WO2022123689A1 - Relay device and air conditioning device - Google Patents

Relay device and air conditioning device Download PDF

Info

Publication number
WO2022123689A1
WO2022123689A1 PCT/JP2020/045861 JP2020045861W WO2022123689A1 WO 2022123689 A1 WO2022123689 A1 WO 2022123689A1 JP 2020045861 W JP2020045861 W JP 2020045861W WO 2022123689 A1 WO2022123689 A1 WO 2022123689A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat medium
repeater
heat
heat exchanger
Prior art date
Application number
PCT/JP2020/045861
Other languages
French (fr)
Japanese (ja)
Inventor
千歳 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/045861 priority Critical patent/WO2022123689A1/en
Priority to CN202080107630.2A priority patent/CN116507859A/en
Priority to EP20965072.0A priority patent/EP4261474A4/en
Priority to JP2022567949A priority patent/JPWO2022123689A1/ja
Priority to US18/247,898 priority patent/US20230375195A1/en
Publication of WO2022123689A1 publication Critical patent/WO2022123689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • This disclosure relates to a repeater and an air conditioner.
  • Refrigerant leakage may occur when air conditioning equipment fails or is disposed of. In order to reduce the impact of refrigerant leakage on the global environment, it is required to reduce the amount of refrigerant charged in air conditioning equipment.
  • An air conditioner that uses a fluorocarbon-based refrigerant for heat transfer between the outdoor unit and the repeater and water or antifreeze for heat transfer between the repeater and the indoor unit is known in order to reduce the amount of refrigerant charged. ing. This air conditioner system is called an indirect air conditioning system.
  • the owners and users of multiple rooms in which multiple indoor units are connected to a common outdoor unit and multiple indoor units are installed may be different.
  • indirect air-conditioning type air-conditioning equipment since it is relatively easy to measure the flow rate and temperature, a system that prorates and charges the power consumption of the air-conditioning equipment is already widespread in the market.
  • a pressure sensor is provided before and after the flow control valve, the heat medium flow rate is calculated from the opening area of the valve and the differential pressure before and after the valve, and the heat exchange amount (air conditioning capacity) is calculated using the heat exchanger inlet / outlet temperature difference of the heat medium.
  • the heat exchange amount air conditioning capacity
  • Patent Document 1 Japanese Patent No. 6678837
  • a pressure sensor has a problem that it is more expensive than a temperature sensor or the like.
  • the present disclosure relates to a repeater that calculates a flow rate using a temperature sensor and an electric heater, and an air conditioner, which are generally cheaper than a pressure sensor, in order to solve the above problems.
  • the present disclosure relates to a repeater arranged between a heat source machine using the first heat medium and a plurality of indoor units using the second heat medium.
  • the repeater includes a first heat exchanger, a second heat exchanger, a first pump, a second pump, a plurality of first ports, a plurality of second ports, a flow path switching unit, and a plurality of outward paths. It includes a side heater and a plurality of first temperature sensors.
  • the first heat exchanger and the second heat exchanger are configured to exchange heat between the first heat medium and the second heat medium, respectively.
  • the first pump sends out the second heat medium so as to circulate the second heat medium through the first heat exchanger.
  • the second pump sends out the second heat medium so as to circulate the second heat medium through the second heat exchanger.
  • Each of the plurality of first ports sends out the second heat medium to the corresponding one indoor unit among the plurality of indoor units.
  • Each of the plurality of second ports receives a second heat medium returning from the corresponding indoor unit among the plurality of indoor units.
  • the flow path switching unit is configured to connect each of the plurality of first ports and the plurality of second ports to either the first heat exchanger or the second heat exchanger.
  • the plurality of outbound side heaters are provided in each of the plurality of outbound side pipes that send the second heat medium to the plurality of first ports.
  • the plurality of first temperature sensors are arranged downstream of each of the plurality of outward path side heaters in the plurality of outward path side pipes.
  • the heat medium flow rate can be calculated by using a temperature sensor and an electric heater, which are generally inexpensive, and an air conditioner with reduced cost can be realized.
  • FIG. 100 It is a figure which shows the structure of the air conditioner 100 of Embodiment 1.
  • FIG. It is a figure which shows the structure of the air conditioner 100A of the modification of Embodiment 1.
  • FIG. It is a figure which shows the structure of the air conditioner 200 of Embodiment 2.
  • FIG. 1 is a diagram showing the configuration of the air conditioner 100 of the first embodiment.
  • the air conditioner 100 includes a heat source unit 10, a repeater 30, and a plurality of indoor units 50a and 50b.
  • the heat source unit 10 is usually an outdoor unit arranged outdoors and operates as a heat source or a cold heat source.
  • an air conditioner having two indoor units will be described, but three or more indoor units may be connected to the heat source unit via a repeater.
  • the heat source machine 10 is connected to the repeater 30 by the first pipe 1 and the second pipe 2.
  • the indoor unit 50a is connected to the repeater 30 by the third pipe 3a and the fourth pipe 4a.
  • the indoor unit 50b is connected to the repeater 30 by the third pipe 3b and the fourth pipe 4b.
  • the heat source machine 10 includes a compressor 11, a hexagonal valve 12, and an outdoor heat exchanger 13.
  • the hexagonal valve 12 is configured so that three flow paths are formed inside.
  • the six ports of the hexagonal valve 12 are the pipe 5 on the discharge side of the compressor 11, the pipe 6 on the suction side of the compressor 11, the first pipe 1, the second pipe 2, and the inlet / outlet of the outdoor heat exchanger 13, respectively. It is connected to pipes 7 and 8.
  • the indoor unit 50a includes an indoor heat exchanger 51a and a flow rate control valve 52a.
  • the third pipe 3a, the indoor heat exchanger 51a, the flow rate control valve 52a, and the fourth pipe 4a are sequentially connected between the port P1A and the port P2A of the repeater 30.
  • the indoor unit 50b includes an indoor heat exchanger 51b and a flow rate control valve 52b.
  • the third pipe 3b, the indoor heat exchanger 51b, the flow rate control valve 52b, and the fourth pipe 4b are sequentially connected between the port P1B and the port P2B of the repeater 30.
  • the repeater 30 includes heat exchangers 61a and 61b.
  • Each of the heat exchangers 61a and 61b exchanges heat between the two fluids.
  • the flow paths through which the two fluids flow in each heat exchanger are referred to as primary side flow paths and secondary side flow paths, respectively.
  • a fluorocarbon-based refrigerant is used as the heat medium (hereinafter referred to as the first heat medium) flowing in the primary side flow path on the heat source side.
  • Freon-based refrigerant circulates in the first pipe 1 and the second pipe 2.
  • Water or antifreeze (brine) is used as the heat medium (hereinafter referred to as the second heat medium) flowing in the secondary side flow path on the load side.
  • Water or antifreeze circulates in the third pipe 3a, the fourth pipe 4a, the third pipe 3b, and the fourth pipe 4b.
  • One end of the primary side flow path of the heat exchanger 61a is connected to the pipe 1 via the on-off valve 71a and the port P3, and is connected to the pipe 2 via the on-off valve 72a and the port P4.
  • One end of the primary side flow path of the heat exchanger 61b is connected to the pipe 1 via the on-off valve 71b and the port P3, and is connected to the pipe 2 via the on-off valve 72b and the port P4.
  • the other end of the primary side flow path of the heat exchanger 61a and the other end of the primary side flow path of the heat exchanger 61b are connected and merged via the flow rate control valves 62a and 62b, respectively, and the merging point is the first flow rate. It is connected to the pipe 1 via the control valve 81 and the port P3, and to the pipe 2 via the second flow rate control valve 82 and the port P4.
  • the repeater 30 includes pumps 60a and 60b as shown in FIG.
  • the discharge port of the pump 60a is connected to one end of the secondary side flow path of the heat exchanger 61a.
  • the other end of the secondary side flow path of the heat exchanger 61a is connected to the pipe 3a via the on-off valve 91 and is connected to the pipe 3b via the on-off valve 93.
  • the discharge port of the pump 60a is connected to the pipe 4a via the on-off valve 95 and is connected to the pipe 4b via the on-off valve 97.
  • the outflow side of the pump 60b is connected to the pipe 3a via the on-off valve 92 and to the pipe 3b via the on-off valve 94 after passing through the secondary side of the heat exchanger 61b. Further, the inflow side of the pump 60b is connected to the pipe 4a via the on-off valve 96 and connected to the pipe 4b via the on-off valve 98.
  • the flow rate control valves 52a and 52b may be arranged on the pipes 32a and 32b in the repeater to which the pipes 4a and 4b are connected, respectively. Further, the flow rate control valves 52a and 52b may be arranged on the pipes 31a and 31b in the repeater to which the pipes 3a and 3b are connected. If the on-off valves 91 to 98 can adjust the opening area, the flow control valves 52a and 52b are not provided, and the on-off valves 91 to 98 also have a flow rate adjusting function, so that the number of parts and the cost can be reduced. can.
  • the primary side which is the heat source machine 10 side and the secondary side which is the load side on the indoor unit 50 side are set via the heat exchangers 61a and 61b in the repeater 30. It is made independent as a separate circuit. As a result, the heat medium on the primary side and the first heat medium and the second heat medium, which are separate fluids, can be used as the heat medium on the secondary side.
  • a chlorofluorocarbon-based refrigerant suitable for a steam compression refrigeration cycle is used, but the chlorofluorocarbon-based refrigerant is regarded as a problem of contribution to global warming and flammability. There is a need to reduce the amount of refrigerant used and the risk of leakage into closed spaces.
  • each indoor unit can arbitrarily select heating and cooling regardless of the operating state of heating and cooling of other indoor units.
  • Such an air conditioner has a configuration in which a plurality of indoor units are connected to a common outdoor unit via a repeater.
  • Such an air conditioning system that can operate cooling and heating air conditioning at the same time by one air conditioning device is called a simultaneous cooling / heating system.
  • the air conditioned device 100 employs such a simultaneous cooling / heating air conditioned system.
  • the air conditioner 100 has four operation modes: “total cooling mode”, “total heating mode”, “first cooling / heating simultaneous operation mode”, and “second cooling / heating simultaneous operation mode”.
  • the total cooling mode is a mode in which both the indoor units 50a and 50b are cooled.
  • the full heating mode is a mode in which both the indoor units 50a and 50b are heated.
  • the first cooling / heating simultaneous operation mode is a mode in which the indoor unit 50a is in the cooling operation and the indoor unit 50b is in the heating operation.
  • the second cooling / heating simultaneous operation mode is a mode in which the indoor unit 50a is in the heating operation and the indoor unit 50b is in the cooling operation.
  • the first cooling / heating simultaneous operation mode is an operation mode mainly for cooling such that the number of cooling operations is equal to or more than the number of heating operations
  • the second cooling / heating simultaneous operation mode May be an operation mode in which heating is the main operation so that the number of cooling operations is smaller than the number of heating operations.
  • the three flow paths shown by the solid line in FIG. 1 are formed inside the hexagonal valve 12.
  • the on-off valves 71a and 71b are opened and the on-off valves 72a and 72b are closed.
  • the flow rate control valve 81 is closed and the flow rate control valve 82 is opened.
  • the opening degree of each of the flow rate control valves 62a and 62b is controlled by the control device 70 so as to correspond to the required flow rate of the first heat medium.
  • Both the heat exchangers 61a and 61b act as evaporators to cool the second heat medium.
  • the cooled second heat medium is distributed to the indoor heat exchangers 51a and 51b by the on-off valves 91 to 98 to cool the indoor air.
  • the three flow paths shown by the broken line in FIG. 1 are formed inside the hexagonal valve 12.
  • the on-off valves 71a and 71b are closed and the on-off valves 72a and 72b are opened.
