WO2022124651A1 - Stent and method for manufacturing same - Google Patents

Stent and method for manufacturing same Download PDF

Info

Publication number
WO2022124651A1
WO2022124651A1 PCT/KR2021/017443 KR2021017443W WO2022124651A1 WO 2022124651 A1 WO2022124651 A1 WO 2022124651A1 KR 2021017443 W KR2021017443 W KR 2021017443W WO 2022124651 A1 WO2022124651 A1 WO 2022124651A1
Authority
WO
WIPO (PCT)
Prior art keywords
extending
bending
point
left diagonal
diagonal direction
Prior art date
Application number
PCT/KR2021/017443
Other languages
French (fr)
Korean (ko)
Inventor
제성호
Original Assignee
주식회사 제가텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제가텍 filed Critical 주식회사 제가텍
Publication of WO2022124651A1 publication Critical patent/WO2022124651A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F45/00Wire-working in the manufacture of other particular articles
    • B21F45/008Wire-working in the manufacture of other particular articles of medical instruments, e.g. stents, corneal rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses

Definitions

  • the present invention relates to a stent, and more particularly, to a stent that is inserted into a lumen of a human body such as an esophagus and a blood vessel to secure a passage, and a method for manufacturing the same.
  • the stent may be inserted into the stenosis region to expand the stenosis region. As such, the stent is widely used to secure the passage of the lumen of the human body.
  • the stent is composed of a cylindrical body having a mesh structure in the form of a number of diamonds by intersecting wires of a superelastic shape memory alloy from the top and the bottom in the diagonal direction.
  • a mesh structure cylinder expands the stenosis area while performing a radial tension operation.
  • the stent is bending the wire by applying various bonding (or bending) methods such as cross and hook.
  • various bonding (or bending) methods such as cross and hook.
  • cross and hook the more the cross-coupling, the better the width direction compressibility and the lower the flexibility, the more the hook coupling, the lower the width direction compressibility and flexibility may be increased.
  • Korean Patent Registration No. 0974308 (stent), Korean Patent Registration No. 1238720 (removal stent), Korean Patent Registration No. 1773370 (stent), etc. have various arrangements of cross coupling and hook coupling, such as their own compressibility and flexibility Although presenting a stent with have.
  • the present invention is to overcome the limitations of the prior art, and through minimizing the disadvantages and maximizing the advantages of cross bonding and hook bonding, a method for manufacturing a stent that can exhibit good values in lumen retention and shape retention, and a result thereof We would like to provide a stent with a new bending pattern.
  • the stent manufacturing method of the present invention for achieving this object, but forming a stent of a mesh structure by bending the first wire in the manufacturing frame, the 1-1 extension extending by 3 unit cells in the lower left diagonal direction from the starting bending point step;
  • a 1-2 extension step extending by 3 unit cells in the upper-left diagonal direction from the bending point at the end point of the 1-1 extension step:
  • a second extension step extending by 3 unit cells in the lower-left diagonal direction from the bending point at the end point of the second extension step 1-3 extension steps;
  • the forward bending pattern consisting of the 1-5 extending step extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the 1-4 extending step and moving by 2 rows in the row direction in the same column as the starting bending point
  • the forward bending pattern consisting of the 1-5
  • the stent manufacturing method of the present invention may repeat a plurality of forward bending patterns along the row direction.
  • the stent manufacturing method of the present invention comprises: a 2-1 extension step of extending by 1 unit cell in the lower left diagonal direction in the same column as the starting bending point of the last row of the forward bending pattern; A second extension step of extending by 2 unit cells in the upper left diagonal direction from the bending point at the end point of the 2-1 extension step: a second extension step extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the second extension step 2-2 2-3 extension steps; a 2-4 extending step of extending by one unit cell in an upper left diagonal direction from the bending point of the end point of the 2-3 extending step; a 2-5 extending step of extending by one unit cell in the lower left diagonal direction from the bending point of the end point of the 2-4 extending step; a 2-6 extending step of extending by 2 unit cells in an upper left diagonal direction from the bending point at the end point of the 2-5 extending step; a 2-7th extending step of extending by 2 unit cells in the lower left diagonal direction from
  • the stent manufacturing method of the present invention may repeat the reverse bending pattern symmetrical to the forward bending pattern in the reverse direction with a number less than the number of repetitions of the forward bending pattern based on the row.
  • the reverse bending pattern may hook the first wire at a bending point at which the forward bending pattern or the direction change bending pattern and bending are simultaneously performed.
  • the method for manufacturing a stent of the present invention includes: a 3-1 extension step of extending by 2 unit cells in an upper-left diagonal direction in the same column as the starting bending point of the last row of a reverse bending pattern; 3-2 extending step extending by 1 unit cell in the lower left diagonal direction from the bending point at the end point of the 3-1 extension step: the third extending step extending by 1 unit cell in the upper left diagonal direction from the bending point at the end point of the 3-2 extending step 3-3 extension phase; a 3-4th extension step of extending by 2 unit cells in the lower left diagonal direction from the bending point of the end point of the 3-3 extending step; a 3-5th extension step of extending by 2 unit cells in an upper left diagonal direction from the bending point of the end point of the 3-4th extension step; a 3-6 extending step of extending by one unit cell in the lower left diagonal direction from the bending point at the end of the 3-5 extending step; a 3-7th extension step of extending by 1 unit cell in an
  • the stent manufacturing method of the present invention using a second wire, starting from the second starting bending point spaced apart by 7 unit cells from the starting bending point, the forward bending pattern described above, the direction change bending pattern, the reverse bending pattern , by performing the finishing bending pattern, including hook coupling, to reduce the mesh size by 1/2.
  • the stent according to the present invention comprises: a first row having four hooks by spaced apart a first pair of hooks in which two hooks are continuously arranged in a column direction in a column direction; And a second pair of hooks adjacent in the longitudinal direction to the first row and in which two hooks are continuously arranged in the column direction are spaced apart along the column direction to include four hooks, the second pair of hooks being the first pair of hooks and It may include a second row arranged in different columns.
  • the first and second pair of hooks may be spaced apart from each other by the same interval.
  • the stent according to the present invention may be configured to be repeated along the row direction by using the first and second rows as a pair.
  • the first and second rows are each composed of 14 columns, the four hooks of the first row are located in the third, fourth, tenth, and 11th columns, and the four hooks of the second row are the sixth, It can be located in columns 7, 13, and 14.
  • the stent of the present invention having such a configuration, by optimizing and regularly arranging the number and position of cross coupling and hook coupling formed in the column direction, it is possible to maximize lumen retention, shape retention, and the like. As a result, the stent of the present invention is easy to use for curved internal organs.
  • the stent of the present invention has four hooks that are regularly arranged in the column direction, can maintain a high compressibility, and as a result can be easily used for small-diameter internal organs.
  • the stent of the present invention hook coupling is regularly arranged along the row direction, thereby providing high flexibility.
  • the stent of the present invention is easy to use for curved internal organs.
  • FIGS. 1A to 1E are exploded views illustrating a method of manufacturing a stent of a first embodiment according to the present invention.
  • Figure 2 is an exploded view showing a method of manufacturing a stent of the second embodiment according to the present invention.
  • Figure 3 is an exploded view showing the hook position in the stent of the second embodiment according to the present invention.
  • Figure 4 is a real photograph showing the high lumen retention and shape retention of the stent according to the present invention.
  • 5A and 5B are diagrams for explaining lumen retention and shape retention.
  • FIGS. 1A to 1E are exploded views illustrating a method of manufacturing a stent of a first embodiment according to the present invention.
  • 1a to 1e are a development view showing a state in which the wire is bent on the outer surface of the stent manufacturing frame, and the stent manufacturing frame has 14 lines of scale in the column direction (x1, x2, x3, ..., x14), It exemplifies that 18 lines of scale (y1, y2, y3, ..., y17, y18) are divided in the row direction, and the intersection point of the scale is used as a bending point that can bend the wire.
  • a bending pin may be selectively inserted into the bending point of the stent manufacturing frame to support the bent wire.
  • the number and arrangement of the bending points are not limited to the examples of FIGS. 1A to 1E , and may have various numbers and arrangements according to the size and shape of the stent.
  • the wire 10 in the column direction along the outer surface of the manufacturing frame in the forward direction can be first bent .
  • the bending refers to the act of extending the wire while bending it at the bending point.
  • the wire ( 10) is extended.
  • the wire 10 extends in the lower left diagonal direction with a length of 3 unit cells (a square cell defined by X1 and Y1 is a unit cell, and a length is defined as a diagonal length).
  • the 1-2 extension step inserts a bending pin at the X4, Y4 point, and winds the wire 10 from the bottom of the bending pin in the upper left diagonal direction, that is, the X7, Y1 point (end point bending point of No. 2). ) to extend the wire 10.
  • the wire 10 extends to a length of 3 unit cells in an upper left diagonal direction.
  • the 1-3 extension step inserts a bending pin at the X7, Y1 point, and winds the wire 10 from the top of the bending pin in the lower left diagonal direction, that is, the X10, Y4 point (end point bending point of No. 3). ) to extend the wire 10.
  • the wire 10 extends to a length of 3 unit cells in the lower left diagonal direction.
  • the bending pin is inserted at the points X10 and Y4, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 to the upper left diagonal direction, that is, to the X13 and Y1 points. do.
  • the wire 10 extends to a length of 3 unit cells in an upper left diagonal direction.
  • the bending pin is inserted at the X13, Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X1, Y3 points. do.
  • the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
  • the wire 10 may move by 2 rows in the row direction in the same column as the starting bending point (X, Y1).
  • the 1-5 extension step may form a basic bending pattern of the forward bending pattern.
  • a plurality of basic bending patterns of a forward bending pattern including steps 1-1 extending to 1-5 extending may be repeated in a row direction.
  • the manufacturing method of the stent of the first embodiment according to the present invention may include a direction change bending pattern for changing the bending direction from the forward bending pattern to the reverse bending pattern.
  • the 2-1 extension step (lower 1/3 of the number 33) extends the wire 10 from the points X1 and Y17 to the lower left diagonal direction, that is, from the points X2 and Y18.
  • the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
  • a bending pin is inserted at the X2 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 to the upper left diagonal direction, that is, to the X4, Y16 points. do.
  • the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
  • the lower left diagonal direction that is, to the X6, Y18 point
  • the wire 10 is extended.
  • the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
  • the bending pin is inserted at the X6 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 in the upper left diagonal direction, that is, to the X7 and Y17 points. do.
  • the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
  • a bending pin is inserted at the X7 and Y17 points, and the wire 10 is bent at this point to extend the wire 10 in the lower left diagonal direction, that is, to the X8 and Y18 points.
  • the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
  • the 2-6 extending step inserts a bending pin at the X8 and Y18 points, and bends the wire 10 at this point to extend the wire 10 to the upper left diagonal direction, that is, to the X10, Y16 points.
  • the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
  • the 2-7 extending step (No. 39) is, after forming a hook by hooking on the forward bending wire (bending part of No. 27 and 28) at X10 and Y16 points, and then in the lower left diagonal direction, that is, to the X12 and Y18 points, the wire 10 ) is extended.
  • the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
  • the bending pin is inserted at the X12 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 in the upper left diagonal direction, that is, to the X13 and Y17 points. do.
  • the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
  • a bending pin is inserted at the X13 and Y17 points, and the wire 10 is bent at this point to extend the wire 10 to the lower left diagonal direction, that is, to the X14 and Y18 points.
  • the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
  • Step 2-10 inserts a bending pin at the X14, Y18 points, and winds the wire 10 from the bottom of the bending pin to the upper left diagonal direction, that is, to the X1, Y17 point ( 10) is extended.
  • the wire 10 extends to a length of one unit cell in an upper left diagonal direction. Accordingly, the wire 10 is positioned at the starting point for reverse bending, that is, the X1 and Y17 points.
  • the stent manufacturing method of the first embodiment may perform bending in the reverse direction (Y17 to Y16 direction) of the reverse bending pattern symmetrical to the forward bending pattern based on the row.
  • the reverse bending pattern may be repeated a number less than the number of repetitions of the forward bending pattern.
  • the reverse bending pattern may hook the wire 10 at a bending point at which the forward bending pattern or the direction change bending pattern and bending are simultaneously performed.
  • final bending may be performed after the end of the reverse bending pattern.
  • the 3-1 extension step (upper 2/3 of number 70) extends the wire 10 from the points X1 and Y3 to the upper left diagonal direction, that is, from the points X3, Y1.
  • the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
  • the bending pin is inserted at the X3, Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X4, Y2 points. do.
  • the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
  • the wire 10 is extended.
  • the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
  • the bending pin is inserted at the X5, Y1 points, and the wire 10 is wound from the upper side of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X7, Y3 points. do.
  • the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
  • the hook is formed by hanging on the forward bending wire (bending part of No. 6 and 7) at the points X7 and Y3, and then the wire 10 to the upper left diagonal direction, that is, to the X9 and Y1 points. ) is extended.
  • the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
  • a bending pin is inserted at the X9, Y1 points, and the wire 10 is bent at this point to extend the wire 10 in the lower left diagonal direction, that is, to the X10, Y2 points.
  • the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
  • the wire 10 In the 3-7 extension step (No. 76), after forming a hook by hooking on the reverse bending wire (bending portion of No. 68 and 69) at points X10 and Y2, the wire 10 to the upper left diagonal direction, that is, to points X11, Y1 ) is extended.
  • the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
  • the bending pin is inserted at the X11 and Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X13, Y3 points. do.
  • the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
  • the wire 10 to the upper left diagonal direction that is, to points X1, Y1
  • the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction. This brings the wire 10 back to the starting bending point.
  • the stent of the first embodiment formed through FIGS. 1a to 1e is (X4,Y2), (X10,Y2) / (X7,Y3), (X13,Y3)/ (X4,Y4), (X10,Y4)/ (X7,Y5),(X13,Y5)/ (X4,Y6),(X10,Y6)/ (X7,Y7),(X13,Y7)/ (X4,Y8),(X10,Y8)/ (X7 ,Y9),(X13,Y9)/ (X4,Y10),(X10,Y10)/ (X7,Y11),(X13,Y11)/ (X4,Y12),(X10,Y12)/ (X7,Y13) ),(X13,Y13)/ (X4,Y14),(X10,Y14)/ (X7,Y15),(X13,Y15)/ (X4,Y16),(X10,Y16)/ (X7,Y17), A hook is formed at the bending point of (X13, Y
  • the wire 10 described above may be made of metal, synthetic polymer, natural polymer, or the like.
  • a shape company alloy for example, a nickel-titanium shape memory alloy, a martensitic nickel-titanium shape memory alloy, or a martensitic Ni-Ti shape memory alloy. etc. can be used.
  • a shape company alloy for example, a nickel-titanium shape memory alloy, a martensitic nickel-titanium shape memory alloy, or a martensitic Ni-Ti shape memory alloy. etc.
  • stainless steel, tantalum, tungsten (W, tungsten), or the like can be used.
  • the synthetic polymer may be a degradable polymer, a non-degradable polymer, or the like.
  • Degradable polymers include poly(lactic acid) and copolymers thereof, poly(glycolic acid) and copolymers thereof, and non-degradable polymers include polyamides : nylons), polycyano acrylates (poly(cyano acrylates)), polyphosphazenes, and the like.
  • Natural polymers are collagen, albumin, silk protein, poly(L-lysine), polyglutamic acid (poly(L-glutamic acid)), poly(aspartic acid) acid)), etc. can be used.
  • the wire may be composed of one material or may be composed of a combination of two or more materials. In order to keep the row direction expansion rate and the width direction compression rate uniform, it may be preferable to consist of one material.
  • the wire may be made of a material having elasticity, and the surface may be coated so that it can be used in the lumen of the human body.
  • Figure 2 is an exploded view showing a method of manufacturing a stent of the second embodiment according to the present invention.
  • the stent manufacturing method of the second embodiment may reduce the mesh size by 1/2 by adding a second wire.
  • the forward bending described above A pattern, a direction change bending pattern, a reverse bending pattern, and a finish bending pattern may be performed including hook bonding.
  • the finishing bending pattern ends by returning to the second starting bending point (X8, Y1).
  • the forward bending pattern, the redirection bending pattern, the reverse bending pattern, and the finishing bending pattern are the same as the corresponding configurations of the first embodiment, and detailed descriptions thereof are replaced with the related descriptions of the first embodiment. .
  • Figure 3 is an exploded view showing the hook position in the stent of the second embodiment according to the present invention.
  • the stent of the second embodiment has four hooks at X3, X4, X10, X11 points in the first row (arranged along Y2), except for the row direction outermost row (Y1, Y18). (20) is formed, and in the second row (arranged along Y3) four hooks are formed at points X6, X7, X13, X14. A simple cross bond can be achieved at the remaining points.
  • the third row (arranged along Y4), the same as in the first row, four hooks 20 are formed at points X3, X4, X10, X11, and the fourth row (arranged along Y5) is the second As in the row, four hooks are formed at points X6, X7, X13, X14.
  • the same bending pattern is repeated in the 3rd, 4th, 5th, 6th rows, etc. with the first and second rows as a pair.
  • the hooks in the first row are arranged adjacent to each other in succession with two hooks (X3, X4) and the other two hooks (X10, X11) along the column direction. have. Further, the two hooks X3 and X4 and the other two hooks X10 and X11 are spaced apart at the same distance along the column direction, that is, by 5 unit cells.
  • two hooks (X6, X7) and the other two hooks (X13, X14) are arranged adjacent to each other in succession along the column direction, respectively. Furthermore, the two hooks X6 and X7 and the other two hooks X13 and X14 are spaced apart at the same distance along the column direction, that is, by 5 unit cells.
  • Figure 4 is a real photograph showing the high lumen retention and shape retention of the stent according to the present invention.
  • 5A and 5B are diagrams for explaining lumen retention and shape retention.
  • the lumen conformity ratio indicates the degree of securing the internal patency of the stent in the bent state, and after bending 180 °, to calculate 'Dc / Do', the A value closer to 1 means better.
  • the shape conformity ratio indicates whether the lumen shape is maintained without deformation even in the lumen with severe bending of the stent, after S-shape compression and expansion, It is a numerical product obtained by multiplying the change ratio in the length and height directions (Rl.cnf ⁇ Rh,cnf), and the closer the value is to 1, the better.
  • Table 1 below shows that when hook bonds are formed at all the bending points in one row (Comparative Example 1), when the hook bonds are formed by uniformly spaced apart from the four bending points in one row (Comparative Example 2), And when the stent of the second embodiment according to the present invention (two hooks are continuously formed as a pair, the pair of hooks are spaced apart at the same distance in the column direction, and this hook arrangement is repeatedly formed to be shifted along the column direction) ) was measured and compared.
  • the stent of the second embodiment according to the present invention exhibits almost the same characteristics as in the case of regularly arranging the hooks spaced apart from each other in terms of compressibility, while maintaining the lumen retention and shape retention in Comparative Example 1, 2 shows a significantly improved result value, and in particular, in shape retention, more than 50% improvement compared to Comparative Examples 1 and 2 is shown.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

