WO2022134796A1 - 一种双金属复合管水压复合在线应变监测控制***及方法 - Google Patents

一种双金属复合管水压复合在线应变监测控制***及方法 Download PDF

Info

Publication number
WO2022134796A1
WO2022134796A1 PCT/CN2021/124939 CN2021124939W WO2022134796A1 WO 2022134796 A1 WO2022134796 A1 WO 2022134796A1 CN 2021124939 W CN2021124939 W CN 2021124939W WO 2022134796 A1 WO2022134796 A1 WO 2022134796A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
composite pipe
bimetallic
hydraulic
laser displacement
Prior art date
Application number
PCT/CN2021/124939
Other languages
English (en)
French (fr)
Inventor
张迪超
张立君
张驰
孙彦青
杜卫峰
王斌
王化宇
王文强
谢君杰
王刚
朱烨
Original Assignee
西安向阳航天材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安向阳航天材料股份有限公司 filed Critical 西安向阳航天材料股份有限公司
Publication of WO2022134796A1 publication Critical patent/WO2022134796A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the invention belongs to the technical field of detection of a bimetallic composite pipe, and particularly relates to a system and a method for monitoring and controlling the on-line strain of the water pressure composite of the bimetallic composite pipe.
  • bimetallic composite pipes have been widely used in the petroleum and chemical industries.
  • the base pipe and the lining pipe need to be pressed together to make the base pipe and the lining pipe close.
  • the composite pipe will generate radial strain during the pressurization process, and the standard stipulates that the strain after pressurization does not exceed 1.5D%. Therefore, it is necessary to detect the strain size during the pressing process to determine whether the standard requirements are met.
  • the current detection method is to attach strain gauges on the outer wall of the tube to detect the strain changes during the pressurization process, but this method needs to paste the strain gauges before the pressurization and connect the lines during operation, which is inefficient and cannot be detected one by one. It is not suitable for continuous online detection during the pressurization process, and cannot achieve efficient real-time online measurement.
  • the present invention provides an on-line strain monitoring and control system and method for the hydrostatic compounding of a bimetallic composite pipe, which can detect the radial strain of the pipe on-line in real-time during the process of hydrostatic compounding, and does not need to provide
  • Each composite tube is attached with a strain gauge, and at the same time, it can control the pressure of hydraulic composite, so as to control and improve the quality of hydraulic composite, and realize efficient real-time online measurement control.
  • one aspect of the present invention provides a bimetallic composite pipe hydraulic composite on-line strain monitoring and control system, including a laser displacement sensor, a power supply, a dynamic strain gauge and a test computer.
  • a laser displacement sensor On the hydraulic composite equipment of the bimetallic composite tube and corresponding to the bimetallic composite tube, the emitted laser of the laser displacement sensor is perpendicular to the axis of the bimetallic composite tube;
  • the dynamic strain gauge is respectively connected to the laser displacement sensor and the test computer in communication, and the laser displacement sensor, the dynamic strain gauge and the test computer are all electrically connected to the power supply;
  • the laser displacement sensor is used for Monitoring the displacement of the bimetallic composite pipe and converting the displacement signal into a voltage signal and feeding it back to the dynamic strain gauge,
  • the dynamic strain gauge is used to obtain the radial strain data of the bimetallic composite pipe according to the voltage signal and transmit the radial strain data to the test computer
  • the test computer is used for judging the radial strain result of the bimetallic composite pipe according to the radial strain data. If the diameter of the bimetallic composite pipe is When the strain result exceeds a preset threshold, the test computer controls the hydraulic compound device to adjust the water pressure.
  • the number of the laser displacement sensors is at least two, and the at least two laser displacement sensors are arranged at intervals along the axis direction of the bimetallic composite tube.
  • the on-line strain monitoring and control system for the water pressure composite of the bimetallic composite pipe further includes a first magnet ring, and the laser displacement sensor is adsorbed on the water pressure composite device through the first magnet ring.
  • the bimetallic composite pipe water pressure composite on-line strain monitoring and control system further includes a cable, and the cable is connected between the laser displacement sensor and the power supply and between the dynamic strain gauge and the power supply. cable connection.
  • the bimetallic composite pipe water pressure composite online strain monitoring and control system further includes a second magnet ring, the cable is provided with the second magnet ring, and the second magnet ring is used for adsorbing on the on the hydraulic composite device, so that the cable is routed along the hydraulic composite device.
  • the bimetallic composite pipe water pressure composite on-line strain monitoring and control system further includes a power adapter, and the power adapter is electrically connected between the laser displacement sensor and the power source.
  • the bimetal composite pipe water pressure composite on-line strain monitoring and control system further includes a USB cable, and the dynamic strain gauge and the test computer are communicatively connected through the USB cable.
  • Another aspect of the present invention also provides a bimetallic composite pipe water pressure composite on-line strain monitoring and control method, using the above-mentioned a kind of bimetallic composite pipe water pressure composite on-line strain monitoring and control system, comprising the following steps:
  • Step 1 Install the mold for the hydraulic composite equipment, calculate the pressure value of the hydraulic composite equipment and input it into the controller of the hydraulic composite equipment, insert the liner of the bimetallic composite pipe into the base pipe for assembly and seal, and then install it in the hydraulic composite equipment ;
  • Step 2 The distance between the laser displacement sensor and the surface of the bimetallic composite pipe is measured, and the distance is set to zero, and then the hydraulic composite equipment is started to pressurize slowly.
  • the laser displacement sensor monitors the displacement signal of the bimetallic composite pipe in real time and converts it.
  • the voltage signal is fed back to the dynamic strain gauge, and the dynamic strain gauge obtains the radial strain data of the bimetallic composite pipe and sends it to the test computer;
  • Step 3 The user obtains the radial strain result through the test computer, and controls the water pressure by controlling the controller of the hydraulic composite equipment; or the test computer compares the radial strain result with the set threshold, and if it exceeds the threshold, sends a control command to control
  • the water pressure compound device adjusts the water pressure.
  • an exhaust hole is provided in the base pipe to discharge the air in the inner and outer metal gaps of the bimetallic composite pipe during the hydraulic composite process.
  • the present invention installs a laser displacement sensor at the position corresponding to the bimetallic composite pipe of the hydraulic composite equipment, the laser light emitted by the laser displacement sensor is perpendicular to the axis of the bimetallic composite pipe, and the laser displacement sensor can monitor the bimetallic composite pipe in real time.
