WO2022134005A1 - 充电方法、电子装置以及存储介质 - Google Patents

充电方法、电子装置以及存储介质 Download PDF

Info

Publication number
WO2022134005A1
WO2022134005A1 PCT/CN2020/139430 CN2020139430W WO2022134005A1 WO 2022134005 A1 WO2022134005 A1 WO 2022134005A1 CN 2020139430 W CN2020139430 W CN 2020139430W WO 2022134005 A1 WO2022134005 A1 WO 2022134005A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
voltage
ocv
cut
Prior art date
Application number
PCT/CN2020/139430
Other languages
English (en)
French (fr)
Inventor
关婷
朱珊
杨智茹
吴飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2020/139430 priority Critical patent/WO2022134005A1/zh
Priority to EP20966570.2A priority patent/EP4270714A4/en
Priority to CN202080015853.6A priority patent/CN113574763A/zh
Publication of WO2022134005A1 publication Critical patent/WO2022134005A1/zh
Priority to US18/192,963 priority patent/US20230238822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a charging method, an electronic device, and a storage medium.
  • the phenomenon that the charging cannot achieve a fully charged state with the use of the battery is likely to occur.
  • the fully charged state refers to the charge of the battery to 100%.
  • the impedance of the battery continues to increase.
  • the cut-off current of constant voltage charging at the limit voltage is small
  • SOC state of charge
  • the voltage OCV n further includes a pre-stored open circuit voltage of the second battery collected during the resting time t i during the resting process after the nth charging process is completed , wherein the first battery and the second battery are different batteries in the same battery system.
  • U cl ⁇ U n ⁇ U cl +500mV, where U cl is the charging limit voltage of the battery system to which the first battery belongs.
  • the first charging mode includes N1 charging stages in sequence, N1 is a positive integer greater than or equal to 1, and in the N1th charging stage, the charging cut-off voltage U n is constant. Constant voltage charging is performed on the first battery.
  • the second charging mode includes N2 charging stages in sequence, N2 is a positive integer greater than or equal to 1, and in the N2th charging stage, the constant first voltage U′ is used m Perform constant voltage charging on the first battery.
  • the charging cut-off voltage is the first voltage U' m ; in the m+b-th charging process, the charging cut-off voltage is the second voltage U m+b .
  • An embodiment of the present application provides an electronic device, the electronic device includes a battery and a processor, and the processor is configured to execute the charging method described above to charge the battery.
  • An embodiment of the present application provides a storage medium on which at least one computer instruction is stored, and the instruction is loaded by a processor and used to execute the charging method as described above.
  • the embodiments of the present application increase the charging cut-off voltage during the charging process of the battery according to the actual aging state of the battery, so as to solve the problem that the battery impedance increases with the cyclic use of the battery, and the charging method with a large charging cut-off current cannot The problem of fully charging the battery.
  • the charging method provided by the embodiments of the present application can not only meet the requirement of fully charging the battery, but also shorten the time required for the battery to be fully charged, thereby improving the user experience.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a charging method according to an embodiment of the present application.
  • FIG. 3 is a functional block diagram of a charging system according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the charging system 10 operates in the electronic device 1 .
  • the electronic device 1 includes, but is not limited to, a memory 11 , at least one processor 12 and a battery 13 (first battery and/or second battery as described below), the memory 11 , at least one processor 12 and a battery 13 can be connected by bus or directly.
  • the battery 13 is a rechargeable battery, and is used to provide power to the electronic device 1 .
  • the battery 13 may be a lithium ion battery, a lithium polymer battery, a lithium iron phosphate battery, or the like.
  • the battery 13 includes at least one battery cell, which may be adapted to be rechargeable in a cycle.
  • the battery 13 is logically connected to the processor 12 through a power management system, so that functions such as charging, discharging, and power consumption management are implemented through the power management system.
  • FIG. 1 only illustrates the electronic device 1 by way of example. In other embodiments, the electronic device 1 may also include more or less elements, or have different element configurations.
  • the electronic device 1 can be an electric motorcycle, an electric bicycle, an electric vehicle, a mobile phone, a tablet computer, a personal digital assistant, a personal computer, or any other suitable rechargeable device.
  • the electronic device 1 may also include other components such as a wireless fidelity (Wireless Fidelity, Wi-Fi) unit, a Bluetooth unit, a speaker, etc., which will not be repeated here.
  • a wireless fidelity (Wireless Fidelity, Wi-Fi) unit Wireless Fidelity, Wi-Fi) unit
  • a Bluetooth unit Bluetooth unit
  • speaker etc., which will not be repeated here.
  • FIG. 2 is a flowchart of a battery charging method according to an embodiment of the present application. According to different requirements, the order of the steps in the flowchart can be changed, and some steps can be omitted. Specifically, the battery charging method may include the following steps:
  • Step S1 in the nth charging process, the first battery is charged in the first charging mode to its charging cut-off voltage U n , where n is a positive integer greater than 0.
  • the first charging method includes N1 charging stages in sequence, N1 is a positive integer greater than or equal to 1, and in the N1th charging stage, the constant charging cut-off voltage U n is used to charge all charging stages.
  • the first battery is charged with constant voltage.
  • the first charging mode includes a first charging stage, a second charging stage and a third charging stage.
  • the first battery is charged with a constant first current to a voltage U 1 (U 1 ⁇ U n ); in the second charging stage, the first battery is charged with a constant second current The first battery is charged with constant current to the charge cut-off voltage Un ; in the third charging stage, the first battery is charged with constant voltage at the constant charge cut-off voltage Un . That is to say, in the last charging stage in the charging mode, the first battery is charged with constant voltage at the charging cut-off voltage Un ; and the voltages of the previous charging stages are not required.
  • the voltage during the constant current charging process of the first battery is not limited; in the charging stage after the k+1th charging stage, all The first battery is charged with constant current to the charge cut-off voltage U n .
  • the first charging method includes a first constant current charging stage, a second constant current charging stage, a third constant current charging stage, a fourth constant current charging stage and a fifth constant current charging stage.
  • the first constant current charging stage the first battery is charged to 4.25V with a constant current of 3C (first current); in the second constant current charging stage, with a constant current of 2C (second current) Charge the first battery to 4.45V (ie, the charge cut-off voltage Un ); in the third constant current charging stage, charge the first battery to 4.45V (ie, charge the first battery with a constant current of 1C (third current) cut-off voltage Un ); in the fourth constant current charging stage, the first battery is charged to 4.45V (ie, the charging cut-off voltage Un) with a constant current of 0.5C (fourth current); in the fifth constant current charging In the stage, the first battery is charged to 4.45V (ie, the charge cut-off voltage Un) with a constant current of 0.2C (
  • the charging current in the i+1 th charging stage is smaller than the charging current in the i th charging stage, that is, the charging current in each constant-current charging stage gradually decreases.
  • Step S2 Rest the first battery after the nth charging process is completed, and obtain the open circuit voltage OCV n of the first battery when the rest time is t i .
  • the magnitude of the boost voltage is determined according to the actual aging state. Therefore, it is necessary to rest the first battery after the nth charging process is completed, obtain the open circuit voltage of the first battery during or after the resting process, and determine the magnitude of the boost voltage according to the open circuit voltage.
  • the open circuit voltage OCV n of the first battery when the resting time is t i is obtained.
