WO2022123861A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2022123861A1
WO2022123861A1 PCT/JP2021/034945 JP2021034945W WO2022123861A1 WO 2022123861 A1 WO2022123861 A1 WO 2022123861A1 JP 2021034945 W JP2021034945 W JP 2021034945W WO 2022123861 A1 WO2022123861 A1 WO 2022123861A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
ignition
internal combustion
combustion engine
control circuit
Prior art date
Application number
PCT/JP2021/034945
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 大畠
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180073254.4A priority Critical patent/CN116529477A/en
Priority to JP2022568058A priority patent/JP7412599B2/en
Publication of WO2022123861A1 publication Critical patent/WO2022123861A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine control device.
  • Patent Document 1 discloses an ignition device for an internal combustion engine that uses two igniter switches, a capacitor, and a diode to recover and consume excess current.
  • An object of the present invention is to consider the above-mentioned problems and to suppress an increase in the volume of the ignition coil while suppressing an ignition failure of the internal combustion engine.
  • the internal combustion engine control device of the present invention generates an electromotive force when the primary side coil and the primary side coil are energized. And an internal combustion engine having a spark plug connected to a secondary coil.
  • This internal combustion engine control device is connected in parallel with the first energization control circuit that controls the energization of the primary coil and the first energization control circuit, and is connected in parallel to the second energization control that controls the energization of the primary coil. Equipped with a circuit.
  • the energization OFF timing of the first energization control circuit and the energization OFF timing of the second energization control circuit are set. It is provided with an ignition control unit that controls the internal combustion engine so as to provide a time difference. Then, the ignition control unit performs the energization OFF timing of the first energization control circuit and the second energization control circuit before the end of the discharge by the spark plug.
  • the internal combustion engine control device having the above configuration, it is possible to suppress ignition failure of the internal combustion engine while suppressing an increase in the volume of the ignition coil. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 It is an overall block diagram which shows the basic structure example of the internal combustion engine which concerns on 1st Embodiment of this invention. It is a partially enlarged view explaining the spark plug which concerns on 1st Embodiment of this invention. It is a functional block diagram explaining the functional structure of the control device of the internal combustion engine which concerns on 1st Embodiment of this invention. It is a figure explaining the relationship between the operating state of the internal combustion engine which concerns on 1st Embodiment of this invention, and the gas flow rate around a spark plug.
  • a and B are diagrams for explaining the relationship between the discharge path and the flow velocity between the electrodes of the spark plug according to the first embodiment of the present invention. It is a figure explaining the electric circuit including the conventional ignition coil.
  • FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to the first embodiment of the present invention.
  • the internal combustion engine 100 shown in FIG. 1 may have a single cylinder or a plurality of cylinders, but in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example.
  • the air sucked from the outside passes through the air cleaner 110, the intake pipe 111, and the intake manifold 112.
  • the air that has passed through the intake manifold 112 flows into each cylinder 150 when the intake valve 151 is opened.
  • the amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113.
  • the amount of air adjusted by the throttle valve 113 is measured by the flow rate sensor 114.
  • the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle.
  • the opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to the control device (Electronic Control Unit: ECU) 1.
  • ECU Electronic Control Unit
  • an electronic throttle valve driven by an electric motor is applied as the throttle valve 113.
  • a throttle valve according to another method may be applied as long as the flow rate of air can be appropriately adjusted.
  • the temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
  • a crank angle sensor 121 is provided on the radial outer side of the ring gear 120 attached to the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 ° and every combustion cycle.
  • a water temperature sensor 122 is provided on the water jacket (not shown) of the cylinder head.
  • the water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
  • the vehicle is provided with an accelerator position sensor (Accelerator Position Sensor: APS) 126 that detects the displacement amount (depression amount) of the accelerator pedal 125.
  • the accelerator position sensor 126 detects the torque required by the driver.
  • the driver's required torque detected by the accelerator position sensor 126 is output to the control device 1 described later.
  • the control device 1 controls the throttle valve 113 based on this required torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131.
  • the fuel sucked and pressurized by the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132 provided in the fuel pipe 133.
  • the fuel adjusted to a predetermined pressure is injected into each cylinder 150 from the fuel injection device (injector) 134.
  • the excess fuel after the pressure is adjusted by the pressure regulator 132 is returned to the fuel tank 130 via the return pipe (not shown).
  • the control of the fuel injection device 134 is performed based on the fuel injection pulse (control signal) of the fuel injection control unit 82 of the control device 1 described later.
  • the cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (Cylinder Pressure Sensor: CPS, also referred to as an in-cylinder pressure sensor) 140.
  • the combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
  • a piezoelectric type or gauge type pressure sensor is applied as the combustion pressure sensor 140. Thereby, the combustion pressure (in-cylinder pressure) in the cylinder 150 can be detected over a wide temperature range.
  • An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150.
  • exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160.
  • the exhaust manifold 160 discharges the burned gas (exhaust gas) to the outside of the cylinder 150.
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. The three-way catalyst 161 purifies the exhaust gas. The exhaust gas purified by the three-way catalyst 161 is discharged to the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided on the upstream side of the three-way catalyst 161.
  • the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
  • a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161.
  • the downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 of the present embodiment is an O2 sensor.
  • a spark plug 200 is provided on the upper part of each cylinder 150.
  • the spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150. This causes an explosion in the cylinder 150 and pushes down the piston 170.
  • the crankshaft 123 rotates.
  • An ignition coil 300 that generates electrical energy (voltage) supplied to the spark plug 200 is connected to the spark plug 200.
  • Output signals from various sensors such as the throttle opening sensor 113a, the flow rate sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 described above are output to the control device 1.
  • the control device 1 detects the operating state of the internal combustion engine 100 based on the output signals from these various sensors. Then, the control device 1 controls the amount of air sent into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
  • FIG. 2 is a partially enlarged view illustrating the spark plug 200.
  • the spark plug 200 has a center electrode 210 and an outer electrode 220.
  • the center electrode 210 is supported by a plug base (not shown) via an insulator 230. As a result, the center electrode 210 is insulated.
  • the outer electrode 220 is grounded.
  • a predetermined voltage for example, 20,000V to 40,000V in this embodiment
  • a discharge occurs between the center electrode 210 and the outer electrode 220. Then, the spark generated by the electric discharge ignites the air-fuel mixture in the cylinder 150.
  • the voltage at which the gas component in the cylinder 150 undergoes dielectric breakdown and discharge (ignition) is generated depends on the state of the gas (gas) existing between the center electrode 210 and the outer electrode 220 and the cylinder pressure of the cylinder 150. It fluctuates according to.
  • the voltage at which the discharge occurs is called the breakdown voltage.
  • the discharge control (ignition control) of the spark plug 200 is performed by the ignition control unit 83 of the control device 1 described later.
  • the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digita) conversion unit 30, a RAM (RandomAccessMemory) 40, and an MPU (Micro-). It has a ProcessingUnit) 50, a ROM (ReadOnlyMemory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
  • the analog input unit 10 is provided with various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air fuel ratio sensor 162, a downstream air fuel ratio sensor 163, an in-cylinder pressure sensor 140, and a water temperature sensor 122.
  • An analog output signal is input.
  • the A / D conversion unit 30 is connected to the analog input unit 10.
  • the analog output signals from various sensors input to the analog input unit 10 are converted into digital signals by the A / D conversion unit 30 after signal processing such as noise removal is performed. Then, the digital signal converted by the A / D conversion unit 30 is stored in the RAM 40.
  • the digital output signal from the crank angle sensor 121 is input to the digital input unit 20.
  • the I / O port 70 is connected to the digital input unit 20.
  • the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
  • Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
  • the MPU 50 executes a control program (not shown) stored in the ROM 60 to perform arithmetic processing on the output signal stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the operating amount of each actuator (for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.) that drives the internal combustion engine 100 according to a control program, and temporarily transfers the control value to the RAM 40.
  • each actuator for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.
  • the control value that defines the operating amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
  • the output circuit 80 includes an overall control unit 81 (see FIG. 3) that controls the entire internal combustion engine based on output signals from various sensors (for example, the in-cylinder pressure sensor 140), and a plunger rod (non-standard) of the fuel injection device 134.
  • Functions such as a fuel injection control unit 82 (see FIG. 3) for controlling the drive of the (illustrated) and an ignition control unit 83 (see FIG. 3) for controlling the voltage applied to the spark plug 200 are provided.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1.
  • Each function of the control device 1 is realized as various functions in the output circuit 80 by executing the control program stored in the ROM 60 by the MPU 50.
  • Various functions in the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control unit 82 and discharge control of the spark plug 200 by the ignition control unit 83.
  • the output circuit 80 of the control device 1 has an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
  • the overall control unit 81 is connected to the accelerator position sensor 126 and the in-cylinder pressure sensor 140 (CPS), and has the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140. Accept. The overall control unit 81 corrects the output signal S2 from the in-cylinder pressure sensor 140 according to a predetermined correction period.
  • the overall control unit 81 is based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140, and the overall control unit 81 is the fuel injection control unit 82 and the ignition control unit 83. Take control.
  • the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine rotation speed. It is connected to 86 and.
  • the fuel injection control unit 82 receives the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86.
  • the fuel injection control unit 82 measures the temperature of the engine cooling water, the intake air amount measuring unit 87 that measures the intake amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the engine cooling water. It is connected to the water temperature measuring unit 89.
  • the fuel injection control unit 82 receives the intake air amount information S6 from the intake air amount measurement unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measurement unit 89.
  • the fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection device 134 based on each received information. Then, the fuel injection control unit 82 transmits the fuel injection pulse S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134.
  • the ignition control unit 83 is connected to the cylinder discrimination unit 84, the angle information generation unit 85, the rotation speed information generation unit 86, the load information generation unit 88, and the water temperature measurement unit 89, in addition to the overall control unit 81. We accept each information from these.
  • the ignition control unit 83 Based on each received information, the ignition control unit 83 applies the amount of current (energization angle) to energize the primary coil 310 (see FIG. 8) of the ignition coil 300, the energization start time, and the primary coil 310. Calculate the time (ignition time) to cut off the energized current.
  • the ignition control unit 83 outputs an energization signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, the energization start time, and the ignition time, thereby controlling the discharge by the spark plug 200 ( Ignition control) is performed.
  • FIG. 4 is a diagram illustrating the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200.
  • the EGR rate is set, for example, as shown in FIG. 4 according to the relationship between the engine rotation speed and the load. It should be noted that the larger the high EGR region in which the EGR rate is set higher, the lower the fuel consumption and the lower the exhaust gas can be realized. However, in the high EGR region, the probability that the flame nucleus grows decreases, so that ignition failure is likely to occur in the spark plug 200.
  • FIGS. 5A and 5B are diagrams for explaining the relationship between the discharge path and the flow velocity between the electrodes of the spark plug.
  • FIGS. 5A and 5B when dielectric breakdown occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200, the electrode 210, until the current flowing between the electrodes 210 and 220 becomes a constant value or less.
  • a discharge path 211 is formed between 220.
  • the discharge path 211 moves under the influence of the gas flow between the electrodes 210 and 220, as shown in FIG. 5A, the higher the gas flow velocity, the shorter the discharge path 211 is formed.
  • FIG. 5B the lower the gas flow velocity, the shorter the discharge path 211.
  • the discharge path 211 is generated by breaking the gas insulation. Therefore, if the current required to maintain the discharge path 211 is constant, it is necessary to supply electric power according to the length of the discharge path 211 in order to maintain the discharge path 211.
  • the energization control of the ignition coil 300 is performed so that a large amount of electric power is output from the ignition coil 300 to the spark plug 200 in a short time.
  • This makes it possible to form a long discharge path 211 as shown in FIG. 5A.
  • the discharge path 211 can have an opportunity to come into contact with the gas in a wide space.
  • the energization control of the ignition coil 300 is performed so that a small amount of electric power is continuously output from the ignition coil 300 to the spark plug 200 for a long time.
  • the discharge path 211 can obtain a contact opportunity with the gas passing near the electrode of the spark plug 200 for a longer period of time.
  • FIG. 6 is a diagram illustrating a conventional electric circuit including an ignition coil.
  • the electric circuit 400 shown in FIG. 6 has an ignition coil 300.
  • the ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
  • One end of the primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310.
  • the other end of the primary coil 310 is connected to the collector (C) terminal of the igniter (energization control circuit) 340 and is grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the base (B) terminal of the igniter 340 is connected to the ignition control unit 83.
  • the energization signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other.
  • the energization signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340.
  • a current flows through the primary coil 310 and electric power (electrical energy) is stored.
  • the high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIGS. 5A and 5B) of the spark plug 200. As a result, a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220.
  • Vm dielectric breakdown voltage
  • the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220. A discharge occurs during. As a result, the fuel (air-fuel mixture) is ignited (ignited).
  • the energization of the ignition coil 300 is controlled by using the energization signal SA by the operation of the electric circuit 400 as described above.
  • FIG. 7 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control.
  • the timing chart shown in FIG. 7 is an example when the spark plug 200 is discharged by using the ignition coil 300 when the gas has a high flow velocity.
