it is possible to accelerate the decrease of the first output voltage Vbat1 of the first battery pack 11 and reduce it within the operable range of the load device 3 at an early stage.
  • the first battery pack 11 is already in a dischargeable state
  • the second battery pack 21 can start charging the second battery pack 21 by switching the second charging switch 29: SW6 to the on state at an arbitrary timing. be.
  • the second charging switch 29: SW6 of the second charging circuit 23 is switched to the on state to start charging the second battery pack 21.
  • the third discharge switch 26: SW3 of the second discharge circuit 24 is turned on while the second output voltage Vbat2 of the second battery pack 21 is within the operable range of the load device 3. As it is, the second battery pack 21 may continue to be in a dischargeable state.
  • the second output voltage Vbat2 of the second battery pack 21 exceeds the upper limit of the operable voltage of the load device 3 even if the voltage is dropped by the second voltage drop circuit 28, so that the second discharge circuit
  • the third discharge switch 26 of 24: SW3 is turned off and the second battery pack 21 is put into a discharge prohibition state.
  • the operation of the first battery pack 11 in this section is the same as the operation of the second battery pack 21 in the sections T2 to T3, and the operation of the second battery pack 21 in this section is the operation of the first battery pack 21 in the sections T2 to T3. It is the same as the operation of 11.
  • the two battery packs that is, the first battery pack 11 and the second battery pack 21 are connected in parallel and operated in a complementary manner, and one of them is always in a dischargeable state, so that there is no complete uninterruptible power. It is possible to provide a power supply device 1 capable of power failure operation.
  • a nickel hydrogen battery may be used as the secondary battery.
  • a general nickel-metal hydride battery requires at least about 1.6V as a charging voltage, and the output voltage immediately after being fully charged is about 1.5V to 1.55V.
  • the voltage drops sharply, and by discharging a small part of the battery capacity, the voltage drops to about 1.2 V, which is the nominal voltage.
  • the discharge is continued while maintaining the voltage around 1.2V, which is the nominal voltage, and the voltage drops sharply when the capacity of the battery decreases.
  • approximately 1.0 V is specified as the discharge end voltage, and it is necessary to stop the discharge at that voltage.
  • the battery unit 10 of the power supply device 1 of the present disclosure for example, a 48V lead-acid battery device can be used.
  • the nominal voltage becomes 48 V, and the output voltage at the time of discharge can be made compatible between the lead-acid battery and the nickel-metal hydride battery.
  • the charging voltage of the 48V lead-acid battery device is, for example, 54.4V. Therefore, the upper limit of the supply voltage of the power supply line 4 is about 54.4V.
  • the charging voltage of 40 series nickel-metal hydride batteries needs to be about 64V.
  • the buck-boost circuit 12 of the present disclosure can charge 40 series of nickel-metal hydride batteries to a fully charged state by boosting the charging voltage of 54.4V, which is suitable for lead-acid batteries, to 64V.
  • the output voltage of 40 series nickel-metal hydride batteries immediately after full charge is about 60V-62V.
  • the voltage of the power supply line 4 is usually 54.4V, and when the upper limit is set to, for example, about 56V-57V, the output voltage immediately after full charge of the 40 series nickel-metal hydride batteries is the upper limit of the power supply line 4. That is, the upper limit of the allowable voltage of the load device 3 is exceeded. Therefore, in that state, power cannot be supplied from the battery to the power supply line 4.
  • the first discharge circuit 14 of the present disclosure prohibits the supply of electric power from the first battery pack 11 to the power supply line 4 when the load device 3 is out of the operable voltage range. : Has SW1. Therefore, while the output voltage of the 40 series nickel-metal hydride batteries exceeds the upper limit of the power supply line 4, it is possible to control so that the power is not supplied from the first battery pack 11 to the power supply line 4.
  • the power supply device 1 of the present disclosure can be made compatible with the battery unit made of a lead storage battery device and the battery unit made of a nickel hydrogen secondary battery.
  • the lead-acid battery device is not limited to the 48V system, and for example, a battery unit made of a nickel-metal hydride secondary battery that is similarly compatible with the 24V system and the 12V system can be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

電源装置1は、外部電源2、負荷装置3、電源ライン4、および電池ユニット10を含む電源装置であって、電池ユニットは、第1電池パック11と、外部電源の電圧を電池パックの充電電圧まで昇圧する昇降圧回路12と、第1充電回路13と、外部電源の電圧降下を検出して電池パックから負荷装置へ放電する第1放電回路14と、充放電を制御する制御回路15と、を備え、放電回路は、電池パックと電源ラインの間に直列に接続された第1放電スイッチ16および第2放電スイッチ17を有し、第1放電スイッチは制御回路から切り替え信号を受信することでオン/オフが切り替えられ、第2放電スイッチは制御回路を通さずに外部電源の電圧に基づいて直接オン/オフが切り替えられる。

