WO2022135466A1 - 触觉反馈模组及电子设备 - Google Patents

触觉反馈模组及电子设备 Download PDF

Info

Publication number
WO2022135466A1
WO2022135466A1 PCT/CN2021/140448 CN2021140448W WO2022135466A1 WO 2022135466 A1 WO2022135466 A1 WO 2022135466A1 CN 2021140448 W CN2021140448 W CN 2021140448W WO 2022135466 A1 WO2022135466 A1 WO 2022135466A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
voltage
feedback module
haptic feedback
conductive
Prior art date
Application number
PCT/CN2021/140448
Other languages
English (en)
French (fr)
Inventor
谢华飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022135466A1 publication Critical patent/WO2022135466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present application relates to the technical field of electronic products, and in particular, to a haptic feedback module and an electronic device.
  • the realization of the haptic feedback of the mobile phone needs to configure the motor.
  • the linear motor is instructed so that the contact person can perceive the command changes (such as screen changes, menu changes, menu changes) generated by the pressure of the fingers. renew).
  • the haptic engine needs to be put into the mobile phone, its volume should be adapted to the size of the mobile phone. Taking the “horizontal linear motor” with the best experience as an example of a haptic engine, due to its large size, it is difficult to apply it to a mobile phone with limited space.
  • the purpose of the embodiments of the present application is to provide a haptic feedback module and an electronic device, which can solve the problems of large volume and complex structure of the haptic feedback mechanism in the related art.
  • an embodiment of the present application provides a haptic feedback module, the haptic feedback module is disposed on a screen of an electronic device, and includes:
  • the first conductive layer or the second conductive layer is connected to a first voltage, so that a voltage difference is generated between the first conductive layer and the second conductive layer to form an electric field; for providing alternating current to the first conductive layer or the second conductive layer.
  • an embodiment of the present application provides an electronic device, including the haptic feedback module described above, and further including:
  • processor is connected to the first conductive layer and the second conductive layer respectively, and the processor is used to control at least part of the first conductive layer or at least part of the second conductive layer
  • the region is connected to the first voltage.
  • the tactile feedback module is formed by integrating a conductive layer on the dielectric layer, which has a simple structure and a small volume.
  • electrostatic stimulation can be felt, thus realizing the haptic feedback function, and the driving method is simple; by arranging the haptic feedback module on the screen of the electronic device, it avoids occupying the internal space of the electronic device.
  • FIG. 1 is one of the schematic diagrams of the haptic feedback module of the embodiment of the present application on the screen of an electronic device;
  • FIG. 2 is one of the top views of the first conductive layer and the second conductive layer of the haptic feedback module according to the embodiment of the present application;
  • FIG. 3 is the second top view of the first conductive layer and the second conductive layer of the haptic feedback module according to the embodiment of the present application;
  • FIG. 4 is the second schematic diagram of the haptic feedback module on the screen of the electronic device according to the embodiment of the present application.
  • FIG. 5 is one of the schematic diagrams of the working principle of the haptic feedback module according to the embodiment of the present application.
  • FIG. 6 is the second schematic diagram of the working principle of the haptic feedback module according to the embodiment of the present application.
  • FIG. 7 is the third schematic diagram of the working principle of the haptic feedback module according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a manufacturing process of a haptic feedback module according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and the claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • haptic feedback module provided by the embodiments of the present application will be described in detail below through specific embodiments and application scenarios with reference to the accompanying drawings.
  • an embodiment of the present application provides a haptic feedback module, and the haptic feedback module is arranged on a screen 5 of an electronic device, including:
  • the tactile feedback module is formed by integrating a conductive layer on the dielectric layer, which has a simple structure and a small volume;
  • electrostatic stimulation can be felt, thus realizing the haptic feedback function, and the driving method is simple; by arranging the haptic feedback module on the screen of the electronic device, it avoids occupying the internal space of the electronic device.
  • the first conductive layer 1 and the second conductive layer 3 respectively include a plurality of conductive lines arranged in an array, and the conductive lines in the first conductive layer 1 and the second conductive lines The conductive lines in layer 3 are staggered.
  • the inner conductive lines 301 (that is, the conductive lines in the second conductive layer 3 ) and the outer conductive lines 101 (that is, the conductive lines in the first conductive layer 1 ) are staggered. structure in order to form a capacitor.
  • Figure 2 shows the staggered structure of double-sided wiring
  • Figure 3 shows the staggered structure of single-sided wiring
  • the conductive lines can be made of indium tin oxide (ITO), nano-silver or organic polymers, etc. Transparent conductive material.
  • At least a partial area of the first conductive layer 1 or at least a partial area of the second conductive layer 3 is connected to the first voltage.
  • the inner conductive wire 301 is one end electrode of the electrostatic haptic feedback capacitor
  • the outer conductive wire 101 is the other end electrode of the haptic feedback capacitor.
  • first conductive layer 1 and the second conductive layer 3 are both connected to the circuit board inside the electronic device, and the processor of the electronic device can control the circuit board to be at least part of the first conductive layer 1 .
  • the region or at least a partial region of the second conductive layer 3 provides a voltage, so that a voltage difference is generated between the first conductive layer 1 and the second conductive layer 3 to form an electric field.