  • the open-circuit voltage OCV n includes the open-circuit voltage collected during the resting time t i during the resting process of the first battery after the nth charging process is completed; the open-circuit voltage The voltage OCV n further includes the pre-stored open circuit voltage of the second battery collected during the resting time t i during the resting process after the nth charging process is completed, wherein the first battery and the The second battery is a different battery in the same battery system.
  • Step S3 During the mth charging process, the first battery is charged to the charging cut-off voltage U n in the first charging manner, where m is a positive integer and m>n.
  • the first battery in the charging process after n times (eg, the mth charging process), the first battery is charged to the charging cut-off voltage by using the same first charging method as the nth charging process.
  • U n rest the first battery again, and obtain the open circuit voltage OCV m of the first battery at the same rest time t i . In this way, it can be determined whether the charge cut-off voltage of the first battery needs to be increased according to the change of the open circuit voltage of the first battery during the charging process.
  • Step S4 Rest the first battery after the m-th charging process is completed, and obtain the open circuit voltage OCV m of the first battery at the rest time t i .
  • the open-circuit voltage OCV m includes the open-circuit voltage collected during the resting time t i during the resting process of the first battery after the mth charging process is completed; the The open-circuit voltage OCV m further includes the pre-stored open-circuit voltage of the second battery collected during the resting time t i during the resting process after the mth charging process is completed.
  • Step S5 Compare the open circuit voltage OCV n and the open circuit voltage OCV m . If OCV n >OCV m , the process proceeds to step S6 ; if OCV n ⁇ OCV m , the charging process is completed, that is, the charging process is ended.
  • the charge cut-off voltage of the first battery needs to be increased.
  • the magnitude of the specifically increased charge cut-off voltage is determined by the actual state of the first battery. That is, during the charging process, the open-circuit voltage under the same resting time during the resting process after the first battery completes the entire charging process is collected.
  • the first voltage U′ m U n +k ⁇ (OCV n ⁇ OCV m ).
  • the second charging mode includes N2 charging stages in sequence, N2 is a positive integer greater than or equal to 1, and in the N2-th charging stage, the constant first voltage U′ m pairs
  • the first battery is charged with constant voltage.
  • the charging cut-off voltage is the first voltage U′ m .
  • the second charging mode includes a first charging stage, a second charging stage and a third charging stage.
  • the first battery In the first charging stage, the first battery is charged to a voltage (the voltage is lower than the first voltage U' m ) with a constant first current; in the second charging stage, the first battery is charged with a constant current The second current constant current charges the first battery to the first voltage U′ m ; in the third charging stage, the first battery is constantly charged with the constant first voltage U′ m pressure charge. That is to say, in the last charging stage in the charging mode, the first battery is charged with a constant voltage with the first voltage U'm ; and the voltage in the previous charging stage is not required.
  • the N1 charging stages included in the first charging mode may be equal to the N2 charging stages in the second charging mode (ie, N1 is equal to N2), and the N1 charging stages included in the first charging mode are also It may not be equal to N2 charging stages of the second charging mode (ie, N1 is not equal to N2).
  • the second charging mode may only include the first charging stage and the second charging stage.
  • the charging cut-off voltage is the first voltage U′ m .
  • the first constant current charging stage the first battery is constant current charged to the first voltage U' m with the first current; in the j+1 constant current charging stage, the first battery is charged with the j+1 current The first battery is charged with constant current to the first voltage U' m .
  • the second charging mode includes the second constant current charging stage, the third constant current charging stage, the fourth constant current charging stage and the fifth constant current charging stage in the first charging mode described above.
  • the charge cut-off voltage in the second constant current charging stage, the third constant current charging stage, the fourth constant current charging stage and the fifth constant current charging stage in the second charging method is the first voltage U'm .
  • the M1 constant current charging stages included in the first charging mode may be equal to the M2 constant current charging stages included in the second charging mode (that is, M1 is equal to M2), and the first charging mode
  • the M1 constant current charging stages included in the second charging mode may also not be equal to the M2 charging stages included in the second charging mode (ie, M1 is not equal to M2).
  • the charging current in the j+1th charging stage is smaller than the charging current in the jth charging stage.
  • the charging cut-off voltage in the above two second charging modes refers to the second voltage U m+b . If OCV n ⁇ OCV m+b , the m+b th charging process is completed.
  • the second charging method also includes N2 charging stages in sequence, where N2 is a positive integer greater than or equal to 1, and in the N2th charging stage, the The constant second voltage U m+b performs constant voltage charging on the first battery.
  • the second charging method may further include M2 constant current charging stages in sequence, where M2 is a positive integer greater than 1, wherein the M2 constant currents are cut off by using the second voltage U m+b as the charging cut-off voltage.
  • the present application improves the charging cut-off voltage during the battery charging process according to the actual aging state of the battery, and solves the charging method with a larger charging cut-off current due to the increase of the battery impedance as the battery is recycled.
  • the problem of not being able to fully charge the battery can solve the problem that the battery is gradually uncharged during the cycle of using the battery in some existing fast charging methods.
  • some fast charging methods are to increase the charging cut-off voltage of the battery during the charging process, and at the same time increase the charging cut-off current.
  • the charging method provided by the embodiments of the present application can not only meet the requirement of fully charging the battery, but also shorten the time required for the battery to be fully charged, thereby improving the user experience.
  • the following comparative example 1 adopts, on the basis of the charging method (constant current and constant voltage charging) in the prior art, the charging method of increasing the voltage of the constant voltage charging process and increasing the charging cut-off current at the same time.
  • the battery either the first battery or the second battery described above
  • Comparative example 2 adopts the charging method to solve the problem that the state of charge (SOC) of the charging cut-off gradually decreases during the cyclic charging process of the charging method of comparative example 1.
  • Examples 1 to 3 adopt the charging method described in this application, and the k values of Examples 1 to 3 are 0.5, 0.8, and 1, respectively.
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 3 Charge the battery with a constant current of 1.4C until the battery reaches 4.5C;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • Step 5 Let the battery stand for 1 minute
  • Step 6 Discharge the battery with a constant current of 1.0C until the voltage of the battery is 3.0V;
  • Step 7 Then let the battery stand for 1 minute
  • Step 8 Repeat the above steps 1 to 7 for 500 cycles.
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 3 Charge the battery with a constant current of 1.4C until the battery reaches 4.5C;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • Step 5 Let the battery stand for 5 minutes
  • Step 6 Charge the battery with a constant voltage of 4.45V until the current of the battery reaches the cut-off current of 0.05C;
  • Step 7 Let the battery stand for 1 minute
  • Step 8 Discharge the battery with a constant current of 1.0C until the battery voltage is 3.0V;
  • Step 9 Then let the battery stand for 1 minute
  • Step 10 Repeat the above steps 1 to 9 for 500 cycles.
  • Embodiments 1 to 3 respectively include a process of obtaining the open circuit voltage OCV n and a charging and discharging process.
  • a method for obtaining the open circuit voltage OCV n is described first.
  • the fresh battery is selected to obtain the parameter OCV n
  • the specific process of obtaining the open-circuit voltage OCV n is as follows;
