WO2022131037A1 - 造形物の製造方法及び造形物 - Google Patents

造形物の製造方法及び造形物 Download PDF

Info

Publication number
WO2022131037A1
WO2022131037A1 PCT/JP2021/044591 JP2021044591W WO2022131037A1 WO 2022131037 A1 WO2022131037 A1 WO 2022131037A1 JP 2021044591 W JP2021044591 W JP 2021044591W WO 2022131037 A1 WO2022131037 A1 WO 2022131037A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
wing
forming
manufacturing
welded
Prior art date
Application number
PCT/JP2021/044591
Other languages
English (en)
French (fr)
Inventor
貴宏 篠崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021156815A external-priority patent/JP2022095534A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202180073594.7A priority Critical patent/CN116457080A/zh
Publication of WO2022131037A1 publication Critical patent/WO2022131037A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/95Heating or cooling systems using heated or cooled stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling

Definitions

  • the present invention relates to a method for manufacturing a modeled object and a modeled object.
  • a 3D printer using a metal material melts a metal powder or a metal wire by using a heat source such as a laser or an arc, and laminates the molten metal to form a modeled object.
  • the cooling performance of the wing portion is improved. May be planned.
  • the formation of the internal flow path can be easily performed by machining such as cutting if the internal flow path has a simple shape, but it is difficult to form the internal flow path by machining when the internal flow path has a complicated shape.
  • the manufacturing process is complicated and it is difficult to remove the core after molding.
  • the present invention has been made in view of the above circumstances, and an object thereof is a method for manufacturing a modeled object and a modeled object capable of easily and at low cost to manufacture a modeled object having a flow path along a wing portion. It is to provide things.
  • the present invention has the following configuration.
  • (1) A method for manufacturing a shaped object having a shaped portion having a wing portion formed by laminating a welded bead obtained by laminating and solidifying a filler metal on the outer periphery of a rod-shaped shaft body. , When modeling the shaped portion, a wing portion forming step of forming the welded bead along the extending direction of the wing portion to form the wing portion is performed, and the wing portion forming step is performed.
  • a hollow portion is formed by leaving a gap between the welded beads so that the wing flow path surrounded by the welded beads can be formed along the extending direction of the welded beads in the axial cross-sectional view.
  • a wing flow path formed along the wing in the modeling portion The internal flow path formed around the shaft body and Have, Modeled object.
  • a modeled object having a flow path along a wing portion can be easily manufactured at low cost.
  • FIG. 3 is a cross-sectional view taken along the line I-I in FIG. It is sectional drawing along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line I-I in FIG. It is sectional drawing along the line II-II in FIG.
  • It is a schematic schematic block diagram of the manufacturing system for manufacturing a modeled object. It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which explains the manufacturing process of the modeled object. It is a schematic side view along the axial direction of the modeled product in the middle of manufacturing which explains the manufacturing process of the modeled object.
  • FIGS. (A) to (C) are schematic plan views of each of the shaped parts. It is a figure explaining the process of forming a curved cross section of a wing channel, and FIGS. (A) to (C) are schematic cross-sectional views of each of the shaped portions.
  • FIG. 1 is a perspective view of a modeled object W manufactured by the manufacturing method of the present invention.
  • FIG. 2 is a perspective view of the cooling flow path 61 formed inside the modeled object W.
  • the modeled object W has a shaft body 51 and a modeled portion 53 formed on the outer periphery of the shaft body 51, and a blade (wing portion) 55 is formed on the modeled portion 53. Has been done.
  • the shaft body 51 is, for example, a round bar body having a circular cross section such as a steel bar.
  • the blade 55 of the modeling portion 53 provided on the outer periphery of the shaft body 51 is formed in a shape in which a protruding portion toward the outer periphery is spirally twisted in the axial direction.
  • the modeling portion 53 having the blade 55 is formed by forming a welded bead around the shaft body 51 and laminating it. The surface of the modeling portion 53 formed by the welding bead is then machined by cutting to form a target shape.
  • the modeled object W has a cooling flow path 61 inside thereof.
  • the cooling flow path 61 is a flow path through which a cooling medium such as cooling water flows, and the model W is cooled by flowing the cooling medium through the cooling flow path 61.
  • the cooling flow path 61 has a pair of blade flow paths 63, an internal flow path 65, and a plurality of connection flow paths 67.
  • the blade flow path 63 is provided inside each blade 55 and extends along the blade 55.
  • Each wing flow path 63 is provided at a position symmetrical with respect to each other with the axis of the model W as the center.
  • These wing portion flow paths 63 are formed in the modeling portion 53 in the modeling object W.
  • the internal flow path 65 is provided on the center side of the blade flow path 63 in the model W, and is formed in a spiral shape in the axial direction.
  • the internal flow path 65 is formed on the outer peripheral portion of the shaft body 51.
  • connection flow paths 67 are formed near both ends of the modeled object W, and each is formed along the radial direction. Each connecting flow path 67 communicates with the end of the wing flow path 63. One of the connecting flow paths 67A and 67B near both ends of the modeled object W is communicated with the end of the internal flow path 65, respectively.
  • the other connection flow path 67C near one end of the model W is provided with a supply port 69A at its end, and the other connection flow path 67D near the other end of the model W is provided with a discharge port at its end. 69B is provided.
  • a cooling medium is sent from the supply port 69A, and this cooling medium is discharged from the discharge port 69B.
  • the cooling medium supplied from the supply port 69A is sent to one wing flow path 63 through the connection flow path 67C and flows in the wing flow path 63.
  • the cooling medium is sent to the internal flow path 65 through the connection flow path 67B and flows in the internal flow path 65.
  • the cooling medium is sent to the other blade flow path 63 through the connection flow path 67A and flows through the blade flow path 63.
  • the cooling medium is sent out to the connection flow path 67D and discharged from the discharge port 69B.
  • FIG. 3 is a cross-sectional view taken along the line I-I in FIG.
  • FIG. 4 is a cross-sectional view taken along the line II-II in FIG.
  • the blade flow path 63 is formed as a trapezoidal trapezoidal cross-sectional portion 63A in the axial cross-sectional view in the regions on both ends in the axial direction.
  • the region on the central side in the axial direction is formed as a curved cross-sectional portion 63B having a curved shape such as a bow shape or an arch shape in the axial cross-sectional view. There is.