Description

電源装置
 本発明は、電源装置に関する。
 無停電電源装置は、予め充電した2次電池から負荷装置へ電力を供給する電源装置あり、停電等によって外部電源から負荷装置へ電力の供給が停止されたときに、負荷装置を停止させることなく電力を供給する。無停電電源装置の2次電池は、通常動作時に外部電源から供給される電力で充電される。無停電電源装置に用いられる2次電池の一例として、例えば、ニッケル水素2次電池等のアルカリ2次電池が知られている。
 アルカリ2次電池は、その性質上、出力可能電圧よりも高い電圧で充電を行う必要がある。しかし、無停電電源装置では、負荷装置に電力を供給する電源線に電池を常時接続することが一般的である。したがって、電池の端子電圧は充電時においても出力可能電圧、すなわち負荷装置の電圧に規制されて満充電されない。その結果、放電可能な電力量が本来の電池容量よりも低下する。充電時に出力可能電圧よりも高い適正な充電電圧を印加するためには、電池と電源線との間にスイッチを設け、充電時に電池を電源線から切り離すことが必要となる。
 一方、無停電電源装置は、停電発生時に電池から負荷装置へ電力を供給するものであるから、停電状態を検出してスイッチを接続状態にして電池を電源線に接続することが必須である。加えて、アルカリ2次電池を適正な充電電圧で満充電まで充電すると、満充電直後に電池の出力電圧が負荷装置の許容電圧の上限値より高くなり、一時的に電池から負荷装置への接続ができない状態となることがある。
 このような電源装置の先行技術として、外部電源および蓄電装置を1つの負荷装置に接続した電力制御装置において、効率よく電力を制御する電源を切り替える技術が、例えば、特許文献1に開示される。
特開2014-057393号公報
 停電時にアルカリ2次電池を電源線に接続して負荷装置に放電するためには、停電状態であることを検出することはもとより、電池に出力電圧が、負荷装置に接続可能な電圧範囲内にあるかを監視することが必須となる。このように、様々な判断を行ってからスイッチの接続信号が送信され、スイッチの接続状態を切り替えるためには時間を要するため、電池から負荷装置に電力を供給する以前に負荷装置が停止する虞がある。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、アルカリ2次電池を満充電状態まで充電して放電可能な電力量を確保すると共に、停電の発生を検出して瞬時にアルカリ2次電池から負荷装置への放電を開始し得る電源装置を提供することである。
 本開示の電源装置の態様は、外部電源から負荷装置へ電力を供給する電源ラインと、その電源ラインに接続され、外部電源と並列接続される電池ユニットと、を含み、電池ユニットは、充電電圧が外部電源の電圧よりも高い電圧である電池パックと、外部電源の電圧を電池パックの充電電圧まで昇圧する昇降圧回路と、充電電圧で電池パックを充電する充電回路と、外部電源の電圧降下を検出して電源ラインを通じて電池パックから負荷装置へ放電する放電回路と、充電回路および放電回路を制御する制御回路と、を備え、放電回路は、電池パックと電源ラインの間に直列に接続された第1放電スイッチおよび第2放電スイッチを有し、第1放電スイッチは制御回路から切り替え信号を受信することでオン/オフが切り替えられ、第2放電スイッチは制御回路を通さずに外部電源の電圧に基づいて直接オン/オフが切り替えられる、という特徴を有する。
 本開示の電源装置によれば、アルカリ2次電池を満充電状態まで充電して放電可能な電力量を確保すると共に、停電の発生を検出して瞬時にアルカリ2次電池から負荷装置への放電を開始し得る電源装置を提供することができる。
図1は、一実施形態の電源装置のブロック図である。 図2は、一実施形態の電源装置の一部分の回路図である。 図3は、一実施形態の電源装置を無停電電源として動作されるときのタイミングチャートである。
 以下、図面に基づき本発明の一実施形態について説明する。
 図1は、一実施形態のブロック図である。この電源装置1は、外部電源2から負荷装置3へ電力を供給する電源ライン4を含む。電源ライン4には電池ユニット10が接続され、この電池ユニット10が外部電源2と並列接続されている。この構成により、通常は外部電源2から負荷装置3へ電力を供給し、外部電源2からの供給が停止されるときは、電池ユニット10から負荷装置3へ電力を供給することが可能となる。電池ユニット10に入出力端子5を設け、これら電源ライン4と電池ユニット10との間の相互間の電力供給を、入出力端子5を通じて行ってもよい。
 電池ユニット10は、第1電池パック11、昇降圧回路12、第1充電回路13、第1放電回路14、および制御回路15を備える。外部電源2は、電源ライン4を通して第1電池パック11を充電可能である。また、第1電池パック11は電源ライン4へ放電することで負荷装置3へ電力を供給し得る。
 電源ライン4と第1電池パック11との間には、第1充電回路13と第1放電回路14とが並列に接続されている。電源ライン4と第1充電回路13との間には更に昇降圧回路12が直列に接続されている。制御回路15は、電源ライン4の電圧および入出力電流や、第1電池パック11の充電時および放電時それぞれの電圧、電流、温度、およびその他必要な情報により、電池ユニット10の内部状況を常時監視すると共に、昇降圧回路12、第1充電回路13、および第1放電回路14の動作を制御する。
 また、電池ユニット10は、第2電池パック21、第2充電回路23、および第2放電回路24を備える。外部電源2は、電源ライン4を通して第2電池パック21を充電可能である。第2電池パック21は電源ライン4へ放電することで負荷装置3へ電力を供給し得る。第2電池パック21および第1電池パック11は、電源ライン4に対して互いに並列に接続されており、電源ライン4へ放電は、第1電池パック11および第2電池パック21のいずれか一方から、または両方から同時に行うことが可能である。
 電源ライン4と第2電池パック21との間には、第2充電回路23および第2放電回路24が並列に接続されている。電源ライン4と第2充電回路23との間には更に昇降圧回路12が直列に接続されている。制御回路15は、電源ライン4の電圧および入出力電流や、第2電池パック21の充電時および放電時それぞれの電圧、電流、温度、およびその他必要な情報により電池ユニット10の内部状況を常時監視すると共に、第2充電回路23および第2放電回路24の動作を制御する。
 電源ライン4への電力の供給は、外部電源2と、第1電池パック11および第2電池パック21のいずれか一方または両方と、を切り替えて行われる。したがって、外部電源2からの供給電圧と、第1電池パック11および第2電池パック21からの出力電圧とは同程度となるよう設定される。