This stent is provided with a first row comprising four hooks and a second row comprising four hooks. The first row is composed of first hook pairs which are spaced apart along the column direction and comprise two hooks successively arranged in the column direction. The second row is adjacent to the first row in the row direction and composed of second hook pairs which are spaced apart along the circumferential direction and comprise two hooks successively arranged in the column direction. The second hook pairs are arranged in a different column than the first hook pairs.

Description

스텐트 및 그 제조 방법Stent and its manufacturing method
본 발명은 스텐트에 관한 것으로, 상세하게는 식도, 혈관 등의 인체 내강에 삽입하여 통로를 확보하는 스텐트와 그것의 제조 방법에 관한 것이다.The present invention relates to a stent, and more particularly, to a stent that is inserted into a lumen of a human body such as an esophagus and a blood vessel to secure a passage, and a method for manufacturing the same.
식도, 십이지장, 담도, 요도관, 기도 등과 같은 인체 내강에 종양이나 기타 원인으로 협착 부위가 발생하면 해당 기관이 정상 기능을 할 수 없다. 이 경우, 스텐트는 해당 협착 부위에 삽입되어 협착 부위를 확장할 수 있다. 이와 같이, 스텐트는 인체 내강의 통로 확보에 널리 사용되고 있다.When stenosis occurs in the lumen of the human body such as the esophagus, duodenum, biliary tract, urethra, and airways due to tumors or other causes, the organs cannot function normally. In this case, the stent may be inserted into the stenosis region to expand the stenosis region. As such, the stent is widely used to secure the passage of the lumen of the human body.
스텐트는 초탄성 형상기억합금의 와이어를 대각선 방향으로 위, 아래에서 교차되게 엮어 다수의 마름모 형태의 메쉬 구조를 갖는 원통체로 구성하고 있다. 이러한 메쉬 구조 원통체는 방사상으로 텐션 작동을 하면서 협착 부위를 확장시킨다.The stent is composed of a cylindrical body having a mesh structure in the form of a number of diamonds by intersecting wires of a superelastic shape memory alloy from the top and the bottom in the diagonal direction. Such a mesh structure cylinder expands the stenosis area while performing a radial tension operation.
스텐트는 크로스(cross), 후크(hook) 등의 다양한 결합(또는 벤딩) 방식을 적용하여 와이어를 벤딩하고 있다. 일반적으로, 스텐트는 크로스 결합이 많을수록 폭방향 압축성이 양호하고 유연성은 떨어지며, 후크 결합이 많을수록 폭방향 압축성은 떨어지고 유연성은 높아질 수 있다.The stent is bending the wire by applying various bonding (or bending) methods such as cross and hook. In general, the more the cross-coupling, the better the width direction compressibility and the lower the flexibility, the more the hook coupling, the lower the width direction compressibility and flexibility may be increased.
한편, 스텐트를 형성할 때, 하나의 와이어로 전체 메쉬 구조를 구성해야 압축성, 유연성 등을 전체에 걸쳐 고르게 구현할 수 있는데, 이 경우 하나의 와이어로 전체 메쉬 구조를 형성하면서 압축성, 유연성 등을 최대화 내지 최적화하기가 쉽지 않다. 한국특허등록 제0974308호(스텐트), 한국특허등록 제1238720호(제거용 스텐트), 한국특허등록 제1773370호(스텐트) 등은 크로스 결합, 후크 결합 등을 다양하게 배열하여, 나름의 압축성과 유연성을 갖는 스텐트를 제시하고 있기는 하지만, 하나의 와이어를 사용해야 하는 한계로 인해, 압축성, 유연성 등을 최대화 내지 최적화하는데 한계를 보여주고 있으며, 특히 내강 유지도, 형상 유지도 등에서 양호한 값을 보여주지 못하고 있다.On the other hand, when forming a stent, compressibility and flexibility can be uniformly implemented throughout the entire mesh structure by configuring the entire mesh structure with one wire. In this case, compressibility and flexibility are maximized while forming the entire mesh structure with one wire It is not easy to optimize. Korean Patent Registration No. 0974308 (stent), Korean Patent Registration No. 1238720 (removal stent), Korean Patent Registration No. 1773370 (stent), etc. have various arrangements of cross coupling and hook coupling, such as their own compressibility and flexibility Although presenting a stent with have.
본 발명은 이러한 종래기술의 한계를 극복하기 위한 것으로, 크로스 결합과 후크 결합의 단점 최소화와 장점 최대화를 통해, 내강 유지도와 형상 유지도에서 양호한 값을 나타낼 수 있는, 스텐트의 제조 방법과 그 결과물인 새로운 벤딩 패턴의 스텐트를 제공하고자 한다.The present invention is to overcome the limitations of the prior art, and through minimizing the disadvantages and maximizing the advantages of cross bonding and hook bonding, a method for manufacturing a stent that can exhibit good values in lumen retention and shape retention, and a result thereof We would like to provide a stent with a new bending pattern.
이러한 목적을 달성하기 위한 본 발명의 스텐트 제조 방법은, 제조 틀에서 제1 와이어를 벤딩하여 메쉬 구조의 스텐트를 형성하되, 시작 벤딩 포인트에서 좌하 사선 방향으로 3 단위 셀만큼 연장하는 제1-1 연장 단계; 제1-1 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 3 단위 셀만큼 연장하는 제1-2 연장 단계: 제1-2 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 3 단위 셀만큼 연장하는 제1-3 연장 단계; 제1-3 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 3 단위 셀만큼 연장하는 제1-4 연장 단계; 그리고 제1-4 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하여 시작 벤딩 포인트와 동일 열에서 행 방향으로 2 행만큼 이동하는 제1-5 연장 단계로 구성되는 정방향 벤딩 패턴을 포함할 수 있다.The stent manufacturing method of the present invention for achieving this object, but forming a stent of a mesh structure by bending the first wire in the manufacturing frame, the 1-1 extension extending by 3 unit cells in the lower left diagonal direction from the starting bending point step; A 1-2 extension step extending by 3 unit cells in the upper-left diagonal direction from the bending point at the end point of the 1-1 extension step: a second extension step extending by 3 unit cells in the lower-left diagonal direction from the bending point at the end point of the second extension step 1-3 extension steps; a 1-4 extending step of extending by 3 unit cells in an upper left diagonal direction from the bending point of the end point of the 1-3 extending step; And the forward bending pattern consisting of the 1-5 extending step extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the 1-4 extending step and moving by 2 rows in the row direction in the same column as the starting bending point may include
본 발명의 스텐트 제조 방법은 정방향 벤딩 패턴을 행 방향을 따라 다수를 반복할 수 있다.The stent manufacturing method of the present invention may repeat a plurality of forward bending patterns along the row direction.
본 발명의 스텐트 제조 방법은, 정방향 벤딩 패턴의 마지막 행의 시작 벤딩 포인트와 동일 열에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-1 연장 단계; 제2-1 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제2-2 연장 단계: 제2-2 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제2-3 연장 단계; 제2-3 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제2-4 연장 단계; 제2-4 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-5 연장 단계; 제2-5 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제2-6 연장 단계; 제2-6 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제2-7 연장 단계; 제2-7 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제2-8 연장 단계; 제2-8 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-9 연장 단계; 그리고 제 2-9 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하여 시작 벤딩 포인트와 동일 열까지 이동하는 제2-10 연장 단계로 구성되는 방향 전환 벤딩 패턴을 포함할 수 있다. 방향 전환 벤딩 패턴은 정방향 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 제1 와이어를 후크 결합할 수 있다.The stent manufacturing method of the present invention comprises: a 2-1 extension step of extending by 1 unit cell in the lower left diagonal direction in the same column as the starting bending point of the last row of the forward bending pattern; A second extension step of extending by 2 unit cells in the upper left diagonal direction from the bending point at the end point of the 2-1 extension step: a second extension step extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the second extension step 2-2 2-3 extension steps; a 2-4 extending step of extending by one unit cell in an upper left diagonal direction from the bending point of the end point of the 2-3 extending step; a 2-5 extending step of extending by one unit cell in the lower left diagonal direction from the bending point of the end point of the 2-4 extending step; a 2-6 extending step of extending by 2 unit cells in an upper left diagonal direction from the bending point at the end point of the 2-5 extending step; a 2-7th extending step of extending by 2 unit cells in the lower left diagonal direction from the bending point of the end point of the 2-6th extending step; a 2-8 extending step of extending by one unit cell in an upper left diagonal direction from the bending point of the end point of the 2-7 extending step; a 2-9 extending step of extending by 1 unit cell in the lower left diagonal direction from the bending point of the end point of the 2-8 extending step; And it may include a direction change bending pattern consisting of a 2-10th extension step of extending by one unit cell in the upper left diagonal direction from the bending point at the end point of the 2-9th extension step to move to the same row as the starting bending point. The direction change bending pattern may hook the first wire at a bending point where the forward bending pattern and the bending are simultaneously performed.
본 발명의 스텐트 제조 방법은, 행을 기준으로 정방향 벤딩 패턴과 대칭되는 역방향 벤딩 패턴을 역방향으로 정방향 벤딩 패턴의 반복 횟수보다 하나가 적은 횟수로 반복할 수 있다. 역방향 벤딩 패턴은 정방향 벤딩 패턴 또는 방향 전환 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 제1 와이어를 후크 결합할 수 있다.The stent manufacturing method of the present invention may repeat the reverse bending pattern symmetrical to the forward bending pattern in the reverse direction with a number less than the number of repetitions of the forward bending pattern based on the row. The reverse bending pattern may hook the first wire at a bending point at which the forward bending pattern or the direction change bending pattern and bending are simultaneously performed.