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 3 Charge the battery with a constant current of 1.4C until the battery reaches 4.5C;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • the charging and discharging process is as follows:
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • Step 5 let the battery stand for 1 minute, and collect the open circuit voltage OCV m after the battery is allowed to stand for 1 minute;
  • Step 7 Continue to use the constant voltage of U'm to charge the battery until the current of the battery reaches the cut-off current of 0.25C;
  • Step 8 Let the battery stand for 1 minute
  • Step 9 Use a constant current of 1.0C to discharge the battery until the voltage of the battery is 3.0V;
  • Step 10 Then let the battery stand for 1 minute;
  • Step 11 Cycle Step 1 to Step 10 for 500 cycles, and m is automatically incremented by 1 for each cycle.
  • OCV n 4.47V.
  • the charging and discharging process is as follows:
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • Step 5 Let the battery stand for 1 minute, and collect the open circuit voltage OCV m after the battery stands for 1 minute.
  • Step 7 Continue to use the constant voltage of U'm to charge the battery until the current of the battery reaches the cut-off current of 0.25C;
  • Step 8 Let the battery stand for 1 minute
  • Step 9 Use a constant current of 1.0C to discharge the battery until the voltage of the battery is 3.0V;
  • Step 10 Then let the battery stand for 1 minute;
  • Step 11 Cycle Step 1 to Step 10 for 500 cycles, and m is automatically incremented by 1 for each cycle.
  • OCV n 4.47V.
  • the charging and discharging process is as follows:
  • Step 1 Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25V;
  • Step 2 Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45V;
  • Step 4 Continue to charge the battery with a constant voltage of 4.5V until the current of the battery reaches the cut-off current of 0.25C;
  • Step 5 let the battery stand for 1 minute, and collect the open circuit voltage OCV m after the battery is allowed to stand for 1 minute;
  • Step 7 Continue to use the constant voltage of U'm to charge the battery until the current of the battery reaches the cut-off current of 0.25C;
  • Step 8 Let the battery stand for 1 minute
  • Step 9 Use a constant current of 1.0C to discharge the battery until the voltage of the battery is 3.0V;
  • Step 10 Then let the battery stand for 1 minute;
  • Step 11 Cycle Step 1 to Step 10 for 500 cycles, and m is automatically incremented by 1 for each cycle.
  • Table 1 shows the constant voltage (CV voltage), charge-off SOC and charging time of the batteries in Comparative Examples 1-2 and 1-3 during cyclic use.
  • C is the charge-discharge rate
  • the charge-discharge rate refers to the current value required to charge to the rated capacity or release its rated capacity within a specified time, which is numerically equal to the charge-discharge current/rated battery capacity. .
  • a battery with a rated capacity of 10Ah is discharged at 2A
  • its discharge rate is 0.2C
  • when it is discharged at 20A its discharge rate is 2C.
  • Comparative Example 2 It can be seen from Table 1 that in the charging method of Comparative Example 1, with the cyclic use of the battery, the battery impedance will gradually increase, and the SOC at the end of charging will gradually decrease.
  • the purpose of Comparative Example 2 is to solve the problem in Comparative Example 1 that the SOC of the battery decreases gradually when the battery is charged when the battery is cycled. It can be seen from the results in Table 1 that the SOC of Comparative Example 2 at the end of charging is significantly improved compared with that of Comparative Example 1, but the charging time is also greatly prolonged compared to that of Comparative Example 1.
  • Examples 1 to 3 can basically solve the problem that the SOC of the comparative example 1 decreases with the cycle use of the battery when the charge is cut off.
  • the k values of Examples 1 to 3 were 0.5, 0.8, and 1, respectively. It can be seen from the results in Table 1 that as the value of k increases, the SOC at the end of charge is gradually increased during the cycle.
  • the charging method provided by the present application can always achieve the same charging cut-off SOC as the fresh battery (Fresh battery), that is, the battery can be fully charged, although the corresponding charging time is slightly longer than that of Comparative Example 1. , but can be largely ignored.
  • the fresh battery refers to a battery that has not been recycled just after leaving the factory, or a battery whose number of charge-discharge cycles after leaving the factory is less than a preset number of times (for example, 10 times, or other times).
  • the embodiment of the present application improves the charging cut-off voltage during the charging process of the battery according to the actual aging state of the battery, so as to solve the charging method with a larger charging cut-off current due to the increase of the battery impedance as the battery is used cyclically The problem of not being able to fully charge the battery.
  • the charging method provided by the embodiments of the present application can not only meet the requirement of fully charging the battery, but also shorten the time required for the battery to be fully charged, thereby improving the user experience.
  • the charging system 10 may be divided into one or more modules, and the one or more modules may be stored in the processor 12 and executed by the processor 12
  • the charging method of the embodiment of the present application is executed.
  • the one or more modules may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the charging system 10 in the electronic device 1 .
  • the charging system 10 may be divided into a charging module 101 and an acquisition module 102 in FIG. 3 .
  • the charging module 101 is used to charge the first battery to its charge cut-off voltage U n in a first charging manner during the nth charging process, where n is a positive integer greater than 0.
  • the obtaining module 102 is configured to rest the first battery after the nth charging process is completed, and obtain the open circuit voltage OCV n of the first battery when the resting time is t i .
  • the charging module 101 is further configured to charge the first battery in the first charging mode to the charging cut-off voltage U n during the m-th charging process, where m is a positive integer and m>n .
  • the obtaining module 102 is further configured to rest the first battery after the m-th charging process is completed, and obtain the open circuit voltage OCV m of the first battery at the resting time t i .
  • the charging system 10 can increase the charging cut-off voltage during the battery charging process, and solve the problem that the battery impedance increases as the battery is recycled, and the charging method with a large charging cut-off current cannot fully charge the battery.
  • the charging cut-off voltage can be increased, and solve the problem that the battery impedance increases as the battery is recycled, and the charging method with a large charging cut-off current cannot fully charge the battery.
  • the processor 12 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuits) Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor 12 may be any other conventional processor or the like.
  • modules in the charging system 10 are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium, and the When the computer program is executed by the processor, the steps of the above method embodiments can be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), etc.
  • each functional module in each embodiment of the present application may be integrated in the same processing unit, or each module may exist physically alone, or two or more modules may be integrated in the same unit.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software function modules.
  • the one or more modules may also be stored in memory and executed by the processor 12 .
  • the memory 11 may be an internal memory of the electronic device 1 , that is, a memory built in the electronic device 1 . In other embodiments, the memory 11 may also be an external memory of the electronic device 1 , that is, a memory externally connected to the electronic device 1 .
  • the memory 11 is used to store program codes and various data, for example, to store the program codes of the charging system 10 installed in the electronic device 1 , and to achieve high speed during the operation of the electronic device 1 . , Automatically complete program or data access.
  • the memory 11 may include random access memory, and may also include non-volatile memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种电池的充电方法,所述方法包括:在第n次充电过程中,以第一充电方式对第一电池进行充电至充电截止电压Un,n为大于0的正整数;在第n次充电过程完成后静置第一电池,并获取第一电池在静置时间为ti时的开路电压OCVn;在第m次充电过程中,以第一充电方式对第一电池进行充电至所述充电截止电压Un,m为正整数且m>n;在第m次充电过程完成后静置第一电池,并获取第一电池在所述静置时间ti时的开路电压OCVm;及若OCVn>OCVm,以第二充电方式继续对静置后的第一电池充电至第一电压U'm,其中,U'm=Un+k×(OCVn-OCVm),0<k≤1。本申请还提供了一种电子装置和介质,可以满足电池满充的要求,并缩短电池充电至满充状态所需的时间。