 その一方で、2次電池で構成される第1電池パック11および第2電池パック21の充電電圧は、放電時の出力電圧より高い電圧が必要である。そのため、第1電池パック11および第2電池パック21の充電時には、昇降圧回路12を用いて、外部電源2から電源ライン4に供給されている電圧を第1電池パック11および第2電池パック21の充電電圧まで昇圧する。第1充電回路13は、昇圧された電圧で第1電池パック11を充電する。また、第2充電回路23は、昇圧された電圧で第2電池パック21を充電する。
 第1放電回路14は、外部電源2からの電力の供給の停止、すなわち、電源ライン4の電圧降下を検出して、第1電池パック11を電源ライン4に接続して負荷装置3へ電力を供給することができる。
 また、第2放電回路24は、外部電源2からの電力の供給の停止、すなわち、電源ライン4の電圧降下を検出して、第2電池パック21を電源ライン4に接続して負荷装置3へ電力を供給することができる。
 昇降圧回路12は、例えば、DC/DCコンバータで構成され、外部電源2から供給される電圧Vinを、第1電池パック11を充電する充電電圧V1まで昇圧する。第1充電回路13は、第1充電スイッチ19と電流方向を制限するダイオード素子D11からなる。充電時には、第1充電スイッチ19をオン状態とし、昇降圧回路12から供給される充電電圧V1を第1電池パック11に印加する。充電を行わないときは第1充電スイッチ19をオフ状態とし、第1充電回路13を経由する電源ライン4から第1電池パック11までの経路を開放状態にする。
 同様に、第2充電回路23は、第2充電スイッチ29と電流方向を制限するダイオード素子D12からなる。充電時には、第2充電スイッチ29をオン状態とし、昇降圧回路12から供給される充電電圧V1を第2電池パック21に印加する。充電を行わないときは第2充電スイッチ29をオフ状態とし、第2充電回路23を経由する電源ライン4から第2電池パック21までの経路を開放状態にする。
 第1放電回路14は、第1放電スイッチ16および第2放電スイッチ17を有し、これらのスイッチは、電流方向を制限するダイオード素子D21と共に、第1電池パック11と電源ライン4との間に直列に接続されている。したがって、第1放電スイッチ16および第2放電スイッチ17の両方がオン状態のときに、第1電池パック11が電源ライン4に接続され、第1電池パック11から負荷装置3に電力が供給される。
 第1放電スイッチ16は、制御回路15から切り替え信号を受信することでオン/オフが切り替えられる。第2放電スイッチ17は、制御回路15を通さずに電源ライン4の電圧に基づいて直接オン/オフが切り替えられる。第2放電スイッチ17は、電源ライン4の電圧が所定の電圧以下に降下したとき、すなわち、外部電源2が停電状態になることを検出してオンに切り替えられる。
 第2放電回路24は、第3放電スイッチ26および第4放電スイッチ27を有し、これらのスイッチは、電流方向を制限するダイオード素子D22と共に、第1電池パック11と電源ライン4との間に直列に接続されている。したがって、第3放電スイッチ26および第4放電スイッチ27の両方がオン状態のときに、第2電池パック21が電源ライン4に接続され、第2電池パック21から負荷装置3に電力が供給される。
 第3放電スイッチ26は、制御回路15から切り替え信号を受信することでオン/オフが切り替えられる。第4放電スイッチ27は、制御回路15を通さずに外部電源2の電圧に基づいて直接オン/オフが切り替えられる。第4放電スイッチ27は、電源ライン4の電圧が所定の電圧以下に降下したとき、すなわち、外部電源2が停電状態になることを検出してオンに切り替えられる。
 ダイオード素子D21には並列にスイッチが接続されており、第1電池パック11から放電するときには、このスイッチをオンにしてダイオード素子D21の端子間を短絡することで、ダイオード素子D21の順方向の電圧降下による電源ライン4への供給電圧の低下を回避することができる。同様に、ダイオード素子D22には並列にスイッチが接続されており、第2電池パック21から放電するときには、このスイッチをオンにしてダイオード素子D22の端子間を短絡することで、ダイオード素子D22の順方向の電圧降下による電源ライン4への供給電圧の低下を回避することができる。これらのスイッチのオン/オフの切り替えは制御回路15が制御する。
 制御回路15は、第1電池パック11の第1出力電圧Vbat1を監視し、第1電池パック11の第1出力電圧Vbat1が放電可能範囲にあるときは、第1放電スイッチ16をオン状態に保持することで電池ユニット10を放電可能状態とする。また、第1出力電圧Vbat1が放電可能範囲から外れているときは、第1放電スイッチ16をオフ状態に保持して電池ユニット10を放電禁止状態とすることができる。
 同様に、制御回路15は、第2電池パック21の第2出力電圧Vbat2を監視し、第2電池パック21の第2出力電圧Vbat2が放電可能範囲にあるときは、第3放電スイッチ26をオン状態に保持することで電池ユニット10を放電可能状態とする。また、第2出力電圧Vbat2が放電可能範囲から外れているときは、第3放電スイッチ26をオフ状態に保持して電池ユニット10を放電禁止状態とすることができる。
 ここで、放電可能範囲とは、負荷装置3の動作可能電圧範囲である。その電圧の下限値は、第1電池パック11および第2電池パック21の放電終止電圧で画定される。放電終止電圧は、一般的に、2次電池において電池の内部構造を損傷することなく安全に放電を行える放電電圧の下限値として規定されている。
 例えば、第1電池パック11および第2電池パック21を構成する2次電池として、ニッケル水素電池を使用し得る。ニッケル水素電池は出力可能な電圧範囲が広く、電池の放電終止電圧を負荷装置3の動作可能電圧範囲の下限値として設定した場合、満充電直後の第1出力電圧Vbat1および第2出力電圧Vbat2が負荷装置3の動作許容電圧の上限値より高くなる場合がある。この場合、過電圧印加による負荷装置3の損傷を回避するために、電池ユニット10の放電可能範囲の上限値は、負荷装置3の許容電圧の上限値で画定する。
 このように、満充電直後の第1出力電圧Vbat1が負荷装置3の動作許容電圧の上限値よりも高い場合には、第1電池パック11が満充電に達した後も、第1電池パック11の第1出力電圧Vbat1が負荷装置3の動作許容電圧範囲に低下するまで第1放電スイッチ16のオフ状態を継続して、電池ユニット10の放電禁止状態を維持することができる。