본 발명의 스텐트 제조 방법은, 역방향 벤딩 패턴의 마지막 행의 시작 벤딩 포인트와 동일 열에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제3-1 연장 단계; 제3-1 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제3-2 연장 단계: 제3-2 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제3-3 연장 단계; 제3-3 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제3-4 연장 단계; 제3-4 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제3-5 연장 단계; 제3-5 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제3-6 연장 단계; 제3-6 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제3-7 연장 단계; 제3-7 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제3-8 연장 단계; 그리고 제3-8 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하여 시작 벤딩 포인트에 도달하는 제3-9 연장 단계로 구성되는 마무리 벤딩 패턴을 포함할 수 있다. 마무리 벤딩 패턴은 역방향 벤딩 패턴 또는 정방향 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 제1 와이어를 후크 결합할 수 있다.The method for manufacturing a stent of the present invention includes: a 3-1 extension step of extending by 2 unit cells in an upper-left diagonal direction in the same column as the starting bending point of the last row of a reverse bending pattern; 3-2 extending step extending by 1 unit cell in the lower left diagonal direction from the bending point at the end point of the 3-1 extension step: the third extending step extending by 1 unit cell in the upper left diagonal direction from the bending point at the end point of the 3-2 extending step 3-3 extension phase; a 3-4th extension step of extending by 2 unit cells in the lower left diagonal direction from the bending point of the end point of the 3-3 extending step; a 3-5th extension step of extending by 2 unit cells in an upper left diagonal direction from the bending point of the end point of the 3-4th extension step; a 3-6 extending step of extending by one unit cell in the lower left diagonal direction from the bending point at the end of the 3-5 extending step; a 3-7th extension step of extending by 1 unit cell in an upper left diagonal direction from the bending point of the end point of the 3-6th extension step; a 3-8 extending step of extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the 3-7 extending step; And it may include a finishing bending pattern consisting of a 3-9 extending step extending from the end bending point of the 3-8 extending step by 2 unit cells in the upper left diagonal direction to reach the starting bending point. The finishing bending pattern may hook the first wire at a bending point at which the reverse bending pattern or the forward bending pattern and bending are simultaneously performed.
본 발명의 스텐트 제조 방법은, 제2 와이어를 사용하여, 시작 벤딩 포인트에 7 단위 셀의 열만큼 이격되는 제2 시작 벤딩 포인트에서 시작하여, 위에서 설명한 정방향 벤딩 패턴, 방향 전환 벤딩 패턴, 역방향 벤딩 패턴, 마무리 벤딩 패턴을 후크 결합을 포함하여 수행하여, 메쉬 크기를 1/2로 줄이는 단계를 포함할 수 있다.The stent manufacturing method of the present invention, using a second wire, starting from the second starting bending point spaced apart by 7 unit cells from the starting bending point, the forward bending pattern described above, the direction change bending pattern, the reverse bending pattern , by performing the finishing bending pattern, including hook coupling, to reduce the mesh size by 1/2.
본 발명에 따른 스텐트는, 2개의 후크가 열 방향으로 연속 배치되는 제1 후크 쌍을 열 방향을 따라 이격시켜 4개의 후크를 구비하는 제1 행; 그리고 제1 행과 길이 방향을 따라 인접하고, 2개의 후크가 열 방향으로 연속 배치되는 제2 후크 쌍을 열 방향을 따라 이격시켜 4개의 후크를 구비하되, 제2 후크 쌍은 제1 후크 쌍과 열을 달리하여 배치되는 제2 행을 포함할 수 있다.The stent according to the present invention comprises: a first row having four hooks by spaced apart a first pair of hooks in which two hooks are continuously arranged in a column direction in a column direction; And a second pair of hooks adjacent in the longitudinal direction to the first row and in which two hooks are continuously arranged in the column direction are spaced apart along the column direction to include four hooks, the second pair of hooks being the first pair of hooks and It may include a second row arranged in different columns.
본 발명에 따른 스텐트에서, 제1,2 후크 쌍은 각각 동일 간격으로 이격될 수 있다.In the stent according to the present invention, the first and second pair of hooks may be spaced apart from each other by the same interval.
본 발명에 따른 스텐트는 제1,2 행을 하나의 쌍으로 하여 행 방향을 따라 반복되게 구성할 수 있다.The stent according to the present invention may be configured to be repeated along the row direction by using the first and second rows as a pair.
본 발명에 따른 스텐트에서, 제1,2 행은 각각 14개 열로 구성되고, 제1 행의 4개 후크는 제3,4,10,11 열에 위치하고, 제2 행의 4개 후크는 제6,7,13,14 열에 위치할 수 있다.In the stent according to the present invention, the first and second rows are each composed of 14 columns, the four hooks of the first row are located in the third, fourth, tenth, and 11th columns, and the four hooks of the second row are the sixth, It can be located in columns 7, 13, and 14.
이러한 구성을 갖는 본 발명의 스텐트에 의하면, 열 방향으로 형성되는 크로스 결합과 후크 결합의 수와 위치를 최적화하고 아울러 규칙적으로 배열함으로써, 내강 유지도, 형상 유지도 등을 최대화할 수 있다. 그 결과, 본 발명의 스텐트는 곡선 형태의 내부 장기에 사용하기가 용이하다.According to the stent of the present invention having such a configuration, by optimizing and regularly arranging the number and position of cross coupling and hook coupling formed in the column direction, it is possible to maximize lumen retention, shape retention, and the like. As a result, the stent of the present invention is easy to use for curved internal organs.
본 발명의 스텐트는 4개의 후크가 열 방향으로 규칙적으로 배열되어 있어, 높은 압축률을 유지할 수 있고, 그 결과 작은 직경의 내부 장기에도 용이하게 사용할 수 있다.The stent of the present invention has four hooks that are regularly arranged in the column direction, can maintain a high compressibility, and as a result can be easily used for small-diameter internal organs.
또한, 본 발명의 스텐트는 행 방향을 따라 후크 결합이 규칙적으로 배열되어 있어, 높은 유연성을 제공할 수 있다. 그 결과, 본 발명의 스텐트는 곡선 형태의 내부 장기에 사용하기가 용이하다. In addition, in the stent of the present invention, hook coupling is regularly arranged along the row direction, thereby providing high flexibility. As a result, the stent of the present invention is easy to use for curved internal organs.
도 1a~1e는 본 발명에 따른 제1 실시예의 스텐트의 제조 방법을 도시하는 전개도이다.1A to 1E are exploded views illustrating a method of manufacturing a stent of a first embodiment according to the present invention.
도 2는 본 발명에 따른 제2 실시예의 스텐트의 제조 방법을 도시하는 전개도이다.Figure 2 is an exploded view showing a method of manufacturing a stent of the second embodiment according to the present invention.
도 3은 본 발명에 따른 제2 실시예의 스텐트에서 후크 위치를 도시하는 전개도이다. Figure 3 is an exploded view showing the hook position in the stent of the second embodiment according to the present invention.
도 4는 본 발명에 따른 스텐트의 높은 내강 유지도, 형상 유지도를 보여주는 실물 사진이다.Figure 4 is a real photograph showing the high lumen retention and shape retention of the stent according to the present invention.
도 5a,5b는 내강 유지도와 형상 유지도를 설명하는 도면이다.5A and 5B are diagrams for explaining lumen retention and shape retention.
이하, 첨부도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1a~1e는 본 발명에 따른 제1 실시예의 스텐트의 제조 방법을 도시하는 전개도이다.1A to 1E are exploded views illustrating a method of manufacturing a stent of a first embodiment according to the present invention.
도 1a~1e는 스텐트 제조 틀의 외부면에 와이어가 벤딩된 상태를 펼쳐서 보여주는 전개 도면으로, 스텐트 제조 틀은 열 방향으로 14줄의 눈금(x1, x2, x3, ..., x14)을, 행 방향으로 18줄의 눈금(y1, y2, y3, ..., y17,y18)을 구획한 것을 예시하고 있으며, 눈금의 교차 지점은 와이어를 굽힐 수 있는 벤딩 포인트(bening point)로 사용되고 있다. 도면에 도시되어 있지는 않지만, 스텐트 제조 틀의 밴딩 포인트에는 벤딩 핀이 선택적으로 삽입되어, 벤딩된 와이어를 지지할 수 있다. 벤딩 포인트의 수와 배열은 도 1a~1e의 예시에 한정되지 않고, 스텐트의 사이즈, 형태 등에 따라 다양한 수와 배열을 가질 수 있다.1a to 1e are a development view showing a state in which the wire is bent on the outer surface of the stent manufacturing frame, and the stent manufacturing frame has 14 lines of scale in the column direction (x1, x2, x3, ..., x14), It exemplifies that 18 lines of scale (y1, y2, y3, ..., y17, y18) are divided in the row direction, and the intersection point of the scale is used as a bending point that can bend the wire. Although not shown in the drawings, a bending pin may be selectively inserted into the bending point of the stent manufacturing frame to support the bent wire. The number and arrangement of the bending points are not limited to the examples of FIGS. 1A to 1E , and may have various numbers and arrangements according to the size and shape of the stent.
도 1a에 도시한 바와 같이, 본 발명에 따른 스텐트의 제조 방법은 제조 틀의 외면을 따라 열 방향으로 와이어(10)를 정방향(상방에서 하방, 또는 Y1에서 Y2의 방향) 1차 벤딩할 수 있다. 여기서, 벤딩(bending)은 와이어를 벤딩 포인트에서 절곡시키면서 연장하는 행위를 의미한다. As shown in Figure 1a, in the method for manufacturing a stent according to the present invention, the wire 10 in the column direction along the outer surface of the manufacturing frame in the forward direction (from top to bottom, or from Y1 to Y2) can be first bent . Here, the bending (bending) refers to the act of extending the wire while bending it at the bending point.
