WO2022130561A1 - Millimeter wave estimation device, method, and program - Google Patents

Millimeter wave estimation device, method, and program Download PDF

Info

Publication number
WO2022130561A1
WO2022130561A1 PCT/JP2020/047133 JP2020047133W WO2022130561A1 WO 2022130561 A1 WO2022130561 A1 WO 2022130561A1 JP 2020047133 W JP2020047133 W JP 2020047133W WO 2022130561 A1 WO2022130561 A1 WO 2022130561A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter
millimeter wave
wave
state
unit
Prior art date
Application number
PCT/JP2020/047133
Other languages
French (fr)
Japanese (ja)
Inventor
麻理子 五十川
弾 三上
奏 山本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/047133 priority Critical patent/WO2022130561A1/en
Publication of WO2022130561A1 publication Critical patent/WO2022130561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to a technique for estimating the state of a shielded object shielded by a shield using millimeter waves.
  • the relay wall P7 is once irradiated with laser light using the visible light laser device P1 and the SPAD sensor P2, the reflected light from the relay wall P7 is reflected on the shielded object P5, and then the relay wall P7 is again used.
  • Non-Patent Document 1 By measuring the light that has been reflected three times in total with the SPAD sensor P2, the geometry of the object is reconstructed (see, for example, Non-Patent Document 1) and the state of the person is estimated (for example, see Non-Patent Document 2.). .) Was being done.
  • the laser light emitted from the visible light laser device P1 (laser light reflected at the 0th time) is a solid line
  • the laser light reflected by the relay wall P7 (laser light reflected at the first time) is a dotted line
  • the laser light reflected in (the second reflected laser light) is shown by a broken line
  • the laser light reflected again by the relay wall P7 (the third reflected laser light) is shown by a single point chain line.
  • the method using these conventional visible light laser devices has a drawback that it is not safe for the human eye because it requires a strong visible light laser. Further, since the wavelength of visible light is short, it has a characteristic of being vulnerable to disturbances such as rain and snow, and therefore has a drawback that it is not suitable for outdoor use.
  • Non-Patent Document 3 by an imaging technique using millimeter waves having a longer wavelength than visible light (see, for example, Non-Patent Document 3), it is resistant to disturbances such as rain and snow, and has a wall. Efforts are also being made to visualize the shielded object that has been shielded by such means.
  • millimeter waves are transmitted and received by the millimeter wave transceiver P3.
  • the material of the shield P6 is made of a material such as metal that does not transmit millimeter waves, there is a demerit that radio waves cannot be transmitted and measurement cannot be performed.
  • an object of the present invention is to provide a millimeter wave measuring device and a method for measuring the state of a shielded object located over a corner, for example, by a method resistant to disturbances such as rain and snow.
  • the millimeter wave estimation device is a millimeter wave estimation device that estimates the state of an obstructed object shielded by a shield, and has a millimeter wave transmitter for transmitting millimeter waves to a reflector and a reflector.
  • the millimeter wave receiver receives the millimeter wave reflected by the shield, the millimeter wave receiver, and the millimeter wave receiver, based on the positions of the millimeter wave receiver and the millimeter wave receiver. It includes a calibration unit that generates a millimeter-wave signal after calibration by calibrating the wave signal, and a state estimation unit that estimates the state of the shield using the millimeter-wave signal after calibration.
  • the state of a shield located over a corner can be measured by a method that is resistant to disturbances such as rain and snow.
  • FIG. 1 is a diagram for explaining an example of the millimeter wave estimation device of the first embodiment.
  • FIG. 2 is a diagram showing an example of a processing procedure of the millimeter wave estimation method of the first embodiment.
  • FIG. 3 is a diagram for explaining an example of the millimeter wave estimation device of the second embodiment.
  • FIG. 4 is a diagram for explaining the background technique.
  • FIG. 5 is a diagram for explaining the background technique.
  • FIG. 6 is a diagram showing an example of a functional configuration of a computer that realizes the millimeter wave estimation device according to the embodiment of the present invention.
  • the millimeter wave estimation device of the first embodiment includes a millimeter wave transmission unit 1, a millimeter wave reception unit 2, a calibration unit 3, and a state estimation unit 4.
  • the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 are mounted on the same device (millimeter wave transmitting / receiving unit). Therefore, it is assumed that the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 are located at the same position.
  • the positional relationship between the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 and the number of transmitting / receiving elements are not limited to this.
  • the millimeter wave estimation method of the first embodiment is realized, for example, by each component of the millimeter wave estimation device performing the processes of steps S1 to S4 described below and shown in FIG.
  • the shielded object 5 is an object whose state is estimated by a millimeter wave estimation device and a method.
  • the shield 6 is located between the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 and the shielded object 5. Further, in the first embodiment, the shield 6 is made of, for example, a material such as a metal that shields millimeter waves.
  • the shielded object 5 is shielded by the shielded object 6. That is, all or part of the millimeter wave directly irradiated from the millimeter wave transmission unit 1 to the shielded object 5 is shielded by the shield 6 and does not reach the shield 6 directly. Therefore, it is not possible to estimate the state of the shielded object 5 by using the millimeter wave directly applied to the shielded object 5 from the millimeter wave estimation device.
  • the millimeter wave estimation device and method estimate the state of the shielded object 5 by reflecting the millimeter wave with the reflector 7.
  • the reflector 7 is intended to reflect the millimeter wave transmitted by the millimeter wave transmitting unit 1 and irradiate the region where the shielded object 5 is located.
  • the millimeter wave transmission unit 1 transmits millimeter waves toward the reflector 7 (step S1). More specifically, the millimeter wave is output from the antenna connected to the millimeter wave transmission unit 1.
  • the millimeter wave transmission unit 1 outputs a millimeter wave through an antenna and the millimeter wave transmission unit 1 transmits a millimeter wave.
  • Millimeter waves are radio waves in the frequency band of 30 to 300 GHz.
  • the directivity of the millimeter wave transmitted from the millimeter wave transmission unit 1 is not limited, the radiation width should be relatively narrow, for example, within 30 degrees on both sides for the purpose of giving the radio wave straightness. You may do it. That is, the radiation width of the millimeter wave transmitted from the millimeter wave transmission unit 1 may be within 60 degrees.
  • the reflector 7 irradiates the area where the shielded object 5 is located with the millimeter wave transmitted by the millimeter wave transmission unit 1. It is desirable to use a material such as metal that easily reflects millimeter waves for the reflector 7, instead of wood or the like.
  • the shape of the reflector 7 may be any shape as long as it can irradiate the region where the shielded object 5 is located with the millimeter wave transmitted by the millimeter wave transmission unit 1.
  • the reflector 7 is a wall.