  • the relationship between the secondary current I2 flowing through the secondary coil 320 and the secondary voltage V2 generated in the secondary coil 320 is shown.
  • the measurement points of the secondary current I2 and the secondary voltage V2 are between the spark plug 200 and the ignition coil 300 shown in FIG.
  • the measurement point of the primary current I1 is between the DC power supply 330 and the ignition coil 300.
  • the igniter 340 energizes the primary coil 310 and the primary current I1 rises. While the primary coil 310 is energized, the electric energy E in the ignition coil 300 rises with time. Further, while the primary coil 310 is energized, the secondary current I2 does not flow in the secondary coil 320, and the spark plug 200 is not discharged. Therefore, the spark plug 200 is in the non-discharged state a while the primary coil 310 is energized.
  • the igniter 340 cuts off the energization of the primary coil 310.
  • an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300 to the spark plug 200 is started.
  • the spark plug 200 starts discharging (initial discharge).
  • the discharge of the spark plug 200 accompanied by such dielectric breakdown is called capacitive discharge. That is, when the insulation between the electrodes 210 and 220 of the spark plug 200 is broken, the capacitive discharge b is started.
  • the electric energy E in the ignition coil 300 decreases with time, and the discharge of the spark plug 200 is maintained.
  • the discharge of the spark plug 200 without such dielectric breakdown is called an induced discharge.
  • the secondary current I2 greatly increases when the capacity is discharged.
  • the secondary current I2 due to this capacity discharge ends in a short time.
  • the secondary current I2 drops sharply and then drops with time during the subsequent induced discharge. That is, the secondary current I2 gradually decreases from the initial stage c of the induced discharge to the late stage d of the induced discharge.
  • the resistance between the electrodes 210 and 220 increases.
  • the secondary voltage V2 rises with the passage of time.
  • the magnitude of the secondary current I2 required to maintain the discharge path 211 changes according to the flow velocity of the gas existing between the electrodes 210 and 220 of the spark plug 200.
  • the spark plug 200 When the secondary current I2 falls within the range from the minimum value required to maintain the discharge path 211 to the maximum value (not including the maximum value) at which the spark plug 200 cannot be discharged, the spark plug 200 is set to the discharge path 211. Blow-off and re-discharge (capacity discharge b) are repeated. Note that the blowout of the discharge path 211 means that the spark plug 200 is in a non-discharged state a. In the example shown in FIG. 7, the initial discharge is performed once and the re-discharge is performed three times, so that the total number of capacitance discharges is four.
  • the secondary current I2 decreases accordingly. Then, the secondary current I2 becomes equal to or less than the maximum value at which discharge cannot be performed.
  • FIG. 8 is a diagram illustrating an electric circuit 401 including an ignition coil 300 according to the first embodiment.
  • the electric circuit 401 has an ignition coil 300.
  • the ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
  • One end of the primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310.
  • the other end of the primary coil 310 is connected to the collector (C) terminals of the first igniter (first energization control circuit) 340 and the second igniter (second energization control circuit) 341.
  • the emitter (E) terminal of the first igniter 340 is grounded via the internal resistance Ra.
  • the emitter (E) terminal of the second igniter 341 is grounded via the internal resistance Rb and the additional resistance Rc.
  • the base (B) terminals of the first igniter 340 and the second igniter 341 are connected to the ignition control unit 83, respectively.
  • the energization signals SA and SB output from the ignition control unit 83 are input to the base (B) terminals of the first igniter 340 and the second igniter 341.
  • the energization signal SA When the energization signal SA is input to the base (B) terminal of the first igniter 340, the energization state is established between the collector (C) terminal and the emitter (E) terminal of the first igniter 340. As a result, a current flows between the collector (C) terminal and the emitter (E) terminal. As a result, the energization signal SA is output to the primary coil 310 of the ignition coil 300, a current flows through the primary coil 310, and electric power (electrical energy) is stored.
  • the energization signal SB is input to the base (B) terminal of the second igniter 341, the energization state is established between the collector (C) terminal and the emitter (E) terminal of the second igniter 341. As a result, a current flows between the collector (C) terminal and the emitter (E) terminal. As a result, the energization signal SB is output to the primary coil 310 of the ignition coil 300, a current flows through the primary coil 310, and electric power (electrical energy) is accumulated.
  • a high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIGS. 5A and 5B) of the spark plug 200.
  • a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220.
  • Vm dielectric breakdown voltage
  • the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220.
  • a discharge occurs during.
  • the fuel air-fuel mixture
  • the resistance between the other end of the primary coil 310 and the ground is defined as the primary resistance.
  • the resistance value R1 of the primary resistance changes depending on the energized state of the first igniter 340 and the second igniter 341.
  • FIG. 9 is a diagram showing a first example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
  • the resistance value R1 of the primary resistance becomes infinite when the energization signal SA or the energization signal SB is changed from ON to OFF. Then, the change in the resistance value R1 becomes the change in the primary current, and a voltage and a current corresponding to the coil turns ratio with respect to the primary coil 310 are generated in the secondary coil 320.
  • the primary energy stored in the primary coil 310 is determined by the primary current I1.
  • the primary current I1 and the primary resistance are inversely proportional. Therefore, when the resistance value R1 of the primary resistance is small, the primary energy increases, and when the resistance value R1 of the primary resistance is large, the primary energy decreases.
  • the primary energy is voltage-converted and transmitted to the secondary side. Therefore, when the primary energy is large, the secondary energy increases, and when the primary energy is small, the secondary energy decreases.
  • the resistance values of the secondary voltage (V2) and the secondary resistance are constant.
  • the secondary energy in this case is the integral of the secondary current I2. Therefore, the resistance value R1 of the primary resistance is proportional to the secondary energy.
  • FIG. 10 is a diagram showing a second example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
  • the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1).
  • the reduction of the resistance value R1 of the primary resistance increases the secondary current I2 and the secondary energy.
  • FIG. 11 is a diagram showing a third example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
  • the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship between the above equations (2) and (3).
  • the energization signal SB is turned off after an appropriate time has elapsed after the energization signal SA is turned off.
  • the resistance value R1 of the primary resistor is changed.
  • the timing chart on the left side and the timing chart on the right side of FIG. 11 have different timings for turning off the energization signal SB.
  • the change timing of the resistance value R1 is different.
  • the timing for turning off the energization signal SB is before the start of re-discharging.
  • the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance.
  • the secondary current I2 secondary energy
  • the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
  • FIG. 12 is a diagram showing a fourth example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
  • the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1).
  • the energization signal SB is turned off after an appropriate time has elapsed after the energization signal SA is turned off.
  • the resistance value R1 of the primary resistor is changed.
  • the timing chart on the left side and the timing chart on the right side of FIG. 12 have different timings for turning off the energization signal SB.
  • the change timing of the resistance value R1 is different.
  • the timing for turning off the energization signal SB is before the start of re-discharging.
  • the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance.
  • the secondary current I2 secondary energy
  • the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
  • FIG. 13 is a diagram showing a fifth example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
  • the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1).
  • the energization signal SA is turned off after an appropriate time has elapsed after the energization signal SB is turned off.
  • the resistance value R1 of the primary resistor is changed.
  • the timing chart on the left side and the timing chart on the right side of FIG. 13 have different timings for turning off the energization signal SA.
  • the change timing of the resistance value R1 is different.
  • the timing for turning off the energization signal SA is before the start of re-discharge.
  • the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance.
  • the secondary current I2 secondary energy
  • the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
  • the state of the fuel gas between the electrodes 210 and 220 in the spark plug 200 differs depending on the operating state (engine operating condition) of the internal combustion engine 100. Along with this, the required energy and the time allocation of energy change.
  • the main influencing factors for the state of the fuel gas include, for example, the flow velocity and the EGR rate.
  • the number of energized igniters 340 and 341 is set to one, and in the case of a high EGR rate, the number of energized igniters 340 and 341 is set to two. This makes it possible to reduce the excess and deficiency of the supply and demand of ignition energy. Further, the ignition energy can be adjusted in two steps according to the operating conditions of the engine. As a result, it is possible to reduce power consumption and improve ignitability at the same time.
  • the charging energy E can be adjusted according to the time during which the energization signal SA is set to HIGH. Therefore, the charging energy E can be adjusted steplessly by adjusting the rising time (charging start time) of the energization signal SA. As a result, it is possible to finely adjust the ignition energy supply amount.
  • the change in the required voltage or the power differs depending on the flow velocity. Therefore, it is advisable to change the energization order and energization timing of the igniters 340 and 341 according to the flow velocity shown in FIG. As a result, the time distribution of ignition energy can be adjusted, and the supply / demand excess / deficiency of ignition energy can be adjusted on an hourly basis.
  • FIG. 14 is a diagram illustrating an electric circuit including an ignition coil according to a second embodiment.
  • the internal combustion engine control device has the same configuration as the internal combustion engine control device (control device 1) according to the first embodiment, and the difference is the electric circuit including the ignition coil. Therefore, here, the electric circuit 402 according to the second embodiment will be described, and the description of the configuration overlapping with the first embodiment will be omitted.
  • the same reference numerals are given to the configurations common to those of the first embodiment.
  • the electric circuit 402 has a timer circuit 342.
  • the timer circuit 342 is connected to the ignition control unit 83. Further, the base (B) terminals of the first igniter 340 and the second igniter 341 are connected to the timer circuit 342, respectively.
  • the timer circuit 342 receives the energization signal SC from the ignition control unit 83.
  • the timer circuit 342 receives the energization signal SC from the ignition control unit 83, and after the lapse of a predetermined first time, outputs the energization signal SA to the first igniter 340. Further, the timer circuit 342 receives the energization signal SC from the ignition control unit 83, and after the lapse of a predetermined second time, outputs the energization signal SB to the second igniter 341.
  • the first time is different from the second time.
  • the number of signal lines connected to the ignition control unit 83 can be one.
  • the secondary current I2 secondary energy
  • the difference between supply and demand of current can be reduced, and wasteful power can be prevented from increasing.
  • the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300.
  • the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
  • control device 1 of the internal combustion engine is the primary side coil (primary side coil 310) and the primary side coil. It controls an internal combustion engine having a secondary coil (secondary coil 320) that generates an electromotive force when the energization is cut off and a spark plug (spark plug 200) connected to the secondary coil.
  • This internal combustion engine control device is connected in parallel with a first energization control circuit (first igniter 340) that controls energization of the primary side coil and a first energization control circuit, and controls energization of the primary side coil.
  • a second energization control circuit (second igniter 341) and an ignition control unit (ignition control unit 83) are provided. After turning on the first energization control circuit and the second energization control circuit, the ignition control unit sets a time difference between the energization OFF timing of the first energization control circuit and the energization OFF timing of the second energization control circuit. Control to provide. Then, the ignition control unit performs the energization OFF timing of the first energization control circuit and the second energization control circuit before the end of the discharge by the spark plug.
  • the ignition control unit energizes the first energization control circuit (first igniter 340). After turning off, before the secondary current I2 flowing through the secondary side coil (secondary side coil 320) becomes 0, the energization of the second energization control circuit (second igniter 341) is turned off. As a result, the secondary current I2 that meets the demand can be supplied, and the discharge path of the spark plug can be extended. As a result, the ignitability can be improved.
  • the ignition control unit (ignition control unit 83) is before the start of re-discharge by the spark plug (ignition plug 200).
  • the energization of the second energization control circuit is turned off. As a result, the secondary current I2 that meets the demand can be supplied, and the discharge path of the spark plug can be extended. As a result, the ignitability can be improved.
  • the first energization control circuit first igniter 340
  • the second energization control circuit second igniter 341.
  • the secondary current I2 can be easily varied according to the demand, and the current supply-demand difference can be reduced. As a result, it is possible to prevent unnecessary power from increasing and suppress heat generation.
  • the ignition control unit changes the number of energization control circuits to be energized according to the operating conditions. .. As a result, it is possible to execute the discharge according to the required ignition energy, and it is possible to reduce the supply and demand shortage of the ignition energy. Further, since the ignition energy can be adjusted in two stages according to the operating conditions of the engine, it is possible to reduce the power consumption and improve the ignitability at the same time.
  • the ignition control unit is the first energization control circuit (first) according to the operating conditions.
  • the energization time of the igniter 340) and the second energization control circuit (second igniter 341) is changed. As a result, the charging energy can be adjusted steplessly.
  • the ignition control unit is the first energization control circuit (first) according to the operating conditions.
  • the order in which the igniter 340) and the second energization control circuit (second igniter 341) are energized is changed.
  • the time distribution of the ignition energy can be adjusted according to the required voltage which differs depending on the flow velocity between the electrodes of the spark plug (spark plug 200).
  • the supply and demand shortage of ignition energy can be adjusted on an hourly basis.
  • the ignition control unit is the first energization control circuit (first) according to the operating conditions.
  • the timing of energization of the igniter 340) and the second energization control circuit (second igniter 341) is changed.
  • the time distribution of the ignition energy can be adjusted according to the required voltage which differs depending on the flow velocity between the electrodes of the spark plug (spark plug 200).
  • the supply and demand shortage of ignition energy can be adjusted on an hourly basis.