  • the flow rate control valve 82 is closed and the flow rate control valve 81 is opened.
  • the opening degree of each of the flow rate control valves 62a and 62b is controlled by the control device 70 so as to correspond to the required flow rate of the first heat medium.
  • Both the heat exchangers 61a and 61b act as condensers to heat the second heat medium.
  • the heated second heat medium is distributed to the indoor heat exchangers 51a and 51b by the on-off valves 91 to 98 to heat the indoor air.
  • the on-off valves 71b and 72a and the flow rate control valves 81 and 82 are closed, and three flow paths shown by the solid line in FIG. 1 are formed inside the hexagonal valve 12.
  • the first heat medium reaches the heat exchanger 61b, which acts as a condenser, from the compressor 11 via the pipe 7, the outdoor heat exchanger 13, the pipe 2, and the on-off valve 72b, and expands at the flow control valve 62b to a low temperature and low pressure. Change.
  • the first heat medium returns to the compressor 11 via the flow control valve 62a, the heat exchanger 61a acting as an evaporator, the on-off valve 71a, the pipe 1, the hexagonal valve 12, and the pipe 6.
  • the heat exchanger 61b serves as a heat source for heating
  • the heat exchanger 61a serves as a cold heat source for cooling.
  • the on-off valves 91 to 98 use the connection destination of the flow path corresponding to the indoor units 50a and 50b as a heat source or a cold heat source. To switch.
  • the on-off valves 91 to 98 are controlled so that the indoor unit 50a is in the cooling operation and the indoor unit 50b is in the heating operation.
  • the indoor unit 50a is in the heating operation.
  • the on-off valves 91 to 98 are controlled so that the indoor unit 50b is in the cooling operation.
  • a broken line flow path is formed inside the hexagonal valve 12, the flow rate control valves 81, 82 and the on-off valves 71a, 72b are closed, and the on-off valve 72a, the heat exchanger 61a, and the flow rate are closed.
  • the first heat medium may flow in the order of the control valves 62a, 62b, the heat exchanger 61b, and the on-off valve 71b.
  • the heat exchanger 61a serves as a heat source for heating
  • the heat exchanger 61b serves as a cold heat source for cooling.
  • the air conditioner 100 further includes a control device 70.
  • the control device 70 includes a CPU (Central Processing Unit) 71, a memory 72 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 71 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 70 is described.
  • the control device 70 executes control of each device in the air conditioner 100 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the control device 70 may be arranged in any of the housings of the heat source unit 10, the repeater 30, and the indoor units 50a and 50b, or may be arranged in a control panel or the like different from these.
  • the control device 70 receives the measured values of the temperature sensors T1, T3, T11, T12, Tai, Tao, Tbi, and Tbo, and the flow rate of the second heat medium in each of the indoor units 50a and 50b. G is calculated and air conditioning capacity Q is calculated. Therefore, it is desirable that the control device 70 is arranged in the housing of the repeater 30 or in a control panel or the like arranged in the vicinity of the repeater 30.
  • FIG. 2 is a flowchart for explaining the calculation of the flow rate and the air conditioning capacity in the first embodiment.
  • the control device 70 energizes the heater in step S1, calculates the flow rates Ga and Gb of the second heat medium flowing through the indoor units 50a and 50b in step S2, and calculates the air conditioning capacities Qa and Qb of the indoor units 50a and 50b in step S3. Is calculated.
  • the flow rates Ga and Gb are collectively referred to as the flow rate G, and the air conditioning capacities Qa and Qb are collectively referred to as the air conditioning capacity Q.
  • the indoor unit 50a starts the cooling operation, the heat exchanger 61a becomes low temperature due to the operation of the heat source unit 10, the corresponding pumps 60a are driven, the on-off valves 91 and 95 are opened, and the on-off valves 92 and 96 are opened.
  • the indoor unit 50a starts the cooling operation, the heat exchanger 61a becomes low temperature due to the operation of the heat source unit 10, the corresponding pumps 60a are driven, the on-off valves 91 and 95 are opened, and the on-off valves 92 and 96 are opened.
  • the indoor unit 50a starts the cooling operation, the heat exchanger 61a becomes low temperature due to the operation of the heat source unit 10, the corresponding pumps 60a are driven, the on-off valves 91 and 95 are opened, and the on-off valves 92 and 96 are opened.
  • the temperature sensor Tai measures the temperature of the second heat medium flowing out of the pump 60a.
  • the temperature sensor Ta 1958 measures the temperature of the second heat medium that flows into the secondary side of the heat exchanger 61a, is cooled, and flows out of the heat exchanger 61a. After that, the second heat medium passes through the outbound side thermal junction in the pipe 31a connecting between the on-off valve 91 that selects the secondary side outlet of the heat exchanger 61a and the port P1A. At that time, the second heat medium is heated by the heater 201 attached to the outward thermal junction.
  • the temperature sensor T1 measures the temperature of the heated second heat medium. The second heat medium then reaches the indoor unit 50a via the third pipe 3a.
  • the temperature of the second heat medium rises by cooling the indoor air in the indoor unit 50a. Then, the second heat medium reaches the pump 60a via the fourth pipe 4a, the on-off valve 95, and the inside of the in-machine pipe on the return path side.
  • the temperature sensor T11 measures the temperature of the second heat medium flowing out of the indoor unit 50a.
  • the heating amount H (kW) of the second heat medium can be obtained from the power consumption of the heater 201.
  • the temperature change width ⁇ T (° C.) of the second heat medium can be obtained from the difference between the temperature sensor T1 and the temperature sensor Ta réelle detection values T1 and Tao.
  • the flow rate G (kg / sec) of the heat medium is the following equation (1). ) Can be calculated.
  • the temperature difference ⁇ (° C.) at the entrance / exit of the indoor unit 50a can be obtained from the difference between the detected values T1 and T11 of the temperature sensor T1 and the temperature sensor T11.
  • the air conditioning capacity Q (kW) of the indoor unit 50a is calculated by the following equation (2). can.
  • a heat medium flow rate calculation method using a pressure sensor will be examined.
  • the pressure sensor it is necessary to arrange the pressure sensor before and after the flow rate control valve in order to measure the differential pressure before and after the flow rate control valve.
  • the flow rate control valve is mounted inside the indoor unit and a configuration in which the flow control valve is mounted in the repeater.
  • the pressure of the second heat medium gradually decreases as it advances in the flow direction in the pipe due to the pressure loss due to the friction on the wall surface in the pipe. Therefore, in order to calculate the flow rate of the second heat medium with high accuracy, it is desirable to install the pressure sensor immediately before and after the flow rate control valve.
  • the pressure sensor is also installed in the same indoor unit, and if the flow control valve is installed in the repeater, the pressure sensor is also installed in the same repeater.
  • the microcomputer in the indoor unit enables fine-tuned heat medium flow control according to the indoor temperature.
  • the flow control valve when the flow control valve is installed in the repeater, the amount of communication between the repeater and the indoor unit regarding the control of the flow control valve is reduced, and the air conditioning capacity information of each indoor unit is collectively collected in the repeater. It is possible to manage operations with high frequency in the microcomputer of. However, it is impossible to obtain information on the indoor unit and the indoor temperature from the microcomputer in the indoor unit at high frequency because it puts pressure on the communication capacity, and fine-tuned heat medium flow rate control according to the indoor temperature cannot be realized. ..
  • the pressure sensor is not used to calculate the flow rate. Therefore, the heat medium flow rate calculation method disclosed in the first embodiment does not depend on the position of the flow rate adjusting valve.
  • the information necessary for calculating the air conditioning capacity of each indoor unit is completed in the repeater 30. Therefore, it is possible to realize batch high-frequency calculation management in the control device 70 provided inside the repeater 30 or in the vicinity of the repeater 30, and whether or not the flow control valves 52a and 52b of the indoor units 50a and 50b are present.
  • An independent air conditioner system can be configured.
  • FIG. 3 is a diagram showing the configuration of the air conditioner 100A of the modified example of the first embodiment.
  • the air conditioner 100A includes a repeater 30A instead of the repeater 30.
  • the repeater 30A includes heaters 201A and 202A instead of heaters 201 and 202 in the configuration of the repeater 30 shown in FIG.
  • the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, but in the configuration of FIG. 3, the heaters 201A and 202A are located on the flow path switching unit 90. It is arranged on the side of the first heat exchanger 61a and the second heat exchanger 61b, and is configured to heat both of the two branched pipes.
  • FIG. 4 is a diagram showing the configuration of the air conditioner 200 of the second embodiment.
  • the air conditioner 200 includes a repeater 230 instead of the repeater 30, and a control device 270 instead of the control device 70.
  • the repeater 230 further includes heaters 203 and 204 and temperature sensors T56 and T78 in the configuration of the repeater 30 shown in FIG.
  • the repeater 230 heats the heater 203 that heats the second heat medium inside the pipe 32a connected to the fourth pipe 4a and the second heat medium inside the pipe 32b connected to the fourth pipe 4b. Including the heater 204 to be used. Temperature sensors T56 and T78 are arranged downstream of the heaters 203 and 204, respectively.
  • the cooling capacity is reduced by heating the low temperature second heat medium before reaching the indoor unit 50a or 50b for the purpose of calculating the flow rate.
  • the heater attached to the downstream side of the indoor unit heats the second heat medium returned from the indoor unit, so that the influence on the indoor cooling capacity is eliminated. be able to.
  • FIG. 5 is a flowchart for explaining the calculation of the flow rate and the air conditioning capacity in the second embodiment.
  • the control device 270 determines in step S11 whether or not the indoor unit 50a is in the heating operation. When the indoor unit 50a is in the heating operation (YES in S11), the control device 270 energizes the heater 201 in step S12. When the indoor unit 50a is in the cooling operation (NO in S11), the control device 270 energizes the heater 203 in step S13.
  • control device 270 determines in step S14 whether or not the indoor unit 50b is in the heating operation. When the indoor unit 50b is in the heating operation (YES in S14), the control device 270 energizes the heater 202 in step S15. When the indoor unit 50b is in the cooling operation (NO in S14), the control device 270 energizes the heater 204 in step S16.
  • step S17 the control device 270 calculates the flow rates Ga and Gb of the second heat medium flowing through the indoor units 50a and 50b, respectively, and in step S18, calculates the air conditioning capacities Qa and Qb of the indoor units 50a and 50b, respectively. .. Since the calculation method of the flow rate G and the air conditioning capacity Q is the same as that of the first embodiment, the description is not repeated here.
  • FIG. 6 is a diagram showing the configuration of the air conditioner 200A of the modified example of the second embodiment.
  • the air conditioner 200A includes a repeater 230A instead of the repeater 230 in the configuration of the air conditioner 200 of FIG.
  • the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively, and the heaters 203 and 204 are arranged on the ports P2A and P2B side of the flow path switching unit 90, respectively. It had been.
  • the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching portion 90, and both of the two branched pipes are connected. It is configured to heat.
  • FIG. 6 the configuration of FIG.
  • the heaters 203 and 204 are arranged on the pumps 60a and 60b side of the flow path switching portion 90, and are configured to heat both of the two branched pipes, and the temperature sensors T5 and T5.
  • T6 is arranged downstream of the heater 203, and temperature sensors T7 and T8 are arranged downstream of the heater 204.
  • FIG. 7 is a diagram showing the configuration of the air conditioner 300 according to the third embodiment.
  • the air conditioner 300 includes a repeater 330 instead of the repeater 30.
  • the control device corresponding to the control device 70 is not shown.
  • the outbound side in-machine piping 31a and 31b have a branching portion and a merging portion, and the space between them is a plurality of parallel flow paths.
  • the flow paths in the parallel portion have different pipe diameters from each other, and the flow path having the smaller pipe cross section is configured to be heated by the heater.