 第1放電回路14の第2放電スイッチ17と電源ライン4との間に第1電圧降下回路18を設置することができる。この場合、電池ユニット10から電源ライン4に出力される電圧は、実際の第1電池パック11の第1出力電圧Vbat1よりも第1電圧降下回路18により所定の電圧だけ低下する。この降下回路の挿入により、電池ユニット10の放電可能範囲の上限値は、第1電圧降下回路18により低下させる所定の電圧だけ高くすることができる。したがって、第1電池パック11が満充電となった後に、電池ユニット10が放電禁止となる期間を短縮することができる。
 この第1電圧降下回路18は、ダイオード素子を第1電池パック11から電源ライン4へ向かって順方向に接続して構成することができる。例えば、PN接合型のダイオードを用いた場合、そのダイオードのビルトインポテンシャルに応じて電圧が降下する。この電圧降下は概ね0.6V~0.7Vである。この構成では、ダイオードを直列接続する個数により電圧が降下する値を調整できる。また、これら第1電圧降下回路18のダイオード素子には並列にスイッチが接続されており、電圧降下機能を使用しないときは当該スイッチをオンにして、ダイオード素子の端子間を短絡させることができる。
 同様に、満充電直後の第2出力電圧Vbat2が負荷装置3の動作許容電圧の上限値よりも高い場合には、第2電池パック21が満充電に達した後も、第2電池パック21の第2出力電圧Vbat2が負荷装置3の動作許容電圧範囲に低下するまで第3放電スイッチ26のオフ状態を継続して、電池ユニット10の放電禁止状態を維持し得る。
 加えて、第2放電回路24の第4放電スイッチ27と電源ライン4との間に第2電圧降下回路28を設置することができる。この場合、電池ユニット10から電源ライン4に出力される電圧は、実際の第2電池パック21の第2出力電圧Vbat2よりも第2電圧降下回路28により所定の電圧だけ低下する。この回路の挿入により、電池ユニット10の放電可能範囲の上限値は、第2電圧降下回路28により低下させる所定の電圧だけ高くすることができる。したがって、第2電池パック21を満充電となった後に、電池ユニット10が放電禁止となる期間を短縮することができる。
 この第2電圧降下回路28は、ダイオード素子を第2電池パック21から電源ライン4へ向かって順方向に接続して構成することができる。例えば、PN接合型のダイオードを用いた場合、そのダイオードのビルトインポテンシャルに応じて電圧が降下する。この電圧降下は概ね0.6V~0.7Vである。この構成では、ダイオードを直列接続する個数により電圧が降下する値を調整できる。また、これら第2電圧降下回路28のダイオード素子には並列にスイッチが接続されており、電圧降下機能を使用しないときは当該スイッチをオンにして、ダイオード素子の端子間を短絡させることができる。
 また、第1電圧降下回路18および第2電圧降下回路28は、電界効果トランジスタで構成してもよい。また、抵抗素子からなる周知の分圧回路により構成してもよい。
 一実施形態に開示された電池ユニット10は、第1電池パック11の充電時には、第1放電回路14の第1放電スイッチ16がオフ状態に保持されて、第1電池パック11から電源ライン4に至る放電経路が開放状態となる。また、第2電池パック21の充電時には、第2放電回路24の第3放電スイッチ26がオフ状態に保持されて、第2電池パック21から電源ライン4に至る放電経路が開放状態となる。
 したがって、充電電圧が電源ライン4の設定電圧に規制されることなく、第1電池パック11および第2電池パック21を満充電状態まで充電することが可能となる。これにより、第1電池パック11および第2電池パック21のそれぞれが有している電池容量に見合った放電電力量を確保することができる。
 また、第1電池パック11の第1出力電圧Vbat1が放電可能範囲にあるときは、第1放電スイッチ16をオン状態に保持することで、電池ユニット10が放電可能状態に保持されている。この状態で、電源ライン4の電圧が低下すると、駆動回路20がその電圧降下に瞬時に応答して第2放電スイッチ17をオン状態に切り替え、即座に第1電池パック11から電源ライン4に放電され、負荷装置3に電力が供給される。
 同様に、第2電池パック21の第2出力電圧Vbat2が放電可能範囲にあるときは、第3放電スイッチ26をオン状態に保持することで、電池ユニット10が放電可能状態に保持される。この状態で、電源ライン4の電圧が低下すると、駆動回路20がその電圧降下に瞬時に応答して第4放電スイッチ27をオン状態に切り替え、即座に第2電池パック21から電源ライン4に放電され、負荷装置3に電力が供給される。
 このように、本実施形態によれば、第1電池パック11および第2電池パック21を満充電状態まで充電して放電可能な電力量を確保すると共に、停電の発生を検出して瞬時に第1電池パック11および第2電池パック21から負荷装置3への放電を開始し得る電源装置1を提供することができる。
 図2に、第1充電回路13および第1放電回路14の詳細な回路図の一例を示す。第1充電回路13の第1充電スイッチ19は絶縁ゲート型電界効果トランジスタCQ1で構成されている。この第1充電回路13の第1充電スイッチ19は第1電池パック11を充電するときにオン状態とされ、それ以外ではオフ状態に固定されている。
 第1電池パック11の充電をするときは、まず、昇降圧回路12を起動し、充電に必要な充電電圧を出力させる。そして、制御回路15のCQ2端子から充電許可信号が第1充電スイッチ19のゲート電極に供給されて、第1充電スイッチ19がオン状態に切り替えられる。そこで、昇降圧回路12から出力された充電電圧が第1電池パック11に印加され、充電が開始される。第1充電回路13は、直列に接続された抵抗素子Rを有してもよい。この抵抗素子Rを含む第1充電回路13の回路定数の設定により、充電電流を画定して定電流充電を行うことができる。
 制御回路15が第1電池パック11の充電が完了したことを検出すると、制御回路15のCQ2端子から充電禁止信号が第1充電スイッチ19のゲート電極に供給されることで第1充電スイッチ19がオフ状態に切り替えられ、第1電池パック11への充電電圧の印加は停止される。充電の完了は、例えば、第1電池パック11の端子電圧を監視することにより判定し得る。
 第1放電回路14の第1放電スイッチ16および第2放電スイッチ17の各々は絶縁ゲート型電界効果トランジスタDQ1、DQ2により構成され得る。第1放電スイッチ16のゲート電極は制御回路15のDQ1端子から供給される切り替え信号で駆動される。