  • control device control device 1 of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the first energization control circuit (first igniter 340) and the second energization control circuit (second igniter 341). It is provided with a timer circuit for carrying out phase difference control. As a result, the number of signal lines connected to the ignition control unit (ignition control unit 83) can be unified.
  • two igniters (energization control circuits), a first igniter 340 and a second igniter 341, were used.
  • three or more igniters (energization control circuits) connected in parallel may be used.
  • the variation of the secondary current I2 according to the demand can be controlled more finely, and the difference between the current supply and demand can be reduced.
  • Control device 10 ... Analog input unit, 20 ... Digital input unit, 30 ... A / D conversion unit, 40 ... RAM, 50 ... MPU, 60 ... ROM, 70 ... I / O port, 80 ... Output circuit, 81 ... Overall control unit, 82 ... Fuel injection control unit, 83 ... Ignition control unit, 84 ... Cylinder discrimination unit, 85 ... Angle information generation unit, 86 ... Rotation speed information generation unit, 87 ... Intake amount measurement unit, 88 ... Load information Generation unit, 89 ... Water temperature measurement unit, 100 ... Internal combustion engine, 110 ... Air cleaner, 111 ... Intake pipe, 112 ... Intake manifold, 113 ...
  • Throttle valve 115 ... Intake temperature sensor, 120 ... Ring gear, 123 ... Crank shaft, 125 ... Accelerator pedal, 130 ... Fuel tank, 131 ... Fuel pump, 132 ... Pressure regulator, 133 ... Fuel piping, 134 ... Fuel injection device, 150 ... Cylinder, 151 ... Intake valve, 152 ... Exhaust valve, 160 ... Exhaust manifold, 161 ... ternary catalyst, 170 ... piston, 200 ... spark plug, 210 ... center electrode, 211 ... discharge path, 220 ... outer electrode, 230 ... insulator, 300 ... ignition coil, 310 ... primary side coil, 320 ... secondary Side coil, 330 ... DC power supply, 340 ... 1st igniter (1st energization control circuit), 341 ... 2nd igniter (2nd energization control circuit), 342 ... timer circuit, 400, 401 ... electric circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The present invention suppresses a failure of ignition in an internal combustion engine while suppressing an increase in capacity of an ignition coil. This internal combustion engine control device comprises: a first igniter which controls the energization of a primary-side coil; a second igniter which is connected in parallel to the first igniter and which controls the energization of the primary-side coil; and an ignition control unit. The ignition control unit performs control so that a time difference is provided between the timing for de-energizing the first igniter and the timing for de-energizing the second igniter after the first igniter and the second igniter are turned on. The ignition control unit then sets the timings of de-energizing the first igniter and the second igniter so as to occur before the end of discharge performed by a spark plug.

Description

内燃機関制御装置Internal combustion engine controller
 本発明は、内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device.
 近年、車両の燃費向上のため、理論空燃比よりも薄い混合気を燃焼して内燃機関を運転する技術や、燃焼後の排気ガスの一部を取り入れて再度吸気させる技術などを導入した内燃機関の制御装置が開発されている。 In recent years, in order to improve the fuel efficiency of vehicles, an internal combustion engine that has introduced a technology to operate an internal combustion engine by burning an air-fuel mixture thinner than the stoichiometric air-fuel ratio and a technology to take in a part of the exhaust gas after combustion and re-intake it. Control device has been developed.
 この種の内燃機関の制御装置では、燃焼室における燃料や空気の量が理論値から乖離するため、点火プラグによる燃料への着火不良が生じやすくなる。そこで、燃焼室内のガス流速を高くすることで、点火プラグの電極間の流速を高くして放電路を長く形成する方法がある。これにより、放電路とガスとの接触部分の長さが延長され、着火不良を抑制することができる。しかし、点火プラグの電極間の流速を高くした場合は、放電路の吹き消えと、これに伴う再放電の発生頻度が高くなり、放電路を長く形成することが難しくなる。 In the control device of this type of internal combustion engine, the amount of fuel and air in the combustion chamber deviates from the theoretical value, so that ignition failure of the fuel by the spark plug is likely to occur. Therefore, there is a method of increasing the flow velocity between the electrodes of the spark plug by increasing the gas flow velocity in the combustion chamber to form a long discharge path. As a result, the length of the contact portion between the discharge path and the gas is extended, and ignition failure can be suppressed. However, when the flow velocity between the electrodes of the spark plug is increased, the discharge path is blown out and the frequency of re-discharge associated therewith increases, which makes it difficult to form a long discharge path.
 放電路を長く形成するためには、放電路が形成された後に十分な電流量で電流供給を続けて、放電路をできるだけ長時間維持する必要がある。しかしながら、一般的に点火コイルは、放電開始から時間経過と共に内部エネルギーが低下し続けるため、次第に電流が低下する。一方、放電路は、時間経過と共に伸長するため、次第に要求電流が増加する。このため、放電路を長く形成するために初期電流を増加すると、電流需給差が大きくなり、無駄電力が増大する。無駄電力は、発熱やコストを増大させるため、放電初期の電流を抑制する必要がある。 In order to form a long discharge path, it is necessary to continue supplying current with a sufficient amount of current after the discharge path is formed and maintain the discharge path for as long as possible. However, in general, the internal energy of the ignition coil continues to decrease with the lapse of time from the start of discharge, so that the current gradually decreases. On the other hand, since the discharge path expands with the passage of time, the required current gradually increases. Therefore, if the initial current is increased in order to form a long discharge path, the current supply-demand difference becomes large and the waste power increases. Wasted power increases heat generation and cost, so it is necessary to suppress the current at the initial stage of discharge.
 特許文献1には、イグナイタスイッチ2個と、コンデンサと、ダイオードを用いて、余剰電流を回収、消費するようにした内燃機関用点火装置が開示されている。 Patent Document 1 discloses an ignition device for an internal combustion engine that uses two igniter switches, a capacitor, and a diode to recover and consume excess current.
特開2001-193622号公報Japanese Unexamined Patent Publication No. 2001-193622
 しかし、特許文献1に開示されている技術では、消費回路による電流抑制が可能であるが、消費回路の動作開始後の任意時期に消費回路を停止できない。そのため、本来必要な電流を供給できなくなる。さらに、発生させた電流を消費回路で消費しているため、発熱量が増大する。その結果、冷却対策部品が必要となり、点火コイルの容積やコストが増大する、という問題がある。 However, in the technique disclosed in Patent Document 1, although the current can be suppressed by the consumption circuit, the consumption circuit cannot be stopped at an arbitrary time after the operation of the consumption circuit starts. Therefore, the originally required current cannot be supplied. Further, since the generated current is consumed by the consumption circuit, the calorific value increases. As a result, there is a problem that cooling countermeasure parts are required and the volume and cost of the ignition coil are increased.
 本発明の目的は、上記の問題点を考慮し、点火コイルの容積増大を抑えつつ、内燃機関の着火不良を抑制することを目的とする。 An object of the present invention is to consider the above-mentioned problems and to suppress an increase in the volume of the ignition coil while suppressing an ignition failure of the internal combustion engine.
 上記課題を解決し、本発明の目的を達成するため、本発明の内燃機関制御装置は、1次側コイルと、1次側コイルの通電が遮断されると、起電力が生じる2次側コイルと、2次側コイルに接続された点火プラグとを有する内燃機関を制御する。この内燃機関制御装置は、1次側コイルの通電を制御する第1の通電制御回路と、第1の通電制御回路と並列に接続され、1次側コイルの通電を制御する第2の通電制御回路とを備える。さらに、内燃機関制御装置は、第1の通電制御回路及び第2の通電制御回路をONにした後、第1の通電制御回路の通電OFF時期と、第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する点火制御部を備える。そして、点火制御部は、第1の通電制御回路と第2の通電制御回路の通電OFF時期を、点火プラグによる放電の終了前に行う。 In order to solve the above problems and achieve the object of the present invention, the internal combustion engine control device of the present invention generates an electromotive force when the primary side coil and the primary side coil are energized. And an internal combustion engine having a spark plug connected to a secondary coil. This internal combustion engine control device is connected in parallel with the first energization control circuit that controls the energization of the primary coil and the first energization control circuit, and is connected in parallel to the second energization control that controls the energization of the primary coil. Equipped with a circuit. Further, in the internal combustion engine control device, after turning on the first energization control circuit and the second energization control circuit, the energization OFF timing of the first energization control circuit and the energization OFF timing of the second energization control circuit are set. It is provided with an ignition control unit that controls the internal combustion engine so as to provide a time difference. Then, the ignition control unit performs the energization OFF timing of the first energization control circuit and the second energization control circuit before the end of the discharge by the spark plug.
 上記構成の内燃機関制御装置によれば、点火コイルの容積増大を抑えつつ、内燃機関の着火不良を抑制することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the internal combustion engine control device having the above configuration, it is possible to suppress ignition failure of the internal combustion engine while suppressing an increase in the volume of the ignition coil.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1実施形態に係る内燃機関の基本構成例を示す全体構成図である。It is an overall block diagram which shows the basic structure example of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る点火プラグを説明する部分拡大図である。It is a partially enlarged view explaining the spark plug which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る内燃機関の制御装置の機能構成を説明する機能ブロック図である。It is a functional block diagram explaining the functional structure of the control device of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る内燃機関の運転状態と点火プラグ周囲のガス流速との関係を説明する図である。It is a figure explaining the relationship between the operating state of the internal combustion engine which concerns on 1st Embodiment of this invention, and the gas flow rate around a spark plug. A,B 本発明の第1実施形態に係る点火プラグの電極間における放電路と流速の関係を説明する図である。A and B are diagrams for explaining the relationship between the discharge path and the flow velocity between the electrodes of the spark plug according to the first embodiment of the present invention. 従来の点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the conventional ignition coil. 従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control. 本発明の第1実施形態に係る点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the ignition coil which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第1の例を示す図である。It is a figure which shows the 1st example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第2の例を示す図である。It is a figure which shows the 2nd example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第3の例を示す図である。It is a figure which shows the 3rd example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第4の例を示す図である。It is a figure which shows the 4th example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの第5の例を示す図である。It is a figure which shows the 5th example of the timing chart explaining the relationship between the control signal input to the ignition coil and the output in the discharge control which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit including the ignition coil which concerns on 2nd Embodiment of this invention.
1.第1実施形態
 以下、本発明の第1実施形態に係る内燃機関制御装置について説明する。なお、各図において共通の部材には、同一の符号を付している。
1. 1. First Embodiment Hereinafter, the internal combustion engine control device according to the first embodiment of the present invention will be described. The common members in each figure are designated by the same reference numerals.
[内燃機関システム]
 まず、本実施形態による内燃機関システムの構成について説明する。図1は、本発明の第1実施形態に係る内燃機関の基本構成例を示す全体構成図である。
[Internal combustion engine system]
First, the configuration of the internal combustion engine system according to the present embodiment will be described. FIG. 1 is an overall configuration diagram showing a basic configuration example of an internal combustion engine according to the first embodiment of the present invention.
 図1に示す内燃機関100は、単気筒でも複数気筒を有するものでもよいが、実施形態では、4気筒を有する内燃機関100を例示して説明する。図1に示すように、内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流する。吸気マニホールド112を通った空気は、吸気弁151が開いたときに各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整される。スロットル弁113で調整された空気量は、流量センサ114により測定される。 The internal combustion engine 100 shown in FIG. 1 may have a single cylinder or a plurality of cylinders, but in the embodiment, the internal combustion engine 100 having four cylinders will be described as an example. As shown in FIG. 1, in the internal combustion engine 100, the air sucked from the outside passes through the air cleaner 110, the intake pipe 111, and the intake manifold 112. The air that has passed through the intake manifold 112 flows into each cylinder 150 when the intake valve 151 is opened. The amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113. The amount of air adjusted by the throttle valve 113 is measured by the flow rate sensor 114.
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。スロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。 The throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle. The opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to the control device (Electronic Control Unit: ECU) 1.
 本実施形態では、スロットル弁113として、電動機で駆動される電子スロットル弁を適用する。しかし、本発明に係るスロットル弁としては、空気の流量を適切に調整できるものであれば、その他の方式によるものを適用してもよい。 In the present embodiment, an electronic throttle valve driven by an electric motor is applied as the throttle valve 113. However, as the throttle valve according to the present invention, a throttle valve according to another method may be applied as long as the flow rate of air can be appropriately adjusted.
 各気筒150に流入したガスの温度は、吸気温センサ115で検出される。 The temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。クランク角センサ121は、クランクシャフト123の回転角度を検出する。本実施形態では、クランク角センサ121は、10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。 A crank angle sensor 121 is provided on the radial outer side of the ring gear 120 attached to the crankshaft 123. The crank angle sensor 121 detects the rotation angle of the crankshaft 123. In the present embodiment, the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 ° and every combustion cycle.