  • the pipe 31a has a branch portion and a merging portion, and the first pipe 31a1 and the second pipe 31a2 are connected in parallel between them.
  • the first pipe 31a1 and the second pipe 31a2 have different pipe diameters.
  • the cross-sectional area of the second pipe 31a2 is smaller than the cross-sectional area of the first pipe 31a1.
  • the heater 201 is arranged so that the second pipe 31a2 having a small cross section is heated by the heater 201.
  • the temperature sensor T1 is arranged downstream of the portion heated by the heater 201 of the second pipe 31a2.
  • the pipe 31b has a branch portion and a merging portion, and the first pipe 31b1 and the second pipe 31b2 are connected in parallel between them.
  • the first pipe 31b1 and the second pipe 31b2 have different pipe diameters.
  • the cross-sectional area of the second pipe 31b2 is smaller than the cross-sectional area of the first pipe 31b1.
  • the heater 202 is arranged so that the second pipe 31b2 having a small cross section is heated by the heater 202.
  • the temperature sensor T3 is arranged downstream of the portion heated by the heater 202 of the second pipe 31b2.
  • the second heat medium flowing through the bypass pipe 31a2 having a small cross-sectional area. Only the flow rate of the second heat medium may be heated and raised by the heater 201, and only the flow rate of the second heat medium flowing through the bypass pipe 31b2 may be heated and raised by the heater 202. Considering that it is sufficient to heat the second heat medium with the heater by the same temperature rise width under the condition that the accuracy and resolution of the temperature sensor are the same, the bypass flow rate ratio of the first pipe 31a1, 31b1 and the second pipe 31a2, 31b2. It is possible to reduce the heater power consumption.
  • the cross-sectional area ratio in the pipes of the second pipe 31a2, 31b2 (bypass flow path) and the first pipe 31a1, 31b1 (main flow path) is known. Since the ratio of the flow rate of the second heat medium in the bypass flow path to the flow rate in the main flow path is equal to the cross-sectional area ratio in the pipe, the flow rate of the main flow path can be obtained from the flow rate of the bypass flow path. Therefore, in the third embodiment, in addition to the effect in the first embodiment, the power consumption of the heater can be reduced when calculating the flow rate and the air conditioning capacity of the indoor unit.
  • FIG. 8 is a diagram showing the configuration of the air conditioner 300A of the modified example of the third embodiment.
  • the air conditioner 300A includes a repeater 330A instead of the repeater 330 in the configuration of the air conditioner 300 of FIG. 7.
  • the heaters 201 and 202 were arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively.
  • the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching unit 90, and the bypass flow paths of both of the two branched pipes are arranged. Is configured to heat.
  • FIG. 9 is a diagram showing the configuration of the air conditioner 400 according to the fourth embodiment.
  • the fourth embodiment is a combination of the first to third embodiments.
  • the air conditioner 400 includes a repeater 430 instead of the repeater 330 in the configuration of the air conditioner 300 of FIG. 7. In FIG. 9, the control device is not shown.
  • the return-side in-machine pipes 32a and 32b have a branch portion and a confluence portion, and the spaces between them are a plurality of parallel flow paths.
  • the flow paths in the parallel portion have different pipe diameters from each other, and the flow path having the smaller pipe cross section is configured to be heated by the heater.
  • the pipe 32a has a branch portion and a merging portion, and the first pipe 32a1 and the second pipe 32a2 are connected in parallel between them.
  • the first pipe 32a1 and the second pipe 32a2 have different pipe diameters.
  • the cross-sectional area of the second pipe 32a2 is smaller than the cross-sectional area of the first pipe 32a1.
  • the heater 203 is arranged so that the second pipe 32a2 having the smaller cross-sectional area is heated by the heater 203.
  • the temperature sensor T56 is arranged downstream of the portion heated by the heater 203 of the second pipe 32a2.
  • the pipe 32b has a branch portion and a merging portion, and the first pipe 32b1 and the second pipe 32b2 are connected in parallel between them.
  • the first pipe 32b1 and the second pipe 32b2 have different pipe diameters from each other.
  • the cross-sectional area of the second pipe 32b2 is smaller than the cross-sectional area of the first pipe 32b1.
  • the heater 204 is arranged so that the second pipe 32b2 having the smaller cross section is heated by the heater 204.
  • the temperature sensor T78 is arranged downstream of the portion heated by the heater 204 of the second pipe 32b2.
  • FIG. 10 is a diagram showing the configuration of the air conditioner 400A of the modified example of the fourth embodiment.
  • the air conditioner 400A includes a repeater 430A instead of the repeater 430 in the configuration of the air conditioner 400 of FIG.
  • the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively, and the heaters 203 and 204 are arranged on the ports P2A and P2B side of the flow path switching unit 90, respectively. It had been.
  • the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching unit 90, and the heaters 203 and 204 are channel switching.
  • both heaters are configured to heat the bypass flow paths of both of the two branched pipes, and the temperature sensors T5, T6, T7 and T8 are connected to the bypass flow paths. It is located downstream of the heater.
  • Embodiment 5 in the fifth embodiment, in the configurations of the first to fourth embodiments, the control device controls the timing of supplying power to the heater. If all the indoor units are not operating, the pump of the repeater is also stopped and there is no need to measure the flow rate with a heater. However, if at least one indoor unit is in operation, it is necessary to calculate the air conditioning capacity of the indoor unit for billing.
  • the energization of the heater is controlled to reduce the power consumption.
  • FIG. 11 is a flowchart for explaining the energization control of the heater executed in the fifth embodiment.
  • the case of applying to the configuration of FIG. 1 of the first embodiment will be described, but the same control can be applied to the case of other embodiments.
  • step S51 the control device 70 determines whether or not the air conditioner 100 is in operation. If it is not in operation (NO in S51), the process of this flowchart is exited, but if it is in operation (YES in S51), the process proceeds to step S52.
  • step S52 the control device 70 determines whether or not the measurement time of the flow rate G has come (or is being measured).
  • step S53 the control device energizes the heaters 201 and 202. Then, in step S53, the flow rate G and the air conditioning capacity Q are calculated using the equations (1) and (2) of the first embodiment.
  • step S54 the control device turns off the heaters 201 and 202.
  • the measurement time in step S52 is between the measurement start time and the measurement end time, for example, 1 minute. Then, for example, the measurement is started every 10 minutes, and when the measurement time of 1 minute ends, the heater is de-energized for the remaining 9 minutes. In this case, the power consumption of the heater can be reduced to 1/10 even while the indoor unit is in operation.
  • the configuration has a measurement off mode.
  • the measurement off mode the power supply to all the outward side heaters (and all the return side heaters) is stopped while at least one indoor unit is in operation. Since the air-conditioning capacity of the indoor unit rarely fluctuates significantly frequently, it is not necessary to calculate the air-conditioning capacity at all times by constantly energizing the heater.
  • the measurement off mode is provided for a certain period of time at regular intervals, and energy saving can be realized by reducing the heater power consumption.
  • the present disclosure relates to a repeater 30 arranged between a heat source machine 10 using a first heat medium and a plurality of indoor units 50a and 50b using a second heat medium.
  • the repeater 30 shown in FIG. 1 includes a first heat exchanger 61a and a second heat exchanger 61b, a first pump 60a, a second pump 60b, a plurality of first ports P1A and P1B, and a plurality of second units. It includes ports P2A and P2B, a flow path switching unit 90, a plurality of outbound side heaters 201 and 202, and a plurality of first temperature sensors T1 and T3.
  • the first heat exchanger 61a and the second heat exchanger 61b are configured to exchange heat between the first heat medium and the second heat medium, respectively.
  • the first pump 60a sends out the second heat medium so as to circulate the second heat medium to the first heat exchanger 61a.
  • the second pump 60b sends out the second heat medium so as to circulate the second heat medium through the second heat exchanger 61b.
  • Each of the plurality of first ports P1A and P1B can send the second heat medium to the corresponding one indoor unit among the plurality of indoor units 50a and 50b.
  • Each of the plurality of second ports P2A and P2B can accept the second heat medium returning from the corresponding one indoor unit among the plurality of indoor units 50a and 50b.
  • the flow path switching unit 90 is configured to connect each of the plurality of first ports P1A and P1B and the plurality of second ports P2A and P2B to either the first heat exchanger 61a or the second heat exchanger 61b. Will be done.
  • the plurality of outbound side heaters 201 and 202 are provided in a plurality of outbound side pipes 31a and 31b capable of sending the second heat medium to the plurality of first ports P1A and P1B, respectively.
  • the plurality of first temperature sensors T1 and T3 are arranged downstream of the plurality of outward path side heaters 201 and 202 in the plurality of outward path side pipes 31a and 31b.
  • the degree of freedom in arranging the sensor is increased compared to using the pressure sensor.
  • the temperature sensors are collectively arranged in the repeater 30, the load of communication between the indoor unit and the repeater is reduced, which is advantageous in that fine control is performed.
  • each of the plurality of outbound side pipes 31a and 31b includes the first pipes 31a1 and 31b1 and the second pipes 31a2 and 31b2.
  • the second pipes 31a2 and 31b2 have smaller flow path cross sections than the first pipes 31a1 and 31b1, respectively, and after branching from the first pipes 31a1 and 31b1, they rejoin the first pipes 31a1 and 31b1, respectively.
  • Each of the plurality of first temperature sensors T1 and T3 and each of the plurality of outbound side heaters 201 and 202 are arranged in the corresponding second pipes 31a2 and 31b2.
  • the repeater 230 further includes a plurality of return side heaters 203 and 204, and a plurality of second temperature sensors T56 and T78.
  • the plurality of return-side heaters 203 and 204 are provided in the plurality of return-side pipes 32a and 32b through which the second heat medium flowing into the plurality of second ports P2A and P2B passes.
  • Each of the plurality of second temperature sensors T56 and T78 is arranged downstream of any one of the plurality of return side heaters 203 and 204 in the plurality of return side pipes 32a and 32b.
  • the plurality of return path side pipes 32a and 32b include the third pipes 32a1 and 32b1 and the fourth pipes 32a2 and 32b2, respectively.
  • the fourth pipes 32a2 and 32b2 have a smaller flow path cross-sectional area than the third pipes 32a1 and 32b1, respectively, and after branching from the third pipes 32a1 and 32b1, they rejoin the third pipes 32a1 and 32b1, respectively.
  • Each of the plurality of second temperature sensors T11 and T12 and each of the plurality of return side heaters 203 and 204 are arranged in the corresponding fourth pipes 32a2 and 32b2.
  • the repeater 30 further includes a first pump 60a, a second pump 60b, a flow path switching unit 90, and a control device 70 for controlling a plurality of outbound side heaters 201 and 202.
  • the control device 70 turns on at least one of the plurality of outbound side heaters 201 and 202 when at least one of the plurality of indoor units 50a and 50b is in operation.
  • the measurement mode for measuring the flow rates Ga and Gb and the measurement off mode for turning off all of the plurality of outbound side heaters 201 and 202 are repeated.
  • the second heat medium is water or antifreeze.
  • the present disclosure comprises an air conditioner 100, 200, 300, 400 comprising any of the repeaters 30, 130, 230, 330, 430, a heat source unit 10, and a plurality of indoor units 50a, 50b. Regarding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A relay device (30) comprises a first heat exchanger (61a), a second heat exchanger (61b), a first pump (60a), a second pump (60b), and a plurality of first ports (P1A, P1B), a plurality of second ports (P2A, P2B), a flow path switching unit (90), a plurality of outbound side heaters (201, 202), and a plurality of first temperature sensors (T1, T3). The plurality of outbound side heaters (201, 202) are respectively provided in a plurality of outbound side pipes (31a, 31b) that feed a second heat medium to the plurality of first ports (P1A, P1B). The plurality of first temperature sensors (T1, T3) are respectively arranged downstream of the plurality of outbound side heaters (201, 202) in the plurality of outbound side pipes (31a, 31b).

