WO2022127667A1 - 基于虚拟网元的业务配置方法、***、虚拟网元及设备 - Google Patents

基于虚拟网元的业务配置方法、***、虚拟网元及设备 Download PDF

Info

Publication number
WO2022127667A1
WO2022127667A1 PCT/CN2021/136441 CN2021136441W WO2022127667A1 WO 2022127667 A1 WO2022127667 A1 WO 2022127667A1 CN 2021136441 W CN2021136441 W CN 2021136441W WO 2022127667 A1 WO2022127667 A1 WO 2022127667A1
Authority
WO
WIPO (PCT)
Prior art keywords
subrack
network element
target
service configuration
virtual network
Prior art date
Application number
PCT/CN2021/136441
Other languages
English (en)
French (fr)
Inventor
田琪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022127667A1 publication Critical patent/WO2022127667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a virtual network element-based service configuration method, system, virtual network element, and device.
  • Packet-enhanced optical transport network POTN equipment because of its hardware design, a site can manage up to 127 subracks, so that the hardware resources of POTN equipment can meet the needs of different use environments.
  • the service configuration and management of all subracks in the entire site of the POTN equipment are implemented through the main control board of the main rack in the POTN equipment.
  • the processing performance of the main control board With the continuous access of new subracks, the processing performance of the main control board will also bring great challenges. Once the processing performance of the main control board cannot meet the service configuration and management requirements of all subracks in the entire site, it will lead to Some subracks cannot manage and process services normally, which affects the stability and reliability of POTN equipment.
  • the present disclosure provides a virtual network element-based service configuration method, system, virtual network element and equipment, aiming at relieving the performance pressure of the main control board, thereby improving the stability and reliability of the POTN equipment.
  • the present disclosure provides a service configuration method based on virtual network elements, which is applied to POTN equipment.
  • a virtual network element can be created on any subrack of the POTN equipment.
  • a service configuration request which includes a service configuration message; the virtual network element parses the service configuration message to obtain a service information flow and a service configuration command code; the virtual network element determines the first target subrack according to the service information flow, and sends the service configuration command
  • the code is sent to the first target subrack, and the first target subrack is the subrack in the POTN equipment site for processing the service corresponding to the service configuration command code; the first target subrack determines the target board according to the service configuration command code.
  • the board processes the service corresponding to the service configuration command code.
  • the present disclosure also provides a virtual network element-based service configuration system, including: a control and management server, a virtual network element, and a first target subrack in a POTN equipment site.
  • the control and management server is configured to send a service configuration request to the virtual network element, where the service configuration request includes a service configuration message.
  • the virtual network element is used to parse the service configuration message to obtain the service information flow and the service configuration command code; determine the first target subrack according to the service information flow, and send the service configuration command code to the first target subrack.
  • the rack is a subrack in the POTN equipment site used to process the services corresponding to the service configuration command codes.
  • the first target subrack is used for determining a target single board according to the service configuration command code, and processing the service corresponding to the service configuration command code in the target single board.
  • the present disclosure also provides a virtual network element, which is used for parsing a service configuration message sent by a control and management server to obtain a service information flow and a service configuration command code;
  • the first target subrack for processing the service configuration command code sends the service configuration command code to the first target subrack to instruct the first target subrack to determine the target single board according to the service configuration command code, and process it in the target single board The service corresponding to the service configuration command code.
  • the present disclosure also provides a POTN device, where a virtual network element is created on any subrack of the POTN device site, and the virtual network element is used to parse the service configuration message sent by the control and management server to obtain the service information flow and
  • the service configuration command code is used to determine the first target subrack in the POTN equipment site for processing the service configuration command code according to the service information flow, and the service configuration command code is sent to the first target subrack to instruct the first target subrack according to the service configuration command code.
  • the configuration command code determines the target board, and the service corresponding to the service configuration command code is processed on the target board.
  • FIG. 1 is a schematic diagram of a virtual network element-based service configuration system provided by the present disclosure
  • FIG. 2 is a schematic diagram of the architecture of the POTN device 12 in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the virtual network element 121 in FIG. 2;
  • FIG. 4 is a schematic diagram of an implementation flow of the virtual network element-based service configuration method provided by the present disclosure
  • FIG. 5 is a schematic flowchart of another implementation of the virtual network element-based service configuration method provided by the present disclosure.
  • Fig. 6 is the concrete realization flow chart of S501 in Fig. 5;
  • FIG. 7 is a schematic structural diagram of an embodiment of a virtual network element provided by the present disclosure.
  • FIG. 8 is a schematic structural diagram of another embodiment of the virtual network element provided by the present disclosure.
  • the Packet Enhanced Optical Transport Network (POTN) device is an optical channel-based device.
  • POTN equipment needs to be configured with a single-site multi-subrack stack.
  • a site may have a variety of subrack forms, such as transmission subracks, which are used to realize the transmission of optical layer services.
  • adding support for grouping requires running a large number of various network protocol processes; compatible with the management of single-board boards of the old platform architecture, a lot of interface adaptation work needs to be done on the main control board, and many additional message processing and distribution modules are added. .
  • the configuration data and function queries issued by the control and management server are all run on the main control board of the main subrack, resulting in a large occupation of resources (processor/memory) of the main control board, affecting the processing performance of the main control board, and further affecting the performance of the main control board. Stability and reliability of POTN equipment.
  • the present disclosure provides a virtual network element-based service configuration method, system, virtual network element and POTN equipment.
  • the virtual network element-based service configuration method can be applied to a virtual network element-based service configuration system, and the virtual network element-based service configuration system includes a control management server, a virtual network element, and a first target in a POTN equipment site subframe.
  • FIG. 1 is a schematic diagram of a virtual network element-based service configuration system provided by the present disclosure.
  • the virtual network element-based service configuration system 10 provided in this embodiment includes: a control management server 11 and a POTN device 12 .
  • the POTN equipment 12 site includes at least one subrack.
  • the POTN device 12 includes subrack 1, subrack 2, . . . , subrack n, where n is an integer greater than 1.
  • each subrack is composed of a group of sub-network elements with independent functions, and each sub-network element is managed by its own network management, or managed by a unified network management.
  • each sub-network element should support functions such as the configuration and query of single-point services on the management plane (in this embodiment, the network management or unified network management corresponding to each sub-network element, specifically, the network management is not shown in FIG. 1 ).
  • the sub-network element delivers the configuration query operation of the network management to the line card for execution through the internally integrated unified equipment model UEM.
  • each sub-network element also accepts the service configuration command codes processed by the virtual network element 121 and sent by the control plane (in this embodiment, the control management server 11), and splits these service configuration command codes into At the board level (eg, the line card in Figure 2), it is sent to the target board (one of the line cards) for execution.
  • a virtual network element 121 is provided on the subrack 1 of the POTN equipment 12 .
  • the virtual network element 121 may be preset on any subrack in the site of the POTN device 12 .
  • the virtual network element 121 may be set on the first target subrack 122 , or may be set on other subracks other than the first target subrack 122 in the POTN device 12 site. That is to say, the first target subrack 122 may be the subrack 1 or other subracks other than the subrack 1 .
  • the first target subrack 122 is the subrack 2 .
  • each subrack of the POTN device 12 has the same logical module.
  • each subrack includes a management plane adaptation agent, a storage management model MIM, a unified equipment model UEM, and a line card (also called a single board). )Wait.
  • each subrack of the POTN device 12 may be managed by one network management 123 as shown in FIG. 2 in a unified manner, or may be managed by their corresponding network management (not shown in FIG. 2 ).
  • Each subrack There will be QX channels and interfaces of the subracks between the network management system 123 and the subrack, wherein the specific format content of the QX is related to the subnet type and version in the corresponding subrack, and will not be described in detail here.
  • the control management server 11 is used to send a service configuration request to the virtual network element 121, and the service configuration request includes a service configuration message; the virtual network element 121 is used to parse the service configuration message to obtain the service information flow and service configuration command code.
  • the virtual network element 121 further determines the first target subrack 122 according to the service information flow, and sends the service configuration command code to the first target subrack 122, and the first target subrack 122 is used in the POTN equipment 12 site for processing the service configuration command.
  • the first target subrack 122 is used to determine the target single board according to the service configuration command code, and process the service corresponding to the service configuration command code in the target single board.
  • control and management server 11 may be implemented by software, for example, the central processing unit on the control and management server 11 may perform corresponding operations; or, the functions of the control and management server 11 may be implemented by It is implemented by a running SDN controller.
  • the control management server 11 may issue a service configuration request to the virtual network element 121 through the SDN controller.
  • the SDN controller has good scalability, supports flexible scheduling functions of multi-vendor and multi-region, collaborative control of end-to-end services, and intelligent network operation and maintenance capabilities.
  • FIG. 3 is a schematic structural diagram of the virtual network element 121 in FIG. 2 .
  • the virtual network element 121 Since the virtual network element 121 is set on any subrack in the site of the POTN device 12, it replaces the main control board on the main subrack in the site of the POTN device 12 to send the service configuration command code to each subrack in the site of the POTN device 12. Therefore, The virtual network element 121 and each subrack in the site of the POTN device 12 together constitute the POTN device 12 , as shown in FIG. 2 here.
  • each subrack in the site of the POTN device 12 is similar to a server node, and the function of the virtual network element 121 can be implemented by software on the subrack.
  • the virtual network element 121 may be a software logical entity with an independent processing function.
  • the virtual network element 121 shown in FIG. 3 includes a management plane adaptation agent 1211, referred to as agent, an optical network control module 1212, referred to as WASON for short, and Unified Equipment Model 1213, referred to as UEM.
  • the management plane adaptation agent 1211 is used to complete the global configuration of the virtual network element 121 according to the network element attribute mode, IP and mask configured by the user.
  • the management plane adaptation agent 1211 completes the global configuration of the virtual network element 121 according to the host network element attribute mode, IP and mask address configured by the user.
  • the configuration information includes the network element information of each subrack in the POTN equipment site and the master-slave relationship between the virtual network element and all the subracks.
  • the optical network control module 1212 is an automatic switching transmission network module, which is used to automatically select routes according to service requests dynamically initiated by users or network managers, and realize functions such as establishment, modification, and removal of service connections through signaling control. Transmission as one of the optical transmission network.
  • the unified device model 1213 is the core of the virtual network element 121, which can provide a unified management data abstraction and access interface for all application layers in the virtual network element 121, and is the unified data management center when the virtual network element 121 is running.
  • the unified device model 1213 is used to parse the service configuration message to obtain the service information flow and the service configuration command code; further determine the first target subrack 122 according to the service information flow, and send the service configuration command code to the first target subrack 122, to instruct the first target subrack 122 to determine the target single board according to the service configuration command code, and to process the service corresponding to the service configuration command code in the target single board.
  • the virtual network element-based service configuration system parses the service configuration message sent by the control and management server 12 through the virtual network element 121 preset on any subrack in the POTN equipment 12 site. Further, the first target subrack 122 is determined according to the service flow information and the service configuration command code obtained by the analysis, which realizes the configuration of the subrack services in the POTN equipment site through the virtual network element, so that the main control board of the main subrack in the POTN equipment site does not need to be used.
  • the configuration of subrack services can relieve the performance pressure of the main control board of the main subrack in the POTN equipment site, thereby improving the stability and reliability of the POTN equipment.
  • FIG. 4 is a schematic flowchart of an implementation of the virtual network element-based service configuration method provided by the present disclosure.
  • the virtual network element-based service configuration method includes steps S401 to S404.
  • the virtual network element receives a service configuration request sent by the control and management server, where the service configuration request includes a service configuration message.
  • the control and management server is a management and control plane of the POTN device, and the POTN device can be operated, configured and maintained through the management and control plane.
  • the control and management server can provide basic management of the configuration, fault, performance, etc. of the POTN equipment network system through the network management of each subrack in the POTN equipment.
  • the control management server can also issue a service configuration request to the POTN device through the internal software.
  • the SDN controller has good scalability, supports flexible scheduling functions of multi-vendor and multi-area, collaborative control of end-to-end services, and intelligent network operation and maintenance capabilities, it is widely used in the control system.
  • the management server it is used to deliver a service configuration request to the POTN device.
  • the control and management server sends a service configuration request to a pre-created virtual network element in the POTN device, and the virtual network element completes service distribution and configuration of each site in the POTN device.
  • the virtual network element parses the service configuration message to obtain service information flow and service configuration command codes.
  • the virtual network element is composed of a group of software logical entities with independent functions, which can be deployed on the main control board of any subrack of the POTN device, for example, in this example, deployed on the POTNN device.
  • the management plane for example, network management
  • the control plane for example, the control management server through the SDN controller
  • the generated electrical/optical layer services are configured in different subracks of the POTN equipment, which reduces the basic resource usage of the main control board on the main subrack of the POTN equipment.
  • the virtual network element receives the global configuration of the management plane virtual network element through the management plane adaptation agent agent.
  • the global configuration includes network element attribute configuration, IP configuration for communication between virtual network elements and sub-network elements, mask configuration, site configuration, and the like.
  • the creation of virtual network elements can be completed according to the global configuration.
  • the virtual network element configures the electrical/optical layer service data delivered by the control plane through the unified equipment model UEM.
  • the configuration data sent by the control and management server includes end-to-end service configuration packets, and the service configuration packets include service information flow and service configuration command codes; the virtual network element parses the service configuration packets through the unified device model UEM to obtain the service information flow and service configuration command codes.
  • the service information flow refers to port paths between line cards of a sub-network element (network elements included in a sub-rack), such as starting from a line card port of that sub-network element to which line-card ports of another sub-network element.
  • the unified equipment model UEM is to find the port path of the line card that the configuration packet passes through, and deliver the service configuration command code to the corresponding line card.
  • the corresponding line card is divided into the target board address contained in the service configuration command code.
  • the sub-network element where the target board is located can be executed in the sub-network element, so that the sub-network element can load share the message flow of service operation and reduce the utilization rate of basic resources of the main control board.
  • the virtual network element determines the first target subrack according to the service information flow, and sends the service configuration command code to the first target subrack, where the first target subrack is a subrack in the POTN equipment site for processing the service corresponding to the service configuration command code shelf.
  • the network element information includes subrack information; the service information flow includes subrack information on the service path.
  • the subrack information includes the subrack number, the number of boards contained in the subrack, the port number of the board, the service types supported by the board ports, and the connections between the board ports.
  • the virtual network element determining the first target subrack according to the service information flow may include: the virtual network element matches the subrack information on the service path with the subrack information included in the aggregated network element information, Get the first target subframe.
  • the service configuration command code includes an optical layer service configuration command code and an electrical layer service configuration command code. If the service configuration command code is the optical layer service configuration command code, the virtual network element determines the first target subrack according to the service information flow, and sends the service configuration command code to the first target subrack, which may include: the virtual network element according to the service information The flow determines the first target subrack, splits the address of the target single board according to the optical layer service configuration command code, and sends the address of the target single board to the first target subrack.
  • the virtual network element determines the first target subrack according to the service information flow, and sends the service configuration command code to the first target subrack, including: the virtual network element according to the service information flow Determine the first target subrack, and send the electrical layer service configuration command code to the first target subrack.
  • the optical layer command code is generally a service between large network elements (in this embodiment, between subracks) under the management of a virtual network element, and the virtual network element is reported from the end-to-end service configuration.
  • This paper parses out the optical layer service configuration command code, and splits the single-board granularity (line card) command code according to the optical layer service configuration command code, and assembles the single-board granularity command code into a command list.
  • the single-board granularity command code includes the target single-board address.
  • the electrical layer command code is generally a service between single network elements (in this embodiment, within a subrack), and the virtual network element parses the electrical data from the end-to-end service configuration message.
  • the layer service configuration command code is transparently transmitted to the first target subrack.
  • the first target subrack determines a target single board according to the service configuration command code, and processes the service corresponding to the service configuration command code in the target single board.
  • the first target subrack receives the optical layer service configuration command code sent by the virtual network element, determines the target single board according to the target single board address included in the optical layer service configuration command code, and assigns the optical layer service The configuration command code is forwarded to the target board for processing.
  • the first target subrack receives the electrical-layer service configuration command code transparently transmitted by the virtual network element, determines the target board according to the electrical-layer service configuration command code, and forwards the electrical-layer service configuration command code to the target board for processing.
  • the first target subrack determines the target single board according to the electrical layer service configuration code, including: the first target subrack splits the single board granularity command code from the electrical layer service configuration command code, and the single board granularity command code includes: Target board address. Determine the target board according to the target board address.
  • the virtual network element-based service configuration system parses the service configuration message sent by the control and management server 12 through the virtual network element 121 preset on any subrack in the POTN equipment 12 site. Further, the first target subrack 122 is determined according to the service flow information and the service configuration command code obtained by the analysis, which realizes the configuration of the subrack services in the POTN equipment site through the virtual network element, so that the main control board of the main subrack in the POTN equipment site does not need to be used.
  • the configuration of subrack services can relieve the performance pressure of the main control board in the POTN equipment site, thereby improving the stability and reliability of the POTN equipment.
  • FIG. 5 is a schematic flowchart of another implementation of the virtual network element-based service configuration method provided by the present disclosure.
  • the specific implementation processes of S502 to S505 and S401 to S404 are the same, and the difference is that S501 is further included before S502 .
  • the second target subrack in the POTN equipment site creates a virtual network element in the second target subrack in response to the host network element attribute mode, IP and mask configured by the user, and the second target subrack is in the POTN equipment site
  • Any subrack in the virtual network element stores the network element information of each subrack in the POTN equipment site and the master-slave relationship between the virtual network element and all the subracks.
  • the user can preselect to create a virtual network element in a certain subrack in the POTN equipment site, and in an exemplary embodiment, the user can select the attribute mode of the subrack in the network management corresponding to the subrack , for example, the host network element, the host network element may be on the same sub-rack with the main control board or the host network element and the main control board are not in the same sub-rack, and the host network element is configured through the network management to communicate with the sub-network element
  • the corresponding IP and mask of the POTN device will create a virtual network element after receiving the attribute mode, IP and mask of the host network element configured by the user based on the network management of the subrack.
  • FIG. 6 is a specific implementation flowchart of S501 in FIG. 5 . It can be seen from FIG. 6 that S501 includes sub-steps S5011 to S5013.
  • the second target subrack in the POTN equipment site creates a new site in the second target subrack in response to the host network element attribute mode, IP and mask configured by the user.
  • each subrack in the POTN equipment site reports the corresponding network element information to the new site in response to the subnetwork element attribute mode configured by the user.
  • an inter-layer communication IP will be created, and the inter-layer communication IP is the IP for the communication between the sub-network element and the virtual network element.
  • the sub-network element periodically sends sub-rack information, such as the current sub-rack number, the inter-layer communication IP and mask of the sub-network element, etc., to establish a communication link with the virtual network element.
  • the IP allocation rule for interlayer communication needs to be pre-agreed with the virtual network element. For example, the first two digits of the interlayer communication IP are fixed, and the last two digits use the subrack number and slot number of the subnet element.
  • each sub-network element uses the single-board optical fiber information configured by the user through the network management of each sub-rack, or the service configuration data recovered from the local database. Calculate the NE information of each subrack.
  • the network element information includes the subrack number, the number of boards included in the subrack, the port number of the single board, the service type supported by the single board port, and the connection status between the single board ports, and the like. After each subrack receives the request for setting sub-network elements from the network management, it will automatically report the information of its own network element to the new site. Get the virtual network element.
  • the method before each subrack in the POTN equipment site reports the corresponding network element information to the virtual network element in response to the sub-network element attribute mode configured by the user, the method further includes: Each sub-rack of the device establishes a communication link with the virtual network element respectively; each sub-rack in the POTN equipment site accepts the network element attribute configured by the user, and obtains the corresponding network element information of each sub-rack.
  • the second target subrack summarizes the network element information of all the subracks in the POTN equipment site in the new site, stores the master-slave relationship between the virtual network element configured by the user and all the subracks in the new site, and obtains the virtual network element running information.
  • the second target subrack aggregates the network element information of all the subracks into the newly created site.
  • the network element information of all subracks may be aggregated into the newly created site through the automatic discovery function of the newly created site.
  • the network topology relationship of all subracks in the POTN equipment site may also be obtained according to the network element information of all subracks.
  • the operation information of the virtual network element includes the master-slave relationship between the virtual network element and all subracks and the network element information of all the subracks.
  • control and management server sends a service configuration request to a pre-created virtual network element, where the service configuration request includes a service configuration message.
  • the virtual network element parses the service configuration message to obtain the service information flow and the service configuration command code.
  • the virtual network element determines the first target subrack according to the service information flow, and sends the service configuration command code to the first target subrack, where the first target subrack is a subrack in the POTN equipment site for processing the service corresponding to the service configuration command code shelf.
  • the first target subrack determines a target single board according to the service configuration command code, and processes the service corresponding to the service configuration command code in the target single board.
  • the virtual network element-based service configuration method provided by the above-mentioned embodiment, the virtual network element-based service configuration system, parses the data sent by the control management server 12 through the virtual network element 121 preset on any subrack in the POTN equipment 12 site.
  • a service configuration message is sent, and then the first target subrack 122 is determined according to the service flow information and service configuration command code obtained by parsing, which realizes the configuration of the subrack services in the POTN equipment site through the virtual network element, so that the main subrack in the POTN equipment site is configured.
  • the main control board does not need to configure subrack services, which can relieve the performance pressure of the main control board in the POTN equipment site, thereby improving the stability and reliability of the POTN equipment.
  • FIG. 7 is a schematic structural diagram of an embodiment of a virtual network element provided by the present disclosure.
  • Each of the included modules is used to execute the function corresponding to the virtual network element.
  • the virtual network element 121 includes a parsing module 701 , a determining module 702 and a sending module 703 .
  • the parsing module 701 is used for parsing the service configuration message sent by the control and management server to obtain the service information flow and the service configuration command code.
  • the determining module 702 is configured to determine, according to the service information flow, a first target subrack for processing the service configuration command code in the POTN equipment site.
  • the sending module 703 is configured to send the service configuration command code to the first target subrack to instruct the first target subrack to determine the target board according to the service configuration command code, and process the service corresponding to the service configuration command code in the target board.
  • the virtual network element provided in this embodiment can parse the service configuration message sent by the control and management server, obtain the service information flow and the service configuration command code, and determine the first order code for processing the service configuration command code in the POTN equipment site according to the service information flow.
  • a target subrack sends the service configuration command code to the first target subrack, which realizes subrack service configuration instead of the main control board on the main subrack in the POTN equipment site, and can slow down the main control board on the subrack in the POTN equipment site. performance pressure, thereby improving the stability and reliability of POTN equipment.
  • FIG. 8 is a schematic structural diagram of another embodiment of a virtual network element provided by the present disclosure.
  • the virtual network element 121 includes a processor 801 and a memory 802, and the processor 801 and the memory 802 are connected through a bus 803, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 801 is configured to provide computing and control capabilities to support the operation of the entire virtual network element.
  • the processor 801 can be a central processing unit (Central Processing Unit, CPU), and the processor 801 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor or the like.
  • the memory 802 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • ROM Read-Only Memory
  • the memory 802 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • FIG. 8 is only a block diagram of a partial structure related to the solution of the present disclosure, and does not constitute a limitation on the virtual network element to which the solution of the present disclosure is applied.
  • the specific server may be Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • the processor is used to run the computer program stored in the memory, and implement the virtual network element function provided by the present disclosure when the computer program is executed.
  • the processor is configured to run a computer program stored in the memory, and implement the following steps A1 to A2 when executing the computer program.
  • A2. Determine the first target subrack according to the service information flow, and send the service configuration command code to the first target subrack to instruct the first target subrack to determine the target board according to the service configuration command code, and process the service in the target board Configure the service corresponding to the command code.
  • the first target subrack is a subrack in the device site for processing the service corresponding to the service configuration command code.
  • the present disclosure also provides a storage medium for computer-readable storage, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement any of the functions provided in the present disclosure.
  • the storage medium may be an internal storage unit of the virtual network element in the foregoing embodiment, such as a hard disk or a memory of a virtual network element device.
  • the storage medium may also be an external storage device of the virtual network element, for example, a pluggable hard disk equipped on the virtual network element, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, and a flash memory card (Flash card). Card), etc.
  • the present disclosure provides a virtual network element-based service configuration method, system, virtual network element and POTN equipment.
  • the present disclosure obtains service information flow and service configuration command code by parsing a service configuration message sent by a control and management server through the virtual network element.
  • the virtual network element determines the first target sub-rack according to the service information flow, and sends the service configuration command code to the first target sub-rack to instruct the first target sub-rack to determine the target single board according to the service configuration command code.
  • the service corresponding to the service configuration command code is processed in the middle.
  • the configuration of subrack services in POTN equipment sites is realized through virtual network elements, which can relieve the performance pressure of main control boards in POTN equipment sites, thereby improving the stability and reliability of POTN equipment.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供一种基于虚拟网元的业务配置方法、***、虚拟网元及设备,该方法包括:控制管理服务器向预先创建的虚拟网元发送业务配置请求;虚拟网元解析业务配置报文,得到业务信息流和业务配置命令码;虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,第一目标子架为POTN设备站点内用于处理业务配置命令码对应业务的子架;第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。

Description

基于虚拟网元的业务配置方法、***、虚拟网元及设备
相关申请的交叉引用
本公开要求享有2020年12月18日提交的名称为“基于虚拟网元的业务配置方法、***、虚拟网元及设备”的中国专利申请CN202011511936.2的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种基于虚拟网元的业务配置方法、***、虚拟网元及设备。
背景技术
分组增强型光传送网络POTN设备,由于其在硬件设计上,一个站点最多可以管理127个子架,使得POTN设备的硬件资源能够满足不同使用环境的需求。但是POTN设备的整个站点中所有子架的业务配置及管理,均是通过POTN设备中主机架的主控板来实现的。随着新子架的不断接入,对主控板的处理性能也会带来很大的挑战,一旦主控板的处理性能不能满足整个站点所有子架的业务配置及管理需求,则会导致部分子架无法正常管理和进行业务处理,进而会影响POTN设备的稳定性和可靠性。
发明内容
本公开提供一种基于虚拟网元的业务配置方法、***、虚拟网元及设备,旨在缓解主控板的性能压力,进而提高POTN设备的稳定性和可靠性。
第一方面,本公开提供一种基于虚拟网元的业务配置方法,应用于POTN设备,POTN设备的任意一个子架上可创建虚拟网元,该方法包括:虚拟网元接收控制管理服务器发送的业务配置请求,业务配置请求包括业务配置报文;虚拟网元解析业务配置报文,得到业务信息流和业务配置命令码;虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,第一目标子架为POTN设备站点内用于处理业务配置命令码对应业务的子架;第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
第二方面,本公开还提供一种基于虚拟网元的业务配置***,包括:控制管理服务器、虚拟网元和POTN设备站点内的第一目标子架。控制管理服务器,用于向虚拟网元发送业务配置请求,业务配置请求包括业务配置报文。虚拟网元,用于解析业务配置报文,得到业务信息流和业务配置命令码;根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,第一目标子架为POTN设备站点内用于处理业务配置命令码对应业务的子架。第一目标子架,用于根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应业务。
第三方面,本公开还提供一种虚拟网元,该虚拟网元用于解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码;根据业务信息流确定POTN设备站点内用于处理业务配置命令码的第一目标子架,将业务配置命令码发送给第一目标子架,以指示第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
第四方面,本公开还提供一种POTN设备,该POTN设备站点的任意一个子架上创建有虚拟网元,虚拟网元用于解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码,根据业务信息流确定POTN设备站点内用于处理业务配置命令码的第一目标子架,将业务配置命令码发送给第一目标子架,以指示第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
附图说明
为了更清楚地说明本公开技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的基于虚拟网元的业务配置***的示意图;
图2为图1中POTN设备12的架构示意图;
图3为图2中虚拟网元121的架构示意图;
图4为本公开提供的基于虚拟网元的业务配置方法的一实现流程示意图;
图5为本公开提供的基于虚拟网元的业务配置方法的另一实现流程示意图;
图6为图5中S501的具体实现流程图;
图7为本公开提供的虚拟网元的一个实施例的结构示意图;
图8为本公开提供的虚拟网元的另一个实施例的结构示意。
具体实施方式
下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
在说明本公开提供的基于虚拟网元的业务配置方法、***、虚拟网元及POTN设备之前,需要说明的是,分组增强型光传送网络(Packet enhanced Optical Transport Network,POTN)设备为基于光信道数据单元ODUk交叉、光通路数据单元VC交叉以及分组交换Packet交叉功能的统一信元交叉结构。在一些情形中,POTN设备为了支持上述不同业务,需要配置单站点多子架的堆叠,一个站点会存在多种多样的子架形态,例如,有传输子架,用于实现光电层业务的传输;有交叉子架,用于实现业务包的交换和调度,甚至存在集群拓展子架等。POTN设备在硬件设计上,一个站点最多可以管理127个子架,硬件的限制和约束几乎没有,但是POTN设备所有站点子架的业务配置和调度是通过POTN设备站点中的主机架(通过网管预先配置的任意一个子架)的主控板来控制管理整个站点的所有子架,随着新子架和线卡的不断接入,对主控板的管理能力和业务处理能力要求会越来越高。首先,新增支持分组功能,需要运行大量的各种网络协议进程;兼容管理老平台架构的单板板卡,在主控板上要做很多接口适配工作,额外增加了很多消息处理分发模块。其次,控制管理服务器下发的配置数据和功能查询,全部在主子架主控板上运行,导致主控板的资源(处理器/内存)占用大,影响到主控板的处理性能,进而影响POTN设备的稳定性和可靠性。
本公开为了解决上述技术问题,提供了一种基于虚拟网元的业务配置方法、***、虚拟网元及POTN设备。其中,该基于虚拟网元的业务配置方法可应用于基于虚拟网元的业务配置***中,该基于虚拟网元的业务配置***包括控制管理服务器、虚拟网元以及POTN设备 站点内的第一目标子架。
下面结合附图,对本公开的一些实施例提供的基于虚拟网元的业务配置方法的实现原理及过程进行示例性地说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参照图1所示,图1为本公开提供的基于虚拟网元的业务配置***的示意图。由图1可知,本实施例提供的基于虚拟网元的业务配置***10包括:控制管理服务器11和POTN设备12。POTN设备12站点包括至少一个子架。由图2可知,在本实施例中,POTN设备12包括子架1,子架2,...,子架n,其中,n为大于1的整数。在一示例性实施例中,每个子架均由一组具有独立功能的子网元组成,各个子网元分别被各自的网管管理,或者被一个统一的网管管理。各个子网元一方面要支持管理面(本实施例中为各个子网元各自对应的网管或者统一的网管,具体在图1中未示出网管)单点业务的配置和查询等功能,例如,在本实施例中,子网元通过内部集成的统一设备模型UEM将网管的配置查询操作下发到线卡上执行。另一方面,各个子网元还要接受控制面(在本实施例中为控制管理服务器11)下发的经过虚拟网元121处理下来的业务配置命令码,将这些业务配置命令码拆分到单板级别(例如,图2中的线卡),发送给目标单板(其中一个线卡)执行。
此外,由图2可知,在POTN设备12的子架1上设置有虚拟网元121。需要说明的是,虚拟网元121可以预先设置在POTN设备12站点内的任意一个子架上。此外,在POTN设备12的站点内的各个子架中有第一目标子架122。对应地,虚拟网元121可以设置在第一目标子架122上,也可以设置在POTN设备12站点内除第一目标子架122之外的其它子架上。也就是说,第一目标子架122可以是子架1也可以是除子架1之外的其它子架。例如,如图2所示,在本实施例中,第一目标子架122为子架2。
如图2所示,POTN设备12的各个子架具有相同的逻辑模块,例如,各个子架包括管理面适配代理agent、存储管理模型MIM、统一设备模型UEM以及线卡(也称为单板)等。在本实施例中,POTN设备12的各个子架可以由如图2中所示的一个网管123统一管理,也可以由各自分别对应的网管进行管理(图2中未示出),每个子架和网管123之间都会有子架的QX通道和接口,其中,QX的具体格式内容与对应子架中子网类型及版本有关,在此不做详述。
其中,控制管理服务器11,用于向虚拟网元121发送业务配置请求,业务配置请求包括业务配置报文;虚拟网元121,用于解析业务配置报文,得到业务信息流和业务配置命令码;虚拟网元121进一步根据业务信息流确定第一目标子架122,将业务配置命令码发送给第一 目标子架122,第一目标子架122为POTN设备12站点内用于处理业务配置命令码对应业务的子架;第一目标子架122,用于根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
在一示例性实施例中,控制管理服务器11的功能可以通过软件来实现,例如可以由控制管理服务器11上的中央处理器来执行对应的操作;或者,控制管理服务器11的功能可以由其上运行的SDN控制器来实现,例如,控制管理服务器11可以通过SDN控制器向虚拟网元121下发业务配置请求等。其中,SDN控制器具备良好的可扩展性,支持多厂商多区域的灵活调度功能,端到端业务的协同控制以及智能化的网络运维能力等。
请参阅图3,图3为图2中虚拟网元121的架构示意图。由于虚拟网元121设置在POTN设备12的站点内任一子架上,替代POTN设备12站点内主子架上的主控板向POTN设备12站点内的各个子架发送业务配置命令码,因此,虚拟网元121和POTN设备12站点内的各个子架共同构成POTN设备12,这里可参见图2所示。
此外,POTN设备12的站点内的各个子架类似于服务器节点,虚拟网元121的功能可以由子架上的软件来实现。或者,虚拟网元121可以为具有独立处理功能的软件逻辑实体,例如,图3中所示的虚拟网元121包括管理面适配代理1211、简称agent,光网络控制模块1212、简称WASON,以及统一设备模型1213、简称UEM。其中,管理面适配代理1211用于根据用户配置的网元属性模式、IP和掩码完成虚拟网元121的全局配置。在一示例性实施例中,在本实施例中,管理面适配代理1211根据用户配置的宿主网元属性模式、IP和掩码地址完成虚拟网元121的全局配置,虚拟网元121的全局配置信息包括POTN设备站点内各个子架的网元信息以及虚拟网元与所有子架之间的主从关系。
光网络控制模块1212为自动交换传送网络的模块,用于根据用户或网管动态发起的业务请求,自动选择路由,并通过信令控制实现业务连接的建立、修改、拆除等功能,是融交换与传送为一体的光传输网络。
统一设备模型1213是构成虚拟网元121的核心,可以为虚拟网元121内所有应用层提供统一的管理数据抽象和访问接口,是虚拟网元121运行时的统一数据管理中心,在本实施中,统一设备模型1213用于解析业务配置报文,得到业务信息流和业务配置命令码;进一步根据业务信息流确定第一目标子架122,将业务配置命令码发送给第一目标子架122,以指示第一目标子架122根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
通过上述分析可知,本公开提供的基于虚拟网元的业务配置***,通过预先设置在POTN 设备12站点内任一子架上的虚拟网元121解析控制管理服务器12下发的业务配置报文,进而根据解析得到的业务流信息和业务配置命令码确定第一目标子架122,实现了通过虚拟网元进行POTN设备站点内子架业务的配置,使得POTN设备站点内的主子架的主控板无需进行子架业务的配置,能够缓解POTN设备站点内主子架主控板的性能压力,进而提高POTN设备的稳定性和可靠性。
在一示例性实施例中,如图4所示,图4为本公开提供的基于虚拟网元的业务配置方法的一实现流程示意图。
如图4所示,该基于虚拟网元的业务配置方法包括步骤S401至步骤S404。
S401、虚拟网元接收控制管理服务器发送业务配置请求,业务配置请求包括业务配置报文。
在本实施例中,控制管理服务器为POTN设备的管控平面,通过该管控平面可以操作配置以及维护POTN设备。其中,控制管理服务器通过POTN设备中各个子架的网管,可以提供POTN设备网络***的配置、故障、性能等方面的基本管理。此外,控制管理服务器还可以通过内部软件,向POTN设备下发业务配置请求。在一示例性实施例中,由于SDN控制器具备良好的可扩展性,支持多厂商多区域的灵活调度功能,端到端业务的协同控制,智能化的网络运维能力等而普遍使用在控制管理服务器中,用于向POTN设备下发业务配置请求。在一示例性实施例中,在本实施中,控制管理服务器向POTN设备中预先创建的虚拟网元发送业务配置请求,通过虚拟网元完成POTN设备中各站点业务的分发和配置。
S402、虚拟网元解析业务配置报文,得到业务信息流和业务配置命令码。
在一示例性实施例中,虚拟网元由一组具有独立功能的软件逻辑实体组成,可以部署在POTN设备的任一子架的主控板上,例如,在本实例中,部署在POTNN设备的子架1中,虚拟网元除了可以接收子架的管理面(例如,网管)对虚拟网元的全局配置外,最主要的是将控制面(例如,控制管理服务器通过SDN控制器)下发的电/光层业务配置在POTN设备的不同子架中,降低POTN设备中主子架上主控板的基础资源使用率。
在一可选的实现方式中,虚拟网元通过管理面适配代理agent接收管理面对虚拟网元的全局配置。在一示例性实施例中,全局配置包括网元属性配置、虚拟网元与子网元通信的IP配置、掩码配置以及站点配置等。此外,根据全局配置可以完成虚拟网元的创建。
在一可选的实现方式中,虚拟网元通过统一设备模型UEM将控制面下发的电/光层业务数据进行业务配置。例如,控制管理服务器发送的配置数据包括端到端的业务配置报文,业 务配置报文包括业务信息流和业务配置命令码;虚拟网元通过统一设备模型UEM解析业务配置报文,得到业务信息流和业务配置命令码。其中,业务信息流指子网元(子架包括的网元)的线卡之间的端口路径,如从那个子网元的线卡端口出发,到另外一个子网元的哪些线卡端口。统一设备模型UEM就是要找到配置报文中间经过的线卡端口路径,并给对应的线卡下发业务配置命令码,对应的线卡根据业务配置命令码包含的目标单板地址,拆分到目标单板所在的子网元中去执行,从而由子网元来负荷分担业务运行的消息流,降低了主控板的基础资源使用率。
S403、虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,第一目标子架为POTN设备站点内用于处理业务配置命令码对应业务的子架。
在本实施例中,网元信息包括子架信息;业务信息流包括业务路径上的子架信息。子架信息包括子架号、子架包含的单板数量,单板的端口号,单板端口支持的业务类型以及单板端口之间的连接情况等。
在一示例性实施例中,虚拟网元根据业务信息流确定第一目标子架,可以包括:虚拟网元将业务路径上的子架信息和汇总的网元信息包括的子架信息进行匹配,得到第一目标子架。
此外,在本公开的实施例中,业务配置命令码包括光层业务配置命令码和电层业务配置命令码。若业务配置命令码为光层业务配置命令码,则虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,可以包括:虚拟网元根据业务信息流确定第一目标子架,根据光层业务配置命令码拆分出目标单板地址,将目标单板地址发送给第一目标子架。
若业务配置命令码为电层业务配置命令码;则虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,包括:虚拟网元根据业务信息流确定第一目标子架,将电层业务配置命令码发送给第一目标子架。
在一示例性实施例中,光层命令码一般是虚拟网元管理下的大网元间(在本实施例中,为子架之间)的业务,虚拟网元从端到端业务配置报文中解析出光层业务配置命令码,并根据光层业务配置命令码拆分出单板粒度(线卡)的命令码,并将单板粒度的命令码组装成命令列表。单板粒度的命令码包括目标单板地址。
在一示例性实施例中,电层命令码一般是单网元间(在本实施例中,为子架内部)的业务,虚拟网元将从端到端业务配置报文中解析出的电层业务配置命令码透传给第一目标子架。
S404、第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命 令码对应的业务。
在一示例性实施例中,第一目标子架接收到虚拟网元发送的光层业务配置命令码,根据光层业务配置命令码包括的目标单板地址,确定目标单板,将光层业务配置命令码转发给目标单板处理。
或者,第一目标子架接收到虚拟网元透传的电层业务配置命令码,根据电层业务配置命令码确定目标单板,将电层业务配置命令码转发给目标单板处理。
此外,第一目标子架根据电层业务配置码确定目标单板,包括:第一目标子架从电层业务配置命令码中拆分出单板粒度的命令码,单板粒度的命令码包括目标单板地址,根据目标单板地址确定目标单板。
通过上述分析可知,本公开提供的基于虚拟网元的业务配置***,通过预先设置在POTN设备12站点内任一子架上的虚拟网元121解析控制管理服务器12下发的业务配置报文,进而根据解析得到的业务流信息和业务配置命令码确定第一目标子架122,实现了通过虚拟网元进行POTN设备站点内子架业务的配置,使得POTN设备站点内的主子架的主控板无需进行子架业务的配置,能够缓解POTN设备站点内主控板的性能压力,进而提高POTN设备的稳定性和可靠性。
请参照图5,图5为本公开提供的基于虚拟网元的业务配置方法的另一实现流程示意图。如图5所示,本实施例与图4所示实施例相比,S502至S505与S401至S404的具体实现过程相同,不同之处在于,在S502之前进一步包括S501。
S501,POTN设备站点内的第二目标子架响应于用户配置的宿主网元属性模式、IP和掩码,在第二目标子架中创建虚拟网元,第二目标子架为POTN设备站点内的任一子架,虚拟网元中存储有POTN设备站点内各个子架的网元信息以及虚拟网元与所有子架之间的主从关系。
在一实施例中,用户可以预先选择在POTN设备站点中的某个子架内创建虚拟网元,在一示例性实施例中,用户可以在该子架对应的网管中选择该子架的属性模式,例如为宿主网元,该宿主网元可以是与主控板在同一子架上或者该宿主网元与主控板不在同一子架上,并通过网管配置该宿主网元与子网元通讯的IP和掩码,POTN设备对应的自己收到用户基于该子架的网管配置的宿主网元属性模式、IP和掩码后就会创建虚拟网元。在一示例性实施例中,参照图6所示,图6为图5中S501的具体实现流程图。由图6可知,S501包括子步骤S5011至子步骤S5013。
S5011、POTN设备站点内的第二目标子架响应于用户配置的宿主网元属性模式、IP和掩码,在第二目标子架中创建新站点。
S5012、POTN设备站点内的各个子架分别响应于用户配置的子网元属性模式,向新站点分别上报各自对应的网元信息。
在一示例性实施例中,POTN设备站点内的各个子架各自对应的子网元启动之后,会创建一个层间通讯IP,该层间通讯IP是子网元与虚拟网元进行通讯的IP。子网元定时发送子架信息,例如当前子架号、子网元的层间通讯IP和掩码等与虚拟网元建立通讯链接。层间通讯IP分配规则需要与虚拟网元预先进行约定,例如层间通讯IP的前两位固定,后两位使用子网元的子架号和槽位号等。
此外,在本实施例中,用户在配置完虚拟网元的宿主网元模式后,依次在其它各个子架的网管中,选择各个子架的网元属性模式为子网元模式(也称为非宿主网元模式或从网元模式)。POTN设备站点内的各个子架各自对应的子网元启动完成后,各个子网元从用户通过各自子架的网管配置的单板光纤信息,或者从本地数据库中恢复出的业务配置数据中,计算得到各个子架的网元信息。其中,网元信息包括子架号、子架包含的单板数量,单板的端口号,单板端口支持的业务类型以及单板端口之间的连接情况等。各个子架在接收到网管下发的设置子网元的请求后,就会自动将各自的网元信息上报给新建站点,在新建站点内,设置各个子架的所有网元的主从关系,得到虚拟网元。
在一示例性实施例中,在POTN设备站点内的各个子架分别响应于用户配置的子网元属性模式,向虚拟网元分别上报各自对应的网元信息之前,进一步包括:POTN设备站点内的各个子架分别与虚拟网元建立通信链接;POTN设备站点内的各个子架接受用户配置的网元属性,分别得到各个子架各自对应的网元信息。
S5013、第二目标子架将POTN设备站点内所有子架的网元信息汇总在新站点内,将用户配置的虚拟网元与所有子架的主从关系存储在新站点内,得到虚拟网元运行的信息。
在一示例性实施例中,第二目标子架汇总所有子架的网元信息至新建站点内。在一示例性实施例中,可以通过新建站点的自动发现功能将所有子架的网元信息汇总到新建站点内。在一示例性实施例中,在新建站点内还可以根据所有子架的网元信息可以得到POTN设备站点内所有子架的网络拓扑关系。
此外,虚拟网元运行的信息包括虚拟网元与所有子架的主从关系和所有子架的网元信息。
S502,控制管理服务器向预先创建的虚拟网元发送业务配置请求,业务配置请求包括业 务配置报文。
S503,虚拟网元解析业务配置报文,得到业务信息流和业务配置命令码。
S504,虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,第一目标子架为POTN设备站点内用于处理业务配置命令码对应业务的子架。
S505,第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
上述实施例提供的基于虚拟网元的业务配置方法,基于虚拟网元的业务配置***,通过预先设置在POTN设备12站点内任一子架上的虚拟网元121解析控制管理服务器12下发的业务配置报文,进而根据解析得到的业务流信息和业务配置命令码确定第一目标子架122,实现了通过虚拟网元进行POTN设备站点内子架业务的配置,使得POTN设备站点内的主子架主控板无需进行子架业务的配置,能够缓解POTN设备站点内主控板的性能压力,进而提高POTN设备的稳定性和可靠性。
请参阅图7所示,图7为本公开提供的虚拟网元的一个实施例的结构示意图。包括的各模块用于执行虚拟网元对应的功能。具体请参阅上述基于虚拟网元的业务配置方法对应的关于虚拟网元部分实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。参见图7,该虚拟网元121包括解析模块701、确定模块702以及发送模块703。
解析模块701,用于解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码。
确定模块702,用于根据业务信息流确定POTN设备站点内用于处理业务配置命令码的第一目标子架。
发送模块703,用于将业务配置命令码发送给第一目标子架,以指示第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。
需要说明的是,上述模块之间的信息交互、执行过程等内容,由于与本公开所示方法实施例中虚拟网元的功能基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例中关于虚拟网元部分的描述,此处不再赘述。
本实施例提供的虚拟网元,可以解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码,并根据业务信息流确定POTN设备站点内用于处理业务配置命令码的第一目标子架,将业务配置命令码发送给第一目标子架,实现了代替POTN设备站点内主子架上的主控板进行子架业务的配置,能够减缓POTN设备站点内子架上主控板的性能压力, 进而提高POTN设备的稳定性和可靠性。
请参阅图8所示,图8为本公开提供的虚拟网元的另一个实施例的结构示意图。如图8所示,在本实施例中,虚拟网元121包括处理器801和存储器802,处理器801和存储器802通过总线803连接,该总线比如为I2C(Inter-integrated Circuit)总线。
在一示例性实施例中,处理器801用于提供计算和控制能力,支撑整个虚拟网元的运行。处理器801可以是中央处理单元(Central Processing Unit,CPU),该处理器801还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一示例性实施例中,存储器802可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本公开方案相关的部分结构的框图,并不构成对本公开方案所应用于其上的虚拟网元的限定,具体的服务器可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,处理器用于运行存储在存储器中的计算机程序,并在执行计算机程序时实现本公开提供的虚拟网元功能。
在一实施例中,处理器用于运行存储在存储器中的计算机程序,并在执行计算机程序时实现如下步骤A1至A2。
A1、解析业务配置报文,得到业务信息流和业务配置命令码。
A2、根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,以指示第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应的业务。第一目标子架为设备站点内用于处理业务配置命令码对应业务的子架。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的虚拟网元的具体工作过程,可以参考前述基于虚拟网元的业务配置方法实施例中的对应对虚拟网元功能的描述过程,在此不再赘述。
本公开还提供一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如本公开说明书提供的任一项基于虚拟网元的业务配置方法中关于虚拟网元的功能描述的步骤。
其中,存储介质可以是前述实施例的虚拟网元的内部存储单元,例如虚拟网元设备的硬盘或内存。存储介质也可以是虚拟网元的外部存储设备,例如虚拟网元上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本公开提供一种基于虚拟网元的业务配置方法、***、虚拟网元及POTN设备,本公开通过虚拟网元解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码,并通过虚拟网元根据业务信息流确定第一目标子架,将业务配置命令码发送给第一目标子架,以指示第一目标子架根据业务配置命令码确定目标单板,在目标单板中处理业务配置命令码对应业务。实现了通过虚拟网元进行POTN设备站点内子架业务的配置,能够缓解POTN设备站点内主控板的性能压力,进而提高POTN设备的稳定性和可靠性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情 况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本公开序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种基于虚拟网元的业务配置方法,应用于POTN设备,所述POTN设备的任意一个子架上可创建虚拟网元,所述方法包括:
    所述虚拟网元接收控制管理服务器发送的业务配置请求,所述业务配置请求包括业务配置报文;
    所述虚拟网元解析所述业务配置报文,得到业务信息流和业务配置命令码;
    所述虚拟网元根据所述业务信息流确定第一目标子架,将所述业务配置命令码发送给所述第一目标子架,所述第一目标子架为所述POTN设备站点内用于处理所述业务配置命令码对应业务的子架;
    所述第一目标子架根据所述业务配置命令码确定目标单板,在所述目标单板中处理所述业务配置命令码对应的业务。
  2. 根据权利要求1所述的基于虚拟网元的业务配置方法,其中,在所述虚拟网元接收控制管理服务器发送的业务配置请求之前,进一步包括:
    所述POTN设备站点内的第二目标子架响应于用户配置的宿主网元属性模式、IP和掩码,在所述第二目标子架中创建虚拟网元,所述第二目标子架为所述POTN设备站点内的任一子架,所述虚拟网元中存储有所述POTN设备站点内各个子架的网元信息以及所述虚拟网元与所有子架之间的主从关系。
  3. 根据权利要求2所述的基于虚拟网元的业务配置方法,其中,所述POTN设备站点内的第二目标子架响应于用户配置的宿主网元属性模式、IP和掩码,在所述第二目标子架中创建虚拟网元,包括:
    所述POTN设备站点内的第二目标子架响应于用户配置的宿主网元属性模式、IP和掩码,在所述第二目标子架中创建新站点;
    所述POTN设备站点内的各个子架分别响应于用户配置的子网元属性模式,向所述新站点分别上报各自对应的网元信息;
    所述第二目标子架将所述POTN设备站点内所有子架的所述网元信息汇总在所述新站点内,将用户配置的虚拟网元与所有子架的主从关系存储在所述新站点内,得到所述虚拟网元运行的信息。
  4. 根据权利要求3所述的基于虚拟网元的业务配置方法,其中,在所述POTN设备站点内的各个子架分别响应于用户配置的子网元属性模式,向所述虚拟网元分别上报各自对应的 网元信息之前,还包括:
    所述POTN设备站点内的各个子架分别与所述虚拟网元建立通信链接;
    所述POTN设备站点内的各个子架根据各自用户配置的网元属性,分别得到各个子架各自对应的所述网元信息。
  5. 根据权利要求4所述的基于虚拟网元的业务配置方法,其中,所述网元信息包括子架信息;所述业务信息流包括业务路径上的子架信息;
    所述虚拟网元根据所述业务信息流确定第一目标子架,包括:
    所述虚拟网元将所述业务路径上的子架信息和汇总的所述网元信息包括的子架信息进行匹配,得到所述第一目标子架。
  6. 根据权利要求1至5任一项所述的基于虚拟网元的业务配置方法,其中,所述业务配置命令码包括:光层业务配置命令码;
    所述虚拟网元根据所述业务信息流确定第一目标子架,将所述业务配置命令码发送给所述第一目标子架,包括:
    所述虚拟网元根据所述业务信息流确定所述第一目标子架,根据所述光层业务配置命令码拆分出目标单板地址,将所述目标单板地址发送给所述第一目标子架;
    所述第一目标子架根据所述业务配置命令码确定目标单板,包括:
    所述第一目标子架根据所述目标单板地址确定所述目标单板。
  7. 根据权利要求6所述的基于虚拟网元的业务配置方法,其中,所述业务配置命令码包括:电层业务配置命令码;
    所述虚拟网元根据所述业务信息流确定第一目标子架,将所述业务配置命令码发送给所述第一目标子架,包括:
    所述虚拟网元根据所述业务信息流确定所述第一目标子架,将所述电层业务配置命令码发送给所述第一目标子架;
    所述第一目标子架根据所述业务配置命令码确定目标单板,包括:
    所述第一目标子架根据所述电层业务配置码确定所述目标单板。
  8. 一种基于虚拟网元的业务配置***,包括:控制管理服务器、虚拟网元和POTN设备站点内的第一目标子架;
    所述控制管理服务器,用于向所述虚拟网元发送业务配置请求,所述业务配置请求包括 业务配置报文;
    所述虚拟网元,用于解析所述业务配置报文,得到业务信息流和业务配置命令码;根据所述业务信息流确定第一目标子架,将所述业务配置命令码发送给所述第一目标子架,所述第一目标子架为POTN设备站点内用于处理所述业务配置命令码对应业务的子架;
    所述第一目标子架,用于根据所述业务配置命令码确定目标单板,在所述目标单板中处理所述业务配置命令码对应的业务。
  9. 一种虚拟网元,其中,所述虚拟网元用于解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码;根据所述业务信息流确定POTN设备站点内用于处理所述业务配置命令码的第一目标子架,将所述业务配置命令码发送给所述第一目标子架,以指示所述第一目标子架根据所述业务配置命令码确定目标单板,在所述目标单板中处理所述业务配置命令码对应的业务。
  10. 一种POTN设备,其中,所述POTN设备站点的任意一个子架上创建有虚拟网元,所述虚拟网元用于解析控制管理服务器发送的业务配置报文,得到业务信息流和业务配置命令码,根据所述业务信息流确定POTN设备站点内用于处理所述业务配置命令码的第一目标子架,将所述业务配置命令码发送给所述第一目标子架,以指示所述第一目标子架根据所述业务配置命令码确定目标单板,在所述目标单板中处理所述业务配置命令码对应的业务。
PCT/CN2021/136441 2020-12-18 2021-12-08 基于虚拟网元的业务配置方法、***、虚拟网元及设备 WO2022127667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511936.2 2020-12-18
CN202011511936.2A CN114727167A (zh) 2020-12-18 2020-12-18 基于虚拟网元的业务配置方法、***、虚拟网元及设备

Publications (1)

Publication Number Publication Date
WO2022127667A1 true WO2022127667A1 (zh) 2022-06-23

Family

ID=82060038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136441 WO2022127667A1 (zh) 2020-12-18 2021-12-08 基于虚拟网元的业务配置方法、***、虚拟网元及设备

Country Status (2)

Country Link
CN (1) CN114727167A (zh)
WO (1) WO2022127667A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860452A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 网元的管理方法和***
CN107547223A (zh) * 2016-06-27 2018-01-05 南京中兴软件有限责任公司 分组光传送网络potn业务的处理方法及装置
CN107547220A (zh) * 2016-06-27 2018-01-05 中兴通讯股份有限公司 一种多子网元分层管理的方法及装置
WO2018214423A1 (zh) * 2017-05-26 2018-11-29 烽火通信科技股份有限公司 Potn业务转发***及业务转发、配置下发、保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860452A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 网元的管理方法和***
CN107547223A (zh) * 2016-06-27 2018-01-05 南京中兴软件有限责任公司 分组光传送网络potn业务的处理方法及装置
CN107547220A (zh) * 2016-06-27 2018-01-05 中兴通讯股份有限公司 一种多子网元分层管理的方法及装置
WO2018214423A1 (zh) * 2017-05-26 2018-11-29 烽火通信科技股份有限公司 Potn业务转发***及业务转发、配置下发、保护方法

Also Published As

Publication number Publication date
CN114727167A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US9999030B2 (en) Resource provisioning method
US20150172115A1 (en) Mapping virtual network elements to physical resources in a telco cloud environment
CN109660466A (zh) 一种面向云数据中心租户的多活负载均衡实现方法
WO2014026524A1 (zh) 一种分配资源的方法及装置
CN112737690A (zh) 一种光线路终端olt设备虚拟方法及相关设备
CN110224917B (zh) 数据传输方法、装置及***、服务器
WO2021185083A1 (zh) Vnf实例化方法及装置
CN116055426B (zh) 用于多绑定模式下流量卸载转发的方法、设备及介质
JP2016116184A (ja) 網監視装置および仮想ネットワーク管理方法
CN113709220A (zh) 虚拟负载均衡器的高可用实现方法、***及电子设备
WO2022017099A1 (zh) 通信方法、cp设备及nat设备
CN112737867B (zh) 集群rio网络管理方法
EP1712067B1 (en) A method, apparatus and system of organizing servers
US20120284274A1 (en) Method and device for service management
CN111580753B (zh) 存储卷级联***、批量作业处理***和电子设备
WO2018036521A1 (zh) 资源调整方法、装置及***
WO2022127667A1 (zh) 基于虚拟网元的业务配置方法、***、虚拟网元及设备
CN112203302A (zh) 接入设备配置方法和网管***
WO2023035777A1 (zh) 网络配置方法、代理组件、控制器、电子设备和存储介质
WO2022022313A1 (zh) 传输路由信息的方法、装置和通信***
CN117499293B (zh) 路由表维护方法、路径选择方法、设备、***及存储介质
US20240241874A1 (en) Disseminating configuration across distributed systems using database nodes
WO2024087691A1 (zh) 一种报文处理方法及相关设备
WO2022183796A1 (zh) 一种创建网络服务ns的方法及相关装置
CN114257542A (zh) 路径标识的分配方法、***、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 02/11/2023 )

122 Ep: pct application non-entry in european phase

Ref document number: 21905596

Country of ref document: EP

Kind code of ref document: A1