  • the displacement signal of the tube is converted into a voltage signal and fed back to the dynamic strain gauge.
  • the dynamic strain gauge can obtain the radial strain data of the bimetallic composite tube according to the displacement signal fed back by the laser displacement sensor, and the test computer can obtain the bimetallic composite tube from the dynamic strain gauge.
  • the radial strain data of the bimetallic composite pipe is obtained and the radial strain result of the bimetallic composite pipe is judged.
  • the hydraulic composite equipment is controlled to adjust the water pressure.
  • the loading, pressurizing and unloading of the pipe will not be interrupted, and there is no need to attach strain gauges and tooling to the pipe wall.
  • Monitor the radial change of the bimetallic composite pipe in the hydraulic process one by one control the composite pressure value of the bimetallic composite pipe in real time, adjust the pressure value of the hydraulic composite in time according to the strain, improve the effect and efficiency of the hydraulic composite, thereby strengthening the composite Tube quality control.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention.
  • 1-laser displacement sensor 2-power supply
  • 3-dynamic strain gauge 4-USB cable
  • 5-test computer 6-power adapter
  • 7-water pressure composite equipment 8-cable.
  • An embodiment of the present invention provides an online strain monitoring and control system for bimetallic composite pipe hydrostatic composite, referring to FIG. 1 , which specifically includes a laser displacement sensor 1 installed in a hydraulic composite device 7 , and the laser displacement sensor 1 is communicatively connected with dynamic strain.
  • the instrument 3, the dynamic strain gauge 3 are connected to the test computer 5 in communication, the laser displacement sensor 1, the dynamic strain gauge 3 and the test computer 5 are all electrically connected to the power supply 2, and a bimetallic composite pipe is installed on the hydraulic composite equipment 7.
  • the laser displacement sensor 1 corresponds to the bimetallic composite tube, and the laser light emitted by the laser displacement sensor 1 is perpendicular to the axis of the bimetallic composite tube; the laser displacement sensor 1 can monitor the displacement signal of the bimetallic composite tube in real time and convert it into a voltage signal to feed back to the dynamic strain.
  • Instrument 3 and dynamic strain gauge 3 can obtain the radial strain data of the bimetallic composite pipe according to the displacement signal fed back by the laser displacement sensor 1, and the test computer 5 can obtain the radial strain data of the bimetallic composite pipe from the dynamic strain gauge 3 and judge the double metal composite pipe. If the radial strain result of the metal composite pipe exceeds the preset threshold, the water pressure composite device 7 is controlled to adjust the water pressure.
  • the embodiment of the present invention realizes the real-time monitoring of the hydraulic composite process of the bimetal composite pipe, does not need to operate in the production process, does not interrupt the loading, pressurization and unloading of the pipe, and does not need to attach strain gauges and tooling on the pipe wall , can monitor the radial change of the bimetallic composite pipe in the process of hydraulic compounding in real time online, monitor the radial change of the bimetallic composite pipe in the hydraulic process one by one, and control the composite pressure value of the bimetallic composite pipe in real time.
  • the strain adjusts the pressure value of the water pressure compounding in time to improve the effect and efficiency of the water pressure compounding, thereby strengthening the quality control of the compound pipe.
  • the user can obtain the radial strain results through the test computer 5 , judge the radial change trend of the pipe material during the hydraulic compounding process of the bimetallic composite pipe by himself according to the radial strain results, and control the hydraulic compounding equipment 7 by manipulating the control or the test computer 5 sets a threshold value, compares the radial strain result with the set threshold value, if it exceeds the threshold value, it sends a control command to automatically control the hydraulic pressure composite device 7 to adjust the water pressure to The strain during the hydraulic compounding process of the bimetallic compound pipe does not exceed 1.5D%, which meets the technological requirements.
  • the hydraulic composite device 7 includes an upper holding mold and a lower holding mold that are oppositely arranged, and the laser displacement sensor 1 is installed on the upper holding mold or the lower holding mold.
  • the number of the laser displacement sensors 1 is at least two, and the at least two laser displacement sensors 1 are arranged at intervals along the axis direction of the bimetallic composite tube.
  • at least two laser displacement sensors 1 are installed on the upper holding mold or the lower holding mold along the axis of the bimetallic composite pipe, and the multiple laser displacement sensors 1 can realize all-round monitoring of the bimetallic composite pipe.
  • two laser displacement sensors 1 are provided. It can be understood that, in other embodiments, three or four or five laser displacement sensors 1 may be provided.
  • the on-line strain monitoring and control system for the hydraulic compounding of the bimetallic compound pipe further includes a first magnet ring, and the laser displacement sensor 1 is adsorbed on the hydraulic compounding device 7 through the first magnet ring.
  • the laser displacement sensor 1 is magnetically adsorbed to the first magnet ring, and the first magnet ring is magnetically adsorbed to the hydraulic compound device 7, which facilitates the installation and disassembly of the laser displacement sensor 1 and is easy to operate.
  • the bimetallic composite pipe water pressure composite on-line strain monitoring and control system further includes a power adapter 6 , and the power adapter 6 is electrically connected between the laser displacement sensor 1 and the power source 2 .
  • the power adapter 6 is electrically connected to the power adapter 6 through the laser displacement sensor 1
  • the power adapter 6 is electrically connected to the power source 2 .
  • Multiple laser displacement sensors 1 are powered by the power adapter 6 to ensure the normal operation and power supply of the laser displacement sensor 1 .
  • two laser displacement sensors 1 are electrically connected to one power adapter 6 . It can be understood that, in other embodiments, one laser displacement sensor 1 can be electrically connected to one power adapter 6 .
  • the bimetallic composite pipe water pressure composite on-line strain monitoring and control system further includes a cable 8 , and the laser displacement sensor 1 and the power source 2 and the dynamic strain gauge 3 and the power source 2 are electrically connected through the cable 8 .
  • wireless connections are also possible between the laser displacement sensor 1 and the power source 2 and between the dynamic strain gauge 3 and the power source 2 .
  • the on-line strain monitoring and control system for the water pressure compounding of the bimetallic compound pipe further includes a second magnet ring, the cable 8 is provided with a second magnet ring, and the second magnet ring is used to be adsorbed on the water pressure compounding device 7, so that the The cable 8 is routed along the hydraulic composite device 7 .
  • a second magnet ring is provided on the cable 8 , and the second magnet ring is magnetically adsorbed on the casing of the hydraulic composite device 7 . This arrangement facilitates the routing of the cable 8 and facilitates installation and disassembly.