  • the shape in the axial cross-sectional view is gradually changed from the trapezoidal cross-sectional portion 63A on both ends in the axial direction to the curved cross-sectional portion 63B on the central side in the axial direction.
  • the area on both ends in the axial direction is a trapezoidal cross-sectional portion 63A formed in a trapezoidal shape, and the region on the central side in the axial direction is a curved cross-sectional portion 63B formed in a curved shape.
  • the cross-sectional shape of the blade flow path 63 is gradually changed from trapezoidal to curved from both ends in the axial direction to the center while maintaining the same cross-sectional area at any axial position. .. That is, in FIG. 3, the surface of the blade flow path 63 along the outer surface of the blade has a trapezoidal shape parallel to the outer surface of the blade. As a result, the wall thickness from the outer surface of the wing portion to the wing portion flow path 63 can be made uniform, and the wing portion can be cooled evenly. Further, in FIG. 4, the surface of the blade flow path 63 along the outer surface of the blade has a surface parallel to the outer surface of the blade. Even in this case, the wall thickness from the outer surface of the wing portion to the wing portion flow path 63 can be made uniform, and the wing portion can be cooled evenly.
  • FIG. 5 is a schematic schematic configuration diagram of a manufacturing system 100 for manufacturing a model W.
  • the manufacturing system 100 having this configuration includes a laminated modeling device 11, a cutting device 12, a controller 13 that comprehensively controls the laminated modeling device 11 and the cutting device 12, and a power supply device 15.
  • the laminated modeling device 11 has a welding robot 19 having a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies the filler material (welding wire) M to the torch 17.
  • the torch 17 holds the filler metal M in a state of protruding from the tip.
  • the welding robot 19 is an articulated robot, and the torch 17 provided on the tip shaft is supported so that the filler metal M can be continuously supplied.
  • the position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.
  • the torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
  • the arc welding method used in this configuration may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding. It will be selected as appropriate.
  • a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip.
  • the torch 17 generates an arc from the tip of the filler M in a shield gas atmosphere while holding the filler M.
  • the filler material M is fed from the filler material supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear welded bead that is a melt-solidified body of the filler metal M is formed.
  • the heat source for melting the filler metal M is not limited to the above-mentioned arc.
  • a heat source by another method such as a heating method using a combination of an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser may be adopted.
  • the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the model W can be further improved.
  • any commercially available welding wire can be used.
  • it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high tension steel and low temperature steel, arc welding flux containing wire for mild steel, high tension steel and low temperature steel (JIS Z 3313), etc. Wire can be used.
  • the cutting device 12 includes a cutting robot 41.
  • the cutting robot 41 is an articulated robot like the welding robot 19, and is provided with a metal processing tool 45 such as an end mill or a grinding wheel at the tip of the tip arm 43.
  • a metal processing tool 45 such as an end mill or a grinding wheel at the tip of the tip arm 43.
  • the cutting robot 41 cuts and processes the shaft body 51 or the modeling portion 53 formed on the shaft body 51 with a metal processing tool 45.
  • the controller 13 has a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.
  • the CAD / CAM unit 31 creates shape data of the model W to be manufactured, and then divides the data into a plurality of layers to generate layer shape data representing the shape of each layer.
  • the trajectory calculation unit 33 obtains the movement trajectory of the torch 17 based on the generated layer shape data. Further, the trajectory calculation unit 33 obtains the movement trajectory of the metal processing tool 45 based on the shape data.
  • the storage unit 35 stores data such as the shape data of the modeled object W, the generated layer shape data, the movement locus of the torch 17, and the movement locus of the metal processing tool 45.
  • the control unit 37 executes a drive program based on the layer shape data stored in the storage unit 35 and the movement locus of the torch 17 to drive the welding robot 19. That is, the welding robot 19 moves the torch 17 while melting the filler metal M with an arc based on the movement locus of the torch 17 generated by the trajectory calculation unit 33 in response to a command from the controller 13. Further, the control unit 37 executes a drive program based on the shape data stored in the storage unit 35 or the movement locus of the metalworking tool 45 to drive the cutting robot 41. As a result, the shaft body 51 or the modeling portion 53 is cut by the metal processing tool 45 provided on the tip arm 43 of the cutting robot 41.
  • the manufacturing system 100 having the above configuration moves the torch 17 by driving the welding robot 19 and rotates the shaft body 51 around the axis along the movement locus of the torch 17 generated from the set layer shape data.
  • the welded bead made of the molten filler M is laminated around the shaft body 51 by the torch 17.
  • a modeled object W in which a modeled portion 53 made of a welded bead is formed on the outer periphery of the shaft body 51 is manufactured.
  • the modeled object W is formed into a designed outer shape by cutting with the metal processing tool 45 of the cutting device 12. Both ends of the shaft body 51 are supported by a support portion 49 provided on the base 47 and are rotatable.
  • 6 to 8 are schematic side views along the axial direction of the model W in the middle of manufacturing for explaining the manufacturing process of the model W.
  • the outer periphery of the shaft body 51 is cut to form the groove portion 59.
  • the outer peripheral surface of the shaft body 51 is cut by the metal processing tool 45 of the cutting device 12 while rotating the shaft body 51 having both ends supported by the support portion 49.
  • the metal processing tool 45 is moved from one end side to the other end side of the shaft body 51.
  • a spiral groove portion 59 along the axial direction is formed on the outer periphery of the shaft body 51.
  • a welded bead is formed around the shaft body 51 by a torch 17 along the circumferential direction and laminated.
  • the inner peripheral portion of the modeling portion 53 made of the laminated welded beads is formed on the outer periphery of the shaft body 51.
  • a welding bead is formed in advance along the edge portion of the groove portion 59 in the shaft body 51 to seal the groove portion 59. In this way, by sealing the groove portion 59 with a welding bead and forming the inner peripheral portion of the modeling portion 53 on the outer periphery of the shaft body 51, a spiral internal flow path 65 along the axial direction is formed.
  • a hollow portion is formed by leaving a gap between the welded beads so that the blade passage 63 surrounded by the welded beads can be formed along the extending direction of the welded beads in the axial cross-sectional view.
  • the wing flow path forming step is performed.