  • the inner conductive wire 301 in the area A when the inner conductive wire 301 in the area A is connected to the alternating current, when the finger touches the tactile feedback module in the area A, electrostatic feedback is generated, and there is a shock; and The inner conductive wire 301 in the B area has no voltage, so when the finger touches the tactile feedback module in the B area, there is no shock.
  • Figure 5 shows the change of the access voltage on the inner conductive wire 301 in the A area during the change of the alternating current.
  • the left part of Figure 5 shows the situation when the inner conductive wire 301 in the A area is connected to a negative voltage, Part of the case is when the inner conductive line 301 in the A area is connected to positive pressure.
  • the dielectric layer 2 may be a protective film.
  • the function of the protective film is to protect the electronic device (such as a mobile phone module), and to provide a dielectric layer 2 for the first conductive layer 1 and the second conductive layer 3 .
  • a tactile feedback system can be integrated on the protective film covering the surface of the screen 5 of the electronic device, which can increase the interactivity and functionality of the contact of the electronic device, and enhance the sense of experience; it can be applied to flexible display, and does not require a motor and does not require Occupies the internal space of the mobile phone; in addition, this method integrates the haptic feedback system outside the mobile phone module, which can be easily replaced or removed.
  • the first voltage when used to provide alternating current for at least part of the first conductive layer 1, at least part of the second conductive layer 3 is connected to the second voltage, the first The two voltages are used to provide direct current to at least part of the second conductive layer 3 .
  • the first voltage when used to provide alternating current for at least part of the second conductive layer 3, at least part of the first conductive layer 1 is connected to the second voltage, the first The two voltages are used to provide direct current to at least part of the first conductive layer 1 .
  • the processor of the electronic device in the mutual capacitance mode, can control the inner conductive lines 301 in at least part of the second conductive layer 3 and the conductive lines outside at least part of the first conductive layer 1
  • One of the 101 inputs direct current, and the other inputs alternating current to form a higher voltage.
  • the finger touches the outer surface of the tactile feedback module (here refers to the outer surface corresponding to the energized partial area)
  • the finger contacts the outer conductive wire 101 to form the same charge as the outer conductive wire 101, and as the AC voltage changes , due to the same-sex repulsive electrostatic force, the electrostatic repulsive capacitance is formed between the inner conductive line 301 and the finger, which generates a pushing force that bounces outward.
  • both the inner conductive wire 301 and the outer conductive wire 101 are powered, which can form a higher voltage difference, thereby improving the sensitivity and tactile feeling of tactile feedback, thereby providing more driving modes.
  • the voltage when the first voltage is used to provide alternating current for at least part of the second conductive layer 3, the voltage may not be provided to the first conductive layer 1, and at this time, the outer conductive wire 101 can be grounded by fingers .
  • the processor of the electronic device can control to input an AC voltage on the inner conductive wire 301 in at least a part of the second conductive layer 3, when the finger touches the outer surface of the haptic feedback module (here refers to the part corresponding to the electrified part area) When on the outer surface), the outer conductive wire 101 at the touch position of the finger is grounded by the finger. At this time, a capacitance is formed between the AC voltage of the inner conductive wire 301 and the finger.
  • the outer conductive wire 101 is used as the ground terminal, the inner conductive wire 301 is connected to the AC voltage, and a capacitor is formed between the finger and the inner conductive wire 301.
  • the inner conductive wire 301 is one end electrode of the capacitor, and the finger is the capacitor. the other end electrode. With the change of the AC voltage, the two ends of the capacitor generate a repulsive force, so as to realize the haptic feedback.
  • the outer conductive wire 101 is grounded through a finger.
  • a finger touches the tactile feedback module in the C area since the inner conductive wire 301 in the C area is connected to a voltage, electrostatic feedback will be generated, and there will be a shock; while the inner conductive wire 301 in the D area has no voltage, so when the finger touches The haptic feedback module in the D area has no vibration.
  • the processor of the electronic device can obtain the touch position of the finger on the haptic feedback module according to the detected first electrical signal.
  • the first electrical signal is a signal of voltage fluctuation caused by the finger touching the tactile feedback module.
  • the second conductive layer 3 is connected to the screen 5 .
  • the second conductive layer 3 and the screen 5 are connected by optical adhesive (Optically Clear Adhesive, OCA).
  • optical adhesive Optically Clear Adhesive, OCA
  • the second conductive layer 3 is connected to the screen 5 .
  • the tactile feedback module can be adhered to the screen 5 of the electronic device through the transparent adhesive optical glue 4 , so as to realize a reliable connection between the tactile feedback module and the screen 5 .
  • the first conductive layer 1 is embedded in the first surface.
  • the first conductive layer 1 is embedded in the first surface.
  • the outer conductive lines 101 can also be embedded in the dielectric layer 2 , so that the upper surfaces of the outer conductive lines 101 are flush with the first surface of the dielectric layer 2 .
  • the first surface can be made flatter and feel smoother when touched by fingers, thereby increasing the sense of interaction experience.
  • other haptic mechanisms can be integrated by improving on this basis.
  • the first conductive layer 1 is disposed on the first surface, and the first conductive layer 1 protrudes from the first surface.
  • the distance between the first conductive layer 1 and the second conductive layer 3 can be controlled by the nano-imprint technology.