  • the bimetallic composite pipe water pressure composite on-line strain monitoring and control system further includes a USB cable 4 , and the dynamic strain gauge 3 and the test computer 5 are communicatively connected through the USB cable 4 .
  • the USB cable 4 By setting the USB cable 4, the reliability of data transmission is guaranteed.
  • the hydraulic compound equipment 7 in this embodiment adopts a 140Mpa hydraulic compound machine supplied in a complete set by China Heavy Machinery Research Institute Co., Ltd.
  • the working principle of the system in this embodiment every time a new bimetallic composite pipe is sent into the holding mold, the initial static state is regarded as 0 point.
  • the deformation of the composite tube with the pressure the laser displacement sensor 1 monitors the displacement signal in real time and converts it into a voltage signal, and then the laser displacement sensor 1 transmits the voltage signal to the dynamic strain gauge 3 in real time.
  • the dynamic strain gauge 3 and the test computer 5 are connected through a USB cable 4 is connected, the staff can observe the test data and status of the test piece on the back-end test computer 5, and can manually observe the data in real time or set the upper limit threshold to determine the test result of the test piece.
  • the test data can be read and displayed in the form of voltage, or it can be converted into actual deformation and displacement data and displayed according to the sensitivity coefficient of the sensor.
  • the embodiment of the present invention also provides an online strain monitoring and control method for the water pressure composite of the bimetallic composite pipe, which includes the following steps:
  • Step 1 Install the mold, input the relevant data (batch, specification, material, pipe number, etc.) into the software of the 140MPa hydraulic press, insert the liner into the base pipe and assemble it in the hydraulic press, assemble and seal, and be careful not to move and assemble. bruise the end of the tube;
  • Step 2 Start the hydraulic composite online strain monitoring system, record the pipe diameter of the bimetal composite pipe when it is not pressurized, and then start to slowly inject water into the bimetal composite pipe to pressurize. During the pressurization process, the bimetal composite pipe will have diameters. to change;
  • Step 3 Monitor the pipe diameter of the bimetallic composite pipe while the water pressure is compounding, adjust the pressure value set during the water pressure compounding in time according to the change of the pipe diameter, and control the quality and effect of the water pressure compounding, which can effectively ensure the water pressure. The effect of pressure compounding, control and improve the quality of the pipe.
  • Step 1 Install the corresponding mold on the 140MPa hydraulic press, input the calculated pressure value and other data required for compounding into the controller, insert the liner into the base pipe, assemble and seal, and open two exhausts in the base pipe
  • the air existing in the gap between the two layers of metal inside and outside the bimetallic composite pipe can be discharged through the vent hole, and the bimetallic composite pipe is assembled on the hydraulic press, and care should be taken not to damage the pipe end during the movement and assembly process;
  • Step 2 Start the hydraulic composite on-line strain detection system, use the laser displacement sensor 1 to measure the distance from the surface of the bimetallic composite pipe at this time, set the distance to zero, and then start the hydraulic press to slowly pressurize the bimetallic composite pipe. Due to the deformation caused by the pressure, the laser displacement sensor 1 monitors the displacement signal in real time and converts it into a voltage signal, and then the laser displacement sensor 1 transmits the voltage signal to the dynamic strain gauge 3 in real time.
  • the dynamic strain gauge 3 is connected with the test computer 5 through the USB cable 4. The staff can observe the test data and status of the test piece on the back-end test computer 5, and can manually observe the data in real time or set the upper limit threshold to determine the test result of the test piece;
  • Step 3 Use the hydraulic composite online strain detection system to change the distance between the laser displacement sensor 1 and the surface of the base tube in real time, and convert it into the radial change of the bimetal composite tube through the rear test computer 5.
  • adjust the pressure value in time avoid the situation that the diameter of the composite pipe exceeds the allowable limit, so as to control the quality and effect of the hydraulic composite.
  • the user can obtain the radial strain result through the test computer 5, and control the water pressure by controlling the controller of the hydraulic composite device 7; or the test computer 5 compares the radial strain result with the set threshold, and if it exceeds the threshold, it will send The control command controls the water pressure compound device 7 to adjust the water pressure.
  • the present invention uses a hydraulic composite on-line strain monitoring system composed of a laser displacement sensor 1 and a data acquisition instrument.
  • the data acquisition instrument includes a dynamic strain instrument 3 and a test computer 5 .
  • the monitoring system is mainly used to test the change of the pipe diameter of the composite pipe when it is pressurized during the hydraulic composite process. According to the change of the diameter of the pipe and the feedback of the operating system, the staff adjust the pressure value in time to avoid the situation that the pipe diameter of the composite pipe exceeds the allowable limit of 1.5D%, so as to control the quality and effect of the hydraulic composite.
  • the system of the invention is non-contact measurement, and without changing the original tooling and interrupting the production process, it only needs to install lines and sensors in advance to measure the deformation amount on the axis of the pipe, and by monitoring the deformation value of the composite pipe in real time, In the production process, the stress size and rate during hydraulic compounding can be adjusted according to the deformation value, so as to control and improve the quality of the pipe.
  • the invention installs the monitoring system before the test, does not need to operate in the production process, does not interrupt the loading, pressurization and unloading of the pipe, does not need to attach strain gauges and tooling on the pipe wall, and can continuously measure the strain on-line one by one in real time. According to the strain, the pressure value of the hydraulic composite can be adjusted in time to improve the effect and efficiency of the hydraulic composite, thereby strengthening the quality control of the bimetal composite pipe.
  • the invention realizes real-time online detection of the radial change of the composite pipe in the process of water pressure compounding, can detect the radial change of the composite pipe in the water pressure process one by one, control the compound pressure of the composite pipe in real time, and can detect the radial change of the composite pipe one by one during the water pressure compounding process.
  • the radial strain of the pipe is detected online in real time, and there is no need to attach strain gauges to each composite pipe.
  • the pressure of the hydraulic composite can be controlled, so as to control and improve the quality of the hydraulic composite, and realize efficient real-time online measurement and control. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种双金属复合管水压复合在线应变监测控制***及方法,***包括安装于水压复合设备(7)的激光位移传感器(1),激光位移传感器(1)通信连接有动态应变仪(3),动态应变仪(3)通信连接有测试电脑(5),激光位移传感器(1)、动态应变仪(3)和测试电脑(5)均电连接至电源(2),水压复合设备(7)上安装有双金属复合管,激光位移传感器(1)的位置与双金属复合管对应,且激光位移传感器(1)的发射激光垂直于双金属复合管的轴线。