  • a part of the millimeter wave irradiated in the area where the shielded object 5 is located is reflected by the shielded object 5.
  • a part of the reflected millimeter wave is reflected by the reflector 7 and received by the millimeter wave receiving unit 2.
  • the millimeter wave transmitting unit 1 transmits toward the reflector 7, is reflected by the reflector 7, is irradiated on the shielded object 5, is reflected by the shielded object 5, and is reflected by the reflector 7. Receives the millimeter wave reflected by (step S2).
  • the millimeter wave transmitted from the millimeter wave transmission unit 1 (millimeter wave of the 0th reflection) is a solid line
  • the millimeter wave reflected by the reflector 7 is a dotted line
  • the shield 5 The millimeter wave reflected by (the millimeter wave of the second reflection) is shown by a broken line
  • the millimeter wave reflected by the reflector 7 again is shown by a one-point chain line.
  • the calibration unit 3 generates a millimeter-wave signal s'after calibration by calibrating the millimeter-wave signal s received by the millimeter-wave receiver 2 based on the positions of the millimeter-wave transmitter 1 and the millimeter-wave receiver 2. (Step S3). After calibration, the millimeter wave signal s'is output to the state estimation unit 4.
  • the processing of the calibration unit 3 is to calibrate the difference in reception intensity due to the positional relationship in consideration of the case where the millimeter wave transmission unit 1 and the millimeter wave reception unit 2 are located at different positions spatially.
  • the millimeter wave transmitter 1 and the millimeter wave receiver 2 are (x 1 , y 1 ), (x 2 , y 2 ),..., (x N , y N ), respectively. It can also be said to be the signal strength of millimeter waves when it is located at.
  • the calibration unit 3 calculates s n'based on, for example, the following equation, and obtains the calibrated millimeter-wave signal s'.
  • the calibration unit 3 may calibrate the millimeter wave signal s'after calibration by another method.
  • the state estimation unit 4 estimates the state of the shielded object 5 using the millimeter wave signal s'after calibration (step S4).
  • the state estimation unit 4 uses the calibrated millimeter-wave signal s'to output a two-dimensional image as an imaging result, three-dimensional information indicating the position of the shielded object 5, and the like.
  • the estimation content and estimation result in the state estimation unit 4 are not limited to this.
  • the state of the shielded object located over the corner can be measured by a method resistant to disturbance such as rain and snow. This makes it possible to realize, for example, an estimation device more suitable for outdoor measurement.
  • the shield 6 is made of a material that can transmit millimeter waves, such as wood, concrete, and plastic.
  • the state of the shielded object 5 is estimated by using not only the millimeter wave reflected by the reflector 7 but also the millimeter wave transmitted through the shield 6. can do. That is, by using the measured values of millimeter waves irradiated from various directions, stereo processing becomes possible, and it becomes easy to acquire three-dimensional information of the shielded object 5.
  • the millimeter wave transmission unit 1 further transmits millimeter waves to the shielded object 5 via the shield 6.
  • the shield 5 reflects all or part of the millimeter waves that have passed through the shield 6.
  • the millimeter wave receiving unit 2 transmits the shield 6 and is reflected by the shield 5, and further receives the transmitted millimeter wave which is the millimeter wave transmitted through the shield 6.
  • the state estimation unit 4 further uses the transmitted millimeter wave to estimate the state of the shielded object 5.
  • the transmitted millimeter wave may be calibrated by the calibration unit 3.
  • the state estimation unit 4 estimates the state of the shielded object 5 by further using the transmitted millimeter wave calibrated by the calibration unit 3 instead of the transmitted millimeter wave.
  • the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 may be set coaxially.
  • the analysis formula when performing the estimation process in the state estimation unit 4 can be simplified, and the effect of weight reduction of the process can be expected.
  • a millimeter wave transmitting unit 1 and a millimeter wave receiving unit 2 each having one element are coaxially installed by a circulator, and an antenna is installed ahead thereof.
  • the method for setting the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 coaxially is not limited to this.
  • millimeter waves it is not necessary to limit the frequency to millimeter waves, and other frequency bands such as submillimeter waves and terahertz waves may be used. However, at these frequencies, the propagation distance in the atmosphere is limited compared to millimeter waves, so it is necessary to limit it to indoor use or use in relatively small scenes.
  • each part (at least the calibration unit 3 and the state estimation unit 4) of the millimeter wave estimation device described above may be realized by a computer, and in this case, the processing content of the function that the millimeter wave estimation device should have is described by a program. Will be done. Then, by loading this program into the storage unit 1020 of the computer 1000 shown in FIG. 6 and operating it in the arithmetic processing unit 1010, the input unit 1030, the output unit 1040, etc., various processing functions in the millimeter wave estimation device can be performed on the computer. It is realized by.
  • the program that describes this processing content can be recorded on a computer-readable recording medium.
  • the recording medium readable by a computer is, for example, a non-temporary recording medium, specifically, a magnetic recording device, an optical disk, or the like.
  • the distribution of this program is carried out, for example, by selling, transferring, renting, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded.
  • the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program for example, first transfers a program recorded on a portable recording medium or a program transferred from a server computer to an auxiliary recording unit 1050, which is its own non-temporary storage device. Store. Then, at the time of executing the process, the computer reads the program stored in the auxiliary recording unit 1050, which is its own non-temporary storage device, into the storage unit 1020, and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from the portable recording medium into the storage unit 1020 and execute the processing according to the program, and further, the program from the server computer to this computer may be executed. Each time the computer is transferred, the processing according to the received program may be executed sequentially.
  • ASP Application Service Provider
  • the program in this embodiment includes information used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property that regulates the processing of the computer, etc.).
  • the present device is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be realized by hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This millimeter wave estimation device estimates the state of a shielded object 5 shielded by a shielding object 6. The millimeter wave estimation device is provided with: a millimeter wave transmission unit 1 for transmitting millimeter waves to a reflector; a millimeter wave reception unit 2 for receiving millimeter waves reflected by the reflector 7, reflected by the shielded object 5, and then reflected by the reflector 7; a calibration unit 3 for calibrating, on the basis of the positions of the millimeter wave transmission unit 1 and the millimeter wave reception unit 2, a millimeter wave signal received by the millimeter wave reception unit 2 to generate a calibrated millimeter wave signal; and a state estimation unit 4 for estimating the state of the shielded object 5 by using the calibrated millimeter wave signal.