 制御回路15は、第1電池パック11の出力電圧や温度等の種々のパラメータを常時監視している。第1電池パック11の第1出力電圧Vbat1が放電可能範囲にあるとき、すなわち、負荷装置3が動作可能な電圧範囲にあるときは、制御回路15のDQ1端子から第1放電スイッチ16をオンする信号が供給され、第1放電スイッチ16はオン状態に保持される。また、第1出力電圧Vbat1が放電可能範囲外のとき、すなわち、負荷装置3が動作可能な電圧範囲外のときは、制御回路15のDQ1端子から第1放電スイッチ16をオフ状態にする信号が供給されて、第1放電スイッチ16はオフ状態に保持する。
 第2放電スイッチ17のゲート電極には、外部電源2から電源ライン4に供給される電圧に応答して動作する駆動回路20が接続されている。外部電源2から所定の電圧で電力が供給されている間は、第2放電スイッチ17がオフ状態に保持されている。この駆動回路20は、外部電源2の電圧降下、すなわち、電源ライン4の電圧降下を検出すると瞬時に応答して第2放電スイッチ17のゲート電極をオン状態に切り替える。
 このように、第1充電回路13および第1放電回路14は、図2に示す回路図により構成することができる。また、図2では省略しているが、第2充電回路23および第2放電回路24についても、第1充電回路13および第1放電回路14とそれぞれ同様な回路構成により同様な回路動作をすることができる。
 図3は、一実施形態の電源装置1を無停電電源として動作させるときの充放電の手順の一例を示すタイミングチャートである。図においては、第1放電スイッチ16がSW1、第2放電スイッチ17がSW2、第3放電スイッチ26がSW3、第4放電スイッチ27がSW4、第1充電スイッチ19がSW5、第2充電スイッチ29がSW6として記載されている。
(区間:電源投入時~T1)
 停止中の電源装置1では、第1電池パック11および第2電池パック21に電源が接続されておらず、自己放電により充電量が低下している。したがって、電源投入時には、第1電池パック11の第1充電スイッチ19:SW5をオン状態にして第1電池パック11の充電を行い、並行して第2電池パック21の第2充電スイッチ29:SW6をオン状態にして第2電池パック21の充電も行う。
 第1電池パック11の第1出力電圧Vbat1が負荷装置3の動作可能な電圧の上限値より低い間は、第1電池パック11は放電可能状態である。同様に、第2電池パック21の第2出力電圧Vbat2が負荷装置3の動作可能な電圧の上限値より低い間は、第2電池パック21も放電可能状態である。放電可能状態とは、外部電源2からの電力の供給が停止したときに、直ちに電池ユニットから電源ライン4を経由して負荷装置3の電力を供給できる状態を意味する。したがって、放電可能状態では、第1放電スイッチ16:SW1および第3放電スイッチ26:SW3はそれぞれオン状態に保持される。
 このとき、第2放電スイッチ17:SW2および第4放電スイッチ27:SW4はいずれも停電検知待ち状態にある。図3におけるON/OFFとの表記は、外部電源2が動作している間はオフ状態に保持され、外部電源2が停電するとき、すなわち、電源ライン4の電圧が所定の電圧を下回ったことを検出したときにオン状態に切り替わることを示している。電源装置1が通常の動作中であるときは、無停電動作とするために第2放電スイッチ17:SW2および第4放電スイッチ27:SW4はいずれも常時停電検知待ち状態とするが、特別な事由がある場合は制御回路15から制御信号を供給して、第1放電スイッチ16:SW1をオフ状態にして第1電池パック11からの放電を禁止状態に固定することが可能である。また、第3放電スイッチ26:SW3をオフ状態にして第2電池パック21からの放電を禁止状態に固定することも可能である。
 充電が継続され、例えば、第2電池パック21の第2出力電圧Vbat2が負荷装置3の動作可能な電圧の上限値に達する(T1の時点)と、いくつかのスイッチが切り換えられる。
(区間:T1~T2)
 T1の時点で、第2充電スイッチ29:SW6がオフ状態に切り替えられ第2電池パック21の充電が停止される。一方、第1電池パック11の充電は継続される。そして、第1出力電圧Vbat1が負荷装置3の動作可能な電圧の上限値を超えているため、第1放電スイッチ16:SW1をオフ状態に切り替えて、第1電池パック11を放電禁止状態に変更する。
 また、この時点では、第2電池パック21は満充電となっていないが、第2充電スイッチ29:SW6がオフ状態に切り替えられ充電は一旦停止する。第2放電回路24の第3放電スイッチ26:SW3のオン状態であり、且つ第4放電スイッチ27:SW4の停電検知待ち状態のままであるから、放電可能状態は維持されている。ここで、仮に、外部電源2の停電が発生すると、第2電池パック21の第2放電回路24の第4放電スイッチ27:SW4が電源ライン4の電圧降下を検出して瞬時にオン状態に切り替わり、第2電池パック21から第2放電回路24を経由して電源ライン4に電力が供給され、負荷装置3の動作を継続させる。
 このように、第1電池パック11が放電禁止状態である間には、第2電池パック21を必ず放電可能状態を保持することで、電源装置1の無停電動作を実現することができる。
 更に、この区間の動作において、第1電圧降下回路18を使用することができる。第1電圧降下回路18は、例えば、第1電池パック11の第1出力電圧Vbat1の電圧を低下させて電源ライン4の供給することができる。したがって、第1出力電圧Vbat1が負荷装置3の動作可能な電圧の上限値を超えた場合であっても、その超過量が第1電圧降下回路18で電圧降下可能な範囲内であるときは第1放電スイッチ16:SW1のオン状態として、第1電池パック11の放電可能状態を継続することができる。
(区間:T2~T3)
 T2の時点では、第1電圧降下回路18を使用して電圧を下げても、第1電池パック11の第1出力電圧Vbat1が負荷装置3の動作可能な電圧の上限値を上回るため、第1放電スイッチ16:SW1をオフ状態に切り替えて、第1電池パック11を放電禁止状態にしなければならない。一方、第2電池パック21の第3放電スイッチ26:SW3は、この区間においても引き続きオン状態であり、第2電池パック21は継続して放電可能状態である。
 T3の時点で、第1電池パック11が満充電になると、第1充電スイッチ19:SW5をオフ状態に切り替えて、充電を停止する。一方、第2電池パック21の各スイッチは切り替えられることなく放電可能状態を継続する。
(区間:T3~T4)
 T3の時点で、第1電池パック11の第1電池パック11の充電は停止したものの、第1電池パック11の第1出力電圧Vbat1が負荷装置3の動作可能な電圧の上限値を超えているため、第1放電回路14の第1放電スイッチ16:SW1はオフ状態を維持して、放電禁止状態が継続される。第1電池パック11の放電禁止状態が継続されるため、もう一方の第2電池パック21の第3放電スイッチ26:SW3のオフ状態も維持され、放電可能状態を継続する。