Description

中継機、および空気調和装置Repeater and air conditioner
 本開示は、中継機、および空気調和装置に関する。 This disclosure relates to a repeater and an air conditioner.
 空調機器の故障時または廃棄時には、冷媒漏洩が生じることがある。冷媒漏洩が地球環境に与える影響を削減するため、空調機器に対する冷媒充填量の削減が求められている。冷媒充填量を削減するために、室外機と中継機との間の熱搬送にフロン系冷媒を用い、中継機と室内機との間の熱搬送に水または不凍液を用いる空気調和装置が知られている。この空気調和装置の方式を間接式空調方式と呼ぶ。 Refrigerant leakage may occur when air conditioning equipment fails or is disposed of. In order to reduce the impact of refrigerant leakage on the global environment, it is required to reduce the amount of refrigerant charged in air conditioning equipment. An air conditioner that uses a fluorocarbon-based refrigerant for heat transfer between the outdoor unit and the repeater and water or antifreeze for heat transfer between the repeater and the indoor unit is known in order to reduce the amount of refrigerant charged. ing. This air conditioner system is called an indirect air conditioning system.
 大規模建物の空調では、共通の室外機に複数台の室内機が接続され、複数台の室内機がそれぞれ据え付けられている複数の部屋の所有者および使用者が異なる場合がある。このような場合等、各部屋または各テナントに据え付けられた各室内機の空調発揮能力に応じて、室外機の消費電力料金を按分する市場需要が一定数存在する。特に間接式空調方式の空調機器では、流量や温度計測が比較的容易であるため空調機器の消費電力を按分し課金するシステムがすでに市場に普及している。 In the air conditioning of a large-scale building, the owners and users of multiple rooms in which multiple indoor units are connected to a common outdoor unit and multiple indoor units are installed may be different. In such a case, there is a certain number of market demands for apportioning the power consumption charge of the outdoor unit according to the air conditioning performance capacity of each indoor unit installed in each room or each tenant. In particular, in the case of indirect air-conditioning type air-conditioning equipment, since it is relatively easy to measure the flow rate and temperature, a system that prorates and charges the power consumption of the air-conditioning equipment is already widespread in the market.
 たとえば、流量調整弁前後に圧力センサを設けて、弁の開口面積と、弁前後の差圧から熱媒体流量を算出し、熱媒体の熱交換器出入口温度差を用いて熱交換量(空調能力)を算出する方法が知られている(たとえば、特許第6678837号公報参照)。 For example, a pressure sensor is provided before and after the flow control valve, the heat medium flow rate is calculated from the opening area of the valve and the differential pressure before and after the valve, and the heat exchange amount (air conditioning capacity) is calculated using the heat exchanger inlet / outlet temperature difference of the heat medium. ) Is known (see, for example, Japanese Patent No. 6678837).
特許第6678837号公報Japanese Patent No. 6678837
 しかし、上記特許第6678837号公報(特許文献1)に開示された空気調和装置および熱媒体流量算出方法では、少なくとも室内機台数以上の圧力センサが必要である。一般に圧力センサは、温度センサ等と比較すると高価であるという課題がある。 However, in the air conditioner and the heat medium flow rate calculation method disclosed in Japanese Patent No. 6678837 (Patent Document 1), at least the number of indoor units or more pressure sensors are required. Generally, a pressure sensor has a problem that it is more expensive than a temperature sensor or the like.
 本開示は、上記の課題を解決するために、圧力センサよりも一般的に安価である、温度センサと電気ヒータを用いて流量を算出する中継機、および空気調和装置に関する。 The present disclosure relates to a repeater that calculates a flow rate using a temperature sensor and an electric heater, and an air conditioner, which are generally cheaper than a pressure sensor, in order to solve the above problems.
 本開示は、第1熱媒体を用いる熱源機と第2熱媒体を用いる複数の室内機との間に配置される中継機に関する。中継機は、第1熱交換器および第2熱交換器と、第1ポンプと、第2ポンプと、複数の第1ポートと、複数の第2ポートと、流路切替部と、複数の往路側ヒータと、複数の第1温度センサとを備える。 The present disclosure relates to a repeater arranged between a heat source machine using the first heat medium and a plurality of indoor units using the second heat medium. The repeater includes a first heat exchanger, a second heat exchanger, a first pump, a second pump, a plurality of first ports, a plurality of second ports, a flow path switching unit, and a plurality of outward paths. It includes a side heater and a plurality of first temperature sensors.
 第1熱交換器および第2熱交換器は、各々が第1熱媒体と第2熱媒体との間で熱交換を行なうように構成される。第1ポンプは、第1熱交換器に第2熱媒体を循環させるように第2熱媒体を送出する。第2ポンプは、第2熱交換器に第2熱媒体を循環させるように第2熱媒体を送出する。 The first heat exchanger and the second heat exchanger are configured to exchange heat between the first heat medium and the second heat medium, respectively. The first pump sends out the second heat medium so as to circulate the second heat medium through the first heat exchanger. The second pump sends out the second heat medium so as to circulate the second heat medium through the second heat exchanger.
 複数の第1ポートの各々は、複数の室内機のうちの対応する1つの室内機に対して、第2熱媒体を送出する。複数の第2ポートの各々は、複数の室内機のうちの対応する1つの室内機から戻る第2熱媒体を受け入れる。 Each of the plurality of first ports sends out the second heat medium to the corresponding one indoor unit among the plurality of indoor units. Each of the plurality of second ports receives a second heat medium returning from the corresponding indoor unit among the plurality of indoor units.
 流路切替部は、複数の第1ポートおよび複数の第2ポートの各々を第1熱交換器および第2熱交換器のいずれか一方に接続するように構成される。 The flow path switching unit is configured to connect each of the plurality of first ports and the plurality of second ports to either the first heat exchanger or the second heat exchanger.
 複数の往路側ヒータは、複数の第1ポートに第2熱媒体を送る複数の往路側配管にそれぞれ設けられる。複数の第1温度センサは、複数の往路側配管において複数の往路側ヒータのそれぞれ下流に配置される。 The plurality of outbound side heaters are provided in each of the plurality of outbound side pipes that send the second heat medium to the plurality of first ports. The plurality of first temperature sensors are arranged downstream of each of the plurality of outward path side heaters in the plurality of outward path side pipes.
 本開示の中継機、および空気調和装置によれば、一般的に安価である温度センサおよび電気ヒータを用いて熱媒体流量を算出でき、コストが低減された空気調和装置を実現できる。 According to the repeater and the air conditioner of the present disclosure, the heat medium flow rate can be calculated by using a temperature sensor and an electric heater, which are generally inexpensive, and an air conditioner with reduced cost can be realized.
実施の形態1の空気調和装置100の構成を示す図である。It is a figure which shows the structure of the air conditioner 100 of Embodiment 1. FIG. 実施の形態1における流量および空調能力の算出について説明するためのフローチャートである。It is a flowchart for demonstrating the calculation of the flow rate and the air-conditioning capacity in Embodiment 1. FIG. 実施の形態1の変形例の空気調和装置100Aの構成を示す図である。It is a figure which shows the structure of the air conditioner 100A of the modification of Embodiment 1. FIG. 実施の形態2の空気調和装置200の構成を示す図である。It is a figure which shows the structure of the air conditioner 200 of Embodiment 2. 実施の形態2における流量および空調能力の算出について説明するためのフローチャートである。It is a flowchart for demonstrating the calculation of the flow rate and the air-conditioning capacity in Embodiment 2. 実施の形態2の変形例の空気調和装置200Aの構成を示す図である。It is a figure which shows the structure of the air conditioner 200A of the modification of Embodiment 2. 実施の形態3の空気調和装置300の構成を示す図である。It is a figure which shows the structure of the air conditioner 300 of Embodiment 3. 実施の形態3の変形例の空気調和装置300Aの構成を示す図である。It is a figure which shows the structure of the air conditioner 300A of the modification of Embodiment 3. 実施の形態4の空気調和装置400の構成を示す図である。It is a figure which shows the structure of the air conditioner 400 of Embodiment 4. 実施の形態4の変形例の空気調和装置400Aの構成を示す図である。It is a figure which shows the structure of the air conditioner 400A of the modification of Embodiment 4. 実施の形態5で実行されるヒータの通電制御を説明するためのフローチャートである。It is a flowchart for demonstrating the energization control of a heater executed in Embodiment 5.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1の空気調和装置100の構成を示す図である。空気調和装置100は、熱源機10と、中継機30と、複数の室内機50a、50bを有する。熱源機10は、通常は、屋外に配置される室外機であり、熱源または冷熱源として動作する。本実施の形態では、室内機を2台有する空気調和装置について説明するが、3台以上の室内機が中継機を介して熱源機に接続されても良い。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of the air conditioner 100 of the first embodiment. The air conditioner 100 includes a heat source unit 10, a repeater 30, and a plurality of indoor units 50a and 50b. The heat source unit 10 is usually an outdoor unit arranged outdoors and operates as a heat source or a cold heat source. In the present embodiment, an air conditioner having two indoor units will be described, but three or more indoor units may be connected to the heat source unit via a repeater.
 熱源機10は、第1配管1および第2配管2によって、中継機30と接続される。室内機50aは、第3配管3aおよび第4配管4aによって、中継機30と接続される。室内機50bは、第3配管3bおよび第4配管4bによって、中継機30と接続される。 The heat source machine 10 is connected to the repeater 30 by the first pipe 1 and the second pipe 2. The indoor unit 50a is connected to the repeater 30 by the third pipe 3a and the fourth pipe 4a. The indoor unit 50b is connected to the repeater 30 by the third pipe 3b and the fourth pipe 4b.
 熱源機10は、圧縮機11と、六方弁12と、室外熱交換器13とを備える。六方弁12は内部に3つの流路が形成されるように構成される。六方弁12の6つのポートは、それぞれ、圧縮機11の吐出側の配管5、圧縮機11の吸入側の配管6、第1配管1、第2配管2、室外熱交換器13の出入口部の配管7,8に接続される。 The heat source machine 10 includes a compressor 11, a hexagonal valve 12, and an outdoor heat exchanger 13. The hexagonal valve 12 is configured so that three flow paths are formed inside. The six ports of the hexagonal valve 12 are the pipe 5 on the discharge side of the compressor 11, the pipe 6 on the suction side of the compressor 11, the first pipe 1, the second pipe 2, and the inlet / outlet of the outdoor heat exchanger 13, respectively. It is connected to pipes 7 and 8.
 室内機50aは、室内熱交換器51aと流量調節弁52aとを含む。第3配管3a、室内熱交換器51a、流量調節弁52a、第4配管4aは、中継機30のポートP1AとポートP2Aとの間に順に接続される。 The indoor unit 50a includes an indoor heat exchanger 51a and a flow rate control valve 52a. The third pipe 3a, the indoor heat exchanger 51a, the flow rate control valve 52a, and the fourth pipe 4a are sequentially connected between the port P1A and the port P2A of the repeater 30.
 室内機50bは、室内熱交換器51bと流量調節弁52bとを含む。第3配管3b、室内熱交換器51b、流量調節弁52b、第4配管4bは、中継機30のポートP1BとポートP2Bとの間に順に接続される。 The indoor unit 50b includes an indoor heat exchanger 51b and a flow rate control valve 52b. The third pipe 3b, the indoor heat exchanger 51b, the flow rate control valve 52b, and the fourth pipe 4b are sequentially connected between the port P1B and the port P2B of the repeater 30.