  • connection flow path forming step of forming a connection flow path 67 extending in the radial direction is performed at both ends of the modeling portion 53.
  • the connection flow path 67 can be formed by forming a welded bead while avoiding the portion that becomes the connection flow path 67.
  • the connection flow path 67 may be formed by machining after laminating the welded beads.
  • FIG. 9 and 10 are views for explaining the wing flow path forming process for forming the trapezoidal cross-sectional portion 63A of the wing flow path 63, and in FIG. 9, the welded bead B is shown in a shaded area.
  • the welded bead B is formed along the extending direction X of the blade 55 with respect to the base layer BLU made of the welded bead B to form the welded bead layer.
  • BL1 is laminated. At this time, a gap GA1 is formed between the welded beads B.
  • the welded bead B is formed along the extending direction X of the blade 55 with respect to the welded bead layer BL1 of the lower layer to form the welded bead layer BL2. Laminate. At this time, a gap GA2 smaller than the gap GA1 formed by the lower weld bead layer BL1 is formed between the welded beads B.
  • a welded bead B is formed along the extending direction X of the blade 55 with respect to the welded bead layer BL2 of the lower layer, and the welded bead layer of the lower layer is formed.
  • the welded bead layer BL3 is laminated so as to close the gap GA2 formed in BL2.
  • the blade 55 is formed, and the inside thereof is a trapezoidal cross-sectional portion 63A having a trapezoidal cross-sectional view.
  • a wing flow path 63 composed of a hollow portion can be formed.
  • FIG. 11 and 12 are views for explaining a wing flow path forming step for forming a curved cross-sectional portion 63B of the wing flow path 63, and in FIG. 11, the welded bead B is shown in a shaded area. ..
  • the welded bead B is formed along the extending direction X of the blade 55 with respect to the base layer BLU made of the welded bead B, and the welded bead layer is formed.
  • BL1 is laminated. At this time, two gaps GB1 are formed at intervals between the welded beads B.
  • the welded bead B is formed with respect to the lower welded bead layer BL1 along the extending direction X of the blade 55 to form the welded bead layer BL2. Laminate. At this time, one gap GB2 connected to the two gaps GB1 formed by the lower welded bead layer BL1 is formed between the welded beads B.
  • a welded bead B is formed along the extending direction X of the blade 55 with respect to the welded bead layer BL2 of the lower layer, and the welded bead layer of the lower layer is formed.
  • the welded bead layer BL3 is laminated so as to close the gap GB2 formed in BL2.
  • the blade 55 is formed, and the inside thereof is formed into a curved cross-sectional portion 63B having a curved axial cross-sectional view. It is possible to form a wing passage 63 composed of a hollow portion.
  • a hollow portion is formed by leaving a gap between the welded beads B to form a hollow portion in a cross-sectional view of the shaft.
  • the blade flow path 63 surrounded by the welded bead B can be formed along the extending direction of the welded bead B.
  • a large cross-sectional area can be secured with a small number of passes.
  • the wing passage 63 having a trapezoidal cross-sectional portion 63A can be easily formed.
  • the welded bead layer BL1 on the lower layer side forms two gaps GB1
  • the welded bead layer BL2 on the upper layer side forms one gap GB2 connected to the two gaps GB1 in the lower layer.
  • the blade flow path 63 is formed so that the surface along the outer surface of the blade 55 is parallel to the outer surface of the blade 55, the wall thickness from the outer surface of the blade 55 to the blade flow path 63 is made uniform. And the blade 55 can be cooled evenly.
  • the internal flow path 65 on the outer periphery of the shaft body 51, it is possible to easily and at low cost to manufacture the modeled object W capable of efficiently cooling a wider range.
  • the cooling medium is circulated between the internal flow path 65 and the wing portion flow path 63 via the connection flow path 67. Can be done. As a result, the inside of the modeled object W and the blade 55 can be cooled efficiently and uniformly. Further, by circulating the cooling medium between the blade flow path 63 and the internal flow path 65, it is possible to easily determine the presence or absence of blockage in the cooling flow path 61.
  • a case is exemplified in which a wing passage 63 having a trapezoidal cross-section portion 63A on both end sides and a curved cross-section portion 63B on the center side is modeled, but the wing passage 63 is trapezoidal over the entire length. It may be a cross-section portion 63A or a curved cross-section portion 63B.
  • the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.
  • a hollow portion is formed by leaving a gap between the welded beads so that the wing flow path surrounded by the welded beads can be formed along the extending direction of the welded beads in the axial cross-sectional view.
  • a method for manufacturing a modeled object which performs a step of forming a wing flow path.
  • a hollow portion is formed by leaving a gap between the welded beads, so that the welded beads are surrounded by the welded beads in a cross-sectional view.
  • the wing flow path can be formed along the extending direction of the welded bead.
  • wing flow path forming step One of (1) to (3) that forms a gap between the welded beads so that the surface of the wing flow path along the outer surface of the wing is parallel to the outer surface of the wing.
  • the method for manufacturing a model as described in. According to this method of manufacturing a modeled object, a wing flow path is formed so that the surface along the outer surface of the wing is parallel to the outer surface of the wing, so that the wing flow path from the outer surface of the wing to the wing flow path.
  • the wall thickness can be made uniform, and the wings can be cooled evenly.
  • a rod-shaped shaft and A molding portion provided on the outer periphery of the shaft body and having a wing portion formed by laminating welded beads obtained by melting and solidifying a filler metal, and a molding portion.
  • a wing flow path formed along the wing in the modeling portion The internal flow path formed around the shaft body and Has a model. According to this modeled object, it has a wing portion flow path formed along the wing portion and an internal flow path formed around the shaft body. Therefore, by flowing a cooling medium through these wing passages and the internal flow passage, a wide range including the wing can be efficiently cooled.
  • At least a part of the wing flow path is Formed in a trapezoidal shape in cross-sectional view of the axis
  • the cooling medium can flow smoothly.
  • the surface of the trapezoidal wing flow path along the outer surface of the wing is parallel to the outer surface of the wing, the wall thickness from the outer surface of the wing to the wing flow path can be made uniform. , The wings can be cooled evenly.
  • At least a part of the wing flow path is It is formed in a curved shape in the axial cross section,
  • the cooling medium can flow over a wide range in the axial cross section.
  • the surface of the curved wing flow path along the outer surface of the wing has a surface parallel to the outer surface of the wing, the wall thickness from the outer surface of the wing to the wing flow path should be made uniform. And the wings can be cooled evenly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)