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。水温センサ122は、内燃機関100の冷却水の温度を検出する。 A water temperature sensor 122 is provided on the water jacket (not shown) of the cylinder head. The water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。アクセルポジションセンサ126は、運転者の要求トルクを検出する。アクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。 Further, the vehicle is provided with an accelerator position sensor (Accelerator Position Sensor: APS) 126 that detects the displacement amount (depression amount) of the accelerator pedal 125. The accelerator position sensor 126 detects the torque required by the driver. The driver's required torque detected by the accelerator position sensor 126 is output to the control device 1 described later. The control device 1 controls the throttle valve 113 based on this required torque.
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧される。燃料ポンプ131によって吸引及び加圧された燃料は、燃料配管133に設けられたプレッシャレギュレータ132で所定の圧力に調整される。そして、所定の圧力に調整された燃料は、燃料噴射装置(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された後の余分な燃料は、戻り配管(図示せず)を介して燃料タンク130に戻される。 The fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131. The fuel sucked and pressurized by the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132 provided in the fuel pipe 133. Then, the fuel adjusted to a predetermined pressure is injected into each cylinder 150 from the fuel injection device (injector) 134. The excess fuel after the pressure is adjusted by the pressure regulator 132 is returned to the fuel tank 130 via the return pipe (not shown).
 燃料噴射装置134の制御は、後述する制御装置1の燃料噴射制御部82の燃料噴射パルス(制御信号)に基づいて行われる。 The control of the fuel injection device 134 is performed based on the fuel injection pulse (control signal) of the fuel injection control unit 82 of the control device 1 described later.
 内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(Cylinder Pressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。燃焼圧センサ140は、例えば、圧電式又はゲージ式の圧力センサが適用されている。これにより、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができる。 The cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (Cylinder Pressure Sensor: CPS, also referred to as an in-cylinder pressure sensor) 140. The combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150. As the combustion pressure sensor 140, for example, a piezoelectric type or gauge type pressure sensor is applied. Thereby, the combustion pressure (in-cylinder pressure) in the cylinder 150 can be detected over a wide temperature range.
 各気筒150には、排気弁152と、排気マニホールド160が取り付けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。排気マニホールド160は、燃焼後のガス(排気ガス)を、気筒150の外側に排出する。排気マニホールド160の排気側には、三元触媒161が設けられている。三元触媒161は、排気ガスを浄化する。三元触媒161により浄化された排気ガスは、大気に排出される。 An exhaust valve 152 and an exhaust manifold 160 are attached to each cylinder 150. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. The exhaust manifold 160 discharges the burned gas (exhaust gas) to the outside of the cylinder 150. A three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. The three-way catalyst 161 purifies the exhaust gas. The exhaust gas purified by the three-way catalyst 161 is discharged to the atmosphere.
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。 An upstream air-fuel ratio sensor 162 is provided on the upstream side of the three-way catalyst 161. The upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。本実施形態の下流側空燃比センサ163は、O2センサである。 Further, a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161. The downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio. The downstream air-fuel ratio sensor 163 of the present embodiment is an O2 sensor.
 各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200は、放電(点火)により火花を発生させ、その火花が、気筒150内の空気と燃料との混合気に着火する。これにより、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。 A spark plug 200 is provided on the upper part of each cylinder 150. The spark plug 200 generates a spark by electric discharge (ignition), and the spark ignites the air-fuel mixture in the cylinder 150. This causes an explosion in the cylinder 150 and pushes down the piston 170. When the piston 170 is pushed down, the crankshaft 123 rotates. An ignition coil 300 that generates electrical energy (voltage) supplied to the spark plug 200 is connected to the spark plug 200.
 前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、制御装置1に出力される。制御装置1は、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出する。そして、制御装置1は、気筒150内に送出する空気量、燃料噴射装置134からの燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。 Output signals from various sensors such as the throttle opening sensor 113a, the flow rate sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 described above are output to the control device 1. The control device 1 detects the operating state of the internal combustion engine 100 based on the output signals from these various sensors. Then, the control device 1 controls the amount of air sent into the cylinder 150, the amount of fuel injected from the fuel injection device 134, the ignition timing of the spark plug 200, and the like.
[点火プラグ]
 次に、点火プラグ200について、図2を参照して説明する。
 図2は、点火プラグ200を説明する部分拡大図である。
[Spark plug]
Next, the spark plug 200 will be described with reference to FIG.
FIG. 2 is a partially enlarged view illustrating the spark plug 200.
 図2に示すように、点火プラグ200は、中心電極210と、外側電極220とを有している。中心電極210は、絶縁体230を介してプラグベース(不図示)に支持されている。これにより、中心電極210は、絶縁されている。外側電極220は接地されている。 As shown in FIG. 2, the spark plug 200 has a center electrode 210 and an outer electrode 220. The center electrode 210 is supported by a plug base (not shown) via an insulator 230. As a result, the center electrode 210 is insulated. The outer electrode 220 is grounded.
 点火コイル300(図1参照)において電圧が発生すると、中心電極210に所定の電圧(本実施形態では、例えば20,000V~40,000V)が印加される。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。そして、放電により発生した火花が、気筒150内の空気と燃料との混合気に着火する。 When a voltage is generated in the ignition coil 300 (see FIG. 1), a predetermined voltage (for example, 20,000V to 40,000V in this embodiment) is applied to the center electrode 210. When a predetermined voltage is applied to the center electrode 210, a discharge (ignition) occurs between the center electrode 210 and the outer electrode 220. Then, the spark generated by the electric discharge ignites the air-fuel mixture in the cylinder 150.
 なお、気筒150内におけるガス成分の絶縁破壊を起こして放電(点火)が発生する電圧は、中心電極210と外側電極220との間に存在する気体(ガス)の状態や気筒150の筒内圧に応じて変動する。の放電が発生する電圧を絶縁破壊電圧と言う。 The voltage at which the gas component in the cylinder 150 undergoes dielectric breakdown and discharge (ignition) is generated depends on the state of the gas (gas) existing between the center electrode 210 and the outer electrode 220 and the cylinder pressure of the cylinder 150. It fluctuates according to. The voltage at which the discharge occurs is called the breakdown voltage.
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83により行われる。 The discharge control (ignition control) of the spark plug 200 is performed by the ignition control unit 83 of the control device 1 described later.
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
[Hardware configuration of controller]
Next, the overall configuration of the hardware of the control device 1 will be described.
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digita)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。 As shown in FIG. 1, the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digita) conversion unit 30, a RAM (RandomAccessMemory) 40, and an MPU (Micro-). It has a ProcessingUnit) 50, a ROM (ReadOnlyMemory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、筒内圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。 The analog input unit 10 is provided with various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air fuel ratio sensor 162, a downstream air fuel ratio sensor 163, an in-cylinder pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換される。そして、A/D変換部30により変換されたデジタル信号は、RAM40に記憶される。 The A / D conversion unit 30 is connected to the analog input unit 10. The analog output signals from various sensors input to the analog input unit 10 are converted into digital signals by the A / D conversion unit 30 after signal processing such as noise removal is performed. Then, the digital signal converted by the A / D conversion unit 30 is stored in the RAM 40.
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。 The digital output signal from the crank angle sensor 121 is input to the digital input unit 20.
 デジタル入力部20には、I/Oポート70が接続されている。デジタル入力部20に入力されたデジタル出力信号は、I/Oポート70を介してRAM40に記憶される。 The I / O port 70 is connected to the digital input unit 20. The digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
 RAM40に記憶された各出力信号は、MPU50で演算処理される。 Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、その制御値をRAM40に一時的に記憶する。 The MPU 50 executes a control program (not shown) stored in the ROM 60 to perform arithmetic processing on the output signal stored in the RAM 40 according to the control program. The MPU 50 calculates a control value that defines the operating amount of each actuator (for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.) that drives the internal combustion engine 100 according to a control program, and temporarily transfers the control value to the RAM 40. Remember.
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。 The control value that defines the operating amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
 出力回路80には、各種センサ(例えば、筒内圧センサ140)からの出力信号に基づいて内燃機関の全体制御を行う全体制御部81(図3参照)と、燃料噴射装置134のプランジャロッド(不図示)の駆動を制御する燃料噴射制御部82(図3参照)と、点火プラグ200に印加する電圧を制御する点火制御部83(図3参照)の機能などが設けられている。 The output circuit 80 includes an overall control unit 81 (see FIG. 3) that controls the entire internal combustion engine based on output signals from various sensors (for example, the in-cylinder pressure sensor 140), and a plunger rod (non-standard) of the fuel injection device 134. Functions such as a fuel injection control unit 82 (see FIG. 3) for controlling the drive of the (illustrated) and an ignition control unit 83 (see FIG. 3) for controlling the voltage applied to the spark plug 200 are provided.
[制御装置の機能ブロック]
 次に、制御装置1の機能構成を、図3を参照して説明する。
[Control device functional block]
Next, the functional configuration of the control device 1 will be described with reference to FIG.
 図3は、制御装置1の機能構成を説明する機能ブロック図である。 FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1.
 制御装置1の各機能は、MPU50がROM60記憶された制御プログラムを実行することにより、出力回路80における各種機能として実現される。出力回路80における各種機能は、例えば、燃料噴射制御部82による燃料噴射装置134の制御や、点火制御部83による点火プラグ200の放電制御がある。 Each function of the control device 1 is realized as various functions in the output circuit 80 by executing the control program stored in the ROM 60 by the MPU 50. Various functions in the output circuit 80 include, for example, control of the fuel injection device 134 by the fuel injection control unit 82 and discharge control of the spark plug 200 by the ignition control unit 83.
 図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。 As shown in FIG. 3, the output circuit 80 of the control device 1 has an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
[全体制御部]
 全体制御部81は、アクセルポジションセンサ126と、筒内圧センサ140(CPS)に接続されており、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とを受け付ける。全体制御部81は、筒内圧センサ140からの出力信号S2の所定の補正期間に応じて補正を行う。
[Overall control unit]
The overall control unit 81 is connected to the accelerator position sensor 126 and the in-cylinder pressure sensor 140 (CPS), and has the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140. Accept. The overall control unit 81 corrects the output signal S2 from the in-cylinder pressure sensor 140 according to a predetermined correction period.
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、筒内圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と、点火制御部83の全体的な制御を行う。 The overall control unit 81 is based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the in-cylinder pressure sensor 140, and the overall control unit 81 is the fuel injection control unit 82 and the ignition control unit 83. Take control.
[燃料噴射制御部]
 燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されている。燃料噴射制御部82は、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
[Fuel injection control unit]
The fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine rotation speed. It is connected to 86 and. The fuel injection control unit 82 receives the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86.
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されている。燃料噴射制御部82は、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。 Further, the fuel injection control unit 82 measures the temperature of the engine cooling water, the intake air amount measuring unit 87 that measures the intake amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the engine cooling water. It is connected to the water temperature measuring unit 89. The fuel injection control unit 82 receives the intake air amount information S6 from the intake air amount measurement unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measurement unit 89.
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射装置134から噴射される燃料の噴射量と噴射時間を算出する。そして、燃料噴射制御部82は、算出した燃料の噴射量と噴射時間とに基づいて生成した燃料噴射パルスS9を燃料噴射装置134に送信する。 The fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection device 134 based on each received information. Then, the fuel injection control unit 82 transmits the fuel injection pulse S9 generated based on the calculated fuel injection amount and injection time to the fuel injection device 134.
[点火制御部]
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
[Ignition control unit]
The ignition control unit 83 is connected to the cylinder discrimination unit 84, the angle information generation unit 85, the rotation speed information generation unit 86, the load information generation unit 88, and the water temperature measurement unit 89, in addition to the overall control unit 81. We accept each information from these.
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル310(図8参照)に通電する電流量(通電角)と、通電開始時間と、1次側コイル310に通電した電流を遮断する時間(点火時間)を算出する。 Based on each received information, the ignition control unit 83 applies the amount of current (energization angle) to energize the primary coil 310 (see FIG. 8) of the ignition coil 300, the energization start time, and the primary coil 310. Calculate the time (ignition time) to cut off the energized current.
 点火制御部83は、算出した通電量と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に通電信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。 The ignition control unit 83 outputs an energization signal SA to the primary coil 310 of the ignition coil 300 based on the calculated energization amount, the energization start time, and the ignition time, thereby controlling the discharge by the spark plug 200 ( Ignition control) is performed.
[内燃機関の運転状態と点火プラグ周囲のガス流速との関係]
 次に、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を、図4を参照して説明する。
 図4は、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を説明する図である。
[Relationship between the operating state of the internal combustion engine and the gas flow velocity around the spark plug]
Next, the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200 will be described with reference to FIG.
FIG. 4 is a diagram illustrating the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200.
 図4に示すように、一般的に、エンジン回転数や負荷が高いほど、気筒150内のガス流速が高くなり、点火プラグ200周囲のガスが高流速になる。したがって、エンジン回転数や負荷が高い場合は、点火プラグ200の中心電極210と外側電極220との間において、ガスが高速に流れることとなる。 As shown in FIG. 4, in general, the higher the engine speed and load, the higher the gas flow rate in the cylinder 150, and the higher the gas flow rate around the spark plug 200. Therefore, when the engine speed or the load is high, the gas flows at high speed between the center electrode 210 and the outer electrode 220 of the spark plug 200.