 中継機30は、図1に示す通り、熱交換器61aおよび61bを含む。熱交換器61aおよび61bの各々は、二流体間の熱交換を行なう。各熱交換器内にて二つの流体が流通する流路をそれぞれ、一次側流路と二次側流路と呼ぶことにする。 As shown in FIG. 1, the repeater 30 includes heat exchangers 61a and 61b. Each of the heat exchangers 61a and 61b exchanges heat between the two fluids. The flow paths through which the two fluids flow in each heat exchanger are referred to as primary side flow paths and secondary side flow paths, respectively.
 熱源側である一次側流路に流れる熱媒体(以下、第1熱媒体という)としては、フロン系冷媒が用いられる。第1配管1および第2配管2には、フロン系冷媒が循環する。負荷側である二次側流路に流れる熱媒体(以下、第2熱媒体という)としては、水または不凍液(ブライン)が用いられる。第3配管3a、第4配管4a、第3配管3bおよび第4配管4bには、水または不凍液が循環する。 A fluorocarbon-based refrigerant is used as the heat medium (hereinafter referred to as the first heat medium) flowing in the primary side flow path on the heat source side. Freon-based refrigerant circulates in the first pipe 1 and the second pipe 2. Water or antifreeze (brine) is used as the heat medium (hereinafter referred to as the second heat medium) flowing in the secondary side flow path on the load side. Water or antifreeze circulates in the third pipe 3a, the fourth pipe 4a, the third pipe 3b, and the fourth pipe 4b.
 熱交換器61aの一次側流路の一端は、開閉弁71aおよびポートP3を介して配管1に接続され、開閉弁72aおよびポートP4を介して配管2に接続される。熱交換器61bの一次側流路の一端は、開閉弁71bおよびポートP3を介して配管1に接続され、開閉弁72bおよびポートP4を介して配管2に接続される。 One end of the primary side flow path of the heat exchanger 61a is connected to the pipe 1 via the on-off valve 71a and the port P3, and is connected to the pipe 2 via the on-off valve 72a and the port P4. One end of the primary side flow path of the heat exchanger 61b is connected to the pipe 1 via the on-off valve 71b and the port P3, and is connected to the pipe 2 via the on-off valve 72b and the port P4.
 熱交換器61aの一次側流路の他端と、熱交換器61bの一次側流路の他端は、それぞれ流量調節弁62aと62bを介して接続され合流し、その合流点は第1流量調節弁81およびポートP3を介して配管1に、第2流量調節弁82およびポートP4を介して配管2に接続される。 The other end of the primary side flow path of the heat exchanger 61a and the other end of the primary side flow path of the heat exchanger 61b are connected and merged via the flow rate control valves 62a and 62b, respectively, and the merging point is the first flow rate. It is connected to the pipe 1 via the control valve 81 and the port P3, and to the pipe 2 via the second flow rate control valve 82 and the port P4.
 中継機30は、図1に示す通り、ポンプ60aおよび60bを含む。ポンプ60aの吐出ポートは、熱交換器61aの二次側流路の一端に接続される。熱交換器61aの二次側流路の他端は、開閉弁91を介して配管3aに接続されるとともに、開閉弁93を介して配管3bに接続される。またポンプ60aの吐出ポートは、開閉弁95を介して配管4aに接続されるとともに、開閉弁97を介して配管4bに接続される。 The repeater 30 includes pumps 60a and 60b as shown in FIG. The discharge port of the pump 60a is connected to one end of the secondary side flow path of the heat exchanger 61a. The other end of the secondary side flow path of the heat exchanger 61a is connected to the pipe 3a via the on-off valve 91 and is connected to the pipe 3b via the on-off valve 93. Further, the discharge port of the pump 60a is connected to the pipe 4a via the on-off valve 95 and is connected to the pipe 4b via the on-off valve 97.
 ポンプ60bの流出側は、熱交換器61bの二次側を経由した後、開閉弁92を介して配管3aに接続され、開閉弁94を介して配管3bに接続される。またポンプ60bの流入側は、開閉弁96を介して配管4aに接続され、開閉弁98を介して配管4bに接続される。 The outflow side of the pump 60b is connected to the pipe 3a via the on-off valve 92 and to the pipe 3b via the on-off valve 94 after passing through the secondary side of the heat exchanger 61b. Further, the inflow side of the pump 60b is connected to the pipe 4a via the on-off valve 96 and connected to the pipe 4b via the on-off valve 98.
 ところで、流量調節弁52a、52bは、それぞれ、配管4a、4bの接続先である中継機内の配管32a,32b上に配置されても良い。また、流量調節弁52a、52bは、配管3a、3bの接続先である中継機内の配管31a,31b上に配置されても良い。なお、開閉弁91~98が開口面積を調節可能であれば、流量調節弁52aと52bを具備せず、開閉弁91~98において流量調節機能も兼用し、部品点数とコストを削減することもできる。 By the way, the flow rate control valves 52a and 52b may be arranged on the pipes 32a and 32b in the repeater to which the pipes 4a and 4b are connected, respectively. Further, the flow rate control valves 52a and 52b may be arranged on the pipes 31a and 31b in the repeater to which the pipes 3a and 3b are connected. If the on-off valves 91 to 98 can adjust the opening area, the flow control valves 52a and 52b are not provided, and the on-off valves 91 to 98 also have a flow rate adjusting function, so that the number of parts and the cost can be reduced. can.
 実施の形態1の空気調和装置100では、中継機30内の熱交換器61a、61bを介して、熱源機10側である一次側と、室内機50側で負荷側である二次側を、別の回路として独立させている。これにより、一次側の熱媒体と、二次側の熱媒体として別々の流体である第1熱媒体、第2熱媒体を用いることができる。 In the air conditioner 100 of the first embodiment, the primary side which is the heat source machine 10 side and the secondary side which is the load side on the indoor unit 50 side are set via the heat exchangers 61a and 61b in the repeater 30. It is made independent as a separate circuit. As a result, the heat medium on the primary side and the first heat medium and the second heat medium, which are separate fluids, can be used as the heat medium on the secondary side.
 一般に、熱源側である第1熱媒体としては、蒸気圧縮式冷凍サイクルに適したフロン系冷媒が用いられるが、フロン系冷媒は、地球温暖化への寄与および可燃性が問題視されており、冷媒使用量の削減および閉鎖空間への漏洩リスクの低減が求められている。 Generally, as the first heat medium on the heat source side, a chlorofluorocarbon-based refrigerant suitable for a steam compression refrigeration cycle is used, but the chlorofluorocarbon-based refrigerant is regarded as a problem of contribution to global warming and flammability. There is a need to reduce the amount of refrigerant used and the risk of leakage into closed spaces.
 そこで、負荷側である第2熱媒体として、水または不凍液を用いることで、一次側のフロン系冷媒の使用量の削減が可能であり、また、閉鎖空間である室内環境への冷媒の漏洩リスクを低減できる。 Therefore, by using water or antifreeze as the second heat medium on the load side, it is possible to reduce the amount of Freon-based refrigerant used on the primary side, and there is a risk of refrigerant leaking into the indoor environment, which is a closed space. Can be reduced.
 また、大規模建物の空調において、事務室では暖房が必要だが、コンピュータルームおよび厨房等の発熱を有する部屋では冷房が必要な場合がある。このような場合、各室内機が他の室内機の冷暖房の運転状態に依らず、冷暖房を任意に選択することが可能な空気調和装置が知られている。このような空気調和装置は、共通の室外機に対して、中継機を介して複数台の室内機を接続した構成を有する。このような、ひとつの空気調和装置によって冷房と暖房の空調を同時に運転可能な空気調和方式を冷暖同時式という。空気調和装置100は、このような冷暖同時式の空気調和方式を採用している。 Also, in the air conditioning of large-scale buildings, heating is required in the office, but cooling may be required in rooms with heat generation such as computer rooms and kitchens. In such a case, there is known an air conditioner in which each indoor unit can arbitrarily select heating and cooling regardless of the operating state of heating and cooling of other indoor units. Such an air conditioner has a configuration in which a plurality of indoor units are connected to a common outdoor unit via a repeater. Such an air conditioning system that can operate cooling and heating air conditioning at the same time by one air conditioning device is called a simultaneous cooling / heating system. The air conditioned device 100 employs such a simultaneous cooling / heating air conditioned system.
 空気調和装置100は、「全冷房モード」、「全暖房モード」、「第1冷暖同時運転モード」、「第2冷暖同時運転モード」の4つの運転モードを有する。 The air conditioner 100 has four operation modes: "total cooling mode", "total heating mode", "first cooling / heating simultaneous operation mode", and "second cooling / heating simultaneous operation mode".
 全冷房モードは、室内機50a,50bともに冷房運転するモードである。全暖房モードは、室内機50a,50bともに暖房運転するモードである。第1冷暖同時運転モードは、室内機50aが冷房運転、室内機50bが暖房運転するモードである。第2冷暖同時運転モードは、室内機50aが暖房運転、室内機50bが冷房運転するモードである。 The total cooling mode is a mode in which both the indoor units 50a and 50b are cooled. The full heating mode is a mode in which both the indoor units 50a and 50b are heated. The first cooling / heating simultaneous operation mode is a mode in which the indoor unit 50a is in the cooling operation and the indoor unit 50b is in the heating operation. The second cooling / heating simultaneous operation mode is a mode in which the indoor unit 50a is in the heating operation and the indoor unit 50b is in the cooling operation.
 なお、室内機が3台以上である場合には、第1冷暖同時運転モードは、冷房運転の台数が暖房運転の台数以上であるような冷房が主体となる運転モード、第2冷暖同時運転モードは、冷房運転の台数が暖房運転の台数よりも少ないような暖房が主体となる運転モードとしてもよい。 When there are three or more indoor units, the first cooling / heating simultaneous operation mode is an operation mode mainly for cooling such that the number of cooling operations is equal to or more than the number of heating operations, and the second cooling / heating simultaneous operation mode. May be an operation mode in which heating is the main operation so that the number of cooling operations is smaller than the number of heating operations.
 全冷房モードでは、図1の実線で示す3つの流路が六方弁12の内部に形成される。中継機30において、開閉弁71a,71bは開かれ、開閉弁72a,72bは閉止される。また、流量調節弁81は閉止され、流量調節弁82は開かれる。流量調節弁62a,62bの各々は、必要な第1熱媒体の流量に対応するように開度が制御装置70によって制御される。熱交換器61a,61bは、両方とも蒸発器として働き、第2熱媒体を冷却する。冷却された第2熱媒体は、開閉弁91~98によって室内熱交換器51a,51bに分配され、室内空気を冷房する。 In the full cooling mode, the three flow paths shown by the solid line in FIG. 1 are formed inside the hexagonal valve 12. In the repeater 30, the on-off valves 71a and 71b are opened and the on-off valves 72a and 72b are closed. Further, the flow rate control valve 81 is closed and the flow rate control valve 82 is opened. The opening degree of each of the flow rate control valves 62a and 62b is controlled by the control device 70 so as to correspond to the required flow rate of the first heat medium. Both the heat exchangers 61a and 61b act as evaporators to cool the second heat medium. The cooled second heat medium is distributed to the indoor heat exchangers 51a and 51b by the on-off valves 91 to 98 to cool the indoor air.