Abstract

棒状の軸体の外周に溶加材を溶融及び凝固させた溶着ビードを積層して造形されたブレードを有する造形部を備えた造形物を製造する造形物の製造方法であって、造形部を造形する際に、ブレードの延在方向に沿って溶着ビードを形成してブレードを造形する翼部造形工程を行うとともに、翼部造形工程において、溶着ビードを積層させる際に、溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で溶着ビードによって囲われた翼部流路を溶着ビードの延伸方向に沿って形成する翼部流路形成工程を行う。

Description

造形物の製造方法及び造形物
 本発明は、造形物の製造方法及び造形物に関する。
 近年、生産手段としての3Dプリンタのニーズが高まっており、特に金属材料への適用については航空機業界等で実用化に向けて研究開発が行われている。金属材料を用いた3Dプリンタは、レーザ又はアーク等の熱源を用いて、金属粉体又は金属ワイヤを溶融させ、溶融金属を積層させて造形物を造形する。
 例えば、ブレードを有する回転体を製造する技術として、中心軸となる軸体の周囲に溶着ビードを積層させてブレードを形成する技術がある(例えば、特許文献1参照)。
日本国特開2019-155463号公報
 ところで、上記のような回転体が有するブレード(翼部)に、翼部の面に沿って内部流路を形成し、その内部流路に冷却媒体を流すことで、翼部の冷却性能の向上を図ることがある。内部流路の形成は、単純な流路形状であれば切削等の機械加工によって簡易にできるが、複雑な形状の内部流路を形成する場合、機械加工での形成は困難となる。また、鋳造によって内部流路を成形することも考えられるが、その場合、専用の中子を用いなければならず、製造コストが嵩んでしまう。しかも、中子を用いた鋳造では、製造プロセスを煩雑化させる上に、成形後に中子を除去することが困難であった。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、翼部に沿った流路を有する造形物を容易にかつ低コストで製造することが可能な造形物の製造方法及び造形物を提供することにある。
 本発明は下記の構成からなる。
(1) 棒状の軸体の外周に溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部を備えた造形物を製造する造形物の製造方法であって、
 前記造形部を造形する際に、前記翼部の延在方向に沿って前記溶着ビードを形成して前記翼部を造形する翼部造形工程を行うとともに、
 前記翼部造形工程において、
 前記溶着ビードを積層させる際に、前記溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で前記溶着ビードによって囲われた翼部流路を前記溶着ビードの延伸方向に沿って形成する翼部流路形成工程を行う、
 造形物の製造方法。
(2) 棒状の軸体と、
 前記軸体の外周に設けられ、溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部と、
 前記造形部における前記翼部に沿って形成された翼部流路と、
 前記軸体の周囲に形成された内部流路と、
 を有する、
 造形物。
 本発明によれば、翼部に沿った流路を有する造形物を容易にかつ低コストで製造できる。
本発明の製造方法で製造する造形物の斜視図である。 造形物の内部に形成された冷却流路の斜視図である。 図1におけるI-I線に沿った断面図である。 図1におけるII-II線に沿った断面図である。 造形物を製造する製造システムの模式的な概略構成図である。 造形物の製造工程を説明する製造途中の造形物の軸方向に沿う概略側面図である。 造形物の製造工程を説明する製造途中の造形物の軸方向に沿う概略側面図である。 造形物の製造工程を説明する製造途中の造形物の軸方向に沿う概略側面図である。 翼部流路の台形断面部を形成する翼部流路形成工程を説明する図であって、(A)~(C)は、それぞれ造形箇所の概略平面図である。 翼部流路の台形断面部を形成する翼部流路形成工程を説明する図であって、(A)~(C)は、それぞれ造形箇所の概略断面図である。 翼部流路の湾曲状断面部を形成する翼部流路形成工程を説明する図であって、(A)~(C)は、それぞれ造形箇所の概略平面図である。 翼部流路の湾曲状断面部を形成する翼部流路形成工程を説明する図であって、(A)~(C)は、それぞれ造形箇所の概略断面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の製造方法で製造する造形物Wの斜視図である。図2は、造形物Wの内部に形成された冷却流路61の斜視図である。
 図1に示すように、造形物Wは、軸体51と、軸体51の外周に造形された造形部53とを有しており、造形部53には、ブレード(翼部)55が形成されている。
 軸体51は、例えば、鋼棒等の断面円形の丸棒体である。この軸体51の外周に設けられた造形部53のブレード55は、外周側への突出部分が軸方向に向かって螺旋状に捻られた形状に形成されている。このブレード55を有する造形部53は、軸体51の周囲に溶着ビードを形成して積層させることにより造形される。なお、溶着ビードによって造形される造形部53は、その後に切削加工によって表面が切削加工されて目標形状に形成される。
 図2に示すように、造形物Wは、その内部に、冷却流路61を有している。この冷却流路61は、冷却水等の冷却媒体が流される流路であり、この冷却流路61に冷却媒体が流されることにより、造形物Wが冷却される。
 冷却流路61は、一対の翼部流路63と、内部流路65と、複数の接続流路67とを有している。
 翼部流路63は、それぞれのブレード55の内部に設けられ、ブレード55に沿って延在されている。それぞれの翼部流路63は、造形物Wの軸線を中心として、互いに点対称の位置に設けられている。これらの翼部流路63は、造形物Wにおける造形部53に形成されている。
 内部流路65は、造形物Wにおける翼部流路63よりも中心側に設けられており、軸方向に向かって螺旋状に形成されている。この内部流路65は、軸体51の外周部に形成されている。
 接続流路67は、造形物Wの両端寄りに一対ずつ形成されており、それぞれ径方向に沿って形成されている。それぞれの接続流路67は、翼部流路63の端部に連通されている。造形物Wの両端寄りにおける一方の接続流路67A,67Bは、それぞれ内部流路65の端部に連通されている。造形物Wの一端寄りにおける他方の接続流路67Cには、その端部に供給口69Aが設けられ、造形物Wの他端寄りにおける他方の接続流路67Dには、その端部に排出口69Bが設けられている。
 冷却流路61では、供給口69Aから冷却媒体が送り込まれ、この冷却媒体は、排出口69Bから排出される。具体的には、供給口69Aから供給される冷却媒体は、接続流路67Cを通して一方の翼部流路63へ送り込まれ、この翼部流路63内を流れる。さらに、冷却媒体は、接続流路67Bを通して内部流路65へ送り込まれ、この内部流路65内を流れる。その後、冷却媒体は、接続流路67Aを通して他方の翼部流路63へ送り込まれ、この翼部流路63を流れる。そして、冷却媒体は、接続流路67Dへ送り出され、排出口69Bから排出される。これにより、造形物Wは、冷却媒体が翼部流路63を流れることによって各ブレード55が冷却されるとともに、冷却媒体が内部流路65を流れることによって中心側の内部が冷却される。
 図3は、図1におけるI-I線に沿った断面図である。図4は、図1におけるII-II線に沿った断面図である。
 図3に示すように、翼部流路63は、軸方向の両端側の領域において、軸断面視で台形状の台形断面部63Aとなって形成されている。また、図4に示すように、翼部流路63は、軸方向の中央側の領域が、軸断面視で弓形状又はアーチ形状などの湾曲状の湾曲状断面部63Bとなって形成されている。翼部流路63では、軸方向の両端側の台形断面部63Aから軸方向の中央側の湾曲状断面部63Bに向かって、次第に軸断面視での形状が変化されている。軸方向の両端側の領域が、台形状に形成された台形断面部63Aとされ、軸方向の中央側の領域が、湾曲状に形成された湾曲状断面部63Bとされた翼部流路63は、いずれの位置においても断面積が同一とされている。つまり、翼部流路63は、いずれの軸方向位置においても同一の断面積を維持しつつ、軸方向の両端側から中央側へ向かって断面形状が台形状から湾曲状へ次第に変化されている。つまり、図3においては、翼部流路63の翼部の外面に沿う面が、翼部の外面に対して平行な台形状となっている。これにより、翼部の外面から翼部流路63までの肉厚を均一にでき、翼部を均等に冷却できる。また、図4においては、翼部流路63の翼部の外面に沿う面が、翼部の外面に対して平行な面を有している。この場合でも、翼部の外面から翼部流路63までの肉厚を均一に近づけることができ、翼部を均等に冷却できる。