제1-1 연장 단계(번호 1)는, 와이어(10)를 X1,Y1 지점(시작 벤딩 포인트)에서 시작하여, 좌하 사선 방향, 즉 X4,Y4 지점(번호 1의 종점 벤딩 포인트)까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 3 단위 셀의 길이(X1,Y1로 정의되는 사각형 셀을 단위 셀로 하고, 길이는 대각선 길이로 정의함)로 연장한다.In the 1-1 extension step (No. 1), starting the wire 10 from the X1, Y1 point (start bending point), the wire ( 10) is extended. Here, the wire 10 extends in the lower left diagonal direction with a length of 3 unit cells (a square cell defined by X1 and Y1 is a unit cell, and a length is defined as a diagonal length).
제1-2 연장 단계(번호 2)는, X4,Y4 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X7,Y1 지점(번호 2의 종점 벤딩 포인트)까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 3 단위 셀의 길이로 연장한다.The 1-2 extension step (No. 2) inserts a bending pin at the X4, Y4 point, and winds the wire 10 from the bottom of the bending pin in the upper left diagonal direction, that is, the X7, Y1 point (end point bending point of No. 2). ) to extend the wire 10. Here, the wire 10 extends to a length of 3 unit cells in an upper left diagonal direction.
제1-3 연장 단계(번호 3)는, X7,Y1 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 위쪽에서 감아 좌하 사선 방향, 즉 X10,Y4 지점(번호 3의 종점 벤딩 포인트)까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 3 단위 셀의 길이로 연장한다.The 1-3 extension step (No. 3) inserts a bending pin at the X7, Y1 point, and winds the wire 10 from the top of the bending pin in the lower left diagonal direction, that is, the X10, Y4 point (end point bending point of No. 3). ) to extend the wire 10. Here, the wire 10 extends to a length of 3 unit cells in the lower left diagonal direction.
제1-4 연장 단계(번호 4)는, X10,Y4 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X13,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 3 단위 셀의 길이로 연장한다.In the 1-4 extension step (No. 4), the bending pin is inserted at the points X10 and Y4, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 to the upper left diagonal direction, that is, to the X13 and Y1 points. do. Here, the wire 10 extends to a length of 3 unit cells in an upper left diagonal direction.
제1-5 연장 단계(번호 5)는, X13,Y1 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 위쪽에서 감아 좌하 사선 방향, 즉 X1,Y3 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 2 단위 셀의 길이로 연장한다.In the 1-5 extension step (No. 5), the bending pin is inserted at the X13, Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X1, Y3 points. do. Here, the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
제1-5 연장 단계(번호 5)를 종료하면, 와이어(10)는 시작 벤딩 포인트(X,Y1)와 동일 열에서 행 방향으로 2 행만큼 이동할 수 있다.When the 1-5 extending step (No. 5) is finished, the wire 10 may move by 2 rows in the row direction in the same column as the starting bending point (X, Y1).
위에서 설명한 제1-1 연장 단계에서 제1-5 연장 단계는 정방향 벤딩 패턴의 기본 벤딩 패턴을 형성할 수 있다. In the 1-1 extension step described above, the 1-5 extension step may form a basic bending pattern of the forward bending pattern.
도 1a에 도시한 바와 같이, 제1-1 연장 단계에서 제1-5 연장 단계까지를 포함하는 정방향 벤딩 패턴의 기본 벤딩 패턴을 행 방향을 따라서 다수를 반복할 수 있다.As shown in FIG. 1A , a plurality of basic bending patterns of a forward bending pattern including steps 1-1 extending to 1-5 extending may be repeated in a row direction.
1b에 도시한 바와 같이, 본 발명에 따른 제1 실시예의 스텐트의 제조 방법은 정방향 벤딩 패턴에서 역방향 벤딩 패턴으로 벤딩 방향을 전환하는 방향 전환 벤딩 패턴을 포함할 수 있다.As shown in 1b, the manufacturing method of the stent of the first embodiment according to the present invention may include a direction change bending pattern for changing the bending direction from the forward bending pattern to the reverse bending pattern.
제2-1 연장 단계(번호 33의 하측 1/3)는, X1,Y17 지점에서 좌하 사선 방향, 즉 X2,Y18 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 1 단위 셀의 길이로 연장한다.The 2-1 extension step (lower 1/3 of the number 33) extends the wire 10 from the points X1 and Y17 to the lower left diagonal direction, that is, from the points X2 and Y18. Here, the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
제2-2 연장 단계(번호 34)는, X2,Y18 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X4,Y16 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 2 단위 셀의 길이로 연장한다. In the 2-2 extension step (No. 34), a bending pin is inserted at the X2 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 to the upper left diagonal direction, that is, to the X4, Y16 points. do. Here, the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
제2-3 연장 단계(번호 35)는, X4,Y16 지점에서 정방향 벤딩 와이어(번호 25,26의 벤딩부)에 걸어 후크(hook)를 형성한 후, 좌하 사선 방향, 즉 X6,Y18 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 2 단위 셀의 길이로 연장한다.In the 2-3 extension step (No. 35), after forming a hook by hooking on the forward bending wire (bending part of No. 25 and 26) at the X4 and Y16 points, the lower left diagonal direction, that is, to the X6, Y18 point The wire 10 is extended. Here, the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
제2-4 연장 단계(번호 36)는, X6,Y18 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X7,Y17 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 2-4 extension step (No. 36), the bending pin is inserted at the X6 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 in the upper left diagonal direction, that is, to the X7 and Y17 points. do. Here, the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
제2-5 연장 단계(번호 37)는, X7,Y17 지점에 벤딩 핀을 삽입하고, 이 지점에서 와이어(10)를 벤딩하여 좌하 사선 방향, 즉 X8,Y18 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 2-5 extension step (No. 37), a bending pin is inserted at the X7 and Y17 points, and the wire 10 is bent at this point to extend the wire 10 in the lower left diagonal direction, that is, to the X8 and Y18 points. . Here, the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
제2-6 연장 단계(번호 38)는, X8,Y18 지점에 벤딩 핀을 삽입하고, 이 지점에서 와이어(10)를 벤딩하여 좌상 사선 방향, 즉 X10,Y16 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 2 단위 셀의 길이로 연장한다.The 2-6 extending step (No. 38) inserts a bending pin at the X8 and Y18 points, and bends the wire 10 at this point to extend the wire 10 to the upper left diagonal direction, that is, to the X10, Y16 points. . Here, the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
제2-7 연장 단계(번호 39)는, X10,Y16 지점에서 정방향 벤딩 와이어(번호 27,28의 벤딩부)에 걸어 후크를 형성한 후, 좌하 사선 방향, 즉 X12,Y18 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 2 단위 셀의 길이로 연장한다.The 2-7 extending step (No. 39) is, after forming a hook by hooking on the forward bending wire (bending part of No. 27 and 28) at X10 and Y16 points, and then in the lower left diagonal direction, that is, to the X12 and Y18 points, the wire 10 ) is extended. Here, the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
제2-8 연장 단계(번호 40)는, X12,Y18 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X13,Y17 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 2-8 extension step (No. 40), the bending pin is inserted at the X12 and Y18 points, and the wire 10 is wound from the bottom of the bending pin to extend the wire 10 in the upper left diagonal direction, that is, to the X13 and Y17 points. do. Here, the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
제2-9 연장 단계(번호 41)는, X13,Y17 지점에 벤딩 핀을 삽입하고, 이 지점에서 와이어(10)를 벤딩하여 좌하 사선 방향, 즉 X14,Y18 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 2-9 extending step (No. 41), a bending pin is inserted at the X13 and Y17 points, and the wire 10 is bent at this point to extend the wire 10 to the lower left diagonal direction, that is, to the X14 and Y18 points. . Here, the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
제2-10 단계(번호 42의 하측 1/3)는, X14,Y18 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 아래쪽에서 감아 좌상 사선 방향, 즉 X1,Y17 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 1 단위 셀의 길이로 연장한다. 이로써, 와이어(10)는 역방향 벤딩을 위한 시작 지점, 즉 X1,Y17 지점에 위치하게 된다.Step 2-10 (lower 1/3 of No. 42) inserts a bending pin at the X14, Y18 points, and winds the wire 10 from the bottom of the bending pin to the upper left diagonal direction, that is, to the X1, Y17 point ( 10) is extended. Here, the wire 10 extends to a length of one unit cell in an upper left diagonal direction. Accordingly, the wire 10 is positioned at the starting point for reverse bending, that is, the X1 and Y17 points.
도 1c,1d에 도시한 바와 같이, 제1 실시예의 스텐트 제조 방법은, 행을 기준으로 정방향 벤딩 패턴과 대칭되는 역방향 벤딩 패턴을 역방향으로(Y17에서 Y16 방향)으로 벤딩을 수행할 수 있다. 여기서, 역방향 벤딩 패턴은 정방향 벤딩 패턴의 반복 횟수보다 하나가 적은 횟수로 반복할 수 있다. 또한, 역방향 벤딩 패턴은 정방향 벤딩 패턴 또는 방향 전환 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 와이어(10)를 후크 결합할 수 있다.1c and 1d, the stent manufacturing method of the first embodiment may perform bending in the reverse direction (Y17 to Y16 direction) of the reverse bending pattern symmetrical to the forward bending pattern based on the row. Here, the reverse bending pattern may be repeated a number less than the number of repetitions of the forward bending pattern. In addition, the reverse bending pattern may hook the wire 10 at a bending point at which the forward bending pattern or the direction change bending pattern and bending are simultaneously performed.
