WO2022130676A1 - Resonator and resonating device - Google Patents

Resonator and resonating device Download PDF

Info

Publication number
WO2022130676A1
WO2022130676A1 PCT/JP2021/027560 JP2021027560W WO2022130676A1 WO 2022130676 A1 WO2022130676 A1 WO 2022130676A1 JP 2021027560 W JP2021027560 W JP 2021027560W WO 2022130676 A1 WO2022130676 A1 WO 2022130676A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating
arm
support arm
base
resonator
Prior art date
Application number
PCT/JP2021/027560
Other languages
French (fr)
Japanese (ja)
Inventor
良太 河合
政和 福光
敬之 樋口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180082745.5A priority Critical patent/CN116601870A/en
Priority to JP2022569700A priority patent/JPWO2022130676A1/ja
Publication of WO2022130676A1 publication Critical patent/WO2022130676A1/en
Priority to US18/315,665 priority patent/US20230283257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2478Single-Ended Tuning Fork resonators
    • H03H9/2489Single-Ended Tuning Fork resonators with more than two fork tines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1057Mounting in enclosures for microelectro-mechanical devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H2009/02472Stiction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device

Definitions

  • the present invention relates to a resonator and a resonator in which a plurality of vibrating arms vibrate in an out-of-plane bending vibration mode.
  • a resonance device using MEMS (Micro Electro Mechanical Systems) technology has been used, for example, as a timing device.
  • This resonance device is mounted on a printed circuit board incorporated in an electronic device such as a smartphone.
  • the resonator comprises a lower substrate, an upper substrate forming a cavity between the lower substrate, and a resonator disposed in the cavity between the lower substrate and the upper substrate.
  • Patent Document 1 in the frequency adjustment step of finely adjusting the resonance frequency of the resonator, the vibrating arm is overexcited and the adjusting film at the tip of the vibrating arm collides with the upper substrate or the lower substrate to cause the resonance frequency.
  • Resonators that change the frequency are disclosed.
  • DLD Drive Level Dependency
  • the structure for improving DLD sometimes lowered the adjustment rate of the resonance frequency in the frequency adjustment process. Since such a resonator takes a long time to manufacture, there is a risk that the manufacturing efficiency may decrease.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a resonator and a resonance apparatus capable of improving DLD and suppressing a decrease in the adjustment rate of the resonance frequency. Let it be one.
  • the resonator according to one aspect of the present invention is three or more vibrating arms, each having a fixed end, and at least two vibrating arms that bend out of the plane in different phases and a plurality of vibrating arms.
  • a vibrating portion including a base having one end to which each of the fixed ends of the above is connected and an other end facing the one end, a holding portion configured to hold the vibrating portion, and one end to the holding portion.
  • the other end of the support arm is provided with a support arm connected to the other end of the base, and the other end of the support arm is a position where the longitudinal center line of the vibrating portion at the other end of the base passes in a plan view.
  • the vibrating part in the support arm When used as a reference, it is connected to a position in the range of -0.1WB to 0.1WB with respect to the base width WB, which is the length in the direction orthogonal to the center line at the base, and the vibrating part in the support arm.
  • the length in the direction parallel to the longitudinal direction is 0.2 times or more and 0.4 times or less with respect to the length in the longitudinal direction of the vibrating arm.
  • the resonator according to one aspect of the present invention includes the above-mentioned resonator.
  • the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
  • FIG. 1 is a perspective view schematically showing the appearance of the resonance device according to the embodiment.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device shown in FIG.
  • FIG. 3 is a plan view schematically showing the structure of the resonator shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the X axis schematically showing the laminated structure of the resonance apparatus shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the Y axis conceptually showing the laminated structure of the resonance apparatus shown in FIG.
  • FIG. 6 is a plan view for explaining the dimensions of the resonator shown in FIG. FIG.
  • FIG. 7 is a graph showing the relationship between the connection position at the base of the support arm and the frequency change rate per unit power for each support arm length of the support arm.
  • FIG. 8 is a graph showing the relationship between the support arm length of the support arm and the connection position at the base of the support arm.
  • FIG. 9 is a cross-sectional view schematically showing the displacement amount of the vibrating arm when the connection position of the support arm is ⁇ 10 ⁇ m.
  • FIG. 10 is a cross-sectional view schematically showing the displacement amount of the vibrating arm when the connection position of the support arm is ⁇ 50 ⁇ m.
  • FIG. 11 is a graph showing the relationship between the connection position at the base of the support arm and the displacement amount of the vibrating arm.
  • FIG. 12 is a graph showing the relationship between the adjustment time of the resonance frequency due to overexcitation for each support arm length of the support arm and the connection position of the support arm, and the rate of change of the resonance frequency.
  • FIG. 13 is a graph showing the relationship between the connection position at the base of the support arm and the adjustment rate of the resonance frequency due to overexcitation.
  • FIG. 14 is a graph showing the relationship between the support arm length of the support arm and the connection position at the base of the support arm.
  • FIG. 1 is a perspective view schematically showing the appearance of the resonance device 1 in one embodiment.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device 1 shown in FIG.
  • the resonator 1 includes a lower lid 20, a resonator 10, and an upper lid 30. That is, the resonator 1 is configured by stacking the lower lid 20, the resonator 10, and the upper lid 30 in this order.
  • the lower lid 20 and the upper lid 30 are arranged so as to face each other with the resonator 10 interposed therebetween.
  • the lower lid 20 and the upper lid 30 correspond to an example of the "lid body" of the present invention.
  • the side of the resonance device 1 where the upper lid 30 is provided is referred to as the upper side (or the front side), and the side where the lower lid 20 is provided is referred to as the lower side (or the back side).
  • the resonator 10 is a MEMS oscillator manufactured using MEMS technology.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined so that the resonator 10 is sealed and the vibration space of the resonator 10 is formed.
  • the resonator 10, the lower lid 20, and the upper lid 30 are each formed by using a silicon (Si) substrate (hereinafter, referred to as “Si substrate”), and the Si substrates are bonded to each other.
  • the resonator 10, the lower lid 20, and the upper lid 30 may be formed by using an SOI (Silicon On Insulator) substrate on which a silicon layer and a silicon oxide film are laminated, respectively.
  • SOI Silicon On Insulator
  • the lower lid 20 has a rectangular flat plate-shaped bottom plate 22 provided along the XY plane, and a side wall 23 extending from the peripheral edge of the bottom plate 22 in the Z-axis direction, that is, in the stacking direction of the lower lid 20 and the resonator 10.
  • the lower lid 20 is formed with a recess 21 defined by the surface of the bottom plate 22 and the inner surface of the side wall 23 on the surface facing the resonator 10.
  • the recess 21 forms at least a part of the vibration space of the resonator 10.
  • the lower lid 20 does not have the recess 21 and may have a flat plate shape. Further, a getter layer may be formed on the surface of the lower lid 20 on the resonator 10 side of the recess 21.
  • the lower lid 20 includes a protrusion 50 formed on the surface of the bottom plate 22.
  • the detailed configuration of the protrusion 50 will be described later.
  • the upper lid 30 includes a rectangular flat plate-shaped bottom plate 32 provided along the XY plane, and a side wall 33 extending in the Z-axis direction from the peripheral edge of the bottom plate 22.
  • the upper lid 30 is formed with a recess 31 defined by the surface of the bottom plate 32 and the inner surface of the side wall 23 on the surface facing the resonator 10.
  • the recess 31 forms at least a part of the vibration space, which is the space where the resonator 10 vibrates.
  • the upper lid 30 does not have a recess 31, and may have a flat plate shape. Further, a getter layer may be formed on the surface of the concave portion 31 of the upper lid 30 on the resonator 10 side.
  • the vibration space of the resonator 10 is hermetically sealed and the vacuum state is maintained.
  • the vibration space may be filled with a gas such as an inert gas.
  • FIG. 3 is a plan view schematically showing the structure of the resonator 10 shown in FIG.
  • the resonator 10 is a MEMS oscillator manufactured by using the MEMS technique, and the out-of-plane bending vibration mode in the XY plane in the Cartesian coordinate system of FIG. 3 is the main vibration (hereinafter, “main”). It vibrates as "mode").
  • the resonator 10 includes a vibrating portion 110, a holding portion 140, and a support arm 151.
  • the vibrating unit 110 has a rectangular contour extending along the XY plane in the Cartesian coordinate system of FIG.
  • the vibrating portion 110 is arranged inside the holding portion 140, and a space is formed between the vibrating portion 110 and the holding portion 140 at a predetermined interval.
  • the vibrating unit 110 includes an exciting unit 120 composed of four vibrating arms 121A to 121D (hereinafter collectively referred to as “vibrating arm 121”) and a base 130.
  • the number of vibrating arms is not limited to four, and is set to, for example, an arbitrary number of three or more.
  • the excitation unit 120 and the base 130 are integrally formed.
  • the vibrating arms 121A, 121B, 121C, and 121D each extend along the Y-axis direction, and are provided in parallel in the X-axis direction at predetermined intervals in this order.
  • One end of the vibrating arm 121A is a fixed end connected to the front end 131A of the base 130, which will be described later, and the other end of the vibrating arm 121A is an open end provided apart from the front end 131A of the base 130.
  • the vibrating arm 121A includes a mass addition portion 122A formed on the open end side and an arm portion 123A extending from the fixed end and connected to the mass addition portion 122A.
  • the vibrating arms 121B, 121C, 121D also include mass adding portions 122B, 122C, 122D, and arm portions 123B, 123C, 123D, respectively.
  • the arms 123A to 123D have a width of about 26 ⁇ m in the X-axis direction and a length of about 246 ⁇ m in the Y-axis direction, respectively.
  • two vibrating arms 121A and 121D are arranged on the outside and two vibrating arms 121B and 121C are arranged on the inside in the X-axis direction.
  • the width of the gap (hereinafter referred to as "release width") W1 formed between the respective arm portions 123B and 123C of the two inner vibrating arms 121B and 121C is, for example, an adjacent vibration in the X-axis direction.
  • the release width W1 is, for example, about 40 ⁇ m, and the release width W2 is, for example, about 18 ⁇ m. By setting the release width W1 larger than the release width W2 in this way, the vibration characteristics and durability of the vibrating portion 110 are improved.
  • the release width W1 may be set smaller than the release width W2 or may be set at equal intervals so that the resonance device 1 can be miniaturized.
  • the mass-adding portions 122A to 122D are provided with mass-adding films 125A to 125D on their respective surfaces. Therefore, the weight of each of the mass addition portions 122A to 122D per unit length (hereinafter, also simply referred to as “weight”) is heavier than the weight of each of the arm portions 123A to 123D. This makes it possible to improve the vibration characteristics while reducing the size of the vibration unit 110. Further, the mass-added films 125A to 125D not only have a function of increasing the weight of the tip portions of the vibrating arms 121A to 121D, respectively, but also adjust the resonance frequency of the vibrating arms 121A to 121D by scraping a part thereof. It also has a function as a so-called frequency adjusting film.
  • the width of the mass addition portions 122A to 122D along the X-axis direction is, for example, about 49 ⁇ m, which is larger than the width of the arm portions 123A to 123D along the X-axis direction.
  • the weight of each of the mass addition portions 122A to 122D can be further increased.
  • the width of the mass addition portions 122A to 122D along the X-axis direction is 1.5 times or more the width of the arm portions 123A to 123D along the X-axis direction. It is preferable to have.
  • the weight of each of the mass addition portions 122A to 122D may be larger than the weight of each of the arm portions 123A to 123D, and the width of the mass addition portions 122A to 122D along the X-axis direction is the width of the present embodiment. It is not limited to an example.
  • the width of the mass addition portions 122A to 122D along the X-axis direction may be equal to or less than the width of the arm portions 123A to 123D along the X-axis direction.
  • the mass addition portions 122A to 122D are each substantially rectangular and have a curved surface shape with rounded corners, for example, so-called. It has an R shape.
  • the arm portions 123A to 123D are substantially rectangular, respectively, and have an R shape in the vicinity of the fixed end connected to the base portion 130 and in the vicinity of the connection portion connected to each of the mass addition portions 122A to 122D.
  • the shapes of the mass addition portions 122A to 122D and the arm portions 123A to 123D are not limited to the examples of the present embodiment.
  • the respective shapes of the mass addition portions 122A to 122D may be a substantially trapezoidal shape or a substantially L-shaped shape.
  • each of the arms 123A to 123D may have a substantially trapezoidal shape.
  • the mass addition portions 122A to 122D and the arm portions 123A to 123D each have a bottomed groove portion having an opening on either the front surface side or the back surface side, or a hole portion having an opening on both the front surface side and the back surface side. It may have been done.
  • the groove portion and the hole portion may be separated from the side surface connecting the front surface and the back surface, or may have an opening on the side surface side.
  • the base 130 has a front end 131A, a rear end 131B, a left end 131C, and a right end 131D in a plan view. As described above, the fixed ends of the vibrating arms 121A to 121D are connected to the front end portion 131A. A support arm 151 is connected to the rear end portion 131B.
  • the front end 131A, the rear end 131B, the left end 131C, and the right end 131D are each part of the outer edge of the base 130.
  • the front end portion 131A and the rear end portion 131B are end portions extending in the X-axis direction, respectively, and the front end portion 131A and the rear end portion 131B are arranged so as to face each other.
  • the left end portion 131C and the right end portion 131D are end portions extending in the Y-axis direction, respectively, and the left end portion 131C and the right end portion 131D are arranged so as to face each other.
  • Both ends of the left end portion 131C are connected to one end of the front end portion 131A and one end of the rear end portion 131B, respectively. Both ends of the right end portion 131D are connected to the other end of the front end portion 131A and the other end of the rear end portion 131B, respectively.
  • the base 130 has a substantially rectangular shape with the front end 131A and the rear end 131B as the long sides and the left end 131C and the right end 131D as the short sides.
  • the base 130 is formed substantially plane-symmetrically with respect to a defined virtual plane along the center line CL1 in the X-axis direction, which is a perpendicular bisector of each of the front end 131A and the rear end 131B. That is, it can be said that the base 130 is formed substantially line-symmetrically with respect to the center line CL1.
  • the shape of the base 130 is not limited to the rectangular shape shown in FIG. 3, and may be another shape that constitutes substantially line symmetry with respect to the center line CL1.
  • the shape of the base 130 may be a trapezoidal shape in which one of the front end 131A and the rear end 131B is longer than the other. Further, at least one of the front end portion 131A, the rear end portion 131B, the left end portion 131C, and the right end portion 131D may be bent or curved.
  • the virtual plane corresponds to the plane of symmetry of the entire vibrating portion 110
  • the center line CL1 corresponds to the center line of the entire vibrating portion 110 in the X-axis direction. Therefore, the center line CL1 is also a line passing through the center of the vibrating arms 121A to 121D in the X-axis direction, and is located between the vibrating arms 121B and the vibrating arms 121C.
  • each of the adjacent vibrating arm 121A and the vibrating arm 121B is formed symmetrically with each of the adjacent vibrating arm 121D and the vibrating arm 121C with the center line CL1 interposed therebetween.
  • the base length which is the longest distance between the front end 131A and the rear end 131B in the Y-axis direction, is, for example, about 25 ⁇ m.
  • the base width which is the longest distance between the left end portion 131C and the right end portion 131D in the X-axis direction, is, for example, about 180 ⁇ m.
  • the base length corresponds to the length of the left end 131C or the right end 131D
  • the base width corresponds to the length of the front end 131A or the rear end 131B.
  • the holding portion 140 is configured to hold the vibrating portion 110. More specifically, the holding portion 140 is configured so that the vibrating arms 121A to 121D can vibrate. Specifically, the holding portion 140 is formed plane-symmetrically with respect to a virtual plane defined along the center line CL1.
  • the holding portion 140 has a rectangular frame shape in a plan view, and is arranged so as to surround the outside of the vibrating portion 110 along the XY plane. As described above, since the holding portion 140 has a frame shape in a plan view, the holding portion 140 surrounding the vibrating portion 110 can be easily realized.
  • the holding portion 140 may be arranged at least in a part around the vibrating portion 110, and is not limited to the frame shape.
  • the holding portion 140 may be arranged around the vibrating portion 110 so as to hold the vibrating portion 110 and to be joined to the upper lid 30 and the lower lid 20.
  • the holding portion 140 includes the frame bodies 141A to 141D integrally formed.
  • the frame body 141A is provided so as to face the open ends of the vibrating arms 121A to 121D and to be provided in the longitudinal direction parallel to the X axis.
  • the frame body 141B is provided so as to face the rear end portion 131B of the base portion 130 and to be provided in the longitudinal direction parallel to the X axis.
  • the frame body 141C is provided facing the left end portion 131C of the base portion 130 and the vibrating arm 121A in the longitudinal direction parallel to the Y axis, and is connected to one ends of the frame bodies 141A and 141D at both ends thereof.
  • the frame body 141D is provided facing the right end portion 131D of the base portion 130 and the vibrating arm 121A in a longitudinal direction parallel to the Y axis, and is connected to the other ends of the frame bodies 141A and 141B at both ends thereof, respectively.
  • the frame body 141A and the frame body 141B face each other in the Y-axis direction with the vibrating portion 110 interposed therebetween.
  • the frame body 141C and the frame body 141D face each other in the X-axis direction with the vibrating portion 110 interposed therebetween.
  • the support arm 151 is arranged inside the holding portion 140, and connects the base portion 130 and the holding portion 140.
  • the support arm 151 is not line-symmetrical with respect to the center line CL1 in a plan view, that is, is formed asymmetrically.
  • the support arm 151 includes a support rear arm 152 and a support side arm 153.
  • the support side arm 153 extends in parallel with the vibrating arm 121D between the vibrating arm 121D and the holding portion 140. Specifically, the support side arm 153 extends from one end (right end or the end on the frame 141D side) of the support rear arm 152 toward the frame 141A in the Y-axis direction, and bends in the X-axis direction to form the frame 141D. It is connected to the. That is, one end of the support arm 151 is connected to the holding portion 140.
  • the support rear arm 152 extends from the support side arm 153 between the rear end portion 131B of the base 130 and the holding portion 140. Specifically, the support rear arm 152 extends from one end (lower end or the end on the frame 141B side) of the support side arm 153 toward the frame 141C in the Y-axis direction. The supporting rear arm 152 bends in the Y-axis direction near the center of the base 130 in the X-axis direction, extends parallel to the center line CL1 from there, and is connected to the rear end 131B of the base 130. That is, the other end of the support arm 151 is connected to the rear end portion 131B of the base portion 130.
  • the protrusion 50 protrudes into the vibration space from the recess 21 of the lower lid 20.
  • the protrusion 50 is arranged between the arm portion 123B of the vibrating arm 121B and the arm portion 123C of the vibrating arm 121C in a plan view.
  • the protrusion 50 extends in the Y-axis direction in parallel with the arms 123B and 123C, and is formed in a prismatic shape.
  • the length of the protrusion 50 in the Y-axis direction is about 200 ⁇ m, and the length in the X-axis direction is about 15 ⁇ m.
  • the number of protrusions 50 is not limited to one, and may be two or more.
  • the protrusion 50 is arranged between the vibrating arm 121B and the vibrating arm 121C, and by projecting from the bottom plate 22 of the recess 21, the rigidity of the lower lid 20 can be increased, and the rigidity of the lower lid 20 can be increased. It is possible to suppress the bending of the formed resonator 10 and the occurrence of warping of the lower lid 20.
  • FIG. 4 is a cross-sectional view taken along the X axis schematically showing the laminated structure of the resonance device 1 shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the Y axis conceptually showing the laminated structure of the resonance device 1 shown in FIG.
  • the holding portion 140 of the resonator 10 is joined to the side wall 23 of the lower lid 20, and the holding portion 140 of the resonator 10 and the side wall 33 of the upper lid 30 are further bonded. Be joined. In this way, the resonator 10 is held between the lower lid 20 and the upper lid 30, and the lower lid 20, the upper lid 30, and the holding portion 140 of the resonator 10 form a vibration space in which the vibrating portion 110 vibrates. ..
  • the vibrating portion 110, the holding portion 140, and the supporting arm portion 150 in the resonator 10 are integrally formed by the same process.
  • the resonator 10 has a metal film E1 laminated on a Si substrate F2, which is an example of a substrate.
  • a piezoelectric film F3 is laminated on the metal film E1 so as to cover the metal film E1, and a metal film E2 is further laminated on the piezoelectric film F3.
  • a protective film F5 is laminated on the metal film E2 so as to cover the metal film E2.
  • the above-mentioned mass addition films 125A to 125D are further laminated on the protective film F5, respectively.
  • each of the vibrating portion 110, the holding portion 140, and the supporting arm portion 150 is, for example, a laminate composed of the Si substrate F2, the metal film E1, the piezoelectric film F3, the metal film E2, the protective film F5, and the like described above. It is formed by removing and patterning by dry etching that irradiates an argon (Ar) ion beam.
  • the resonator 10 includes the metal film E1
  • the present invention is not limited to this.
  • the Si substrate F2 by using a degenerate silicon substrate having a low resistance for the Si substrate F2, the Si substrate F2 itself can also serve as the metal film E1, and the metal film E1 may be omitted.
  • the Si substrate F2 is formed of, for example, a degenerate n-type silicon (Si) semiconductor having a thickness of about 6 ⁇ m, and may contain phosphorus (P), arsenic (As), antimony (Sb), and the like as n-type dopants. .. Further, the resistance value of the degenerate silicon (Si) used for the Si substrate F2 is, for example, less than 1.6 m ⁇ ⁇ cm, more preferably 1.2 m ⁇ ⁇ cm or less. Further, as an example of the temperature characteristic correction layer, a silicon oxide layer F21 such as SiO 2 is formed on the lower surface of the Si substrate F2. This makes it possible to improve the temperature characteristics.
  • the silicon oxide layer F21 has a temperature coefficient of frequency in the vibrating portion 110 when the temperature correction layer is formed on the Si substrate F2, that is, as compared with the case where the silicon oxide layer F21 is not formed on the Si substrate F2. , A layer having a function of reducing the rate of change per temperature at least near room temperature.
  • the silicon oxide layer may be formed on the upper surface of the Si substrate F2, or may be formed on both the upper surface and the lower surface of the Si substrate F2.
  • the silicon oxide layers F21 of the mass addition portions 122A to 122D are formed with a uniform thickness.
  • the uniform thickness means that the variation in the thickness of the silicon oxide layer F21 is within ⁇ 20% from the average value of the thickness.
  • the metal films E1 and E2 each include an excitation electrode that excites the vibrating arms 121A to 121D, and an extraction electrode that electrically connects the excitation electrode and an external power source.
  • the portions of the metal films E1 and E2 that function as the excitation electrodes face each other with the piezoelectric film F3 interposed therebetween in the arm portions 123A to 123D of the vibrating arms 121A to 121D.
  • the portion of the metal films E1 and E2 that functions as a drawer electrode is led out from the base portion 130 to the holding portion 140 via, for example, the support arm portion 150.
  • the metal film E1 is electrically continuous over the entire resonator 10.
  • the metal film E2 is electrically separated from the portions formed on the vibrating arms 121A and 121D and the portions formed on the vibrating arms 121B and 121C.
  • the thicknesses of the metal films E1 and E2 are, for example, about 0.1 ⁇ m or more and 0.2 ⁇ m or less, respectively.
  • the metal films E1 and E2 are patterned on the excitation electrode, the extraction electrode, and the like by a removal process such as etching.
  • the metal films E1 and E2 are formed of, for example, a metal material whose crystal structure is a body-centered cubic structure. Specifically, the metal films E1 and E2 are formed by using Mo (molybdenum), tungsten (W), or the like.
  • the metal films E1 and E2 can easily realize the metal films E1 and E2 suitable for the lower electrode and the upper electrode of the resonator 10 by using the metal whose crystal structure is a body-centered cubic structure as a main component. can do.
  • Piezoelectric film F3 is a thin film formed by a type of piezoelectric material that mutually converts electrical energy and mechanical energy.
  • the piezoelectric film F3 expands and contracts in the Y-axis direction of the in-plane direction of the XY plane according to the electric field formed in the piezoelectric film F3 by the metal films E1 and E2. Due to the expansion and contraction of the piezoelectric film F3, the vibrating arms 121A to 121D displace their open ends toward the bottom plate 22 of the lower lid 20 and the bottom plate 32 of the upper lid 30, respectively. As a result, the resonator 10 vibrates in the vibration mode of out-of-plane bending.
  • the thickness of the piezoelectric film F3 is, for example, about 1 ⁇ m, but may be about 0.2 ⁇ m to 2 ⁇ m.
  • the piezoelectric film F3 is formed of a material having a wurtzite-type hexagonal crystal structure, and is, for example, aluminum nitride (AlN), aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), and the like.
  • a nitride or oxide such as indium nitride (InN) can be used as a main component.
  • scandium nitride is a product in which a part of aluminum in aluminum nitride is replaced with scandium, and instead of scandium, magnesium (Mg) and niobium (Nb), or magnesium (Mg) and zirconium (Zr), It may be replaced with two elements such as.
  • the piezoelectric film F3 can easily realize the piezoelectric film F3 suitable for the resonator 10 by using a piezoelectric material having a wurtzite-type hexagonal crystal structure as a main component in the piezoelectric film F3.
  • the protective film F5 protects the metal film E2 from oxidation. If the protective film F5 is provided on the upper lid 30 side, it does not have to be exposed to the bottom plate 32 of the upper lid 30. For example, a parasitic capacitance reducing film or the like that reduces the capacitance of the wiring formed on the resonator 10 may be formed so as to cover the protective film F5.
  • the protective film F5 includes, for example, a piezoelectric film such as aluminum nitride (AlN), scandium aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), and indium nitride (InN), as well as silicon nitride (SiN).
  • the thickness of the protective film F5 is formed to be less than half the thickness of the piezoelectric film F3, and in the present embodiment, it is, for example, about 0.2 ⁇ m. The more preferable thickness of the protective film F5 is about one-fourth of the thickness of the piezoelectric film F3. Further, when the protective film F5 is formed of a piezoelectric material such as aluminum nitride (AlN), it is preferable to use a piezoelectric material having the same orientation as the piezoelectric film F3.
  • a piezoelectric material such as aluminum nitride (AlN)
  • AlN aluminum nitride
  • the protective film F5 of the mass addition portions 122A to 122D is formed with a uniform thickness.
  • the uniform thickness means that the variation in the thickness of the protective film F5 is within ⁇ 20% from the average value of the thickness.