 次に、上記の造形物Wを製造する製造システムについて説明する。図5は造形物Wを製造する製造システム100の模式的な概略構成図である。
 図5に示すように、本構成の製造システム100は、積層造形装置11と、切削装置12と、積層造形装置11及び切削装置12を統括制御するコントローラ13と、電源装置15と、を備える。
 積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。トーチ17は、溶加材Mを先端から突出した状態に保持する。
 溶接ロボット19は、多関節ロボットであり、先端軸に設けたトーチ17は、溶加材Mが連続供給可能に支持される。トーチ17の位置及び姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
 トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。本構成で用いられるアーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する造形物Wに応じて適宜選定される。
 例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、溶加材Mの溶融凝固体である線状の溶着ビードが形成される。
 なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビーム又はレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビーム又はレーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、造形物Wの更なる品質向上に寄与できる。
 溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。
 切削装置12は、切削ロボット41を備えている。切削ロボット41は、溶接ロボット19と同様に、多関節ロボットであり、先端アーム43の先端部に、例えば、エンドミル又は研削砥石などの金属加工工具45を備える。これにより、切削ロボット41は、コントローラ13により、その加工姿勢が任意の姿勢を取り得るように、3次元的に移動可能となっている。
 切削ロボット41は、軸体51又は軸体51に造形された造形部53に対して金属加工工具45で切削して加工する。
 コントローラ13は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。
 CAD/CAM部31は、作製しようとする造形物Wの形状データを作成した後、複数の層に分割して各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。また、軌道演算部33は、形状データに基づいて、金属加工工具45の移動軌跡を求める。記憶部35は、造形物Wの形状データ、生成された層形状データ、トーチ17の移動軌跡及び金属加工工具45の移動軌跡等のデータを記憶する。
 制御部37は、記憶部35に記憶された層形状データ及びトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。つまり、溶接ロボット19は、コントローラ13からの指令により、軌道演算部33で生成したトーチ17の移動軌跡に基づき、溶加材Mをアークで溶融させながらトーチ17を移動する。また、制御部37は、記憶部35に記憶された形状データ又は金属加工工具45の移動軌跡に基づく駆動プログラムを実行して、切削ロボット41を駆動する。これにより、切削ロボット41の先端アーム43に設けられた金属加工工具45によって軸体51又は造形部53に対して切削加工を行う。
 上記構成の製造システム100は、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、トーチ17を溶接ロボット19の駆動により移動させるとともに、軸体51を軸回りに回動させながら、溶融した溶加材Mからなる溶着ビードをトーチ17によって軸体51の周囲に積層させる。これにより、軸体51の外周に溶着ビードからなる造形部53が造形された造形物Wを製造する。この造形物Wは、切削装置12の金属加工工具45によって切削加工を施すことで、設計された外形に形成される。軸体51は、その両端が、ベース47上に設けられた支持部49に支持されて回動可能とされている。
 次に、本発明の造形物の製造方法について説明する。
 図6~図8は、造形物Wの製造工程を説明する製造途中の造形物Wの軸方向に沿う概略側面図である。
(内部流路形成工程)
 図6に示すように、軸体51の外周を切削して溝部59を形成する。具体的には、両端を支持部49に支持させた軸体51を回転させながら、切削装置12の金属加工工具45によって軸体51の外周面を切削する。このとき、金属加工工具45を軸体51の一端側から他端側へ移動させる。これにより、軸体51の外周に、軸方向に沿う螺旋状の溝部59を形成する。
 図7に示すように、軸体51を回転させながら、軸体51の周囲にトーチ17によって溶着ビードを周方向に沿って形成して積層させる。これにより、軸体51の外周に、積層させた溶着ビードからなる造形部53の内周部分を造形する。なお、軸体51の周囲に造形部53を造形する際には、予め軸体51における溝部59の縁部に沿って溶着ビードを形成して溝部59を封鎖しておく。このように、溝部59を溶着ビードで封鎖して軸体51の外周に造形部53の内周部分を造形することにより、軸方向に沿う螺旋状の内部流路65が形成される。
(翼部造形工程)
 図8に示すように、造形部53の内周部分を造形したら、ブレード55を有する造形部53の外周部分を造形する。具体的には、造形するブレード55の延在方向に沿って繰り返し溶着ビードを形成する。これにより、軸体51の外周に、ブレード55を有する造形部53を造形する。
 このとき、ブレード55を造形する際に、溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で溶着ビードによって囲われた翼部流路63を溶着ビードの延伸方向に沿って形成する翼部流路形成工程を行う。
 また、造形部53の両端において、径方向に延在する接続流路67を形成する接続流路形成工程を行う。この接続流路67は、この接続流路67となる部分を避けて溶着ビードを形成することにより造形できる。なお、接続流路67は、溶着ビードの積層後に、機械加工によって形成してもよい。
 次に、ブレード55に翼部流路63を形成する翼部流路形成工程の一例について説明する。
(台形断面部63Aの形成)
 図9及び図10は、翼部流路63の台形断面部63Aを形成する翼部流路形成工程を説明する図であり、図9において溶着ビードBは、網掛けした領域で示している。
 図9の(A)及び図10の(A)に示すように、溶着ビードBからなる下地層BLUに対して、ブレード55の延在方向Xに沿って溶着ビードBを形成して溶着ビード層BL1を積層させる。このとき、溶着ビードB同士の間に隙間GA1を形成する。
 図9の(B)及び図10の(B)に示すように、下層の溶着ビード層BL1に対して、ブレード55の延在方向Xに沿って溶着ビードBを形成して溶着ビード層BL2を積層させる。このとき、溶着ビードB同士の間に、下層の溶着ビード層BL1で形成した隙間GA1よりも小さな隙間GA2を形成する。
 図9の(C)及び図10の(C)に示すように、下層の溶着ビード層BL2に対して、ブレード55の延在方向Xに沿って溶着ビードBを形成し、下層の溶着ビード層BL2に形成した隙間GA2を塞ぐように溶着ビード層BL3を積層させる。
 上記のように、下地層BLUに対して溶着ビード層BL1,BL2,BL3を順に積層させることで、ブレード55を造形しつつ、その内部に軸断面視が台形状の台形断面部63Aとされた中空部分からなる翼部流路63を形成できる。
(湾曲状断面部63Bの形成)
 図11及び図12は、翼部流路63の湾曲状断面部63Bを形成する翼部流路形成工程を説明する図であり、図11において溶着ビードBは、網掛けした領域で示している。
 図11の(A)及び図12の(A)に示すように、溶着ビードBからなる下地層BLUに対して、ブレード55の延在方向Xに沿って溶着ビードBを形成して溶着ビード層BL1を積層させる。このとき、溶着ビードB同士の間に間隔をあけて二つの隙間GB1を形成する。
 図11の(B)及び図12の(B)に示すように、下層の溶着ビード層BL1に対して、ブレード55の延在方向Xに沿って溶着ビードBを形成して溶着ビード層BL2を積層させる。このとき、溶着ビードB同士の間に、下層の溶着ビード層BL1で形成した二つの隙間GB1に繋がる一つの隙間GB2を形成する。
 図11の(C)及び図12の(C)に示すように、下層の溶着ビード層BL2に対して、ブレード55の延在方向Xに沿って溶着ビードBを形成し、下層の溶着ビード層BL2に形成した隙間GB2を塞ぐように溶着ビード層BL3を積層させる。