도 1e에 도시한 바와 같이, 제1 실시예의 스텐트의 제조 방법은 역방향 벤딩 패턴의 마지막 이후에 마무리 벤딩을 수행할 수 있다.As shown in FIG. 1E , in the method of manufacturing the stent of the first embodiment, final bending may be performed after the end of the reverse bending pattern.
제3-1 연장 단계(번호 70의 상측 2/3)는, X1,Y3 지점에서 좌상 사선 방향, 즉 X3,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 2 단위 셀의 길이로 연장한다.The 3-1 extension step (upper 2/3 of number 70) extends the wire 10 from the points X1 and Y3 to the upper left diagonal direction, that is, from the points X3, Y1. Here, the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
제3-2 연장 단계(번호 71)는, X3,Y1 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 위쪽에서 감아 좌하 사선 방향, 즉 X4,Y2 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 3-2 extension step (No. 71), the bending pin is inserted at the X3, Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X4, Y2 points. do. Here, the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
제3-3 연장 단계(번호 72)는, X4,Y2 지점에서 역방향 벤딩 와이어(번호 66,67의 벤딩부)에 걸어 후크(hook)를 형성한 후, 좌상 사선 방향, 즉 X5,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 3-3 extension step (No. 72), after forming a hook by hooking on the reverse bending wire (bending part of No. 66 and 67) at the points X4 and Y2, the upper left diagonal direction, that is, to the point X5, Y1 The wire 10 is extended. Here, the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
제3-4 연장 단계(번호 73)는, X5,Y1 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 위쪽에서 감아 좌하 사선 방향, 즉 X7,Y3 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 2 단위 셀의 길이로 연장한다.In the 3-4th extension step (No. 73), the bending pin is inserted at the X5, Y1 points, and the wire 10 is wound from the upper side of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X7, Y3 points. do. Here, the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
제3-5 연장 단계(번호 74)는, X7,Y3 지점에서 정방향 벤딩 와이어(번호 6,7의 벤딩부)에 걸어 후크를 형성한 후, 좌상 사선 방향, 즉 X9,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 2 단위 셀의 길이로 연장한다.In the 3-5th extension step (No. 74), the hook is formed by hanging on the forward bending wire (bending part of No. 6 and 7) at the points X7 and Y3, and then the wire 10 to the upper left diagonal direction, that is, to the X9 and Y1 points. ) is extended. Here, the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction.
제3-6 연장 단계(번호 75)는, X9,Y1 지점에 벤딩 핀을 삽입하고, 이 지점에서 와이어(10)를 벤딩하여 좌하 사선 방향, 즉 X10,Y2 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 3-6 extending step (No. 75), a bending pin is inserted at the X9, Y1 points, and the wire 10 is bent at this point to extend the wire 10 in the lower left diagonal direction, that is, to the X10, Y2 points. . Here, the wire 10 extends to the length of one unit cell in the lower left diagonal direction.
제3-7 연장 단계(번호 76)는, X10,Y2 지점에서 역방향 벤딩 와이어(번호 68,69의 벤딩부)에 걸어 후크를 형성한 후, 좌상 사선 방향, 즉 X11,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 1 단위 셀의 길이로 연장한다.In the 3-7 extension step (No. 76), after forming a hook by hooking on the reverse bending wire (bending portion of No. 68 and 69) at points X10 and Y2, the wire 10 to the upper left diagonal direction, that is, to points X11, Y1 ) is extended. Here, the wire 10 extends to a length of one unit cell in an upper left diagonal direction.
제3-8 연장 단계(번호 77)는, X11,Y1 지점에 벤딩 핀을 삽입하고, 와이어(10)를 벤딩 핀의 위쪽에서 감아 좌하 사선 방향, 즉 X13,Y3 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌하 사선 방향으로 2 단위 셀의 길이로 연장한다.In the 3-8 extension step (No. 77), the bending pin is inserted at the X11 and Y1 points, and the wire 10 is wound from the top of the bending pin to extend the wire 10 to the lower left diagonal direction, that is, to the X13, Y3 points. do. Here, the wire 10 extends to a length of 2 unit cells in the lower left diagonal direction.
제3-9 연장 단계(번호 78)는, X13,Y3 지점에서 정방향 벤딩 와이어(번호 8,9의 벤딩부)에 걸어 후크를 형성한 후, 좌상 사선 방향, 즉 X1,Y1 지점까지 와이어(10)를 연장한다. 여기서, 와이어(10)는 좌상 사선 방향으로 2 단위 셀의 길이로 연장한다. 이로써, 와이어(10)는 시작 벤딩 포인트로 되돌아오게 된다.In the 3-9 extending step (No. 78), after forming a hook by hanging on the forward bending wire (bending part of No. 8 and 9) at points X13 and Y3, the wire 10 to the upper left diagonal direction, that is, to points X1, Y1 ) is extended. Here, the wire 10 extends to a length of 2 unit cells in an upper left diagonal direction. This brings the wire 10 back to the starting bending point.
도 1a~1e를 통해 형성되는 제1 실시예의 스텐트는 (X4,Y2),(X10,Y2) / (X7,Y3),(X13,Y3)/ (X4,Y4),(X10,Y4)/ (X7,Y5),(X13,Y5)/ (X4,Y6),(X10,Y6)/ (X7,Y7),(X13,Y7)/ (X4,Y8),(X10,Y8)/ (X7,Y9),(X13,Y9)/ (X4,Y10),(X10,Y10)/ (X7,Y11),(X13,Y11)/ (X4,Y12),(X10,Y12)/ (X7,Y13),(X13,Y13)/ (X4,Y14),(X10,Y14)/ (X7,Y15),(X13,Y15)/ (X4,Y16),(X10,Y16)/ (X7,Y17),(X13,Y17)의 벤딩 포인트에 후크가 형성된다.The stent of the first embodiment formed through FIGS. 1a to 1e is (X4,Y2), (X10,Y2) / (X7,Y3), (X13,Y3)/ (X4,Y4), (X10,Y4)/ (X7,Y5),(X13,Y5)/ (X4,Y6),(X10,Y6)/ (X7,Y7),(X13,Y7)/ (X4,Y8),(X10,Y8)/ (X7 ,Y9),(X13,Y9)/ (X4,Y10),(X10,Y10)/ (X7,Y11),(X13,Y11)/ (X4,Y12),(X10,Y12)/ (X7,Y13) ),(X13,Y13)/ (X4,Y14),(X10,Y14)/ (X7,Y15),(X13,Y15)/ (X4,Y16),(X10,Y16)/ (X7,Y17), A hook is formed at the bending point of (X13, Y17).
위에서 설명한 와이어(10)는 금속, 합성 고분자, 천연 고분자 등으로 구성할 수 있다.The wire 10 described above may be made of metal, synthetic polymer, natural polymer, or the like.
금속은 형상기업 합금을 이용하는 것이 바람직할 수 있는데, 예를들어 니켈-티탄늄 형상기억 합금(Ni-Ti shape memory alloy), 마르텐사이트 니켈-티탄늄 형상기억 합금(martensitic Ni-Ti shape memory alloy) 등을 이용할 수 있다. 그 밖의 금속으로는, 스텐인레스강(stainless steel), 탄탈늄(tantalum), 텅스텐(W, tungsten) 등을 이용할 수 있다.It may be desirable to use a shape company alloy as the metal, for example, a nickel-titanium shape memory alloy, a martensitic nickel-titanium shape memory alloy, or a martensitic Ni-Ti shape memory alloy. etc. can be used. As other metals, stainless steel, tantalum, tungsten (W, tungsten), or the like can be used.
합성 고분자는 분해성(degradable) 고분자, 비분해성(non-degradable) 고분자 등을 이용할 수 있다. 분해성 고분자로는 폴리락틱산(poly(lactic acid)) 및 그 공중합체(copolymers), 폴리글라이코릭산(poly(glycolic acid)) 및 그 공중합체 등이 있고, 비분해성 고분자로는 폴리아미드(polyamides: nylons), 폴리시아노 아크릴레이트(poly(cyano acrylates)), 폴리포스파젠(polyphosphazenes) 등이 있다. The synthetic polymer may be a degradable polymer, a non-degradable polymer, or the like. Degradable polymers include poly(lactic acid) and copolymers thereof, poly(glycolic acid) and copolymers thereof, and non-degradable polymers include polyamides : nylons), polycyano acrylates (poly(cyano acrylates)), polyphosphazenes, and the like.
천연 고분자는 콜라겐(collagen), 알부민(albumin), 실크 단백질(silk protein), 폴리리신(poly(L-lysine)), 폴리글루타민산(poly(L-glutamic acid)), 폴리아스파틱산(poly(aspartic acid)) 등을 이용할 수 있다.Natural polymers are collagen, albumin, silk protein, poly(L-lysine), polyglutamic acid (poly(L-glutamic acid)), poly(aspartic acid) acid)), etc. can be used.
와이어는 하나의 재질로 구성하거나 2개 이상의 재질을 조합하여 구성할 수 있는데, 행 방향 팽창률과 폭방향 압축률을 균일하게 유지하기 위해서는 하나의 재질로 구성하는 것이 바람직할 수 있다.The wire may be composed of one material or may be composed of a combination of two or more materials. In order to keep the row direction expansion rate and the width direction compression rate uniform, it may be preferable to consist of one material.
와이어는 탄성을 갖는 재질로 구성할 수 있고, 인체 내강에 사용할 수 있도록 표면을 코팅 처리할 수도 있다.The wire may be made of a material having elasticity, and the surface may be coated so that it can be used in the lumen of the human body.
도 2는 본 발명에 따른 제2 실시예의 스텐트의 제조 방법을 도시하는 전개도이다.Figure 2 is an exploded view showing a method of manufacturing a stent of the second embodiment according to the present invention.
제2 실시예의 스텐트 제조 방법은, 제2 와이어를 추가하여 메쉬 크기를 1/2로 줄일 수 있다. The stent manufacturing method of the second embodiment may reduce the mesh size by 1/2 by adding a second wire.
제2 실시예의 제조 방법은, 도 1a~1e에 도시한 시작 벤딩 포인트(X1,Y1)에서 7 단위 셀의 열만큼 이격되는 제2 시작 벤딩 포인트(X8,Y1)에서 시작하여, 위에서 설명한 정방향 벤딩 패턴, 방향 전환 벤딩 패턴, 역방향 벤딩 패턴, 마무리 벤딩 패턴을 후크 결합을 포함하여 수행할 수 있다. 제2 실시예에서 마무리 벤딩 패턴은 제2 시작 벤딩 포인트(X8,Y1)로 되돌아와서 종료된다.In the manufacturing method of the second embodiment, starting from the second starting bending point (X8, Y1) spaced apart by 7 unit cells from the starting bending point (X1, Y1) shown in FIGS. 1A to 1E, the forward bending described above A pattern, a direction change bending pattern, a reverse bending pattern, and a finish bending pattern may be performed including hook bonding. In the second embodiment, the finishing bending pattern ends by returning to the second starting bending point (X8, Y1).