Description

一种双金属复合管水压复合在线应变监测控制***及方法 技术领域
本发明属于双金属复合管的检测技术领域,具体涉及一种双金属复合管水压复合在线应变监测控制***及方法。
背景技术
近些年,由于双金属复合管的耐高压、耐腐蚀等优良的使用性能,双金属复合管在石油、化工行业得到了广泛地应用。双金属复合管在进行基衬装配工序后,需要通过加压复合来让基管和衬管贴紧,目前主要有爆燃复合和水压复合两种复合方式。在水压复合过程中,复合管在加压过程中会产生径向应变,标准规定加压后的应变不超过1.5D%。因此需要检测加压过程中的应变大小以判定是否满足标准要求。目前的检测方法是在管外壁上贴应变片,检测加压过程的应变变化,但此方法需要在加压前粘贴应变片,并在工作时连接线路,效率低,无法实现逐根检测,且不适合加压过程中连续的在线检测,无法实现高效地实时在线测量。
发明内容
为了解决现有技术中的问题,本发明提供了一种双金属复合管水压复合在线应变监测控制***及方法,能够在水压复合的过程中实时在线检测管材的径向应变,不需要给每一根复合管贴应变片,同时可以控制水压复合的压力大小,从而控制和提高水压复合的质量,实现高效地实时在线测量控制。
为了实现以上目的,本发明一方面提供了一种双金属复合管水压复合在线应变监测控制***,包括激光位移传感器、电源、动态应变仪和测试电脑,所述激光位移传感器安装于用于安装双金属复合管的水压复合设备上且与所述双金属复合管相对应,所述激光位移传感器的发射激光垂直于所述双金属复合管的轴线;
所述动态应变仪分别通信连接所述激光位移传感器和所述测试电脑,并且所 述激光位移传感器、所述动态应变仪和所述测试电脑均电连接所述电源;所述激光位移传感器用于监测所述双金属复合管的位移情况并将位移信号转换成电压信号反馈给所述动态应变仪,所述动态应变仪用于根据所述电压信号获得所述双金属复合管的径向应变数据并将所述径向应变数据传输给所述测试电脑,所述测试电脑用于根据所述径向应变数据判断所述双金属复合管的径向应变结果,若所述双金属复合管的径向应变结果超出预设阈值,所述测试电脑控制所述水压复合设备调整水压。
进一步地,所述激光位移传感器的数量为至少两个,至少两个所述激光位移传感器沿所述双金属复合管的轴线方向间隔设置。
进一步地,所述双金属复合管水压复合在线应变监测控制***还包括第一磁铁环,所述激光位移传感器通过所述第一磁铁环吸附于所述水压复合设备上。
进一步地,所述双金属复合管水压复合在线应变监测控制***还包括线缆,所述激光位移传感器和所述电源之间以及所述动态应变仪和所述电源之间均通过所述线缆电性连接。
进一步地,所述双金属复合管水压复合在线应变监测控制***还包括第二磁铁环,所述线缆上设有所述第二磁铁环,所述第二磁铁环用于吸附于所述水压复合设备上,以使所述线缆沿所述水压复合设备走线。
进一步地,所述双金属复合管水压复合在线应变监测控制***还包括电源适配器,所述电源适配器电连接于所述激光位移传感器和所述电源之间。
进一步地,所述双金属复合管水压复合在线应变监测控制***还包括USB电缆,所述动态应变仪和所述测试电脑之间通过所述USB电缆通信连接。
本发明另一方面还提供了一种双金属复合管水压复合在线应变监测控制方 法,采用上述的一种双金属复合管水压复合在线应变监测控制***,包括以下步骤:
步骤一、水压复合设备安装模具,并计算水压复合的压力值并输入水压复合设备的控制器,将双金属复合管的衬管***基管内部进行装配密封后安装于水压复合设备;
步骤二、激光位移传感器测量与双金属复合管的表面的间距,并将此间距设定为零点,然后启动水压复合设备缓慢加压,激光位移传感器实时监测双金属复合管的位移信号并转换成电压信号反馈给动态应变仪,动态应变仪得到双金属复合管的径向应变数据并发送给测试电脑;
步骤三:用户通过测试电脑获取径向应变结果,通过操控水压复合设备的控制器控制水压;或者测试电脑将径向应变结果与设定的阈值比较,若超出阈值,则发送控制指令控制所述水压复合设备调整水压。
进一步地,所述步骤一中在基管开设排气孔,用于排出水压复合过程中双金属复合管的内外两层金属间隙中的空气。