Description

ミリ波推定装置、方法及びプログラムMillimeter wave estimator, method and program
 本発明は、ミリ波を用いて遮蔽物に遮蔽された被遮蔽物の状態を推定する技術に関する。 The present invention relates to a technique for estimating the state of a shielded object shielded by a shield using millimeter waves.
 主に自動運転、介護、救助の分野で、カメラやセンサの視野内にないオブジェクトや人の状態を推定することに大きなニーズがある。例えば、図4に示すように、遮蔽物P6によりカメラやセンサの視野外にある、曲がり角越しに位置している被遮蔽物P5の状態を推定するというタスクを考える。従来手法では、可視光レーザー装置P1及びSPADセンサP2を使用して中継壁P7に一旦レーザー光を照射し、その中継壁P7からの反射光が被遮蔽物P5に反射し、さらに再度中継壁P7に反射するという計3回の反射を経た光をSPADセンサP2で計測することで、オブジェクトのジオメトリ再構成(例えば、非特許文献1参照。)や人物の状態推定(例えば、非特許文献2参照。)が行われていた。 Mainly in the fields of autonomous driving, long-term care, and rescue, there is a great need to estimate the state of objects and people that are not within the field of view of cameras and sensors. For example, consider the task of estimating the state of the shielded object P5, which is outside the field of view of the camera or sensor and is located over the corner, by the shielded object P6, as shown in FIG. In the conventional method, the relay wall P7 is once irradiated with laser light using the visible light laser device P1 and the SPAD sensor P2, the reflected light from the relay wall P7 is reflected on the shielded object P5, and then the relay wall P7 is again used. By measuring the light that has been reflected three times in total with the SPAD sensor P2, the geometry of the object is reconstructed (see, for example, Non-Patent Document 1) and the state of the person is estimated (for example, see Non-Patent Document 2.). .) Was being done.
 図4において、可視光レーザー装置P1から照射されるレーザー光(0回目反射のレーザー光)は実線、中継壁P7で反射されたレーザー光(1回目反射のレーザー光)は点線、被遮蔽物P5で反射されたレーザー光(2回目反射のレーザー光)は破線、再度中継壁P7で反射されたレーザー光(3回目反射のレーザー光)は一点鎖線で示されている。 In FIG. 4, the laser light emitted from the visible light laser device P1 (laser light reflected at the 0th time) is a solid line, the laser light reflected by the relay wall P7 (laser light reflected at the first time) is a dotted line, and the shielded object P5. The laser light reflected in (the second reflected laser light) is shown by a broken line, and the laser light reflected again by the relay wall P7 (the third reflected laser light) is shown by a single point chain line.
 しかし、これらの従来の可視光レーザー装置を用いる方法には、強い可視光レーザーが必要であるため人の眼に安全でないという欠点がある。また、可視光の波長が短いため雨や雪等の外乱に弱いという特性があるため屋外での利用に適さないという欠点がある。 However, the method using these conventional visible light laser devices has a drawback that it is not safe for the human eye because it requires a strong visible light laser. Further, since the wavelength of visible light is short, it has a characteristic of being vulnerable to disturbances such as rain and snow, and therefore has a drawback that it is not suitable for outdoor use.
 一方、図5に示すように、可視光と比較して長い波長を持つミリ波を用いたイメージング技術(例えば、非特許文献3参照。)等により、雨や雪等の外乱に強く、かつ壁等で遮蔽された被遮蔽物を可視化する取り組みも行われている。図5では、ミリ波送受信機P3によりミリ波が送受信される。 On the other hand, as shown in FIG. 5, by an imaging technique using millimeter waves having a longer wavelength than visible light (see, for example, Non-Patent Document 3), it is resistant to disturbances such as rain and snow, and has a wall. Efforts are also being made to visualize the shielded object that has been shielded by such means. In FIG. 5, millimeter waves are transmitted and received by the millimeter wave transceiver P3.
 しかし、この手法では、図4に示すような中継壁=7が反射した反射電波を用いるのではなく、図5に示すように、遮蔽物P6越しに透過・反射した電波のみに基づいて計測及びイメージングが実施されている。 However, in this method, instead of using the reflected radio wave reflected by the relay wall = 7 as shown in FIG. 4, as shown in FIG. 5, measurement and measurement are performed based only on the radio wave transmitted / reflected through the shield P6. Imaging is being performed.
 したがって、図4のような曲がり角越しに位置している被遮蔽物P5の状態を計測する用途には適さない。また、遮蔽物P6の素材が金属等のミリ波を透過しないもので構成されている場合、電波を透過させることができず計測が行えないというデメリットがある。 Therefore, it is not suitable for measuring the state of the shielded object P5 located over the corner as shown in FIG. Further, when the material of the shield P6 is made of a material such as metal that does not transmit millimeter waves, there is a demerit that radio waves cannot be transmitted and measurement cannot be performed.
 そこで、本発明は、例えば曲がり角越しに位置している被遮蔽物の状態を、雨や雪等の外乱に強い方法で計測するミリ波計測装置及び方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a millimeter wave measuring device and a method for measuring the state of a shielded object located over a corner, for example, by a method resistant to disturbances such as rain and snow.
 この発明の一態様によるミリ波推定装置は、遮蔽物で遮蔽された被遮蔽物の状態を推定するミリ波推定装置であって、ミリ波を反射体に送信するミリ波送信部と、反射体で反射し、被遮蔽物で反射し、反射体で反射したミリ波を受信するミリ波受信部と、ミリ波送信部及びミリ波受信部の位置に基づいて、ミリ波受信部が受信したミリ波信号を校正することにより、校正後ミリ波信号を生成する校正部と、校正後ミリ波信号を用いて、被遮蔽物の状態を推定する状態推定部と、を備えている。 The millimeter wave estimation device according to one aspect of the present invention is a millimeter wave estimation device that estimates the state of an obstructed object shielded by a shield, and has a millimeter wave transmitter for transmitting millimeter waves to a reflector and a reflector. The millimeter wave receiver receives the millimeter wave reflected by the shield, the millimeter wave receiver, and the millimeter wave receiver, based on the positions of the millimeter wave receiver and the millimeter wave receiver. It includes a calibration unit that generates a millimeter-wave signal after calibration by calibrating the wave signal, and a state estimation unit that estimates the state of the shield using the millimeter-wave signal after calibration.
 例えば曲がり角越しに位置している被遮蔽物の状態を、雨や雪等の外乱に強い方法で計測することができる。 For example, the state of a shield located over a corner can be measured by a method that is resistant to disturbances such as rain and snow.