Description

充电方法、电子装置以及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种充电方法、电子装置以及存储介质。
背景技术
在现有的电池的充电方法中,当充电截止的电流较大时,容易出现随着电池的使用,充电无法实现满充状态的现象。所述满充状态指的是所述电池的电量充电至100%。随着电池的循环使用,电池的阻抗不断增大,相比于新鲜电池的状态或传统的在充电限制电压下恒压的充电方法(限制电压下的恒压充电截止电流较小),均会出现在电池充电时无法实现满充的现象,也就是电池在充电截止时荷电状态(SOC)逐渐降低的现象。目前,对于既能实现电池使用过程中的满充,同时又不大幅度延长电池达到满充状态时所需的充电时间,没有切实可行的解决方法。
发明内容
有鉴于此,有必要提供一种电池的充电方法、电子装置以及存储介质,可以满足电池满充的要求。
本申请一实施方式提供了一种电池的充电方法,所述方法包括:在第n次充电过程中,以第一充电方式对第一电池进行充电至其充电截止电压U n,其中,n为大于0的正整数;在所述第n次充电过程完成后静置所述第一电池,并获取所述第一电池在静置时间为t i时的开路电压OCV n;在第m次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,其中,m为正整数且m>n;在所述第m次充电过程完成后静置所述第一电池,并获取所述第一电池 在所述静置时间t i时的开路电压OCV m;及若OCV n>OCV m,以第二充电方式继续对静置后的所述第一电池充电至第一电压U′ m,其中,U′ m=U n+k×(OCV n-OCV m),0<k≤1。
根据本申请的一些实施方式,所述电压OCV n还包括预先存储的第二电池在所述第n次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压,其中,所述第一电池和所述第二电池为相同电池体系中的不同电池。
根据本申请的一些实施方式,所述方法还包括:在第m+b次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,b为大于1的正整数;在所述第m+b次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m+b;若OCV n>OCV m+b,以所述第二充电方式继续对静置后的所述第一电池充电至第二电压U m+b,其中,U m+b=U n+k×(OCV n-OCV m+b),0<k≤1。
根据本申请的一些实施方式,U cl≤U n≤U cl+500mV,其中,U cl为所述第一电池所属的电池体系的充电限制电压。
根据本申请的一些实施方式,所述第一充电方式包括依序的N1个充电阶段,N1为大于或等于1的正整数,在第N1充电阶段时,以恒定的所述充电截止电压U n对所述第一电池进行恒压充电。
根据本申请的一些实施方式,所述第二充电方式包括依序的N2个充电阶段,N2为大于或等于1的正整数,在第N2充电阶段时,以恒定的所述第一电压U′ m对所述第一电池进行恒压充电。例如,在第m次的充电过程中,所述充电截止电压为所述第一电压U′ m;在第m+b次的充电过程中,所述充电截止电压为第二电压U m+b
根据本申请的一些实施方式,所述第一充电方式还包括依序的M1个恒流充电阶段,M1为大于或等于1的正整数,其中,在各个所述恒流充电阶段中,当所述第一电池的电压达到所述充电截止电压U n后,通过所述充电截止电压U n来截止之后的每个所述恒流充电阶段;所述M1个恒流充电阶段分别定义为第i充电阶段,i=1、2、…、M1,其 中,第i+1充电阶段的充电电流小于第i充电阶段的充电电流。
根据本申请的一些实施方式,所述第二充电方式还包括依序的M2个恒流充电阶段,M2为大于或等于1的正整数,其中,通过所述第一电压U′ m截止所述M2个恒流充电阶段中的每个恒流充电阶段;其中,在第m次的充电过程中,所述充电截止电压为所述第一电压U′ m;在第m+b次的充电过程中,所述充电截止电压为第二电压U m+b;所述M2个恒流充电阶段分别定义为第j充电阶段,j=1、2、…、M2,其中,第j+1充电阶段的充电电流小于第j充电阶段的充电电流。
本申请一实施方式提供一种电子装置,所述电子装置包括电池和处理器,所述处理器用于执行如上所述的充电方法对所述电池进行充电。
本申请一实施方式提供一种存储介质,其上存储有至少一条计算机指令,所述指令由处理器加载并用于执行如上所述的充电方法。
本申请的实施方式通过根据电池实际的老化状态,来提升电池充电过程中的充电截止电压,解决了随着电池的循环使用,电池阻抗增大,具有较大的充电截止电流的充电方法无法使电池实现满充的问题。本申请实施例提供的充电方法不仅可以满足电池满充的要求,还能够缩短了电池充电至满充状态所需的时间,提升了用户体验。
附图说明
图1是根据本申请一实施方式的电子装置的示意图。
图2是根据本申请一实施方式的充电方法的流程图。
图3是根据本申请一实施方式的充电***的功能模块图。
主要元件符号说明
电子装置         1
充电***         10
存储器           11
处理器           12
电池              13
充电模块          101
获取模块          102
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
请参阅图1,图1为本申请一实施例的电子装置的示意图。参阅图1所示,充电***10运行于电子装置1中。所述电子装置1包括,但不仅限于,存储器11、至少一个处理器12及电池13(如下文所述的第一电池和/第二电池),所述存储器11、至少一个处理器12及电池13之间可以通过总线连接,也可以直接连接。
在一个实施例中,所述电池13为可充电电池,用于给所述电子装置1提供电能。例如,所述电池13可以是锂离子电池、锂聚合物电池及磷酸铁锂电池等。所述电池13包括至少一个电池单元(battery cell),其可适用于可循环再充电的方式。所述电池13通过电源管理***与所述处理器12逻辑相连,从而通过所述电源管理***实现充电、放电、以及功耗管理等功能。
需要说明的是,图1仅为举例说明电子装置1。在其他实施方式中,电子装置1也可以包括更多或者更少的元件,或者具有不同的元件配置。所述电子装置1可以为电动摩托、电动单车、电动汽车、手机、平板电脑、个人数字助理、个人电脑,或者任何其他适合的可充电式设备。
尽管未示出,所述电子装置1还可以包括无线保真(Wireless Fidelity,Wi-Fi)单元、蓝牙单元、扬声器等其他组件,在此不再一一赘述。
请参阅图2,图2为根据本申请一实施方式的电池的充电方法的流程图。根据不同的需求,所述流程图中步骤的顺序可以改变,某些 步骤可以省略。具体地,所述电池的充电方法可以包括以下步骤:
步骤S1:在第n次充电过程中,以第一充电方式对第一电池进行充电至其充电截止电压U n,其中,n为大于0的正整数。
在一个实施方式中,所述第一充电方式包括依序的N1个充电阶段,N1为大于或等于1的正整数,在第N1充电阶段时,以恒定的所述充电截止电压U n对所述第一电池进行恒压充电。