 また、排気再循環(EGR:Exhaust Gas Recirculation)が行われる内燃機関100では、エンジン回転数と負荷の関係に応じて、例えば図4に示すようにEGR率が設定される。なお、EGR率をより高く設定する高EGR領域を拡大するほど、低燃費化や低排気化を実現できる。しかし、高EGR領域では、火炎核が成長する確率が下がるため、点火プラグ200において着火不良が生じやすくなる。 Further, in the internal combustion engine 100 in which exhaust gas recirculation (EGR: Exhaust Gas Recirculation) is performed, the EGR rate is set, for example, as shown in FIG. 4 according to the relationship between the engine rotation speed and the load. It should be noted that the larger the high EGR region in which the EGR rate is set higher, the lower the fuel consumption and the lower the exhaust gas can be realized. However, in the high EGR region, the probability that the flame nucleus grows decreases, so that ignition failure is likely to occur in the spark plug 200.
[点火プラグの電極間における放電路と流速の関係]
 次に、点火プラグの電極間における放電路と流速の関係を、図5A,Bを参照して説明する。
 図5A,Bは、点火プラグの電極間における放電路と流速の関係を説明する図である。
[Relationship between discharge path and flow velocity between spark plug electrodes]
Next, the relationship between the discharge path and the flow velocity between the electrodes of the spark plug will be described with reference to FIGS. 5A and 5B.
5A and 5B are diagrams for explaining the relationship between the discharge path and the flow velocity between the electrodes of the spark plug.
 図5A,Bに示すように、点火プラグ200の中心電極210と外側電極220の間に絶縁破壊が生じると、電極210,220間に流れる電流が一定値以下になるまでの間、電極210,220間に放電路211が形成される。この放電路211に可燃ガスが接触すると、火炎核が成長して燃焼に至る。放電路211は、電極210,220間のガス流れの影響を受けて移動するため、図5Aに示すように、ガス流速が高いほど短時間で長い放電路211を形成する。一方、図5Bに示すように、ガス流速が低いほど放電路211が短くなる。 As shown in FIGS. 5A and 5B, when dielectric breakdown occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200, the electrode 210, until the current flowing between the electrodes 210 and 220 becomes a constant value or less. A discharge path 211 is formed between 220. When the combustible gas comes into contact with the discharge path 211, the flame nucleus grows and leads to combustion. Since the discharge path 211 moves under the influence of the gas flow between the electrodes 210 and 220, as shown in FIG. 5A, the higher the gas flow velocity, the shorter the discharge path 211 is formed. On the other hand, as shown in FIG. 5B, the lower the gas flow velocity, the shorter the discharge path 211.
 内燃機関100が高EGR率で運転される場合は、可燃ガスが放電路211と接触しても火炎核が成長する確率が下がる。そのため、可燃ガスが放電路211と接触する機会を増やす必要がある。前述したように、放電路211は、ガスの絶縁を破壊して生成される。したがって、放電路211の維持に必要な電流を一定とすれば、放電路211の維持には、放電路211の長さに応じた電力の供給が必要となる。 When the internal combustion engine 100 is operated at a high EGR rate, the probability that the flame nucleus grows even if the combustible gas comes into contact with the discharge path 211 decreases. Therefore, it is necessary to increase the chance that the combustible gas comes into contact with the discharge path 211. As described above, the discharge path 211 is generated by breaking the gas insulation. Therefore, if the current required to maintain the discharge path 211 is constant, it is necessary to supply electric power according to the length of the discharge path 211 in order to maintain the discharge path 211.
 ガス流速が高い場合は、短時間で大きな電力を点火コイル300から点火プラグ200へ出力するように点火コイル300の通電制御を行う。これにより、図5Aに示すような長い放電路211を形成することができる。その結果、放電路211は、広範な空間のガスとの接触機会を得ることが可能となる。 When the gas flow velocity is high, the energization control of the ignition coil 300 is performed so that a large amount of electric power is output from the ignition coil 300 to the spark plug 200 in a short time. This makes it possible to form a long discharge path 211 as shown in FIG. 5A. As a result, the discharge path 211 can have an opportunity to come into contact with the gas in a wide space.
 一方、ガス流速が低い場合は、点火コイル300から点火プラグ200へ小さな電力を長時間出力し続けるように点火コイル300の通電制御を行う。これにより、図5Bに示すような短い放電路211の形成を維持することができる。その結果、放電路211は、点火プラグ200の電極付近を通過するガスとの接触機会をより長時間にわたって得ることができる。 On the other hand, when the gas flow velocity is low, the energization control of the ignition coil 300 is performed so that a small amount of electric power is continuously output from the ignition coil 300 to the spark plug 200 for a long time. This makes it possible to maintain the formation of the short discharge path 211 as shown in FIG. 5B. As a result, the discharge path 211 can obtain a contact opportunity with the gas passing near the electrode of the spark plug 200 for a longer period of time.
[従来の点火コイルの電気回路]
 次に、従来の点火コイルについて、図6を参照して説明する。
 図6は、従来の点火コイルを含む電気回路を説明する図である。
[Electrical circuit of conventional ignition coil]
Next, the conventional ignition coil will be described with reference to FIG.
FIG. 6 is a diagram illustrating a conventional electric circuit including an ignition coil.
 図6に示す電気回路400は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 The electric circuit 400 shown in FIG. 6 has an ignition coil 300. The ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、イグナイタ(通電制御回路)340のコレクタ(C)端子に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 One end of the primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310. The other end of the primary coil 310 is connected to the collector (C) terminal of the igniter (energization control circuit) 340 and is grounded via the igniter 340. A transistor, a field effect transistor (FET), or the like is used for the igniter 340.
 イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された通電信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に通電信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に通電信号SAが出力される。その結果、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 The base (B) terminal of the igniter 340 is connected to the ignition control unit 83. The energization signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340. When the energization signal SA is input to the base (B) terminal of the igniter 340, the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other. Current flows through. As a result, the energization signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340. As a result, a current flows through the primary coil 310 and electric power (electrical energy) is stored.
 点火制御部83からの通電信号SAの出力が停止すると、1次側コイル310に流れる電流が遮断される。その結果、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the energization signal SA from the ignition control unit 83 is stopped, the current flowing through the primary coil 310 is cut off. As a result, a high voltage corresponding to the coil turns ratio with respect to the primary coil 310 is generated in the secondary coil 320.
 2次側コイル320に発生する高電圧は、点火プラグ200の中心電極210(図5A,B参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。従来は、以上説明したような電気回路400の動作により、通電信号SAを用いて点火コイル300の通電を制御する。 The high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIGS. 5A and 5B) of the spark plug 200. As a result, a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220. When the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air-fuel mixture in the cylinder 150), the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220. A discharge occurs during. As a result, the fuel (air-fuel mixture) is ignited (ignited). Conventionally, the energization of the ignition coil 300 is controlled by using the energization signal SA by the operation of the electric circuit 400 as described above.
[従来の点火プラグの放電制御]
 次に、従来の点火プラグの放電制御について、図7を参照して説明する。
 図7は、従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。
[Conventional spark plug discharge control]
Next, the discharge control of the conventional spark plug will be described with reference to FIG. 7.
FIG. 7 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control.
 図7に示すタイミングチャートは、ガスが高流速の場合に、点火コイル300を用いて点火プラグ200を放電させたときの一例である。図7では、点火制御部83から出力される通電信号SAと、この通電信号SAに応じて1次側コイル310に流れる1次電流I1と、点火コイル300に蓄積される電気エネルギーEと、2次側コイル320に流れる2次電流I2と、2次側コイル320に発生する2次電圧V2との関係を示している。なお、2次電流I2と2次電圧V2の測定ポイントは、図6に示す点火プラグ200と点火コイル300の間としている。また、1次電流I1の測定ポイントは、直流電源330と点火コイル300の間としている。 The timing chart shown in FIG. 7 is an example when the spark plug 200 is discharged by using the ignition coil 300 when the gas has a high flow velocity. In FIG. 7, the energization signal SA output from the ignition control unit 83, the primary current I1 flowing through the primary coil 310 in response to the energization signal SA, and the electric energy E stored in the ignition coil 300, 2 The relationship between the secondary current I2 flowing through the secondary coil 320 and the secondary voltage V2 generated in the secondary coil 320 is shown. The measurement points of the secondary current I2 and the secondary voltage V2 are between the spark plug 200 and the ignition coil 300 shown in FIG. The measurement point of the primary current I1 is between the DC power supply 330 and the ignition coil 300.
 図7に示すように、通電信号SAがHIGHになると、イグナイタ340が1次側コイル310を通電し、1次電流I1が上昇する。1次側コイル310の通電中は、点火コイル300内の電気エネルギーEが時間と共に上昇する。また、1次側コイル310の通電中は、2次側コイル320に2次電流I2が流れず、点火プラグ200における放電は行われていない。そのため、1次側コイル310の通電中は、点火プラグ200が無放電状態aである。 As shown in FIG. 7, when the energization signal SA becomes HIGH, the igniter 340 energizes the primary coil 310 and the primary current I1 rises. While the primary coil 310 is energized, the electric energy E in the ignition coil 300 rises with time. Further, while the primary coil 310 is energized, the secondary current I2 does not flow in the secondary coil 320, and the spark plug 200 is not discharged. Therefore, the spark plug 200 is in the non-discharged state a while the primary coil 310 is energized.
 その後、通電信号SAがLOWになると、イグナイタ340は、1次側コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300から点火プラグ200への電気エネルギーEの供給が開始される。そして、点火プラグ200の電極210,220間の絶縁が破壊されると、点火プラグ200の放電が開始される(初放電)。このような絶縁破壊を伴う点火プラグ200の放電は、容量放電と呼ばれる。すなわち、点火プラグ200の電極210,220間の絶縁が破壊されると、容量放電bが開始される。 After that, when the energization signal SA becomes LOW, the igniter 340 cuts off the energization of the primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300 to the spark plug 200 is started. Then, when the insulation between the electrodes 210 and 220 of the spark plug 200 is broken, the spark plug 200 starts discharging (initial discharge). The discharge of the spark plug 200 accompanied by such dielectric breakdown is called capacitive discharge. That is, when the insulation between the electrodes 210 and 220 of the spark plug 200 is broken, the capacitive discharge b is started.
 点火プラグ200の放電開始後は、点火コイル300内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電が維持される。このような絶縁破壊を伴わない点火プラグ200の放電は、誘導放電と呼ばれる。 After the discharge of the spark plug 200 is started, the electric energy E in the ignition coil 300 decreases with time, and the discharge of the spark plug 200 is maintained. The discharge of the spark plug 200 without such dielectric breakdown is called an induced discharge.
 2次電流I2は、容量放電時に大きく上昇する。この容量放電による2次電流I2は、短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2は急激に低下し、その後の誘導放電時には時間と共に減少する。すなわち、誘導放電初期cから誘導放電後期dに至るにつれて、2次電流I2は徐々に減少する。 The secondary current I2 greatly increases when the capacity is discharged. The secondary current I2 due to this capacity discharge ends in a short time. When the discharge of the spark plug 200 is started and a discharge path is formed between the electrodes, the secondary current I2 drops sharply and then drops with time during the subsequent induced discharge. That is, the secondary current I2 gradually decreases from the initial stage c of the induced discharge to the late stage d of the induced discharge.
 放電路211は、ガスの流れと共に伸長するため、電極210,220間の抵抗が上昇する。その結果、2次電圧V2は、時間経過と共に上昇する。このとき、点火プラグ200の電極210,220間に存在するガスの流速に応じて、放電路211の維持に必要な2次電流I2の大きさが変化する。 Since the discharge path 211 extends with the flow of gas, the resistance between the electrodes 210 and 220 increases. As a result, the secondary voltage V2 rises with the passage of time. At this time, the magnitude of the secondary current I2 required to maintain the discharge path 211 changes according to the flow velocity of the gas existing between the electrodes 210 and 220 of the spark plug 200.
 2次電流I2が、放電路211の維持に必要な最低値から、点火プラグ200において放電できなくなる最大値(最大値は含まず)までの範囲に入ると、点火プラグ200は、放電路211の吹き消えと再放電(容量放電b)を繰り返す。なお、放電路211の吹き消えは、点火プラグ200が無放電状態aのことである。図7に示す例では、初放電が1回と、再放電が3回行われており、容量放電回数は、合計4回になる。 When the secondary current I2 falls within the range from the minimum value required to maintain the discharge path 211 to the maximum value (not including the maximum value) at which the spark plug 200 cannot be discharged, the spark plug 200 is set to the discharge path 211. Blow-off and re-discharge (capacity discharge b) are repeated. Note that the blowout of the discharge path 211 means that the spark plug 200 is in a non-discharged state a. In the example shown in FIG. 7, the initial discharge is performed once and the re-discharge is performed three times, so that the total number of capacitance discharges is four.
 点火コイル300内の電気エネルギーEが減少すると、それに伴って2次電流I2が低下する。そして、2次電流I2が放電できなくなる最大値以下になる。 When the electric energy E in the ignition coil 300 decreases, the secondary current I2 decreases accordingly. Then, the secondary current I2 becomes equal to or less than the maximum value at which discharge cannot be performed.