図1は、第一実施形態のミリ波推定装置の例を説明するための図である。FIG. 1 is a diagram for explaining an example of the millimeter wave estimation device of the first embodiment. 図2は、第一実施形態のミリ波推定方法の処理手続きの例を示す図である。FIG. 2 is a diagram showing an example of a processing procedure of the millimeter wave estimation method of the first embodiment. 図3は、第二実施形態のミリ波推定装置の例を説明するための図である。FIG. 3 is a diagram for explaining an example of the millimeter wave estimation device of the second embodiment. 図4は、背景技術を説明するための図である。FIG. 4 is a diagram for explaining the background technique. 図5は、背景技術を説明するための図である。FIG. 5 is a diagram for explaining the background technique. 図6は、本発明の実施形態におけるミリ波推定装置を実現するコンピュータの機能構成の一例を示す図である。FIG. 6 is a diagram showing an example of a functional configuration of a computer that realizes the millimeter wave estimation device according to the embodiment of the present invention.
 以下、本発明の実施の形態について詳細に説明する。なお、図面中において同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In the drawings, the components having the same function are given the same number, and duplicate description is omitted.
 [第一実施形態]
 図1に示すように、第一実施形態のミリ波推定装置は、ミリ波送信部1、ミリ波受信部2、校正部3及び状態推定部4を備えている。図1の例では、ミリ波送信部1及びミリ波受信部2は、同じ機器(ミリ波送受信部)に実装されている。このため、ミリ波送信部1及びミリ波受信部2は、同じ位置に位置しているとする。なお、本発明において、ミリ波送信部1及びミリ波受信部2の位置関係及び送受信素子数は、これに限定されない。
[First Embodiment]
As shown in FIG. 1, the millimeter wave estimation device of the first embodiment includes a millimeter wave transmission unit 1, a millimeter wave reception unit 2, a calibration unit 3, and a state estimation unit 4. In the example of FIG. 1, the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 are mounted on the same device (millimeter wave transmitting / receiving unit). Therefore, it is assumed that the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 are located at the same position. In the present invention, the positional relationship between the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 and the number of transmitting / receiving elements are not limited to this.
 第一実施形態のミリ波推定方法は、ミリ波推定装置の各構成部が、以下に説明する及び図2に示すステップS1からステップS4の処理を行うことにより例えば実現される。 The millimeter wave estimation method of the first embodiment is realized, for example, by each component of the millimeter wave estimation device performing the processes of steps S1 to S4 described below and shown in FIG.
 被遮蔽物5は、ミリ波推定装置及び方法による状態の推定の対象となる物体である。 The shielded object 5 is an object whose state is estimated by a millimeter wave estimation device and a method.
 遮蔽物6は、ミリ波送信部1及びミリ波受信部2と、被遮蔽物5との間に位置する。また、第一実施形態では、遮蔽物6は、例えば、ミリ波を遮蔽する金属等の素材で構成されている。 The shield 6 is located between the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 and the shielded object 5. Further, in the first embodiment, the shield 6 is made of, for example, a material such as a metal that shields millimeter waves.
 被遮蔽物5は、遮蔽物6により遮蔽されている。すなわち、ミリ波送信部1から被遮蔽物5に対して直接照射されるミリ波の全部又は一部は、遮蔽物6により遮蔽されるため、直接的には遮蔽物6に届かない。このため、ミリ波推定装置から被遮蔽物5に直接的に照射されるミリ波を用いて、被遮蔽物5の状態を推定することはできないとする。 The shielded object 5 is shielded by the shielded object 6. That is, all or part of the millimeter wave directly irradiated from the millimeter wave transmission unit 1 to the shielded object 5 is shielded by the shield 6 and does not reach the shield 6 directly. Therefore, it is not possible to estimate the state of the shielded object 5 by using the millimeter wave directly applied to the shielded object 5 from the millimeter wave estimation device.
 そこで、以下に説明するように、ミリ波推定装置及び方法は、反射体7でミリ波を反射することにより、被遮蔽物5の状態を推定する。反射体7は、ミリ波送信部1が送信したミリ波を反射させ被遮蔽物5が位置する領域を照射することを目的とする。 Therefore, as described below, the millimeter wave estimation device and method estimate the state of the shielded object 5 by reflecting the millimeter wave with the reflector 7. The reflector 7 is intended to reflect the millimeter wave transmitted by the millimeter wave transmitting unit 1 and irradiate the region where the shielded object 5 is located.
 以下、ミリ波推定装置及び方法の例について説明する。 Hereinafter, an example of a millimeter wave estimation device and a method will be described.
 ミリ波送信部1は、反射体7に向けてミリ波を送信する(ステップS1)。より詳細には、ミリ波は、ミリ波送信部1に接続されたアンテナから出力される。以降、記載を簡略化するために、ミリ波送信部1がアンテナを介してミリ波を出力することを、ミリ波送信部1がミリ波を送信すると表記する。 The millimeter wave transmission unit 1 transmits millimeter waves toward the reflector 7 (step S1). More specifically, the millimeter wave is output from the antenna connected to the millimeter wave transmission unit 1. Hereinafter, for the sake of simplification of the description, it is described that the millimeter wave transmission unit 1 outputs a millimeter wave through an antenna and the millimeter wave transmission unit 1 transmits a millimeter wave.
 ミリ波は、周波数帯30~300GHzの電波である。なお、ミリ波送信部1から送信されるミリ波の指向性に制限を設けるものではないが、電波に直進性を持たせる目的で、例えば両側30度以内程度の比較的狭い放射幅になるようにしてもよい。すなわち、ミリ波送信部1から送信されるミリ波の放射幅が60度以内になるようにしてもよい。 Millimeter waves are radio waves in the frequency band of 30 to 300 GHz. Although the directivity of the millimeter wave transmitted from the millimeter wave transmission unit 1 is not limited, the radiation width should be relatively narrow, for example, within 30 degrees on both sides for the purpose of giving the radio wave straightness. You may do it. That is, the radiation width of the millimeter wave transmitted from the millimeter wave transmission unit 1 may be within 60 degrees.
 反射体7は、ミリ波送信部1が送信したミリ波を、被遮蔽物5が位置する領域を照射する。反射体7には、木材等ではなく、ミリ波を反射しやすい金属等の素材を用いることが望ましい。反射体7の形状は、ミリ波送信部1が送信したミリ波を被遮蔽物5が位置する領域を照射することができるものであれば、どのような形状であってもよい。例えば、反射体7は、壁である。 The reflector 7 irradiates the area where the shielded object 5 is located with the millimeter wave transmitted by the millimeter wave transmission unit 1. It is desirable to use a material such as metal that easily reflects millimeter waves for the reflector 7, instead of wood or the like. The shape of the reflector 7 may be any shape as long as it can irradiate the region where the shielded object 5 is located with the millimeter wave transmitted by the millimeter wave transmission unit 1. For example, the reflector 7 is a wall.