  • the depth of the etched dielectric layer 2 such as the protective film
  • the distance between the inner conductive line 301 and the outer conductive line 101 can be adjusted, so that the input voltage can be adjusted, and the intensity adjustment of the electrostatic touch feedback can be realized. energy saving effect.
  • the materials of the first conductive layer and the second conductive layer are at least one of indium tin oxide, nano-silver and organic polymers.
  • an embodiment of the present application provides a process flow that can be used for preparing the haptic feedback module.
  • the first surface of the dielectric layer 2 (ie, the protective film) is formed with a film forming and/or printing process to form a conductive layer 01;
  • S810 Pattern the conductive layer 01 to form a first conductive layer 1 , specifically a plurality of outer conductive lines 101 .
  • the skin on the surface of the human body is stimulated by electrostatic feedback, which directly acts on the contact finger to realize tactile feedback interaction.
  • electrostatic feedback directly acts on the contact finger to realize tactile feedback interaction.
  • the tactile feedback effect can be achieved without setting a motor, so it does not need to occupy the internal space of the electronic device, and the structure is simple; the vibration and frequency of the tactile feedback can be adjusted, the response is fast, and the tactile feedback is strong.
  • an embodiment of the present application provides an electronic device, including the haptic feedback module described above, and further including: a processor, the processor is connected to the first conductive layer 1 and the second conductive layer 1 .
  • the conductive layers 3 are respectively connected to processors, and the processors are used to control at least a partial area of the first conductive layer 1 or at least a partial area of the second conductive layer 3 to connect to a first voltage.
  • the inner conductive wire 301 is one end electrode of the electrostatic haptic feedback capacitor
  • the outer conductive wire 101 is the other end electrode of the haptic feedback capacitor.
  • first conductive layer 1 and the second conductive layer 3 are both connected to the circuit board inside the electronic device, and the processor controls the circuit board to be at least part of the first conductive layer 1 or the circuit board. At least a partial area of the second conductive layer 3 is provided with a voltage, so that a voltage difference is generated between the first conductive layer 1 and the second conductive layer 3 to form an electric field.
  • the dielectric layer 2 may be a protective film.
  • the function of the protective film is to protect the electronic device (such as a mobile phone module), and to provide a dielectric layer 2 for the first conductive layer 1 and the second conductive layer 3 .
  • a tactile feedback system can be integrated on the protective film covering the surface of the screen 5 of the electronic device, which can increase the interactivity and functionality of the contact of the electronic device, and improve the experience; it can be applied to flexible display, and does not require a motor and does not require Occupies the internal space of the mobile phone; in addition, this method integrates the haptic feedback system outside the mobile phone module, which can be easily replaced or removed.
  • the processor is further configured to control the connection of at least part of the second conductive layer 3 to be connected.
  • a second voltage is input, and the second voltage is used to provide DC power to at least part of the second conductive layer 3 .
  • the processor is further configured to control the connection of at least part of the first conductive layer 1 to be connected.
  • a second voltage is input, and the second voltage is used to provide DC power to at least a part of the first conductive layer 1 .
  • the processor controls the inner conductive lines 301 in at least part of the second conductive layer 3 and the outer conductive lines 101 in at least part of the first conductive layer 1 .
  • One side inputs direct current and the other side inputs alternating current to form a higher voltage.
  • the finger touches the outer surface of the tactile feedback module (here refers to the outer surface corresponding to the energized partial area)
  • the finger contacts the outer conductive wire 101 to form the same charge as the outer conductive wire 101, and as the AC voltage changes , due to the same-sex repulsion by electrostatic force, electrostatic repulsive capacitance is formed between the inner conductive line 301 and the finger, which generates a pushing force that bounces outward.
  • both the inner conductive wire 301 and the outer conductive wire 101 are powered, which can form a higher voltage difference, thereby improving the sensitivity and tactile feeling of tactile feedback, thereby providing more driving modes.
  • the voltage when the first voltage is used to provide alternating current for at least part of the second conductive layer 3, the voltage may not be provided to the first conductive layer 1, and at this time, the outer conductive wire 101 can be grounded by fingers .
  • the processor controls to input an AC voltage on the inner conductive line 301 of at least a partial area of the second conductive layer 3, and when the finger touches the outer surface of the haptic feedback module (here refers to the outer surface corresponding to the energized partial area) , the outer conductive wire 101 at the touch position of the finger is grounded by the finger. At this time, a capacitance is formed between the AC voltage of the inner conductive wire 301 and the finger.
  • the outer conductive wire 101 is used as the ground terminal, the inner conductive wire 301 is connected to the AC voltage, and a capacitor is formed between the finger and the inner conductive wire 301.
  • the inner conductive wire 301 is one end electrode of the capacitor, and the finger is the capacitor. the other end electrode. With the change of the AC voltage, the two ends of the capacitor generate a repulsive force, so as to realize the haptic feedback.
  • the outer conductive wire 101 is grounded through a finger.
  • a finger touches the tactile feedback module in the C area since the inner conductive wire 301 in the C area is connected to a voltage, electrostatic feedback will be generated, and there will be a shock; while the inner conductive wire 301 in the D area has no voltage, so when the finger touches The haptic feedback module in the D area has no vibration.