与现有技术相比,本发明在水压复合设备对应双金属复合管的位置安装激光位移传感器,激光位移传感器的发射激光垂直于双金属复合管的轴线,激光位移传感器能够实时监测双金属复合管的位移信号并转换成电压信号反馈给动态应变仪,动态应变仪能够根据激光位移传感器反馈的位移信号得到双金属复合管的径向应变数据,测试电脑能够从动态应变仪获取双金属复合管的径向应变数据并判断双金属复合管的径向应变结果,若超出阈值,则控制水压复合设备调整水压,本发明实现了双金属复合管水压复合过程的实时监测,不需要在生产过程中操作,不会打断管材的装载、加压和卸载,不需要在管壁上贴应变片和工装,能够实时在线监测双金属复合管水压复合过程中管材的径向变化,能够逐根监测双金属复 合管在水压过程中的径向变化,实时控制双金属复合管的复合压力值,根据应变及时调节水压复合的压力值,提高水压复合效果和效率,从而加强复合管的质量控制。
附图说明
图1是本发明实施例的结构示意图。
其中,1-激光位移传感器,2-电源,3-动态应变仪,4-USB电缆,5-测试电脑,6-电源适配器,7-水压复合设备,8-线缆。
具体实施方式
下面结合说明书附图和具体的实施例对本发明作进一步地解释说明,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例提供了一种双金属复合管水压复合在线应变监测控制***,参见图1,其具体包括安装于水压复合设备7的激光位移传感器1,激光位移传感器1通信连接有动态应变仪3,动态应变仪3通信连接有测试电脑5,激光位移传感器1、动态应变仪3和测试电脑5均电连接至电源2,水压复合设备7上安装有双金属复合管,激光位移传感器1的位置与双金属复合管对应,且激光位移传感器1的发射激光垂直于双金属复合管的轴线;激光位移传感器1能够实时监测双金属复合管的位移信号并转换成电压信号反馈给动态应变仪3,动态应变仪3能够根据激光位移传感器1反馈的位移信号得到双金属复合管的径向应变数据,测试电脑5能够从动态应变仪3获取双金属复合管的径向应变数据并判断双金属复合管的径向应变结果,若超出预设阈值,则控制水压复合设备7调整水压。
本发明实施例实现了双金属复合管水压复合过程的实时监测,不需要在生产过程中操作,不会打断管材的装载、加压和卸载,不需要在管壁上贴应变片和工装,能够实时在线监测双金属复合管水压复合过程中管材的径向变化,能够逐根监测双金属复合管在水压过程中的径向变化,实时控制双金属复合管的复合压力值,根据应变及时调节水压复合的压力值,提高水压复合效果和效率,从而加强复合管的质量控制。
本实施例中,用户可以通过测试电脑5获取径向应变结果,根据径向应变结果自行判断双金属复合管水压复合过程中管材的径向变化趋势,并通过操控水压复合设备7的控制器控制水压,实现复合压力值调整;或者测试电脑5设置阈值,将径向应变结果与设定的阈值比较,若超出阈值,则发送控制指令自动控制水压复合设备7调整水压,以使双金属复合管水压复合过程中应变不超过1.5D%,满足工艺要求。
具体地,水压复合设备7包括相对设置的上部抱持模具和下部抱持模具,激光位移传感器1安装于上部抱持模具或下部抱持模具。
优选地,激光位移传感器1的数量为至少两个,至少两个激光位移传感器1沿双金属复合管的轴线方向间隔设置。实际应用中,上部抱持模具或下部抱持模具上沿双金属复合管的轴线方向安装有至少两个激光位移传感器1,通过多个激光位移传感器1实现对双金属复合管的全方位监测。本实施例中,设有两个激光位移传感器1。可以理解,在其他实施例中,激光位移传感器1可以设置三个或者四个或者五个。
优选地,双金属复合管水压复合在线应变监测控制***还包括第一磁铁环,激光位移传感器1通过第一磁铁环吸附于水压复合设备7上。实际应用中,激光位移传感器1磁性吸附于第一磁铁环,第一磁铁环磁性吸附于水压复合设备7, 这样便于激光位移传感器1的安装拆卸,操作简便。
优选地,双金属复合管水压复合在线应变监测控制***还包括电源适配器6,电源适配器6电连接于激光位移传感器1和电源2之间。通过激光位移传感器1电连接电源适配器6,电源适配器6电连接至电源2,多个激光位移传感器1通过电源适配器6进行配电,以保证激光位移传感器1正常的工作供电。本实施例中,两个激光位移传感器1电连接于一个电源适配器6。可以理解,在其他实施例中,一个激光位移传感器1电连接一个电源适配器6也是可以的。
优选地,双金属复合管水压复合在线应变监测控制***还包括线缆8,激光位移传感器1和电源2之间以及动态应变仪3和电源2之间均通过线缆8电性连接。当然,在其他实施例中,激光位移传感器1和电源2之间以及动态应变仪3和电源2之间均通过无线电性连接也是可以的。
优选地,双金属复合管水压复合在线应变监测控制***还包括第二磁铁环,线缆8上设有第二磁铁环,第二磁铁环用于吸附于水压复合设备7上,以使线缆8沿水压复合设备7走线。具体地,线缆8上设置有第二磁铁环,第二磁铁环磁性吸附于水压复合设备7的外壳。如此设置便于线缆8走线,安装拆卸方便。