 被遮蔽物5が位置する領域を照射されたミリ波の一部は、被遮蔽物5で反射される。その反射されたミリ波の一部は、反射体7で反射して、ミリ波受信部2で受信される。 A part of the millimeter wave irradiated in the area where the shielded object 5 is located is reflected by the shielded object 5. A part of the reflected millimeter wave is reflected by the reflector 7 and received by the millimeter wave receiving unit 2.
 すなわち、ミリ波受信部2は、ミリ波送信部1が反射体7に向かって送信し、反射体7で反射して被遮蔽物5に照射され、被遮蔽物5で反射し、反射体7で反射したミリ波を受信する(ステップS2)。 That is, in the millimeter wave receiving unit 2, the millimeter wave transmitting unit 1 transmits toward the reflector 7, is reflected by the reflector 7, is irradiated on the shielded object 5, is reflected by the shielded object 5, and is reflected by the reflector 7. Receives the millimeter wave reflected by (step S2).
 図1において、ミリ波送信部1から送信されるミリ波(0回目反射のミリ波)は実線、反射体7で反射されたミリ波(1回目反射のミリ波)は点線、被遮蔽物5で反射されたミリ波(2回目反射のミリ波)は破線、再度反射体7で反射されたミリ波(3回目反射のミリ波)は一点鎖線で示されている。 In FIG. 1, the millimeter wave transmitted from the millimeter wave transmission unit 1 (millimeter wave of the 0th reflection) is a solid line, the millimeter wave reflected by the reflector 7 (millimeter wave of the first reflection) is a dotted line, and the shield 5 The millimeter wave reflected by (the millimeter wave of the second reflection) is shown by a broken line, and the millimeter wave reflected by the reflector 7 again (the millimeter wave of the third reflection) is shown by a one-point chain line.
 校正部3は、ミリ波送信部1及びミリ波受信部2の位置に基づいて、ミリ波受信部2が受信したミリ波信号sを校正することにより、校正後ミリ波信号s’を生成する(ステップS3)。校正後ミリ波信号s’は、状態推定部4に出力される。 The calibration unit 3 generates a millimeter-wave signal s'after calibration by calibrating the millimeter-wave signal s received by the millimeter-wave receiver 2 based on the positions of the millimeter-wave transmitter 1 and the millimeter-wave receiver 2. (Step S3). After calibration, the millimeter wave signal s'is output to the state estimation unit 4.
 校正部3の処理は、ミリ波送信部1及びミリ波受信部2が空間的に異なる位置にある場合を考慮して、位置関係による受信強度の違いをキャリブレーションするものである。 The processing of the calibration unit 3 is to calibrate the difference in reception intensity due to the positional relationship in consideration of the case where the millimeter wave transmission unit 1 and the millimeter wave reception unit 2 are located at different positions spatially.
 ミリ波受信部2が所定の時間長のフレームごとに受信した各フレームのミリ波の信号強度sn(n=1,…,N)を要素とするベクトルを、ミリ波信号ベクトルS=(s1,s2,…,sN)とする。Nは、所定の正の整数である。 The millimeter-wave signal vector S = (s) is a vector whose element is the millimeter-wave signal strength s n (n = 1, ..., N) of each frame received by the millimeter-wave receiver 2 for each frame having a predetermined time length. 1 , s 2 ,…, s N ). N is a given positive integer.
 s1,s2,…,sNは、ミリ波送信部1及びミリ波受信部2がそれぞれ(x1,y1), (x2,y2),… ,(xN,yN)に位置するときのミリ波の信号強度とも言える。 For s 1 , s 2 , ..., s N , the millimeter wave transmitter 1 and the millimeter wave receiver 2 are (x 1 , y 1 ), (x 2 , y 2 ),…, (x N , y N ), respectively. It can also be said to be the signal strength of millimeter waves when it is located at.
 このとき、校正部3は、例えば以下の式に基づいてsn’を計算し、校正後ミリ波信号s’とする。 At this time, the calibration unit 3 calculates s n'based on, for example, the following equation, and obtains the calibrated millimeter-wave signal s'.
 sn’=(max(S)-sn)/(max(S)-min(S))
 max(S)はミリ波信号ベクトルSの要素の最大値であり、min(S)はミリ波信号ベクトルSの要素の最小値である。なお、校正部3は、他の方法で校正後ミリ波信号s’を校正してもよい。
s n '= (max (S) -s n ) / (max (S) -min (S))
max (S) is the maximum value of the element of the millimeter wave signal vector S, and min (S) is the minimum value of the element of the millimeter wave signal vector S. The calibration unit 3 may calibrate the millimeter wave signal s'after calibration by another method.
 状態推定部4は、校正後ミリ波信号s’を用いて、被遮蔽物5の状態を推定する(ステップS4)。 The state estimation unit 4 estimates the state of the shielded object 5 using the millimeter wave signal s'after calibration (step S4).
 例えば、状態推定部4は、校正後ミリ波信号s’を用いて、イメージング結果である二次元画像や、被遮蔽物5の位置を示す三次元情報等を出力する。なお、状態推定部4における推定内容及び推定結果は、これに限定されない。 For example, the state estimation unit 4 uses the calibrated millimeter-wave signal s'to output a two-dimensional image as an imaging result, three-dimensional information indicating the position of the shielded object 5, and the like. The estimation content and estimation result in the state estimation unit 4 are not limited to this.
 上記の処理により、例えば曲がり角越しに位置している被遮蔽物の状態を、雨や雪等の外乱に強い方法で計測することが可能となる。これにより、例えば、屋外での計測により適した推定装置を実現することが可能となる。 By the above processing, for example, the state of the shielded object located over the corner can be measured by a method resistant to disturbance such as rain and snow. This makes it possible to realize, for example, an estimation device more suitable for outdoor measurement.
 [第二実施形態]
 第二実施形態では、遮蔽物6は、木材、コンクリート、プラスチック等の、ミリ波を透過可能な素材により構成されている。このような構成をとることで、図3に例示するように、反射体7で反射されたミリ波だけではなく、遮蔽物6を透過したミリ波を用いて、被遮蔽物5の状態を推定することができる。すなわち、多方面から照射したミリ波の計測値を用いることで、ステレオ処理が可能となり、被遮蔽物5の三次元情報が取得しやすくなる。
[Second embodiment]
In the second embodiment, the shield 6 is made of a material that can transmit millimeter waves, such as wood, concrete, and plastic. By adopting such a configuration, as illustrated in FIG. 3, the state of the shielded object 5 is estimated by using not only the millimeter wave reflected by the reflector 7 but also the millimeter wave transmitted through the shield 6. can do. That is, by using the measured values of millimeter waves irradiated from various directions, stereo processing becomes possible, and it becomes easy to acquire three-dimensional information of the shielded object 5.
 以下、第一実施形態とは異なる部分を中心に説明する。第一実施形態と同様の部分については、重複説明を省略する。 Hereinafter, the parts different from the first embodiment will be mainly explained. Overlapping description will be omitted for the same parts as in the first embodiment.
 ミリ波送信部1は、更に、遮蔽物6を介して被遮蔽物5にミリ波を送信する。 The millimeter wave transmission unit 1 further transmits millimeter waves to the shielded object 5 via the shield 6.
 被遮蔽物5は、遮蔽物6を透過したミリ波の全部又は一部を反射する。 The shield 5 reflects all or part of the millimeter waves that have passed through the shield 6.
