WO2022127903A1 - 电池保护电路及电池模组 - Google Patents

电池保护电路及电池模组 Download PDF

Info

Publication number
WO2022127903A1
WO2022127903A1 PCT/CN2021/139119 CN2021139119W WO2022127903A1 WO 2022127903 A1 WO2022127903 A1 WO 2022127903A1 CN 2021139119 W CN2021139119 W CN 2021139119W WO 2022127903 A1 WO2022127903 A1 WO 2022127903A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection switch
battery
over
battery pack
voltage
Prior art date
Application number
PCT/CN2021/139119
Other languages
English (en)
French (fr)
Inventor
曾裕达
Original Assignee
邑达电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邑达电子股份有限公司 filed Critical 邑达电子股份有限公司
Publication of WO2022127903A1 publication Critical patent/WO2022127903A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery

Definitions

  • the present invention relates to a battery protection circuit and a battery module; in particular, to a battery protection circuit and a battery module with two types of overdischarge protection switches.
  • a battery protection circuit includes a first control element, a first overdischarge protection switch and a second overdischarge protection switch.
  • the first control element is configured to be coupled to the battery pack to read the voltage value of each cell in the battery pack.
  • the first overdischarge protection switch has a first terminal configured to be coupled to the negative terminal of the battery pack, and a second terminal.
  • the second overdischarge protection switch has a third terminal coupled to the second terminal.
  • a battery protection circuit includes a first control element, a first overdischarge protection switch, a second control element and a second overdischarge protection switch.
  • the first control element is configured to be coupled to the battery pack to read the voltage value of each cell in the battery pack.
  • the first overdischarge protection switch has a first terminal configured to be coupled to the negative terminal of the battery pack, and a second terminal.
  • the second control element is configured to be coupled to the battery pack to read the voltage value of each cell in the battery pack.
  • the second overdischarge protection switch has a third terminal coupled to the second terminal. Wherein, when the voltage of any battery in the battery pack is lower than the first over-discharge preset voltage, the first control element controls the first over-discharge protection switch to be turned off.
  • the second control element controls the second over-discharge protection switch to be turned off.
  • the second over-discharge preset voltage is greater than the first over-discharge preset voltage.
  • a battery module includes a battery pack and any one of the aforementioned battery protection circuits.
  • FIG. 1A is a schematic diagram of a battery protection circuit in a first embodiment of the present invention.
  • FIG. 1B is a schematic diagram of voltage distribution after the circuit is disconnected in the first embodiment of the present invention.
  • FIGS. 2A-2B are schematic diagrams of a battery protection circuit in a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a battery protection circuit in a third embodiment of the present invention.
  • 4A-4C are schematic diagrams of a battery protection circuit in a fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a series connection of battery modules in a fifth embodiment of the present invention.
  • any reference to an element herein using a designation such as “first,” “second,” etc. generally does not limit the number or order of those elements. Rather, these names are used herein as a convenient way of distinguishing between two or more elements or instances of an element. Thus, it should be understood that the terms “first,” “second,” etc. in the claims do not necessarily correspond to the same terms in the written description. Furthermore, it should be understood that a reference to a first and a second element does not imply that only two elements can be employed or that the first element must precede the second element.
  • the terms “comprising”, “including”, “having”, “containing” and the like used in this document are all open-ended terms, meaning including but not limited to.
  • Coupled is used herein to refer to direct or indirect electrical coupling between two structures.
  • one structure may be coupled to another structure via passive elements such as resistors, capacitors, or inductors.
  • the words “exemplary” and “such as” are used to mean “serving as an example, instance, or illustration.” Any implementation or aspect described herein as “exemplary” or “such as” is not necessarily to be construed as preferred or advantageous over other aspects of the invention.
  • the terms “about”, “approximately” as used herein with respect to a specified value or property are intended to mean within a certain value (eg, 10%) of the specified value or property.
  • the terms “battery pack” and/or “battery” refer to a rechargeable, reusable electrical storage element.
  • a rechargeable, reusable electrical storage element For example, lithium-ion, lead-acid or lithium-iron batteries. However, it is not limited to chemical energy batteries, and any reusable power storage device can be applied to the category of "battery” herein.
  • the “battery pack” and/or “battery” referred to herein may be connected in series and/or parallel to increase the total voltage (eg, 2V, 6V, 12V, 48V, 480V or 1000V or less) or Total charge (eg, 1000mAh to 1000Ah or more).
  • the term “battery module” refers to the above-mentioned battery pack in combination with the battery protection circuit in each embodiment of the present invention described below.
  • FIG. 1A illustrates a battery protection circuit 100 including a first control element 110 , a first overdischarge protection switch 120 and a second overdischarge protection switch 130 .
  • the first control element 110 is configured to be coupled to the battery pack BS to read the voltage values of each of the cells B1-Bn in the battery pack BS.
  • the first overdischarge protection switch 120 has a first terminal 121 configured to be coupled to the negative terminal BS- of the battery pack BS, and a second terminal 122 .
  • the second overdischarge protection switch 130 has a third terminal 131 coupled to the second terminal 122 .
  • the first control element 110 controls the second overdischarge protection switch 130 to turn off before the first overdischarge protection switch 120 when the voltage of any one of the batteries B1-Bn in the battery pack BS is lower than the overdischarge preset voltage Vdth.
  • the voltage tolerance of the second overdischarge protection switch 130 is greater than the voltage tolerance of the first overdischarge protection switch 120 .
  • the first control element 110 may be, for example, a microprocessor, a field programmable gate array (FPGA), or other element with computing capability combined with an active element (for example, an oscillator chip or an analog-to-digital conversion circuit, or other chips) and/or passive components (eg, inductors, capacitors, resistors, etc.) constitute a circuit (eg, disposed on a printed circuit board).
  • the first control element 110 may also be constituted by a commercial integrated circuit (eg, an application specific integrated circuit (ASIC) for charge and discharge protection). It should be noted that the above content is only an example, and the first control element 110 of the present invention is not limited to the above form.
  • the first control element 110 reads the voltage value of each battery B1-Bn in the battery pack BS.
  • the positive and negative electrodes of each battery B1-Bn in the battery pack BS can be respectively coupled to the first control element. 110 to read the respective voltages of the batteries B1-Bn (eg, read the voltage values through an analog-to-digital conversion circuit).
  • the first control element 110 can also be coupled sequentially through a switch or the like. Connect to battery B1-Bn, and read the voltage of battery B1-Bn respectively.
  • the first control element 110 can also be provided with elements such as a temperature sensor or a current sensor, and various sensors can be used to monitor various parameters of the batteries B1-Bn in the battery pack BS (for example, temperature, current, etc.). Wait). And according to the above parameters, the purpose of turning on or off the charging and/or discharging circuit of the battery pack BS is performed.
  • elements such as a temperature sensor or a current sensor
  • various sensors can be used to monitor various parameters of the batteries B1-Bn in the battery pack BS (for example, temperature, current, etc.). Wait). And according to the above parameters, the purpose of turning on or off the charging and/or discharging circuit of the battery pack BS is performed.
  • the first over-discharge protection switch 120 and the second over-discharge protection switch 130 can be, for example, but not limited to, transistors (eg, field effect transistor FET or insulated gate bipolar transistor transistor IGBT) or relays (eg, mechanical relay, Electromagnetic relays or solid state relays) and other switching elements.
  • the voltage tolerance of the second overdischarge protection switch 130 is greater than the voltage tolerance of the first overdischarge protection switch 120 .
  • the second overdischarge protection switch 130 may select a relay and the first overdischarge protection switch 120 may select a field effect transistor.
  • the voltage tolerance may refer to, for example, the voltage difference that the two ends of the switch need to withstand or the voltage difference that the switch itself needs to be isolated from.
  • higher voltage tolerance indicates the voltage difference between the two sides that the device can withstand when the circuit is disconnected.
  • the voltage resistance is not limited to the above examples, and the voltage resistance may also be affected by the self-impedance of the switch and the flow of current when the switch is turned on.
  • the first terminal 121 of the first over-discharge protection switch 120 is coupled to the negative terminal BS- of the battery pack BS, and the third terminal 131 of the second over-discharge protection switch 130 is coupled to the first over-discharge protection switch 130 .
  • Disconnect the second end 122 of the protection switch 120 Disconnect the second end 122 of the protection switch 120 .
  • the first over-discharge protection switch 120 and the second over-discharge protection switch 130 are arranged in series (that is, when either the first over-discharge protection switch 120 and the second over-discharge protection switch 130 are disconnected, the first over-discharge protection switch 120 and the second over-discharge protection switch 130 are disconnected.
  • the loop coupled with the over-discharge protection switch 120 and the second over-discharge protection switch 130 will form an open circuit). It should be noted that although FIG. 1 shows that the first overdischarge protection switch 120 is coupled to the negative terminal BS- of the battery pack BS, the second overdischarge protection switch 130 is coupled to the first overdischarge protection switch 120 . However, those skilled in the art know that the coupling relationship between the first over-discharge protection switch 120 and the second over-discharge protection switch 130 can be exchanged or adjusted.
  • the second over-discharge protection switch 130 can be coupled to the negative terminal BS- of the battery pack BS, and the first over-discharge protection switch 120 can be connected in series to the second over-discharge protection switch 130;
  • the second terminal 122 of the discharge protection switch 120 and the third terminal 131 of the second overdischarge protection switch 130 are indirectly coupled through elements such as resistors and inductors.
  • the voltage/power of the batteries B1-Bn in the battery pack BS decreases due to the loss of the load L.
  • the second overdischarge protection switch 130 with higher voltage tolerance is turned off before the first overdischarge protection switch 120 .
  • the first control element 110 can set the off time difference, for example, to turn off the second overdischarge protection switch 130 first, and then turn off the first overdischarge protection switch 120 after a delay.
  • the second overdischarge protection switch 130 When the second overdischarge protection switch 130 is turned off, the second overdischarge protection switch 130 is coupled to the fourth terminal 132 of the interface terminal E2 of the battery protection circuit 100 and directly/indirectly coupled to the negative terminal BS- of the battery pack BS
  • the voltage VBS output by the battery pack BS (as shown in FIG. 1B ) is received between the third terminals 131 of the battery pack BS.
  • the battery protection circuit 200 further includes a first overcharge protection switch 210, and the first overcharge protection switch 210 is configured to be directly or indirectly coupled to the battery pack.
  • the first control element 110 controls the first overcharge protection switch 210 to turn off. Specifically, as shown in FIG.
  • the first overcharge protection switch 210 is indirectly coupled to the negative terminal BS- of the battery pack BS (spaced apart from the first overdischarge protection switch 120 ), and is connected with the first overdischarge protection switch 120 and The second over-discharge protection switches 130 are connected in series.
  • the first control element 110 reads the voltage values of the batteries B1-Bn in the battery pack BS, and when the voltage of any battery B1-Bn in the battery pack BS is greater than
  • the first control element 110 controls the first overcharge protection switch 210 to be turned off to disconnect the charging path.
  • the first overcharge protection switch 210 is directly coupled to the negative terminal BS- of the battery pack BS, and the battery protection circuit 200 has an interface terminal E3.
  • the external power source ES is coupled to the interface terminals E1 and E3 (that is, the battery pack BS, the battery protection circuit 200 and the external power source ES form a charging loop through the interface terminals E1 and E3); and when discharging, the external load L can
  • the interface terminals E1 and E2 are coupled (ie, the battery pack BS, the battery protection circuit 200 and the external load L form a discharge loop through the interface terminals E1 and E2).
  • the above are only examples and are not intended to limit the arrangement of the first overcharge protection switch 210 of the present invention.
  • FIG. 3 illustrates a battery protection circuit 300 including a first control element 310 , a first overdischarge protection switch 320 , a second control element 330 and a second overdischarge Protection switch 340 .
  • the first control element 310 is configured to be coupled to the battery pack BS to read the voltage values of each of the cells B1-Bn in the battery pack BS.
  • the first overdischarge protection switch 320 has a first terminal 321 configured to be coupled to the negative terminal BS- of the battery pack BS, and a second terminal 322 .
  • the second control element 330 is configured to be coupled to the battery pack BS to read the voltage value of each cell B1-Bn in the battery pack BS.
  • the second overdischarge protection switch 340 has a third terminal 341 coupled to the second terminal 322 .
  • the first control element 310 controls the first over-discharge protection switch 320 to turn off when the voltage of any one of the batteries B1-Bn in the battery pack BS is lower than the first over-discharge preset voltage Vdth1.
  • the second control element 330 controls the second overdischarge protection switch 340 to be turned off.
  • the second over-discharge preset voltage Vdth2 is greater than the first over-discharge preset voltage Vdth1.
  • the first control element 310 and the second control element 330 may be, for example, a microprocessor, a Field Programmable Logic Gate Array (FPGA) and other elements with computing capabilities combined with active elements (for example, an oscillator chip or an analog-to-digital converter). circuits, or other chips) and/or passive components (eg, inductors, capacitors, resistors, etc.) (eg, disposed on a printed circuit board).
  • the first control element 310 and the second control element 330 may also be composed of commercial integrated circuits (eg, application specific integrated circuits (ASIC) for charge and discharge protection). It should be noted that, the first control element 310 and the second control element 330 may be configured using the same or different structures.
  • the second control element 330 can set a stricter protection voltage range and provide the first protection. Specifically, when the battery pack BS is discharging, the first control element 310 and the second control element 330 respectively measure and monitor the voltages of the batteries B1 -Bn in the battery pack BS. Having more than two sets of independent control elements not only provides a second layer of protection in the event of element failure, but also meets high-specification safety requirements (eg, regulatory or military/medical batteries).
  • the second over-discharge protection switch 340 can close the discharge circuit before the first over-discharge protection switch 320 .
  • the voltage tolerance of the second overdischarge protection switch 340 is preferably greater than that of the first overdischarge protection switch 320 .
  • FIG. 4A illustrates that the battery protection circuit 400 further includes a first overcharge protection switch 410.
  • the first overcharge protection switch 410 is configured to be directly or indirectly coupled. Connected to the fifth terminal 411 of the negative terminal BS- of the battery pack BS.
  • the first control element 310 controls the first overcharge protection switch 410 to turn off.
  • the second control element 330 can also control the second overcharge protection switch 420 directly or indirectly coupled to the negative terminal BS- of the battery pack BS.
  • the second control element 330 controls the second overcharge protection switch 420 to be turned off.
  • the second overcharge preset voltage Vcth2 may be less than or equal to the first overcharge preset voltage Vcth1.
  • the second overcharge protection switch 420 can be used as the first channel protection to withstand large voltage changes.
  • the first control element 310 and the second control element 330 serve as mutual safety guarantees to ensure that the overcharge protection can at least be achieved by, Either of the first control element 310 and the second control element 330 is actuated.
  • first overcharge protection switch 410 and the second overcharge protection switch 420 of the present invention is not limited to FIGS. 4A-4B , and the battery protection circuit 400 can also be provided with charging interface terminals E1 , E3 and discharge terminals respectively. Interface terminals E1, E2.
  • the first overdischarge protection switch 320 and the second overdischarge protection switch 340 are disposed on the discharge path; and the first overcharge protection switch 410 and the second overcharge protection switch 420 are disposed on the charging path.
  • each battery module M1, M2, Mn has interface terminals E1 and E2 (E1 can be the positive terminal, and E2 can be the negative terminal), and the battery modules are serially connected in series (The interface end E2 of the battery module M1 is connected to the interface end E1 of the battery module M2).
  • E1 can be the positive terminal
  • E2 can be the negative terminal
  • the battery modules are serially connected in series
  • the interface end E2 of the battery module M1 is connected to the interface end E1 of the battery module M2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种电池保护电路,包含第一控制元件、第一过放保护开关以及第二过放保护开关。第一控制元件经组态以耦接至电池组以读取电池组中每一电池的电压数值。第一过放保护开关具有经组态以耦接至电池组的负端的第一端,以及第二端。第二过放保护开关具有耦接至第二端的第三端。其中,当电池组中的任一电池的电压小于过放预设电压时,第一控制元件控制第二过放保护开关先于第一过放保护开关断开。其中第二过放保护开关的电压耐性大于第一过放保护开关的电压耐性。

Description

电池保护电路及电池模组 技术领域
本发明关于一种电池保护电路及电池模组;特别是关于一种具有两种过放保护开关的电池保护电路及电池模组。
背景技术
为了追求更高的方便性与可携带性,越来越多的电子装置会采用电池的配置。为了达到装置所需要的电压与电量,大多会将多个电池单元通过串联或是并联的方式整合为电池组。当所需要的电压或电量过大时,电池组的保护电路的规格也会相应变大(例如,需要较高规格的主动元件或被动元件)。因此将会导致电池保护电路的成本上升。
此外,在一些时候,因应安全需求或安全法规需求,有时候需要有较高规格的保护效果。更高规格的电池保护电路亦需要较高规格的元件或者元件数量变多。亦导致电池保护电路的成本上升。
因此,如何能在所需要的安全规格以及电压/电量范围内,达到保护电池组的目的,且能降低成本,将是电池保护电路发展的一大重点。
发明的公开
一种电池保护电路,包含第一控制元件、第一过放保护开关以及第二过放保护开关。第一控制元件经组态以耦接至电池组以读取电池组中每一电池的电压数值。第一过放保护开关具有经组态以耦接至电池组的负端的第一端,以及第二端。第二过放保护开关具有耦接至第二端的第三端。其中,当电池组中的任一电池的电压小于过放预设电压时,第一控制元件控制第二过放保护开关先于第一过放保护开关断开。其中第二过放保护开关的电压耐性大于第一过放保护开关的电压耐性。
一种电池保护电路,包含第一控制元件、第一过放保护开关、第二控制 元件以及第二过放保护开关。第一控制元件经组态以耦接至电池组以读取电池组中每一电池的电压数值。第一过放保护开关具有经组态以耦接至电池组的负端的第一端,以及第二端。第二控制元件经组态以耦接至电池组以读取电池组中每一电池的电压数值。第二过放保护开关具有耦接至第二端的第三端。其中,当电池组中的任一电池的电压小于第一过放预设电压时,第一控制元件控制第一过放保护开关断开。当电池组中的任一电池的电压小于第二过放预设电压时,第二控制元件控制第二过放保护开关断开。其中,第二过放预设电压大于第一过放预设电压。
一种电池模组包含电池组以及前述任一的电池保护电路。
通过先后断开的过放保护开关,或是不同耐压规格的过放保护开关断开。由此提供电池保护电路完整保护(例如,作为备用或辅助),也不会因为安规需求导致电路成本上升。
附图的简要说明
图1A为本发明第一实施例中,电池保护电路的示意图。
图1B为为本发明第一实施例中,电路断开后电压分布式意图。
图2A-2B为本发明第二实施例中,电池保护电路的示意图。
图3为本发明第三实施例中,电池保护电路的示意图。
图4A-4C为本发明第四实施例中,电池保护电路的示意图。
图5为本发明第五实施例中,电池模组串接的示意图。
呈现附图以帮助描述本发明的各个方面,为简化附图及突显附图所要呈现的内容,附图中现有的结构或元件将可能以简单示意的方式绘出或是以省略的方式呈现。例如,元件的数量可以为单数亦可为复数。提供这些附图仅仅是为了解说这些方面而非对其进行限制。
主要元件符号说明:
100 电池保护电路
110 第一控制元件
120 第一过放保护开关
121 第一端
122 第二端
130 第二过放保护开关
131 第三端
132 第四端
200 电池保护电路
210 第一过充保护开关
300 电池保护电路
310 第一控制元件
320 第一过放保护开关
321 第一端
322 第二端
330 第二控制元件
340 第二过放保护开关
341 第三端
400 电池保护电路
410 第一过充保护开关
420 第二过充保护开关
BS 电池组
B1-Bn 电池
L 外部负载
ES 外部电源
E1,E2,E3 介面端
M1,M2,Mn 电池模组
实现本发明的最佳方式
对本文中使用诸如「第一」、「第二」等名称的元件的任何引用通常不限制这些元件的数目或顺序。相反,这些名称在本文中用作区分两个或更多个元件或元件实例的便利方式。因此,应当理解的是,权利要求中的名称「第一」、「第二」等不一定对应于书面描述中的相同名称。此外,应当理解的是,对第一和第二元件的引用并不表示只能采用两个元件或者第一元件必须在第二元件之前。关于本文中所使用的『包含』、『包括』、『具有』、『含有』等等,均为开放性的用语,即意指包含但不限于。
术语「耦接」在本文中用于指代两个结构之间的直接或间接电耦接。例如,在间接电耦接的一个示例中,一个结构可以经由电阻器、电容器或电感器等被动元件被耦接到另一结构。
在本发明中,词语「示例性」、「例如」用于表示「用作示例、实例或说明」。本文中描述为「示例性」、「例如」的任何实现或方面不一定被解释为比本发明的其他方面优选或有利。如本文中关于规定值或特性而使用的术语「大约」、「大致」旨在表示在规定值或特性的一定数值(例如,10%)以内。
如本文中所使用的,术语「电池组」及/或「电池」指的是可再次充电,反复使用的储电元件。例如,锂离子电池、铅酸电池或锂铁电池。然而,并非限定于化学能电池,任何能反复使用的储电元件皆可适用于本文「电池」的范畴。并且,本文所指的「电池组」及/或「电池」可以通过数个电池芯进行串联及/或并联达到增加总电压(例如,2V、6V、12V、48V、480V或1000V以下)或是总电量(例如,1000mAh至1000Ah或以上)。而术语「电池模组」为上述电池组结合以下说明的本发明各实施例中的电池保护电路。
于本发明的第一实施例中,请参照图1A-1B,图1A说明一种电池保护电路100,包含第一控制元件110、第一过放保护开关120以及第二过放保 护开关130。第一控制元件110经组态以耦接至电池组BS以读取电池组BS中每一电池B1-Bn的电压数值。第一过放保护开关120具有经组态以耦接至电池组BS的负端BS-的第一端121,以及第二端122。第二过放保护开关130具有耦接至第二端122的第三端131。其中,当电池组BS中的任一电池B1-Bn的电压小于过放预设电压Vdth时,第一控制元件110控制第二过放保护开关130先于第一过放保护开关120断开。其中第二过放保护开关130的电压耐性大于第一过放保护开关120的电压耐性。
具体来说,第一控制元件110可以例如为使用微处理机、现场可编程逻辑门阵列(FPGA)等具有运算能力的元件结合主动元件(例如,震荡晶片或模拟数字转换电路、或其他晶片)及/或被动元件(例如,电感器、电容器、电阻器等等)所构成的电路(例如,设置于印刷电路板上)。第一控制元件110也可以是由商用集成电路(例如,用于充放电保护的专用集成电路(ASIC))所构成。须说明的是,上述内容仅是示例,本发明的第一控制元件110并不限于上述形式。
第一控制元件110读取电池组BS中每一电池B1-Bn的电压数值,具体来说,可以通过将电池组BS中每一电池B1-Bn的正负极分别耦接至第一控制元件110以读取电池B1-Bn各别的电压(例如,通过模拟数字转换电路读取电压数值)。虽然图1并未绘出,当第一控制元件110的输入端或者是数字转换电路的输入端不足以匹配电池B1-Bn数量时,第一控制元件110亦可以通过切换器等方式依序耦接至电池B1-Bn,并分别读取电池B1-Bn的电压。此外,第一控制元件110亦可以设置例如温度感测器或是电流感测器等元件,可以通过各种感测器监控电池组BS中电池B1-Bn的各项参数(例如,温度、电流等)。并根据上述参数进行导通或者断开电池组BS的充电及/或放电回路等目的。
第一过放保护开关120与第二过放保护开关130例如但不限于可以为晶体管(例如,场效应晶体管FET或是绝缘栅双极型晶体管晶体管IGBT)或是继电器(例如,机械式继电器、电磁式继电器或者固态继电器)等开关元 件。第二过放保护开关130的电压耐性大于第一过放保护开关120的电压耐性。举例来说,第二过放保护开关130可以选择继电器而第一过放保护开关120可以选择场效应晶体管。须说明的是,电压耐性例如可以指开关两端所需承受的电压差或是开关本身须隔离的电压差。举例来说,较高的电压耐性表示该元件在断开回路时,可承受的两侧电压差。然而,电压耐性并不受限于上述举例,电压耐性也可能受到开关导通时自身阻抗以及流通电流所影响。
如图1A所示,第一过放保护开关120的第一端121耦接至电池组BS的负端BS-,而第二过放保护开关130的第三端131耦接至,第一过放保护开关120的第二端122。具体来说,第一过放保护开关120与第二过放保护开关130串接设置(即,当第一过放保护开关120与第二过放保护开关130任一者断开后,第一过放保护开关120与第二过放保护开关130所耦接的回路将会形成断路)。须说明的是,虽然图1所示为第一过放保护开关120耦接至电池组BS的负端BS-,而第二过放保护开关130耦接至第一过放保护开关120。然而,本领域具通常知识者可知第一过放保护开关120与第二过放保护开关130的耦接关系可以调换或者进行调整。举例来说,可以将第二过放保护开关130耦接至电池组BS的负端BS-并将第一过放保护开关120串接至第二过放保护开关130;或是,第一过放保护开关120的第二端122与第二过放保护开关130的第三端131通过电阻器、电感器等元件间接耦接。
当电池组BS进行放电时(例如,电池保护电路100的介面端E1、E2耦接负载L),电池组BS中电池B1-Bn的电压/电量因负载L的损耗而下降。当电池B1-Bn中任一电池的电压低于过放预设电压Vdth时,电压耐性较高的第二过放保护开关130先于第一过放保护开关120断开。举例来说,第一控制元件110例如可以设置断开时间差,将第二过放保护开关130先断开后经历延迟再将第一过放保护开关120断开。当第二过放保护开关130断开时,第二过放保护开关130耦接至电池保护电路100的介面端E2的第四端132与直接/间接耦接至电池组BS的负端BS-的第三端131之间会承受电池组 BS所输出的电压VBS(如图1B所示)。藉由先断开电压耐性较高的第二过放保护开关130可以提供更好的过放电保护,并且假如法规规定需要两组以上过放保护开关进行保护的情况时,也不会因为元件增加而导致电路所需成本增加过多。
于本发明第二实施例中,请参照图2A-2B,电池保护电路200还包括第一过充保护开关210,第一过充保护开关210具有经组态以直接或间接耦接至电池组BS的负端BS-的第五端211。当电池组BS中的任一电池B1-Bn的电压大于第一过充预设电压Vcth时,第一控制元件110控制第一过充保护开关210断开。具体来说,如图2A所示,第一过充保护开关210间接耦接至电池组BS的负端BS-(间隔第一过放保护开关120),且与第一过放保护开关120以及第二过放保护开关130串接。当介面端E1、E2耦接至外部电源ES进行充电时,第一控制元件110读取电池组BS中电池B1-Bn的电压数值,当电池组BS中的任一电池B1-Bn的电压大于第一过充预设电压Vcth时,第一控制元件110控制第一过充保护开关210断开以使充电路径断路。避免电池组BS中的电池B1-Bn因为充电过程中过度充电而导致损坏。于另一实施例中,如图2B所示,第一过充保护开关210直接耦接至电池组BS的负端BS-,且电池保护电路200具有介面端E3。当进行充电时,外部电源ES耦接介面端E1、E3(即,电池组BS、电池保护电路200与外部电源ES通过介面端E1、E3形成充电回路);而当放电时,外部负载L可以耦接介面端E1、E2(即,电池组BS、电池保护电路200与外部负载L通过介面端E1、E2形成放电回路)。然而,上述仅是举例并非用以限制本发明之第一过充保护开关210的设置方式。
于本发明的第三实施例中,请参照图3,图3说明一种电池保护电路300,包含第一控制元件310、第一过放保护开关320、第二控制元件330以及第二过放保护开关340。第一控制元件310经组态以耦接至电池组BS以读取电池组BS中每一电池B1-Bn的电压数值。第一过放保护开关320具有经组态以耦接至电池组BS的负端BS-的第一端321,以及第二端322。第二控制 元件330经组态以耦接至电池组BS以读取电池组BS中每一电池B1-Bn的电压数值。第二过放保护开关340具有耦接至第二端322的第三端341。其中,当电池组BS中的任一电池B1-Bn的电压小于第一过放预设电压Vdth1时,第一控制元件310控制第一过放保护开关320断开。当电池组BS中的任一电池B1-Bn的电压小于第二过放预设电压Vdth1时,第二控制元件330控制第二过放保护开关340断开。其中,第二过放预设电压Vdth2大于第一过放预设电压Vdth1。
具体来说,第一控制元件310与第二控制元件330可以例如为使用微处理机、现场可编程逻辑门阵列(FPGA)等具有运算能力的元件结合主动元件(例如,震荡晶片或模拟数字转换电路、或其他晶片)及/或被动元件(例如,电感器、电容器、电阻器等等)所构成的电路(例如,设置于印刷电路板上)。第一控制元件310与第二控制元件330也可以是由商用集成电路(例如,用于充放电保护的专用集成电路(ASIC))所构成。须说明的是,第一控制元件310与第二控制元件330可以是采用相同或是不同架构进行设置。
相较于第一控制元件310,第二控制元件330可以设定较严格的保护电压范围并提供第一道保护。具体来说,当电池组BS进行放电时,第一控制元件310与第二控制元件330分别对于电池组BS中的电池B1-Bn量测并监控电压。设置两组以上独立的控制元件不仅可以提供当元件失效时第二层保障,已符合高规格的安全需求(例如,法规或军/医用电池)。并且因为第二过放预设电压Vdth2大于第一过放预设电压Vdth1,所以第二过放保护开关340可以先于第一过放保护开关320关闭放电回路。于此实施例中,较佳为第二过放保护开关340的电压耐性大于第一过放保护开关320的电压耐性。
于本发明的第四实施例中,请参照图4A-4B,图4A说明电池保护电路400还包括第一过充保护开关410,第一过充保护开关410具有经组态以直接或间接耦接至电池组BS的负端BS-的第五端411。当电池组BS中的电池 B1-Bn的电压大于第一过充预设电压Vcth1时,第一控制元件310控制第一过充保护开关410断开。须说明的是,如图4B所示,第二控制元件330亦可以控制直接或间接耦接至电池组BS的负端BS-的第二过充保护开关420。当电池组BS中的电池B1-Bn的电压大于第二过充预设电压Vcth2时,第二控制元件330控制第二过充保护开关420断开。于此实施例中,第二过充预设电压Vcth2可以小于或等于第一过充预设电压Vcth1。在第二过充预设电压Vcth2小于第一过充预设电压Vcth1的设定中,当电池组BS的电池B1-Bn将要过充电时,第二过充保护开关420可以做为第一道保护,以承受较大的电压变化。而在第二过充预设电压Vcth2等于第一过充预设电压Vcth1的设定中,第一控制元件310与第二控制元件330作为彼此的安全确保,以确保过充保护至少可以由,第一控制元件310与第二控制元件330任一进行作动。
须说明的是,本发明的第一过充保护开关410与第二过充保护开关420的设置方式并不限于图4A-4B,电池保护电路400亦可以分别设置充电介面端E1、E3以及放电介面端E1、E2。第一过放保护开关320与第二过放保护开关340设置于放电路径上;而第一过充保护开关410与第二过充保护开关420设置于充电路径上。
于本发明的第五实施例中,本发明的电池保护电路与电池组整合后,作为电池模组亦可以通过串联/并联等方式进行运用。举例来说,如图5所示,每一个电池模组M1,M2,Mn都具有介面端E1、E2(E1可以为正端,且E2为负端),并依序串接各个电池模组(电池模组M1的介面端E2连接电池模组M2的介面端E1)。本领域通常知识者可以依据现有电池模组的连接方式进行串联及/或并联的应用,应属于本发明的范畴。
提供对本发明的先前描述以使得本领域具通常知识者能够制作或实施本发明。对于本领域具通常知识者来说,对本发明的各种修改将是很清楚的,并且在不脱离本发明的精神或范围的情况下,本文中定义的一般原理可以应用于其他变化。因此,本发明不旨在限于本文中描述的示例,而是符合与本文中发明的原理和新颖特征一致的最宽范围。

Claims (10)

  1. 一种电池保护电路,包含:
    一第一控制元件,经组态以耦接至一电池组以读取该电池组中每一电池的电压数值;
    一第一过放保护开关,具有经组态以耦接至该电池组的负端的一第一端,以及一第二端;以及
    一第二过放保护开关,具有耦接至该第二端的一第三端;
    其中,当该电池组中的任一电池的电压小于一过放预设电压时,该第一控制元件控制该第二过放保护开关先于该第一过放保护开关断开;
    其中该第二过放保护开关的电压耐性大于该第一过放保护开关的电压耐性。
  2. 如权利要求1所述的电池保护电路,还包括一第一过充保护开关,该第一过充保护开关具有经组态以直接或间接耦接至该电池组的负端的一第五端;当该电池组中的任一电池的电压大于一第一过充预设电压时,该第一控制元件控制该第一过充保护开关断开。
  3. 如权利要求2所述的电池保护电路,其中该第一过充保护开关、该第一过放保护开关与该第二过放保护开关串接。
  4. 如权利要求1所述的电池保护电路,其中该第二过放保护开关为继电器所构成。
  5. 一种电池保护电路,包含:
    一第一控制元件,经组态以耦接至一电池组以读取该电池组中每一电池的电压数值;
    一第一过放保护开关,具有经组态以耦接至该电池组的负端的一第一端,以及一第二端;
    一第二控制元件,经组态以耦接至该电池组以读取该电池组中每一电池的电压数值;以及
    一第二过放保护开关,具有耦接至该第二端的一第三端;
    其中,当该电池组中的任一电池的电压小于一第一过放预设电压时,该第一控制元件控制该第一过放保护开关断开;当该电池组中的任一电池的电压小于一第二过放预设电压时,该第二控制元件控制该第二过放保护开关断开;
    其中,该第二过放预设电压大于该第一过放预设电压。
  6. 如权利要求5所述的电池保护电路,其中该第二过放保护开关的电压耐性大于该第一过放保护开关的电压耐性;
  7. 如权利要求5所述的电池保护电路,还包括一第一过充保护开关,该第一过充保护开关具有经组态以直接或间接耦接至该电池组的负端的一第五端;当该电池组中的任一电池的电压大于一第一过充预设电压时,该第一控制元件控制该第一过充保护开关断开。
  8. 如权利要求7所述的电池保护电路,其中该第一过充保护开关、该第一过放保护开关与该第二过放保护开关串接。
  9. 如权利要求5所述的电池保护电路,其中该第二过放保护开关为继电器所构成。
  10. 一种电池模组,包含:
    一电池组;以及
    权利要求1-9任一所述的电池保护电路。
PCT/CN2021/139119 2020-12-17 2021-12-17 电池保护电路及电池模组 WO2022127903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063126586P 2020-12-17 2020-12-17
US63/126,586 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022127903A1 true WO2022127903A1 (zh) 2022-06-23