优选地,双金属复合管水压复合在线应变监测控制***还包括USB电缆4,动态应变仪3和测试电脑5之间通过USB电缆4通信连接。通过设置USB电缆4,保证数据传输的可靠性。
本实施例的水压复合设备7采用使用中国重型机械研究院股份公司成套供货的140Mpa水压复合机。
本实施例***的工作原理:每次在新的双金属复合管送入抱持模具后,将初始的静止状态认为是0点,在双金属复合管水压受压变化的过程中,双金属复合管随着压力产生的变形,激光位移传感器1实时监测位移信号并转换成电压信 号,然后激光位移传感器1将电压信号实时传递给动态应变仪3,动态应变仪3与测试电脑5通过USB电缆4相连,工作人员可以在后端的测试电脑5上观测试件的检测数据和状态,可以实时人工观测数据或设定上限阈值,来判定试件检测结果。测试数据可以电压形式读取显示,也可以根据传感器的灵敏度系数,换算成实际的形变位移数据显示。
本发明实施例还提供了一种双金属复合管水压复合在线应变监测控制方法,包括以下步骤:
步骤一、安装模具,将相关数据(批次、规格、材质、管号等)输入140MPa水压机的软件中,将衬管***基管装配于水压机,进行装配密封,移动及装配过程中应注意不要碰伤管端;
步骤二、启动水压复合在线应变监测***,记录双金属复合管未加压时的管径,然后开始向双金属复合管内部缓慢注水加压,在加压过程中双金属复合管会发生径向变化;
步骤三、在水压复合的同时监测双金属复合管的管径,依据管径变化的大小,及时调节水压复合时设定的压力值,控制水压复合的质量和效果,可以有效保证水压复合的效果,控制和提高管材的质量。
具体包括以下步骤:
步骤一、在140MPa水压机上安装对应的模具,同时将计算得出的复合所需的压力值等数据输入控制器,将衬管***基管内部,进行装配密封,在基管开设两个排气孔,水压复合过程存在于双金属复合管内外两层金属间隙中的空气可由排气孔排出,将双金属复合管装配上水压机,移动及装配过程中应注意不要碰伤管端;
步骤二、启动水压复合在线应变检测***,使用激光位移传感器1测量此时 与双金属复合管表面的间距,将此间距设定为零点,然后启动水压机开始缓慢加压,双金属复合管随着压力产生的变形,激光位移传感器1实时监测位移信号并转换成电压信号,然后激光位移传感器1将电压信号实时传递给动态应变仪3,动态应变仪3与测试电脑5通过USB电缆4相连,工作人员可以在后端的测试电脑5上观测试件的检测数据和状态,可以实时人工观测数据或设定上限阈值,来判定试件检测结果;
步骤三、使用水压复合在线应变检测***实时激光位移传感器1和基管表面的间距变化,通过后方测试电脑5转变为双金属复合管的径向变化,依据管径变化的大小及操作***的反馈,及时调节压力值,避免产生复合管的管径超出许可限制的情况,从而控制水压复合的质量和效果。这里用户可以通过测试电脑5获取径向应变结果,自行通过操控水压复合设备7的控制器控制水压;或者测试电脑5将径向应变结果与设定的阈值比较,若超出阈值,则发送控制指令控制水压复合设备7调整水压。
本发明使用由激光位移传感器1和数据采集仪组成的水压复合在线应变监测***,数据采集仪包括动态应变仪3和测试电脑5。监测***主要用于在水压复合过程中测试复合管在加压时的管径变化。工作人员依据管径变化的大小及操作***的反馈,及时调节压力值,避免产生复合管的管径超出许可限制1.5D%的情况,从而控制水压复合的质量和效果。本发明***为非接触测量,在不改变原有工装和打断生产工序的情况下,仅需要事前安装线路和传感器,就可以测量管材轴线上的形变量,通过实时监控复合管形变值,在生产过程中可以根据形变值来调节水压复合时的应力大小和速率,从而控制和提高管材的质量。
本发明在测试前安装监测***,不需要在生产过程中操作,不会打断管材的装载、加压和卸载,不需要在管壁上贴应变片和工装,可以逐根连续实时在线测 量应变数据,根据应变及时调节水压复合的压力值,提高水压复合效果和效率,从而加强双金属复合管的质量控制,同时本发明***可以适应不同规格的管材,根据实际需求进行安装拆卸。
本发明实现了实时在线检测复合管水压复合过程中管材的径向变化,能够逐根检测复合管在水压过程中的径向变化,实时控制复合管的复合压力,可以在水压复合的过程中实时在线检测管材的径向应变,不需要给每一根复合管贴应变片,同时可以控制水压复合的压力大小,从而控制和提高水压复合的质量,实现高效地实时在线测量控制。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (9)