[第1実施形態に係る点火コイルの電気回路]
 次に、第1実施形態に係る点火コイル300を含む電気回路401について、図8を参照して説明する。
 図8は、第1実施形態に係る点火コイル300を含む電気回路401を説明する図である。
[Electrical circuit of ignition coil according to the first embodiment]
Next, the electric circuit 401 including the ignition coil 300 according to the first embodiment will be described with reference to FIG.
FIG. 8 is a diagram illustrating an electric circuit 401 including an ignition coil 300 according to the first embodiment.
 図8に示すように、電気回路401は、点火コイル300を有している。点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 As shown in FIG. 8, the electric circuit 401 has an ignition coil 300. The ignition coil 300 includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。1次側コイル310の他端は、第1イグナイタ(第1の通電制御回路)340と、第2イグナイタ(第2の通電制御回路)341のコレクタ(C)端子に接続されている。 One end of the primary coil 310 is connected to the DC power supply 330. As a result, a predetermined voltage (for example, 12V) is applied to the primary coil 310. The other end of the primary coil 310 is connected to the collector (C) terminals of the first igniter (first energization control circuit) 340 and the second igniter (second energization control circuit) 341.
 第1イグナイタ340のエミッタ(E)端子は、内部抵抗Raを介して接地されている。第2イグナイタ341のエミッタ(E)端子は、内部抵抗Rbと付加抵抗Rcを介して接地されている。第1イグナイタ340と第2イグナイタ341のベース(B)端子は、それぞれ点火制御部83に接続されている。点火制御部83から出力された通電信号SAとSBは、第1イグナイタ340と第2イグナイタ341のベース(B)端子に入力される。 The emitter (E) terminal of the first igniter 340 is grounded via the internal resistance Ra. The emitter (E) terminal of the second igniter 341 is grounded via the internal resistance Rb and the additional resistance Rc. The base (B) terminals of the first igniter 340 and the second igniter 341 are connected to the ignition control unit 83, respectively. The energization signals SA and SB output from the ignition control unit 83 are input to the base (B) terminals of the first igniter 340 and the second igniter 341.
 第1イグナイタ340のベース(B)端子に通電信号SAが入力されると、第1イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となる。その結果、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火コイル300の1次側コイル310に通電信号SAが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 When the energization signal SA is input to the base (B) terminal of the first igniter 340, the energization state is established between the collector (C) terminal and the emitter (E) terminal of the first igniter 340. As a result, a current flows between the collector (C) terminal and the emitter (E) terminal. As a result, the energization signal SA is output to the primary coil 310 of the ignition coil 300, a current flows through the primary coil 310, and electric power (electrical energy) is stored.
 また、第2イグナイタ341のベース(B)端子に通電信号SBが入力されると、第2イグナイタ341のコレクタ(C)端子とエミッタ(E)端子間が通電状態となる。その結果、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火コイル300の1次側コイル310に通電信号SBが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。 Further, when the energization signal SB is input to the base (B) terminal of the second igniter 341, the energization state is established between the collector (C) terminal and the emitter (E) terminal of the second igniter 341. As a result, a current flows between the collector (C) terminal and the emitter (E) terminal. As a result, the energization signal SB is output to the primary coil 310 of the ignition coil 300, a current flows through the primary coil 310, and electric power (electrical energy) is accumulated.
 点火制御部83からの通電信号SAまたは通電信号SBの出力が停止して、1次側コイル310に流れる電流が遮断されると、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。 When the output of the energization signal SA or the energization signal SB from the ignition control unit 83 is stopped and the current flowing through the primary side coil 310 is cut off, a high voltage corresponding to the coil winding ratio to the primary side coil 310 is cut off. Is generated in the secondary coil 320.
 2次側コイル320に発生する高電圧が、点火プラグ200の中心電極210(図5A,B参照)に印加される。これにより、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じる。その結果、燃料(混合気)への点火(着火)が行われる。ここで、1次側コイル310の他端と接地との間の抵抗を1次抵抗とする。1次抵抗の抵抗値R1は、第1イグナイタ340と第2イグナイタ341の通電状態によって変化する。 A high voltage generated in the secondary coil 320 is applied to the center electrode 210 (see FIGS. 5A and 5B) of the spark plug 200. As a result, a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220. When the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air-fuel mixture in the cylinder 150), the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220. A discharge occurs during. As a result, the fuel (air-fuel mixture) is ignited (ignited). Here, the resistance between the other end of the primary coil 310 and the ground is defined as the primary resistance. The resistance value R1 of the primary resistance changes depending on the energized state of the first igniter 340 and the second igniter 341.
[点火コイルへ入力される制御信号と出力]
 次に、第1の実施形態に係る点火コイルへ入力される制御信号と出力の関係について説明する
[Control signals and outputs input to the ignition coil]
Next, the relationship between the control signal input to the ignition coil and the output according to the first embodiment will be described.
 図9は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第1の例を示す図である。 FIG. 9 is a diagram showing a first example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
 図9に示すタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが式(1)の関係を満たす。
  Ra=Rb=Rc=1  …式(1)
In the timing chart shown in FIG. 9, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the equation (1).
Ra = Rb = Rc = 1 ... Equation (1)
 この場合に、通電信号SAがOFF、且つ、通電信号SBがONである場合は、1次抵抗の抵抗値R1は、「2」である(R1=2)。一方、通電信号SAがON、且つ、通電信号SBがOFFである場合は、1次抵抗の抵抗値R1は、「1」である(R1=1)。 In this case, when the energization signal SA is OFF and the energization signal SB is ON, the resistance value R1 of the primary resistor is "2" (R1 = 2). On the other hand, when the energization signal SA is ON and the energization signal SB is OFF, the resistance value R1 of the primary resistor is "1" (R1 = 1).
 1次抵抗の抵抗値R1は、通電信号SA又は通電信号SBがONからOFFになると、無限大になる。そして、抵抗値R1の変化が1次電流の変化となり、1次側コイル310に対するコイルの巻き数比に応じた電圧と電流が2次側コイル320に発生する。 The resistance value R1 of the primary resistance becomes infinite when the energization signal SA or the energization signal SB is changed from ON to OFF. Then, the change in the resistance value R1 becomes the change in the primary current, and a voltage and a current corresponding to the coil turns ratio with respect to the primary coil 310 are generated in the secondary coil 320.
 1次側コイル310へ蓄えられる1次エネルギーは、1次電流I1によって決まる。1次電圧が一定である場合、1次電流I1と1次抵抗は反比例する。このため、1次抵抗の抵抗値R1が小さいと、1次エネルギーが増大し、1次抵抗の抵抗値R1が大きいと、1次エネルギーが低減する。1次エネルギーは、電圧変換して2次側へ伝達される。そのため、1次エネルギーが大きいと、2次エネルギーが増大し、1次エネルギーが小さいと、2次エネルギーが低減する。 The primary energy stored in the primary coil 310 is determined by the primary current I1. When the primary voltage is constant, the primary current I1 and the primary resistance are inversely proportional. Therefore, when the resistance value R1 of the primary resistance is small, the primary energy increases, and when the resistance value R1 of the primary resistance is large, the primary energy decreases. The primary energy is voltage-converted and transmitted to the secondary side. Therefore, when the primary energy is large, the secondary energy increases, and when the primary energy is small, the secondary energy decreases.
 点火プラグ200の電極210,220間の距離が一定であり、且つ、放電路211の長さが一定であると仮定すると、2次電圧(V2)と2次抵抗の抵抗値は一定である。この場合の2次エネルギーは、2次電流I2の積分となる。よって、1次抵抗の抵抗値R1は、2次エネルギーと比例関係にある。 Assuming that the distance between the electrodes 210 and 220 of the spark plug 200 is constant and the length of the discharge path 211 is constant, the resistance values of the secondary voltage (V2) and the secondary resistance are constant. The secondary energy in this case is the integral of the secondary current I2. Therefore, the resistance value R1 of the primary resistance is proportional to the secondary energy.
 図10は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第2の例を示す図である。 FIG. 10 is a diagram showing a second example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
 図10における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。図10における左側のタイミングチャートに示すように、1次抵抗の抵抗値R1の低減により、2次電流I2と2次エネルギーが増大する。 In the timing chart on the left side in FIG. 10, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1). In this case, when the energization signal SA is ON and the energization signal SB is ON, the resistance value R1 of the primary resistor is "0.66" (R1 = 0.66). As shown in the timing chart on the left side in FIG. 10, the reduction of the resistance value R1 of the primary resistance increases the secondary current I2 and the secondary energy.
 図10における右側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが式(2)及び式(3)の関係を満たす。
  Ra=Rb=1  …式(2)
  Rc=0     …式(3)
In the timing chart on the right side in FIG. 10, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship between the equations (2) and (3).
Ra = Rb = 1 ... Equation (2)
Rc = 0 ... Equation (3)
 この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.5」である(R1=0.5)。図10における右側のタイミングチャートに示すように、1次抵抗の抵抗値R1の低減により、2次電流I2と2次エネルギーが増大する。 In this case, if the energization signal SA is ON and the energization signal SB is ON, the resistance value R1 of the primary resistor is "0.5" (R1 = 0.5). As shown in the timing chart on the right side in FIG. 10, the reduction of the resistance value R1 of the primary resistor increases the secondary current I2 and the secondary energy.
 図11は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第3の例を示す図である。 FIG. 11 is a diagram showing a third example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
 図11における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(2)及び式(3)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.5」である(R1=0.5)。また、通電信号SAがOFF、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「1」である(R1=1)。 In the timing chart on the left side of FIG. 11, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship between the above equations (2) and (3). In this case, when the energization signal SA is ON and the energization signal SB is ON, the resistance value R1 of the primary resistor is "0.5" (R1 = 0.5). Further, when the energization signal SA is OFF and the energization signal SB is ON, the resistance value R1 of the primary resistor is "1" (R1 = 1).
 図11に示す点火プラグ200の放電制御では、通電信号SAをOFFしてから適当な時間が経過した後に通電信号SBをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図11の左側のタイミング
チャートと右側のタイミングチャートは、通電信号SBをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なる。また、通電信号SBをOFFするタイミングは、いずれも再放電開始前である。
In the discharge control of the spark plug 200 shown in FIG. 11, the energization signal SB is turned off after an appropriate time has elapsed after the energization signal SA is turned off. As a result, the resistance value R1 of the primary resistor is changed. The timing chart on the left side and the timing chart on the right side of FIG. 11 have different timings for turning off the energization signal SB. As a result, the change timing of the resistance value R1 is different. Further, the timing for turning off the energization signal SB is before the start of re-discharging.
 図11に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。 In the discharge control of the spark plug 200 shown in FIG. 11, the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance. There is. As a result, the secondary current I2 (secondary energy) from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0 can be reduced. As a result, the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
 図12は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第4の例を示す図である。 FIG. 12 is a diagram showing a fourth example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
 図12における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。また、通電信号SAがOFF、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「2」である(R1=2)。 In the timing chart on the left side in FIG. 12, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1). In this case, when the energization signal SA is ON and the energization signal SB is ON, the resistance value R1 of the primary resistor is "0.66" (R1 = 0.66). Further, when the energization signal SA is OFF and the energization signal SB is ON, the resistance value R1 of the primary resistor is “2” (R1 = 2).
 図12に示す点火プラグ200の放電制御では、通電信号SAをOFFしてから適当な時間が経過した後に通電信号SBをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図12の左側のタイミングチャートと右側のタイミングチャートは、通電信号SBをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なっている。また、通電信号SBをOFFするタイミングは、いずれも再放電開始前である。 In the discharge control of the spark plug 200 shown in FIG. 12, the energization signal SB is turned off after an appropriate time has elapsed after the energization signal SA is turned off. As a result, the resistance value R1 of the primary resistor is changed. The timing chart on the left side and the timing chart on the right side of FIG. 12 have different timings for turning off the energization signal SB. As a result, the change timing of the resistance value R1 is different. Further, the timing for turning off the energization signal SB is before the start of re-discharging.
 図12に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。 In the discharge control of the spark plug 200 shown in FIG. 12, the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance. There is. As a result, the secondary current I2 (secondary energy) from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0 can be reduced. As a result, the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
 図13は、電気回路401の点火コイル300へ入力される制御信号と出力の関係を説明するタイミングチャートの第5の例を示す図である。 FIG. 13 is a diagram showing a fifth example of a timing chart for explaining the relationship between the control signal and the output input to the ignition coil 300 of the electric circuit 401.
 図13における左側のタイミングチャートでは、図8に示す抵抗Ra,Rb,Rcが上述の式(1)の関係を満たす。この場合に、通電信号SAがON、且つ、通電信号SBがONであると、1次抵抗の抵抗値R1は、「0.66」である(R1=0.66)。また、通電信号SAがON、且つ、通電信号SBがOFFであると、1次抵抗の抵抗値R1は、「1」である(R1=1)。 In the timing chart on the left side of FIG. 13, the resistors Ra, Rb, and Rc shown in FIG. 8 satisfy the relationship of the above equation (1). In this case, when the energization signal SA is ON and the energization signal SB is ON, the resistance value R1 of the primary resistor is "0.66" (R1 = 0.66). Further, when the energization signal SA is ON and the energization signal SB is OFF, the resistance value R1 of the primary resistor is "1" (R1 = 1).