 上記のように、下地層BLUに対して溶着ビード層BL1,BL2,BL3を順に積層させることで、ブレード55を造形しつつ、その内部に軸断面視が湾曲状の湾曲状断面部63Bとされた中空部分からなる翼部流路63を形成できる。
 以上、説明したように、本実施形態によれば、溶着ビードBを積層させてブレード55を造形する際に、溶着ビードB同士に隙間をあけて中空部分を形成することにより、軸断面視で溶着ビードBによって囲われた翼部流路63を溶着ビードBの延伸方向に沿って形成できる。これにより、中子を用いた鋳造と比べ、ブレード55を効率的に冷却させることが可能な造形物Wを容易にかつ低コストで製造できる。
 また、翼部流路形成工程において、積層させる溶着ビード層BL1,BL2における隙間GA1,GA2を下層から上層に向かって狭めることで、少ないパス数で大きな断面積が確保可能な軸断面視で台形状の台形断面部63Aとされた翼部流路63を容易に形成できる。
 さらに、翼部流路形成工程において、下層側の溶着ビード層BL1で二つの隙間GB1を形成し、上層側の溶着ビード層BL2で下層の二つの隙間GB1に繋がる一つの隙間GB2を形成することにより、広い範囲に冷却媒体を流すことが可能な軸断面視で湾曲状の湾曲状断面部63Bとされた翼部流路63を容易に形成できる。
 しかも、ブレード55の外面に沿う面がブレード55の外面に対して平行となるような翼部流路63を形成するので、ブレード55の外面からの翼部流路63までの肉厚を均一にすることができ、ブレード55を均等に冷却させることができる。
 さらに、軸体51の外周に内部流路65を形成することにより、より広い範囲を効率的に冷却させることが可能な造形物Wを容易にかつ低コストで製造できる。
 また、内部流路65と翼部流路63とを繋ぐ接続流路67を形成することにより、接続流路67を介して内部流路65と翼部流路63とに冷却媒体を循環させることができる。これにより、造形物Wの内部とブレード55とを効率的かつ均一に冷却させることができる。また、翼部流路63と内部流路65とに冷却媒体を循環させることにより、冷却流路61内での閉塞の有無等を容易に判定できる。
 なお、上記実施形態では、両端側が台形断面部63Aとされ、中央側が湾曲状断面部63Bとされた翼部流路63を造形する場合を例示したが、翼部流路63は、全長にわたって台形断面部63Aまたは湾曲状断面部63Bであってもよい。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
(1) 棒状の軸体の外周に溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部を備えた造形物を製造する造形物の製造方法であって、
 前記造形部を造形する際に、前記翼部の延在方向に沿って前記溶着ビードを形成して前記翼部を造形する翼部造形工程を行うとともに、
 前記翼部造形工程において、
 前記溶着ビードを積層させる際に、前記溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で前記溶着ビードによって囲われた翼部流路を前記溶着ビードの延伸方向に沿って形成する翼部流路形成工程を行う、造形物の製造方法。
 この造形物の製造方法によれば、溶着ビードを積層させて翼部を造形する際に、溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で溶着ビードによって囲われた翼部流路を溶着ビードの延伸方向に沿って形成できる。これにより、中子を用いた鋳造と比べ、翼部を効率的に冷却させることが可能な造形物を容易にかつ低コストで製造できる。
(2) 前記翼部流路形成工程において前記翼部流路の少なくとも一部を形成する際に、
 複数の前記溶着ビードからなる溶着ビード層における前記隙間を下層から上層に向かって狭めることで、軸断面視で台形状の前記翼部流路を形成する、(1)に記載の造形物の製造方法。
 この造形物の製造方法によれば、積層させる溶着ビード層における隙間を下層から上層に向かって狭めることで、少ないパス数で大きな断面積が確保可能な軸断面視で台形状の翼部流路を容易に形成できる。
(3) 前記翼部流路形成工程において前記翼部流路の少なくとも一部を形成する際に、
 複数の前記溶着ビードからなる溶着ビード層において、下層側で二つの前記隙間を形成し、上層側で前記下層の二つの隙間に繋がる一つの前記隙間を形成することにより、軸断面視で湾曲状の前記翼部流路を形成する、(1)または(2)に記載の造形物の製造方法。
 この造形物の製造方法によれば、下層側の溶着ビード層で二つの隙間を形成し、上層側の溶着ビード層で下層の二つの隙間に繋がる一つの隙間を形成することにより、広い範囲に冷却媒体を流すことが可能な軸断面視で湾曲状の翼部流路を容易に形成できる。
(4) 前記翼部流路形成工程において、
 前記翼部流路における前記翼部の外面に沿う面が前記翼部の外面に対して平行となるように、前記溶着ビードの隙間を形成する、(1)~(3)のいずれか一つに記載の造形物の製造方法。
 この造形物の製造方法によれば、翼部の外面に沿う面が翼部の外面に対して平行となるような翼部流路を形成するので、翼部の外面からの翼部流路までの肉厚を均一にすることができ、翼部を均等に冷却させることができる。
(5) 前記軸体の外周に溝部を形成し、前記軸体の外周に前記溝部の開口部分を塞ぐように前記溶着ビードを積層させることにより、内部流路を形成する内部流路形成工程を含む、(1)~(4)のいずれか一つに記載の造形物の製造方法。
 この造形物の製造方法によれば、軸体の外周に内部流路を形成することにより、より広い範囲を効率的に冷却させることが可能な造形物を容易にかつ低コストで製造できる。
(6) 前記造形部を造形する際に、前記内部流路と前記翼部流路とを繋ぐ接続流路を形成する接続流路形成工程を行う、(5)に記載の造形物の製造方法。
 この造形物の製造方法によれば、内部流路と翼部流路とを繋ぐ接続流路を形成することにより、接続流路を介して内部流路と翼部流路とに冷却媒体を循環させることができる。これにより、造形物の内部と翼部とを効率的かつ均一に冷却させることができる。また、翼部流路と内部流路とに冷却媒体を循環させることにより、流路内での閉塞の有無等を容易に判定できる。
(7) 棒状の軸体と、
 前記軸体の外周に設けられ、溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部と、
 前記造形部における前記翼部に沿って形成された翼部流路と、
 前記軸体の周囲に形成された内部流路と、
 を有する、造形物。
 この造形物によれば、翼部に沿って形成された翼部流路と、軸体の周囲に形成された内部流路とを有している。したがって、これらの翼部流路と内部流路とに冷却媒体を流すことにより、翼部を含む広い範囲を効率的に冷却させることができる。
(8) 前記内部流路と前記翼部流路とに連通する接続流路を有する、(7)に記載の造形物。
 この造形物によれば、内部流路と翼部流路とが接続流路によって繋げられているので、接続流路を介して内部流路と翼部流路とに冷却媒体を循環させることができる。これにより、造形物の内部と翼部とを効率的かつ均一に冷却させることができる。また、翼部流路と内部流路とに冷却媒体を循環させることにより、流路内での閉塞の有無等を容易に判定できる。
(9) 前記翼部流路の少なくとも一部は、
 軸断面視で台形状に形成され、
 前記翼部の外面に沿う面が前記翼部の外面に対して平行である、(7)または(8)に記載の造形物。
 この造形物によれば、翼部流路が軸断面視で台形状に形成されているので、冷却媒体を円滑に流すことができる。また、台形状の翼部流路における翼部の外面に沿う面が翼部の外面に対して平行であるので、翼部の外面から翼部流路までの肉厚を均一にすることができ、翼部を均等に冷却させることができる。
(10) 前記翼部流路の少なくとも一部は、
 軸断面視で湾曲状に形成され、
 前記翼部の外面に沿う面は、前記翼部の外面に対して平行な面を有する、(7)~(9)のいずれか一つに記載の造形物。
 この造形物によれば、翼部流路が軸断面視で湾曲状に形成されているので、軸断面において広い範囲に冷却媒体を流すことができる。また、湾曲状の翼部流路における翼部の外面に沿う面が翼部の外面に対して平行な面を有するので、翼部の外面から翼部流路までの肉厚を均一に近づけることができ、翼部を均等に冷却させることができる。
 なお、本出願は、2020年12月16日出願の日本特許出願(特願2020-208451)、及び2021年9月27日出願の日本特許出願(特願2021-156815)に基づくものであり、その内容は本出願の中に参照として援用される。
 51 軸体
 53 造形部
 55 ブレード(翼部)
 59 溝部
 63 翼部流路
 65 内部流路
 67,67A~67D 接続流路
 B 溶着ビード
 BL1,BL2,BL3 溶着ビード層
 GA1,GA2,GB1,GB2 隙間
 M 溶加材
 W 造形物
 X 延在方向