제2 실시예의 제조 방법에서는, 제1 실시예에서 형성되는 후크 외에, (X3,Y2),(X11,Y2)/ (X6,Y3),(X14,Y3)/ (X3,Y4),(X11,Y4)/ (X6,Y5),(X14,Y5)/ (X3,Y6),(X11,Y6)/ (X6,Y7),(X14,Y7)/ (X4,Y8),(X11,Y8)/ (X6,Y9),(X14,Y9)/ (X3,Y10),(X11,Y10)/ (X6,Y11),(X14,Y11)/ (X3,Y12),(X11,Y12)/ (X6,Y13),(X14,Y13)/ (X3,Y14),(X11,Y14)/ (X6,Y15),(X14,Y15)/ (X3,Y16),(X11,Y16)/ (X6,Y17),(X14,Y17)의 벤딩 포인트에 후크가 추가로 형성된다.In the manufacturing method of the second embodiment, in addition to the hooks formed in the first embodiment, (X3, Y2), (X11, Y2)/ (X6, Y3), (X14, Y3)/ (X3, Y4), (X11 ,Y4)/ (X6,Y5),(X14,Y5)/ (X3,Y6),(X11,Y6)/ (X6,Y7),(X14,Y7)/ (X4,Y8),(X11,Y8 )/ (X6,Y9),(X14,Y9)/ (X3,Y10),(X11,Y10)/ (X6,Y11),(X14,Y11)/ (X3,Y12),(X11,Y12)/ (X6,Y13),(X14,Y13)/ (X3,Y14),(X11,Y14)/ (X6,Y15),(X14,Y15)/ (X3,Y16),(X11,Y16)/ (X6 A hook is additionally formed at the bending point of ,Y17) and (X14,Y17).
제2 실시예의 제조 방법에서, 정방향 벤딩 패턴, 방향 전환 벤딩 패턴, 역방향 벤딩 패턴, 마무리 벤딩 패턴은 제1 실시예의 대응 구성과 동일하므로, 이들에 대한 상세 설명은 제1 실시예의 관련 설명으로 갈음한다.In the manufacturing method of the second embodiment, the forward bending pattern, the redirection bending pattern, the reverse bending pattern, and the finishing bending pattern are the same as the corresponding configurations of the first embodiment, and detailed descriptions thereof are replaced with the related descriptions of the first embodiment. .
도 3은 본 발명에 따른 제2 실시예의 스텐트에서 후크 위치를 도시하는 전개도이다.Figure 3 is an exploded view showing the hook position in the stent of the second embodiment according to the present invention.
도 3에 도시한 바와 같이, 제2 실시예의 스텐트는 행 방향 최외측 행(Y1,Y18)을 제외하면, 제1 행(Y2를 따라 배열)에는 X3,X4,X10,X11 지점에서 4개의 후크(20)가 형성되고, 제2 행(Y3를 따라 배열)에는 X6,X7,X13,X14 지점에서 4개의 후크가 형성된다. 나머지 지점에서는 단순 크로스 결합을 이룰 수 있다.As shown in Figure 3, the stent of the second embodiment has four hooks at X3, X4, X10, X11 points in the first row (arranged along Y2), except for the row direction outermost row (Y1, Y18). (20) is formed, and in the second row (arranged along Y3) four hooks are formed at points X6, X7, X13, X14. A simple cross bond can be achieved at the remaining points.
제3 행(Y4를 따라 배열)은, 제1 행과 동일하게, X3,X4,X10,X11 지점에서 4개의 후크(20)가 형성되고, 제4 행(Y5를 따라 배열)은, 제2 행과 동일하게, X6,X7,X13,X14 지점에서 4개의 후크가 형성된다. In the third row (arranged along Y4), the same as in the first row, four hooks 20 are formed at points X3, X4, X10, X11, and the fourth row (arranged along Y5) is the second As in the row, four hooks are formed at points X6, X7, X13, X14.
이와 같이, 제2 실시예의 스텐트는 제1,2 행을 하나의 쌍으로 하여 동일한 벤딩 패턴이 제3,4행, 제5,6행 등에서 반복되고 있다.As such, in the stent of the second embodiment, the same bending pattern is repeated in the 3rd, 4th, 5th, 6th rows, etc. with the first and second rows as a pair.
또한, 제2 실시예의 스텐트에서, 제1 행(Y2를 따라 배열)의 후크는 2개의 후크(X3,X4)와 다른 2개의 후크(X10,X11)가 열 방향을 따라 각각 연속하여 인접 배치되어 있다. 나아가, 2개의 후크(X3,X4)와 다른 2개의 후크(X10,X11)는 열 방향을 따라 동일 간격, 즉 5 단위 셀만큼 이격되어 있다.Further, in the stent of the second embodiment, the hooks in the first row (arranged along Y2) are arranged adjacent to each other in succession with two hooks (X3, X4) and the other two hooks (X10, X11) along the column direction. have. Further, the two hooks X3 and X4 and the other two hooks X10 and X11 are spaced apart at the same distance along the column direction, that is, by 5 unit cells.
제2 행(Y3를 따라 배열)의 후크도 2개의 후크(X6,X7)와 다른 2개의 후크(X13,X14)가 열 방향을 따라 각각 연속하여 인접 배치되어 있다. 나아가, 2개의 후크(X6,X7)와 다른 2개의 후크(X13,X14)는 열 방향을 따라 동일 간격, 즉 5 단위 셀만큼 이격되어 있다.Also in the second row (arranged along Y3), two hooks (X6, X7) and the other two hooks (X13, X14) are arranged adjacent to each other in succession along the column direction, respectively. Furthermore, the two hooks X6 and X7 and the other two hooks X13 and X14 are spaced apart at the same distance along the column direction, that is, by 5 unit cells.
이와 같이, 제2 실시예의 스텐트는 열 방향과 행 방향으로 후크 결합과 크로스 결합을 규칙적으로 배열함으로써, 내강 유지도, 형상 유지도 등을 최대화하고, 아울러 압축률과 유연성을 높게 유지할 수 있다. As such, in the stent of the second embodiment, by regularly arranging hook couplings and cross couplings in the column direction and the row direction, it is possible to maximize lumen retention, shape retention, and the like, and maintain high compressibility and flexibility.
도 4는 본 발명에 따른 스텐트의 높은 내강 유지도, 형상 유지도를 보여주는 실물 사진이다.Figure 4 is a real photograph showing the high lumen retention and shape retention of the stent according to the present invention.
도 4에 도시한 바와 같이, 제2 실시예의 스텐트의 경우, 굽혔을 때 내강 유지도, 형상 유지도가 양호한 상태를 유지할 수 있음을 확인할 수 있다. As shown in Figure 4, in the case of the stent of the second embodiment, it can be confirmed that the lumen retention and shape retention can be maintained in a good state when bent.
도 5a,5b는 내강 유지도와 형상 유지도를 설명하는 도면이다.5A and 5B are diagrams for explaining lumen retention and shape retention.
도 5a에 도시한 바와 같이, 내강 유지도(lumen conformity ratio)는 굽힘 상태에서 스텐트의 내부 개통 확보의 정도를 나타내는 것으로, 180°벤딩(bending) 시킨 후, 'Dc/Do'를 계산하는데, 그 값이 1에 가까울수록 양호함을 의미한다.As shown in Figure 5a, the lumen conformity ratio (lumen conformity ratio) indicates the degree of securing the internal patency of the stent in the bent state, and after bending 180 °, to calculate 'Dc / Do', the A value closer to 1 means better.
도 5b에 도시한 바와 같이, 형상 유지도(shape conformity ratio)는 스텐트가 굴곡이 심한 내강에서도 내강 형상이 변형되지 않고 유지되는 지를 나타내는 것으로, S형 압축 팽창(s-shape compression and expansion) 후, 길이(length)와 높이(height) 방향의 변화비를 곱으로 수치화한 것인데(Rl.cnf × Rh,cnf), 그 값이 1에 가까울수록 양호함을 의미한다.As shown in Figure 5b, the shape conformity ratio (shape conformity ratio) indicates whether the lumen shape is maintained without deformation even in the lumen with severe bending of the stent, after S-shape compression and expansion, It is a numerical product obtained by multiplying the change ratio in the length and height directions (Rl.cnf × Rh,cnf), and the closer the value is to 1, the better.
아래의 표 1은 하나의 행의 모든 벤딩 포인트에서 후크 결합을 형성한 경우(비교예 1), 하나의 행의 4개 벤딩 포인트에서 균일하게 이격시켜 후크 결합을 형성하는 경우(비교예 2), 그리고 본 발명에 따른 제2 실시예의 스텐트(2개 후크를 한 쌍으로 하여 연속 형성하고, 한 쌍의 후크를 열 방향으로 동일 간격으로 이격시키며, 이러한 후크 배치를 열 방향을 따라 어긋나게 반복 형성한 경우)의 특성값을 측정하여 비교한 것이다.Table 1 below shows that when hook bonds are formed at all the bending points in one row (Comparative Example 1), when the hook bonds are formed by uniformly spaced apart from the four bending points in one row (Comparative Example 2), And when the stent of the second embodiment according to the present invention (two hooks are continuously formed as a pair, the pair of hooks are spaced apart at the same distance in the column direction, and this hook arrangement is repeatedly formed to be shifted along the column direction) ) was measured and compared.
평가 파라미터evaluation parameters 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예Example 비고note
행당 메쉬 수number of meshes per row 1313 1414 1414 직경 10㎜ 동일Same diameter 10mm
행당 후크 수number of hooks per row 1313 44 44 원주율 방향의 후크 수Number of hooks in the circumferential direction
행당 크로스 수number of crosses per row 00 1010 1010 원주율 방향의 크로스 수Number of crosses in the circumferential direction
압축률(%)compressibility(%) 7676 8282 8282 높을수록 유리함The higher the better
내강 유지도lumen retention 0.880.88 0.910.91 0.970.97 1에 가까울수록 내강 확보에 유리함The closer to 1, the better it is to secure the lumen.
형상 유지도shape retention 0.310.31 0.260.26 0.450.45 1에 가까울수록 인체 친화적 구조임The closer to 1, the more human-friendly structure.
전단 압력
(radial force, gf)
shear pressure
(radial force, gf)
157.7157.7 146.8146.8 159.2159.2 높을수록 내강확보에 유리함The higher it is, the more advantageous it is to secure tolerance.
단축성
(shortening ratio, %)
shortness
(shortening ratio, %)
23.623.6 3737 34.534.5 낮을수록 시술성이 좋음, 40 이하The lower the number, the better the operation, 40 or less
확장성
(depolyment force, N)
scalability
(deposition force, N)
13.913.9 9.79.7 9.59.5 낮을수록 시술성이 좋음, 20 이하The lower the number, the better the operability, less than 20
위의 표 1에서 확인할 수 있듯이, 본 발명에 따른 제2 실시예의 스텐트는 압축률 측면에서는 후크를 이격시켜 규칙적으로 배열한 경우와 거의 동일한 특성을 나타내면서도, 내강 유지도와 형상 유지도에서는 비교예 1,2와 비교하여 상당히 개선된 결과값을 보여주고 있으며, 특히 형상 유지도에서는 비교예 1,2에 비하여 50% 이상 개선된 결과를 보여주고 있다.As can be seen in Table 1 above, the stent of the second embodiment according to the present invention exhibits almost the same characteristics as in the case of regularly arranging the hooks spaced apart from each other in terms of compressibility, while maintaining the lumen retention and shape retention in Comparative Example 1, 2 shows a significantly improved result value, and in particular, in shape retention, more than 50% improvement compared to Comparative Examples 1 and 2 is shown.
이상 본 발명을 여러 실시예로서 설명하였는데, 이들은 본 발명을 예증하기 위한 것이다. 통상의 기술자라면, 이러한 실시예를 다른 형태로 변형하거나 수정할 수 있을 것이다. 그러나, 본 발명의 권리범위는 아래의 특허청구범위에 의해 정해지므로, 그러한 변형이나 수정이 본 발명의 권리범위에 포함되는 것으로 해석될 수 있다.The present invention has been described above with several embodiments, which are intended to illustrate the present invention. Those skilled in the art will be able to change or modify these embodiments in other forms. However, since the scope of the present invention is defined by the claims below, such variations or modifications may be construed as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
10 : 와이어 20: 후크10: wire 20: hook