  • the processor can obtain the touch position of the finger on the haptic feedback module according to the detected first electrical signal.
  • the first electrical signal is a signal of voltage fluctuation caused by the finger touching the tactile feedback module.
  • the skin on the surface of the human body is stimulated by electrostatic feedback, which directly acts on the contact finger to realize tactile feedback interaction.
  • electrostatic feedback directly acts on the contact finger to realize tactile feedback interaction.
  • the tactile feedback effect can be achieved without setting a motor, so it does not need to occupy the internal space of the electronic device, and the structure is simple; the vibration and frequency of the tactile feedback can be adjusted, the response is fast, and the tactile feedback is strong.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开一种触觉反馈模组及电子设备,属于通信技术领域。触觉反馈模组,触觉反馈模组设置在电子设备的屏幕上,包括:介电层、第一导电层和第二导电层;其中,介电层具有相对的第一表面和第二表面,第一导电层设置在第一表面,第二导电层设置在第二表面;第一导电层或第二导电层接入第一电压;第一电压用于为第一导电层或第二导电层提供交流电。

Description

触觉反馈模组及电子设备
相关申请的交叉引用
本申请主张在2020年12月25日在中国提交的中国专利申请No.202011563279.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种触觉反馈模组及电子设备。
背景技术
通常,在用户使用手机的过程中,手机触觉反馈的实现需要配置马达,在用户手指触摸手机屏幕时,通过指示线性马达从而使得接触者感知由手指的压力产生的指令变化(比如屏幕变化、菜单更新)。
在实现本申请过程中,发明人发现相关技术中至少存在如下问题:
由于触觉引擎是需要放入手机之中的,所以它的体积要适应手机的大小。以体验最为出色的“横向线性马达”作为触觉引擎为例,由于其体积偏大,进而很难应用在空间有限的手机。
发明内容
本申请实施例的目的是提供一种触觉反馈模组及电子设备,能够解决相关技术中触觉反馈机构体积大且结构复杂的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种触觉反馈模组,所述触觉反馈模组设置在电子设备的屏幕上,包括:
介电层、第一导电层和第二导电层;其中,所述介电层具有相对的第一表面和第二表面,所述第一导电层设置在所述第一表面,所述第二导电层设置在所述第二表面;
其中,所述第一导电层或所述第二导电层接入第一电压,使得所述第一导电层与所述第二导电层之间产生电压差,形成电场;所述第一电压用于为 所述第一导电层或所述第二导电层提供交流电。
第二方面,本申请实施例提供了一种电子设备,包括如上所述的触觉反馈模组,还包括:
处理器,所述处理器与所述第一导电层和所述第二导电层分别连接,所述处理器用于控制所述第一导电层的至少部分区域或所述第二导电层的至少部分区域接入所述第一电压。
在本申请实施例中,通过在介电层上集成导电层的方式形成触觉反馈模组,结构简单,体积较小;通过对触觉反馈模组中的导电层通电,形成电场,使得手指在触摸到触觉反馈模组时能够感受到静电刺激,从而实现了触觉反馈功能,驱动方式简单;通过将触觉反馈模组设置在电子设备的屏幕上,避免了占用电子设备的内部空间。
附图说明
图1是本申请实施例的触觉反馈模组在电子设备屏幕上的示意图之一;
图2是本申请实施例的触觉反馈模组的第一导电层和第二导电层俯视图之一;
图3是本申请实施例的触觉反馈模组的第一导电层和第二导电层俯视图之二;
图4是本申请实施例的触觉反馈模组在电子设备屏幕上的示意图之二;
图5是本申请实施例的触觉反馈模组工作原理示意图之一;
图6是本申请实施例的触觉反馈模组工作原理示意图之二;
图7是本申请实施例的触觉反馈模组工作原理示意图之三;
图8是本申请实施例的触觉反馈模组的制造工艺示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的触觉反馈模组进行详细地说明。
如图1至图6所示,本申请实施例提供了一种触觉反馈模组,所述触觉反馈模组设置在电子设备的屏幕5上,包括:
介电层2、第一导电层1和第二导电层3;其中,所述介电层2具有相对的第一表面和第二表面,所述第一导电层1设置在所述第一表面,所述第二导电层3设置在所述第二表面;其中,所述第一导电层1或所述第二导电层3接入第一电压,使得所述第一导电层1与所述第二导电层3之间产生电压差,形成电场;所述第一电压用于为所述第一导电层1或所述第二导电层3提供交流电。