 図13に示す点火プラグ200の放電制御では、通電信号SBをOFFしてから適当な時間が経過した後に通電信号SAをOFFする。これにより、1次抵抗の抵抗値R1を変化させている。なお、図13の左側のタイミングチャートと右側のタイミングチャートは、通電信号SAをOFFするタイミングが異なる。その結果、抵抗値R1の変化時期が異なっている。また、通電信号SAをOFFするタイミングは、いずれも再放電開始前である。 In the discharge control of the spark plug 200 shown in FIG. 13, the energization signal SA is turned off after an appropriate time has elapsed after the energization signal SB is turned off. As a result, the resistance value R1 of the primary resistor is changed. The timing chart on the left side and the timing chart on the right side of FIG. 13 have different timings for turning off the energization signal SA. As a result, the change timing of the resistance value R1 is different. Further, the timing for turning off the energization signal SA is before the start of re-discharge.
 図13に示す点火プラグ200の放電制御では、1次抵抗の抵抗値R1を変化させることにより、1次エネルギーに重ねて2次エネルギーが放出されるように、点火コイル300の通電を制御している。これにより、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。また、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。 In the discharge control of the spark plug 200 shown in FIG. 13, the energization of the ignition coil 300 is controlled so that the secondary energy is released in addition to the primary energy by changing the resistance value R1 of the primary resistance. There is. As a result, the secondary current I2 (secondary energy) from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0 can be reduced. As a result, the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
 図4を参照して説明したように、内燃機関100の運転状態(エンジンの運転条件)によって、点火プラグ200における電極210,220間の燃料ガスの状態が異なる。これに伴い、要求エネルギーや、エネルギーの時間配分が変化する。燃料ガスの状態の主な影響因子としては、例えば、流速とEGR率を挙げることができる。 As described with reference to FIG. 4, the state of the fuel gas between the electrodes 210 and 220 in the spark plug 200 differs depending on the operating state (engine operating condition) of the internal combustion engine 100. Along with this, the required energy and the time allocation of energy change. The main influencing factors for the state of the fuel gas include, for example, the flow velocity and the EGR rate.
 EGR率が高くなると、燃料ガス中の不活性ガスが増加する。そのため、要求点火エネルギーが増大する。例えば、低EGR率の場合は、イグナイタ340,341の通電個数を1個に設定し、高EGR率の場合は、イグナイタ340,341の通電個数を2個に設定する。これにより、点火エネルギーの需給過不足を低減することができる。また、点火エネルギーをエンジンの運転条件に応じて2段階で調節することができる。その結果、消費電力の低減と着火性の改善を両立することができる。 The higher the EGR rate, the more the inert gas in the fuel gas increases. Therefore, the required ignition energy increases. For example, in the case of a low EGR rate, the number of energized igniters 340 and 341 is set to one, and in the case of a high EGR rate, the number of energized igniters 340 and 341 is set to two. This makes it possible to reduce the excess and deficiency of the supply and demand of ignition energy. Further, the ignition energy can be adjusted in two steps according to the operating conditions of the engine. As a result, it is possible to reduce power consumption and improve ignitability at the same time.
 さらなる点火エネルギーの需給過不足を低減するには、より細かな点火エネルギー供給量の調節が必要である。図7に示す無放電状態aに示すように、通電信号SAをHIGHにしている時間に応じて、充電エネルギーEを調節することができる。このため、通電信号SAの立ち上がり時期(充電開始時期)を調節することで、充電エネルギーEを無段階で調節することができる。その結果、より細かな点火エネルギー供給量の調節を行うことができる。 In order to further reduce the supply and demand shortage of ignition energy, it is necessary to finely adjust the amount of ignition energy supply. As shown in the non-discharged state a shown in FIG. 7, the charging energy E can be adjusted according to the time during which the energization signal SA is set to HIGH. Therefore, the charging energy E can be adjusted steplessly by adjusting the rising time (charging start time) of the energization signal SA. As a result, it is possible to finely adjust the ignition energy supply amount.
 図7の誘導放電後期dに示すとおり、要求電圧または電力の変化は、流速によって異なる。そのため、図4に示す流速に合わせて、イグナイタ340,341の通電する順番や通電する時期を変えるとよい。これにより、点火エネルギーの時間配分を調節し、点火エネルギーの需給過不足を時間単位で調節することができる。 As shown in the late stage d of the induced discharge in FIG. 7, the change in the required voltage or the power differs depending on the flow velocity. Therefore, it is advisable to change the energization order and energization timing of the igniters 340 and 341 according to the flow velocity shown in FIG. As a result, the time distribution of ignition energy can be adjusted, and the supply / demand excess / deficiency of ignition energy can be adjusted on an hourly basis.
2.第2実施形態
 以下、本発明の第2実施形態に係る内燃機関制御装置について、図14を参照して説明する。
 図14は、第2実施形態に係る点火コイルを含む電気回路を説明する図である。
2. 2. Second Embodiment Hereinafter, the internal combustion engine control device according to the second embodiment of the present invention will be described with reference to FIG.
FIG. 14 is a diagram illustrating an electric circuit including an ignition coil according to a second embodiment.
 第2実施形態に係る内燃機関制御装置は、第1実施形態に係る内燃機関制御装置(制御装置1)と同様の構成を有しており、異なる点は、点火コイルを含む電気回路である。そのため、ここでは、第2実施形態に係る電気回路402について説明し、第1実施形態と重複する構成についての説明を省略する。なお、図14において第1実施形態と共通の構成には、同一の符号を付している。 The internal combustion engine control device according to the second embodiment has the same configuration as the internal combustion engine control device (control device 1) according to the first embodiment, and the difference is the electric circuit including the ignition coil. Therefore, here, the electric circuit 402 according to the second embodiment will be described, and the description of the configuration overlapping with the first embodiment will be omitted. In FIG. 14, the same reference numerals are given to the configurations common to those of the first embodiment.
 図14に示すように、第2実施形態に係る電気回路402は、タイマー回路342を有している。タイマー回路342は、点火制御部83に接続されている。また、第1イグナイタ340と第2イグナイタ341のベース(B)端子は、それぞれタイマー回路342に接続されている。 As shown in FIG. 14, the electric circuit 402 according to the second embodiment has a timer circuit 342. The timer circuit 342 is connected to the ignition control unit 83. Further, the base (B) terminals of the first igniter 340 and the second igniter 341 are connected to the timer circuit 342, respectively.
 タイマー回路342は、点火制御部83から通電信号SCを受ける。タイマー回路342は、点火制御部83から通電信号SCを受けて予め定めた第1の時間が経過後に、通電信号SAを第1イグナイタ340に出力する。また、タイマー回路342は、点火制御部83から通電信号SCを受けて予め定めた第2の時間が経過後に、通電信号SBを第2イグナイタ341に出力する。第1の時間は、第2の時間と異なる。 The timer circuit 342 receives the energization signal SC from the ignition control unit 83. The timer circuit 342 receives the energization signal SC from the ignition control unit 83, and after the lapse of a predetermined first time, outputs the energization signal SA to the first igniter 340. Further, the timer circuit 342 receives the energization signal SC from the ignition control unit 83, and after the lapse of a predetermined second time, outputs the energization signal SB to the second igniter 341. The first time is different from the second time.
 第2実施形態では、タイマー回路342を備えるため、点火制御部83に接続される信号線を1本にすることができる。また、第1実施形態と同様に、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2(2次エネルギー)を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防ぐことができる。また、冷却対策部品を削減することができるため、点火コイル300の容積増大やコスト増大を抑制することができる。さらに、点火プラグ200の放電開始から1次電流I1が0になる時点までの2次電流I2により、放電路211を維持可能な電流量を確保することができるため、着火不良を抑制することができる。 In the second embodiment, since the timer circuit 342 is provided, the number of signal lines connected to the ignition control unit 83 can be one. Further, similarly to the first embodiment, the secondary current I2 (secondary energy) from the start of discharging the spark plug 200 to the time when the primary current I1 becomes 0 can be reduced. As a result, the difference between supply and demand of current can be reduced, and wasteful power can be prevented from increasing. Further, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost of the ignition coil 300. Further, since the amount of current that can maintain the discharge path 211 can be secured by the secondary current I2 from the start of discharge of the spark plug 200 to the time when the primary current I1 becomes 0, ignition failure can be suppressed. can.
3.まとめ
 以上説明したように、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)は、1次側コイル(1次側コイル310)と、1次側コイルの通電が遮断されると、起電力が生じる2次側コイル(2次側コイル320)と、2次側コイルに接続された点火プラグ(点火プラグ200)とを有する内燃機関を制御する。この内燃機関制御装置は、1次側コイルの通電を制御する第1の通電制御回路(第1イグナイタ340)と、第1の通電制御回路と並列に接続され、1次側コイルの通電を制御する第2の通電制御回路(第2イグナイタ341)と、点火制御部(点火制御部83)とを備える。点火制御部は、第1の通電制御回路及び第2の通電制御回路をONにした後、第1の通電制御回路の通電OFF時期と、第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する。そして、点火制御部は、第1の通電制御回路と第2の通電制御回路の通電OFF時期を、点火プラグによる放電の終了前に行う。
3. Summary As described above, the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment is the primary side coil (primary side coil 310) and the primary side coil. It controls an internal combustion engine having a secondary coil (secondary coil 320) that generates an electromotive force when the energization is cut off and a spark plug (spark plug 200) connected to the secondary coil. This internal combustion engine control device is connected in parallel with a first energization control circuit (first igniter 340) that controls energization of the primary side coil and a first energization control circuit, and controls energization of the primary side coil. A second energization control circuit (second igniter 341) and an ignition control unit (ignition control unit 83) are provided. After turning on the first energization control circuit and the second energization control circuit, the ignition control unit sets a time difference between the energization OFF timing of the first energization control circuit and the energization OFF timing of the second energization control circuit. Control to provide. Then, the ignition control unit performs the energization OFF timing of the first energization control circuit and the second energization control circuit before the end of the discharge by the spark plug.
 これにより、1次側コイルを流れる1次電流I1が0になる時点までの、2次側コイルを流れる2次電流I2を低減することができる。その結果、電流需給差を小さくすることができ、無駄な電力が増大することを防いで発熱を抑制することができる。したがって、冷却対策部品を削減することができるため、1次側コイル及び2次側コイル(点火コイル)の容積増大やコスト増大を抑制することができる。また、点火プラグの放電路を維持可能な電流量を確保することができるため、着火不良を抑制することができる。 This makes it possible to reduce the secondary current I2 flowing through the secondary coil until the time when the primary current I1 flowing through the primary coil becomes 0. As a result, the difference between supply and demand of current can be reduced, wasteful power can be prevented from increasing, and heat generation can be suppressed. Therefore, since the number of cooling countermeasure parts can be reduced, it is possible to suppress an increase in volume and cost increase of the primary side coil and the secondary side coil (ignition coil). Further, since the amount of current that can maintain the discharge path of the spark plug can be secured, ignition failure can be suppressed.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、第1の通電制御回路(第1イグナイタ340)を通電OFFした後、2次側コイル(2次側コイル320)に流れる2次電流I2が0になる前に、第2の通電制御回路(第2イグナイタ341)の通電をOFFする。これにより、需要に見合った2次電流I2を供給することができ、点火プラグの放電路を伸長させることができる。その結果、着火性を向上させることができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) energizes the first energization control circuit (first igniter 340). After turning off, before the secondary current I2 flowing through the secondary side coil (secondary side coil 320) becomes 0, the energization of the second energization control circuit (second igniter 341) is turned off. As a result, the secondary current I2 that meets the demand can be supplied, and the discharge path of the spark plug can be extended. As a result, the ignitability can be improved.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、点火プラグ(点火プラグ200)による再放電開始前に、第2の通電制御回路の通電OFFを実施する。これにより、需要に見合った2次電流I2を供給することができ、点火プラグの放電路を伸長させることができる。その結果、着火性を向上させることができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) is before the start of re-discharge by the spark plug (ignition plug 200). The energization of the second energization control circuit is turned off. As a result, the secondary current I2 that meets the demand can be supplied, and the discharge path of the spark plug can be extended. As a result, the ignitability can be improved.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、第1の通電制御回路(第1イグナイタ340)と第2の通電制御回路(第2イグナイタ341)は、通電抵抗が異なる。これにより、需要に応じた2次電流I2の可変を容易に行うことができ、電流需給差の縮小を図ることができる。その結果、無駄な電力が増大することを防いで発熱を抑制することができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the first energization control circuit (first igniter 340) and the second energization control circuit (second igniter 341). Has different energization resistance. As a result, the secondary current I2 can be easily varied according to the demand, and the current supply-demand difference can be reduced. As a result, it is possible to prevent unnecessary power from increasing and suppress heat generation.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて通電させる通電制御回路の個数を変える。これにより、要求点火エネルギーに応じた放電を実行することができ、点火エネルギーの需給過不足を低減することができる。また、点火エネルギーをエンジンの運転条件に応じて2段階で調節することができるため、消費電力の低減と着火性の改善を両立することができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) changes the number of energization control circuits to be energized according to the operating conditions. .. As a result, it is possible to execute the discharge according to the required ignition energy, and it is possible to reduce the supply and demand shortage of the ignition energy. Further, since the ignition energy can be adjusted in two stages according to the operating conditions of the engine, it is possible to reduce the power consumption and improve the ignitability at the same time.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電している時間を変える。これにより、充電エネルギーを無段階で調節することができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) is the first energization control circuit (first) according to the operating conditions. The energization time of the igniter 340) and the second energization control circuit (second igniter 341) is changed. As a result, the charging energy can be adjusted steplessly.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電させる順番を変える。これにより、点火プラグ(点火プラグ200)の電極間における流速によって異なる要求電圧に応じて点火エネルギーの時間配分を調節することができる。その結果、点火エネルギーの需給過不足を時間単位で調節することができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) is the first energization control circuit (first) according to the operating conditions. The order in which the igniter 340) and the second energization control circuit (second igniter 341) are energized is changed. Thereby, the time distribution of the ignition energy can be adjusted according to the required voltage which differs depending on the flow velocity between the electrodes of the spark plug (spark plug 200). As a result, the supply and demand shortage of ignition energy can be adjusted on an hourly basis.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、点火制御部(点火制御部83)は、運転条件に応じて第1の通電制御回路(第1イグナイタ340)及び第2の通電制御回路(第2イグナイタ341)の通電する時期を変える。これにより、点火プラグ(点火プラグ200)の電極間における流速によって異なる要求電圧に応じて点火エネルギーの時間配分を調節することができる。その結果、点火エネルギーの需給過不足を時間単位で調節することができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the ignition control unit (ignition control unit 83) is the first energization control circuit (first) according to the operating conditions. The timing of energization of the igniter 340) and the second energization control circuit (second igniter 341) is changed. Thereby, the time distribution of the ignition energy can be adjusted according to the required voltage which differs depending on the flow velocity between the electrodes of the spark plug (spark plug 200). As a result, the supply and demand shortage of ignition energy can be adjusted on an hourly basis.