Claims (10)

  1. 제조 틀에서 제1 와이어를 벤딩하여 메쉬 구조의 스텐트를 형성하는 방법에 있어서,In the method of forming a stent of a mesh structure by bending the first wire in the manufacturing frame,
    시작 벤딩 포인트에서 좌하 사선 방향으로 3 단위 셀만큼 연장하는 제1-1 연장 단계;a 1-1 extension step of extending by 3 unit cells in the lower left diagonal direction from the starting bending point;
    상기 제1-1 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 3 단위 셀만큼 연장하는 제1-2 연장 단계:A 1-2 extension step of extending by 3 unit cells in an upper left diagonal direction from the bending point of the end point of the first 1-1 extension step:
    상기 제1-2 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 3 단위 셀만큼 연장하는 제1-3 연장 단계;a 1-3 extension step of extending by 3 unit cells in a lower left diagonal direction from the bending point at the end point of the 1-2 extension step;
    상기 제1-3 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 3 단위 셀만큼 연장하는 제1-4 연장 단계; 및a 1-4 extending step of extending by 3 unit cells in an upper left diagonal direction from the bending point of the end point of the 1-3 extending step; and
    상기 제1-4 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하여 상기 시작 벤딩 포인트와 동일 열에서 행 방향으로 2 행만큼 이동하는 제1-5 연장 단계로 구성되는 정방향 벤딩 패턴을 포함하는, 스텐트 제조 방법.The forward bending pattern consisting of the 1-5 extending step extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the 1-4 extending step and moving 2 rows in the row direction in the same column as the starting bending point Including, a stent manufacturing method.
  2. 제1항에 있어서,According to claim 1,
    상기 정방향 벤딩 패턴을 행 방향을 따라 다수를 반복하는, 스텐트 제조 방법.Repeating a plurality of the forward bending pattern along the row direction, the stent manufacturing method.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 정방향 벤딩 패턴의 마지막 행의 상기 시작 벤딩 포인트와 동일 열에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-1 연장 단계;a 2-1 extending step of extending one unit cell in a lower left diagonal direction in the same column as the starting bending point of the last row of the forward bending pattern;
    상기 제2-1 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제2-2 연장 단계:A 2-2 extension step of extending by 2 unit cells in an upper left diagonal direction from the bending point of the end point of the 2-1 extension step:
    상기 제2-2 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제2-3 연장 단계;a 2-3th extension step of extending by 2 unit cells in a lower left diagonal direction from the bending point at the end point of the 2-2nd extending step;
    상기 제2-3 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제2-4 연장 단계;a 2-4 extending step of extending by one unit cell in an upper-left diagonal direction from the bending point of the end point of the 2-3 extending step;
    상기 제2-4 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-5 연장 단계;a 2-5 extending step of extending by one unit cell in the lower left diagonal direction from the bending point of the end point of the 2-4 extending step;
    상기 제2-5 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제2-6 연장 단계;a 2-6 extending step of extending by 2 unit cells in an upper left diagonal direction from the bending point at the end of the 2-5 extending step;
    상기 제2-6 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제2-7 연장 단계;a 2-7th extension step of extending by 2 unit cells in the lower left diagonal direction from the bending point at the end point of the 2-6th extension step;
    상기 제2-7 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제2-8 연장 단계;a 2-8 extending step of extending by one unit cell in an upper-left diagonal direction from the bending point at the end of the 2-7 extending step;
    상기 제2-8 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제2-9 연장 단계; 및a 2-9th extension step of extending by one unit cell in the lower left diagonal direction from the bending point at the end point of the 2-8th extension step; and
    상기 제 2-9 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하여 상기 시작 벤딩 포인트와 동일 열까지 이동하는 제2-10 연장 단계로 구성되는 방향 전환 벤딩 패턴을 포함하고,Including a direction change bending pattern consisting of a 2-10 extension step of extending by one unit cell in the upper left diagonal direction from the bending point at the end point of the 2-9 extension step and moving to the same row as the starting bending point,
    상기 방향 전환 벤딩 패턴은 상기 정방향 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 상기 제1 와이어를 후크 결합하는, 스텐트 제조 방법.The direction change bending pattern is a method for manufacturing a stent that hooks the first wire at a bending point at which the forward bending pattern and bending are simultaneously made.
  4. 제3항에 있어서,4. The method of claim 3,
    행을 기준으로 상기 정방향 벤딩 패턴과 대칭되는 역방향 벤딩 패턴을 역방향으로 상기 정방향 벤딩 패턴의 반복 횟수보다 하나가 적은 횟수로 반복하되, 상기 역방향 벤딩 패턴은 상기 정방향 벤딩 패턴 또는 상기 방향 전환 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 상기 제1 와이어를 후크 결합하는, 스텐트 제조 방법.The reverse bending pattern symmetrical to the forward bending pattern is repeated in the reverse direction a number of times less than the number of repetitions of the forward bending pattern based on a row, wherein the reverse bending pattern is bent with the forward bending pattern or the direction change bending pattern A method of manufacturing a stent that hooks the first wire at the bending point made at the same time.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 역방향 벤딩 패턴의 마지막 행의 상기 시작 벤딩 포인트와 동일 열에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제3-1 연장 단계;a 3-1 extending step of extending by 2 unit cells in an upper-left diagonal direction in the same column as the starting bending point of the last row of the reverse bending pattern;
    상기 제3-1 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제3-2 연장 단계:A 3-2 extension step of extending by 1 unit cell in the lower left diagonal direction from the bending point at the end point of the 3-1 extension step:
    상기 제3-2 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제3-3 연장 단계;a 3-3 extension step of extending by one unit cell in an upper left diagonal direction from the bending point at the end point of the 3-2 extension step;
    상기 제3-3 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제3-4 연장 단계;a 3-4th extension step of extending by 2 unit cells in the lower left diagonal direction from the bending point of the end point of the 3rd-3rd extending step;
    상기 제3-4 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하는 제3-5 연장 단계;a 3-5th extension step of extending by 2 unit cells in an upper-left diagonal direction from the bending point at the end point of the 3-4th extension step;
    상기 제3-5 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 1 단위 셀만큼 연장하는 제3-6 연장 단계;a 3-6 extending step of extending by one unit cell in the lower left diagonal direction from the bending point at the end of the 3-5 extending step;
    상기 제3-6 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 1 단위 셀만큼 연장하는 제3-7 연장 단계;a 3-7th extension step of extending by one unit cell in an upper-left diagonal direction from the bending point of the end point of the 3-6th extension step;
    상기 제3-7 연장 단계의 종점 벤딩 포인트에서 좌하 사선 방향으로 2 단위 셀만큼 연장하는 제3-8 연장 단계; 및a 3-8 extending step of extending by 2 unit cells in the lower left oblique direction from the bending point at the end of the 3-7 extending step; and
    상기 제3-8 연장 단계의 종점 벤딩 포인트에서 좌상 사선 방향으로 2 단위 셀만큼 연장하여 상기 시작 벤딩 포인트에 도달하는 제3-9 연장 단계로 구성되는 마무리 벤딩 패턴을 포함하고,and a finishing bending pattern consisting of a 3-9 extending step of extending by 2 unit cells in an upper-left diagonal direction from the ending bending point of the 3-8 extending step to reach the starting bending point,
    상기 마무리 벤딩 패턴은 상기 역방향 벤딩 패턴 또는 상기 정방향 벤딩 패턴과 벤딩이 동시에 이루어지는 벤딩 포인트에서 상기 제1 와이어를 후크 결합하는, 스텐트 제조 방법.The finishing bending pattern is the reverse bending pattern or the forward bending pattern and the hook bonding of the first wire at the bending point at which the bending is made at the same time, the stent manufacturing method.
  6. 제5항에 있어서,6. The method of claim 5,
    제2 와이어를 사용하여, 상기 시작 벤딩 포인트에 7 단위 셀의 열만큼 이격되는 제2 시작 벤딩 포인트에서 시작하여, 상기 정방향 벤딩 패턴, 방향 전환 벤딩 패턴, 역방향 벤딩 패턴, 마무리 벤딩 패턴을 후크 결합을 포함하여 수행하여, 메쉬 크기를 1/2로 줄이는 단계를 포함하는, 스텐트 제조 방법.Using a second wire, starting from a second starting bending point that is spaced apart by 7 unit cells from the starting bending point, hook the forward bending pattern, the direction change bending pattern, the reverse bending pattern, and the finishing bending pattern to the hook bonding By performing including, comprising the step of reducing the mesh size by half, stent manufacturing method.
  7. 2개의 후크가 열 방향으로 연속 배치되는 제1 후크 쌍을 열 방향을 따라 이격시켜 4개의 후크를 구비하는 제1 행; 및a first row having four hooks by spaced apart a first pair of hooks, in which two hooks are continuously arranged in a column direction, in a column direction; and
    상기 제1 행과 행 방향을 따라 인접하고, 2개의 후크가 열 방향으로 연속 배치되는 제2 후크 쌍을 열 방향을 따라 이격시켜 4개의 후크를 구비하되, 상기 제2 후크 쌍은 상기 제1 후크 쌍과 열을 달리하여 배치되는 제2 행을 포함하는, 스텐트.A second pair of hooks adjacent in a row direction to the first row and having two hooks continuously arranged in a column direction are spaced apart along a column direction to include four hooks, wherein the second pair of hooks includes the first hook A stent comprising a second row disposed in pairs and columns.
  8. 제7항에 있어서, 상기 제1,2 후크 쌍은The method of claim 7, wherein the first and second pair of hooks are
    각각 동일 간격으로 이격되는, 스텐트.A stent, each equally spaced apart.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 제1,2 행을 하나의 쌍으로 하여 행 방향을 따라 반복되는, 스텐트.The stent is repeated along the row direction with the first and second rows as a pair.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 제1,2 행은 각각 14개 열로 구성되고,Each of the first and second rows consists of 14 columns,
    상기 제1 행의 4개 후크는 제3,4,10,11 열에 위치하고,The 4 hooks of the first row are located in columns 3, 4, 10, and 11,
    상기 제2 행의 4개 후크는 제6,7,13,14 열에 위치하는, 스텐트.wherein the four hooks of the second row are located in columns 6,7,13,14.
PCT/KR2021/017443 2020-12-09 2021-11-24 Stent and method for manufacturing same WO2022124651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0171044 2020-12-09
KR1020200171044A KR102264171B1 (en) 2020-12-09 2020-12-09 Stent and Manufacturing Method thereof