  • the mass-adding films 125A to 125D constitute the surface of each of the mass-adding portions 122A to 122D on the upper lid 30 side, and correspond to the respective frequency adjusting films of the vibrating arms 121A to 121D.
  • the resonance frequency of the resonator 10 is adjusted by a trimming process for removing a part of each of the mass-added films 125A to 125D.
  • the mass addition films 125A to 125D are preferably formed of a material having a faster mass reduction rate by etching than the protective film F5.
  • the mass reduction rate is expressed by the product of the etching rate and the density.
  • the etching rate is the thickness removed per unit time.
  • the mass addition films 125A to 125D are preferably formed of a material having a large specific gravity.
  • the mass addition films 125A to 125D include, for example, molybdenum (Mo), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), aluminum (Al), titanium (Ti) and the like. It is made of metal material.
  • a part of the upper surface of each of the mass addition films 125A to 125D is removed by a trimming process in the process of adjusting the frequency.
  • the trimming process of the mass-added films 125A to 125D can be performed by, for example, dry etching by irradiating an argon (Ar) ion beam. Since the ion beam can irradiate a wide range, it is excellent in processing efficiency, but since it has an electric charge, it may charge the mass-added films 125A to 125D.
  • the mass addition films 125A to 125D are grounded. Is preferable.
  • Leaders C1, C2, and C3 are formed on the protective film F5 of the holding portion 140.
  • the leader wire C1 is electrically connected to the metal film E1 through through holes formed in the piezoelectric film F3 and the protective film F5.
  • the leader wire C2 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121A and 121D through the through holes formed in the protective film F5.
  • the leader wire C3 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121B and 121C through the through holes formed in the protective film F5.
  • Leaders C1 to C3 are made of a metal material such as aluminum (Al), germanium (Ge), gold (Au), tin (Sn), and the like.
  • FIG. 4 shows an example in which the arm portions 123A to 123D, the leader lines C2 and C3, the through electrodes V2 and V3, etc. are located on the cross section of the same plane, but these are not necessarily the cross sections of the same plane. It is not located above.
  • the through electrodes V2 and V3 may be formed at positions parallel to the ZX plane defined by the Z-axis and the X-axis and separated from the cross section cutting the arms 123A to 123D in the Y-axis direction. ..
  • FIG. 5 shows an example in which the mass addition portion 122A, the arm portion 123A, the leader lines C1 and C2, the through electrodes V1 and V2 and the like are located on the cross section of the same plane. Is not necessarily located on a cross section of the same plane.
  • the bottom plate 22 and the side wall 23 of the lower lid 20 are integrally formed by the Si substrate P10.
  • the Si substrate P10 is made of undegenerate silicon, and its resistivity is, for example, 10 ⁇ ⁇ cm or more. Inside the recess 21 of the lower lid 20, the Si substrate P10 is exposed. A silicon oxide layer F21 is formed on the upper surface of the protrusion 50. However, from the viewpoint of suppressing the charging of the protrusion 50, the Si substrate P10 having a lower electrical resistivity than the silicon oxide layer F21 may be exposed on the upper surface of the protrusion 50, or a conductive layer may be formed. ..
  • the thickness of the lower lid 20 defined in the Z-axis direction is about 150 ⁇ m, and the depth of the similarly defined recess 21 is about 50 ⁇ m.
  • the bottom plate 32 and the side wall 33 of the top lid 30 are integrally formed by the Si substrate Q10. It is preferable that the front surface, the back surface, and the inner surface of the through hole of the upper lid 30 are covered with the silicon oxide film Q11.
  • the silicon oxide film Q11 is formed on the surface of the Si substrate Q10 by, for example, oxidation of the Si substrate Q10 or chemical vapor deposition (CVD). Inside the recess 31 of the upper lid 30, the Si substrate Q10 is exposed.
  • a getter layer may be formed on the surface of the recess 31 of the upper lid 30 on the side facing the resonator 10.
  • the getter layer is formed of, for example, titanium (Ti) or the like, adsorbs outgas emitted from the joint portion 40 or the like described later, and suppresses a decrease in the degree of vacuum in the vibration space.
  • the getter layer may be formed on the surface of the recess 21 of the lower lid 20 facing the resonator 10, and the getter layer and the resonator 10 in both the recess 21 of the lower lid 20 and the recess 31 of the upper lid 30. It may be formed on the surface on the opposite side.
  • the thickness of the upper lid 30 defined in the Z-axis direction is about 150 ⁇ m, and the depth of the recess 31 similarly defined is about 50 ⁇ m.
  • Terminals T1, T2, and T3 are formed on the upper surface of the upper lid 30 (the surface opposite to the surface facing the resonator 10).
  • the terminal T1 is a mounting terminal for grounding the metal film E1.
  • the terminal T2 is a mounting terminal for electrically connecting the metal films E2 of the vibrating arms 121A and 121D to an external power source.
  • the terminal T3 is a mounting terminal for electrically connecting the metal films E2 of the vibrating arms 121B and 121C to an external power source.
  • the terminals T1 to T3 are formed on a metallized layer (underlayer) such as chromium (Cr), tungsten (W), and nickel (Ni), and nickel (Ni), gold (Au), silver (Ag), and Cu (copper). ) Etc. are applied to form.
  • a dummy terminal electrically isolated from the resonator 10 may be formed on the upper surface of the upper lid 30 for the purpose of adjusting the parasitic capacitance and the mechanical strength balance.
  • Through electrodes V1, V2, V3 are formed inside the side wall 33 of the upper lid 30.
  • Through electrode V1 electrically connects the terminal T1 and the leader wire C1
  • the through electrode V2 electrically connects the terminal T2 and the leader wire C2
  • the through electrode V3 electrically connects the terminal T3 and the leader wire C3. Is connected to.
  • Through electrodes V1 to V3 are formed by filling through holes that penetrate the side wall 33 of the upper lid 30 in the Z-axis direction with a conductive material.
  • the conductive material to be filled is, for example, polycrystalline silicon (Poly-Si), copper (Cu), gold (Au) and the like.
  • a joint portion 40 is formed between the side wall 33 of the upper lid 30 and the holding portion 140, and the upper lid 30 is joined to the resonator 10 by the joint portion 40.
  • the joint portion 40 is formed in a closed annular shape surrounding the vibrating portion 110 in the XY plane so as to airtightly seal the vibrating space of the resonator 10 in a vacuum state.
  • the bonding portion 40 is formed of, for example, an aluminum (Al) film, a germanium (Ge) film, and a metal film in which an aluminum (Al) film is laminated in this order and eutectic bonded.
  • the joint portion 40 may be formed by a combination of films appropriately selected from gold (Au), tin (Sn), copper (Cu), titanium (Ti), silicon (Si), and the like. Further, in order to improve the adhesion, the joint portion 40 may contain a metal compound such as titanium nitride (TiN) or tantalum nitride (TaN) between the films.
  • the terminal T1 is grounded, and alternating voltages having opposite phases are applied to the terminals T2 and T3. Therefore, the phase of the electric field formed on the piezoelectric films F3 of the vibrating arms 121A and 121D and the phase of the electric field formed on the piezoelectric films F3 of the vibrating arms 121B and 121C are in opposite phases to each other. As a result, the outer vibrating arms 121A and 121D and the inner vibrating arms 121B and 121C are displaced in opposite directions.
  • the mass addition portions 122B and 122C and the arm portions 123B and 123C are displaced toward the inner surface of the upper lid 30. As a result, at least two of the four vibrating arms 121A to 121D bend out of the plane in different phases.
  • the vibrating arm 121A and the vibrating arm 121B vibrate in the upside-down direction around the central axis r1 extending in the Y-axis direction between the adjacent vibrating arm 121A and the vibrating arm 121B. Further, between the adjacent vibrating arm 121C and the vibrating arm 121D, the vibrating arm 121C and the vibrating arm 121D vibrate in the up-down direction around the central axis r2 extending in the Y-axis direction. As a result, a twisting moment in opposite directions is generated between the central axis r1 and the central axis r2, and bending vibration in the vibrating portion 110 is generated.
  • the maximum amplitude of the vibrating arms 121A to 121D is about 50 ⁇ m, and the amplitude during normal driving is about 10 ⁇ m.
  • the resonator 10 is subjected to a frequency adjustment step of finely adjusting the resonance frequency by overexcitation, in addition to the adjustment of the resonance frequency by the trimming process described above.
  • the frequency adjustment step first, the resonance frequency is measured with a predetermined drive voltage applied to the resonator 10, and when the measured resonance frequency is less than a desired value, the resonator 10 is driven to a predetermined value. A voltage larger than the voltage is applied to overexcite the vibrating arm 121.
  • the electric power applied to the resonator 10 is, for example, 0.2 ⁇ W or more.
  • the overexcitation means that the resonator 10 is vibrated with an amplitude of 10 times or more a normal amplitude, and specifically, the amplitude at the time of overexcitation is 50 ⁇ m or more.
  • the mass-adding films 125A to 125D in the vibrating arm 121 collide with at least one of the bottom plate 32 or the getter layer of the upper lid 30 and the bottom plate 22 of the lower lid 20, respectively. Since the bottom plate 32 or the getter layer of the upper lid 30 is made of a material having a hardness higher than that of the mass addition films 125A to 125D, the mass addition films 125A to 125D collide with the bottom plate 32 or the getter layer to cause the mass addition films 125A. ⁇ 125D is scraped and the mass of the vibrating arm 121 is reduced.
  • At least one of the Si substrate F2 and the silicon oxide layer F21 formed on the lower lid 20 side surface (back surface) of the vibrating arm 121 has a hardness lower than that of the bottom plate 22. Therefore, even on the back surface of the vibrating arm 121, the mass of the vibrating arm 121 is reduced by scraping off the Si substrate F2 or the silicon oxide layer F21. By reducing the mass of the vibrating arm 121 in this way, the resonance frequency of the resonator 10 rises.
  • a predetermined driving voltage is applied to the resonator 10 again to measure the resonance frequency. ..
  • the resonance frequency is measured by applying a drive voltage of a predetermined value to the resonator 10 until the measured resonance frequency reaches a desired value, and a voltage larger than the drive voltage is applied to the resonator 10 to cause the resonator.
  • the value of the resonance frequency of the resonator 10 is adjusted to an appropriate value.
  • the resonance frequency of the resonator 10 can be adjusted even after being packaged by the lower lid 20 and the upper lid 30, and the heat load and the heat load can be adjusted after the frequency adjustment step. Since there is no processing process in which a stress load is applied, fluctuations in the resonance frequency can be suppressed, and since adjustment can be performed while measuring the resonance frequency, there is an advantage (merit) that a desired resonance frequency can be easily obtained. ..
  • the vibrating portion for example, the supporting arm may have a left-right asymmetric structure in a plan view.
  • the plurality of vibrating arms supported by the supporting arms may not vibrate horizontally with respect to the upper lid and the lower lid. Therefore, when the vibrating arm is vibrated by overexcitation and collides with at least one of the upper lid and the lower lid, for example, in a plurality of vibrating arms, the amount of scraping of the outer arm is large and the amount of scraping of the inner arm is small. In some cases, the amount of scraping in multiple vibrating arms was biased. As a result, there is a possibility that the adjustment time for obtaining a desired resonance frequency becomes long, that is, the adjustment rate of the resonance frequency decreases.
  • the inventors of the present invention improve the DLD and suppress the decrease in the adjustment rate when the support arm is connected to a predetermined range of positions at the base and the length of the support arm is within the predetermined range. I found that it is possible to achieve both.
  • FIG. 6 is a plan view for explaining the dimensions of the resonator 10 shown in FIG. Note that FIG. 6 illustrates a part of the resonator 10 for the sake of simplification of the description.
  • the width WG which is the length of the mass addition portions 122A to 122D in the direction along the X-axis direction, is, for example, 49 ⁇ m.
  • the vibrating arm width WA which is the length of the vibrating arms 121A to 121D in the direction along the X-axis direction, is, for example, 26 ⁇ m, and is the length of the vibrating arms 121A to 121D in the direction along the respective Y-axis directions.
  • a certain vibrating arm length LA is, for example, 410 ⁇ m.
  • the base length LB which is the length in the direction from the front end 131A to the rear end 131B, is, for example, 25 ⁇ m.
  • the base width WB which is the length in the direction from the left end 131C to the right end 131D, is, for example, 176 ⁇ m.
  • the width of the support arm 151 specifically, the support arm width WS which is the length in the direction along the X-axis direction of the support side arm 153 is, for example, 20 ⁇ m, and the length of the support arm 151, specifically, the support arm 151.
  • the support arm length LS which is the length of the support side arm 153 in the direction along the Y-axis direction, is, for example, 125 ⁇ m.
  • the other end of the support arm 151 specifically, the other end of the support rear arm 152 is on the negative side in the X-axis direction, that is, with respect to the position where the center line CL1 passes in the rear end portion 131B of the base 130. It is connected to the left side at a position shifted by 10 ⁇ m.
  • the origin (zero) is the position where the center line CL1 passes at the rear end 131B of the base 130, one side (right side) is “+” (plus), and the other side (left side). ) Is expressed as "-" (minus). That is, in the example shown in FIG. 6, the other end of the supporting rear arm 152 is connected to a position of ⁇ 10 ⁇ m with respect to the position where the center line CL1 passes at the rear end 131B of the base 130.
  • FIG. 7 is a graph showing the relationship between the connection position at the base 130 of the support arm 15 for each support arm length LS of the support arm 151 and the frequency change rate per unit power.
  • FIG. 8 is a graph showing the relationship between the support arm length LS of the support arm 151 and the connection position of the support arm 15 at the base 130.
  • the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative.
  • each line in FIG. 7 is a line when the support arm length LS of the support arm 151 is 225 ⁇ m, 125 ⁇ m, and 75 ⁇ m, respectively.
  • the horizontal axis is the support arm length LS of the support arm 151, the vertical axis is zero at the position where the center line CL1 passes at the rear end portion 131B of the base 130, and one side (right side) of the center line CL1 is positive. This is the connection position of the support arm 151 when the other side (left side) of the center line CL1 is negative.
  • the frequency change rate per unit power is zero or substantially zero by adjusting the connection position of the support arm 151 for all the support arm length LS. Specifically, when the support arm length LS of the support arm 151 is 225 ⁇ m and the connection position of the support arm 151 is 51.5 ⁇ m, the support arm length LS of the support arm 151 is 125 ⁇ m and the support arm 151. When the connection position of the support arm 151 is -10 ⁇ m, the support arm length LS of the support arm 151 is 75 ⁇ m, and the connection position of the support arm 151 is -20 ⁇ m, the frequency change rate per unit power is zero or abbreviated, respectively. It becomes zero.
  • the DLD of the resonator 10 is improved when the support arm length LS of the support arm 151 and the connection position of the support arm 151 are in the relationship of the line shown by the dotted line in FIG.
  • FIG. 9 is a cross-sectional view schematically showing the amount of displacement of the vibrating arms 121A to 121D when the connection position of the support arm 151 is ⁇ 10 ⁇ m.
  • FIG. 10 is a cross-sectional view schematically showing the amount of displacement of the vibrating arms 121A to 121D when the connection position of the support arm 151 is ⁇ 50 ⁇ m.
  • FIG. 11 is a graph showing the relationship between the connection position of the support arm 151 at the base 130 and the displacement amount of the vibrating arms 121A to 121D. In the vibrating arms 121A to 121D shown in FIGS.
  • the dark-colored region indicates that the displacement is large, and the light-colored region indicates that the displacement is small.
  • the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative. It is the connection position of the support arm 151 of.
  • the vertical axis is the ratio (%) of the maximum displacement of the vibrating arms 121A to 121D when the maximum displacement of the vibrating arm in the virtual resonator whose supporting arm is symmetrical with respect to the center line is used as a reference (100%). ).
  • each vibrating arm 121A to 121D is displaced mainly in the Z-axis direction. Specifically, as shown on the left side of FIGS. 9 and 10, when the vibrating arm 121A and the vibrating arm 121D are displaced to the negative direction side of the Z axis, the vibrating arm 121B and the vibrating arm 121C are displaced to the positive direction side of the Z axis. do. On the contrary, as shown on the right side of FIGS.
  • the maximum displacement of the vibrating arm 121A and the vibrating arm 121D changes relatively little with respect to the change in the connection position of the support arm 151, and the connection position of the support arm 151 is in the range of -50 ⁇ m to 50 ⁇ m. , 95% to 100%. It can be seen that when the connection position of the support arm 151 is ⁇ 50 ⁇ m, the maximum displacement amounts of the vibrating arm 121A and the vibrating arm 121D are closest to 100%.
  • the maximum displacement of the vibrating arm 121B and the vibrating arm 121C changes relatively greatly with respect to the change in the connection position of the support arm 151, and 110% to 85 in the range of the connection position of the support arm 151 from -50 ⁇ m to 50 ⁇ m. It is a value between%. Then, it can be seen that the maximum displacement amounts of the vibrating arm 121B and the vibrating arm 121C are closest to 100% when the connecting position of the supporting arm 151 is around ⁇ 5 ⁇ m.
  • FIG. 12 is a graph showing the relationship between the adjustment time of the resonance frequency due to overexcitation of the support arm length LS of the support arm 151 and the connection position of the support arm 151 and the rate of change of the resonance frequency.
  • FIG. 13 is a graph showing the relationship between the connection position at the base 130 of the support arm 15 and the adjustment rate of the resonance frequency due to overexcitation.
  • the horizontal axis is the adjustment time of the resonance frequency (f) due to overexcitation
  • the vertical axis is the frequency change rate (df / f) of the resonance frequency. Further, in each line in FIG.
  • the support arm length LS of the support arm 151 is 125 ⁇ m, the connection position of the support arm 151 is 0 ⁇ m, the support arm length LS of the support arm 151 is 125 ⁇ m, and the connection position of the support arm 151 is -5 ⁇ m.
  • the support arm length LS of the support arm 151 is 125 ⁇ m and the connection position of the support arm 151 is -10 ⁇ m, the support arm length LS of the support arm 151 is 75 ⁇ m and the connection position of the support arm 151 is -20 ⁇ m, and the support arm length of the support arm 151 is. This is a line when the LS is 225 ⁇ m and the connection position of the support arm 151 is 51 ⁇ m. In FIG.
  • the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative. It is the connection position of the support arm 151 of.
  • the vertical axis is the frequency change rate (df / f) of the resonance frequency (f) per unit adjustment time (1 min).
  • the effective range when adjusting the resonance frequency by overexcitation is set so that the frequency adjustment rate is 30 ppm / min or more.
  • the support arm length LS of the support arm 151 is 125 ⁇ m, the effective range of the resonance frequency due to overexcitation is satisfied.
  • connection position of the support arm 151 and the adjustment rate have a radial relationship as shown by the dotted line in FIG.
  • the dotted line shown in FIG. 13 is a quadratic curve (quadratic function) approximated based on a plot of the value of the adjustment rate when the connection position of the support arm 151 is changed. From the intersection of this quadratic curve (quadratic function) and the adjustment rate of 30 ppm / min, the connection position of the support arm 151 is -18.4 ⁇ m or more and 4.8 ⁇ m or less within the range where the frequency adjustment rate is 30 ppm / min or more. Can be derived.
  • connection position of the support arm 151 is ⁇ 0.105 WB or more and 0.0027 WB or less with respect to the base width WB of the base 130 which is 176 ⁇ m in one example. Can be done.
  • the other end of the support arm 151 is the base portion of the base portion 130 with reference to the position where the center line CL1 in the rear end portion 131B of the base portion 130 passes in a plan view. It is connected to a position in the range of ⁇ 0.1 WB to 0.1 WB with respect to the width WB.
  • FIG. 14 is a graph showing the relationship between the support arm length LS of the support arm 151 and the connection position of the support arm 15 at the base 130.
  • the horizontal axis is the support arm length LS of the support arm 151
  • the vertical axis is zero at the position where the center line CL1 passes at the rear end portion 131B of the base 130, and one side (right side) of the center line CL1 is positive. This is the connection position of the support arm 151 when the other side (left side) of the center line CL1 is negative.
  • the dotted line shown in FIG. 14 is a line when the combination of the support arm length LS of the support arm 151 and the connection position of the support arm 151 can improve the DLD of the resonator 10, as in the dotted line of FIG. be.
  • the support arm length LS of the support arm 151 is 88.8 ⁇ m or more and 158.
  • a range of 0.7 ⁇ m or less can be derived.
  • the frequency adjustment rate is 30 ppm / min or more
  • the range in which the DLD of the resonator 10 can be improved is the support of the support arm 151 with respect to the vibrating arm length LA of the vibrating arm 121, which is 410 ⁇ m in one example. It can be said that the arm length LS is -0.217LA or more and 0.387LA or less.
  • the support arm length LS of the support arm 151 is 0.2 times or more and 0.4 times or less with respect to the vibrating arm length LA of the vibrating arm 121.
  • the other end of the support arm 151 has a length in a direction orthogonal to the center line CL in the base 130 when the position through which the center line CL1 in the rear end 131B of the base 130 passes is used as a reference in a plan view. It is connected to a position in the range of ⁇ 0.1 WB to 0.1 WB with respect to the base width WB.
  • the support arm length LS which is the length in the direction parallel to the longitudinal direction of the vibrating portion 110 in the support arm 151, is 0.2 times or more the vibrating arm length LA, which is the length in the longitudinal direction in the vibrating arm 121. It is 0.4 times or less.
  • the deflection of the base 130 can be increased as compared with the conventional resonator which is symmetric or substantially symmetric with respect to the center line in the longitudinal direction in the vibrating portion. Further, it is possible to vibrate each vibrating arm 121A to 121D with a substantially maximum displacement amount, and it is possible to suppress the bias of the frequency change in the plurality of vibrating arms 121A to 121D when adjusting the resonance frequency by overexcitation. As a result, in the process of adjusting the resonance frequency by overexcitation, it is possible to achieve both that the adjustment rate satisfies the effective range and that the frequency change rate of the resonance frequency per unit power, which is an index of DLD, is reduced. can. Therefore, the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
  • the support arm 151 includes a support side arm 153 extending in a direction parallel to the longitudinal direction of the vibrating portion 110. Thereby, it is possible to easily realize the support arm 151 in which the support arm length LS satisfies 0.2 times or more and 0.4 times or less with respect to the vibrating arm length LA of the vibrating arm 121.
  • the support arm 151 further includes a support rear arm 152 having one end connected to the support side arm 153 and the other end connected to the rear end 131B of the base 130.
  • the other end is ⁇ 0 with respect to the base width WB which is the length in the direction orthogonal to the center line CL in the base 130 when the position through which the center line CL1 in the rear end 131B of the base 130 passes is used as a reference.
  • a support arm 151 connected to a position in the range of .1 WB to 0.1 WB can be easily realized.
  • the inventors of the present invention have found that the frequency change rate of the resonance frequency per unit power can be reduced when the ratio of the base length LB of the base 130 to the base width WB of the base 130 is a predetermined multiple or less. rice field. More specifically, it has been found that the base length LB of the base 130 is preferably 0.3 times or less with respect to the base width WB of the base 130. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced.
  • the base length LB of the base 130 is 90 ⁇ m or less, and the base width WB of the base 130 is 300 ⁇ m or less.
  • the frequency change rate of the resonance frequency per unit power can be effectively reduced even in the resonator 10 which is downsized and has limited dimensions.
  • the vibrating portion 110 of the resonator 10 includes four vibrating arms 121A to 121D, but the present invention is not limited to this.
  • the vibrating unit 110 may include, for example, three or five or more vibrating arms. In this case, at least two vibrating arms bend out of plane in different phases.
  • one end of the support arm 151 of the resonator 10 is connected to the frame body 141D of the holding portion 140, but the present invention is not limited to this.
  • One end of the support arm 151 may be connected to, for example, the frame 141C of the holding portion 140.
  • the other end of the support arm is the length in the direction orthogonal to the center line at the base when the position through which the center line at the rear end of the base passes is used as a reference in a plan view. It is connected to a position in the range of ⁇ 0.1 WB to 0.1 WB with respect to the base width WB.
  • the support arm length which is the length in the direction parallel to the longitudinal direction of the vibrating portion of the support arm, is 0.2 times or more and 0.4 times or less the length of the vibrating arm, which is the length in the longitudinal direction of the vibrating arm. Is.
  • the deflection of the base portion can be increased as compared with the conventional resonator which is symmetric or substantially symmetric with respect to the center line in the longitudinal direction in the vibrating portion. Further, it is possible to vibrate each vibrating arm with a substantially maximum displacement amount, and it is possible to suppress the bias of the frequency change in the plurality of vibrating arms when adjusting the resonance frequency by overexcitation. As a result, in the process of adjusting the resonance frequency by overexcitation, it is possible to achieve both that the adjustment rate satisfies the effective range and that the frequency change rate of the resonance frequency per unit power, which is an index of DLD, is reduced. can. Therefore, the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
  • the support arm includes a support side arm extending in a direction parallel to the longitudinal direction of the vibrating portion.
  • the support arm further includes a support rear arm having one end connected to the support side arm and the other end connected to the rear end of the base.
  • WB which is the length in the direction orthogonal to the center line at the base
  • the other end is from -0.1 WB to 0.
  • a support arm connected to a position in the range up to 1 WB can be easily realized.
  • the base length which is the length in the direction from one end to the other end of the base, is 0.3 times or less the base width of the base.
  • the inventors of the present invention reduce the frequency change rate of the resonance frequency per unit power when the ratio of the base length to the base width is a predetermined multiple or less, more specifically, 0.3 times or less. I found out what I could do. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced.
  • the base length of the base is 90 ⁇ m or less, and the base width of the base is 300 ⁇ m or less.
  • the resonator according to one embodiment includes the resonator described above. As a result, it is possible to easily realize a resonance device that improves the DLD and suppresses a decrease in the adjustment rate of the resonance frequency.
  • a lower lid and an upper lid are further provided. Thereby, the vibration space of the vibrating portion that bends out of the plane can be easily formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The present invention improves DLD and suppresses reductions in resonant frequency adjustment rate. A resonator 10 that comprises: a vibrating part 110 that includes a base part 130 and a plurality of vibrating arms 121A–121D, at least two of which bend out of plane in different phases; a holding part 140 that is configured to hold the vibrating part 110; and a support arm 151 that is connected to the holding part 140 at one end and connected to a rear end part 131B of the base part 130 at the other end. As seen in plan view, the other end of the support arm 151 is connected at a position that, relative to the width WB of the base part 130, is within -0.1WB and 0.1WB of the position through which a center line CL1 of the rear end part 131B of the base part 130 passes. The length LS of the support arm 151 is 0.2–0.4 times the length LA of the vibrating arms 121A–121D.