  1. 一种双金属复合管水压复合在线应变监测控制***,其特征在于,包括激光位移传感器(1)、电源(2)、动态应变仪(3)和测试电脑(5),所述激光位移传感器(1)安装于用于安装双金属复合管的水压复合设备(7)上且与所述双金属复合管相对应,所述激光位移传感器(1)的发射激光垂直于所述双金属复合管的轴线;
    所述动态应变仪(3)分别通信连接所述激光位移传感器(1)和所述测试电脑(5),并且所述激光位移传感器(1)、所述动态应变仪(3)和所述测试电脑(5)均电连接所述电源(2);所述激光位移传感器(1)用于监测所述双金属复合管的位移情况并将位移信号转换成电压信号反馈给所述动态应变仪(3),所述动态应变仪(3)用于根据所述电压信号获得所述双金属复合管的径向应变数据并将所述径向应变数据传输给所述测试电脑(5),所述测试电脑(5)用于根据所述径向应变数据判断所述双金属复合管的径向应变结果,若所述双金属复合管的径向应变结果超出预设阈值,所述测试电脑(5)控制所述水压复合设备(7)调整水压。
  2. 根据权利要求1所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述激光位移传感器(1)的数量为至少两个,至少两个所述激光位移传感器(1)沿所述双金属复合管的轴线方向间隔设置。
  3. 根据权利要求1或2所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述双金属复合管水压复合在线应变监测控制***还包括第一磁铁环,所述激光位移传感器(1)通过所述第一磁铁环吸附于所述水压复合设备(7)上。
  4. 根据权利要求1或2所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述双金属复合管水压复合在线应变监测控制***还包括线缆(8), 所述激光位移传感器(1)和所述电源(2)之间以及所述动态应变仪(3)和所述电源(2)之间均通过所述线缆(8)电性连接。
  5. 根据权利要求4所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述双金属复合管水压复合在线应变监测控制***还包括第二磁铁环,所述线缆(8)上设有所述第二磁铁环,所述第二磁铁环用于吸附于所述水压复合设备(7)上,以使所述线缆(8)沿所述水压复合设备(7)走线。
  6. 根据权利要求1或2所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述双金属复合管水压复合在线应变监测控制***还包括电源适配器(6),所述电源适配器(6)电连接于所述激光位移传感器(1)和所述电源(2)之间。
  7. 根据权利要求1或2所述的双金属复合管水压复合在线应变监测控制***,其特征在于,所述双金属复合管水压复合在线应变监测控制***还包括USB电缆(4),所述动态应变仪(3)和所述测试电脑(5)之间通过所述USB电缆(4)通信连接。
  8. 一种采用权利要求1至7任一项所述的双金属复合管水压复合在线应变监测控制***的监测控制方法,其特征在于,包括以下步骤:
    步骤一、水压复合设备(7)安装模具,并计算水压复合的压力值并输入水压复合设备(7)的控制器,将双金属复合管的衬管***基管内部进行装配密封后安装于水压复合设备(7);
    步骤二、激光位移传感器(1)测量与双金属复合管的表面的间距,并将此间距设定为零点,然后启动水压复合设备(7)缓慢加压,激光位移传感器(1)实时监测双金属复合管的位移信号并转换成电压信号反馈给动态应变仪(3),动态应变仪(3)得到双金属复合管的径向应变数据并发送给测试电脑(5);
    步骤三:用户通过测试电脑(5)获取径向应变结果,通过操控水压复合设备(7)的控制器控制水压;或者测试电脑(5)将径向应变结果与设定的阈值比较,若超出阈值,则发送控制指令控制所述水压复合设备(7)调整水压。
  9. 根据权利要求8所述的监测控制方法,其特征在于,所述步骤一中在基管开设排气孔,用于排出水压复合过程中双金属复合管的内外两层金属间隙中的空气。
PCT/CN2021/124939 2020-12-24 2021-10-20 一种双金属复合管水压复合在线应变监测控制***及方法 WO2022134796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011551283.0 2020-12-24
CN202011551283.0A CN112781515A (zh) 2020-12-24 2020-12-24 一种双金属复合管水压复合在线应变监测控制***及方法