Publications (1)

Publication Number Publication Date
WO2022124651A1 true WO2022124651A1 (en) 2022-06-16

Family

ID=76376336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017443 WO2022124651A1 (en) 2020-12-09 2021-11-24 Stent and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102264171B1 (en)
WO (1) WO2022124651A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264171B1 (en) * 2020-12-09 2021-06-11 주식회사 제가텍 Stent and Manufacturing Method thereof
KR102660943B1 (en) * 2023-12-27 2024-04-25 주식회사 제가텍 Stent and Manufacturing Method thereof
KR102660301B1 (en) * 2024-01-12 2024-04-24 주식회사 씨엠아이티 Stent and Manufacturing Method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170065855A (en) * 2015-12-04 2017-06-14 주식회사 넥스트바이오메디컬 Stent
KR20170065857A (en) * 2015-12-04 2017-06-14 주식회사 넥스트바이오메디컬 Stent
KR101764419B1 (en) * 2016-02-26 2017-08-02 주식회사 넥스트바이오메디컬 Stent
KR101764420B1 (en) * 2016-02-26 2017-08-02 주식회사 넥스트바이오메디컬 Stent
KR102095834B1 (en) * 2018-06-07 2020-04-01 퍼스트 메디컬 컴퍼니 리미티드 Medical Stent
KR102264171B1 (en) * 2020-12-09 2021-06-11 주식회사 제가텍 Stent and Manufacturing Method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974308B1 (en) * 2008-08-05 2010-08-05 주식회사 엠아이텍 stent
KR101238720B1 (en) * 2010-11-22 2013-03-04 주식회사 엠아이텍 Stent for removal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170065855A (en) * 2015-12-04 2017-06-14 주식회사 넥스트바이오메디컬 Stent
KR20170065857A (en) * 2015-12-04 2017-06-14 주식회사 넥스트바이오메디컬 Stent
KR101764419B1 (en) * 2016-02-26 2017-08-02 주식회사 넥스트바이오메디컬 Stent
KR101764420B1 (en) * 2016-02-26 2017-08-02 주식회사 넥스트바이오메디컬 Stent
KR102095834B1 (en) * 2018-06-07 2020-04-01 퍼스트 메디컬 컴퍼니 리미티드 Medical Stent
KR102264171B1 (en) * 2020-12-09 2021-06-11 주식회사 제가텍 Stent and Manufacturing Method thereof

Also Published As

Publication number Publication date
KR102264171B1 (en) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022124651A1 (en) Stent and method for manufacturing same
WO2012096497A2 (en) Method for manufacturing a stent having superior bending characteristics, and stent manufactured thereby
US8210084B2 (en) Stent and method for manufacturing the same
CA2237476C (en) Coronary stent
WO2014071837A1 (en) Braided self-expanding endoluminal stent and manufacturing method thereof
US5931867A (en) Radially expandable support device
WO2016186262A1 (en) Hybrid stent
KR102264476B1 (en) Stent and Manufacturing Method thereof
CN106667630A (en) Uniformly expandable stent
RU2000123558A (en) Intraluminal Vascular Prosthesis
JP2023106141A (en) stent
WO2010131823A1 (en) H-side branch stent
WO2017071231A1 (en) Lumen woven support
WO2016200103A1 (en) Re-expandable stent, and treatment apparatus using same
CN104382671A (en) Degradable human body stent capable of effectively preventing transposition and reducing hyperplasia and manufacturing method
WO2013044823A1 (en) Membrane-covered stent
CN112638324B (en) Support frame
KR20100016930A (en) Stent
WO2016039533A1 (en) Stent and method for manufacturing stent
WO2017018682A1 (en) Stent with improved anti-slip function
CN201431532Y (en) Coronary stent
WO2017022956A1 (en) Weight reduction stent, stent manufacturing jig, and manufacturing method therefor
WO2014030982A1 (en) Wire stent
WO2017039389A1 (en) Medical stent
CN219074239U (en) Biliary tract support manufacturing clamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903697

Country of ref document: EP

Kind code of ref document: A1