Claims (14)

  1.  棒状の軸体の外周に溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部を備えた造形物を製造する造形物の製造方法であって、
     前記造形部を造形する際に、前記翼部の延在方向に沿って前記溶着ビードを形成して前記翼部を造形する翼部造形工程を行うとともに、
     前記翼部造形工程において、
     前記溶着ビードを積層させる際に、前記溶着ビード同士に隙間をあけて中空部分を形成することにより、軸断面視で前記溶着ビードによって囲われた翼部流路を前記溶着ビードの延伸方向に沿って形成する翼部流路形成工程を行う、
     造形物の製造方法。
  2.  前記翼部流路形成工程において前記翼部流路の少なくとも一部を形成する際に、
     複数の前記溶着ビードからなる溶着ビード層における前記隙間を下層から上層に向かって狭めることで、軸断面視で台形状の前記翼部流路を形成する、
     請求項1に記載の造形物の製造方法。
  3.  前記翼部流路形成工程において前記翼部流路の少なくとも一部を形成する際に、
     複数の前記溶着ビードからなる溶着ビード層において、下層側で二つの前記隙間を形成し、上層側で前記下層の二つの隙間に繋がる一つの前記隙間を形成することにより、軸断面視で湾曲状の前記翼部流路を形成する、
     請求項1に記載の造形物の製造方法。
  4.  前記翼部流路形成工程において前記翼部流路の少なくとも一部を形成する際に、
     複数の前記溶着ビードからなる溶着ビード層において、下層側で二つの前記隙間を形成し、上層側で前記下層の二つの隙間に繋がる一つの前記隙間を形成することにより、軸断面視で湾曲状の前記翼部流路を形成する、
     請求項2に記載の造形物の製造方法。
  5.  前記翼部流路形成工程において、
     前記翼部流路における前記翼部の外面に沿う面が前記翼部の外面に対して平行となるように、前記溶着ビードの隙間を形成する、
     請求項1~4のいずれか一項に記載の造形物の製造方法。
  6.  前記軸体の外周に溝部を形成し、前記軸体の外周に前記溝部の開口部分を塞ぐように前記溶着ビードを積層させることにより、内部流路を形成する内部流路形成工程を含む、
     請求項1~4のいずれか一項に記載の造形物の製造方法。
  7.  前記軸体の外周に溝部を形成し、前記軸体の外周に前記溝部の開口部分を塞ぐように前記溶着ビードを積層させることにより、内部流路を形成する内部流路形成工程を含む、
     請求項5のいずれか一項に記載の造形物の製造方法。
  8.  前記造形部を造形する際に、前記内部流路と前記翼部流路とを繋ぐ接続流路を形成する接続流路形成工程を行う、
     請求項6に記載の造形物の製造方法。
  9.  前記造形部を造形する際に、前記内部流路と前記翼部流路とを繋ぐ接続流路を形成する接続流路形成工程を行う、
     請求項7に記載の造形物の製造方法。
  10.  棒状の軸体と、
     前記軸体の外周に設けられ、溶加材を溶融及び凝固させた溶着ビードを積層して造形された翼部を有する造形部と、
     前記造形部における前記翼部に沿って形成された翼部流路と、
     前記軸体の周囲に形成された内部流路と、
     を有する、
     造形物。
  11.  前記内部流路と前記翼部流路とに連通する接続流路を有する、
     請求項10に記載の造形物。
  12.  前記翼部流路の少なくとも一部は、
     軸断面視で台形状に形成され、
     前記翼部の外面に沿う面が前記翼部の外面に対して平行である、
     請求項10に記載の造形物。
  13.  前記翼部流路の少なくとも一部は、
     軸断面視で台形状に形成され、
     前記翼部の外面に沿う面が前記翼部の外面に対して平行である、
     請求項11に記載の造形物。
  14.  前記翼部流路の少なくとも一部は、
     軸断面視で湾曲状に形成され、
     前記翼部の外面に沿う面は、前記翼部の外面に対して平行な面を有する、
     請求項10~13のいずれか一項に記載の造形物。
PCT/JP2021/044591 2020-12-16 2021-12-03 造形物の製造方法及び造形物 WO2022131037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180073594.7A CN116457080A (zh) 2020-12-16 2021-12-03 造型物的制造方法和造型物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-208451 2020-12-16
JP2020208451 2020-12-16
JP2021156815A JP2022095534A (ja) 2020-12-16 2021-09-27 造形物の製造方法及び造形物
JP2021-156815 2021-09-27

Publications (1)

Publication Number Publication Date
WO2022131037A1 true WO2022131037A1 (ja) 2022-06-23

Family

ID=82057688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044591 WO2022131037A1 (ja) 2020-12-16 2021-12-03 造形物の製造方法及び造形物

Country Status (1)

Country Link
WO (1) WO2022131037A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110083823A1 (en) * 2009-10-14 2011-04-14 Pascal Zaffino Mould with conformal cooling
CN108480821A (zh) * 2018-03-27 2018-09-04 福州大学 一种圆形截面随形冷却流道的电弧增材制造方法
WO2019175213A1 (en) * 2018-03-13 2019-09-19 Kongsberg Maritime Sweden Ab A method for manufacturing a propeller blade and a propeller blade
JP2020116621A (ja) * 2019-01-25 2020-08-06 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110083823A1 (en) * 2009-10-14 2011-04-14 Pascal Zaffino Mould with conformal cooling
WO2019175213A1 (en) * 2018-03-13 2019-09-19 Kongsberg Maritime Sweden Ab A method for manufacturing a propeller blade and a propeller blade
CN108480821A (zh) * 2018-03-27 2018-09-04 福州大学 一种圆形截面随形冷却流道的电弧增材制造方法
JP2020116621A (ja) * 2019-01-25 2020-08-06 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物

Similar Documents

Publication Publication Date Title
US11772194B2 (en) Method for designing laminate molded article, production method, production device, and program
JP2019089108A (ja) 造形物の製造方法及び製造装置
WO2019098006A1 (ja) 積層造形物の製造方法及び製造装置
WO2019176759A1 (ja) 造形物の製造方法及び造形物
JP2022095534A (ja) 造形物の製造方法及び造形物
JP6810018B2 (ja) 積層造形物の製造方法
JP7160703B2 (ja) 積層造形物の製造方法及び積層造形物
WO2022131037A1 (ja) 造形物の製造方法及び造形物
JP7048374B2 (ja) 造形物の製造方法及び造形物
JP7181154B2 (ja) 積層造形物の製造方法
WO2022038969A1 (ja) 造形物の製造方法及び造形物
WO2019098021A1 (ja) 造形物の製造方法、製造装置及び造形物
JP7258715B2 (ja) 積層造形物の製造方法及び積層造形物
JP7189110B2 (ja) 積層造形物の製造方法及び積層造形物
JP6859471B1 (ja) 積層造形物の製造方法
JP7123738B2 (ja) 積層造形物の製造方法及び積層造形物
CN116457080A (zh) 造型物的制造方法和造型物
JP7160704B2 (ja) 積層造形物の製造方法及び積層造形物
WO2023037863A1 (ja) 造形物及び造形物の製造方法
JP6842401B2 (ja) 積層造形物の製造方法
JP7303162B2 (ja) 積層造形物の製造方法
JP2023040767A (ja) 造形物の製造方法及び造形物
JP2024058958A (ja) 造形物の製造方法及び積層計画方法
JP2024067333A (ja) 造形物の製造方法および造形物
JP2024072588A (ja) 形状情報生成方法及び制御情報生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180073594.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906400

Country of ref document: EP

Kind code of ref document: A1