 ミリ波受信部2は、遮蔽物6を透過し、被遮蔽物5で反射し、遮蔽物6を透過したミリ波である透過ミリ波を更に受信する。 The millimeter wave receiving unit 2 transmits the shield 6 and is reflected by the shield 5, and further receives the transmitted millimeter wave which is the millimeter wave transmitted through the shield 6.
 状態推定部4は、透過ミリ波を更に用いて、被遮蔽物5の状態を推定する。 The state estimation unit 4 further uses the transmitted millimeter wave to estimate the state of the shielded object 5.
 なお、透過ミリ波は、校正部3により校正されてもよい。この場合、状態推定部4は、透過ミリ波に代えて、校正部3により校正された透過ミリ波を更に用いて、被遮蔽物5の状態を推定する。 The transmitted millimeter wave may be calibrated by the calibration unit 3. In this case, the state estimation unit 4 estimates the state of the shielded object 5 by further using the transmitted millimeter wave calibrated by the calibration unit 3 instead of the transmitted millimeter wave.
 [変形例]
 以上、本発明の実施の形態について説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜設計の変更等があっても、本発明に含まれることはいうまでもない。
[Modification example]
Although the embodiments of the present invention have been described above, the specific configuration is not limited to these embodiments, and even if the design is appropriately changed without departing from the spirit of the present invention, the specific configuration is not limited to these embodiments. Needless to say, it is included in the present invention.
 例えば、ミリ波送信部1及びミリ波受信部2を同軸に設定してもよい。これにより、状態推定部4での推定処理を行う際の解析式を簡易化でき、処理の軽量化等の効果が期待できる。 For example, the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 may be set coaxially. As a result, the analysis formula when performing the estimation process in the state estimation unit 4 can be simplified, and the effect of weight reduction of the process can be expected.
 例えば、それぞれに素子を1つずつ持つミリ波送信部1及びミリ波受信部2をサーキュレータにより同軸に設置し、その先にアンテナが設置される。なお、ミリ波送信部1及びミリ波受信部2を同軸に設定するための方法は、これに限定されない。 For example, a millimeter wave transmitting unit 1 and a millimeter wave receiving unit 2 each having one element are coaxially installed by a circulator, and an antenna is installed ahead thereof. The method for setting the millimeter wave transmitting unit 1 and the millimeter wave receiving unit 2 coaxially is not limited to this.
 また、ミリ波に限る必要は無く、サブミリ波、テラヘルツ波等の他の周波数帯を用いてもよい。ただし、これらの周波数では大気中での伝搬距離がミリ波と比較すると制限されるため、屋内での利用や比較的小さいシーンでの利用に限る必要がある。 Further, it is not necessary to limit the frequency to millimeter waves, and other frequency bands such as submillimeter waves and terahertz waves may be used. However, at these frequencies, the propagation distance in the atmosphere is limited compared to millimeter waves, so it is necessary to limit it to indoor use or use in relatively small scenes.
 実施の形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。 The various processes described in the embodiments are not only executed in chronological order according to the order described, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.
 [プログラム及び記録媒体]
 上述したミリ波推定装置の各部(少なくとも、校正部3及び状態推定部4)の処理をコンピュータにより実現してもよく、この場合はミリ波推定装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムを図6に示すコンピュータ1000の記憶部1020に読み込ませ、演算処理部1010、入力部1030、出力部1040などに動作させることにより、ミリ波推定装置における各種の処理機能がコンピュータ上で実現される。
[Programs and recording media]
The processing of each part (at least the calibration unit 3 and the state estimation unit 4) of the millimeter wave estimation device described above may be realized by a computer, and in this case, the processing content of the function that the millimeter wave estimation device should have is described by a program. Will be done. Then, by loading this program into the storage unit 1020 of the computer 1000 shown in FIG. 6 and operating it in the arithmetic processing unit 1010, the input unit 1030, the output unit 1040, etc., various processing functions in the millimeter wave estimation device can be performed on the computer. It is realized by.
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体は、例えば、非一時的な記録媒体であり、具体的には、磁気記録装置、光ディスク、等である。 The program that describes this processing content can be recorded on a computer-readable recording medium. The recording medium readable by a computer is, for example, a non-temporary recording medium, specifically, a magnetic recording device, an optical disk, or the like.
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 The distribution of this program is carried out, for example, by selling, transferring, renting, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded. Further, the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の非一時的な記憶装置である補助記録部1050に格納する。そして、処理の実行時、このコンピュータは、自己の非一時的な記憶装置である補助記録部1050に格納されたプログラムを記憶部1020に読み込み、読み込んだプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを記憶部1020に読み込み、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program, for example, first transfers a program recorded on a portable recording medium or a program transferred from a server computer to an auxiliary recording unit 1050, which is its own non-temporary storage device. Store. Then, at the time of executing the process, the computer reads the program stored in the auxiliary recording unit 1050, which is its own non-temporary storage device, into the storage unit 1020, and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from the portable recording medium into the storage unit 1020 and execute the processing according to the program, and further, the program from the server computer to this computer may be executed. Each time the computer is transferred, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be. The program in this embodiment includes information used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property that regulates the processing of the computer, etc.).
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 Further, in this form, the present device is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be realized by hardware.