 全暖房モードでは、図1の破線で示す3つの流路が六方弁12の内部に形成される。中継機30において、開閉弁71a,71bは閉止され、開閉弁72a,72bは開かれる。また、流量調節弁82は閉止され、流量調節弁81は開かれる。流量調節弁62a,62bの各々は、必要な第1熱媒体の流量に対応するように開度が制御装置70によって制御される。熱交換器61a,61bは、両方とも凝縮器として働き、第2熱媒体を加熱する。加熱された第2熱媒体は、開閉弁91~98によって室内熱交換器51a,51bに分配され、室内空気を暖房する。 In the full heating mode, the three flow paths shown by the broken line in FIG. 1 are formed inside the hexagonal valve 12. In the repeater 30, the on-off valves 71a and 71b are closed and the on-off valves 72a and 72b are opened. Further, the flow rate control valve 82 is closed and the flow rate control valve 81 is opened. The opening degree of each of the flow rate control valves 62a and 62b is controlled by the control device 70 so as to correspond to the required flow rate of the first heat medium. Both the heat exchangers 61a and 61b act as condensers to heat the second heat medium. The heated second heat medium is distributed to the indoor heat exchangers 51a and 51b by the on-off valves 91 to 98 to heat the indoor air.
 冷暖同時運転モードにおいては、開閉弁71b,72a、流量調節弁81,82は閉止しており、六方弁12の内部には、図1の実線に示す3つの流路が形成される。 In the cooling / heating simultaneous operation mode, the on-off valves 71b and 72a and the flow rate control valves 81 and 82 are closed, and three flow paths shown by the solid line in FIG. 1 are formed inside the hexagonal valve 12.
 第1熱媒体は、圧縮機11から配管7、室外熱交換器13、配管2、開閉弁72bを経由して凝縮器として働く熱交換器61bに至り、流量調節弁62bで膨張し低温低圧に変化する。 The first heat medium reaches the heat exchanger 61b, which acts as a condenser, from the compressor 11 via the pipe 7, the outdoor heat exchanger 13, the pipe 2, and the on-off valve 72b, and expands at the flow control valve 62b to a low temperature and low pressure. Change.
 その後流量調節弁62a、蒸発器として働く熱交換器61aを通り開閉弁71a,配管1、六方弁12、配管6を経由して圧縮機11に第1熱媒体が戻る。 After that, the first heat medium returns to the compressor 11 via the flow control valve 62a, the heat exchanger 61a acting as an evaporator, the on-off valve 71a, the pipe 1, the hexagonal valve 12, and the pipe 6.
 この場合、熱交換器61bは暖房の熱源となり、熱交換器61aは冷房の冷熱源となる。 In this case, the heat exchanger 61b serves as a heat source for heating, and the heat exchanger 61a serves as a cold heat source for cooling.
 室内機50a,50bの各々を暖房運転するか、冷房運転するかに従って、開閉弁91~98は、室内機50a,50bに対応する流路の接続先を、熱源とするか冷熱源とするかを切替える。 Depending on whether each of the indoor units 50a and 50b is heated or cooled, the on-off valves 91 to 98 use the connection destination of the flow path corresponding to the indoor units 50a and 50b as a heat source or a cold heat source. To switch.
 第1冷暖同時運転モードにおいては、室内機50aが冷房運転、室内機50bが暖房運転となるように開閉弁91~98が制御され、第2冷暖同時運転モードにおいては、室内機50aが暖房運転、室内機50bが冷房運転となるように開閉弁91~98が制御される。 In the first cooling / heating simultaneous operation mode, the on-off valves 91 to 98 are controlled so that the indoor unit 50a is in the cooling operation and the indoor unit 50b is in the heating operation. In the second cooling / heating simultaneous operation mode, the indoor unit 50a is in the heating operation. The on-off valves 91 to 98 are controlled so that the indoor unit 50b is in the cooling operation.
 なお、冷暖同時運転において、六方弁12の内部に破線の流路が形成されるようにし、流量調節弁81,82、開閉弁71a,72bを閉止し、開閉弁72a、熱交換器61a、流量調節弁62a,62b、熱交換器61b、開閉弁71bの順に第1熱媒体が流れるようにしても良い。この場合、熱交換器61aは暖房の熱源となり、熱交換器61bは冷房の冷熱源となる。 In the simultaneous cooling and heating operation, a broken line flow path is formed inside the hexagonal valve 12, the flow rate control valves 81, 82 and the on-off valves 71a, 72b are closed, and the on-off valve 72a, the heat exchanger 61a, and the flow rate are closed. The first heat medium may flow in the order of the control valves 62a, 62b, the heat exchanger 61b, and the on-off valve 71b. In this case, the heat exchanger 61a serves as a heat source for heating, and the heat exchanger 61b serves as a cold heat source for cooling.
 空気調和装置100は、制御装置70をさらに備える。制御装置70は、CPU(Central Processing Unit)71と、メモリ72(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU71は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置70の処理手順が記されたプログラムである。制御装置70は、これらのプログラムに従って、空気調和装置100における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The air conditioner 100 further includes a control device 70. The control device 70 includes a CPU (Central Processing Unit) 71, a memory 72 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including. The CPU 71 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 70 is described. The control device 70 executes control of each device in the air conditioner 100 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 制御装置70は、熱源機10、中継機30、室内機50a,50bのいずれかの筐体内に配置されても良く、これらとは別のコントロールパネルなどに配置されていてもよい。 The control device 70 may be arranged in any of the housings of the heat source unit 10, the repeater 30, and the indoor units 50a and 50b, or may be arranged in a control panel or the like different from these.
 本実施の形態では、制御装置70は、温度センサT1,T3,T11,T12,Tai,Tao,Tbi,Tboの計測値を受信して、室内機50a,50bの各々における第2熱媒体の流量Gの算出および空調能力Qの算出を行なう。このため、制御装置70は、中継機30の筐体内または中継機30に近接して配置されるコントロールパネルなどに配置されることが望ましい。 In the present embodiment, the control device 70 receives the measured values of the temperature sensors T1, T3, T11, T12, Tai, Tao, Tbi, and Tbo, and the flow rate of the second heat medium in each of the indoor units 50a and 50b. G is calculated and air conditioning capacity Q is calculated. Therefore, it is desirable that the control device 70 is arranged in the housing of the repeater 30 or in a control panel or the like arranged in the vicinity of the repeater 30.
 図2は、実施の形態1における流量および空調能力の算出について説明するためのフローチャートである。制御装置70は、ステップS1においてヒータを通電し、ステップS2において室内機50a,50bに流れる第2熱媒体の流量Ga,Gbを算出し、ステップS3において室内機50a,50bの空調能力Qa,Qbを算出する。 FIG. 2 is a flowchart for explaining the calculation of the flow rate and the air conditioning capacity in the first embodiment. The control device 70 energizes the heater in step S1, calculates the flow rates Ga and Gb of the second heat medium flowing through the indoor units 50a and 50b in step S2, and calculates the air conditioning capacities Qa and Qb of the indoor units 50a and 50b in step S3. Is calculated.
 以下に、実施の形態1における、室内機50a,50bに流れる第2熱媒体の流量Ga,Gbおよび室内機50a,50bの空調能力Qa,Qbを算出する方法について説明する。流量Ga,Gbを総称して流量Gと表わし、空調能力Qa,Qbを総称して空調能力Qと表わす。 Hereinafter, a method of calculating the flow rates Ga and Gb of the second heat medium flowing through the indoor units 50a and 50b and the air conditioning capacities Qa and Qb of the indoor units 50a and 50b in the first embodiment will be described. The flow rates Ga and Gb are collectively referred to as the flow rate G, and the air conditioning capacities Qa and Qb are collectively referred to as the air conditioning capacity Q.
 たとえば、室内機50aが冷房運転を開始し、熱交換器61aが熱源機10の運転の働きにより低温となり、対応するポンプ60aが駆動し、開閉弁91および95が開通し、開閉弁92および96が閉止する場合を考える。 For example, the indoor unit 50a starts the cooling operation, the heat exchanger 61a becomes low temperature due to the operation of the heat source unit 10, the corresponding pumps 60a are driven, the on-off valves 91 and 95 are opened, and the on-off valves 92 and 96 are opened. Consider the case where is closed.
 温度センサTaiは、ポンプ60aから流出した第2熱媒体の温度を計測する。温度センサTaоは、熱交換器61aの二次側に流入し冷却され、熱交換器61aから流出する第2熱媒体の温度を計測する。その後、第2熱媒体は、熱交換器61aの二次側出口を選択する開閉弁91とポートP1Aとの間を接続する配管31a内の往路側熱的接合部を経由する。その際に、第2熱媒体は、往路側熱的接合部に取り付けられたヒータ201によって加熱される。温度センサT1は、加熱された第2熱媒体の温度を計測する。第2熱媒体は、その後、第3配管3aを経由して、室内機50aに至る。第2熱媒体の温度は、室内機50aにおいて室内空気を冷却することによって上昇する。そして、第2熱媒体は、第4配管4a、開閉弁95、復路側機内配管内を経由して、ポンプ60aに至る。温度センサT11は、室内機50aから流出した第2熱媒体の温度を計測する。 The temperature sensor Tai measures the temperature of the second heat medium flowing out of the pump 60a. The temperature sensor Taо measures the temperature of the second heat medium that flows into the secondary side of the heat exchanger 61a, is cooled, and flows out of the heat exchanger 61a. After that, the second heat medium passes through the outbound side thermal junction in the pipe 31a connecting between the on-off valve 91 that selects the secondary side outlet of the heat exchanger 61a and the port P1A. At that time, the second heat medium is heated by the heater 201 attached to the outward thermal junction. The temperature sensor T1 measures the temperature of the heated second heat medium. The second heat medium then reaches the indoor unit 50a via the third pipe 3a. The temperature of the second heat medium rises by cooling the indoor air in the indoor unit 50a. Then, the second heat medium reaches the pump 60a via the fourth pipe 4a, the on-off valve 95, and the inside of the in-machine pipe on the return path side. The temperature sensor T11 measures the temperature of the second heat medium flowing out of the indoor unit 50a.
 ここで、ヒータ201が電気ヒータである場合、ヒータ201の消費電力から第2熱媒体の加熱量H(kW)が求まる。第2熱媒体の温度変化幅ΔT(℃)は、温度センサT1と温度センサTaо検出値T1,Taoの差から求まる。加熱量H(kW)、温度変化幅ΔT=T1-Tao、熱媒体の比熱Cp(kJ/(kg・℃))を用いて、熱媒体の流量G(kg/sec)は、次式(1)で算出できる。
G = H/(Cp・ΔT) ・・・(1)
 室内機50a出入口での温度差Δθ(℃)は温度センサT1と温度センサT11の検出値T1,T11の差から求まる。上記の室内機50aに流通する熱媒体流量G(kg/sec)と、温度差Δθ=T1-T11とを用いると、室内機50aの空調能力Q(kW)は、次式(2)で算出できる。
Q = G・Cp・Δθ ・・・(2)
 室内機50aが暖房運転される場合、熱源機10の運転状態および他の室内機50bの運転状態により、低温になる熱交換器が熱交換器61aから熱交換器61bに変わった場合でも、同様の演算式にて、各室内機の空調能力Qを算出可能である。
Here, when the heater 201 is an electric heater, the heating amount H (kW) of the second heat medium can be obtained from the power consumption of the heater 201. The temperature change width ΔT (° C.) of the second heat medium can be obtained from the difference between the temperature sensor T1 and the temperature sensor Taо detection values T1 and Tao. Using the heating amount H (kW), the temperature change width ΔT = T1-Tao, and the specific heat Cp (kJ / (kg · ° C)) of the heat medium, the flow rate G (kg / sec) of the heat medium is the following equation (1). ) Can be calculated.
G = H / (Cp · ΔT) ・ ・ ・ (1)
The temperature difference Δθ (° C.) at the entrance / exit of the indoor unit 50a can be obtained from the difference between the detected values T1 and T11 of the temperature sensor T1 and the temperature sensor T11. Using the heat medium flow rate G (kg / sec) distributed in the indoor unit 50a and the temperature difference Δθ = T1-T11, the air conditioning capacity Q (kW) of the indoor unit 50a is calculated by the following equation (2). can.