 ここで、第1電池パック11の充電は停止されているので、その第1出力電圧Vbat1は自己放電により徐々に低下する。必要に応じて、第1電池パック11の内部に放電用に負荷回路を設けてもよい。その負荷回路を通じて放電させることで第1電池パック11の第1出力電圧Vbat1の低下を促進し、早期に負荷装置3の動作可能な範囲内に低下させ得る。
(区間:T4~T5~T6)
 T4~T6の区間では、T1~T2の区間と同様に、第1電圧降下回路18を使用することで、第1電池パック11の第1出力電圧Vbat1を負荷装置3の動作可能な範囲内まで電圧を低下させ得る。したがって、第1放電回路14の第1放電スイッチ16:SW1をオン状態に切り替えて、第1電池パック11を放電可能状態に切り替えてよい。
 また、第1電池パック11がすでに放電可能状態であり、第2電池パック21は、任意のタイミングで第2充電スイッチ29:SW6をオン状態に切り替えて第2電池パック21の充電を開始可能である。図3では、T5の時点で第2充電回路23の第2充電スイッチ29:SW6をオン状態に切り替えて、第2電池パック21の充電を開始している。但し、充電を開始しても第2電池パック21の第2出力電圧Vbat2が負荷装置3の動作可能な範囲内にある間は、第2放電回路24の第3放電スイッチ26:SW3をオン状態のままとして、第2電池パック21についても放電可能状態を継続してよい。
(区間:T6~T7)
 T6の時点から、第2電池パック21の第2出力電圧Vbat2が、負荷装置3の動作可能な電圧の上限値を上回るため、第2電圧降下回路28を使用しない場合は、第2放電回路24の第3放電スイッチ26:SW3をオフ状態に切り替えて、第2電池パック21を放電禁止状態にする。第2電圧降下回路28を使用する場合は、第3放電スイッチ26:SW3をオフ状態に切り替えるタイミングを、T7の時点まで延期可能である。T7を越えると、第2電池パック21の第2出力電圧Vbat2が、第2電圧降下回路28により電圧降下しても、負荷装置3の動作可能な電圧の上限値を上回るので、第2放電回路24の第3放電スイッチ26:SW3をオフ状態にして第2電池パック21を放電禁止状態にする。
 この区間の第1電池パック11の動作は、区間T2~T3における第2電池パック21の動作と同一であり、この区間の第2電池パック21の動作は、区間T2~T3における第1電池パック11の動作と同一である。
(区間:T7~T8~T9~T10)
 この区間の第1電池パック11の動作は、区間T2~T3~T4~T6の第2電池パック21と同一であり、この区間の第2電池パック21の動作は、区間T2~T3~T4~T6の第1電池パック11と同一である。
 このように、2つの電池パック、すなわち、第1電池パック11および第2電池パック21を並列に接続して相補的に動作させ、いずれか一方を必ず放電可能状態とすることで、完全な無停電動作が可能な電源装置1を提供することができる。
<応用例>
 本開示では、2次電池として、例えば、ニッケル水素電池を使用し得る。一般的なニッケル水素電池は、充電電圧として少なくとも約1.6Vが必要であり、満充電直後の出力電圧は概ね1.5V~1.55V程度である。そして、満充電状態から放電を開始した直後は急激に電圧が低下し、電池容量のごく一部を放電することで公称電圧である1.2V程度まで低下する。それ以降は、公称電圧である1.2V付近の電圧を維持しながら放電を継続し、電池の容量が少なくなると急激に電圧が低下する。そして、過放電による電池の損傷を回避するために、概ね1.0Vが放電終止電圧として規定されており、その電圧で、放電を停止させる必要がある。
 また、本開示の電源装置1の電池ユニット10として、例えば、48V系の鉛蓄電池装置を用いることができる。ニッケル水素電池を40直列にすると公称電圧は48Vとなり、放電時の出力電圧について、鉛蓄電池とニッケル水素電池とで互換性を持たせることができる。
 但し、48V系の鉛蓄電池装置の充電電圧は、例えば、54.4Vである。したがって、電源ライン4の供給電圧の上限は54.4V程度となる。一方、40直列のニッケル水素電池の充電電圧は64V程度必要である。ただし、本開示の昇降圧回路12により、鉛蓄電池に適合する充電電圧の54.4Vを64Vに昇圧することで、40直列のニッケル水素電池を満充電状態まで充電することができる。
 また、40直列のニッケル水素電池の満充電直後の出力電圧は60V-62V程度となる。電源ライン4の電圧は通常54.4Vであり、その上限値が、例えば、56V-57V程度に設定されると、40直列のニッケル水素電池の満充電直後の出力電圧は電源ライン4の上限値、つまり、負荷装置3の許容電圧の上限値を超える。したがって、その状態では電池から電源ライン4に電力を供給することができない。
 しかし、本開示の第1放電回路14は、負荷装置3が動作可能な電圧範囲から外れているときは、第1電池パック11から電源ライン4への電力の供給を禁止する第1放電スイッチ16:SW1を有している。したがって、40直列のニッケル水素電池の出力電圧が、電源ライン4の上限値を超えている間は、第1電池パック11から電源ライン4への電力の供給を行わないよう制御可能である。
 このように、本開示の電源装置1は、鉛蓄電池装置からなる電池ユニットおよびニッケル水素2次電池からなる電池ユニットについて互換性をもたせることができる。鉛蓄電池装置は、48V系に限定されず、例えば、24V系や12V系についても同様に互換性があるニッケル水素2次電池からなる電池ユニットを構成することができる。
 また、2次電池としてリチウムイオン電池を採用する場合であっても、本開示の電池ユニット10内の各々の回路ブロックの回路定数を、リチウムイオン電池に合致させて見直すことにより構成可能であることは明らかである。
 1  電源装置
 2  外部電源
 3  負荷装置
 4  電源ライン
 5  入出力端子
 10  電池ユニット
 11  第1電池パック
 12  昇降圧回路
 13  第1充電回路
 14  第1放電回路
 15  制御回路
 16  第1放電スイッチ
 17  第2放電スイッチ
 18  第1電圧降下回路
 19  第1充電スイッチ
 20  駆動回路
 21  第2電池パック
 23  第2充電回路
 24  第2放電回路
 26  第3放電スイッチ
 27  第4放電スイッチ
 28  第2電圧降下回路
 29  第2充電スイッチ
 V1  充電電圧
 Vin 電圧
 Vbat1 第1出力電圧
 Vbat2 第2出力電圧
 