Claims (6)

  1.  遮蔽物で遮蔽された被遮蔽物の状態を推定するミリ波推定装置であって、
     ミリ波を反射体に送信するミリ波送信部と、
     前記反射体で反射し、前記被遮蔽物で反射し、前記反射体で反射したミリ波を受信するミリ波受信部と、
     前記ミリ波送信部及び前記ミリ波受信部の位置に基づいて、前記ミリ波受信部が受信したミリ波信号を校正することにより、校正後ミリ波信号を生成する校正部と、
     前記校正後ミリ波信号を用いて、前記被遮蔽物の状態を推定する状態推定部と、
     を含むミリ波推定装置。
    A millimeter-wave estimation device that estimates the state of an obstructed object shielded by an obstruction.
    A millimeter wave transmitter that transmits millimeter waves to a reflector,
    A millimeter wave receiver that reflects on the reflector, reflects on the shield, and receives the millimeter wave reflected by the reflector.
    A calibration unit that generates a millimeter-wave signal after calibration by calibrating the millimeter-wave signal received by the millimeter-wave receiver based on the positions of the millimeter-wave transmitter and the millimeter-wave receiver.
    A state estimation unit that estimates the state of the shield using the calibrated millimeter-wave signal, and a state estimation unit.
    Millimeter wave estimator including.
  2.  請求項1のミリ波推定装置であって、
     前記ミリ波送信部から送信されるミリ波のビーム幅は、60度以内である、
     ミリ波推定装置。
    The millimeter wave estimation device according to claim 1.
    The beam width of the millimeter wave transmitted from the millimeter wave transmitter is within 60 degrees.
    Millimeter wave estimator.
  3.  請求項1又は2のミリ波推定装置であって、
     前記ミリ波受信部は、前記遮蔽物を透過し、前記被遮蔽物で反射し、前記遮蔽物を透過したミリ波である透過ミリ波を更に受信し、
     前記状態推定部は、前記透過ミリ波を更に用いて、前記被遮蔽物の状態を推定する、
     ミリ波推定装置。
    The millimeter wave estimator according to claim 1 or 2.
    The millimeter wave receiving unit further receives a transmitted millimeter wave, which is a millimeter wave transmitted through the shield, reflected by the shield, and transmitted through the shield.
    The state estimation unit further uses the transmitted millimeter wave to estimate the state of the shielded object.
    Millimeter wave estimator.
  4.  請求項1から3の何れかのミリ波推定装置であって、
     前記ミリ波送信部及び前記ミリ波受信部は、同軸に設定されている、
     ミリ波推定装置。
    The millimeter wave estimation device according to any one of claims 1 to 3.
    The millimeter wave transmitter and the millimeter wave receiver are set coaxially.
    Millimeter wave estimator.
  5.  遮蔽物で遮蔽された被遮蔽物の状態を推定するミリ波推定方法であって、
     ミリ波送信部が、ミリ波を反射体に送信するミリ波送信ステップと、
     ミリ波受信部が、前記反射体で反射し、前記被遮蔽物で反射し、前記反射体で反射したミリ波を受信するミリ波受信ステップと、
     校正部が、前記ミリ波送信部及び前記ミリ波受信部の位置に基づいて、前記ミリ波受信部が受信したミリ波信号を校正することにより、校正後ミリ波信号を生成する校正ステップと、
     状態推定部が、前記校正後ミリ波信号を用いて、前記被遮蔽物の状態を推定する状態推定ステップと、
     を含むミリ波推定方法。
    It is a millimeter-wave estimation method that estimates the state of an obstructed object shielded by an obstruction.
    A millimeter wave transmission step in which the millimeter wave transmitter transmits millimeter waves to a reflector,
    A millimeter wave receiving step in which the millimeter wave receiving unit receives the millimeter wave reflected by the reflector, reflected by the shield, and received by the reflector.
    A calibration step in which the calibration unit generates a millimeter-wave signal after calibration by calibrating the millimeter-wave signal received by the millimeter-wave receiver based on the positions of the millimeter-wave transmitter and the millimeter-wave receiver.
    A state estimation step in which the state estimation unit estimates the state of the shield using the calibrated millimeter-wave signal, and a state estimation step.
    Millimeter wave estimation method including.
  6.  請求項1から4の何れかのミリ波推定装置の各部としてコンピュータを機能させるためのプログラム。 A program for operating a computer as each part of the millimeter wave estimation device according to any one of claims 1 to 4.
PCT/JP2020/047133 2020-12-17 2020-12-17 Millimeter wave estimation device, method, and program WO2022130561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047133 WO2022130561A1 (en) 2020-12-17 2020-12-17 Millimeter wave estimation device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047133 WO2022130561A1 (en) 2020-12-17 2020-12-17 Millimeter wave estimation device, method, and program