例如,N1=3,所述第一充电方式包括第1充电阶段、第2充电阶段和第3充电阶段。在所述第1充电阶段,以恒定的第一电流对所述第一电池恒流充电至一电压U 1(U 1<U n);在所述第2充电阶段,以恒定的第二电流对所述第一电池恒流充电至所述充电截止电压U n;在所述第3充电阶段,以恒定的所述充电截止电压U n对所述第一电池进行恒压充电。也就是说在所述充电方式中的最后一个充电阶段,以所述充电截止电压U n对所述第一电池进行恒压充电;而对之前的各个充电阶段的电压不做要求。
在另一个实施方式中,所述第一充电方式包括依序的M1个恒流充电阶段,M1为大于1的正整数,所述M1个恒流充电阶段分别定义为第i充电阶段,i=1、2、…、M1,其中,在上述各个恒流充电阶段中,当所述第一电池的电压达到所述充电截止电压U n后,通过所述充电截止电压U n截止之后的每个所述恒流充电阶段。即在所述第一电池的充电电压达到所述充电截止电压U n前,不限定所述第一电池的电压。需要说明的是,在第k充电阶段之前的充电阶段(k<M1),不对所述第一电池恒流充电过程中的电压做限定;在第k+1充电阶段之后的充电阶段,都是对所述第一电池进行恒流充电至所述充电截止电压U n
例如,M1=5,即所述第一充电方式包括第1恒流充电阶段、第2恒流充电阶段、第3恒流充电阶段、第4恒流充电阶段和第5恒流充电阶段。具体的,在第1恒流充电阶段,以3C(第一电流)的恒定电流对所述第一电池充电至4.25V;在第2恒流充电阶段,以2C(第二电流)的恒定电流对所述第一电池充电至4.45V(即充电截止电压U n);在第3恒流充电阶段,以1C(第三电流)的恒定电流对所述第一电池 充电至4.45V(即充电截止电压U n);在第4恒流充电阶段,以0.5C(第四电流)的恒定电流对所述第一电池充电至4.45V(即充电截止电压U n);在第5恒流充电阶段,以0.2C(第五电流)的恒定电流对所述第一电池充电至4.45V(即充电截止电压U n)。
需要说明的是,在本实施方式中,所述第i+1充电阶段的充电电流小于所述第i充电阶段的充电电流,即各个恒流充电阶段的充电电流逐渐减小。
步骤S2:在所述第n次充电过程完成后静置所述第一电池,并获取所述第一电池在静置时间为t i时的开路电压OCV n
由于需要确定电池在使用过程中的实际老化状态,再根据所述实际老化状态确定提升电压的大小。因此,需要在第n次充电过程完成后静置所述第一电池,并获取所述第一电池在静置过程中或之后的开路电压,并根据所述开路电压确定提升电压的大小。在本申请中,获取所述第一电池在静置时间为t i时的开路电压OCV n
需要说明的是,所述开路电压OCV n包括所述第一电池在所述第n次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压;所述开路电压OCV n还包括预先存储的第二电池在所述第n次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压,其中,所述第一电池和所述第二电池为相同电池体系中的不同电池。
步骤S3:在第m次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,其中,m为正整数且m>n。
在本实施例中,在n次之后的充电过程中(如第m次充电过程),采用与第n次充电过程相同的第一充电方式对所述第一电池进行充电至所述充电截止电压U n,再静置所述第一电池,并获取所述第一电池在相同的静置时间t i时的开路电压OCV m。如此,可以根据所述第一电池在充电过程中的开路电压的变化,确定是否需要提高所述第一电池的充电截止电压。
步骤S4:在所述第m次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m
在本实施方式中,所述开路电压OCV m包括所述第一电池在所述第m次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压;所述开路电压OCV m还包括预先存储的第二电池在所述第m次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压。
步骤S5:比对所述开路电压OCV n与开路电压OCV m的大小。若OCV n>OCV m,流程进入步骤S6;若OCV n≤OCV m,完成充电过程,即结束充电流程。
步骤S6:在第m次充电过程中,若OCV n>OCV m,以第二充电方式继续对静置后的所述第一电池充电至第一电压U′ m,其中,U′ m=U n+k×(OCV n-OCV m),0<k≤1。
在本实施方式中,若OCV n>OCV m,需要提高所述第一电池的充电截止电压。具体提高后的充电截止电压的大小由所述第一电池的实际状态决定。即在充电过程中,采集所述第一电池完成全部充电流程后的静置过程中的相同静置时间下开路电压。通过后续循环充电过程(如第m次充电过程)中采集的开路电压与之前循环充电过程(如第n次充电过程)中采集的开路电压的差值,确定对本次(如第m次)的充电流程进行调整(以所述第一电压U′ m对第一电池进行充电),进而实现所述第一电池在循环充电过程中的满充,同时不会大幅延长所述第一电池实现满充需要的时间。具体地,第一电压U′ m=U n+k×(OCV n-OCV m)。
需要说明的是,U cl≤U n≤U cl+500mV,其中,U cl为所述第一电池所属的电池体系的充电限制电压。
在一个实施方式中,所述第二充电方式包括依序的N2个充电阶段,N2为大于或等于1的正整数,在第N2充电阶段时,以恒定的所述第一电压U′ m对所述第一电池进行恒压充电。例如,在第m次的充电过程中,所述充电截止电压为所述第一电压U′ m
例如,在第m次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n后,当OCV n>OCV m时,以第二充电方式继续对静置后的所述第一电池充电至第一电压U′ m。比如N2=3, 即所述第二充电方式包括第1充电阶段、第2充电阶段和第3充电阶段。在所述第1充电阶段,以恒定的第一电流对所述第一电池恒流充电至一电压(该电压小于所述第一电压U′ m);在所述第2充电阶段,以恒定的第二电流对所述第一电池恒流充电至所述第一电压U′ m;在所述第3充电阶段,以恒定的所述第一电压U′ m对所述第一电池进行恒压充电。也就是说,在所述充电方式中的最后一个充电阶段,以所述第一电压U′ m对所述第一电池进行恒压充电;而对之前的充电阶段的电压不做要求。
需要说明的是,所述第一充电方式包括的N1个充电阶段可以等于所述第二充电方式的N2个充电阶段(即N1等于N2),所述第一充电方式包括的N1个充电阶段还可以不等于所述第二充电方式的N2个充电阶段(即N1不等于N2)。例如,所述第二充电方式可以只包括第1充电阶段和第2充电阶段。