Claims (13)

  1.  外部電源から負荷装置へ電力を供給する電源ラインと、前記電源ラインに接続され、前記外部電源と並列接続される電池ユニットと、を含む電源装置であって、
     前記電池ユニットは、充電電圧が前記外部電源の電圧よりも高い電圧である電池パックと、前記外部電源の電圧を前記電池パックの前記充電電圧まで昇圧する昇降圧回路と、前記充電電圧で前記電池パックを充電する充電回路と、前記外部電源の電圧降下を検出して前記電源ラインを通じて前記電池パックから前記負荷装置へ放電する放電回路と、前記充電回路および前記放電回路を制御する制御回路と、を備え、
     前記放電回路は、前記電池パックと前記電源ラインの間に直列に接続された第1放電スイッチおよび第2放電スイッチを有し、前記第1放電スイッチは前記制御回路から切り替え信号を受信することでオン/オフが切り替えられ、前記第2放電スイッチは前記制御回路を通さずに前記外部電源の前記電圧に基づいて直接オン/オフが切り替えられる、電源装置。
  2.  前記第2放電スイッチは、前記外部電源の前記電圧が所定の電圧以下に降下したときにオンに切り替わる、請求項1に記載の電源装置。
  3.  前記制御回路は、前記電池パックの出力電圧を監視し、前記電池パックの前記出力電圧が放電可能範囲にあるときは前記第1放電スイッチをオン状態とすることで前記電池ユニットを放電可能状態とし、前記出力電圧が前記放電可能範囲から外れているときは前記第1放電スイッチをオフ状態とすることで前記電池ユニットを放電禁止状態とする、請求項1または2に記載の電源装置。
  4.  前記電池パックの前記出力電圧の前記放電可能範囲の下限値が前記電池パックの放電終止電圧で画定され、前記放電可能範囲の上限値が前記負荷装置の許容電圧の上限値で画定される、請求項3に記載の電源装置。
  5.  前記電池パックの満充電状態の出力電圧は、前記負荷装置の前記許容電圧の上限値よりも高い、請求項4に記載の電源装置。
  6.  前記制御回路は、前記電池パックを満充電状態まで充電し、前記満充電状態まで達した後、前記電池パックの出力電圧が前記放電可能範囲に低下するまでの間は、前記第1放電スイッチをオフ状態として前記電池ユニットの前記放電禁止状態を維持する、前記請求項3から5までのいずれか1項に記載の電源装置。
  7.  前記放電回路は、前記電源ラインと前記第2放電スイッチとの間に接続された電圧降下回路を更に有し、前記電圧降下回路は、前記電池パックの出力電圧を所定の電圧だけ低下させて前記電源ラインに出力する、請求項3から6までのいずれか1項に記載の電源装置。
  8.  前記電圧降下回路は、ダイオードまたはトランジスタにより構成される、請求項7に記載の電源装置。
  9.  前記電圧降下回路は、抵抗素子により構成される、請求項7に記載の電源装置。
  10.  前記放電可能範囲の上限値は、前記電圧降下回路により低下する前記所定の電圧の分だけ高くなる、請求項7から9までのいずれか1項に記載の電源装置。
  11.  前記第1放電スイッチおよび前記第2放電スイッチの各々は絶縁ゲート型電界効果トランジスタからなり、前記第1放電スイッチのゲート電極は前記制御回路からの前記切り替え信号で駆動され、前記第2放電スイッチのゲート電極は前記外部電源の電圧降下に瞬時に応答する駆動回路により駆動される、請求項1から10までのいずれか1項に記載の電源装置。
  12.  前記電池ユニットは、前記電源ラインに前記電池パックと並列に接続された第2電池パックと、前記充電電圧で前記第2電池パックを充電する第2充電回路と、前記外部電源の電圧降下を検出して前記電源ラインを通じて前記第2電池パックから前記負荷装置へ放電する第2放電回路と、をさらに備え、
     前記第2充電回路および前記第2放電回路は前記制御回路により制御され、
     前記第2放電回路は、前記第2電池パックと前記電源ラインの間に直列に接続された第3放電スイッチおよび第4放電スイッチを有し、前記第3放電スイッチは前記制御回路から切り替え信号を受信することでオン/オフが切り替えられ、前記第4放電スイッチは前記制御回路を通さずに前記外部電源の前記電圧に基づいて直接オン/オフが切り替えられる、請求項1に記載の電源装置。
  13.  前記電池パックおよび前記第2電池パックの少なくとも一方は、放電可能状態である、請求項12に記載の電源装置。
     