Q = G ・ Cp ・ Δθ ・ ・ ・ (2)
When the indoor unit 50a is heated, the same applies even if the heat exchanger that becomes low temperature changes from the heat exchanger 61a to the heat exchanger 61b due to the operating state of the heat source unit 10 and the operating state of the other indoor units 50b. The air-conditioning capacity Q of each indoor unit can be calculated by the calculation formula of.
 本実施の形態と異なり、圧力センサを用いる熱媒体流量算出方法について検討する。圧力センサを用いる方法では、流量調節弁の前後の差圧を計測するために、流量調節弁の前後に圧力センサを配置する必要がある。一般に、流量調節弁を室内機内に取り付ける構成と、中継機に取り付ける構成とがある。第2熱媒体の圧力は配管内の壁面摩擦による圧力損失により、配管内の流動方向に進むに従い徐々に低下する。このため、高精度に第2熱媒体の流量を算出するには、圧力センサは流量調節弁の直前および直後に取り付ける方が望ましい。 Unlike this embodiment, a heat medium flow rate calculation method using a pressure sensor will be examined. In the method using the pressure sensor, it is necessary to arrange the pressure sensor before and after the flow rate control valve in order to measure the differential pressure before and after the flow rate control valve. Generally, there are a configuration in which the flow rate control valve is mounted inside the indoor unit and a configuration in which the flow control valve is mounted in the repeater. The pressure of the second heat medium gradually decreases as it advances in the flow direction in the pipe due to the pressure loss due to the friction on the wall surface in the pipe. Therefore, in order to calculate the flow rate of the second heat medium with high accuracy, it is desirable to install the pressure sensor immediately before and after the flow rate control valve.
 つまり、流量調節弁が室内機内に取り付けられる場合は、圧力センサも同じ室内機内に、流量調節弁が中継機内に取り付けられる場合は、圧力センサもおなじく中継機内に取り付けられる。 That is, if the flow control valve is installed in the indoor unit, the pressure sensor is also installed in the same indoor unit, and if the flow control valve is installed in the repeater, the pressure sensor is also installed in the same repeater.
 流量調節弁が室内機内に取り付けられる場合は、室内温度に応じたきめ細かな熱媒体流量制御が室内機内のマイクロコンピュータにより可能となるという利点がある。しかし、電力料金を各室内機に按分するための各室内機の空調能力情報を都度室外機や中継機のマイクロコンピュータに送信する必要があり、通信容量を圧迫してしまう恐れがある。 When the flow control valve is installed in the indoor unit, there is an advantage that the microcomputer in the indoor unit enables fine-tuned heat medium flow control according to the indoor temperature. However, it is necessary to transmit the air-conditioning capacity information of each indoor unit in order to apportion the electric power charge to each indoor unit to the microcomputer of the outdoor unit or the repeater each time, which may put pressure on the communication capacity.
 他方、流量調節弁が中継機内に取り付けられる場合は、流量調整弁の制御に関する中継器と室内機との間の通信量が低減されるとともに、各室内機の空調能力情報を一括して中継機内のマイクロコンピュータにおいて高頻度に演算管理できる。しかし、室内機や室内温度の情報を室内機内のマイクロコンピュータから高頻度で入手することは、通信容量を圧迫するので不可能であり、室内温度に応じたきめ細やかな熱媒体流量制御が実現されない。 On the other hand, when the flow control valve is installed in the repeater, the amount of communication between the repeater and the indoor unit regarding the control of the flow control valve is reduced, and the air conditioning capacity information of each indoor unit is collectively collected in the repeater. It is possible to manage operations with high frequency in the microcomputer of. However, it is impossible to obtain information on the indoor unit and the indoor temperature from the microcomputer in the indoor unit at high frequency because it puts pressure on the communication capacity, and fine-tuned heat medium flow rate control according to the indoor temperature cannot be realized. ..
 実施の形態1では流量の算出に圧力センサを用いることがない。このため、実施の形態1に開示される熱媒体流量算出方法は、流量調整弁の位置に依存しない。実施の形態1では、各室内機の空調能力演算に必要な情報が中継機30内で完結している。このため、中継機30の内部または中継機30に近接して設けられた制御装置70での一括した高頻度演算管理が実現でき、また室内機50a,50bの流量調節弁52a,52bの有無に依存しない空気調和装置システムを構成できる。 In the first embodiment, the pressure sensor is not used to calculate the flow rate. Therefore, the heat medium flow rate calculation method disclosed in the first embodiment does not depend on the position of the flow rate adjusting valve. In the first embodiment, the information necessary for calculating the air conditioning capacity of each indoor unit is completed in the repeater 30. Therefore, it is possible to realize batch high-frequency calculation management in the control device 70 provided inside the repeater 30 or in the vicinity of the repeater 30, and whether or not the flow control valves 52a and 52b of the indoor units 50a and 50b are present. An independent air conditioner system can be configured.
 図3は、実施の形態1の変形例の空気調和装置100Aの構成を示す図である。空気調和装置100Aは、図1の空気調和装置100の構成において、中継機30に代えて中継機30Aを備える。中継機30Aは、図1に示した中継機30の構成において、ヒータ201,202に代えてヒータ201A,202Aを含む。 FIG. 3 is a diagram showing the configuration of the air conditioner 100A of the modified example of the first embodiment. In the configuration of the air conditioner 100 of FIG. 1, the air conditioner 100A includes a repeater 30A instead of the repeater 30. The repeater 30A includes heaters 201A and 202A instead of heaters 201 and 202 in the configuration of the repeater 30 shown in FIG.
 図1の構成では、ヒータ201,202は、流路切替部90よりもポートP1A,P1B側に配置されていたが、図3の構成では、ヒータ201A,202Aは、流路切替部90よりも第1熱交換器61a、第2熱交換器61b側に配置され、分岐した2つの配管の両方を加熱するように構成されている。 In the configuration of FIG. 1, the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, but in the configuration of FIG. 3, the heaters 201A and 202A are located on the flow path switching unit 90. It is arranged on the side of the first heat exchanger 61a and the second heat exchanger 61b, and is configured to heat both of the two branched pipes.
 このような配置を採用することによって、中継機内の空きスペースを生かしてヒータを配置することができる場合もある。 By adopting such an arrangement, it may be possible to arrange the heater by making the best use of the empty space in the repeater.
 実施の形態2.
 図4は、実施の形態2の空気調和装置200の構成を示す図である。空気調和装置200は、図1の空気調和装置100の構成において、中継機30に代えて中継機230を備え、制御装置70に代えて制御装置270を備える。中継機230は、図1に示した中継機30の構成において、ヒータ203,204と、温度センサT56,T78とをさらに含む。
Embodiment 2.
FIG. 4 is a diagram showing the configuration of the air conditioner 200 of the second embodiment. In the configuration of the air conditioner 100 of FIG. 1, the air conditioner 200 includes a repeater 230 instead of the repeater 30, and a control device 270 instead of the control device 70. The repeater 230 further includes heaters 203 and 204 and temperature sensors T56 and T78 in the configuration of the repeater 30 shown in FIG.
 すなわち、中継機230は、第4配管4aに接続された配管32aの内部の第2熱媒体を加熱するヒータ203と、第4配管4bに接続された配管32bの内部の第2熱媒体を加熱するヒータ204とを含む。ヒータ203,204の下流には、それぞれ温度センサT56,T78が配置される。 That is, the repeater 230 heats the heater 203 that heats the second heat medium inside the pipe 32a connected to the fourth pipe 4a and the second heat medium inside the pipe 32b connected to the fourth pipe 4b. Including the heater 204 to be used. Temperature sensors T56 and T78 are arranged downstream of the heaters 203 and 204, respectively.
 実施の形態1では、室内機50aまたは50bが冷房運転時には、室内機50aまたは50bに到達する前の低温の第2熱媒体を、流量算出目的で加熱することによって、冷房能力を削減してしまっていた。実施の形態2では、室内機が冷房運転時には、室内機よりも下流側に取り付けられたヒータにて、室内機から戻ってきた第2熱媒体を加熱するため、室内冷房能力への影響を無くすことができる。 In the first embodiment, when the indoor unit 50a or 50b is in the cooling operation, the cooling capacity is reduced by heating the low temperature second heat medium before reaching the indoor unit 50a or 50b for the purpose of calculating the flow rate. Was there. In the second embodiment, when the indoor unit is in the cooling operation, the heater attached to the downstream side of the indoor unit heats the second heat medium returned from the indoor unit, so that the influence on the indoor cooling capacity is eliminated. be able to.
 図5は、実施の形態2における流量および空調能力の算出について説明するためのフローチャートである。 FIG. 5 is a flowchart for explaining the calculation of the flow rate and the air conditioning capacity in the second embodiment.
 制御装置270は、ステップS11において、室内機50aが暖房運転であるか否かを判断する。室内機50aが暖房運転をしている場合(S11でYES)、ステップS12において制御装置270は、ヒータ201を通電する。室内機50aが冷房運転をしている場合(S11でNO)、ステップS13において制御装置270は、ヒータ203を通電する。 The control device 270 determines in step S11 whether or not the indoor unit 50a is in the heating operation. When the indoor unit 50a is in the heating operation (YES in S11), the control device 270 energizes the heater 201 in step S12. When the indoor unit 50a is in the cooling operation (NO in S11), the control device 270 energizes the heater 203 in step S13.
 さらに、制御装置270は、ステップS14において、室内機50bが暖房運転であるか否かを判断する。室内機50bが暖房運転をしている場合(S14でYES)、ステップS15において制御装置270は、ヒータ202を通電する。室内機50bが冷房運転をしている場合(S14でNO)、ステップS16において制御装置270は、ヒータ204を通電する。 Further, the control device 270 determines in step S14 whether or not the indoor unit 50b is in the heating operation. When the indoor unit 50b is in the heating operation (YES in S14), the control device 270 energizes the heater 202 in step S15. When the indoor unit 50b is in the cooling operation (NO in S14), the control device 270 energizes the heater 204 in step S16.
 その後、ステップS17において、制御装置270は、室内機50a,50bに流れる第2熱媒体の流量Ga,Gbをそれぞれ算出し、ステップS18において室内機50a,50bの空調能力Qa,Qbをそれぞれ算出する。流量Gおよび空調能力Qの算出方法については、実施の形態1と同様であるので、ここでは説明は繰返さない。 After that, in step S17, the control device 270 calculates the flow rates Ga and Gb of the second heat medium flowing through the indoor units 50a and 50b, respectively, and in step S18, calculates the air conditioning capacities Qa and Qb of the indoor units 50a and 50b, respectively. .. Since the calculation method of the flow rate G and the air conditioning capacity Q is the same as that of the first embodiment, the description is not repeated here.
 図6は、実施の形態2の変形例の空気調和装置200Aの構成を示す図である。空気調和装置200Aは、図4の空気調和装置200の構成において、中継機230に代えて中継機230Aを備える。 FIG. 6 is a diagram showing the configuration of the air conditioner 200A of the modified example of the second embodiment. The air conditioner 200A includes a repeater 230A instead of the repeater 230 in the configuration of the air conditioner 200 of FIG.