本申请的实施例中,通过在介电层上集成导电层的方式形成触觉反馈模组,结构简单,体积较小;通过对触觉反馈模组中的导电层通电,形成电场,使得手指在触摸到触觉反馈模组时能够感受到静电刺激,从而实现了触觉反馈功能,驱动方式简单;通过将触觉反馈模组设置在电子设备的屏幕上,避免了占用电子设备的内部空间。
这里,可选地,所述第一导电层1和所述第二导电层3分别包括多条阵列排布的导电线,且所述第一导电层1中的导电线与所述第二导电层3中的导电线交错设置。
例如,如图2、图3所示,内导电线301(即所述第二导电层3中的导电线)和外导电线101(即所述第一导电层1中的导电线)形成交错结构,以便形成电容。其中,图2所示为双侧走线的交错结构,图3所示为单侧走线的交错结构,导电线可采用氧化铟锡(Indium tin oxide,ITO)、纳米银或有 机聚合物等透明导电材料。
可选地,所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域接入第一电压。
该实施例中,内导电线301为静电触觉反馈的电容的一端电极,外导电线101为触觉反馈电容的另一端电极。在所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域接入第一电压的情况下,通过静电刺激接触手指,可以对触碰触觉反馈模组的手指形成触觉反馈。
可以理解的是,所述第一导电层1和所述第二导电层3均与电子设备内部的电路板连接,电子设备的处理器可以控制电路板为所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域提供电压,使得所述第一导电层1与所述第二导电层3之间产生电压差,形成电场。
例如,本申请一实施例中,参见图5所示,在A区域的内导电线301接入交流电的情况下,当手指触碰A区域的触觉反馈模组时产生静电反馈,有震感;而B区域的内导电线301无电压,因此当手指触碰B区域的触觉反馈模组时无震感。
其中,图5展示了在交流电的变化过程中,A区域的内导电线301上的接入电压变化,图5左侧部分为A区域的内导电线301接入负压时的情况,右侧部分为A区域的内导电线301接入正压时的情况。
作为本申请一可选实施例,介电层2可以是保护膜。这种情况下,保护膜的作用是保护电子设备(比如手机模组),并为第一导电层1和所述第二导电层3提供介电层2。这样,就可以在覆盖在电子设备的屏幕5表面的保护膜上集成触觉反馈***,可增加电子设备接触的互动性及功能性,提升体验感;可适用于柔性显示,且不需马达,不占手机内部空间;此外,这种方式将触觉反馈***集成在手机模组之外,可方便更换或去除。
可选地,在所述第一电压用于为所述第一导电层1的至少部分区域提供交流电的情况下,所述第二导电层3的至少部分区域接入第二电压,所述第二电压用于为所述第二导电层3的至少部分区域提供直流电。
可选地,在所述第一电压用于为所述第二导电层3的至少部分区域提供交流电的情况下,所述第一导电层1的至少部分区域接入第二电压,所述第 二电压用于为所述第一导电层1的至少部分区域提供直流电。
作为本申请一可选实施例,在互电容模式下,电子设备的处理器可以控制在第二导电层3的至少部分区域的内导电线301和第一导电层1的至少部分区域外导电线101之中的一方输入直流电,另一方输入交流电,形成较高电压。此时,当手指触摸在触觉反馈模组外表面(这里指通电的部分区域对应的外表面)上时,手指与外导电线101接触形成与外导电线101相同电荷,随着交流电压的变化,由于静电力同性相斥,内导电线301与手指之间形成静电相斥的电容,产生往外弹的推力,进一步的,可以将驱动电流与屏幕5显示内容相结合,从而实现屏幕5与手指间的触觉反馈效果,无需传感器和电机。
如图7所示,在E区域的内导电线301接入第一电压且E区域的外导线101接入第二电压的情况下,或者在E区域的内导电线301接入第二电压且E区域的外导线101接入第一电压的情况下,当手指触碰E区域的触觉反馈模组时产生静电反馈,有震感;F区域的内导电线301无电压,因此当手指触碰F区域的触觉反馈模组时无震感。
该实施例中,利用静电力反馈机理,内导电线301和外导电线101均给电,可形成较高的电压差,进而提高触觉反馈的灵敏度和触感,从而提供了更多的驱动方式。
此外,在所述第一电压用于为所述第二导电层3的至少部分区域提供交流电的情况下,可以不对第一导电层1提供电压,此时,外导电线101可以通过手指实现接地。
具体的,作为本申请一可选实施例,在自电容模式下,即只对所述第二导电层3的至少部分区域提供电压而不对所述第一导电层1提供电压的情况。此时,电子设备的处理器可以控制在第二导电层3的至少部分区域的内导电线301上输入交流电压,当手指接触在触觉反馈模组的外表面(这里指通电的部分区域对应的外表面)上时,在手指的触碰位置的外导电线101通过手指实现接地。此时,内导电线301的交流电压与手指之间形成电容,随着交流电压的正负变化,手指的触碰位置产生瞬时的正负电荷变化,这样,手指会感受到瞬间静电力刺激作用,从而形成触觉反馈效果。其作用机理如图5 所示,外导电线101作为接地端,内导电线301接入交流电压,手指与内导电线301之间形成电容,内导电线301为电容的一端电极,手指为电容的另一端电极。随着交流电压的变化,电容两端产生相斥力,从而实现触觉反馈。
例如,如图6所示,在C区域的内导电线301接入交流电的情况下,外导电线101通过手指接地。当手指触碰C区域的触觉反馈模组时,由于C区域的内导电线301接入了电压,会产生静电反馈,有震感;而D区域的内导电线301无电压,因此当手指触碰D区域的触觉反馈模组时无震感。
该实施例中,只需在内导电线301一端给电,外导电线101接地,即可实现触觉反馈,结构及工艺简单,驱动方式简单。
需要说明的是,在电子设备的屏幕受到手指压力的情况下,电子设备的处理器可以根据检测到的第一电信号,获得手指在所述触觉反馈模组上的触碰位置。所述第一电信号为由于手指触碰触觉反馈模组而引起的电压波动的信号。