Description

共振子及び共振装置Resonator and resonator
 本発明は、複数の振動腕が面外の屈曲振動モードで振動する共振子及び共振装置に関する。 The present invention relates to a resonator and a resonator in which a plurality of vibrating arms vibrate in an out-of-plane bending vibration mode.
 従来、MEMS(Micro Electro Mechanical Systems)技術を用いた共振装置は、例えばタイミングデバイスとして用いられている。この共振装置は、スマートフォンなどの電子機器内に組み込まれるプリント基板上に実装される。共振装置は、下側基板と、下側基板との間でキャビティを形成する上側基板と、下側基板及び上側基板の間でキャビティ内に配置された共振子と、を備えている。 Conventionally, a resonance device using MEMS (Micro Electro Mechanical Systems) technology has been used, for example, as a timing device. This resonance device is mounted on a printed circuit board incorporated in an electronic device such as a smartphone. The resonator comprises a lower substrate, an upper substrate forming a cavity between the lower substrate, and a resonator disposed in the cavity between the lower substrate and the upper substrate.
 例えば特許文献1には、共振子の共振周波数を微調整する周波数調整工程において、振動腕を過励振させ、振動腕の先端の調整膜が上側基板又は下側基板に衝突することで、共振周波数を変化させる共振子が開示されている。 For example, in Patent Document 1, in the frequency adjustment step of finely adjusting the resonance frequency of the resonator, the vibrating arm is overexcited and the adjusting film at the tip of the vibrating arm collides with the upper substrate or the lower substrate to cause the resonance frequency. Resonators that change the frequency are disclosed.
国際公開第2016/175218号International Publication No. 2016/175218
 一方、近年、共振子には、励振レベルに対する共振周波数の変化率で表される、励振レベル依存特性(DLD:Drive Level Dependency)(以下、「DLD」という)の改善が求められてる。 On the other hand, in recent years, the resonator is required to improve the excitation level dependent characteristic (DLD: Drive Level Dependency) (hereinafter referred to as "DLD"), which is represented by the rate of change of the resonance frequency with respect to the excitation level.
 しかし、DLDを改善するための構造は、周波数調整工程おける共振周波数の調整レートを低下させることがあった。そのような共振子は、製造に時間がかかるため、製造効率の低下を招くおそれがあった。 However, the structure for improving DLD sometimes lowered the adjustment rate of the resonance frequency in the frequency adjustment process. Since such a resonator takes a long time to manufacture, there is a risk that the manufacturing efficiency may decrease.
 本発明はこのような事情に鑑みてなされたものであり、DLDを改善させることができるとともに、共振周波数の調整レートの低下を抑制することのできる共振子及び共振装置を提供することを目的の1つとする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a resonator and a resonance apparatus capable of improving DLD and suppressing a decrease in the adjustment rate of the resonance frequency. Let it be one.
 本発明の一側面に係る共振子は、それぞれが固定端を有する3本以上の複数の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕と、複数の振動腕のそれぞれの固定端が接続された一端と該一端に対向する他端とを有する基部と、を含む振動部と、振動部を保持するように構成された保持部と、一端が前記保持部に接続され、他端が基部の前記他端に接続された支持腕と、を備え、支持腕の他端は、平面視において、基部の他端における振動部の長手方向の中心線が通る位置を基準としたときに、基部における中心線に直交する方向の長さである基部幅WBに対し、-0.1WBから0.1WBまでの範囲の位置に接続されており、支持腕における振動部の長手方向に平行な方向の長さは、振動腕における長手方向の長さに対して0.2倍以上0.4倍以下である。 The resonator according to one aspect of the present invention is three or more vibrating arms, each having a fixed end, and at least two vibrating arms that bend out of the plane in different phases and a plurality of vibrating arms. A vibrating portion including a base having one end to which each of the fixed ends of the above is connected and an other end facing the one end, a holding portion configured to hold the vibrating portion, and one end to the holding portion. The other end of the support arm is provided with a support arm connected to the other end of the base, and the other end of the support arm is a position where the longitudinal center line of the vibrating portion at the other end of the base passes in a plan view. When used as a reference, it is connected to a position in the range of -0.1WB to 0.1WB with respect to the base width WB, which is the length in the direction orthogonal to the center line at the base, and the vibrating part in the support arm. The length in the direction parallel to the longitudinal direction is 0.2 times or more and 0.4 times or less with respect to the length in the longitudinal direction of the vibrating arm.
 本発明の一側面に係る共振装置は、前述した共振子を備える。 The resonator according to one aspect of the present invention includes the above-mentioned resonator.
 本発明によれば、DLDを改善させることができるとともに、共振周波数の調整レートの低下を抑制することができる。 According to the present invention, the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
図1は、一実施形態における共振装置の外観を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing the appearance of the resonance device according to the embodiment. 図2は、図1に示す共振装置の構造を概略的に示す分解斜視図である。FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device shown in FIG. 図3は、図2に示す共振子の構造を概略的に示す平面図である。FIG. 3 is a plan view schematically showing the structure of the resonator shown in FIG. 図4は、図1に示す共振装置の積層構造を概略的に示すX軸に沿う断面図である。FIG. 4 is a cross-sectional view taken along the X axis schematically showing the laminated structure of the resonance apparatus shown in FIG. 図5は、図1に示す共振装置の積層構造を概念的に示すY軸に沿う断面図である。FIG. 5 is a cross-sectional view taken along the Y axis conceptually showing the laminated structure of the resonance apparatus shown in FIG. 図6は、図3に示す共振子の寸法を説明するための平面図である。FIG. 6 is a plan view for explaining the dimensions of the resonator shown in FIG. 図7は、支持腕の支持腕長ごとの支持腕の基部における接続位置と単位電力あたりの周波数変化率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the connection position at the base of the support arm and the frequency change rate per unit power for each support arm length of the support arm. 図8は、支持腕の支持腕長と支持腕の基部における接続位置との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the support arm length of the support arm and the connection position at the base of the support arm. 図9は、支持腕の接続位置が-10μmであるときの振動腕の変位量を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the displacement amount of the vibrating arm when the connection position of the support arm is −10 μm. 図10は、支持腕の接続位置が-50μmであるときの振動腕の変位量を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the displacement amount of the vibrating arm when the connection position of the support arm is −50 μm. 図11は、支持腕の基部における接続位置と振動腕の変位量との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the connection position at the base of the support arm and the displacement amount of the vibrating arm. 図12は、支持腕の支持腕長及び支持腕の接続位置ごとの過励振による共振周波数の調整時間と共振周波数の変化率との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the adjustment time of the resonance frequency due to overexcitation for each support arm length of the support arm and the connection position of the support arm, and the rate of change of the resonance frequency. 図13は、支持腕の基部における接続位置と過励振による共振周波数の調整レートとの関係を示すグラフである。FIG. 13 is a graph showing the relationship between the connection position at the base of the support arm and the adjustment rate of the resonance frequency due to overexcitation. 図14は、支持腕の支持腕長と支持腕の基部における接続位置との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the support arm length of the support arm and the connection position at the base of the support arm.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar components are represented by the same or similar reference numerals. The drawings are examples, and the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be limited to the embodiment.
 まず、図1及び図2を参照しつつ、一実施形態に従う共振装置の概略構成について説明する。図1は、一実施形態における共振装置1の外観を概略的に示す斜視図である。図2は、図1に示す共振装置1の構造を概略的に示す分解斜視図である。 First, a schematic configuration of a resonance device according to one embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view schematically showing the appearance of the resonance device 1 in one embodiment. FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device 1 shown in FIG.
 共振装置1は、下蓋20と、共振子10と、上蓋30と、を備えている。すなわち、共振装置1は、下蓋20と、共振子10と、上蓋30とが、この順で積層されて構成されている。下蓋20及び上蓋30は、共振子10を挟んで互いに対向するように配置されている。なお、下蓋20及び上蓋30は、本発明の「蓋体」の一例に相当する。 The resonator 1 includes a lower lid 20, a resonator 10, and an upper lid 30. That is, the resonator 1 is configured by stacking the lower lid 20, the resonator 10, and the upper lid 30 in this order. The lower lid 20 and the upper lid 30 are arranged so as to face each other with the resonator 10 interposed therebetween. The lower lid 20 and the upper lid 30 correspond to an example of the "lid body" of the present invention.
 以下において、共振装置1の各構成について説明する。なお、以下の説明では、共振装置1のうち上蓋30が設けられている側を上(又は表)、下蓋20が設けられている側を下(又は裏)、として説明する。 Hereinafter, each configuration of the resonance device 1 will be described. In the following description, the side of the resonance device 1 where the upper lid 30 is provided is referred to as the upper side (or the front side), and the side where the lower lid 20 is provided is referred to as the lower side (or the back side).
 共振子10は、MEMS技術を用いて製造されるMEMS振動子である。共振子10と下蓋20及び上蓋30とは、共振子10が封止され、共振子10の振動空間が形成されるように、接合されている。また、共振子10と下蓋20及び上蓋30とは、それぞれ、シリコン(Si)基板(以下、「Si基板」という)を用いて形成されており、Si基板同士が互いに接合されている。なお、共振子10、下蓋20、及び上蓋30は、それぞれ、シリコン層及びシリコン酸化膜が積層されたSOI(Silicon On Insulator)基板を用いて形成されてもよい。 The resonator 10 is a MEMS oscillator manufactured using MEMS technology. The resonator 10, the lower lid 20, and the upper lid 30 are joined so that the resonator 10 is sealed and the vibration space of the resonator 10 is formed. Further, the resonator 10, the lower lid 20, and the upper lid 30 are each formed by using a silicon (Si) substrate (hereinafter, referred to as “Si substrate”), and the Si substrates are bonded to each other. The resonator 10, the lower lid 20, and the upper lid 30 may be formed by using an SOI (Silicon On Insulator) substrate on which a silicon layer and a silicon oxide film are laminated, respectively.
 下蓋20は、XY平面に沿って設けられる矩形平板状の底板22と、底板22の周縁部からZ軸方向、つまり、下蓋20と共振子10との積層方向、に延びる側壁23と、を備える。下蓋20には、共振子10と対向する面において、底板22の表面と側壁23の内面とによって画定される凹部21が形成されている。凹部21は、共振子10の振動空間の少なくとも一部を形成する。なお、下蓋20は凹部21を有さず、平板状の構成でもよい。また、下蓋20の凹部21の共振子10側の面には、ゲッター層が形成されてもよい。 The lower lid 20 has a rectangular flat plate-shaped bottom plate 22 provided along the XY plane, and a side wall 23 extending from the peripheral edge of the bottom plate 22 in the Z-axis direction, that is, in the stacking direction of the lower lid 20 and the resonator 10. To prepare for. The lower lid 20 is formed with a recess 21 defined by the surface of the bottom plate 22 and the inner surface of the side wall 23 on the surface facing the resonator 10. The recess 21 forms at least a part of the vibration space of the resonator 10. The lower lid 20 does not have the recess 21 and may have a flat plate shape. Further, a getter layer may be formed on the surface of the lower lid 20 on the resonator 10 side of the recess 21.
 また、下蓋20は、底板22の表面に形成される突起部50を備える。突起部50の詳細な構成については、後述する。 Further, the lower lid 20 includes a protrusion 50 formed on the surface of the bottom plate 22. The detailed configuration of the protrusion 50 will be described later.
 上蓋30は、XY平面に沿って設けられる矩形平板状の底板32と、底板22の周縁部からZ軸方向に延びる側壁33と、を備える。上蓋30には、共振子10と対向する面において、底板32の表面と側壁23の内面とによって画定される凹部31が形成されている。凹部31は、共振子10が振動する空間である振動空間の少なくとも一部を形成する。なお、上蓋30は凹部31を有さず、平板状の構成でもよい。また、上蓋30の凹部31の共振子10側の面には、ゲッター層が形成されていてもよい。 The upper lid 30 includes a rectangular flat plate-shaped bottom plate 32 provided along the XY plane, and a side wall 33 extending in the Z-axis direction from the peripheral edge of the bottom plate 22. The upper lid 30 is formed with a recess 31 defined by the surface of the bottom plate 32 and the inner surface of the side wall 23 on the surface facing the resonator 10. The recess 31 forms at least a part of the vibration space, which is the space where the resonator 10 vibrates. The upper lid 30 does not have a recess 31, and may have a flat plate shape. Further, a getter layer may be formed on the surface of the concave portion 31 of the upper lid 30 on the resonator 10 side.
 上蓋30と共振子10と下蓋20とを接合することによって、共振子10の振動空間は気密に封止され、真空状態が維持される。この振動空間には、例えば不活性ガス等の気体が充填されてもよい。 By joining the upper lid 30, the resonator 10 and the lower lid 20, the vibration space of the resonator 10 is hermetically sealed and the vacuum state is maintained. The vibration space may be filled with a gas such as an inert gas.
 次に、図3を参照しつつ、第1実施形態に従う共振子の概略構成について説明する。図3は、図2に示す共振子10の構造を概略的に示す平面図である。 Next, the schematic configuration of the resonator according to the first embodiment will be described with reference to FIG. FIG. 3 is a plan view schematically showing the structure of the resonator 10 shown in FIG.
 図3に示すように、共振子10は、MEMS技術を用いて製造されるMEMS振動子であり、図3の直交座標系におけるXY平面内で面外屈曲振動モードを主振動(以下、「メインモード」ともいう)として振動する。 As shown in FIG. 3, the resonator 10 is a MEMS oscillator manufactured by using the MEMS technique, and the out-of-plane bending vibration mode in the XY plane in the Cartesian coordinate system of FIG. 3 is the main vibration (hereinafter, “main”). It vibrates as "mode").
 共振子10は、振動部110と、保持部140と、支持腕151と、を備える。 The resonator 10 includes a vibrating portion 110, a holding portion 140, and a support arm 151.
 振動部110は、図3の直交座標系におけるXY平面に沿って広がる矩形の輪郭を有している。振動部110は、保持部140の内側に配置されており、振動部110と保持部140との間には、所定の間隔で空間が形成されている。図3の例では、振動部110は、4本の振動腕121A~121D(以下、まとめて「振動腕121」ともいう)から構成される励振部120と、基部130と、を含んでいる。なお、振動腕の数は、4本に限定されず、例えば3本以上の任意の数に設定される。本実施形態において、励振部120と基部130とは、一体に形成されている。 The vibrating unit 110 has a rectangular contour extending along the XY plane in the Cartesian coordinate system of FIG. The vibrating portion 110 is arranged inside the holding portion 140, and a space is formed between the vibrating portion 110 and the holding portion 140 at a predetermined interval. In the example of FIG. 3, the vibrating unit 110 includes an exciting unit 120 composed of four vibrating arms 121A to 121D (hereinafter collectively referred to as “vibrating arm 121”) and a base 130. The number of vibrating arms is not limited to four, and is set to, for example, an arbitrary number of three or more. In the present embodiment, the excitation unit 120 and the base 130 are integrally formed.
 振動腕121A,121B,121C,121Dは、それぞれ、Y軸方向に沿って延びており、この順でX軸方向に所定の間隔で並列に設けられている。振動腕121Aの一端は後述する基部130の前端部131Aに接続された固定端であり、振動腕121Aの他端は基部130の前端部131Aから離れて設けられた開放端である。振動腕121Aは、開放端側に形成された質量付加部122Aと、固定端から延びて質量付加部122Aに接続された腕部123Aと、を含んでいる。同様に、振動腕121B,121C,121Dも、それぞれ、質量付加部122B,122C,122Dと、腕部123B,123C,123Dと、を含んでいる。なお、腕部123A~123Dは、それぞれ、例えばX軸方向の幅が26μm程度、Y軸方向の長さが246μm程度である。 The vibrating arms 121A, 121B, 121C, and 121D each extend along the Y-axis direction, and are provided in parallel in the X-axis direction at predetermined intervals in this order. One end of the vibrating arm 121A is a fixed end connected to the front end 131A of the base 130, which will be described later, and the other end of the vibrating arm 121A is an open end provided apart from the front end 131A of the base 130. The vibrating arm 121A includes a mass addition portion 122A formed on the open end side and an arm portion 123A extending from the fixed end and connected to the mass addition portion 122A. Similarly, the vibrating arms 121B, 121C, 121D also include mass adding portions 122B, 122C, 122D, and arm portions 123B, 123C, 123D, respectively. The arms 123A to 123D have a width of about 26 μm in the X-axis direction and a length of about 246 μm in the Y-axis direction, respectively.
 本実施形態の励振部120では、X軸方向において、外側に2本の振動腕121A,121Dが配置されており、内側に2本の振動腕121B,121Cが配置されている。内側の2本の振動腕121B,121Cのそれぞれの腕部123B,123C同士の間に形成された間隙の幅(以下、「リリース幅」という。)W1は、例えば、X軸方向において隣接する振動腕121A,121Bのそれぞれの腕部123A,123B同士の間のリリース幅W2、及び、X軸方向において隣接する振動腕121D,121Cのそれぞれの腕部123D,123C同士の間のリリース幅W2、よりも大きく設定されている。リリース幅W1は例えば40μm程度、リリース幅W2は例えば18μm程度である。このように、リリース幅W1をリリース幅W2よりも大きく設定することにより、振動部110の振動特性や耐久性が改善される。なお、共振装置1を小型化できるように、リリース幅W1をリリース幅W2よりも小さく設定してもよいし、等間隔に設定してもよい。 In the excitation unit 120 of the present embodiment, two vibrating arms 121A and 121D are arranged on the outside and two vibrating arms 121B and 121C are arranged on the inside in the X-axis direction. The width of the gap (hereinafter referred to as "release width") W1 formed between the respective arm portions 123B and 123C of the two inner vibrating arms 121B and 121C is, for example, an adjacent vibration in the X-axis direction. Release width W2 between the arms 123A and 123B of the arms 121A and 121B, and release width W2 between the arms 123D and 123C of the vibrating arms 121D and 121C adjacent to each other in the X-axis direction. Is also set large. The release width W1 is, for example, about 40 μm, and the release width W2 is, for example, about 18 μm. By setting the release width W1 larger than the release width W2 in this way, the vibration characteristics and durability of the vibrating portion 110 are improved. The release width W1 may be set smaller than the release width W2 or may be set at equal intervals so that the resonance device 1 can be miniaturized.
 質量付加部122A~122Dは、それぞれの表面に質量付加膜125A~125Dを備えている。したがって、質量付加部122A~122Dのそれぞれの単位長さ当たりの重さ(以下、単に「重さ」ともいう。)は、腕部123A~123Dのそれぞれの重さよりも重い。これにより、振動部110を小型化しつつ、振動特性を改善することができる。また、質量付加膜125A~125Dは、それぞれ、振動腕121A~振動腕121Dの先端部分の重さを大きくする機能だけではなく、その一部を削ることによって振動腕121A~121Dの共振周波数を調整する、いわゆる周波数調整膜としての機能も有する。 The mass-adding portions 122A to 122D are provided with mass-adding films 125A to 125D on their respective surfaces. Therefore, the weight of each of the mass addition portions 122A to 122D per unit length (hereinafter, also simply referred to as “weight”) is heavier than the weight of each of the arm portions 123A to 123D. This makes it possible to improve the vibration characteristics while reducing the size of the vibration unit 110. Further, the mass-added films 125A to 125D not only have a function of increasing the weight of the tip portions of the vibrating arms 121A to 121D, respectively, but also adjust the resonance frequency of the vibrating arms 121A to 121D by scraping a part thereof. It also has a function as a so-called frequency adjusting film.
 本実施形態において、質量付加部122A~122DのそれぞれのX軸方向に沿う幅は、例えば49μm程度であり、腕部123A~123DのそれぞれのX軸方向に沿う幅よりも大きい。これにより、質量付加部122A~122Dのそれぞれの重さを、さらに大きくできる。共振子10の小型化のために、質量付加部122A~122DのそれぞれのX軸方向に沿う幅は、腕部123A~123DのそれぞれのX軸方向に沿う幅に対して1.5倍以上であることが好ましい。但し、質量付加部122A~122Dのそれぞれの重さは腕部123A~123Dのそれぞれの重さよりも大きければよく、質量付加部122A~122DのそれぞれのX軸方向に沿う幅は、本実施形態の例に限定されるものではない。質量付加部122A~122DのそれぞれのX軸方向に沿う幅は、腕部123A~123DのそれぞれのX軸方向に沿う幅と同等、もしくはそれ以下であってもよい。 In the present embodiment, the width of the mass addition portions 122A to 122D along the X-axis direction is, for example, about 49 μm, which is larger than the width of the arm portions 123A to 123D along the X-axis direction. As a result, the weight of each of the mass addition portions 122A to 122D can be further increased. Due to the miniaturization of the resonator 10, the width of the mass addition portions 122A to 122D along the X-axis direction is 1.5 times or more the width of the arm portions 123A to 123D along the X-axis direction. It is preferable to have. However, the weight of each of the mass addition portions 122A to 122D may be larger than the weight of each of the arm portions 123A to 123D, and the width of the mass addition portions 122A to 122D along the X-axis direction is the width of the present embodiment. It is not limited to an example. The width of the mass addition portions 122A to 122D along the X-axis direction may be equal to or less than the width of the arm portions 123A to 123D along the X-axis direction.