PCT/JP2021/035287 2020-12-21 2021-09-27 電源装置 WO2022137689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/268,507 US20240055886A1 (en) 2020-12-21 2021-09-27 Power supply device
CA3205665A CA3205665A1 (en) 2020-12-21 2021-09-27 Power supply device
EP21909847.2A EP4266539A1 (en) 2020-12-21 2021-09-27 Power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210903 2020-12-21
JP2020210903A JP2022097773A (ja) 2020-12-21 2020-12-21 電源装置

Publications (1)

Publication Number Publication Date
WO2022137689A1 true WO2022137689A1 (ja) 2022-06-30

Family

ID=82157467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035287 WO2022137689A1 (ja) 2020-12-21 2021-09-27 電源装置

Country Status (5)

Country Link
US (1) US20240055886A1 (ja)
EP (1) EP4266539A1 (ja)
JP (1) JP2022097773A (ja)
CA (1) CA3205665A1 (ja)
WO (1) WO2022137689A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223050A (ja) * 2005-02-10 2006-08-24 Ntt Facilities Inc 電力供給システム
JP2014057393A (ja) 2012-09-11 2014-03-27 Toshiba Corp 電力制御装置
JP2016010250A (ja) * 2014-06-25 2016-01-18 Fdk株式会社 無停電電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223050A (ja) * 2005-02-10 2006-08-24 Ntt Facilities Inc 電力供給システム
JP2014057393A (ja) 2012-09-11 2014-03-27 Toshiba Corp 電力制御装置
JP2016010250A (ja) * 2014-06-25 2016-01-18 Fdk株式会社 無停電電源装置

Also Published As

Publication number Publication date
US20240055886A1 (en) 2024-02-15
JP2022097773A (ja) 2022-07-01
CA3205665A1 (en) 2022-06-30
EP4266539A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN110365090B (zh) 冗余电源***
JP3364836B2 (ja) 電圧イコライザ装置およびその方法
US10404095B2 (en) Uninterruptible power supply unit
CN110011368B (zh) 蓄电元件保护装置、蓄电装置及蓄电元件保护方法
US20090251100A1 (en) Stackable battery module
EP2367261A2 (en) Direct-current power source apparatus
US20120146610A1 (en) Discharger and discharger control method
JP4845756B2 (ja) 車両用の電源装置
WO1998038721A1 (fr) Dispositif d'alimentation en energie
JP4763660B2 (ja) 電源システム
JP2006060883A (ja) 2バッテリ型車両用電源装置
JP2009071922A (ja) 直流バックアップ電源装置およびその制御方法
JP4828511B2 (ja) バックアップ電源およびその制御方法
JP4724726B2 (ja) 直流電源システムおよびその充電方法
JP2009148110A (ja) 充放電器とこれを用いた電源装置
US10266062B2 (en) System and method for charging a vehicle battery by controlling a relay between the battery and a vehicle system
JP3796918B2 (ja) バッテリ装置
US20050052159A1 (en) Method and apparatus for overcharge protection using analog overvoltage detection
WO2022137689A1 (ja) 電源装置
US11996730B2 (en) Backup power supply device
WO2021215282A1 (ja) 無停電電源装置
JP2009055701A (ja) 電源装置
JP2009118683A (ja) 充電器とその充電方法および電源システム
JP2010022086A (ja) 直流電源システム
JP2009153282A (ja) バックアップ電源およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3205665

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18268507

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021909847

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909847

Country of ref document: EP

Effective date: 20230721