可选地,所述第二导电层3与所述屏幕5连接。
可选地,所述第二导电层3与所述屏幕5通过光学胶(Optically Clear Adhesive,OCA)连接。
如图1、图4所示,可选地,所述第二导电层3与所述屏幕5连接。比如可以通过透明粘胶剂光学胶4将触觉反馈模组黏附在电子设备的屏幕5上,实现触觉反馈模组与屏幕5之间的可靠连接。
可选地,所述第一导电层1内嵌在所述第一表面。
如图4所示,可选地,所述第一导电层1内嵌在所述第一表面。通过纳米压印等工艺,还可以将外导电线101嵌入介电层2内,从而使得外导电线101的上表面与所述介电层2的第一表面平齐。这样,可使所述第一表面更平坦,在手指接触时感觉更顺滑,从而增加交互体验感。当然可以理解的是,在此基础上改进可以得到其他触觉机理集成。例如,如图1所示,所述第一导电层1设置在所述第一表面上,第一导电层1凸出于所述第一表面。
可选地,所述第一导电层1与所述第二导电层3之间相隔预设距离。
这里,需要说明的是,通过纳米压印技术,可控制第一导电层1与所述第二导电层3之间的距离。比如通过调控刻蚀介电层2(比如保护膜)的深 度,来调节内导电线301和外导电线101间的距离,从而可调控输入电压,实现静电触控反馈的强度调节,进一步实现了节能效果。
可选地,所述第一导电层和所述第二导电层的材料为氧化铟锡、纳米银和有机聚合物中的至少一种。
如图8所示,以介电层2为保护膜为例,本申请实施例提供一种可用于制备所述触觉反馈模组的工艺流程。
S801:将介电层2(即保护膜)的第一表面通过成膜和/或印刷工艺,设置导电层01;
S802:在介电层2的第二表面涂抗刻蚀胶02;
S803:通过压膜03对涂敷了抗刻蚀胶02的所述第二表面进行压印;
S804:进行脱模操作;
S805:在脱模后的介电层2的第二表面上进行刻蚀;
S806:通过成膜和/或印刷工艺,设置导电层04;
S807:去除抗刻蚀胶02,形成所述第二导电层3(即在所述第二表面上余留下的导电层04);
S808:在去除了抗刻蚀胶02的所述第二表面上涂敷光学胶4;
S809:通过涂敷的光学胶4将上述步骤形成的结构贴合在电子设备的屏幕5上。
S810:将导电层01图案化,形成第一导电层1,具体为多条外导电线101。
上述步骤仅作为本申请其中一实施例的实现方式,不应理解为对步骤顺序的限定。
在本申请实施例中,通过静电反馈刺激人体表面皮肤的方式,直接作用于接触手指,实现触觉反馈交互。这样,在无需设置马达即可实现触觉反馈效果,因此不需要占用电子设备内部空间,结构简单;触觉反馈的震感与频率可调节,反应迅速,触觉反馈较强烈。
如图1所示,本申请实施例提供了一种电子设备,包括如上所述的触觉反馈模组,还包括:处理器,所述处理器与所述第一导电层1和所述第二导电层3分别连接的处理器,所述处理器用于控制所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域接入第一电压。
该实施例中,内导电线301为静电触觉反馈的电容的一端电极,外导电线101为触觉反馈电容的另一端电极。在所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域接入第一电压的情况下,通过静电刺激接触手指,可以对触碰触觉反馈模组的手指形成触觉反馈。
可以理解的是,所述第一导电层1和所述第二导电层3均与电子设备内部的电路板连接,处理器控制电路板为所述第一导电层1的至少部分区域或所述第二导电层3的至少部分区域提供电压,使得所述第一导电层1与所述第二导电层3之间产生电压差,形成电场。
作为本申请一可选实施例,介电层2可以是保护膜。这种情况下,保护膜的作用是保护电子设备(比如手机模组),并为第一导电层1和所述第二导电层3提供介电层2。这样,就可以在覆盖在电子设备的屏幕5表面的保护膜上集成触觉反馈***,可增加电子设备接触的互动性及功能性,提升体验感;可适用于柔性显示,且不需马达,不占手机内部空间;此外,这种方式将触觉反馈***集成在手机模组之外,可方便更换或去除。
可选地,在所述第一电压用于为所述第一导电层1的至少部分区域提供交流电的情况下,所述处理器还用于控制所述第二导电层3的至少部分区域接入第二电压,所述第二电压用于为所述第二导电层3的至少部分区域提供直流电。
可选地,在所述第一电压用于为所述第二导电层3的至少部分区域提供交流电的情况下,所述处理器还用于控制所述第一导电层1的至少部分区域接入第二电压,所述第二电压用于为所述第一导电层1的至少部分区域提供直流电。
作为本申请一可选实施例,在互电容模式下,处理器控制在第二导电层3的至少部分区域的内导电线301和第一导电层1的至少部分区域外导电线101之中的一方输入直流电,另一方输入交流电,形成较高电压。此时,当手指触摸在触觉反馈模组外表面(这里指通电的部分区域对应的外表面)上时,手指与外导电线101接触形成与外导电线101相同电荷,随着交流电压的变化,由于静电力同性相斥,内导电线301与手指之间形成静电相斥的电容,产生往外弹的推力,进一步的,可以将驱动电流与屏幕5显示内容相结 合,从而实现屏幕5与手指间的触觉反馈效果,无需传感器和电机。
如图7所示,在E区域的内导电线301接入第一电压且E区域的外导线101接入第二电压的情况下,或者在E区域的内导电线301接入第二电压且E区域的外导线101接入第一电压的情况下,当手指触碰E区域的触觉反馈模组时产生静电反馈,有震感;F区域的内导电线301无电压,因此当手指触碰F区域的触觉反馈模组时无震感。
该实施例中,利用静电力反馈机理,内导电线301和外导电线101均给电,可形成较高的电压差,进而提高触觉反馈的灵敏度和触感,从而提供了更多的驱动方式。
此外,在所述第一电压用于为所述第二导电层3的至少部分区域提供交流电的情况下,可以不对第一导电层1提供电压,此时,外导电线101可以通过手指实现接地。