Publications (1)

Publication Number Publication Date
WO2022130561A1 true WO2022130561A1 (en) 2022-06-23

Family

ID=82059278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047133 WO2022130561A1 (en) 2020-12-17 2020-12-17 Millimeter wave estimation device, method, and program

Country Status (1)

Country Link
WO (1) WO2022130561A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284757A1 (en) * 2004-09-14 2006-12-21 Zemany Paul D Through-the-wall frequency stepped imaging system utilizing near field multiple antenna positions, clutter rejection and corrections for frequency dependent wall effects
JP2010127835A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Radar system
CN104360345A (en) * 2014-09-29 2015-02-18 林子怀 High-resolution through-wall imaging system and method based on random antenna arrays and microwave correlated imaging principles
CN105549011A (en) * 2015-12-16 2016-05-04 成都理工大学 MIMO through-wall radar based single-side double-point squint imaging method of building
JP2016148547A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Detection device
JP2016535243A (en) * 2014-01-13 2016-11-10 三菱電機株式会社 A system for reconstructing scenes behind walls
JP2019015706A (en) * 2017-07-11 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 Imaging device and monitoring device
WO2020039840A1 (en) * 2018-08-23 2020-02-27 日立オートモティブシステムズ株式会社 Radar processing device
CN111045006A (en) * 2019-12-23 2020-04-21 电子科技大学 Corner hidden target imaging method based on multi-imaging dictionary fusion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284757A1 (en) * 2004-09-14 2006-12-21 Zemany Paul D Through-the-wall frequency stepped imaging system utilizing near field multiple antenna positions, clutter rejection and corrections for frequency dependent wall effects
JP2010127835A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Radar system
JP2016535243A (en) * 2014-01-13 2016-11-10 三菱電機株式会社 A system for reconstructing scenes behind walls
CN104360345A (en) * 2014-09-29 2015-02-18 林子怀 High-resolution through-wall imaging system and method based on random antenna arrays and microwave correlated imaging principles
JP2016148547A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Detection device
CN105549011A (en) * 2015-12-16 2016-05-04 成都理工大学 MIMO through-wall radar based single-side double-point squint imaging method of building
JP2019015706A (en) * 2017-07-11 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 Imaging device and monitoring device
WO2020039840A1 (en) * 2018-08-23 2020-02-27 日立オートモティブシステムズ株式会社 Radar processing device
CN111045006A (en) * 2019-12-23 2020-04-21 电子科技大学 Corner hidden target imaging method based on multi-imaging dictionary fusion

Similar Documents

Publication Publication Date Title
US10330610B2 (en) Methods and apparatus for imaging of near-field objects with microwave or terahertz radiation
Geibig et al. Compact 3D imaging radar based on FMCW driven frequency-scanning antennas
DE112013006651T5 (en) Optical multi-mode meter and operating method
DE112012001724T5 (en) Absolute distance meter based on an undersampling method
Yurduseven et al. Software calibration of a frequency-diverse, multistatic, computational imaging system
EP1190234A1 (en) Three dimensional imaging
Cicchetti et al. Numerical and experimental comparison among a new hybrid FT-music technique and existing algorithms for through-the-wall radar imaging
Amineh et al. Three‐dimensional near‐field microwave holography for tissue imaging
JP6054435B2 (en) Enhanced imaging system
JP5825995B2 (en) Radar cross section measuring device
EP3511745B1 (en) Power adjustment method and apparatus, and human body security check device
Gao et al. Design, analysis and measurement of a millimeter wave antenna suitable for stand off imaging at checkpoints
US10634780B2 (en) Electromagnetic wave imaging system and antenna array signal correction method
JP7016303B2 (en) Radiation power estimation method
WO2022130561A1 (en) Millimeter wave estimation device, method, and program
KR101422914B1 (en) Measurement apparatus for radar cross section and measurement method using the same
JP2003318811A (en) Device, method, program for estimating and calculating reception electric field intensity and recording medium
Pisa et al. Comparison between delay and sum and range migration algorithms for image reconstruction in through-the-wall radar imaging systems
Laviada et al. Broadband synthetic aperture scanning system for three-dimensional through-the-wall inspection
Vavilov et al. Calibration and verification of models defining radar-visibility zones in marine geoinformation systems
Cetinkaya et al. Millimeter-wave MIMO array based on semi-circular topology
Helhel et al. Buried metal detection within the wooden block by X‐band measurements
WO2019107368A1 (en) Mobile entity detector, mobile entity detection method, and computer-readable recording medium
DE102016107312A1 (en) Combined scanner and tracker with a focusing mechanism
Xu et al. Experimental verification: Enabling obstacle mapping based on radio tomographic imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP