WO2022126943A1 - 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法 - Google Patents

传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法 Download PDF

Info

Publication number
WO2022126943A1
WO2022126943A1 PCT/CN2021/086820 CN2021086820W WO2022126943A1 WO 2022126943 A1 WO2022126943 A1 WO 2022126943A1 CN 2021086820 W CN2021086820 W CN 2021086820W WO 2022126943 A1 WO2022126943 A1 WO 2022126943A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
sensing
elastic
unit
air pressure
Prior art date
Application number
PCT/CN2021/086820
Other languages
English (en)
French (fr)
Inventor
刘禹
徐嘉文
张星浩
张阳
姜晶
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022126943A1 publication Critical patent/WO2022126943A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the invention relates to the field of flexible electronic technology and additive manufacturing, in particular to a sensing elastic foam and an additive manufacturing device and method for multi-channel coaxial extrusion thereof.
  • the existing flexible sensors are manufactured by traditional casting methods, which require pre-manufacturing of molds, and the production cost is very high, and if different processes are adjusted according to different needs, It is also necessary to replace the molds as needed, resulting in a lot of waste of manpower, time and cost; (2) Due to the above factors, the existing flexible sensors are difficult to meet the more and more personalized customization requirements of users.
  • the related research and manufacture of existing flexible sensors have the following limitations: (1) The existing flexible sensors are manufactured by traditional casting methods, which require pre-manufacturing of molds, and the production cost is very high. It is necessary to replace the mold as needed, resulting in a lot of waste of manpower, time and cost; (2) due to the above-mentioned factors, the existing flexible sensors are difficult to meet the more and more personalized customization requirements of users.
  • a sensing elastic foam is an elastic dielectric unit, formed by stacking more than or equal to 3 layers of porous grids, each layer of porous grids is formed by interweaving core-shell line structure units, the core-
  • the shell and line structural unit includes an elastic line unit, a sensing unit and a lead unit, wherein the sensing unit and the lead unit are cores, and the elastic line unit is a shell.
  • the line width of the elastic line unit is 500-2000 micrometers, and the wall thickness is 100-2000 micrometers; the line width of the sensing unit is 10-1500 micrometers, and the line width of the wire unit is 10-1500 micrometers microns.
  • the pattern type of the porous grid is one of a crisscross type, a triangle or a hexagon.
  • a multi-channel coaxial extrusion additive manufacturing equipment including an air compressor, an air line branch head, an electronic air pressure valve, a connecting air pipe, a loading barrel, a multi-channel coaxial nozzle, an XYZ motion module, a fixture and a fuselage , the fuselage is provided with an XYZ motion module, the loading barrel is fixed on the fuselage by a clamp, and the air compressor is connected with the loading barrel and the multi-channel coaxial nozzle through the air line branch head and the connecting air pipe.
  • An electronic air pressure valve is arranged between the branch line head and the loading barrel to control the extrusion of lines in different modes, and the multi-channel coaxial nozzle is located directly above the Y motion module.
  • the multi-channel coaxial spray head includes a first channel, a second channel and a third channel.
  • the three channels are inside the coaxial spray head and are not connected to each other, and converge at the end of the spray head to form a height difference, wherein the third channel
  • the second channel is enveloped, the second channel envelopes the first channel, and the overall size of the nozzle is 0.6-1.5mm.
  • the loading cartridge includes a sensing material cylinder, a wire material cylinder and an elastic material cylinder, wherein the sensing material cylinder is connected with the first channel, and the sensing material is extruded from the first channel;
  • the wire material barrel is connected with the second channel, and the wire material is extruded from the second channel;
  • the elastomeric material cartridge is connected to a third channel from which the elastomeric material is extruded.
  • the sensing material comprises one or more of carbon-based conductive liquid, carbon-based conductive paste, conductive polymer hydrogel, and conductive ion gel, and the conductivity of the sensing material is 10 2-10 5S /m, the applicable viscosity is 10 2-10 6cps;
  • the wire material includes one or more of conductive ionic liquid, conductive polymer solution, and gallium indium tin alloy, the conductivity of the wire material is 10 5-10 7S/m, and the viscosity is 1-10 3cps;
  • the elastic material includes one or more of polydimethylsiloxane, polyurethane, thermoplastic rubber, and thermoplastic resin, and the applicable viscosity is 10 5-10 9cps.
  • the multi-channel coaxial extrusion additive manufacturing equipment performs line mode conversion and adjustment methods, and the line mode conversion and adjustment methods are mainly by switching the opening and closing of the air pressure switches of the respective channels, thereby realizing several different methods.
  • the third channel is open, the first channel is open, the second channel is closed, and the sensor unit is formed by extrusion
  • the third channel is open, the first channel is closed, the second channel is open, and the lead unit is formed by extrusion;
  • the third channel is opened, the first channel is closed, the second channel is closed, and the elastic line unit is formed by extrusion;
  • the air pressure range of each channel is 0-800KPa, and the proportion of the line width occupied by the sensing material is adjusted by changing the air pressure ratio of each channel.
  • the preparation method of the sensor elastic foam comprises the following steps:
  • 1Elastic unit Set the air pressure of the first channel to 0kPa, the air pressure of the second channel to 0kPa, and the air pressure of the third channel to be 600-800kPa;
  • 2Sensing unit Set the air pressure of the first channel to 0kPa, the air pressure of the second channel to 350-400kPa, and the air pressure of the third channel to be 600-800kPa;
  • 3Wire unit Set the air pressure of the first channel to 300-500kPa, the air pressure of the second channel to 0kPa, and the air pressure of the third channel to be 600-900kPa;
  • the motion control technology works in conjunction with the extrusion system control to set the printing path and the corresponding line pattern, utilize the high storage modulus of the shell elastic material to achieve self-support, and at the same time extrude the wire material or/and the sensing material internally;
  • step f Insert external copper wires into the elastic foam grid obtained in step f to contact the wire material as lead wires, and then encapsulate and form with light-cured silica gel to obtain an elastic capacitive sensing grid structure.
  • auxiliary curing equipment including a thermal curing heating plate and a heating light source can be selectively configured.
  • the invention avoids the traditional tedious production process using molds or manual operations, and can meet the requirements of different users for any plane topology, geometric dimensions, etc., and at the same time, the elastic foam produced by the method has many advantages, such as good molding, high degree of continuity, uninterrupted process, etc. Advantages, saving manpower, time and production costs.
  • the present invention adopts the material of liquid or colloid, and due to the fluidity of the liquid or the good elastic deformation of the colloid, the foam made by the material can be elastic.
  • silicone rubber is used as the elastic material
  • the prepared elastic foam has obvious advantages because silicone rubber has good insulation and elastic deformation ability, and at the same time, silicone rubber is non-toxic and tasteless, resistant to both high temperature and low temperature, and has good inertness.
  • the invention can continuously switch and print lines of different functional modes, so the elastic foam structure with force sensing function can be formed by one-time continuous printing, which has the advantages of high integration, fast forming speed, etc. Problems caused by wires inside the body.
  • the present invention can realize arbitrariness and adjustability through software programming according to requirements; control and control printing parameters, that is, the distance between the coaxial nozzle and the printing substrate, the specification of the coaxial nozzle, the preset path and the extrusion system
  • control and control printing parameters that is, the distance between the coaxial nozzle and the printing substrate, the specification of the coaxial nozzle, the preset path and the extrusion system
  • the extrusion air pressure of the elastic foam realizes the adjustment of the wire material, the content of the sensing material and the thickness of the elastic material of the line in the coaxial line in the elastic foam, and the switching of the line mode.
  • the multi-channel coaxial nozzle can complete the deposition of several different patterns of lines in one printing process. Compared with the multi-nozzle switching mode, on the basis of completing multi-material deposition, the nozzle switching step and the positioning step of continuous printing are omitted. , the continuously printed lines have more advanced interface performance and faster printing speed, and can use non-self-supporting materials for the inner core material, which expands the available material system.
  • FIG. 1 is a schematic structural diagram of the sensing elastic foam in Example 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a single coaxial wire unit in the sensing elastic foam in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of the multi-channel additive manufacturing equipment of the present invention.
  • FIG. 4 is a schematic view of the structure of the multi-channel coaxial nozzle of the present invention.
  • FIG. 5 is a schematic diagram of the path planning of the sensing elastic foam printing process in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the path planning of the sensing elastic foam printing process in Embodiment 2 of the present invention.
  • the sensing elastic foam 10 is an elastic dielectric unit, which is formed by stacking more than or equal to 3 layers of porous grids, each layer of porous grids is composed of core-shell lines Structural units are formed by interweaving, and the core-shell line structural unit includes an elastic line unit 101, a sensing unit 102 and a wire unit 103, wherein the sensing unit 102 and the wire unit 103 are the core, the elastic line unit 101 is the shell, and the transmission line unit 101 is the core.
  • the resistance, capacitance or inductance of the sensing unit 102 changes significantly after being deformed by force, heat or other external stimuli, while the resistance of the wire unit 103 and its change are smaller than those of the sensing unit 102, so the elastic foam can realize the sensing function.
  • the line width of the elastic line unit 101 is 1100 microns, the wall thickness is 1100 microns; the line width of the sensing unit 102 is 1100 microns, the wall thickness is 300 microns, the inner diameter of the inner core is 500 microns, and the wire unit 103
  • the line width is 1100 microns, the wall thickness is 400 microns, and the inner core inner diameter is 300 microns.
  • a multi-channel coaxial extrusion additive manufacturing equipment includes an air compressor 1, an air line branch head 2, an electronic air pressure valve 3, a connecting air pipe 4, a loading barrel 5, a multi-channel coaxial Nozzle 6, XYZ motion module 7, fixture 8 and body 9, the body 9 is provided with XYZ motion module 7, the loading barrel 5 is fixed on the body 9 by the fixture 8, and the air compressor 1 passes through the air.
  • the branching head 2 and the connecting gas pipe 4 are connected with the loading barrel 5 and the multi-channel coaxial nozzle 6.
  • An electronic air pressure valve 3 is arranged between the gas branching head 2 and the loading barrel 5, which is used to control the flow of different patterns of lines.
  • the multi-channel coaxial nozzle 6 is located directly above the Y motion module 71 .
  • the multi-channel coaxial nozzle 6 includes a first channel 61, a second channel 62 and a third channel 63.
  • the three channels are inside the coaxial nozzle and are not connected to each other, and converge at the end of the nozzle to form a The height difference, wherein the third channel 3 envelopes the second channel 2, the second channel 2 envelopes the first channel 1, and the size of the end of the nozzle is 1.1 mm.
  • the loading barrel 5 includes a sensing material barrel 51, a wire material barrel 52 and an elastic material barrel 53, wherein the sensing material barrel 51 is connected with the first channel 61, and the sensing material is extruded from the first channel 61;
  • the wire material barrel 52 is connected with the second channel 62, and the wire material is extruded from the second channel 62;
  • the elastic material barrel 53 is connected with the third channel 63 , and the elastic material is extruded from the third channel 3 .
  • the sensing material is conductive carbon paste, its conductivity is 4*10 4S/m, and its viscosity is 10 6cps;
  • the wire material is a conductive polymer solution with a conductivity of 10 5S/m and a viscosity of 10 cps;
  • the elastic material is polydimethylsiloxane, and its viscosity is 5*10 6cps.
  • the preparation method of the sensing elastic foam which embeds three pressure sensing line units at different positions in the middle layer, includes the following steps:
  • the elastic material barrel 53 is loaded with polydimethylsiloxane silicone rubber
  • 1Elastic unit set the air pressure of the first channel 61 to 0kPa, the air pressure of the second channel 62 to 0kPa, and the air pressure of the third channel 63 to be 700kPa;
  • 2Sensing unit set the air pressure of the first channel 61 to 0kPa, the air pressure of the second channel 62 to 375kPa, and the air pressure of the third channel 63 to be 650kPa;
  • Lead wire unit set the air pressure of the first channel 61 to be 500kPa, the air pressure of the second channel 62 to be 0kPa, and the air pressure of the third channel 63 to be 700kPa;
  • printing is performed with the corresponding air pressure of the above-mentioned elastic unit, and when it is deposited to the position where the pressure sensing unit lines need to be placed in the middle layer, the printing is performed with the corresponding air pressure of the above-mentioned sensing unit, and after completing the sensing unit of the specified length, The corresponding air pressure of the above-mentioned wire unit is printed and drawn out to the end of the foam.
  • the printing path is shown in Figure 5, which can be stacked layer by layer into a grid shape;
  • step d Place the completed sample in an oven, keep the temperature at 80°C for curing, and last for 3 hours, so that the sensing elastic foam obtained in step c is cured and formed, and a sensing elastic foam with a size of 30*30*10mm is obtained, wherein each of the same
  • the width of the axis bar is about 0.7mm.
  • step d Insert the sensing elastic foam obtained in step d, and insert copper wires with a diameter of 0.1 mm at both ends of each coaxial line (the length of the submerged coaxial line is 3-5 mm), and then inject UV light curing glue into the same The ends of the wire rod are then light-cured, and the test leads are drawn out.
  • auxiliary curing equipment including heat curing heating plate and heating light source are selectively configured, and the coating material is heated and cured during the printing process to obtain better coating effect.
  • the sensing elastic foam as shown in Figure 1 is made, and the resistance of the sensing material embedded in the elastic foam is measured by the LCR meter of Keysight Company, and its value is about 1.5*10 6 ⁇ . After the foam is compressed, the resistance is 6* 10 8 ⁇ .
  • the sensing elastic foam 10 is an elastic dielectric unit, which is formed by stacking more than or equal to 3 layers of porous grids, each layer of porous grids is formed by interweaving core-shell line structure units, the core -
  • the shell line structure unit includes an elastic line unit 101, a sensing unit 102 and a lead unit 103, wherein the sensing unit 102 and the lead unit 103 are cores, the elastic line unit 101 is a shell, and the sensing unit 102 is deformed by force,
  • the resistance, capacitance or inductance change significantly after being heated or stimulated by other external sources, and the resistance of the lead unit 103 and its change are smaller than those of the sensing unit 102, so the elastic foam can realize the sensing function.
  • the line width of the elastic line unit 101 is 1200 microns, the wall thickness is 1200 microns; the line width of the sensing unit 102 is 1200 microns, the wall thickness is 300 microns, the inner diameter of the inner core is 600 microns, and the wire unit 103
  • the line width is 1200 microns, the wall thickness is 450 microns, and the inner core inner diameter is 300 microns.
  • a multi-channel coaxial extrusion additive manufacturing equipment includes an air compressor 1, an air line branch head 2, an electronic air pressure valve 3, a connecting air pipe 4, a loading barrel 5, a multi-channel coaxial Nozzle 6, XYZ motion module 7, fixture 8 and body 9, the body 9 is provided with XYZ motion module 7, the loading barrel 5 is fixed on the body 9 by the fixture 8, and the air compressor 1 passes through the air.
  • the branching head 2 and the connecting gas pipe 4 are connected with the loading barrel 5 and the multi-channel coaxial nozzle 6.
  • An electronic air pressure valve 3 is arranged between the gas branching head 2 and the loading barrel 5, which is used to control the flow of different patterns of lines.
  • the multi-channel coaxial nozzle 6 is located directly above the Y motion module 71 .
  • the multi-channel coaxial nozzle 6 includes a first channel 61, a second channel 62 and a third channel 63.
  • the three channels are inside the coaxial nozzle and are not connected to each other, and converge at the end of the nozzle to form a The height difference, wherein the third channel 3 envelopes the second channel 2, the second channel 2 envelopes the first channel 1, and the overall size of the nozzle is 1.1 mm.
  • the loading barrel 5 includes a sensing material barrel 51, a wire material barrel 52 and an elastic material barrel 53, wherein the sensing material barrel 51 is connected with the first channel 61, and the sensing material is extruded from the first channel 61;
  • the wire material barrel 52 is connected with the second channel 62, and the wire material is extruded from the second channel 62;
  • the elastic material barrel 53 is connected with the third channel 63 , and the elastic material is extruded from the third channel 3 .
  • the sensing material comprises graphene silica gel, its conductivity is 2*10 3S/m, and its viscosity is 4*10 5cps;
  • the wire material comprises an ionic conductive liquid with a conductivity of 3.3*10 4S/m and a viscosity of 10 cps;
  • the elastic material is thermosetting polyurethane, and its viscosity is 2*10 8cps.
  • the preparation method of the sensing elastic foam, in which three temperature sensing line units at different positions are embedded in the middle layer includes the following steps:
  • the temperature sensing material graphene silica gel is loaded into the sensing material cylinder 51 connected to the first channel 61, and the liquid gallium indium tin alloy and the third
  • the elastic material barrel 53 connected by the channel 63 is filled with polyurethane;
  • 1Elastic unit set the air pressure of the first channel 61 to 0kPa, the air pressure of the second channel 62 to 0kPa, and the air pressure of the third channel 63 to be 800kPa;
  • 2Sensing unit set the air pressure of the first channel 61 to 0kPa, the air pressure of the second channel 62 to 400kPa, and the air pressure of the third channel 63 to be 800kPa;
  • Lead wire unit set the air pressure of the first channel 61 to be 500kPa, the air pressure of the second channel 62 to be 0kPa, and the air pressure of the third channel 63 to be 800kPa;
  • printing is performed with the corresponding air pressure of the above-mentioned elastic unit.
  • printing is performed with the corresponding air pressure of the above-mentioned sensing unit, and after completing the sensing unit of the specified length, Use the corresponding air pressure of the above-mentioned wire unit to print and lead out to the end of the foam.
  • the printing path is shown in Figure 6, which can be stacked layer by layer into a grid shape;
  • step d Place the finished sample in an oven and keep the temperature at 80°C for curing for 3 hours, so that the sensing elastic foam obtained in step c is cured and formed to obtain an elastic foam with temperature sensing, wherein the width of each coaxial line is about is 1.2mm.
  • step d Insert the sensing elastic foam obtained in step d, and insert copper wires with a diameter of 0.1 mm at both ends of each coaxial line (the length of the submerged coaxial line is 3-5 mm), and then inject UV light curing glue into the same The ends of the wire rod are then light-cured, and the test leads are drawn out.
  • auxiliary curing equipment including heat curing heating plate and heating light source are selectively configured, and the coating material is heated and cured during the printing process to obtain better coating effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种传感弹性泡沫(10),为弹性介电单元,由大于等于3层的多孔网格堆叠形成,每层多孔网格由核-壳线条结构单元交织形成,核-壳线条结构单元包括弹性线条单元(101)、传感单元(102)和导线单元(103),其中传感单元(102)和导线单元(103)为核,弹性线条单元(101)为壳。还公开一种多通道同轴挤出的增材制造设备、一种多通道同轴挤出的增材制造设备进行线条模式变换及调节方法和一种传感弹性泡沫(10)的制备方法,采用多通道同轴挤出的增材制造设备制备传感弹性泡沫(10),通过在线调节打印参数达到切换打印不同线条模式的目的,从而完成传感弹性泡沫(10)各个不同功能单元(101,102,103)的连续制造。

Description

传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法 技术领域
本发明涉及柔性电子技术及增材制造领域,尤其是涉及一种传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法。
背景技术
随着科学技术的不断进步,越来越多的电子产品转向柔性化和个性化定制,如可穿戴设备、柔性电路天线、微波电缆、电子皮肤等,这些电子产品不仅要求电子元件的正常运转,还要求电子元件可随着用户的需要进行弹性形变,也就需要其中的柔性传感器,既有传感功能,也具有弹性形变,这样的需求无疑对传统制造产生巨大挑战。现有柔性传感器的相关研究制造,是通过铸模的方式将导电材料嵌入到弹性材料中并进行封装成型。但是现有柔性传感器的相关研究制造存在以下局限性:(1)现有的柔性传感器采用传统铸模方式制造,需要事先制造模具,生产成本很高,并且如果根据不同的需要进行不同的工艺调整,还要根据需要进行模具的更换,造成人力、时间和成本的大量浪费;(2)现有的柔性传感器由于上述因素,难以满足用户越来越多的个性化定制要求。
技术问题
现有柔性传感器的相关研究制造存在以下局限性:(1)现有的柔性传感器采用传统铸模方式制造,需要事先制造模具,生产成本很高,并且如果根据不同的需要进行不同的工艺调整,还要根据需要进行模具的更换,造成人力、时间和成本的大量浪费;(2)现有的柔性传感器由于上述因素,难以满足用户越来越多的个性化定制要求。
技术解决方案
一种传感弹性泡沫,所述传感弹性泡沫为弹性介电单元,由大于等于3层的多孔网格堆叠形成,每层多孔网格由核-壳线条结构单元交织形成,所述核-壳线条结构单元包括弹性线条单元、传感单元和导线单元,其中所述传感单元和导线单元为核,弹性线条单元为壳。
进一步地,所述弹性线条单元的线宽为500-2000微米,壁厚为100-2000微米;所述传感单元的线宽为10-1500微米,所述导线单元的线宽为10-1500微米。
进一步地,所述多孔网格的图案类型为纵横交错型、三角形或六边形中的一种。
一种多通道同轴挤出的增材制造设备,包括空压机、气路分线头、电子气压阀、连接气管、装载料筒、多通道同轴喷头、XYZ运动模组、夹具及机身,所述机身上设置有XYZ运动模组,装载料筒通过夹具固定在机身上,空压机通过气路分线头及连接气管与装载料筒及多通道同轴喷头连接,所述气路分线头与装载料筒之间设置有电子气压阀,用于控制不同模式线条的挤出,所述多通道同轴喷头位于Y运动模组的正上方。
进一步地,所述多通道同轴喷头包括第一通道、第二通道和第三通道,三个通道在同轴喷头内部,互不联通,并在喷头末端汇聚,成高度差,其中第三通道包络第二通道,第二通道包络第一通道,喷头总体尺寸为0.6-1.5mm。
进一步地,所述装载料筒包括传感材料筒、导线材料筒和弹性材料筒,其中所述传感材料筒与第一通道连接,传感材料从第一通道挤出;
所述导线材料筒与第二通道连接,导线材料从第二通道挤出;
所述弹性材料筒与第三通道连接,弹性材料从第三通道挤出。
进一步地,所述传感材料包含碳基导电液、碳基导电膏、导电聚合物水凝胶、导电离子凝胶 中的一种或多种,传感材料的导电率为10 2-10 5S/m,适用黏度为10 2-10 6cps;
导线材料包含导电离子液、导电聚合物溶液、镓铟锡合金的一种或多种,导线材料的导电率为10 5-10 7S/m,黏度为1-10 3cps;
弹性材料包括聚二甲基硅氧烷、聚氨酯、热塑性橡胶、热塑性树脂中的一种或多种,适用黏度为10 5-10 9cps。
进一步地,所述的多通道同轴挤出的增材制造设备进行线条模式变换及调节方法,所述线条模式变换及调节方法主要通过切换各自通道的气压开关的开合,从而实现几种不同模式线条的挤出:
①第三通道开,第一通道开,第二通道关,挤出形成传感单元;
②第三通道开,第一通道关,第二通道开,挤出形成导线单元;
③第三通道开,第一通道关,第二通道关,挤出形成弹性线条单元;
各通道的气压范围为0-800KPa,通过改变各通道的气压比例调节传感材料所占线宽的比例大小。
所述的传感弹性泡沫的制备方法,包括以下步骤:
a.将多通道同轴喷头安装于Z运动模组末端的夹具上;
b.在装载料筒中对应装入弹性材料、导线材料和传感材料,并通过通过连接气管与分路分线头与电子气压阀、空压机连接;
c.通过控制***生成打印路径,设定连续增材制造设备的打印速度为0.1-50mm/s,设定三种线条模式的挤出参数,
①弹性单元:设定第一通道的气压为0kPa,第二通道的气压为0kPa,第三通道的气压为600-800kPa;
②传感单元:设定第一通道的气压为0kPa,第二通道的气压为350-400kPa,第三通道的气压为600-800kPa;
③导线单元:设定第一通道的气压为300-500kPa,第二通道的气压为0kPa,第三通道的气压为600-900kPa;
d.将多通道同轴喷头调整到距离Y运动模组所在平面上方0.1-0.9mm,调整高度为多通道同轴喷头内径的0.9倍;
e.运动控制技术与挤出***控制协同工作,设置打印路径与对应线条模式,利用壳层弹性材料高储能模量的特性完成自支撑,同时内部挤出导线材料或/和传感材料;
f.打印出网格结构之后,放置到温度要大于80℃的高温环境下将其完全固化,节点处由于在未固化时便已连接,在固化后可形成良好交联,内部材料被约束于线体内层形成同轴弹性线体结构,从而构筑弹性泡沫网格;
g.在步骤f得到的弹性泡沫网格上***外界铜导线与导线材料接触,作为引出导线,再利用光固化硅胶封装成形,得到具有弹性的电容传感网格结构。
进一步地,针对不同材料的固化情况,选择性地配置包括热固化加热板和加热光源在内的辅助固化设备。
有益效果
本发明避免了传统利用模具或者手动的繁琐生产工艺,能够满足不同用户对任意平面拓扑结构、几何尺寸等的要求,同时方法所生产的弹性泡沫具有成型好、连续程度高、过程不间断等诸多优点,节约人力、时间和生产成本。
本发明采用液体或者胶体的材料,由于液体的流动性或者胶体良好的弹性形变,可满足用其制造的泡沫具有弹性。当弹性材料选用硅橡胶时,由于硅橡胶具有良好的绝缘性和弹性形变能力,同时硅橡胶无毒无味、既耐高温又耐低温,具有良好的惰性,制备的弹性泡沫具有明 显的优势。
本发明可以连续切换打印不同功能模式的线条,故可通过一次性连续打印成型具有力传感功能的弹性泡沫结构,具有集成化高,成型速度快等优点,且可以解决传感单元从弹性泡沫体内部导线引出的问题。
本发明可以根据需求,通过软件编程实现任意性和可调性;调控打印参数,即所述同轴喷头与打印基底的距离、所述同轴喷头的规格、预设路径和所述挤出***的挤出气压,实现对所述弹性泡沫中的同轴线条内的所述导线材料、传感材料含量以及所述线条弹性材料的厚度调整,以及线条模式的切换。
多通道同轴喷头可以完成在一次打印过程中完成几种不同模式线条的沉积,相对于多喷头切换的模式在完成多材料沉积的基础上,省去了喷头切换步骤,首尾续打印的定位步骤,连续打印的线条具有更前的界面性能与更快的打印速度,并且可以在内芯材料可使用不具有自支撑的材料,扩充了可使用的材料体系。
附图说明
图1本发明实施例1中传感弹性泡沫的结构示意图。
图2是图1中传感弹性泡沫中单根同轴线单元的结构示意图。
图3是本发明多通道增材制造设备的结构示意图。
图4是本发明多通道同轴喷头的结构示意图。
图5本发明实施例1中传感弹性泡沫打印过程的路径规划示意图。
图6本发明实施例2中传感弹性泡沫打印过程的路径规划示意图。
附图标记说明:1-空压机;2-气路分线头;3-电子气压阀;4-连接气管;5-装载料筒;6-多通道同轴喷头;7-XYZ运动模组;8-夹具;9-机身;10-传感弹性泡沫;101-弹性线条单元;102-传感单元;103-导线单元;51-传感材料筒;52-导线材料筒;53-弹性材料筒;61-第一通道;62-第二通道;63-第三通道;71-X运动模组;72-Y运动模组;73-Z运动模组。
本发明的实施方式
下面结合附图和实施例,对本发明进行具体描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
如图1和2所示,一种传感弹性泡沫,所述传感弹性泡沫10为弹性介电单元,由大于等于3层的多孔网格堆叠形成,每层多孔网格由核-壳线条结构单元交织形成,所述核-壳线条结构单元包括弹性线条单元101、传感单元102和导线单元103,其中所述传感单元102和导线单元103为核,弹性线条单元101为壳,传感单元102在受力形变、受热或其他外界刺激下后电阻、电容或电感发生明显变化,而导线单元103的电阻及其变化较传感单元102小,故该弹性泡沫可实现传感功能。
所述弹性线条单元101的线宽为1100微米,壁厚为1100微米;所述传感单元102的线宽为1100微米,壁厚为300微米,内芯内径为500微米,所述导线单元103的线宽为1100微米,壁厚为400微米,内芯内径为300微米。
如图3所示,一种多通道同轴挤出的增材制造设备,包括空压机1、气路分线头2、电子气压阀3、连接气管4、装载料筒5、多通道同轴喷头6、XYZ运动模组7、夹具8及机身9,所述机身9上设置有XYZ运动模组7,装载料筒5通过夹具8固定在机身9上,空压机1通过气路分线头2及连接气管4与装载料筒5及多通道同轴喷头6连接,所述气路分线头2与装载料筒5之间设置有电子气压阀3,用于控制不同模式线条的挤出,所述多通道同轴喷头6位于Y运动模组71的正上方。
如图4所示,所述多通道同轴喷头6包括第一通道61、第二通道62和第三通道63,三个通道在同轴喷头内部,互不联通,并在喷头末端汇聚,成高度差,其中第三通道3包络第二通道2,第二通道2包络第一通道1,喷头末端尺寸为1.1mm。
所述装载料筒5包括传感材料筒51、导线材料筒52和弹性材料筒53,其中所述传感材料筒51与第一通道61连接,传感材料从第一通道61挤出;
所述导线材料筒52与第二通道62连接,导线材料从第二通道62挤出;
所述弹性材料筒53与第三通道63连接,弹性材料从第三通道3挤出。
所述传感材料为导电碳浆,其导电率为4*10 4S/m,黏度为10 6cps;
所述导线材料为导电聚合物溶液,其导电率为10 5S/m,黏度为10 3cps;
所述弹性材料为聚二甲基硅氧烷,其黏度为5*10 6cps。
所述的传感弹性泡沫的制备方法,在中间层嵌入三根不同位置的压力传感线条单元,包括以下步骤:
a.在与第一通道61连接的传感材料筒51中装入导电碳浆,在与第二通道62连接的导线材料筒52中装入导电聚合物溶液,在与第三通道63连接的弹性材料筒53中装入聚二甲基硅氧烷硅橡胶;
b.通过连接气管4将装载料筒5与分路分线头2与电子气压阀3、空压机1连接;所述喷头的各通道末端内外径不同,其中第一通道61末端的内径为0.21mm,外径为0.4mm;第二通道62末端的内径为0.3mm,外径为0.45mm;第三通道63末端的内径为0.5mm,外径为0.6mm;三喷头呈楔形排布。
c.通过控制***生成打印路径,设定连续增材制造设备的打印速度为15mm/s,设定三种线条模式的挤出参数:
①弹性单元:设定第一通道61的气压为0kPa,第二通道62的气压为0kPa,第三通道63的气压为700kPa;
②传感单元:设定第一通道61的气压为0kPa,第二通道62的气压为375kPa,第三通道63的气压为650kPa;
③导线单元:设定第一通道61的气压为500kPa,第二通道62的气压为0kPa,第三通道63的气压为700kPa;
将多通道同轴喷头6调整到距离Y运动模组71所在平面上方0.9mm;
初始时,以上述弹性单元的对应气压进行打印,待沉积到中层需要放置压力传感单元线条的位置时,以上述传感单元的对应气压进行打印,并在完成指定长度的传感单元后,以上述导线单元的对应气压进行打印引出到泡沫末端,打印路径如图5所示,可逐层堆积成为网格形状;
d.放置完成好的样品到烘箱,保持80℃温度进行固化,持续3小时,使步骤c所得传感弹性泡沫固化成型,得到尺寸为30*30*10mm的传感弹性泡沫,其中每根同轴线条宽度约为0.7mm。
e.将步骤d所得传感弹性泡沫,并为每根同轴线条两端***直径为0.1mm的铜丝(没入同轴线条的长度为3-5mm),再用UV光固化胶注射到同轴线条两端并随后进行光固化,引出测试导线。
针对不同材料的固化情况,选择性地配置包括热固化加热板和加热光源在内的辅助固化设备,在打印过程中加热固化包覆材料以获得更好的包覆效果。
最后制成如图1所示的传感弹性泡沫,利用Keysight公司的LCR表测量嵌入于弹性泡沫内部的传感材料电阻,其值约为1.5*10 6Ω,在泡沫受到压缩后电阻为6*10 8Ω。
实施例2
一种传感弹性泡沫,所述传感弹性泡沫10为弹性介电单元,由大于等于3层的多孔网格堆 叠形成,每层多孔网格由核-壳线条结构单元交织形成,所述核-壳线条结构单元包括弹性线条单元101、传感单元102和导线单元103,其中所述传感单元102和导线单元103为核,弹性线条单元101为壳,传感单元102在受力形变、受热或其他外界刺激下后电阻、电容或电感发生明显变化,而导线单元103的电阻及其变化较传感单元102小,故该弹性泡沫可实现传感功能。
所述弹性线条单元101的线宽为1200微米,壁厚为1200微米;所述传感单元102的线宽为1200微米,壁厚为300微米,内芯内径为600微米,所述导线单元103的线宽为1200微米,壁厚为450微米,内芯内径为300微米。
如图3所示,一种多通道同轴挤出的增材制造设备,包括空压机1、气路分线头2、电子气压阀3、连接气管4、装载料筒5、多通道同轴喷头6、XYZ运动模组7、夹具8及机身9,所述机身9上设置有XYZ运动模组7,装载料筒5通过夹具8固定在机身9上,空压机1通过气路分线头2及连接气管4与装载料筒5及多通道同轴喷头6连接,所述气路分线头2与装载料筒5之间设置有电子气压阀3,用于控制不同模式线条的挤出,所述多通道同轴喷头6位于Y运动模组71的正上方。
如图4所示,所述多通道同轴喷头6包括第一通道61、第二通道62和第三通道63,三个通道在同轴喷头内部,互不联通,并在喷头末端汇聚,成高度差,其中第三通道3包络第二通道2,第二通道2包络第一通道1,喷头总体尺寸为1.1mm。
所述装载料筒5包括传感材料筒51、导线材料筒52和弹性材料筒53,其中所述传感材料筒51与第一通道61连接,传感材料从第一通道61挤出;
所述导线材料筒52与第二通道62连接,导线材料从第二通道62挤出;
所述弹性材料筒53与第三通道63连接,弹性材料从第三通道3挤出。
所述传感材料包含石墨烯硅胶,其导电率为2*10 3S/m,黏度为4*10 5cps;
所述导线材料包含离子导电液,其导电率为3.3*10 4S/m,黏度为10 3cps;
所述弹性材料为热固性聚氨酯,其黏度为2*10 8cps。
所述的传感弹性泡沫的制备方法,在中间层嵌入三根不同位置的温度传感线条单元,包括以下步骤:
a.在与第一通道61连接的传感材料筒51中装入温度传感材料石墨烯硅胶,在与第二通道62连接的导线材料筒52中装入液态镓铟锡合金、与第三通道63连接的弹性材料筒53中装入聚氨酯;
b.通过连接气管4将装载料筒5与分路分线头2与电子气压阀3、空压机1连接;所述喷头的各通道末端内外径不同,其中第一通道61末端内径为0.4mm,外径为0.6mm;第二通道62末端内径为0.6mm,外径为0.7mm;第三通道63末端内径为0.7mm,外径为1mm;
c.通过控制***生成打印路径,设定增材制造设备的打印速度为50mm/s,设定三种线条模式的挤出参数:
①弹性单元:设定第一通道61的气压为0kPa,第二通道62的气压为0kPa,第三通道63的气压为800kPa;
②传感单元:设定第一通道61的气压为0kPa,第二通道62的气压为400kPa,第三通道63的气压为800kPa;
③导线单元:设定第一通道61的气压为500kPa,第二通道62的气压为0kPa,第三通道63的气压为800kPa;
将多通道同轴喷头6调整到距离Y运动模组71所在平面上方0.45mm,调整高度为多通道同轴喷头6内径的0.9倍;
初始时,以上述弹性单元的对应气压进行打印,待沉积到中层需要放置温度传感单元线条的位置时,以上述传感单元的对应气压进行打印,并在完成指定长度的传感单元后,以上述导 线单元的对应气压进行打印引出到泡沫末端,打印路径如图6所示,可逐层堆积成为网格形状;
d.将完成好的样品放置到烘箱,保持80℃温度进行固化,持续3小时,使步骤c所得传感弹性泡沫固化成型,得到具有温度传感的弹性泡沫,其中每根同轴线条宽度约为1.2mm。
e.将步骤d所得传感弹性泡沫,并为每根同轴线条两端***直径为0.1mm的铜丝(没入同轴线条的长度为3-5mm),再用UV光固化胶注射到同轴线条两端并随后进行光固化,引出测试导线。
针对不同材料的固化情况,选择性地配置包括热固化加热板和加热光源在内的辅助固化设备,在打印过程中加热固化包覆材料以获得更好的包覆效果。
最后制成温度传感弹性泡沫,利用Keysight公司的LCR表测量嵌入于弹性泡沫内部的石墨烯硅胶电阻,常温25℃其值约为3*10 6Ω,在周围温度为0℃左右时电阻为3.42*10 6Ω。以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据本发明实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

  1. 一种传感弹性泡沫,其特征在于,所述传感弹性泡沫(10)为弹性介电单元,由大于等于3层的多孔网格堆叠形成,每层多孔网格由核-壳线条结构单元交织形成,所述核-壳线条结构单元包括弹性线条单元(101)、传感单元(102)和导线单元(103),其中所述传感单元(102)和导线单元(103)为核,弹性线条单元(101)为壳。
  2. 根据权利要求1所述的传感弹性泡沫,其特征在于,所述弹性线条单元(101)的线宽为500-2000微米,壁厚为100-2000微米;所述传感单元(102)的线宽为10-1500微米,所述导线单元(103)的线宽为10-1500微米。
  3. 根据权利要求1所述的传感弹性泡沫,其特征在于,所述多孔网格的图案类型为纵横交错型、三角形或六边形中的一种。
  4. 一种多通道同轴挤出的增材制造设备,其特征在于,包括空压机(1)、气路分线头(2)、电子气压阀(3)、连接气管(4)、装载料筒(5)、多通道同轴喷头(6)、XYZ运动模组(7)、夹具(8)及机身(9),所述机身(9)上设置有XYZ运动模组(7),装载料筒(5)通过夹具(8)固定在机身(9)上,空压机(1)通过气路分线头(2)及连接气管(4)与装载料筒(5)及多通道同轴喷头(6)连接,所述气路分线头(2)与装载料筒(5)之间设置有电子气压阀(3),用于控制不同模式线条的挤出,所述多通道同轴喷头(6)位于Y运动模组(72)的正上方。
  5. 根据权利要求4所述的多通道同轴挤出的增材制造设备,其特征在 于,所述多通道同轴喷头(6)包括第一通道(61)、第二通道(62)和第三通道(63),三个通道在同轴喷头内部,互不联通,并在喷头末端汇聚,成高度差,其中第三通道(3)包络第二通道(2),第二通道(2)包络第一通道(1),喷头总体尺寸为0.6-1.5mm。
  6. 根据权利要求5所述的多通道同轴挤出的增材制造设备,其特征在于,所述装载料筒(5)包括传感材料筒(51)、导线材料筒(52)和弹性材料筒(53),其中所述传感材料筒(51)与第一通道(61)连接,传感材料从第一通道(61)挤出;
    所述导线材料筒(52)与第二通道(62)连接,导线材料从第二通道(62)挤出;
    所述弹性材料筒(53)与第三通道(63)连接,弹性材料从第三通道(3)挤出。
  7. 根据权利要求6所述的多通道同轴挤出的增材制造设备,其特征在于,所述传感材料包含碳基导电液、碳基导电膏、导电聚合物水凝胶、导电离子凝胶中的一种或多种,传感材料的导电率为10 2-10 5S/m,黏度为10 2-10 6cps;
    导线材料包含导电离子液、导电聚合物溶液、镓铟锡合金的一种或多种,导线材料的导电率为10 5-10 7S/m,黏度为1-10 3cps;
    弹性材料包括聚二甲基硅氧烷、聚氨酯、热塑性橡胶、热塑性树脂中的一种或多种,黏度为10 5-10 9cps。
  8. 权利要求4所述的多通道同轴挤出的增材制造设备进行线条模式变换及调节方法,其特征在于,所述线条模式变换及调节方法主要通 过切换各自通道的气压开关的开合,从而实现几种不同模式线条的挤出:
    ①第三通道(63)开,第一通道(61)开,第二通道(62)关,挤出形成传感单元;
    ②第三通道(63)开,第一通道(61)关,第二通道(62)开,挤出形成导线单元;
    ③第三通道(63)开,第一通道(61)关,第二通道(62)关,挤出形成弹性线条单元;
    各通道的气压范围为0-800KPa,通过改变各通道的气压比例调节传感材料所占线宽的比例大小。
  9. 权利要求1所述的传感弹性泡沫的制备方法,其特征在于,包括以下步骤:
    a.将多通道同轴喷头(6)安装于Z运动模组(73)末端的夹具上;
    b.在装载料筒(5)中对应装入弹性材料、导线材料和传感材料,并通过通过连接气管(4)与分路分线头(2)与电子气压阀(3)、空压机(1)连接;
    c.通过控制***生成打印路径,设定连续增材制造设备的打印速度为0.1-50mm/s,设定三种线条模式的挤出参数,
    ①弹性单元:设定第一通道(61)的气压为0kPa,第二通道(62)的气压为0kPa,第三通道(63)的气压为600-800kPa;
    ②传感单元:设定第一通道(61)的气压为0kPa,第二通道(62)的气压为350-400kPa,第三通道(63)的气压为600-800kPa;
    ③导线单元:设定第一通道(61)的气压为300-500kPa,第二通道(62)的气压为0kPa,第三通道(63)的气压为600-800kPa;
    d.将多通道同轴喷头(6)调整到距离Y运动模组(72)所在平面上方0.1-0.9mm,调整高度为多通道同轴喷头(6)内径的0.9倍;
    e.X轴模组与Y轴模组同时进行路径的插补同时,控制各个通道的电子气压阀达到要求比例,完成打印路径与挤出线条模式的设置,利用壳层弹性材料高储能模量的特性完成自支撑,同时内部挤出导线材料或/和传感材料;在完成单层的打印后,Z轴模组抬升进行下一层的打印;
    f.打印出网格结构之后,放置到温度要大于80℃的高温环境下将其完全固化,节点处由于在未固化时便已连接,在固化后可形成良好交联,内部材料被约束于线体内层形成同轴弹性线体结构,从而构筑弹性泡沫网格;
    g.在步骤f得到的弹性泡沫网格上***外界铜导线与导线材料接触,作为引出导线,再利用光固化硅胶封装成形,得到具有弹性的电容传感网格结构。
  10. 根据权利要求9所述的传感弹性泡沫的制备方法,其特征在于,针对不同材料的固化情况,选择性地配置包括热固化加热板和加热光源在内的辅助固化设备。
PCT/CN2021/086820 2020-12-16 2021-04-13 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法 WO2022126943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011485385.7A CN112525226A (zh) 2020-12-16 2020-12-16 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法
CN202011485385.7 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022126943A1 true WO2022126943A1 (zh) 2022-06-23

Family

ID=75000605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086820 WO2022126943A1 (zh) 2020-12-16 2021-04-13 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法

Country Status (2)

Country Link
CN (1) CN112525226A (zh)
WO (1) WO2022126943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525226A (zh) * 2020-12-16 2021-03-19 江南大学 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475836A (en) * 1936-04-23 1937-11-26 Standard Telephones Cables Ltd Improvements relating to the cooling of hot material extruded through presses, particularly presses for lead sheathing of cables
US3204018A (en) * 1960-05-18 1965-08-31 Hagen Reinold Method of forming hollow plastic articles
CN202647752U (zh) * 2012-05-15 2013-01-02 上海锅炉厂有限公司 负荷可控式多通道液态燃料气化烧嘴
CN102851665A (zh) * 2012-08-31 2013-01-02 张家港市和昊激光科技有限公司 用于激光熔覆的喷头
CN107379516A (zh) * 2017-09-18 2017-11-24 合肥工业大学 一种基于湿固化硅胶3d打印的多孔弹性泡沫制作方法
CN107722327A (zh) * 2017-10-09 2018-02-23 中物院成都科学技术发展中心 一种具有混杂微孔结构的硅橡胶泡沫材料、制件及其制备方法
CN108748975A (zh) * 2018-07-17 2018-11-06 中南大学 一种纳米级高精度增材制造设备
CN109489874A (zh) * 2019-01-16 2019-03-19 浙江理工大学 一种碳纤维柔性压力分布传感装置及其测力方法
CN209230835U (zh) * 2018-11-07 2019-08-09 江南大学 一种压力传感阵列
CN110614767A (zh) * 2019-08-16 2019-12-27 华南理工大学 一种固液材料结合式双喷头3d打印机及其打印方法
CN210062017U (zh) * 2019-04-11 2020-02-14 华中科技大学 一种软材料3d打印装置
RU2715795C1 (ru) * 2019-09-20 2020-03-03 Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (ФКП "НИИ "Геодезия") Контактный датчик для регистрации момента подлета осколка при взрыве осколочного снаряда
CN112525226A (zh) * 2020-12-16 2021-03-19 江南大学 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475836A (en) * 1936-04-23 1937-11-26 Standard Telephones Cables Ltd Improvements relating to the cooling of hot material extruded through presses, particularly presses for lead sheathing of cables
US3204018A (en) * 1960-05-18 1965-08-31 Hagen Reinold Method of forming hollow plastic articles
CN202647752U (zh) * 2012-05-15 2013-01-02 上海锅炉厂有限公司 负荷可控式多通道液态燃料气化烧嘴
CN102851665A (zh) * 2012-08-31 2013-01-02 张家港市和昊激光科技有限公司 用于激光熔覆的喷头
CN107379516A (zh) * 2017-09-18 2017-11-24 合肥工业大学 一种基于湿固化硅胶3d打印的多孔弹性泡沫制作方法
CN107722327A (zh) * 2017-10-09 2018-02-23 中物院成都科学技术发展中心 一种具有混杂微孔结构的硅橡胶泡沫材料、制件及其制备方法
CN108748975A (zh) * 2018-07-17 2018-11-06 中南大学 一种纳米级高精度增材制造设备
CN209230835U (zh) * 2018-11-07 2019-08-09 江南大学 一种压力传感阵列
CN109489874A (zh) * 2019-01-16 2019-03-19 浙江理工大学 一种碳纤维柔性压力分布传感装置及其测力方法
CN210062017U (zh) * 2019-04-11 2020-02-14 华中科技大学 一种软材料3d打印装置
CN110614767A (zh) * 2019-08-16 2019-12-27 华南理工大学 一种固液材料结合式双喷头3d打印机及其打印方法
RU2715795C1 (ru) * 2019-09-20 2020-03-03 Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (ФКП "НИИ "Геодезия") Контактный датчик для регистрации момента подлета осколка при взрыве осколочного снаряда
CN112525226A (zh) * 2020-12-16 2021-03-19 江南大学 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法

Also Published As

Publication number Publication date
CN112525226A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022126943A1 (zh) 传感弹性泡沫及其多通道同轴挤出的增材制造设备与方法
CN206401043U (zh) 一种弹性导线
CN109489539B (zh) 柔性应变传感器的制备方法及柔性应变传感器
CN104200938B (zh) 一种高压电容式干式套管的加工方法
CN107662303B (zh) 一种碳纤维增强树脂基复合材料综合电损耗固化方法
CN108133770B (zh) 一种弹性电缆线及其制备方法
CN102386110B (zh) 树脂密封成形品的制造方法和树脂密封成形品的制造装置
CN107622818A (zh) 一种弹性导线及其制备方法
CN102959777B (zh) 膜电极组件及其制造方法和燃料电池
CN110322988B (zh) 一种3d打印制备的耐高温漆包导线及制备方法
CN104135830B (zh) 一种将金属浆料填入生瓷通孔的填充方法及装置
CN109269688B (zh) 一种压力传感阵列及其制备方法
US8127450B2 (en) Method for producing a sandwich construction, in particular a sandwich construction for the aeronautical and aerospace fields
CN105690791A (zh) 一种易脱模的筒形复合材料结构件整体成型方法
CN214702295U (zh) 传感弹性泡沫及其多通道同轴挤出的连续增材制造设备
CN102514205A (zh) 一种复合材料风电叶片根部成型方法
CN209230835U (zh) 一种压力传感阵列
CN113593794B (zh) 自动压力凝胶纯干式电容型高压绝缘套管及其制造方法
CN112629401B (zh) 一种路面结构应变传感器制造方法及传感器
CN108183090A (zh) 一种芯片独立成型的压接式igbt模块及其制备方法
CN103528721A (zh) 横向电极式导电高分子复合材料压敏元件及其研制方法
CN109866439A (zh) 一种绝缘杆注塑模具及绝缘杆生产工艺
CN103531400A (zh) 一种固封极柱及其生产方法
CN216139271U (zh) 一种利用线干扰变刚度技术的高负载软体手臂及其模具
CN111037951B (zh) 一种复合材料液体成型注射装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904882

Country of ref document: EP

Kind code of ref document: A1