在另一个实施方式中,所述第二充电方式包括依序的M2个恒流充电阶段,M2为大于1的正整数,所述M2个恒流充电阶段分别定义为第j充电阶段,j=1、2、…、M2,其中,每个所述恒流充电阶段的都以所述第一电压U′ m作为充电截止电压来截止充电流程。例如,在第m次的充电过程中,所述充电截止电压为第一电压U′ m。具体的,在第1恒流充电阶段,以第1电流对所述第一电池恒流充电至第一电压U′ m;在第j+1恒流充电阶段时,以第j+1电流对所述第一电池恒流充电至第一电压U′ m。例如,所述第二充电方式包括形如上文所述第一充电方式中的第2恒流充电阶段、第3恒流充电阶段、第4恒流充电阶段和第5恒流充电阶段。但是所述第二充电方式中的第2恒流充电阶段,第3恒流充电阶段、第4恒流充电阶段和第5恒流充电阶段中的充电截止电压为所述第一电压U′ m
需要说明的是,所述第一充电方式中包括的M1个恒流充电阶段可以等于所述第二充电方式中包括的M2个恒流充电阶段(即M1等于M2),所述第一充电方式中包括的M1个恒流充电阶段还可以不等于所述第二充电方式中包括的M2个充电阶段(即M1不等于M2)。
需要说明的是,在本实施方式中,所述第j+1充电阶段的充电电流小于所述第j充电阶段的充电电流。
在本实施方式中,若OCV n≤OCV m,本次充电无需提高所述第一电池在充电过程中的充电截止电压,即完成充电。
需要说明的是,在第m次之后的充电循环过程中,也需要对所述第一电池的开路电压进行判断,以确定是否需要再次提高所述第一电池的充电截止电压。具体地,所述充电方法还包括:在第m+b次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,b为大于1的正整数;在所述第m+b次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m+b;若OCV n>OCV m+b,以所述第二充电方式继续对静置后的所述第一电池充电至第二电压U m+b,其中,U m+b=U n+k×(OCV n-OCV m+b),0<k≤1。此时,若OCV n>OCV m+b,在第m+b次的充电过程中,上述两种第二充电方式中的充电截止电压指的是第二电压U m+b。若OCV n≤OCV m+b,则完成第m+b次充电过程。
需要说明的是,在第m+b次的充电过程中,所述第二充电方式也包括依序的N2个充电阶段,N2为大于或等于1的正整数,在第N2充电阶段时,以恒定的所述第二电压U m+b对所述第一电池进行恒压充电。所述第二充电方式还可以包括依序的M2个恒流充电阶段,M2为大于1的正整数,其中,以所述第二电压U m+b作为充电截止电压截止所述M2个恒流充电阶段中的每个恒流充电阶段;所述M2个恒流充电阶段分别定义为第j充电阶段,j=1、2、…、M2,其中,第j+1充电阶段的充电电流小于第j充电阶段的充电电流。
综上所述,本申请通过根据电池实际的老化状态,来提升电池充电过程中的充电截止电压,解决了随着电池的循环使用,电池阻抗增大,具有较大的充电截止电流的充电方法无法使电池实现满充的问题。例如本申请实施例提供的充电方法可解决现有一些快充方法,在电池循环使用过程中,将导致电池逐渐充不满电的问题。其中,一些快充方法为在充电过程中提升电池的充电截止电压,同时增大充电的截止 电流。本申请实施例提供的充电方法不仅可以满足电池满充的要求,还能够缩短了电池充电至满充状态所需的时间,提升了用户体验。
为了使本申请的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本申请进一步详细说明。应当理解的是,本说明书中给出的实施例只是为了解释本申请,并非为了限定本申请,本申请并不局限于说明书中给出的实施例。
以下陈述的对比例1采用的是,在现有技术中的充电方法(恒流恒压充电)的基础上,提升恒压充电过程的电压,同时增大充电截止电流的充电方法,对所述电池(上文描述的第一电池或第二电池)进行充电。对比例2采用的是为解决对比例1的充电方法在循环充电过程中,会出现充电截止荷电状态(SOC)逐渐减小的问题而采用的充电方法。实施例1至实施例3采用的是本申请描述的充电方法,实施例1至实施例3的k值分别为0.5,0.8,1。
对比例1
环境温度:25℃。
充放电过程:
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到4.5C;
步骤四:继续使用4.5V的恒定电压对电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置1分钟;
步骤六:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤七:接着再将电池静置1分钟;
步骤八:重复上述步骤一至步骤七500个循环。
对比例2
环境温度:25℃。
充放电过程:
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到4.5C;
步骤四:继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置5分钟;
步骤六:使用4.45V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.05C;
步骤七:将电池静置1分钟;
步骤八:再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤九:接着再将电池静置1分钟;
步骤十:重复上述步骤一至步骤九500个循环。
实施例1
环境温度:25℃。
需要说明的是,实施例1至实施例3分别包括获取开路电压OCV n的过程和充放电过程。在这里,先描述开路电压OCV n获取的方法。在本实施例中,选择新鲜电池获取参数OCV n,具体获取开路电压OCV n的过程如下;
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到4.5C;
步骤四:继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置1分钟,并采集电池静置1分钟后的开路电压OCV n,其数值OCV n=4.47V;
充放电过程如下:
环境温度:25℃。
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到U n,此时U n=4.5V;
步骤四:继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置1分钟,并采集电池静置1分钟后的开路电压OCV m
步骤六:计算本次增加的恒压充电过程的第一电压U′ m的电压值,U′ m=4.5+k×(4.47-OCVm),其中k=0.5;
步骤七、继续使用U′ m的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤八、将电池静置1分钟;
步骤九、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤十、接着再将电池静置1分钟;
步骤十一:循环步骤一到步骤十500个循环,每次循环m自动加1。
实施例2
需要说明的是,实施例2中选择新鲜电池采用与实施例1同样的方法获取参数开路电压OCV n,其中,OCV n=4.47V。具体获取过程参实施例1,在此不再赘述。
充放电过程如下:
环境温度:25℃。
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到电压U n,此时U n=4.5V;
步骤四:继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置1分钟,并采集电池静置1分钟后的开路电压OCV m
步骤六:计算本次增加的恒压充电过程的第一电压U′ m的电压值,U′ m=4.5+k×(4.47-OCVm),其中k=0.8;
步骤七、继续使用U′ m的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤八、将电池静置1分钟;
步骤九、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤十、接着再将电池静置1分钟;
步骤十一:循环步骤一到步骤十500个循环,每次循环m自动加1。
实施例3
需要说明的是,实施例2中选择新鲜电池采用与实施例1同样的方法获取参数开路电压OCV n,其中,OCV n=4.47V。具体获取过程参实施例1,在此不再赘述。
充放电过程如下:
步骤一:使用3C的恒定电流对电池充电,直到电池的电压达到4.25V;
步骤二:使用2C的恒定电流对电池充电,直到电池的电压达到4.45V;
步骤三:使用1.4C的恒定电流对电池充电,直到电池的电池达到电压U n,此时U n=4.5V;
步骤四:继续使用4.5V的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤五:将电池静置1分钟,并采集电池静置1分钟后的开路电压OCV m
步骤六:计算本次增加的恒压充电过程的第一电压U′ m的电压值,U′ m=4.5+k×(4.47-OCVm),其中k=1;
步骤七、继续使用U′ m的恒定电压为电池进行充电,直到电池的电流达到截止电流0.25C;
步骤八、将电池静置1分钟;
步骤九、再使用1.0C的恒定电流对电池放电,直到电池的电压为3.0V;
步骤十、接着再将电池静置1分钟;
步骤十一:循环步骤一到步骤十500个循环,每次循环m自动加1。
将对比例1-2和实施例1-3中电池在循环使用过程中的恒定电压(CV电压)、充电截止SOC以及充电时间记录如表1所示。需要说明的是,C为充放电倍率,所述充放电倍率是指在规定时间内充电至额定容量或者放出其额定容量时所需要的电流值,它在数值上等于充放电电流/电池额定容量。例如,当额定容量为10Ah电池以2A放电时,其放电倍率为0.2C;以20A放电时,则其放电倍率为2C。
表1实施例1-3和对比例1-2的测试结果
Figure PCTCN2020139430-appb-000001
Figure PCTCN2020139430-appb-000002
从表1中可以看出,在对比例1的充电方法中,随着电池的循环使用,电池阻抗将逐渐增大,充电截止时的SOC逐渐降低。对比例2是为了解决对比例1中随着电池的循环使用,导致电池在充电截止时的SOC逐渐降低的问题。从表1的结果中可以看出,对比例2在充电 截止时的SOC相较于对比例1具有明显提升,但充电时间相较于对比例1也出现大幅度延长。
实施例1~3基本可以解决对比例1中随着电池的循环使用,充电截止时的SOC降低的问题。其中,实施例1~3的k值分别为0.5,0.8,1。从表1的结果中可以看出,随着k值的增大,循环过程中充电截止时的SOC逐渐升高。其中k=0.8时,通过本申请提供的充电方法可达到与对比例2相同的充电截止SOC。k=1时,通过本申请提供的充电方法可实现始终与新鲜电池(Fresh电池)相同的充电截止SOC,即能够使电池达到满充,虽然相应的充电时间与对比例1相比略有增加,但基本可以忽略。所述新鲜电池是指刚出厂未循环使用过的电池,或者是出厂后充放电循环次数小于预设次数(如10次,也可为其它次数)的电池。
由此,本申请实施例通过根据电池实际的老化状态,来提升电池充电过程中的充电截止电压,解决了随着电池的循环使用,电池阻抗增大,具有较大的充电截止电流的充电方法无法使电池实现满充的问题。本申请实施例提供的充电方法不仅可以满足电池满充的要求,还能够缩短了电池充电至满充状态所需的时间,提升了用户体验。
请参阅图3,在本实施方式中,所述充电***10可以被分割成一个或多个模块,所述一个或多个模块可存储在所述处理器12中,并由所述处理器12执行本申请实施例的充电方法。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述充电***10在所述电子装置1中的执行过程。例如,所述充电***10可以被分割成图3中的充电模块101和获取模块102。
所述充电模块101用于在第n次充电过程中,以第一充电方式对第一电池进行充电至其充电截止电压U n,其中,n为大于0的正整数。所述获取模块102用于在所述第n次充电过程完成后静置所述第一电池,并获取所述第一电池在静置时间为t i时的开路电压OCV n。所述充电模块101还用于在第m次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,其中,m为正整数且m>n。 所述获取模块102还用于在所述第m次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m。所述充电模块101还用于若OCV n>OCV m,以第二充电方式继续对静置后的所述第一电池充电至第一电压U′ m,其中,U′ m=U n+k×(OCV n-OCV m),0<k≤1。
通过所述充电***10可以提升电池充电过程中的充电截止电压,解决了随着电池的循环使用,电池阻抗增大,具有较大的充电截止电流的充电方法无法使电池实现满充的问题。具体内容可以参见上述电池的充电方法的实施例,在此不再详述。
在一实施方式中,所述处理器12可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器12也可以是其它任何常规的处理器等。
所述充电***10中的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、等。
可以理解的是,以上所描述的模块划分,为一种逻辑功能划分, 实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
所述一个或多个模块还可存储在存储器中,并由所述处理器12执行。所述存储器11可以是电子装置1的内部存储器,即内置于所述电子装置1的存储器。在其他实施例中,所述存储器11也可以是电子装置1的外部存储器,即外接于所述电子装置1的存储器。
在一些实施例中,所述存储器11用于存储程序代码和各种数据,例如,存储安装在所述电子装置1中的充电***10的程序代码,并在电子装置1的运行过程中实现高速、自动地完成程序或数据的存取。
所述存储器11可以包括随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将本申请上述的实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。