Family

ID=82021639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139119 WO2022127903A1 (zh) 2020-12-17 2021-12-17 电池保护电路及电池模组

Country Status (3)

Country Link
US (1) US20220200296A1 (zh)
TW (1) TWI804114B (zh)
WO (1) WO2022127903A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577105B1 (en) * 1999-05-17 2003-06-10 Matsushita Electric Industrial Co., Ltd. Circuit and device for protecting secondary battery
CN101055999A (zh) * 2006-02-23 2007-10-17 精工电子有限公司 充电/放电保护电路和供电装置
CN101800434A (zh) * 2009-10-23 2010-08-11 欣旺达电子股份有限公司 新型锂动力电池保护电路
CN102231516A (zh) * 2011-07-11 2011-11-02 深圳市量能科技有限公司 一种电池保护板以及动力电池、动力电池组
US20180152030A1 (en) * 2016-11-29 2018-05-31 Lg Chem, Ltd. Dual cell protection ic and battery module including same
US20200161877A1 (en) * 2018-11-21 2020-05-21 Lian Zheng Electronics (Shenzhen) Co., Ltd. Equalization circuit, a charging device and an energy storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783997A (zh) * 2019-11-30 2020-02-11 深圳市华思旭科技有限公司 电池保护电路与电池放电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577105B1 (en) * 1999-05-17 2003-06-10 Matsushita Electric Industrial Co., Ltd. Circuit and device for protecting secondary battery
CN101055999A (zh) * 2006-02-23 2007-10-17 精工电子有限公司 充电/放电保护电路和供电装置
CN101800434A (zh) * 2009-10-23 2010-08-11 欣旺达电子股份有限公司 新型锂动力电池保护电路
CN102231516A (zh) * 2011-07-11 2011-11-02 深圳市量能科技有限公司 一种电池保护板以及动力电池、动力电池组
US20180152030A1 (en) * 2016-11-29 2018-05-31 Lg Chem, Ltd. Dual cell protection ic and battery module including same
US20200161877A1 (en) * 2018-11-21 2020-05-21 Lian Zheng Electronics (Shenzhen) Co., Ltd. Equalization circuit, a charging device and an energy storage device

Also Published As

Publication number Publication date
TWI804114B (zh) 2023-06-01
US20220200296A1 (en) 2022-06-23
TW202226709A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US11962176B2 (en) Battery, terminal, and charging system
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
KR102028170B1 (ko) 셀 밸런싱 회로 및 이를 구비한 배터리 팩
US20130069594A1 (en) Battery pack and method for charging battery pack
US7821230B2 (en) Method and system for cell equalization with switched charging sources
KR101182430B1 (ko) 배터리 팩
US20150263559A1 (en) Battery pack and controlling method thereof
KR101137376B1 (ko) 배터리 팩
KR100453898B1 (ko) 휴대 전자기기용 배터리 팩
EP3771057B1 (en) Cell protection circuit and electronic device
KR20150107032A (ko) 배터리 팩
TW201611467A (zh) 充放電控制電路以及電池裝置
WO2016167467A1 (ko) 배터리 보호회로 패키지 및 이를 포함하는 배터리 팩
TWI693772B (zh) 具有針對每一串聯二次電池芯進行充電管理功能的電池模組
US11996726B2 (en) Battery pack
WO2022127903A1 (zh) 电池保护电路及电池模组
JP4108339B2 (ja) リチウムイオン二次電池の充電方法及び装置
KR20160098873A (ko) 배터리 보호회로, 배터리 보호회로 패키지 및 이를 포함하는 배터리 팩
KR102320110B1 (ko) 하나의 전류 센싱 저항을 갖는 배터리 보호 회로
KR20160063757A (ko) 배터리 충전방법 및 이를 이용한 배터리 팩
EP3772153B1 (en) Battery protection system
KR102161289B1 (ko) 외장 배터리
CN217240368U (zh) 并联电池保护电路及供电装置
WO2021080198A1 (ko) 프리차지 회로 및 이를 포함하는 배터리 시스템
JP3031969B2 (ja) 充電式電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905828

Country of ref document: EP

Kind code of ref document: A1