 共振子10を上方から平面視(以下、単に「平面視」という)したときに、質量付加部122A~122Dは、それぞれ、略長方形状であって、四隅に丸みを帯びた曲面形状、例えばいわゆるR形状を有する。同様に、腕部123A~123Dは、それぞれ、略長方形状であって、基部130に接続される固定端付近、及び、質量付加部122A~122Dのそれぞれに接続される接続部分付近にR形状を有する。但し、質量付加部122A~122D及び腕部123A~123Dのそれぞれの形状は、本実施形態の例に限定されるものではない。例えば、質量付加部122A~122Dのそれぞれの形状は、略台形状や略L字形状であってもよい。また、腕部123A~123Dのそれぞれの形状は、略台形状であってもよい。質量付加部122A~122D及び腕部123A~123Dは、それぞれ、表面側及び裏面側のいずれか一方に開口を有する有底の溝部や、表面側及び裏面側の両方に開口を有する穴部が形成されていてもよい。当該溝部及び当該穴部は、表面と裏面とを繋ぐ側面から離れていてもよく、当該側面側に開口を有していてもよい。 When the resonator 10 is viewed in a plan view from above (hereinafter, simply referred to as "plan view"), the mass addition portions 122A to 122D are each substantially rectangular and have a curved surface shape with rounded corners, for example, so-called. It has an R shape. Similarly, the arm portions 123A to 123D are substantially rectangular, respectively, and have an R shape in the vicinity of the fixed end connected to the base portion 130 and in the vicinity of the connection portion connected to each of the mass addition portions 122A to 122D. Have. However, the shapes of the mass addition portions 122A to 122D and the arm portions 123A to 123D are not limited to the examples of the present embodiment. For example, the respective shapes of the mass addition portions 122A to 122D may be a substantially trapezoidal shape or a substantially L-shaped shape. Further, each of the arms 123A to 123D may have a substantially trapezoidal shape. The mass addition portions 122A to 122D and the arm portions 123A to 123D each have a bottomed groove portion having an opening on either the front surface side or the back surface side, or a hole portion having an opening on both the front surface side and the back surface side. It may have been done. The groove portion and the hole portion may be separated from the side surface connecting the front surface and the back surface, or may have an opening on the side surface side.
 基部130は、平面視において、前端部131Aと、後端部131Bと、左端部131Cと、右端部131Dと、を有している。前述したように、前端部131Aには、振動腕121A~121Dのそれぞれの固定端が接続されている。後端部131Bには、支持腕151が接続されている。 The base 130 has a front end 131A, a rear end 131B, a left end 131C, and a right end 131D in a plan view. As described above, the fixed ends of the vibrating arms 121A to 121D are connected to the front end portion 131A. A support arm 151 is connected to the rear end portion 131B.
 前端部131A、後端部131B、左端部131C、及び右端部131Dは、それぞれ、基部130の外縁部の一部である。具体的には、前端部131A及び後端部131Bは、それぞれ、X軸方向に延びる端部であり、前端部131Aと後端部131Bとは、互いに対向するように配置されている。左端部131C及び右端部131Dは、それぞれ、Y軸方向に延びる端部であり、左端部131Cと右端部131Dとは、互いに対向するように配置されている。左端部131Cの両端は、それぞれ、前端部131Aの一端と後端部131Bの一端とに繋がっている。右端部131Dの両端は、それぞれ、前端部131Aの他端と後端部131Bの他端とに繋がっている。 The front end 131A, the rear end 131B, the left end 131C, and the right end 131D are each part of the outer edge of the base 130. Specifically, the front end portion 131A and the rear end portion 131B are end portions extending in the X-axis direction, respectively, and the front end portion 131A and the rear end portion 131B are arranged so as to face each other. The left end portion 131C and the right end portion 131D are end portions extending in the Y-axis direction, respectively, and the left end portion 131C and the right end portion 131D are arranged so as to face each other. Both ends of the left end portion 131C are connected to one end of the front end portion 131A and one end of the rear end portion 131B, respectively. Both ends of the right end portion 131D are connected to the other end of the front end portion 131A and the other end of the rear end portion 131B, respectively.
 平面視において、基部130は、前端部131A及び後端部131Bを長辺とし、左端部131C及び右端部131Dを短辺とする、略長方形状を有する。基部130は、前端部131A及び後端部131Bそれぞれの垂直二等分線であるX軸方向の中心線CL1に沿って、規定される仮想平面に対して、略面対称に形成されている。すなわち、基部130は、中心線CL1に関して略線対称に形成されている、ともいえる。なお、基部130の形状は、図3に示す長方形状である場合に限定されず、中心線CL1に関して略線対称を構成するその他の形状であってもよい。例えば、基部130の形状は、前端部131A及び後端部131Bの一方が他方よりも長い台形状であってもよい。また、前端部131A、後端部131B、左端部131C、及び右端部131Dの少なくとも1つが屈曲又は湾曲してもよい。 In a plan view, the base 130 has a substantially rectangular shape with the front end 131A and the rear end 131B as the long sides and the left end 131C and the right end 131D as the short sides. The base 130 is formed substantially plane-symmetrically with respect to a defined virtual plane along the center line CL1 in the X-axis direction, which is a perpendicular bisector of each of the front end 131A and the rear end 131B. That is, it can be said that the base 130 is formed substantially line-symmetrically with respect to the center line CL1. The shape of the base 130 is not limited to the rectangular shape shown in FIG. 3, and may be another shape that constitutes substantially line symmetry with respect to the center line CL1. For example, the shape of the base 130 may be a trapezoidal shape in which one of the front end 131A and the rear end 131B is longer than the other. Further, at least one of the front end portion 131A, the rear end portion 131B, the left end portion 131C, and the right end portion 131D may be bent or curved.
 なお、仮想平面は振動部110全体の対称面に相当し、中心線CL1は振動部110全体のX軸方向の中心線に相当する。したがって、中心線CL1は、振動腕121A~121DのX軸方向における中心を通る線でもあり、振動腕121Bと振動腕121Cとの間に位置する。具体的には、隣接する振動腕121A及び振動腕121Bのそれぞれは、中心線CL1を挟んで、隣接する振動腕121D及び振動腕121Cのそれぞれと対称に形成されている。 The virtual plane corresponds to the plane of symmetry of the entire vibrating portion 110, and the center line CL1 corresponds to the center line of the entire vibrating portion 110 in the X-axis direction. Therefore, the center line CL1 is also a line passing through the center of the vibrating arms 121A to 121D in the X-axis direction, and is located between the vibrating arms 121B and the vibrating arms 121C. Specifically, each of the adjacent vibrating arm 121A and the vibrating arm 121B is formed symmetrically with each of the adjacent vibrating arm 121D and the vibrating arm 121C with the center line CL1 interposed therebetween.
 基部130において、前端部131Aと後端部131Bとの間のY軸方向における最長距離である基部長は、例えば25μm程度である。また、左端部131Cと右端部131Dとの間のX軸方向における最長距離である基部幅は、例えば180μm程度である。なお、図3に示す例では、基部長は左端部131C又は右端部131Dの長さに相当し、基部幅は前端部131A又は後端部131Bの長さに相当する。 In the base 130, the base length, which is the longest distance between the front end 131A and the rear end 131B in the Y-axis direction, is, for example, about 25 μm. Further, the base width, which is the longest distance between the left end portion 131C and the right end portion 131D in the X-axis direction, is, for example, about 180 μm. In the example shown in FIG. 3, the base length corresponds to the length of the left end 131C or the right end 131D, and the base width corresponds to the length of the front end 131A or the rear end 131B.
 保持部140は、振動部110を保持するように構成されている。より詳細には、保持部140は、振動腕121A~121Dが振動可能であるように、構成されている。具体的には、保持部140は、中心線CL1に沿って規定される仮想平面に対して面対称に形成されている。保持部140は、平面視において矩形の枠形状を有し、XY平面に沿って振動部110の外側を囲むように配置されている。このように、保持部140が平面視において枠形状を有することにより、振動部110を囲む保持部140を容易に実現することができる。 The holding portion 140 is configured to hold the vibrating portion 110. More specifically, the holding portion 140 is configured so that the vibrating arms 121A to 121D can vibrate. Specifically, the holding portion 140 is formed plane-symmetrically with respect to a virtual plane defined along the center line CL1. The holding portion 140 has a rectangular frame shape in a plan view, and is arranged so as to surround the outside of the vibrating portion 110 along the XY plane. As described above, since the holding portion 140 has a frame shape in a plan view, the holding portion 140 surrounding the vibrating portion 110 can be easily realized.
 なお、保持部140は、振動部110の周囲の少なくとも一部に配置されていればよく、枠形状に限定されるものではない。例えば、保持部140は、振動部110を保持し、また、上蓋30及び下蓋20と接合できる程度に、振動部110の周囲に配置されていればよい。 The holding portion 140 may be arranged at least in a part around the vibrating portion 110, and is not limited to the frame shape. For example, the holding portion 140 may be arranged around the vibrating portion 110 so as to hold the vibrating portion 110 and to be joined to the upper lid 30 and the lower lid 20.
 本実施形態においては、保持部140は一体形成される枠体141A~141Dを含んでいる。枠体141Aは、図3に示すように、振動腕121A~121Dの開放端に対向して、長手方向がX軸に平行に設けられる。枠体141Bは、基部130の後端部131Bに対向して、長手方向がX軸に平行に設けられる。枠体141Cは、基部130の左端部131C及び振動腕121Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体141A、141Dの一端にそれぞれ接続される。枠体141Dは、基部130の右端部131D及び振動腕121Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体141A、141Bの他端にそれぞれ接続される。枠体141Aと枠体141Bとは、振動部110を挟んでY軸方向において互いに対向している。枠体141Cと枠体141Dとは、振動部110を挟んでX軸方向において互いに対向している。 In the present embodiment, the holding portion 140 includes the frame bodies 141A to 141D integrally formed. As shown in FIG. 3, the frame body 141A is provided so as to face the open ends of the vibrating arms 121A to 121D and to be provided in the longitudinal direction parallel to the X axis. The frame body 141B is provided so as to face the rear end portion 131B of the base portion 130 and to be provided in the longitudinal direction parallel to the X axis. The frame body 141C is provided facing the left end portion 131C of the base portion 130 and the vibrating arm 121A in the longitudinal direction parallel to the Y axis, and is connected to one ends of the frame bodies 141A and 141D at both ends thereof. The frame body 141D is provided facing the right end portion 131D of the base portion 130 and the vibrating arm 121A in a longitudinal direction parallel to the Y axis, and is connected to the other ends of the frame bodies 141A and 141B at both ends thereof, respectively. The frame body 141A and the frame body 141B face each other in the Y-axis direction with the vibrating portion 110 interposed therebetween. The frame body 141C and the frame body 141D face each other in the X-axis direction with the vibrating portion 110 interposed therebetween.
 支持腕151は、保持部140の内側に配置され、基部130と保持部140とを接続している。支持腕151は、平面視において、中心線CL1に関して線対称ではない、つまり、非対称に形成されている。具体的には、支持腕151は、支持後腕152と支持側腕153とを含んでいる。 The support arm 151 is arranged inside the holding portion 140, and connects the base portion 130 and the holding portion 140. The support arm 151 is not line-symmetrical with respect to the center line CL1 in a plan view, that is, is formed asymmetrically. Specifically, the support arm 151 includes a support rear arm 152 and a support side arm 153.
 支持側腕153は、振動腕121Dと保持部140との間において、振動腕121Dと並行に延びている。具体的には、支持側腕153は、支持後腕152の一端(右端又は枠体141D側の端)からY軸方向に枠体141Aに向かって延び、X軸方向に屈曲して枠体141Dに接続されている。すなわち、支持腕151の一端は、保持部140に接続されている。 The support side arm 153 extends in parallel with the vibrating arm 121D between the vibrating arm 121D and the holding portion 140. Specifically, the support side arm 153 extends from one end (right end or the end on the frame 141D side) of the support rear arm 152 toward the frame 141A in the Y-axis direction, and bends in the X-axis direction to form the frame 141D. It is connected to the. That is, one end of the support arm 151 is connected to the holding portion 140.
 支持後腕152は、基部130の後端部131Bと保持部140との間において、支持側腕153から延びている。具体的には、支持後腕152は、支持側腕153の一端(下端又は枠体141B側の端)からY軸方向に枠体141Cに向かって延びている。そして、支持後腕152は、基部130におけるX軸方向の中央付近でY軸方向に屈曲し、そこから中心線CL1と平行に延びて基部130の後端部131Bに接続している。すなわち、支持腕151の他端は、基部130の後端部131Bに接続されている。 The support rear arm 152 extends from the support side arm 153 between the rear end portion 131B of the base 130 and the holding portion 140. Specifically, the support rear arm 152 extends from one end (lower end or the end on the frame 141B side) of the support side arm 153 toward the frame 141C in the Y-axis direction. The supporting rear arm 152 bends in the Y-axis direction near the center of the base 130 in the X-axis direction, extends parallel to the center line CL1 from there, and is connected to the rear end 131B of the base 130. That is, the other end of the support arm 151 is connected to the rear end portion 131B of the base portion 130.
 突起部50は、下蓋20の凹部21から振動空間内に突起している。突起部50は、平面視において、振動腕121Bの腕部123Bと振動腕121Cの腕部123Cとの間に配置される。突起部50は、腕部123B,123Cに並行にY軸方向に延び、角柱形状に形成されている。突起部50のY軸方向の長さは200μm程度、X軸方向の長さは15μm程度である。なお、突起部50の数は、1つである場合に限定されず、2以上の複数であってもよい。このように、突起部50が振動腕121Bと振動腕121Cとの間に配置され、凹部21の底板22から突起することにより、下蓋20の剛性を高めることができ、下蓋20の上で形成される共振子10の撓みや、下蓋20の反りの発生を抑制することが可能になる。 The protrusion 50 protrudes into the vibration space from the recess 21 of the lower lid 20. The protrusion 50 is arranged between the arm portion 123B of the vibrating arm 121B and the arm portion 123C of the vibrating arm 121C in a plan view. The protrusion 50 extends in the Y-axis direction in parallel with the arms 123B and 123C, and is formed in a prismatic shape. The length of the protrusion 50 in the Y-axis direction is about 200 μm, and the length in the X-axis direction is about 15 μm. The number of protrusions 50 is not limited to one, and may be two or more. In this way, the protrusion 50 is arranged between the vibrating arm 121B and the vibrating arm 121C, and by projecting from the bottom plate 22 of the recess 21, the rigidity of the lower lid 20 can be increased, and the rigidity of the lower lid 20 can be increased. It is possible to suppress the bending of the formed resonator 10 and the occurrence of warping of the lower lid 20.
 次に、図4及び図5を参照しつつ、第1実施形態に従う共振装置の積層構造及び動作について説明する。図4は、図1に示す共振装置1の積層構造を概略的に示すX軸に沿う断面図である。図5は、図1に示す共振装置1の積層構造を概念的に示すY軸に沿う断面図である。 Next, the laminated structure and operation of the resonance device according to the first embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view taken along the X axis schematically showing the laminated structure of the resonance device 1 shown in FIG. FIG. 5 is a cross-sectional view taken along the Y axis conceptually showing the laminated structure of the resonance device 1 shown in FIG.
 図4及び図5に示すように、共振装置1は、下蓋20の側壁23上に共振子10の保持部140が接合され、さらに共振子10の保持部140と上蓋30の側壁33とが接合される。このように下蓋20と上蓋30との間に共振子10が保持され、下蓋20と上蓋30と共振子10の保持部140とによって、振動部110が振動する振動空間が形成されている。 As shown in FIGS. 4 and 5, in the resonator 1, the holding portion 140 of the resonator 10 is joined to the side wall 23 of the lower lid 20, and the holding portion 140 of the resonator 10 and the side wall 33 of the upper lid 30 are further bonded. Be joined. In this way, the resonator 10 is held between the lower lid 20 and the upper lid 30, and the lower lid 20, the upper lid 30, and the holding portion 140 of the resonator 10 form a vibration space in which the vibrating portion 110 vibrates. ..
 共振子10における、振動部110、保持部140、及び支持腕部150は、同一プロセスによって一体的に形成される。共振子10は、基板の一例であるSi基板F2の上に、金属膜E1が積層されている。そして、金属膜E1の上には、金属膜E1を覆うように圧電膜F3が積層されており、さらに、圧電膜F3の上には金属膜E2が積層されている。金属膜E2の上には、金属膜E2を覆うように保護膜F5が積層されている。質量付加部122A~122Dにおいては、さらに、保護膜F5の上にそれぞれ、前述の質量付加膜125A~125Dが積層されている。振動部110、保持部140、及び支持腕部150のそれぞれの外形は、前述したSi基板F2、金属膜E1、圧電膜F3、金属膜E2、保護膜F5等から構成される積層体を、例えばアルゴン(Ar)イオンビームを照射するドライエッチングによって除去加工し、パターニングすることによって形成される。 The vibrating portion 110, the holding portion 140, and the supporting arm portion 150 in the resonator 10 are integrally formed by the same process. The resonator 10 has a metal film E1 laminated on a Si substrate F2, which is an example of a substrate. A piezoelectric film F3 is laminated on the metal film E1 so as to cover the metal film E1, and a metal film E2 is further laminated on the piezoelectric film F3. A protective film F5 is laminated on the metal film E2 so as to cover the metal film E2. In the mass addition portions 122A to 122D, the above-mentioned mass addition films 125A to 125D are further laminated on the protective film F5, respectively. The outer shape of each of the vibrating portion 110, the holding portion 140, and the supporting arm portion 150 is, for example, a laminate composed of the Si substrate F2, the metal film E1, the piezoelectric film F3, the metal film E2, the protective film F5, and the like described above. It is formed by removing and patterning by dry etching that irradiates an argon (Ar) ion beam.
 本実施形態では、共振子10が金属膜E1を含む例を示したが、これに限定されるものではない。例えば、共振子10は、Si基板F2に低抵抗となる縮退シリコン基板を用いることで、Si基板F2自体が金属膜E1を兼ねることができ、金属膜E1を省略してもよい。 In the present embodiment, an example in which the resonator 10 includes the metal film E1 is shown, but the present invention is not limited to this. For example, as the resonator 10, by using a degenerate silicon substrate having a low resistance for the Si substrate F2, the Si substrate F2 itself can also serve as the metal film E1, and the metal film E1 may be omitted.
 Si基板F2は、例えば、厚み6μm程度の縮退したn型シリコン(Si)半導体から形成されており、n型ドーパントとしてリン(P)、ヒ素(As)、アンチモン(Sb)等を含むことができる。また、Si基板F2に用いられる縮退シリコン(Si)の抵抗値は、例えば1.6mΩ・cm未満であり、より好ましくは1.2mΩ・cm以下である。さらに、Si基板F2の下面には、温度特性補正層の一例として、例えばSiO等の酸化ケイ素層F21が形成されている。これにより、温度特性を向上させることが可能になる。 The Si substrate F2 is formed of, for example, a degenerate n-type silicon (Si) semiconductor having a thickness of about 6 μm, and may contain phosphorus (P), arsenic (As), antimony (Sb), and the like as n-type dopants. .. Further, the resistance value of the degenerate silicon (Si) used for the Si substrate F2 is, for example, less than 1.6 mΩ · cm, more preferably 1.2 mΩ · cm or less. Further, as an example of the temperature characteristic correction layer, a silicon oxide layer F21 such as SiO 2 is formed on the lower surface of the Si substrate F2. This makes it possible to improve the temperature characteristics.
 本実施形態において、酸化ケイ素層F21は、当該酸化ケイ素層F21をSi基板F2に形成しない場合と比べて、Si基板F2に温度補正層を形成したときの振動部110における周波数の温度係数、つまり、温度当たりの変化率を、少なくとも常温近傍において低減する機能を有する層をいう。振動部110が酸化ケイ素層F21を有することにより、例えば、Si基板F2と金属膜E1、E2と圧電膜F3及び酸化ケイ素層F21とによる積層構造体の共振周波数において、温度に伴う変化を低減することができる。酸化ケイ素層は、Si基板F2の上面に形成されてもよいし、Si基板F2の上面及び下面の両方に形成されてもよい。 In the present embodiment, the silicon oxide layer F21 has a temperature coefficient of frequency in the vibrating portion 110 when the temperature correction layer is formed on the Si substrate F2, that is, as compared with the case where the silicon oxide layer F21 is not formed on the Si substrate F2. , A layer having a function of reducing the rate of change per temperature at least near room temperature. By having the silicon oxide layer F21 in the vibrating portion 110, for example, the change with temperature in the resonance frequency of the laminated structure consisting of the Si substrate F2, the metal films E1, E2, the piezoelectric film F3, and the silicon oxide layer F21 is reduced. be able to. The silicon oxide layer may be formed on the upper surface of the Si substrate F2, or may be formed on both the upper surface and the lower surface of the Si substrate F2.
 質量付加部122A~122Dの酸化ケイ素層F21は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、酸化ケイ素層F21の厚みのばらつきが厚みの平均値から±20%以内であることをいう。 It is desirable that the silicon oxide layers F21 of the mass addition portions 122A to 122D are formed with a uniform thickness. The uniform thickness means that the variation in the thickness of the silicon oxide layer F21 is within ± 20% from the average value of the thickness.
 金属膜E1,E2は、それぞれ、振動腕121A~121Dを励振する励振電極と、励振電極と外部電源とを電気的に接続させる引出電極と、を含んでいる。金属膜E1,E2の励振電極として機能する部分は、振動腕121A~121Dの腕部123A~123Dにおいて、圧電膜F3を挟んで互いに対向している。金属膜E1,E2の引出電極として機能する部分は、例えば、支持腕部150を経由し、基部130から保持部140に導出されている。金属膜E1は、共振子10全体に亘って電気的に連続している。金属膜E2は、振動腕121A,121Dに形成された部分と、振動腕121B,121Cに形成された部分と、において、電気的に離れている。 The metal films E1 and E2 each include an excitation electrode that excites the vibrating arms 121A to 121D, and an extraction electrode that electrically connects the excitation electrode and an external power source. The portions of the metal films E1 and E2 that function as the excitation electrodes face each other with the piezoelectric film F3 interposed therebetween in the arm portions 123A to 123D of the vibrating arms 121A to 121D. The portion of the metal films E1 and E2 that functions as a drawer electrode is led out from the base portion 130 to the holding portion 140 via, for example, the support arm portion 150. The metal film E1 is electrically continuous over the entire resonator 10. The metal film E2 is electrically separated from the portions formed on the vibrating arms 121A and 121D and the portions formed on the vibrating arms 121B and 121C.
 金属膜E1,E2の厚みは、それぞれ、例えば0.1μm以上0.2μm以下程度である。金属膜E1,E2は、成膜後に、エッチング等の除去加工によって励振電極、引出電極等にパターニングされる。金属膜E1,E2は、例えば、結晶構造が体心立方構造である金属材料によって形成される。具体的には、金属膜E1,E2は、Mo(モリブデン)、タングステン(W)等を用いて形成される。このように、金属膜E1、E2は、結晶構造が体心立方構造である金属を主成分とすることにより、共振子10の下部電極及び上部電極に適した金属膜E1、E2を容易に実現することができる。 The thicknesses of the metal films E1 and E2 are, for example, about 0.1 μm or more and 0.2 μm or less, respectively. After the film formation, the metal films E1 and E2 are patterned on the excitation electrode, the extraction electrode, and the like by a removal process such as etching. The metal films E1 and E2 are formed of, for example, a metal material whose crystal structure is a body-centered cubic structure. Specifically, the metal films E1 and E2 are formed by using Mo (molybdenum), tungsten (W), or the like. As described above, the metal films E1 and E2 can easily realize the metal films E1 and E2 suitable for the lower electrode and the upper electrode of the resonator 10 by using the metal whose crystal structure is a body-centered cubic structure as a main component. can do.
 圧電膜F3は、電気的エネルギーと機械的エネルギーとを相互に変換する圧電体の一種によって形成された薄膜である。圧電膜F3は、金属膜E1,E2によって圧電膜F3に形成される電界に応じて、XY平面の面内方向のうちのY軸方向に伸縮する。この圧電膜F3の伸縮によって、振動腕121A~121Dは、それぞれ、下蓋20の底板22及び上蓋30の底板32に向かってその開放端を変位させる。これにより、共振子10は、面外屈曲の振動モードで振動する。 Piezoelectric film F3 is a thin film formed by a type of piezoelectric material that mutually converts electrical energy and mechanical energy. The piezoelectric film F3 expands and contracts in the Y-axis direction of the in-plane direction of the XY plane according to the electric field formed in the piezoelectric film F3 by the metal films E1 and E2. Due to the expansion and contraction of the piezoelectric film F3, the vibrating arms 121A to 121D displace their open ends toward the bottom plate 22 of the lower lid 20 and the bottom plate 32 of the upper lid 30, respectively. As a result, the resonator 10 vibrates in the vibration mode of out-of-plane bending.
 圧電膜F3の厚みは、例えば1μm程度であるが、0.2μm~2μm程度であってもよい。圧電膜F3は、ウルツ鉱型六方晶構造の結晶構造を持つ材質によって形成されており、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)、などの窒化物又は酸化物を主成分とすることができる。なお、窒化スカンジウムアルミニウムは、窒化アルミニウムにおけるアルミニウムの一部がスカンジウムに置換されたものであり、スカンジウムの代わりに、マグネシウム(Mg)及びニオブ(Nb)、又はマグネシウム(Mg)及びジルコニウム(Zr)、などの2元素で置換されていてもよい。このように、圧電膜F3は、結晶構造がウルツ鉱型六方晶構造を有する圧電体を主成分とすることにより、共振子10に適した圧電膜F3を容易に実現することができる。 The thickness of the piezoelectric film F3 is, for example, about 1 μm, but may be about 0.2 μm to 2 μm. The piezoelectric film F3 is formed of a material having a wurtzite-type hexagonal crystal structure, and is, for example, aluminum nitride (AlN), aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), and the like. A nitride or oxide such as indium nitride (InN) can be used as a main component. In addition, scandium nitride is a product in which a part of aluminum in aluminum nitride is replaced with scandium, and instead of scandium, magnesium (Mg) and niobium (Nb), or magnesium (Mg) and zirconium (Zr), It may be replaced with two elements such as. As described above, the piezoelectric film F3 can easily realize the piezoelectric film F3 suitable for the resonator 10 by using a piezoelectric material having a wurtzite-type hexagonal crystal structure as a main component in the piezoelectric film F3.
 保護膜F5は、金属膜E2を酸化から保護する。なお、保護膜F5は上蓋30側に設けられていれば、上蓋30の底板32に対して露出していなくてもよい。例えば、保護膜F5を覆うように、共振子10に形成された配線の容量を低減する寄生容量低減膜等が形成されてもよい。保護膜F5は、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)等の圧電膜の他、窒化シリコン(SiN)、酸化シリコン(SiO)、酸化アルミナ(Al)、五酸化タンタル(Ta)等の絶縁膜で形成される。保護膜F5の厚さは、圧電膜F3の厚さの半分以下の長さで形成され、本実施形態では、例えば0.2μm程度である。なお、保護膜F5のより好ましい厚さは、圧電膜F3の厚さの4分の1程度である。さらに、保護膜F5が窒化アルミニウム(AlN)等の圧電体によって形成される場合には、圧電膜F3と同じ配向を持った圧電体が用いられることが好ましい。 The protective film F5 protects the metal film E2 from oxidation. If the protective film F5 is provided on the upper lid 30 side, it does not have to be exposed to the bottom plate 32 of the upper lid 30. For example, a parasitic capacitance reducing film or the like that reduces the capacitance of the wiring formed on the resonator 10 may be formed so as to cover the protective film F5. The protective film F5 includes, for example, a piezoelectric film such as aluminum nitride (AlN), scandium aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), and indium nitride (InN), as well as silicon nitride (SiN). It is formed of an insulating film such as silicon oxide (SiO 2 ), alumina oxide (Al 2 O 3 ), and tantalum pentoxide (Ta 2 O 5 ). The thickness of the protective film F5 is formed to be less than half the thickness of the piezoelectric film F3, and in the present embodiment, it is, for example, about 0.2 μm. The more preferable thickness of the protective film F5 is about one-fourth of the thickness of the piezoelectric film F3. Further, when the protective film F5 is formed of a piezoelectric material such as aluminum nitride (AlN), it is preferable to use a piezoelectric material having the same orientation as the piezoelectric film F3.
 質量付加部122A~122Dの保護膜F5は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、保護膜F5の厚みのばらつきが厚みの平均値から±20%以内であることをいう。 It is desirable that the protective film F5 of the mass addition portions 122A to 122D is formed with a uniform thickness. The uniform thickness means that the variation in the thickness of the protective film F5 is within ± 20% from the average value of the thickness.
 質量付加膜125A~125Dは、質量付加部122A~122Dのそれぞれの上蓋30側の表面を構成し、振動腕121A~121Dのそれぞれの周波数調整膜に相当する。質量付加膜125A~125Dのそれぞれの一部を除去するトリミング処理によって、共振子10の共振周波数が調整される。周波数調整の効率の点から、質量付加膜125A~125Dは、エッチングによる質量低減速度が保護膜F5よりも早い材料によって形成されることが好ましい。質量低減速度は、エッチング速度と密度との積により表される。エッチング速度とは、単位時間あたりに除去される厚みである。保護膜F5と質量付加膜125A~125Dとは、質量低減速度の関係が前述の通りであれば、エッチング速度の大小関係は任意である。また、質量付加部122A~122Dの重さを効率的に増大させる観点から、質量付加膜125A~125Dは、比重の大きい材料によって形成されるのが好ましい。これらの理由により、質量付加膜125A~125Dは、例えば、モリブデン(Mo)、タングステン(W)、金(Au)、白金(Pt)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)等の金属材料によって形成されている。 The mass-adding films 125A to 125D constitute the surface of each of the mass-adding portions 122A to 122D on the upper lid 30 side, and correspond to the respective frequency adjusting films of the vibrating arms 121A to 121D. The resonance frequency of the resonator 10 is adjusted by a trimming process for removing a part of each of the mass-added films 125A to 125D. From the viewpoint of frequency adjustment efficiency, the mass addition films 125A to 125D are preferably formed of a material having a faster mass reduction rate by etching than the protective film F5. The mass reduction rate is expressed by the product of the etching rate and the density. The etching rate is the thickness removed per unit time. As long as the relationship between the protective film F5 and the mass addition films 125A to 125D is as described above, the relationship between the etching rates is arbitrary. Further, from the viewpoint of efficiently increasing the weight of the mass addition portions 122A to 122D, the mass addition films 125A to 125D are preferably formed of a material having a large specific gravity. For these reasons, the mass addition films 125A to 125D include, for example, molybdenum (Mo), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), aluminum (Al), titanium (Ti) and the like. It is made of metal material.
 質量付加膜125A~125Dのそれぞれの上面の一部が、周波数を調整する工程においてトリミング処理によって除去されている。質量付加膜125A~125Dのトリミング処理は、例えばアルゴン(Ar)イオンビームを照射するドライエッチングによって行うことができる。イオンビームは広範囲に照射できるため加工効率に優れるが、電荷を有するため質量付加膜125A~125Dを帯電させるおそれがある。質量付加膜125A~125Dの帯電によるクーロン相互作用によって、振動腕121A~121Dの振動軌道が変化して共振子10の振動特性が劣化するのを防止するため、質量付加膜125A~125Dは接地されることが好ましい。 A part of the upper surface of each of the mass addition films 125A to 125D is removed by a trimming process in the process of adjusting the frequency. The trimming process of the mass-added films 125A to 125D can be performed by, for example, dry etching by irradiating an argon (Ar) ion beam. Since the ion beam can irradiate a wide range, it is excellent in processing efficiency, but since it has an electric charge, it may charge the mass-added films 125A to 125D. In order to prevent the vibration trajectories of the vibrating arms 121A to 121D from changing and the vibration characteristics of the resonator 10 from deteriorating due to the Coulomb interaction due to the charging of the mass addition films 125A to 125D, the mass addition films 125A to 125D are grounded. Is preferable.
 保持部140の保護膜F5の上には、引出線C1,C2,及びC3が形成されている。引出線C1は、圧電膜F3及び保護膜F5に形成された貫通孔を通して、金属膜E1と電気的に接続されている。引出線C2は、保護膜F5に形成された貫通孔を通して、金属膜E2のうち振動腕121A,121Dに形成された部分と電気的に接続されている。引出線C3は、保護膜F5に形成された貫通孔を通して、金属膜E2のうち振動腕121B,121Cに形成された部分と電気的に接続されている。引出線C1~C3は、アルミニウム(Al)、ゲルマニウム(Ge)、金(Au)、錫(Sn)、などの金属材料によって形成されている。 Leaders C1, C2, and C3 are formed on the protective film F5 of the holding portion 140. The leader wire C1 is electrically connected to the metal film E1 through through holes formed in the piezoelectric film F3 and the protective film F5. The leader wire C2 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121A and 121D through the through holes formed in the protective film F5. The leader wire C3 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121B and 121C through the through holes formed in the protective film F5. Leaders C1 to C3 are made of a metal material such as aluminum (Al), germanium (Ge), gold (Au), tin (Sn), and the like.
 本実施形態では、図4において、腕部123A~123D、引出線C2及びC3、貫通電極V2及びV3等が同一平面の断面上に位置する例を示しているが、これらは必ずしも同一平面の断面上に位置するものではない。例えば、貫通電極V2及びV3が、Z軸及びX軸によって規定されるZX平面と平行であり且つ腕部123A~123Dを切断する断面から、Y軸方向に離れた位置で形成されていてもよい。 In the present embodiment, FIG. 4 shows an example in which the arm portions 123A to 123D, the leader lines C2 and C3, the through electrodes V2 and V3, etc. are located on the cross section of the same plane, but these are not necessarily the cross sections of the same plane. It is not located above. For example, the through electrodes V2 and V3 may be formed at positions parallel to the ZX plane defined by the Z-axis and the X-axis and separated from the cross section cutting the arms 123A to 123D in the Y-axis direction. ..
 同様に、本実施形態では、図5において、質量付加部122A、腕部123A、引出線C1,C2、貫通電極V1,V2等が同一平面の断面上に位置する例を示しているが、これらは必ずしも同一平面の断面上に位置するものではない。 Similarly, in the present embodiment, FIG. 5 shows an example in which the mass addition portion 122A, the arm portion 123A, the leader lines C1 and C2, the through electrodes V1 and V2 and the like are located on the cross section of the same plane. Is not necessarily located on a cross section of the same plane.
 下蓋20の底板22及び側壁23は、Si基板P10により、一体的に形成されている。Si基板P10は、縮退されていないシリコンから形成されており、その抵抗率は例えば10Ω・cm以上である。下蓋20の凹部21の内側では、Si基板P10が露出している。突起部50の上面には、酸化ケイ素層F21が形成されている。但し、突起部50の帯電を抑制する観点から、突起部50の上面には、酸化ケイ素層F21よりも電気抵抗率の低いSi基板P10が露出してもよく、導電層が形成されてもよい。 The bottom plate 22 and the side wall 23 of the lower lid 20 are integrally formed by the Si substrate P10. The Si substrate P10 is made of undegenerate silicon, and its resistivity is, for example, 10 Ω · cm or more. Inside the recess 21 of the lower lid 20, the Si substrate P10 is exposed. A silicon oxide layer F21 is formed on the upper surface of the protrusion 50. However, from the viewpoint of suppressing the charging of the protrusion 50, the Si substrate P10 having a lower electrical resistivity than the silicon oxide layer F21 may be exposed on the upper surface of the protrusion 50, or a conductive layer may be formed. ..
 Z軸方向に規定される下蓋20の厚みは150μm程度、同様に規定される凹部21の深さは50μm程度である。 The thickness of the lower lid 20 defined in the Z-axis direction is about 150 μm, and the depth of the similarly defined recess 21 is about 50 μm.
 上蓋30の底板32及び側壁33は、Si基板Q10により、一体的に形成されている。上蓋30の表面、裏面、及び貫通孔の内側面は、シリコン酸化膜Q11に覆われていることが好ましい。シリコン酸化膜Q11は、例えばSi基板Q10の酸化や、化学気相蒸着(CVD:Chemical Vapor Deposition)によって、Si基板Q10の表面に形成される。上蓋30の凹部31の内側では、Si基板Q10が露出している。なお、上蓋30の凹部31における、共振子10と対向する側の面にはゲッター層が形成されてもよい。ゲッター層は、例えば、チタン(Ti)などによって形成され、後述する接合部40等から放出されるアウトガスを吸着し、振動空間の真空度の低下を抑制する。なお、ゲッター層は、下蓋20の凹部21における、共振子10と対向する側の面に形成されてもよく、下蓋20の凹部21及び上蓋30の凹部31の両方における、共振子10と対向する側の面に形成されてもよい。 The bottom plate 32 and the side wall 33 of the top lid 30 are integrally formed by the Si substrate Q10. It is preferable that the front surface, the back surface, and the inner surface of the through hole of the upper lid 30 are covered with the silicon oxide film Q11. The silicon oxide film Q11 is formed on the surface of the Si substrate Q10 by, for example, oxidation of the Si substrate Q10 or chemical vapor deposition (CVD). Inside the recess 31 of the upper lid 30, the Si substrate Q10 is exposed. A getter layer may be formed on the surface of the recess 31 of the upper lid 30 on the side facing the resonator 10. The getter layer is formed of, for example, titanium (Ti) or the like, adsorbs outgas emitted from the joint portion 40 or the like described later, and suppresses a decrease in the degree of vacuum in the vibration space. The getter layer may be formed on the surface of the recess 21 of the lower lid 20 facing the resonator 10, and the getter layer and the resonator 10 in both the recess 21 of the lower lid 20 and the recess 31 of the upper lid 30. It may be formed on the surface on the opposite side.
 Z軸方向に規定される上蓋30の厚みは150μm程度、同様に規定される凹部31の深さは50μm程度である。 The thickness of the upper lid 30 defined in the Z-axis direction is about 150 μm, and the depth of the recess 31 similarly defined is about 50 μm.
 上蓋30の上面(共振子10と対向する面とは反対側の面)には端子T1,T2,及びT3が形成されている。端子T1は金属膜E1を接地させる実装端子である。端子T2は振動腕121A,121Dの金属膜E2を外部電源に電気的に接続させる実装端子である。端子T3は、振動腕121B,121Cの金属膜E2を外部電源に電気的に接続させる実装端子である。端子T1~T3は、例えば、クロム(Cr)、タングステン(W)、ニッケル(Ni)などのメタライズ層(下地層)に、ニッケル(Ni)、金(Au)、銀(Ag)、Cu(銅)などのメッキを施して形成されている。なお、上蓋30の上面には、寄生容量や機械的強度バランスを調整する目的で、共振子10とは電気的に絶縁されたダミー端子が形成されてもよい。 Terminals T1, T2, and T3 are formed on the upper surface of the upper lid 30 (the surface opposite to the surface facing the resonator 10). The terminal T1 is a mounting terminal for grounding the metal film E1. The terminal T2 is a mounting terminal for electrically connecting the metal films E2 of the vibrating arms 121A and 121D to an external power source. The terminal T3 is a mounting terminal for electrically connecting the metal films E2 of the vibrating arms 121B and 121C to an external power source. The terminals T1 to T3 are formed on a metallized layer (underlayer) such as chromium (Cr), tungsten (W), and nickel (Ni), and nickel (Ni), gold (Au), silver (Ag), and Cu (copper). ) Etc. are applied to form. A dummy terminal electrically isolated from the resonator 10 may be formed on the upper surface of the upper lid 30 for the purpose of adjusting the parasitic capacitance and the mechanical strength balance.
 上蓋30の側壁33の内部には貫通電極V1,V2,V3が形成されている。貫通電極V1は端子T1と引出線C1とを電気的に接続し、貫通電極V2は端子T2と引出線C2とを電気的に接続し、貫通電極V3は端子T3と引出線C3とを電気的に接続している。貫通電極V1~V3は、上蓋30の側壁33をZ軸方向に貫通する貫通孔に導電性材料を充填して形成されている。充填される導電性材料は、例えば、多結晶シリコン(Poly-Si)、銅(Cu)、金(Au)等である。 Through electrodes V1, V2, V3 are formed inside the side wall 33 of the upper lid 30. Through electrode V1 electrically connects the terminal T1 and the leader wire C1, the through electrode V2 electrically connects the terminal T2 and the leader wire C2, and the through electrode V3 electrically connects the terminal T3 and the leader wire C3. Is connected to. Through electrodes V1 to V3 are formed by filling through holes that penetrate the side wall 33 of the upper lid 30 in the Z-axis direction with a conductive material. The conductive material to be filled is, for example, polycrystalline silicon (Poly-Si), copper (Cu), gold (Au) and the like.
 上蓋30の側壁33と保持部140との間には、接合部40が形成されており、この接合部40によって、上蓋30が共振子10とが接合される。接合部40は、共振子10の振動空間を真空状態で気密封止するように、XY平面において振動部110を囲む閉環状に形成されている。接合部40は、例えばアルミニウム(Al)膜、ゲルマニウム(Ge)膜、及びアルミニウム(Al)膜がこの順に積層されて共晶接合された金属膜によって形成されている。なお、接合部40は、金(Au)、錫(Sn)、銅(Cu)、チタン(Ti)、シリコン(Si)、などから適宜選択された膜の組み合わせによって形成されてもよい。また、密着性を向上させるために、接合部40は、窒化チタン(TiN)や窒化タンタル(TaN)等の金属化合物を膜間に含んでいてもよい。 A joint portion 40 is formed between the side wall 33 of the upper lid 30 and the holding portion 140, and the upper lid 30 is joined to the resonator 10 by the joint portion 40. The joint portion 40 is formed in a closed annular shape surrounding the vibrating portion 110 in the XY plane so as to airtightly seal the vibrating space of the resonator 10 in a vacuum state. The bonding portion 40 is formed of, for example, an aluminum (Al) film, a germanium (Ge) film, and a metal film in which an aluminum (Al) film is laminated in this order and eutectic bonded. The joint portion 40 may be formed by a combination of films appropriately selected from gold (Au), tin (Sn), copper (Cu), titanium (Ti), silicon (Si), and the like. Further, in order to improve the adhesion, the joint portion 40 may contain a metal compound such as titanium nitride (TiN) or tantalum nitride (TaN) between the films.
 本実施形態では、端子T1が接地され、端子T2と端子T3には、互いに逆位相の交番電圧が印加される。したがって、振動腕121A,121Dの圧電膜F3に形成される電界の位相と、振動腕121B,121Cの圧電膜F3に形成される電界の位相と、は互いに逆位相になる。これにより、外側の振動腕121A,121Dと、内側の振動腕121B,121Cとが互いに逆方向に変位する。 In this embodiment, the terminal T1 is grounded, and alternating voltages having opposite phases are applied to the terminals T2 and T3. Therefore, the phase of the electric field formed on the piezoelectric films F3 of the vibrating arms 121A and 121D and the phase of the electric field formed on the piezoelectric films F3 of the vibrating arms 121B and 121C are in opposite phases to each other. As a result, the outer vibrating arms 121A and 121D and the inner vibrating arms 121B and 121C are displaced in opposite directions.
 例えば、図4に示すように、振動腕121A,121Dのそれぞれの質量付加部122A,122D及び腕部123A,123Dが上蓋30の内面に向かって変位するとき、振動腕121B,121Cのそれぞれの質量付加部122B,122C及び腕部123B,123Cが下蓋20の内面に向かって変位する。図示を省略するが、逆に、振動腕121A,121Dのそれぞれの質量付加部122A,122D及び腕部123A,123Dが下蓋20の内面に向かって変位するとき、振動腕121B,121Cのそれぞれの質量付加部122B,122C及び腕部123B,123Cが上蓋30の内面に向かって変位する。これにより、4本の振動腕121A~121Dは、少なくとも2本が異なる位相で面外屈曲する。 For example, as shown in FIG. 4, when the mass addition portions 122A, 122D and the arm portions 123A, 123D of the vibrating arms 121A, 121D are displaced toward the inner surface of the upper lid 30, the masses of the vibrating arms 121B, 121C, respectively. The additional portions 122B and 122C and the arm portions 123B and 123C are displaced toward the inner surface of the lower lid 20. Although not shown, on the contrary, when the mass adding portions 122A, 122D and the arm portions 123A, 123D of the vibrating arms 121A, 121D are displaced toward the inner surface of the lower lid 20, the vibrating arms 121B, 121C, respectively. The mass addition portions 122B and 122C and the arm portions 123B and 123C are displaced toward the inner surface of the upper lid 30. As a result, at least two of the four vibrating arms 121A to 121D bend out of the plane in different phases.
 このように、隣り合う振動腕121Aと振動腕121Bとの間で、Y軸方向に延びる中心軸r1回りに振動腕121Aと振動腕121Bとが上下逆方向に振動する。また、隣り合う振動腕121Cと振動腕121Dとの間で、Y軸方向に延びる中心軸r2回りに振動腕121Cと振動腕121Dとが上下逆方向に振動する。これにより、中心軸r1と中心軸r2とで互いに逆方向の捩れモーメントが生じ、振動部110での屈曲振動が発生する。振動腕121A~121Dの最大振幅は50μm程度、通常駆動時の振幅は10μm程度である。 In this way, the vibrating arm 121A and the vibrating arm 121B vibrate in the upside-down direction around the central axis r1 extending in the Y-axis direction between the adjacent vibrating arm 121A and the vibrating arm 121B. Further, between the adjacent vibrating arm 121C and the vibrating arm 121D, the vibrating arm 121C and the vibrating arm 121D vibrate in the up-down direction around the central axis r2 extending in the Y-axis direction. As a result, a twisting moment in opposite directions is generated between the central axis r1 and the central axis r2, and bending vibration in the vibrating portion 110 is generated. The maximum amplitude of the vibrating arms 121A to 121D is about 50 μm, and the amplitude during normal driving is about 10 μm.