Claims (10)

  1. 一种电池的充电方法,其特征在于,所述方法包括:
    在第n次充电过程中,以第一充电方式对第一电池进行充电至其充电截止电压U n,其中,n为大于0的正整数;
    在所述第n次充电过程完成后静置所述第一电池,并获取所述第一电池在静置时间为t i时的开路电压OCV n
    在第m次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,其中,m为正整数且m>n;
    在所述第m次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m;及
    若OCV n>OCV m,以第二充电方式继续对静置后的所述第一电池充电至第一电压U′ m,其中,U′ m=U n+k×(OCV n-OCV m),0<k≤1。
  2. 如权利要求1所述的充电方法,其特征在于,
    所述电压OCV n还包括预先存储的第二电池在所述第n次充电过程完成后的静置过程中,在所述静置时间t i时采集的开路电压,其中,所述第一电池和所述第二电池为相同电池体系中的不同电池。
  3. 如权利要求1所述的充电方法,其特征在于,所述方法还包括:
    在第m+b次充电过程中,以所述第一充电方式对所述第一电池进行充电至所述充电截止电压U n,b为大于1的正整数;
    在所述第m+b次充电过程完成后静置所述第一电池,并获取所述第一电池在所述静置时间t i时的开路电压OCV m+b
    若OCV n>OCV m+b,以所述第二充电方式继续对静置后的所述第一电池充电至第二电压U m+b,其中,U m+b=U n+k×(OCV n-OCV m+b),0<k≤1。
  4. 如权利要求1至3中任一项所述的充电方法,其特征在于,U cl≤U n≤U cl+500mV,其中,U cl为所述第一电池所属的电池体系的充电限制电压。
  5. 如权利要求1所述的充电方法,其特征在于,所述第一充电方 式包括依序的N1个充电阶段,N1为大于或等于1的正整数,在第N1充电阶段时,以恒定的所述充电截止电压U n对所述第一电池进行恒压充电。
  6. 如权利要求1所述的充电方法,其特征在于,所述第二充电方式包括依序的N2个充电阶段,N2为大于或等于1的正整数,在第N2充电阶段时,以恒定的所述第一电压U′ m对所述第一电池进行恒压充电。
  7. 如权利要求1所述的充电方法,其特征在于,所述第一充电方式还包括依序的M1个恒流充电阶段,M1为大于1的正整数,在所述第一电池恒流充电达到所述充电截止电压U n后,通过所述充电截止电压U n截止之后的每个所述恒流充电阶段;所述M1恒流充电阶段分别定义为第i充电阶段,i=1、2、…、M1,其中,第i+1充电阶段的充电电流小于第i充电阶段的充电电流。
  8. 如权利要求1所述的充电方法,其特征在于,所述第二充电方式还包括依序的M2个恒流充电阶段,M2为大于1的正整数,通过所述第一电压U′ m截止所述M2个恒流充电阶段中的每个恒流充电阶段;其中,所述M2个恒流充电阶段分别定义为第j充电阶段,j=1、2、…、M2,其中,第j+1充电阶段的充电电流小于第j充电阶段的充电电流。
  9. 一种电子装置,其特征在于,所述电子装置包括:
    电池;以及
    处理器,用于执行如权利要求1至8中任意一项所述的充电方法对所述电池进行充电。
  10. 一种存储介质,其上存储有至少一条计算机指令,其特征在于,所述指令由处理器加载并用于执行如权利要求1至8中任意一项所述的充电方法。
PCT/CN2020/139430 2020-12-25 2020-12-25 充电方法、电子装置以及存储介质 WO2022134005A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/139430 WO2022134005A1 (zh) 2020-12-25 2020-12-25 充电方法、电子装置以及存储介质
EP20966570.2A EP4270714A4 (en) 2020-12-25 2020-12-25 CHARGING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIUM
CN202080015853.6A CN113574763A (zh) 2020-12-25 2020-12-25 充电方法、电子装置以及存储介质
US18/192,963 US20230238822A1 (en) 2020-12-25 2023-03-30 Charging method, electronic apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139430 WO2022134005A1 (zh) 2020-12-25 2020-12-25 充电方法、电子装置以及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,963 Continuation US20230238822A1 (en) 2020-12-25 2023-03-30 Charging method, electronic apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2022134005A1 true WO2022134005A1 (zh) 2022-06-30

Family

ID=78158916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139430 WO2022134005A1 (zh) 2020-12-25 2020-12-25 充电方法、电子装置以及存储介质

Country Status (4)

Country Link
US (1) US20230238822A1 (zh)
EP (1) EP4270714A4 (zh)
CN (1) CN113574763A (zh)
WO (1) WO2022134005A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184236A (zh) * 2023-04-26 2023-05-30 宁德时代新能源科技股份有限公司 一种电池标定方法、电池标定装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784482B2 (en) * 2020-10-20 2023-10-10 Apple Inc. Electrical connection monitoring using cable shielding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956530A (zh) * 2014-05-13 2014-07-30 中国科学院上海高等研究院 一种锂离子电池快速充电控制方法
CN111384757A (zh) * 2020-04-08 2020-07-07 Oppo广东移动通信有限公司 充电方法、装置、设备及存储介质
CN111416398A (zh) * 2019-01-08 2020-07-14 太普动力新能源(常熟)股份有限公司 可充电电池的相对荷电状态的处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728995B2 (en) * 2015-04-08 2017-08-08 Intel Corporation Systems, methods and devices for adaptable battery charging
WO2017147741A1 (zh) * 2016-02-29 2017-09-08 东莞新能源科技有限公司 锂离子电池充电方法
CN106655396B (zh) * 2017-01-13 2019-02-12 Oppo广东移动通信有限公司 充电控制方法、装置及终端
CN112005426B (zh) * 2019-10-21 2023-03-10 宁德新能源科技有限公司 充电方法、电子装置以及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956530A (zh) * 2014-05-13 2014-07-30 中国科学院上海高等研究院 一种锂离子电池快速充电控制方法
CN111416398A (zh) * 2019-01-08 2020-07-14 太普动力新能源(常熟)股份有限公司 可充电电池的相对荷电状态的处理方法
CN111384757A (zh) * 2020-04-08 2020-07-07 Oppo广东移动通信有限公司 充电方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270714A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184236A (zh) * 2023-04-26 2023-05-30 宁德时代新能源科技股份有限公司 一种电池标定方法、电池标定装置、电子设备及存储介质
CN116184236B (zh) * 2023-04-26 2023-08-04 宁德时代新能源科技股份有限公司 一种电池标定方法、电池标定装置、电子设备及存储介质

Also Published As

Publication number Publication date
US20230238822A1 (en) 2023-07-27
EP4270714A1 (en) 2023-11-01
EP4270714A4 (en) 2024-03-06
CN113574763A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
US10965138B2 (en) Method, apparatus, and device for charging a battery and storage medium
CN112582696B (zh) 充电方法、电子装置及存储介质
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
CN112005426B (zh) 充电方法、电子装置以及存储介质
US20230238822A1 (en) Charging method, electronic apparatus, and storage medium
WO2021155538A1 (zh) 充电方法、电子装置以及存储介质
CN112689934B (zh) 充电方法、电子装置以及存储介质
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
US20210119461A1 (en) Electronic device and method for charging battery
US20230238818A1 (en) Charging method, electronic apparatus, and storage medium
US20230231405A1 (en) Charging method, electronic apparatus, and storage medium
WO2022133974A1 (zh) 充电方法、电子装置以及存储介质
WO2022198529A1 (zh) 电池的充电方法、电动设备以及存储介质
WO2022126657A1 (zh) 充电方法、电子装置以及存储介质
JP7250914B2 (ja) 充電方法、電子装置及び記憶媒体
CN116365617A (zh) 充电电流的确定方法、装置、电子设备和存储介质
CN117783877A (zh) 电池充电时间的计算方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966570

Country of ref document: EP

Effective date: 20230725