具体的,作为本申请一可选实施例,在自电容模式下,即只对所述第二导电层3的至少部分区域提供电压而不对所述第一导电层1提供电压的情况。此时,处理器控制在第二导电层3的至少部分区域的内导电线301上输入交流电压,当手指接触在触觉反馈模组的外表面(这里指通电的部分区域对应的外表面)上时,在手指的触碰位置的外导电线101通过手指实现接地。此时,内导电线301的交流电压与手指之间形成电容,随着交流电压的正负变化,手指的触碰位置产生瞬时的正负电荷变化,这样,手指会感受到瞬间静电力刺激作用,从而形成触觉反馈效果。其作用机理如图5所示,外导电线101作为接地端,内导电线301接入交流电压,手指与内导电线301之间形成电容,内导电线301为电容的一端电极,手指为电容的另一端电极。随着交流电压的变化,电容两端产生相斥力,从而实现触觉反馈。
例如,如图6所示,在C区域的内导电线301接入交流电的情况下,外导电线101通过手指接地。当手指触碰C区域的触觉反馈模组时,由于C区域的内导电线301接入了电压,会产生静电反馈,有震感;而D区域的内导电线301无电压,因此当手指触碰D区域的触觉反馈模组时无震感。
该实施例中,只需在内导电线301一端给电,外导电线101接地,即可实现触觉反馈,结构及工艺简单,驱动方式简单。
需要说明的是,在电子设备的屏幕受到手指压力的情况下,处理器可以根据检测到的第一电信号,获得手指在所述触觉反馈模组上的触碰位置。所述第一电信号为由于手指触碰触觉反馈模组而引起的电压波动的信号。
在本申请实施例中,通过静电反馈刺激人体表面皮肤的方式,直接作用于接触手指,实现触觉反馈交互。这样,在无需设置马达即可实现触觉反馈效果,因此不需要占用电子设备内部空间,结构简单;触觉反馈的震感与频率可调节,反应迅速,触觉反馈较强烈。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种触觉反馈模组,所述触觉反馈模组设置在电子设备的屏幕上,包括:
    介电层、第一导电层和第二导电层;其中,所述介电层具有相对的第一表面和第二表面,所述第一导电层设置在所述第一表面,所述第二导电层设置在所述第二表面;
    其中,所述第一导电层或所述第二导电层接入第一电压;所述第一电压用于为所述第一导电层或所述第二导电层提供交流电。
  2. 根据权利要求1所述的触觉反馈模组,其中,所述第一导电层的至少部分区域或所述第二导电层的至少部分区域接入所述第一电压。
  3. 根据权利要求2所述的触觉反馈模组,其中,在所述第一电压用于为所述第一导电层的至少部分区域提供交流电的情况下,所述第二导电层的至少部分区域接入第二电压,所述第二电压用于为所述第二导电层的至少部分区域提供直流电。
  4. 根据权利要求2所述的触觉反馈模组,其中,在所述第一电压用于为所述第二导电层的至少部分区域提供交流电的情况下,所述第一导电层的至少部分区域接入第二电压,所述第二电压用于为所述第一导电层的至少部分区域提供直流电。
  5. 根据权利要求1所述的触觉反馈模组,其中,所述第一导电层和所述第二导电层分别包括多条阵列排布的导电线,且所述第一导电层中的导电线与所述第二导电层中的导电线交错设置。
  6. 根据权利要求1所述的触觉反馈模组,其中,所述第二导电层与所述屏幕连接。
  7. 根据权利要求5所述的触觉反馈模组,其中,所述第二导电层与所述屏幕通过光学胶连接。
  8. 根据权利要求1所述的触觉反馈模组,其中,所述第一导电层内嵌在所述第一表面。
  9. 根据权利要求1所述的触觉反馈模组,其中,所述第一导电层与所述第二导电层之间相隔预设距离。
  10. 根据权利要求1所述的触觉反馈模组,其中,所述第一导电层和所述第二导电层的材料为氧化铟锡、纳米银和有机聚合物中的至少一种。
  11. 一种电子设备,包括如权利要求1至10任一项所述的触觉反馈模组,还包括:
    处理器,所述处理器与所述第一导电层和所述第二导电层分别连接,所述处理器用于控制所述第一导电层的至少部分区域或所述第二导电层的至少部分区域接入所述第一电压。
  12. 根据权利要求11所述的电子设备,其中,在所述第一电压用于为所述第一导电层的至少部分区域提供交流电的情况下,所述处理器还用于控制所述第二导电层的至少部分区域接入第二电压,所述第二电压用于为所述第二导电层的至少部分区域提供直流电。
  13. 根据权利要求11所述的电子设备,其中,在所述第一电压用于为所述第二导电层的至少部分区域提供交流电的情况下,所述处理器还用于控制所述第一导电层的至少部分区域接入第二电压,所述第二电压用于为所述第一导电层的至少部分区域提供直流电。
PCT/CN2021/140448 2020-12-25 2021-12-22 触觉反馈模组及电子设备 WO2022135466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011563279.6A CN112527122B (zh) 2020-12-25 2020-12-25 触觉反馈模组及电子设备
CN202011563279.6 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135466A1 true WO2022135466A1 (zh) 2022-06-30

Family

ID=74976463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140448 WO2022135466A1 (zh) 2020-12-25 2021-12-22 触觉反馈模组及电子设备

Country Status (2)

Country Link
CN (1) CN112527122B (zh)
WO (1) WO2022135466A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112527122B (zh) * 2020-12-25 2023-08-01 维沃移动通信有限公司 触觉反馈模组及电子设备