 共振子10は、前述したトリミング処理による共振周波数の調整に加え、過励振によって共振周波数を微調整する周波数調整工程が行われる。周波数調整工程では、まず、共振子10に所定値の駆動電圧を印加した状態で共振周波数を測定し、測定された共振周波数が所望の値に満たない場合に、共振子10に所定値の駆動電圧よりも大きい電圧を印加し、振動腕121を過励振させる。周波数調整工程において、共振子10に与える電力は、例えば0.2μW以上である。なお、過励振とは、共振子10を通常の振幅の10倍以上の振幅で振動させることをいい、具体的には過励振時の振幅は50μm以上である。 The resonator 10 is subjected to a frequency adjustment step of finely adjusting the resonance frequency by overexcitation, in addition to the adjustment of the resonance frequency by the trimming process described above. In the frequency adjustment step, first, the resonance frequency is measured with a predetermined drive voltage applied to the resonator 10, and when the measured resonance frequency is less than a desired value, the resonator 10 is driven to a predetermined value. A voltage larger than the voltage is applied to overexcite the vibrating arm 121. In the frequency adjusting step, the electric power applied to the resonator 10 is, for example, 0.2 μW or more. The overexcitation means that the resonator 10 is vibrated with an amplitude of 10 times or more a normal amplitude, and specifically, the amplitude at the time of overexcitation is 50 μm or more.
 振動腕121を過励振させることで、振動腕121における質量付加膜125A~125Dが、それぞれ、上蓋30の底板32またはゲッター層、及び下蓋20の底板22の少なくとも一方に衝突する。上蓋30の底板32またはゲッター層は、質量付加膜125A~125Dより高い硬度を有する材料で形成されているため、質量付加膜125A~125Dが底板32またはゲッター層に衝突することで質量付加膜125A~125Dが削られ、振動腕121の質量が減少する。同様に、振動腕121の下蓋20側の面(裏面)に形成されるSi基板F2及び酸化ケイ素層F21の少なくともいずれか一方は、底板22より低い硬度を有している。よって、振動腕121の裏面においても、Si基板F2又は酸化ケイ素層F21が削り取られることによって、振動腕121の質量が減少する。このように、振動腕121の質量を減少させることにより、共振子10の共振周波数が上昇する。 By overexciting the vibrating arm 121, the mass-adding films 125A to 125D in the vibrating arm 121 collide with at least one of the bottom plate 32 or the getter layer of the upper lid 30 and the bottom plate 22 of the lower lid 20, respectively. Since the bottom plate 32 or the getter layer of the upper lid 30 is made of a material having a hardness higher than that of the mass addition films 125A to 125D, the mass addition films 125A to 125D collide with the bottom plate 32 or the getter layer to cause the mass addition films 125A. ~ 125D is scraped and the mass of the vibrating arm 121 is reduced. Similarly, at least one of the Si substrate F2 and the silicon oxide layer F21 formed on the lower lid 20 side surface (back surface) of the vibrating arm 121 has a hardness lower than that of the bottom plate 22. Therefore, even on the back surface of the vibrating arm 121, the mass of the vibrating arm 121 is reduced by scraping off the Si substrate F2 or the silicon oxide layer F21. By reducing the mass of the vibrating arm 121 in this way, the resonance frequency of the resonator 10 rises.
 共振子10を過励振させて振動腕121を上蓋30及び下蓋20の少なくとも一方に衝突させた後、再度、所定の値の駆動電圧を共振子10に印加して、共振周波数の測定を行う。測定された共振周波数が所望の値に到達するまで、所定の値の駆動電圧を共振子10に印加する共振周波数の測定と、当該駆動電圧よりも大きい電圧を共振子10に印加して共振子10を過励振させることと、を繰り返し行うことで、共振子10の共振周波数の値を適切な値に調整する。 After the resonator 10 is overexcited to cause the vibrating arm 121 to collide with at least one of the upper lid 30 and the lower lid 20, a predetermined driving voltage is applied to the resonator 10 again to measure the resonance frequency. .. The resonance frequency is measured by applying a drive voltage of a predetermined value to the resonator 10 until the measured resonance frequency reaches a desired value, and a voltage larger than the drive voltage is applied to the resonator 10 to cause the resonator. By repeatedly overexciting 10 and repeating, the value of the resonance frequency of the resonator 10 is adjusted to an appropriate value.
 このように、過励振による周波数調整工程は、下蓋20及び上蓋30によってパッケージした後であっても、共振子10の共振周波数を調整することができ、また、周波数調整工程以降に熱負荷や応力負荷がかかる加工工程がないため、共振周波数の変動を抑制することができ、さらに、共振周波数を測定しながら調整を行えるため、所望の共振周波数を得やすくなる、という利点(メリット)がある。 As described above, in the frequency adjustment step by overexcitation, the resonance frequency of the resonator 10 can be adjusted even after being packaged by the lower lid 20 and the upper lid 30, and the heat load and the heat load can be adjusted after the frequency adjustment step. Since there is no processing process in which a stress load is applied, fluctuations in the resonance frequency can be suppressed, and since adjustment can be performed while measuring the resonance frequency, there is an advantage (merit) that a desired resonance frequency can be easily obtained. ..
 ところで、共振子は、DLDの改善を目的として、振動する部分、例えば支持腕が、平面視において左右非対称な構造を有することがある。この場合、過励振による周波数調整工程では、支持腕によって支持される複数の振動腕が、上蓋及び下蓋に対して水平に振動しないことがあった。そのため、過励振によって振動腕を振動させて上蓋及び下蓋の少なくとも一方に衝突させたときに、例えば、複数の振動腕において、外腕の削れ量が多く、内腕の削れ量が少ない等、複数の振動腕における削れ量に偏りが生じてしまうことがあった。その結果、所望の共振周波数を得るための調整時間が長くなる、つまり、共振周波数の調整レートが低下するというおそれがあった。 By the way, in the resonator, for the purpose of improving the DLD, the vibrating portion, for example, the supporting arm may have a left-right asymmetric structure in a plan view. In this case, in the frequency adjustment step by overexcitation, the plurality of vibrating arms supported by the supporting arms may not vibrate horizontally with respect to the upper lid and the lower lid. Therefore, when the vibrating arm is vibrated by overexcitation and collides with at least one of the upper lid and the lower lid, for example, in a plurality of vibrating arms, the amount of scraping of the outer arm is large and the amount of scraping of the inner arm is small. In some cases, the amount of scraping in multiple vibrating arms was biased. As a result, there is a possibility that the adjustment time for obtaining a desired resonance frequency becomes long, that is, the adjustment rate of the resonance frequency decreases.
 これに対し、本発明の発明者らは、支持腕が基部における所定範囲の位置に接続され、かつ、支持腕の長さが所定範囲である場合に、DLDの改善と調整レートの低下の抑制とを両立することができることを見出した。 On the other hand, the inventors of the present invention improve the DLD and suppress the decrease in the adjustment rate when the support arm is connected to a predetermined range of positions at the base and the length of the support arm is within the predetermined range. I found that it is possible to achieve both.
 次に、図6を参照しつつ、平面視における振動部の寸法について説明する。図6は、図3に示す共振子10の寸法を説明するための平面図である。なお、図6では、説明の簡略化のため、共振子10の一部を図示している。 Next, the dimensions of the vibrating portion in a plan view will be described with reference to FIG. FIG. 6 is a plan view for explaining the dimensions of the resonator 10 shown in FIG. Note that FIG. 6 illustrates a part of the resonator 10 for the sake of simplification of the description.
 図6に示すように、本実施形態の共振子10において、質量付加部122A~122DのそれぞれのX軸方向に沿う方向の長さである幅WGは、例えば49μmである。また、振動腕121A~121DのそれぞれのX軸方向に沿う方向の長さである振動腕幅WAは、例えば26μmであり、振動腕121A~121DのそれぞれのY軸方向に沿う方向の長さである振動腕長LAは、例えば410μmである。 As shown in FIG. 6, in the resonator 10 of the present embodiment, the width WG, which is the length of the mass addition portions 122A to 122D in the direction along the X-axis direction, is, for example, 49 μm. Further, the vibrating arm width WA, which is the length of the vibrating arms 121A to 121D in the direction along the X-axis direction, is, for example, 26 μm, and is the length of the vibrating arms 121A to 121D in the direction along the respective Y-axis directions. A certain vibrating arm length LA is, for example, 410 μm.
 また、基部130において、前端部131Aから後端部131Bに向かう方向の長さである基部長LBは、例えば25μmである。一方、左端部131Cから右端部131Dに向かう方向の長さである基部幅WBは、例えば176μmである。 Further, in the base 130, the base length LB, which is the length in the direction from the front end 131A to the rear end 131B, is, for example, 25 μm. On the other hand, the base width WB, which is the length in the direction from the left end 131C to the right end 131D, is, for example, 176 μm.
 また、支持腕151の幅、具体的には支持側腕153のX軸方向に沿う方向の長さである支持腕幅WSは、例えば20μmであり、支持腕151の長さ、具体的には支持側腕153のY軸方向に沿う方向の長さである支持腕長LSは、例えば125μmである。 Further, the width of the support arm 151, specifically, the support arm width WS which is the length in the direction along the X-axis direction of the support side arm 153 is, for example, 20 μm, and the length of the support arm 151, specifically, the support arm 151. The support arm length LS, which is the length of the support side arm 153 in the direction along the Y-axis direction, is, for example, 125 μm.
 支持腕151の他端、具体的には支持後腕152の他端は、基部130の後端部131Bにおいて、中心線CL1が通る位置を基準としたときに、X軸方向負側、つまり、左側に10μmずれた位置に接続している。以下の説明において、特に明示する場合を除き、基部130の後端部131Bにおける中心線CL1が通る位置を原点(ゼロ)とし、一方側(右側)を「+」(プラス)、他方側(左側)を「-」(マイナス)と表すこととする。すなわち、図6に示す例では、支持後腕152の他端は、基部130の後端131Bにおける中心線CL1が通る位置に対して-10μmの位置に接続する。 The other end of the support arm 151, specifically, the other end of the support rear arm 152 is on the negative side in the X-axis direction, that is, with respect to the position where the center line CL1 passes in the rear end portion 131B of the base 130. It is connected to the left side at a position shifted by 10 μm. In the following description, unless otherwise specified, the origin (zero) is the position where the center line CL1 passes at the rear end 131B of the base 130, one side (right side) is “+” (plus), and the other side (left side). ) Is expressed as "-" (minus). That is, in the example shown in FIG. 6, the other end of the supporting rear arm 152 is connected to a position of −10 μm with respect to the position where the center line CL1 passes at the rear end 131B of the base 130.
 また、以下の説明において、特に明示する場合を除き、各部の寸法は、図6を用いて説明した長さであるものとする。 Further, in the following description, unless otherwise specified, the dimensions of each part shall be the length described with reference to FIG.
 次に、図7及び図8を参照しつつ、支持腕の基部における接続位置及び支持腕の支持腕長とDLDとの関係について説明する。図7は、支持腕151の支持腕長LSごとの支持腕15の基部130における接続位置と単位電力あたりの周波数変化率との関係を示すグラフである。図8は、支持腕151の支持腕長LSと支持腕15の基部130における接続位置との関係を示すグラフである。図7において、横軸は基部130の後端部131Bにおいて中心線CL1が通る位置をゼロ、中心線CL1の一方側(右側)を正、中心線CL1の他方側(左側)を負としたときの支持腕151の接続位置である。また、縦軸は、DLDの指標である、単位電力(0.2μW)あたりの共振周波数(f)の周波数変化率(df/f)である。さらに、図7における各線は、支持腕151の支持腕長LSが、それぞれ、225μm、125μm、75μmである場合の線である。図8において、横軸は支持腕151の支持腕長LSであり、縦軸は基部130の後端部131Bにおいて中心線CL1が通る位置をゼロ、中心線CL1の一方側(右側)を正、中心線CL1の他方側(左側)を負としたときの支持腕151の接続位置である。 Next, with reference to FIGS. 7 and 8, the connection position at the base of the support arm and the relationship between the support arm length of the support arm and the DLD will be described. FIG. 7 is a graph showing the relationship between the connection position at the base 130 of the support arm 15 for each support arm length LS of the support arm 151 and the frequency change rate per unit power. FIG. 8 is a graph showing the relationship between the support arm length LS of the support arm 151 and the connection position of the support arm 15 at the base 130. In FIG. 7, the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative. It is the connection position of the support arm 151 of. The vertical axis is the frequency change rate (df / f) of the resonance frequency (f) per unit power (0.2 μW), which is an index of DLD. Further, each line in FIG. 7 is a line when the support arm length LS of the support arm 151 is 225 μm, 125 μm, and 75 μm, respectively. In FIG. 8, the horizontal axis is the support arm length LS of the support arm 151, the vertical axis is zero at the position where the center line CL1 passes at the rear end portion 131B of the base 130, and one side (right side) of the center line CL1 is positive. This is the connection position of the support arm 151 when the other side (left side) of the center line CL1 is negative.
 図7に示すように、全ての支持腕長LSについて、支持腕151の接続位置を調整することで、単位電力あたりの周波数変化率をゼロ又は略ゼロにすることが可能である。具体的には、支持腕151の支持腕長LSが225μmであって、支持腕151の接続位置が51.5μmである場合、支持腕151の支持腕長LSが125μmであって、支持腕151の接続位置が-10μmである場合、支持腕151の支持腕長LSが75μmであって、支持腕151の接続位置が-20μmである場合、それぞれ、単位電力あたりの周波数変化率をゼロ又は略ゼロになる。 As shown in FIG. 7, it is possible to make the frequency change rate per unit power zero or substantially zero by adjusting the connection position of the support arm 151 for all the support arm length LS. Specifically, when the support arm length LS of the support arm 151 is 225 μm and the connection position of the support arm 151 is 51.5 μm, the support arm length LS of the support arm 151 is 125 μm and the support arm 151. When the connection position of the support arm 151 is -10 μm, the support arm length LS of the support arm 151 is 75 μm, and the connection position of the support arm 151 is -20 μm, the frequency change rate per unit power is zero or abbreviated, respectively. It becomes zero.
 これらの組み合わせから、支持腕151の支持腕長LSと支持腕151の接続位置とが図8に点線で示す線の関係であるときに、共振子10のDLDを改善させるということができる。 From these combinations, it can be said that the DLD of the resonator 10 is improved when the support arm length LS of the support arm 151 and the connection position of the support arm 151 are in the relationship of the line shown by the dotted line in FIG.
 次に、図9から図11を参照しつつ、振動腕の振動による変位について説明する。図9は、支持腕151の接続位置が-10μmであるときの振動腕121A~121Dの変位量を模式的に示す断面図である。図10は、支持腕151の接続位置が-50μmであるときの振動腕121A~121Dの変位量を模式的に示す断面図である。図11は、支持腕151の基部130における接続位置と振動腕121A~121Dの変位量との関係を示すグラフである。なお、図9及び図10に示す振動腕121A~121Dにおいて、色の濃い領域は変位が大きいことを示し、色の薄い領域は変位が小さいことを示している。図11において、横軸は基部130の後端部131Bにおいて中心線CL1が通る位置をゼロ、中心線CL1の一方側(右側)を正、中心線CL1の他方側(左側)を負としたときの支持腕151の接続位置である。また、縦軸は、支持腕が中心線に関して対称である仮想的な共振子における振動腕の最大変位量を基準(100%)とした場合の振動腕121A~121Dの最大変位量の比率(%)である。 Next, the displacement due to the vibration of the vibrating arm will be described with reference to FIGS. 9 to 11. FIG. 9 is a cross-sectional view schematically showing the amount of displacement of the vibrating arms 121A to 121D when the connection position of the support arm 151 is −10 μm. FIG. 10 is a cross-sectional view schematically showing the amount of displacement of the vibrating arms 121A to 121D when the connection position of the support arm 151 is −50 μm. FIG. 11 is a graph showing the relationship between the connection position of the support arm 151 at the base 130 and the displacement amount of the vibrating arms 121A to 121D. In the vibrating arms 121A to 121D shown in FIGS. 9 and 10, the dark-colored region indicates that the displacement is large, and the light-colored region indicates that the displacement is small. In FIG. 11, the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative. It is the connection position of the support arm 151 of. The vertical axis is the ratio (%) of the maximum displacement of the vibrating arms 121A to 121D when the maximum displacement of the vibrating arm in the virtual resonator whose supporting arm is symmetrical with respect to the center line is used as a reference (100%). ).
 振動腕121が面外屈曲の振動モードで振動する場合、各振動腕121A~121Dは、主にZ軸方向に変位する。具体的には、図9及び図10の左側に示すように、振動腕121A及び振動腕121DがZ軸負方向側に変位するときに振動腕121B及び振動腕121CがZ軸正方向側に変位する。逆に、図9及び図10の右側に示すように、振動腕121A及び振動腕121DがZ軸正方向側に変位するときに振動腕121B及び振動腕121CがZ軸負方向側に変位する。また、図9及び図10から、振動腕121A及び振動腕121D、もしくは、振動腕121B及び振動腕121Cが、Z軸負方向側に変位するときに、その変位量が最大になることが分かる。 When the vibrating arm 121 vibrates in the vibration mode of out-of-plane bending, each vibrating arm 121A to 121D is displaced mainly in the Z-axis direction. Specifically, as shown on the left side of FIGS. 9 and 10, when the vibrating arm 121A and the vibrating arm 121D are displaced to the negative direction side of the Z axis, the vibrating arm 121B and the vibrating arm 121C are displaced to the positive direction side of the Z axis. do. On the contrary, as shown on the right side of FIGS. 9 and 10, when the vibrating arm 121A and the vibrating arm 121D are displaced on the Z-axis positive direction side, the vibrating arm 121B and the vibrating arm 121C are displaced on the Z-axis negative direction side. Further, from FIGS. 9 and 10, it can be seen that when the vibrating arm 121A and the vibrating arm 121D, or the vibrating arm 121B and the vibrating arm 121C are displaced in the negative direction of the Z axis, the displacement amount becomes maximum.
 図11に示すように、振動腕121A及び振動腕121Dの最大変位量は、支持腕151の接続位置の変化に対する変化が相対的に小さく、支持腕151の接続位置が-50μmから50μmの範囲において、95%から100%の間の値である。そして、支持腕151の接続位置が-50μmであるときに、振動腕121A及び振動腕121Dの最大変位量は、100%に最も近いことが分かる。一方、振動腕121B及び振動腕121Cの最大変位量は、支持腕151の接続位置の変化に対する変化が相対的に大きく、支持腕151の接続位置が-50μmから50μmの範囲において、110%から85%の間の値である。そして、支持腕151の接続位置が-5μm付近であるときに、振動腕121B及び振動腕121Cの最大変位量は、100%に最も近いことが分かる。 As shown in FIG. 11, the maximum displacement of the vibrating arm 121A and the vibrating arm 121D changes relatively little with respect to the change in the connection position of the support arm 151, and the connection position of the support arm 151 is in the range of -50 μm to 50 μm. , 95% to 100%. It can be seen that when the connection position of the support arm 151 is −50 μm, the maximum displacement amounts of the vibrating arm 121A and the vibrating arm 121D are closest to 100%. On the other hand, the maximum displacement of the vibrating arm 121B and the vibrating arm 121C changes relatively greatly with respect to the change in the connection position of the support arm 151, and 110% to 85 in the range of the connection position of the support arm 151 from -50 μm to 50 μm. It is a value between%. Then, it can be seen that the maximum displacement amounts of the vibrating arm 121B and the vibrating arm 121C are closest to 100% when the connecting position of the supporting arm 151 is around −5 μm.
 次に、図12及び図13を参照しつつ、過励振による共振周波数の調整レートについて説明する。図12は、支持腕151の支持腕長LS及び支持腕151の接続位置ごとの過励振による共振周波数の調整時間と共振周波数の変化率との関係を示すグラフである。図13は、支持腕15の基部130における接続位置と過励振による共振周波数の調整レートとの関係を示すグラフである。図12において、横軸は過励振による共振周波数(f)の調整時間であり、縦軸は共振周波数の周波数変化率(df/f)である。また、図12における各線は、それぞれ、支持腕151の支持腕長LSが125μmかつ支持腕151の接続位置が0μm、支持腕151の支持腕長LSが125μmかつ支持腕151の接続位置が-5μm、支持腕151の支持腕長LSが125μmかつ支持腕151の接続位置が-10μm、支持腕151の支持腕長LSが75μmかつ支持腕151の接続位置が-20μm、支持腕151の支持腕長LSが225μmかつ支持腕151の接続位置が51μmである場合の線である。図13において、横軸は基部130の後端部131Bにおいて中心線CL1が通る位置をゼロ、中心線CL1の一方側(右側)を正、中心線CL1の他方側(左側)を負としたときの支持腕151の接続位置である。また、縦軸は、単位調整時間(1min)あたりの共振周波数(f)の周波数変化率(df/f)である。 Next, the adjustment rate of the resonance frequency by overexcitation will be described with reference to FIGS. 12 and 13. FIG. 12 is a graph showing the relationship between the adjustment time of the resonance frequency due to overexcitation of the support arm length LS of the support arm 151 and the connection position of the support arm 151 and the rate of change of the resonance frequency. FIG. 13 is a graph showing the relationship between the connection position at the base 130 of the support arm 15 and the adjustment rate of the resonance frequency due to overexcitation. In FIG. 12, the horizontal axis is the adjustment time of the resonance frequency (f) due to overexcitation, and the vertical axis is the frequency change rate (df / f) of the resonance frequency. Further, in each line in FIG. 12, the support arm length LS of the support arm 151 is 125 μm, the connection position of the support arm 151 is 0 μm, the support arm length LS of the support arm 151 is 125 μm, and the connection position of the support arm 151 is -5 μm. The support arm length LS of the support arm 151 is 125 μm and the connection position of the support arm 151 is -10 μm, the support arm length LS of the support arm 151 is 75 μm and the connection position of the support arm 151 is -20 μm, and the support arm length of the support arm 151 is. This is a line when the LS is 225 μm and the connection position of the support arm 151 is 51 μm. In FIG. 13, the horizontal axis is when the position where the center line CL1 passes in the rear end portion 131B of the base 130 is zero, one side (right side) of the center line CL1 is positive, and the other side (left side) of the center line CL1 is negative. It is the connection position of the support arm 151 of. The vertical axis is the frequency change rate (df / f) of the resonance frequency (f) per unit adjustment time (1 min).
 図12に示すように、支持腕151の支持腕長LSが75μmで支持腕151の接続位置が-20μmである場合、及び、支持腕151の支持腕長LSが225μmで支持腕151の接続位置が51μmである場合、過励振による共振周波数の周波数変化率は、相対的に低いことが分かる。これは、複数の振動腕121A~121Dにおける振動の変位量にバラツキが発生した結果、共振周波数の調整レートが低下したためであると考えられる。 As shown in FIG. 12, when the support arm length LS of the support arm 151 is 75 μm and the connection position of the support arm 151 is -20 μm, and when the support arm length LS of the support arm 151 is 225 μm and the connection position of the support arm 151 is When is 51 μm, it can be seen that the frequency change rate of the resonance frequency due to overexcitation is relatively low. It is considered that this is because the adjustment rate of the resonance frequency is lowered as a result of the variation in the displacement amount of the vibration in the plurality of vibrating arms 121A to 121D.
 これに対し、支持腕151の支持腕長LSが125μmで支持腕151の接続位置が0μmである場合、支持腕151の支持腕長LSが125μmで支持腕151の接続位置が-5μmである場合、及び、支持腕151の支持腕長LSが125μmで支持腕151の接続位置が-10μmである場合、過励振による共振周波数の周波数変化率は、相対的に高いことが分かる。これは、各振動腕121A~121Dが略最大の変位量でかつ略同一に振動した結果、共振周波数の調整レートの低下を抑制できたためであると考えられる。 On the other hand, when the support arm length LS of the support arm 151 is 125 μm and the connection position of the support arm 151 is 0 μm, when the support arm length LS of the support arm 151 is 125 μm and the connection position of the support arm 151 is -5 μm. And, when the support arm length LS of the support arm 151 is 125 μm and the connection position of the support arm 151 is −10 μm, it can be seen that the frequency change rate of the resonance frequency due to overexcitation is relatively high. It is considered that this is because each of the vibrating arms 121A to 121D vibrated with substantially the maximum displacement amount and substantially the same, and as a result, the decrease in the adjustment rate of the resonance frequency could be suppressed.
 一例として、過励振による共振周波数の調整時における有効範囲は、周波数調整レートが30ppm/min以上であると設定する。この場合、図12に示す例では、支持腕151の支持腕長LSが125μmであるときに、過励振による共振周波数の有効範囲を満たすことになる。 As an example, the effective range when adjusting the resonance frequency by overexcitation is set so that the frequency adjustment rate is 30 ppm / min or more. In this case, in the example shown in FIG. 12, when the support arm length LS of the support arm 151 is 125 μm, the effective range of the resonance frequency due to overexcitation is satisfied.
 支持腕151の支持腕長LSが125μmの場合、支持腕151の接続位置と調整レートとは、図13に点線で示す線のような放射線状の関係となる。図13に示す点線は、支持腕151の接続位置を変化させたときの調整レートの値をプロットしたものに基づいて近似した2次曲線(2次関数)である。この2次曲線(2次関数)と調整レートが30ppm/minとの交点から、周波数調整レートが30ppm/min以上である範囲として、支持腕151の接続位置が-18.4μm以上4.8μm以下を導き出すことができる。 When the support arm length LS of the support arm 151 is 125 μm, the connection position of the support arm 151 and the adjustment rate have a radial relationship as shown by the dotted line in FIG. The dotted line shown in FIG. 13 is a quadratic curve (quadratic function) approximated based on a plot of the value of the adjustment rate when the connection position of the support arm 151 is changed. From the intersection of this quadratic curve (quadratic function) and the adjustment rate of 30 ppm / min, the connection position of the support arm 151 is -18.4 μm or more and 4.8 μm or less within the range where the frequency adjustment rate is 30 ppm / min or more. Can be derived.
 言い換えれば、周波数調整レートが30ppm/min以上である範囲は、一例では176μmである基部130の基部幅WBに対し、支持腕151の接続位置が-0.105WB以上0.0027WB以下であるということができる。 In other words, in the range where the frequency adjustment rate is 30 ppm / min or more, the connection position of the support arm 151 is −0.105 WB or more and 0.0027 WB or less with respect to the base width WB of the base 130 which is 176 μm in one example. Can be done.
 このことから、本実施形態の共振子10において、支持腕151の他端は、平面視において、基部130の後端部131Bにおける中心線CL1が通る位置を基準としたときに、基部130の基部幅WBに対し、-0.1WBから0.1WBまでの範囲の位置に接続されている。 From this, in the resonator 10 of the present embodiment, the other end of the support arm 151 is the base portion of the base portion 130 with reference to the position where the center line CL1 in the rear end portion 131B of the base portion 130 passes in a plan view. It is connected to a position in the range of −0.1 WB to 0.1 WB with respect to the width WB.
 ここで、図14を参照しつつ、過励振による共振周波数の調整時における有効範囲とDLDの改善との関係について説明する。図14は、支持腕151の支持腕長LSと支持腕15の基部130における接続位置との関係を示すグラフである。図14において、横軸は支持腕151の支持腕長LSであり、縦軸は基部130の後端部131Bにおいて中心線CL1が通る位置をゼロ、中心線CL1の一方側(右側)を正、中心線CL1の他方側(左側)を負としたときの支持腕151の接続位置である。 Here, with reference to FIG. 14, the relationship between the effective range at the time of adjusting the resonance frequency by overexcitation and the improvement of DLD will be described. FIG. 14 is a graph showing the relationship between the support arm length LS of the support arm 151 and the connection position of the support arm 15 at the base 130. In FIG. 14, the horizontal axis is the support arm length LS of the support arm 151, the vertical axis is zero at the position where the center line CL1 passes at the rear end portion 131B of the base 130, and one side (right side) of the center line CL1 is positive. This is the connection position of the support arm 151 when the other side (left side) of the center line CL1 is negative.
 図14に示す点線は、図8の点線と同様に、支持腕151の支持腕長LSと支持腕151の接続位置との組合せが、共振子10のDLDを改善することのできる場合の線である。図14において、前述した図13のグラフから導き出した支持腕151の接続位置が-18.4μm以上4.8μm以下という範囲を当てはめると、支持腕151の支持腕長LSは、88.8μm以上158.7μm以下という範囲を導き出すことができる。 The dotted line shown in FIG. 14 is a line when the combination of the support arm length LS of the support arm 151 and the connection position of the support arm 151 can improve the DLD of the resonator 10, as in the dotted line of FIG. be. In FIG. 14, when the range in which the connection position of the support arm 151 derived from the graph of FIG. 13 described above is -18.4 μm or more and 4.8 μm or less is applied, the support arm length LS of the support arm 151 is 88.8 μm or more and 158. A range of 0.7 μm or less can be derived.
 言い換えれば、周波数調整レートが30ppm/min以上であって、共振子10のDLDを改善することのできる範囲は、一例では410μmである振動腕121の振動腕長LAに対し、支持腕151の支持腕長LSが-0.217LA以上0.387LA以下であるということができる。 In other words, the frequency adjustment rate is 30 ppm / min or more, and the range in which the DLD of the resonator 10 can be improved is the support of the support arm 151 with respect to the vibrating arm length LA of the vibrating arm 121, which is 410 μm in one example. It can be said that the arm length LS is -0.217LA or more and 0.387LA or less.
 このことから、本実施形態の共振子10において、支持腕151の支持腕長LSは、振動腕121の振動腕長LAに対して0.2倍以上0.4倍以下である。 From this, in the resonator 10 of the present embodiment, the support arm length LS of the support arm 151 is 0.2 times or more and 0.4 times or less with respect to the vibrating arm length LA of the vibrating arm 121.
 このように、支持腕151の他端は、平面視において、基部130の後端部131Bにおける中心線CL1が通る位置を基準としたときに、基部130における中心線CLに直交する方向の長さである基部幅WBに対し、-0.1WBから0.1WBまでの範囲の位置に接続されている。また、支持腕151における振動部110の長手方向に平行な方向の長さである支持腕長LSは、振動腕121における長手方向の長さである振動腕長LAに対して0.2倍以上0.4倍以下である。これにより、振動部における長手方向の中心線に関して対称又は略対称であった従来の共振子と比較して、基部130の撓みを大きくすることができる。また、各振動腕121A~121Dを略最大の変位量で振動させることが可能となり、過励振による共振周波数の調整時に、複数の振動腕121A~121Dにおける周波数変化の偏りを抑制することができる。その結果、過励振によって共振周波数を調整する工程において、調整レートが有効範囲を満たすことと、DLDの指標となる、単位電力あたりの共振周波数の周波数変化率を低減することとを両立させることができる。従って、DLDを改善させることができるとともに、共振周波数の調整レートの低下を抑制することができる。 As described above, the other end of the support arm 151 has a length in a direction orthogonal to the center line CL in the base 130 when the position through which the center line CL1 in the rear end 131B of the base 130 passes is used as a reference in a plan view. It is connected to a position in the range of −0.1 WB to 0.1 WB with respect to the base width WB. Further, the support arm length LS, which is the length in the direction parallel to the longitudinal direction of the vibrating portion 110 in the support arm 151, is 0.2 times or more the vibrating arm length LA, which is the length in the longitudinal direction in the vibrating arm 121. It is 0.4 times or less. As a result, the deflection of the base 130 can be increased as compared with the conventional resonator which is symmetric or substantially symmetric with respect to the center line in the longitudinal direction in the vibrating portion. Further, it is possible to vibrate each vibrating arm 121A to 121D with a substantially maximum displacement amount, and it is possible to suppress the bias of the frequency change in the plurality of vibrating arms 121A to 121D when adjusting the resonance frequency by overexcitation. As a result, in the process of adjusting the resonance frequency by overexcitation, it is possible to achieve both that the adjustment rate satisfies the effective range and that the frequency change rate of the resonance frequency per unit power, which is an index of DLD, is reduced. can. Therefore, the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
 また、支持腕151は、振動部110の長手方向に平行な方向に延在する支持側腕153を含んでいる。これにより、支持腕長LSが振動腕121の振動腕長LAに対して0.2倍以上0.4倍以下を満たす支持腕151を、容易に実現することができる。 Further, the support arm 151 includes a support side arm 153 extending in a direction parallel to the longitudinal direction of the vibrating portion 110. Thereby, it is possible to easily realize the support arm 151 in which the support arm length LS satisfies 0.2 times or more and 0.4 times or less with respect to the vibrating arm length LA of the vibrating arm 121.
 また、支持腕151は、一端が支持側腕153に接続され、他端が基部130の後端部131Bに接続された支持後腕152をさらに含んでいる。これにより、基部130の後端部131Bにおける中心線CL1が通る位置を基準としたときに、基部130における中心線CLに直交する方向の長さである基部幅WBに対し、他端が-0.1WBから0.1WBまでの範囲の位置に接続されている支持腕151を、容易に実現することができる。 Further, the support arm 151 further includes a support rear arm 152 having one end connected to the support side arm 153 and the other end connected to the rear end 131B of the base 130. As a result, the other end is −0 with respect to the base width WB which is the length in the direction orthogonal to the center line CL in the base 130 when the position through which the center line CL1 in the rear end 131B of the base 130 passes is used as a reference. A support arm 151 connected to a position in the range of .1 WB to 0.1 WB can be easily realized.
 ここで、本発明の発明者らは、基部130の基部幅WBに対する基部130の基部長LBの割合が所定の倍数以下である場合、単位電力あたりの共振周波数の周波数変化率を低減できることを見出した。より詳細には、基部130の基部長LBは、基部130の基部幅WBに対して0.3倍以下であることが好ましいことを見出した。これにより、単位電力あたりの共振周波数の周波数変化率を効果的に低減することができる。 Here, the inventors of the present invention have found that the frequency change rate of the resonance frequency per unit power can be reduced when the ratio of the base length LB of the base 130 to the base width WB of the base 130 is a predetermined multiple or less. rice field. More specifically, it has been found that the base length LB of the base 130 is preferably 0.3 times or less with respect to the base width WB of the base 130. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced.
 具体的には、小型化された共振子10において、基部130の基部長LBは90μm以下であり、基部130の基部幅WBは300μm以下である。これにより、小型化され、寸法が制限された共振子10においても、単位電力あたりの共振周波数の周波数変化率を効果的に低減することができる。 Specifically, in the miniaturized resonator 10, the base length LB of the base 130 is 90 μm or less, and the base width WB of the base 130 is 300 μm or less. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced even in the resonator 10 which is downsized and has limited dimensions.
 本実施形態では、共振子10の振動部110が4本の振動腕121A~121Dを含む例を用いたが、これに限定されるものではない。振動部110は、例えば、3本又は5本以上の振動腕を含んでいてもよい。この場合、少なくとも2本の振動腕は、異なる位相で面外屈曲する。 In the present embodiment, an example is used in which the vibrating portion 110 of the resonator 10 includes four vibrating arms 121A to 121D, but the present invention is not limited to this. The vibrating unit 110 may include, for example, three or five or more vibrating arms. In this case, at least two vibrating arms bend out of plane in different phases.
 また、本実施形態では、共振子10の支持腕151の一端が保持部140の枠体141Dに接続された例を用いたが、これに限定されるものではない。支持腕151の一端は、例えば、保持部140の枠体141Cに接続されていてもよい。 Further, in the present embodiment, an example is used in which one end of the support arm 151 of the resonator 10 is connected to the frame body 141D of the holding portion 140, but the present invention is not limited to this. One end of the support arm 151 may be connected to, for example, the frame 141C of the holding portion 140.
 以上、本発明の例示的な実施形態について説明した。一実施形態に従う共振子において、支持腕の他端は、平面視において、基部の後端部における中心線が通る位置を基準としたときに、基部における中心線に直交する方向の長さである基部幅WBに対し、-0.1WBから0.1WBまでの範囲の位置に接続されている。また、支持腕における振動部の長手方向に平行な方向の長さである支持腕長は、振動腕における長手方向の長さである振動腕長に対して0.2倍以上0.4倍以下である。これにより、振動部における長手方向の中心線に関して対称又は略対称であった従来の共振子と比較して、基部の撓みを大きくすることができる。また、各振動腕を略最大の変位量で振動させることが可能となり、過励振による共振周波数の調整時に、複数の振動腕における周波数変化の偏りを抑制することができる。その結果、過励振によって共振周波数を調整する工程において、調整レートが有効範囲を満たすことと、DLDの指標となる、単位電力あたりの共振周波数の周波数変化率を低減することとを両立させることができる。従って、DLDを改善させることができるとともに、共振周波数の調整レートの低下を抑制することができる。 The exemplary embodiment of the present invention has been described above. In the resonator according to one embodiment, the other end of the support arm is the length in the direction orthogonal to the center line at the base when the position through which the center line at the rear end of the base passes is used as a reference in a plan view. It is connected to a position in the range of −0.1 WB to 0.1 WB with respect to the base width WB. Further, the support arm length, which is the length in the direction parallel to the longitudinal direction of the vibrating portion of the support arm, is 0.2 times or more and 0.4 times or less the length of the vibrating arm, which is the length in the longitudinal direction of the vibrating arm. Is. As a result, the deflection of the base portion can be increased as compared with the conventional resonator which is symmetric or substantially symmetric with respect to the center line in the longitudinal direction in the vibrating portion. Further, it is possible to vibrate each vibrating arm with a substantially maximum displacement amount, and it is possible to suppress the bias of the frequency change in the plurality of vibrating arms when adjusting the resonance frequency by overexcitation. As a result, in the process of adjusting the resonance frequency by overexcitation, it is possible to achieve both that the adjustment rate satisfies the effective range and that the frequency change rate of the resonance frequency per unit power, which is an index of DLD, is reduced. can. Therefore, the DLD can be improved and the decrease in the adjustment rate of the resonance frequency can be suppressed.
 また、一実施形態に従う共振子において、支持腕は、振動部の長手方向に平行な方向に延在する支持側腕を含む。これにより、支持腕長が振動腕の振動腕長に対して0.2倍以上0.4倍以下を満たす支持腕を、容易に実現することができる。 Further, in the resonator according to one embodiment, the support arm includes a support side arm extending in a direction parallel to the longitudinal direction of the vibrating portion. Thereby, it is possible to easily realize a support arm having a support arm length of 0.2 times or more and 0.4 times or less the vibrating arm length of the vibrating arm.
 また、一実施形態に従う共振子において、支持腕は、一端が支持側腕に接続され、他端が基部の後端部に接続された支持後腕をさらに含む。これにより、基部の後端部における中心線が通る位置を基準としたときに、基部における中心線に直交する方向の長さである基部幅WBに対し、他端が-0.1WBから0.1WBまでの範囲の位置に接続されている支持腕を、容易に実現することができる。 Further, in the resonator according to one embodiment, the support arm further includes a support rear arm having one end connected to the support side arm and the other end connected to the rear end of the base. As a result, with respect to the base width WB, which is the length in the direction orthogonal to the center line at the base, the other end is from -0.1 WB to 0. A support arm connected to a position in the range up to 1 WB can be easily realized.
 また、一実施形態に従う共振子において、基部の一端から他端に向かう方向の長さである基部長は、基部の基部幅に対して0.3倍以下である。ここで、本発明の発明者らは、基部幅に対する基部長の割合が所定の倍数以下、より詳細には、0.3倍以下である場合、単位電力あたりの共振周波数の周波数変化率を低減できることを見出した。これにより、単位電力あたりの共振周波数の周波数変化率を効果的に低減することができる。 Further, in the resonator according to one embodiment, the base length, which is the length in the direction from one end to the other end of the base, is 0.3 times or less the base width of the base. Here, the inventors of the present invention reduce the frequency change rate of the resonance frequency per unit power when the ratio of the base length to the base width is a predetermined multiple or less, more specifically, 0.3 times or less. I found out what I could do. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced.
 また、一実施形態に従う共振子において、基部の基部長は90μm以下であり、基部の基部幅は300μm以下である。これにより、小型化され、寸法が制限された共振子においても、単位電力あたりの共振周波数の周波数変化率を効果的に低減することができる。 Further, in the resonator according to one embodiment, the base length of the base is 90 μm or less, and the base width of the base is 300 μm or less. As a result, the frequency change rate of the resonance frequency per unit power can be effectively reduced even in a resonator that is miniaturized and has limited dimensions.
 また、一実施形態に従う共振装置は、前述した共振子を備える。これにより、DLDを改善するとともに、共振周波数の調整レートの低下を抑制する共振装置を容易に実現することができる。 Further, the resonator according to one embodiment includes the resonator described above. As a result, it is possible to easily realize a resonance device that improves the DLD and suppresses a decrease in the adjustment rate of the resonance frequency.
 また、前述した共振装置において、下蓋及び上蓋をさらに備える。これにより、面外屈曲する振動部の振動空間を容易に形成することができる。 Further, in the above-mentioned resonance device, a lower lid and an upper lid are further provided. Thereby, the vibration space of the vibrating portion that bends out of the plane can be easily formed.
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、実施形態及び/又は変形例に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態及び/又は変形例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態及び変形例は例示であり、異なる実施形態及び/又は変形例で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。 It should be noted that each of the embodiments described above is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, an embodiment and / or a modification to which a person skilled in the art has appropriately modified the design is also included in the scope of the present invention as long as it has the features of the present invention. For example, each element and its arrangement, material, condition, shape, size, etc. included in the embodiment and / or the modified example are not limited to those exemplified, and can be appropriately changed. Further, the embodiments and modifications are examples, and it goes without saying that partial substitutions or combinations of the configurations shown in different embodiments and / or modifications are possible, and these also include the features of the present invention. It is included in the scope of the invention.
 1…共振装置、10…共振子、20…下蓋、21…凹部、22…底板、23…側壁、30…上蓋、31…凹部、32…底板、33…側壁、40…接合部、50…突起部、110…振動部、120…励振部、121,121A,121B,121C,121D…振動腕、122A、122B,122C,122D…質量付加部、123A、123B,123C,123D…腕部、125A、125B,125C,125D…質量付加膜、130…基部、131A…前端部、131B…後端部、131C…左端部、131D…右端部、140…保持部、141A、141B,141C,141D…枠体、151…支持腕、152…支持後腕、153…支持側腕、CL1…中心線、LA…振動腕長、LB…基部長、LS…支持腕長、r1,r2…中心軸、WA…振動腕幅、WB…基部幅、WG…幅、WS…支持腕幅。
 
1 ... Resonator, 10 ... Resonator, 20 ... Lower lid, 21 ... Recessed, 22 ... Bottom plate, 23 ... Side wall, 30 ... Top lid, 31 ... Recessed, 32 ... Bottom plate, 33 ... Side wall, 40 ... Joint, 50 ... Projection part, 110 ... Vibration part, 120 ... Excitation part, 121, 121A, 121B, 121C, 121D ... Vibration arm, 122A, 122B, 122C, 122D ... Mass addition part, 123A, 123B, 123C, 123D ... Arm part, 125A , 125B, 125C, 125D ... Mass addition film, 130 ... Base, 131A ... Front end, 131B ... Rear end, 131C ... Left end, 131D ... Right end, 140 ... Holding, 141A, 141B, 141C, 141D ... Frame Body, 151 ... Supporting arm, 152 ... Supporting hind arm, 153 ... Supporting side arm, CL1 ... Center line, LA ... Vibration arm length, LB ... Base length, LS ... Supporting arm length, r1, r2 ... Central axis, WA ... Vibration arm width, WB ... base width, WG ... width, WS ... support arm width.

Claims (7)

  1.  それぞれが固定端を有する3本以上の複数の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕と、前記複数の振動腕のそれぞれの前記固定端が接続された一端と該一端に対向する他端とを有する基部と、を含む振動部と、
     前記振動部を保持するように構成された保持部と、
     一端が前記保持部に接続され、他端が前記基部の前記他端に接続された支持腕と、を備え、
     前記支持腕の前記他端は、平面視において、前記基部の前記他端における前記振動部の長手方向の中心線が通る位置を基準としたときに、前記基部における前記中心線に直交する方向の長さである基部幅WBに対し、-0.1WBから0.1WBまでの範囲の位置に接続されており、
     前記支持腕における前記振動部の長手方向に平行な方向の長さは、前記振動腕における長手方向の長さに対して0.2倍以上0.4倍以下である、
     共振子。
    A plurality of vibrating arms, each of which has three or more fixed ends, wherein at least two of the vibrating arms bend out of the plane in different phases, and the fixed ends of the plurality of vibrating arms are connected to each other. A vibrating portion including a base having one end and the other end facing the one end.
    A holding portion configured to hold the vibrating portion, and a holding portion.
    One end is provided with a support arm connected to the holding portion and the other end is connected to the other end of the base portion.
    The other end of the support arm is in a direction orthogonal to the center line of the base portion in a plan view with respect to a position where a center line in the longitudinal direction of the vibrating portion passes through the other end of the base portion. It is connected to a position in the range of -0.1WB to 0.1WB with respect to the base width WB which is the length.
    The length of the supporting arm in the direction parallel to the longitudinal direction of the vibrating portion is 0.2 times or more and 0.4 times or less the length of the vibrating arm in the longitudinal direction.
    Resonator.
  2.  前記支持腕は、前記振動部の長手方向に平行な方向に延在する支持側腕を含む、
     請求項1に記載の共振子。
    The supporting arm includes a supporting arm extending in a direction parallel to the longitudinal direction of the vibrating portion.
    The resonator according to claim 1.
  3.  前記支持腕は、一端が前記支持側腕に接続され、他端が前記基部の前記他端に接続された支持後腕をさらに含む、
     請求項2に記載の共振子。
    The support arm further comprises a support rear arm having one end connected to the support side arm and the other end connected to the other end of the base.
    The resonator according to claim 2.
  4.  前記基部の前記一端から前記他端に向かう方向の長さである基部長は、前記基部の前記基部幅に対して0.3倍以下である、
     請求項1から3のいずれか一項に記載の共振子。
    The base length, which is the length of the base in the direction from one end to the other end, is 0.3 times or less the width of the base of the base.
    The resonator according to any one of claims 1 to 3.
  5.  前記基部長は90μm以下であり、前記基部幅は300μm以下である、
     請求項4に記載の共振子。
    The base length is 90 μm or less, and the base width is 300 μm or less.
    The resonator according to claim 4.
  6.  請求項1から5のいずれか一項に記載の共振子を備える、
     共振装置。
    The resonator according to any one of claims 1 to 5 is provided.
    Resonator.
  7.  蓋体をさらに備える、
     請求項6に記載の共振装置。
    Further equipped with a lid,
    The resonance device according to claim 6.
PCT/JP2021/027560 2020-12-17 2021-07-26 Resonator and resonating device WO2022130676A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180082745.5A CN116601870A (en) 2020-12-17 2021-07-26 Harmonic oscillator and resonance device
JP2022569700A JPWO2022130676A1 (en) 2020-12-17 2021-07-26
US18/315,665 US20230283257A1 (en) 2020-12-17 2023-05-11 Resonator and resonance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-209364 2020-12-17
JP2020209364 2020-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/315,665 Continuation US20230283257A1 (en) 2020-12-17 2023-05-11 Resonator and resonance device

Publications (1)

Publication Number Publication Date
WO2022130676A1 true WO2022130676A1 (en) 2022-06-23

Family

ID=82057519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027560 WO2022130676A1 (en) 2020-12-17 2021-07-26 Resonator and resonating device

Country Status (4)

Country Link
US (1) US20230283257A1 (en)
JP (1) JPWO2022130676A1 (en)
CN (1) CN116601870A (en)
WO (1) WO2022130676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009553A1 (en) * 2022-07-05 2024-01-11 株式会社村田製作所 Resonance device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174789A1 (en) * 2015-04-27 2016-11-03 株式会社村田製作所 Resonator and resonance device
WO2019207829A1 (en) * 2018-04-27 2019-10-31 株式会社村田製作所 Resonator and resonance device
WO2020049789A1 (en) * 2018-09-03 2020-03-12 株式会社村田製作所 Resonator and resonation device equipped therewith
WO2020067484A1 (en) * 2018-09-28 2020-04-02 株式会社村田製作所 Resonator and resonance device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174789A1 (en) * 2015-04-27 2016-11-03 株式会社村田製作所 Resonator and resonance device
WO2019207829A1 (en) * 2018-04-27 2019-10-31 株式会社村田製作所 Resonator and resonance device
WO2020049789A1 (en) * 2018-09-03 2020-03-12 株式会社村田製作所 Resonator and resonation device equipped therewith
WO2020067484A1 (en) * 2018-09-28 2020-04-02 株式会社村田製作所 Resonator and resonance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009553A1 (en) * 2022-07-05 2024-01-11 株式会社村田製作所 Resonance device

Also Published As

Publication number Publication date
CN116601870A (en) 2023-08-15
US20230283257A1 (en) 2023-09-07
JPWO2022130676A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US11876503B2 (en) Resonance device
WO2020067484A1 (en) Resonator and resonance device
US20220029598A1 (en) Resonance device
CN111108690A (en) Resonator and resonance device
US10673402B2 (en) Resonator and resonance device
US11990890B2 (en) Resonator and resonance device including same
US20230283257A1 (en) Resonator and resonance device
JP7133134B2 (en) Resonator
WO2021220536A1 (en) Resonator and resonance device
WO2020070942A1 (en) Resonator and resonance device
WO2019207829A1 (en) Resonator and resonance device
US20220231663A1 (en) Resonance device and method for manufacturing same
US20210167754A1 (en) Resonator and resonance device including same
US11283423B2 (en) Resonator and resonance device
WO2021220535A1 (en) Resonator and resonance device
WO2023112380A1 (en) Resonator and resonating device
WO2022163020A1 (en) Resonance device and manufacturing method for same
WO2023013169A1 (en) Resonator, and resonating device
WO2024009553A1 (en) Resonance device
CN110771036A (en) Resonator and resonance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569700

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180082745.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906042

Country of ref document: EP

Kind code of ref document: A1