Publications (1)

Publication Number Publication Date
WO2022134796A1 true WO2022134796A1 (zh) 2022-06-30

Family

ID=75752126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124939 WO2022134796A1 (zh) 2020-12-24 2021-10-20 一种双金属复合管水压复合在线应变监测控制***及方法

Country Status (2)

Country Link
CN (1) CN112781515A (zh)
WO (1) WO2022134796A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781515A (zh) * 2020-12-24 2021-05-11 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变监测控制***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507742A (zh) * 2011-11-18 2012-06-20 西安向阳航天材料股份有限公司 一种机械复合管结合强度的评价方法
CN103353427A (zh) * 2013-06-30 2013-10-16 浙江大学 聚烯烃管及聚烯烃复合管内压-压扁载荷测试装置
JP2018189493A (ja) * 2017-05-04 2018-11-29 東京電力ホールディングス株式会社 レーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置
CN210639145U (zh) * 2019-09-19 2020-05-29 宜昌利民管业科技股份有限公司 复合管探伤检测装置
CN211803289U (zh) * 2019-12-30 2020-10-30 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变测试***
CN112781515A (zh) * 2020-12-24 2021-05-11 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变监测控制***及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566001A (en) * 2017-06-05 2019-03-06 Cowin Neil Condition monitoring device and safety system
CN107741203A (zh) * 2017-08-23 2018-02-27 国网福建省电力有限公司 一种海底电缆应变监测***
CN110296679B (zh) * 2019-07-31 2021-03-09 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种具备阀杆长期形变监测能力的装置及监测方法
CN111307658B (zh) * 2020-02-11 2022-09-06 中国石油工程建设有限公司 基于温压协同的机械复合管紧密度辅助测试***及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507742A (zh) * 2011-11-18 2012-06-20 西安向阳航天材料股份有限公司 一种机械复合管结合强度的评价方法
CN103353427A (zh) * 2013-06-30 2013-10-16 浙江大学 聚烯烃管及聚烯烃复合管内压-压扁载荷测试装置
JP2018189493A (ja) * 2017-05-04 2018-11-29 東京電力ホールディングス株式会社 レーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置
CN210639145U (zh) * 2019-09-19 2020-05-29 宜昌利民管业科技股份有限公司 复合管探伤检测装置
CN211803289U (zh) * 2019-12-30 2020-10-30 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变测试***
CN112781515A (zh) * 2020-12-24 2021-05-11 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变监测控制***及方法

Also Published As

Publication number Publication date
CN112781515A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022134796A1 (zh) 一种双金属复合管水压复合在线应变监测控制***及方法
CN109058333B (zh) 一种实时监测碟簧力的盘式制动器及监测方法
JP2017161388A (ja) シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム
CN112066271B (zh) 一种管道漏点检测装置及其检测方法
CN108845038B (zh) 一种阀门水压试验装置及试验方法
CN106969968A (zh) 金属屋面板抗风揭检测***
US9841334B1 (en) Electrode torque measurement device
CN211803289U (zh) 一种双金属复合管水压复合在线应变测试***
WO2018120167A1 (zh) 机器人、机器人底座稳定性的监测控制方法及***
CN205091124U (zh) 一种减速机转矩及轴向力的检测装置
KR20110019084A (ko) 케이블 포설시스템
CN215965918U (zh) 一种基于plc的水压复合实时应变监测控制***
CN112880929B (zh) 一种航空复杂管路气密性的快速自动检测方法
CN209069492U (zh) 一种电缆气动压接气压监控工装
CN203471663U (zh) 活套式扳手
CN111157186A (zh) 一种气密环综合性能试验装置
WO2018216133A1 (ja) シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム
CN103076134A (zh) 一种安全阀在线监测***
CN104034460B (zh) 电动执行器检测装置及其检测方法
CN111844835A (zh) 胶管生产线控制***及方法
CN115770833A (zh) 一种基于plc的水压复合实时应变监测控制***
CN206373484U (zh) 一种带有气压过低报警装置的搅拌摩擦焊焊接设备
AU2005100016A4 (en) Comparator Device and Method for Identifying Unfilled or Partially Filled Cylinders in a Compressed Gas Filling Process
CN216209225U (zh) 一种煤矿通风管道风量监测预警装置
CN116906339B (zh) 用于压力喷射装置的可控压电泵及控压方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908797

Country of ref document: EP

Kind code of ref document: A1