 また、上述した実施形態に係る内燃機関(内燃機関100)の制御装置(制御装置1)において、第1の通電制御回路(第1イグナイタ340)と第2の通電制御回路(第2イグナイタ341)の位相差制御を実施するタイマー回路を備える。これにより、点火制御部(点火制御部83)に接続される信号線を1本にすることができる。 Further, in the control device (control device 1) of the internal combustion engine (internal combustion engine 100) according to the above-described embodiment, the first energization control circuit (first igniter 340) and the second energization control circuit (second igniter 341). It is provided with a timer circuit for carrying out phase difference control. As a result, the number of signal lines connected to the ignition control unit (ignition control unit 83) can be unified.
 以上、本発明の内燃機関制御装置の実施形態について、その作用効果も含めて説明した。しかしながら、本発明の内燃機関制御装置は、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The embodiment of the internal combustion engine control device of the present invention has been described above, including its action and effect. However, the internal combustion engine control device of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention described in the claims.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 例えば、上述した実施形態では、第1イグナイタ340と第2イグナイタ341の2つのイグナイタ(通電制御回路)を用いた。しかし、本発明に係る内燃機関制御装置としては、並列に接続された3つ以上のイグナイタ(通電制御回路)を用いてもよい。これにより、需要に応じた2次電流I2の可変をより細かく制御することができ、電流需給差の縮小を図ることができる。 For example, in the above-described embodiment, two igniters (energization control circuits), a first igniter 340 and a second igniter 341, were used. However, as the internal combustion engine control device according to the present invention, three or more igniters (energization control circuits) connected in parallel may be used. As a result, the variation of the secondary current I2 according to the demand can be controlled more finely, and the difference between the current supply and demand can be reduced.
 1…制御装置、 10…アナログ入力部、 20…デジタル入力部、 30…A/D変換部、 40…RAM、 50…MPU、 60…ROM、 70…I/Oポート、 80…出力回路、 81…全体制御部、 82…燃料噴射制御部、 83…点火制御部、 84…気筒判別部、 85…角度情報生成部、 86…回転数情報生成部、 87…吸気量計測部、 88…負荷情報生成部、 89…水温計測部、 100…内燃機関、 110…エアクリーナ、 111…吸気管、 112…吸気マニホールド、 113…スロットル弁、  115…吸気温センサ、 120…リングギア、 123…クランクシャフト、 125…アクセルペダル、 130…燃料タンク、 131…燃料ポンプ、 132…プレッシャレギュレータ、 133…燃料配管、 134…燃料噴射装置、 150…気筒、 151…吸気弁、 152…排気弁、 160…排気マニホールド、 161…三元触媒、 170…ピストン、 200…点火プラグ、 210…中心電極、 211…放電路、 220…外側電極、 230…絶縁体、 300…点火コイル、 310…1次側コイル、 320…2次側コイル、 330…直流電源、 340…第1イグナイタ(第1の通電制御回路)、 341…第2イグナイタ(第2の通電制御回路)、 342…タイマー回路、 400,401…電気回路 1 ... Control device, 10 ... Analog input unit, 20 ... Digital input unit, 30 ... A / D conversion unit, 40 ... RAM, 50 ... MPU, 60 ... ROM, 70 ... I / O port, 80 ... Output circuit, 81 ... Overall control unit, 82 ... Fuel injection control unit, 83 ... Ignition control unit, 84 ... Cylinder discrimination unit, 85 ... Angle information generation unit, 86 ... Rotation speed information generation unit, 87 ... Intake amount measurement unit, 88 ... Load information Generation unit, 89 ... Water temperature measurement unit, 100 ... Internal combustion engine, 110 ... Air cleaner, 111 ... Intake pipe, 112 ... Intake manifold, 113 ... Throttle valve, 115 ... Intake temperature sensor, 120 ... Ring gear, 123 ... Crank shaft, 125 ... Accelerator pedal, 130 ... Fuel tank, 131 ... Fuel pump, 132 ... Pressure regulator, 133 ... Fuel piping, 134 ... Fuel injection device, 150 ... Cylinder, 151 ... Intake valve, 152 ... Exhaust valve, 160 ... Exhaust manifold, 161 ... ternary catalyst, 170 ... piston, 200 ... spark plug, 210 ... center electrode, 211 ... discharge path, 220 ... outer electrode, 230 ... insulator, 300 ... ignition coil, 310 ... primary side coil, 320 ... secondary Side coil, 330 ... DC power supply, 340 ... 1st igniter (1st energization control circuit), 341 ... 2nd igniter (2nd energization control circuit), 342 ... timer circuit, 400, 401 ... electric circuit

Claims (9)

  1.  1次側コイルと、前記1次側コイルの通電が遮断されると、起電力が生じる2次側コイルと、前記2次側コイルに接続された点火プラグとを有する内燃機関を制御する内燃機関制御装置において、
     前記1次側コイルの通電を制御する第1の通電制御回路と、
     前記第1の通電制御回路と並列に接続され、前記1次側コイルの通電を制御する第2の通電制御回路と、
     前記第1の通電制御回路及び前記第2の通電制御回路をONにした後、前記第1の通電制御回路の通電OFF時期と、前記第2の通電制御回路の通電OFF時期とに時間差を設けるように制御する点火制御部と、を備え、
     前記点火制御部は、前記第1の通電制御回路と前記第2の通電制御回路の通電OFF時期を、前記点火プラグによる放電の終了前に行う
     内燃機関制御装置。
    An internal combustion engine that controls an internal combustion engine having a primary coil, a secondary coil that generates electromotive force when the primary coil is de-energized, and a spark plug connected to the secondary coil. In the control device
    A first energization control circuit that controls energization of the primary coil, and
    A second energization control circuit connected in parallel with the first energization control circuit and controlling energization of the primary coil, and a second energization control circuit.
    After turning on the first energization control circuit and the second energization control circuit, a time difference is provided between the energization OFF timing of the first energization control circuit and the energization OFF timing of the second energization control circuit. Equipped with an ignition control unit that controls
    The ignition control unit is an internal combustion engine control device that performs the energization OFF timing of the first energization control circuit and the second energization control circuit before the end of discharge by the spark plug.
  2.  前記点火制御部は、前記第1の通電制御回路を通電OFFした後、前記2次側コイルに流れる2次電流が0になる前に、前記第2の通電制御回路の通電をOFFする
     請求項1に記載の内燃機関制御装置。
    The claim that the ignition control unit turns off the energization of the second energization control circuit after turning off the energization of the first energization control circuit and before the secondary current flowing through the secondary coil becomes zero. The internal combustion engine control device according to 1.
  3.  前記点火制御部は、前記点火プラグによる再放電開始前に、前記第2の通電制御回路の通電OFFを実施する
     請求項1又は2に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1 or 2, wherein the ignition control unit turns off the energization of the second energization control circuit before the start of re-discharging by the spark plug.
  4.  前記第1の通電制御回路と前記第2の通電制御回路は、通電抵抗が異なる
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the first energization control circuit and the second energization control circuit have different energization resistances.
  5.  前記点火制御部は、運転条件に応じて通電させる通電制御回路の個数を変える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the ignition control unit changes the number of energization control circuits to be energized according to operating conditions.
  6.  前記点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電している時間を変える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the ignition control unit changes the energization time of the first energization control circuit and the second energization control circuit according to operating conditions.
  7.  前記点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電させる順番を変える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the ignition control unit changes the order of energization of the first energization control circuit and the second energization control circuit according to operating conditions.
  8.  前記点火制御部は、運転条件に応じて前記第1の通電制御回路及び前記第2の通電制御回路の通電する時期を変える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the ignition control unit changes the energization timing of the first energization control circuit and the second energization control circuit according to operating conditions.
  9.  前記第1の通電制御回路と前記第2の通電制御回路の位相差制御を実施するタイマー回路を備える
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, further comprising a timer circuit for performing phase difference control between the first energization control circuit and the second energization control circuit.
PCT/JP2021/034945 2020-12-07 2021-09-24 Internal combustion engine control device WO2022123861A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180073254.4A CN116529477A (en) 2020-12-07 2021-09-24 Control device for internal combustion engine
JP2022568058A JP7412599B2 (en) 2020-12-07 2021-09-24 Internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202989 2020-12-07
JP2020-202989 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022123861A1 true WO2022123861A1 (en) 2022-06-16

Family

ID=81973571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034945 WO2022123861A1 (en) 2020-12-07 2021-09-24 Internal combustion engine control device

Country Status (3)

Country Link
JP (1) JP7412599B2 (en)
CN (1) CN116529477A (en)
WO (1) WO2022123861A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312094A (en) * 1992-05-12 1993-11-22 Ngk Spark Plug Co Ltd Combustiveness detector of gasoline engine
JP2002221139A (en) * 2001-01-25 2002-08-09 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine
JP2015200284A (en) * 2014-04-10 2015-11-12 株式会社デンソー Internal combustion engine igniter
WO2017010310A1 (en) * 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 Engine control device
JP2019044662A (en) * 2017-08-31 2019-03-22 株式会社デンソー Ignition device
JP2019065734A (en) * 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312094A (en) * 1992-05-12 1993-11-22 Ngk Spark Plug Co Ltd Combustiveness detector of gasoline engine
JP2002221139A (en) * 2001-01-25 2002-08-09 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine
JP2015200284A (en) * 2014-04-10 2015-11-12 株式会社デンソー Internal combustion engine igniter
WO2017010310A1 (en) * 2015-07-15 2017-01-19 日立オートモティブシステムズ株式会社 Engine control device
JP2019044662A (en) * 2017-08-31 2019-03-22 株式会社デンソー Ignition device
JP2019065734A (en) * 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
CN116529477A (en) 2023-08-01
JPWO2022123861A1 (en) 2022-06-16
JP7412599B2 (en) 2024-01-12

Similar Documents

Publication Publication Date Title
CN113825900B (en) Control device for internal combustion engine
JP6818157B2 (en) Ignition system for internal combustion engine and control device for vehicle
JP2019210827A (en) Controller for internal combustion engine
JP7260664B2 (en) Control device for internal combustion engine
JP6942885B2 (en) Control device for internal combustion engine
WO2022123861A1 (en) Internal combustion engine control device
JP6906106B2 (en) Control device for internal combustion engine
JP6931127B2 (en) Control device for internal combustion engine
JP7077420B2 (en) Control device for internal combustion engine
JP7247364B2 (en) Control device for internal combustion engine
JP7330383B2 (en) electronic controller
CN113950578B (en) Control device for internal combustion engine
WO2022230146A1 (en) Internal combustion engine control device
WO2023084573A1 (en) Ignition device for internal combustion engine, electronic control device, and method for controlling internal combustion engine
WO2021240898A1 (en) Electronic control device
WO2022180906A1 (en) Method for detecting in-cylinder pressure, method for diagnosing in-cylinder pressure sensor, and internal combustion engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568058

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180073254.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902965

Country of ref document: EP

Kind code of ref document: A1