WO2023178676A1 (zh) * 2022-03-25 2023-09-28 京东方科技集团股份有限公司 触觉反馈基板及触觉反馈装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307789A1 (en) * 2012-05-17 2013-11-21 Sharp Kabushiki Kaisha Touch-screen device including tactile feedback actuator
CN105718106A (zh) * 2014-12-18 2016-06-29 乐金显示有限公司 触敏装置以及包括该触敏装置的显示装置
CN106997248A (zh) * 2015-12-30 2017-08-01 乐金显示有限公司 显示装置及其驱动方法
CN107024983A (zh) * 2015-12-18 2017-08-08 意美森公司 多功能触觉输出装置的***和方法
CN112527122A (zh) * 2020-12-25 2021-03-19 维沃移动通信有限公司 触觉反馈模组及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274908B1 (ko) * 2015-04-30 2021-07-08 엘지디스플레이 주식회사 햅틱 구동 장치 및 햅틱 기능을 갖는 전자 기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307789A1 (en) * 2012-05-17 2013-11-21 Sharp Kabushiki Kaisha Touch-screen device including tactile feedback actuator
CN105718106A (zh) * 2014-12-18 2016-06-29 乐金显示有限公司 触敏装置以及包括该触敏装置的显示装置
CN107024983A (zh) * 2015-12-18 2017-08-08 意美森公司 多功能触觉输出装置的***和方法
CN106997248A (zh) * 2015-12-30 2017-08-01 乐金显示有限公司 显示装置及其驱动方法
CN112527122A (zh) * 2020-12-25 2021-03-19 维沃移动通信有限公司 触觉反馈模组及电子设备

Also Published As

Publication number Publication date
CN112527122A (zh) 2021-03-19
CN112527122B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2022135466A1 (zh) 触觉反馈模组及电子设备
JP5749277B2 (ja) 半導体材料を含む複合部分を有する触覚刺激装置
US9454880B2 (en) Method and apparatus for sensory stimulation
KR101506511B1 (ko) 정전 용량성 위치 및 압력 터치 센싱 장치
US9377908B2 (en) Haptic actuating touch screen
CN101714026B (zh) 用户接口反馈装置、用户接口反馈方法和程序
JP3798287B2 (ja) タッチパネル入力装置
WO2014137103A1 (ko) 압전 고분자를 이용한 햅틱 피드백 스크린
US10572021B2 (en) Elastomer suspension with actuation functionality or sensing functionality
KR20130109288A (ko) 터치 패널 및 이의 제조 방법
KR101416722B1 (ko) 정전기력을 이용한 촉각 피드백 생성 장치, 그 제어방법 및 상기 촉각 피드백 생성 장치의 제조방법
KR102205369B1 (ko) 전자 디바이스를 위한 촉각적 사용자 인터페이스
KR20130109027A (ko) 촉감을 발생시키는 터치 스크린
KR101566775B1 (ko) 어레이형 구조의 액추에이터와 그 제어방법 및 그 제조방법
TWI514196B (zh) 觸覺回饋裝置
KR102205271B1 (ko) 햅틱 디스플레이
Kim et al. 39‐3: An Electrostatic Haptic Display with a Projected Capacitive Touch Screen
KR101859509B1 (ko) 주름 패턴의 간격 및 높이 변화를 이용한 질감 제시형 햅틱 디스플레이 패널 및 그의 제조 방법
KR20120015184A (ko) 터치 패널
KR20200007168A (ko) 촉각피드백 장치
US9886146B2 (en) Active graphene touch switch for electronic devices
KR101495000B1 (ko) 촉각 디스플레이 액추에이터
WO2021092785A1 (zh) 触觉反馈模组、触摸屏、键盘及电子装置
KR20150010418A (ko) 터치스크린 패널 장치 및 그의 제어 방법
WO2018179471A1 (ja) 感圧式静電スイッチおよび電気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909461

Country of ref document: EP

Kind code of ref document: A1