 図4の構成では、ヒータ201,202は、流路切替部90よりもそれぞれポートP1A,P1B側に配置され、ヒータ203,204は、流路切替部90よりもそれぞれポートP2A,P2B側に配置されていた。これに対して、図6の構成では、ヒータ201,202は、流路切替部90よりも第1熱交換器61a、第2熱交換器61b側に配置され、分岐した2つの配管の両方を加熱するように構成されている。同様に、図6の構成では、ヒータ203,204は、流路切替部90よりもポンプ60a、60b側に配置され、分岐した2つの配管の両方を加熱するように構成され、温度センサT5,T6がヒータ203の下流に配置され,温度センサT7,T8がヒータ204の下流に配置されている。 In the configuration of FIG. 4, the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively, and the heaters 203 and 204 are arranged on the ports P2A and P2B side of the flow path switching unit 90, respectively. It had been. On the other hand, in the configuration of FIG. 6, the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching portion 90, and both of the two branched pipes are connected. It is configured to heat. Similarly, in the configuration of FIG. 6, the heaters 203 and 204 are arranged on the pumps 60a and 60b side of the flow path switching portion 90, and are configured to heat both of the two branched pipes, and the temperature sensors T5 and T5. T6 is arranged downstream of the heater 203, and temperature sensors T7 and T8 are arranged downstream of the heater 204.
 このような配置を採用することによって、中継機内の空きスペースを生かしてヒータを配置することができる場合もある。 By adopting such an arrangement, it may be possible to arrange the heater by making the best use of the empty space in the repeater.
 実施の形態3.
 図7は、実施の形態3の空気調和装置300の構成を示す図である。空気調和装置300は、図1の空気調和装置100の構成において、中継機30に代えて中継機330を備える。なお、図7においては、制御装置70に相当する制御装置は図示を省略している。
Embodiment 3.
FIG. 7 is a diagram showing the configuration of the air conditioner 300 according to the third embodiment. In the configuration of the air conditioner 100 of FIG. 1, the air conditioner 300 includes a repeater 330 instead of the repeater 30. In FIG. 7, the control device corresponding to the control device 70 is not shown.
 中継機330は、往路側機内配管31a,31bが、分岐部と合流部を有しその間が複数に並列した流路となっている。並列部分の流路は、互いに配管径が異なり、配管断面積の小さい方の流路がヒータによって加熱されるように構成されている。 In the repeater 330, the outbound side in- machine piping 31a and 31b have a branching portion and a merging portion, and the space between them is a plurality of parallel flow paths. The flow paths in the parallel portion have different pipe diameters from each other, and the flow path having the smaller pipe cross section is configured to be heated by the heater.
 具体的には、配管31aが、分岐部と合流部を有しその間に並列に第1配管31a1、第2配管31a2が接続されている。第1配管31a1、第2配管31a2は、互いに配管径が異なる。第2配管31a2の断面積は、第1配管31a1の断面積よりも小さい。断面積の小さい第2配管31a2がヒータ201によって加熱されるように、ヒータ201が配置されている。第2配管31a2のヒータ201によって加熱される部分よりも下流には、温度センサT1が配置される。 Specifically, the pipe 31a has a branch portion and a merging portion, and the first pipe 31a1 and the second pipe 31a2 are connected in parallel between them. The first pipe 31a1 and the second pipe 31a2 have different pipe diameters. The cross-sectional area of the second pipe 31a2 is smaller than the cross-sectional area of the first pipe 31a1. The heater 201 is arranged so that the second pipe 31a2 having a small cross section is heated by the heater 201. The temperature sensor T1 is arranged downstream of the portion heated by the heater 201 of the second pipe 31a2.
 同様に、配管31bが、分岐部と合流部を有しその間に並列に第1配管31b1、第2配管31b2が接続されている。第1配管31b1、第2配管31b2は、互いに配管径が異なる。第2配管31b2の断面積は、第1配管31b1の断面積よりも小さい。断面積の小さい第2配管31b2がヒータ202によって加熱されるように、ヒータ202が配置されている。第2配管31b2のヒータ202によって加熱される部分よりも下流には、温度センサT3が配置される。 Similarly, the pipe 31b has a branch portion and a merging portion, and the first pipe 31b1 and the second pipe 31b2 are connected in parallel between them. The first pipe 31b1 and the second pipe 31b2 have different pipe diameters. The cross-sectional area of the second pipe 31b2 is smaller than the cross-sectional area of the first pipe 31b1. The heater 202 is arranged so that the second pipe 31b2 having a small cross section is heated by the heater 202. The temperature sensor T3 is arranged downstream of the portion heated by the heater 202 of the second pipe 31b2.
 実施の形態1および実施の形態2では、室内機に流通する全水流量をヒータで加熱昇温する必要があるが、実施の形態3では、断面積が小さいバイパス配管31a2を流れる第2熱媒体の流量だけをヒータ201で加熱昇温すればよく、バイパス配管31b2を流れる第2熱媒体の流量だけをヒータ202で加熱昇温すればよい。温度センサの精度および分解能が同一であるという条件において同一昇温幅だけヒータで第2熱媒体を加熱すれば良いと考えると、第1配管31a1,31b1と第2配管31a2,31b2のバイパス流量比分だけの、ヒータ消費電力削減が可能となる。 In the first and second embodiments, it is necessary to heat and raise the total flow rate of water flowing through the indoor unit with a heater, but in the third embodiment, the second heat medium flowing through the bypass pipe 31a2 having a small cross-sectional area. Only the flow rate of the second heat medium may be heated and raised by the heater 201, and only the flow rate of the second heat medium flowing through the bypass pipe 31b2 may be heated and raised by the heater 202. Considering that it is sufficient to heat the second heat medium with the heater by the same temperature rise width under the condition that the accuracy and resolution of the temperature sensor are the same, the bypass flow rate ratio of the first pipe 31a1, 31b1 and the second pipe 31a2, 31b2. It is possible to reduce the heater power consumption.
 なお第2配管31a2,31b2(バイパス流路)と第1配管31a1,31b1(主流路)の配管内断面積比は既知であるとする。バイパス流路内の第2熱媒体の流量と主流路内の流量の比は配管内断面積比に等しくなるので、バイパス流路の流量から主流路の流量を求めることができる。したがって、実施の形態3では、室内機の流量および空調能力を演算する際に、実施の形態1における効果に加えて、ヒータの消費電力を削減できる。 It is assumed that the cross-sectional area ratio in the pipes of the second pipe 31a2, 31b2 (bypass flow path) and the first pipe 31a1, 31b1 (main flow path) is known. Since the ratio of the flow rate of the second heat medium in the bypass flow path to the flow rate in the main flow path is equal to the cross-sectional area ratio in the pipe, the flow rate of the main flow path can be obtained from the flow rate of the bypass flow path. Therefore, in the third embodiment, in addition to the effect in the first embodiment, the power consumption of the heater can be reduced when calculating the flow rate and the air conditioning capacity of the indoor unit.
 図8は、実施の形態3の変形例の空気調和装置300Aの構成を示す図である。空気調和装置300Aは、図7の空気調和装置300の構成において、中継機330に代えて中継機330Aを備える。 FIG. 8 is a diagram showing the configuration of the air conditioner 300A of the modified example of the third embodiment. The air conditioner 300A includes a repeater 330A instead of the repeater 330 in the configuration of the air conditioner 300 of FIG. 7.
 図7の構成では、ヒータ201,202は、流路切替部90よりもそれぞれポートP1A,P1B側に配置されていた。一方、図8の構成では、ヒータ201,202は、流路切替部90よりも第1熱交換器61a、第2熱交換器61b側に配置され、分岐した2つの配管の両方のバイパス流路を加熱するように構成されている。 In the configuration of FIG. 7, the heaters 201 and 202 were arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively. On the other hand, in the configuration of FIG. 8, the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching unit 90, and the bypass flow paths of both of the two branched pipes are arranged. Is configured to heat.
 このような配置を採用することによって、中継機内の空きスペースを生かしてヒータを配置することができる場合もある。 By adopting such an arrangement, it may be possible to arrange the heater by making the best use of the empty space in the repeater.
 実施の形態4.
 図9は、実施の形態4の空気調和装置400の構成を示す図である。実施の形態4は、実施の形態1~3を組み合わせた形態である。空気調和装置400は、図7の空気調和装置300の構成において、中継機330に代えて中継機430を備える。なお、図9においては、制御装置は図示を省略している。
Embodiment 4.
FIG. 9 is a diagram showing the configuration of the air conditioner 400 according to the fourth embodiment. The fourth embodiment is a combination of the first to third embodiments. The air conditioner 400 includes a repeater 430 instead of the repeater 330 in the configuration of the air conditioner 300 of FIG. 7. In FIG. 9, the control device is not shown.
 中継機430は、中継機330の構成において、復路側機内配管32a,32bが、分岐部と合流部を有しその間が複数に並列した流路となっている。並列部分の流路は、互いに配管径が異なり、配管断面積の小さい方の流路がヒータによって加熱されるように構成されている。 In the repeater 430, in the configuration of the repeater 330, the return-side in- machine pipes 32a and 32b have a branch portion and a confluence portion, and the spaces between them are a plurality of parallel flow paths. The flow paths in the parallel portion have different pipe diameters from each other, and the flow path having the smaller pipe cross section is configured to be heated by the heater.
 具体的には、配管32aが、分岐部と合流部を有しその間に並列に第1配管32a1、第2配管32a2が接続されている。第1配管32a1、第2配管32a2は、互いに配管径が異なる。第2配管32a2の断面積は、第1配管32a1の断面積よりも小さい。断面積の小さい方の第2配管32a2がヒータ203によって加熱されるように、ヒータ203が配置されている。第2配管32a2のヒータ203によって加熱される部分よりも下流には、温度センサT56が配置される。 Specifically, the pipe 32a has a branch portion and a merging portion, and the first pipe 32a1 and the second pipe 32a2 are connected in parallel between them. The first pipe 32a1 and the second pipe 32a2 have different pipe diameters. The cross-sectional area of the second pipe 32a2 is smaller than the cross-sectional area of the first pipe 32a1. The heater 203 is arranged so that the second pipe 32a2 having the smaller cross-sectional area is heated by the heater 203. The temperature sensor T56 is arranged downstream of the portion heated by the heater 203 of the second pipe 32a2.
 同様に、配管32bが、分岐部と合流部を有しその間に並列に第1配管32b1、第2配管32b2が接続されている。第1配管32b1、第2配管32b2は、互いに配管径が異なる。第2配管32b2の断面積は、第1配管32b1の断面積よりも小さい。断面積の小さい方の第2配管32b2がヒータ204によって加熱されるように、ヒータ204が配置されている。第2配管32b2のヒータ204によって加熱される部分よりも下流には、温度センサT78が配置される。 Similarly, the pipe 32b has a branch portion and a merging portion, and the first pipe 32b1 and the second pipe 32b2 are connected in parallel between them. The first pipe 32b1 and the second pipe 32b2 have different pipe diameters from each other. The cross-sectional area of the second pipe 32b2 is smaller than the cross-sectional area of the first pipe 32b1. The heater 204 is arranged so that the second pipe 32b2 having the smaller cross section is heated by the heater 204. The temperature sensor T78 is arranged downstream of the portion heated by the heater 204 of the second pipe 32b2.
 このような構成とすることによって、冷房時にヒータによる加熱が室内機に与える悪影響を減らすとともに、ヒータの消費電力を削減することが可能となる。 With such a configuration, it is possible to reduce the adverse effect of heating by the heater on the indoor unit during cooling and to reduce the power consumption of the heater.
 図10は、実施の形態4の変形例の空気調和装置400Aの構成を示す図である。空気調和装置400Aは、図9の空気調和装置400の構成において、中継機430に代えて中継機430Aを備える。 FIG. 10 is a diagram showing the configuration of the air conditioner 400A of the modified example of the fourth embodiment. The air conditioner 400A includes a repeater 430A instead of the repeater 430 in the configuration of the air conditioner 400 of FIG.
 図9の構成では、ヒータ201,202は、流路切替部90よりもそれぞれポートP1A,P1B側に配置され、ヒータ203,204は、流路切替部90よりもそれぞれポートP2A,P2B側に配置されていた。これに対し、図10の構成では、ヒータ201,202は、流路切替部90よりも第1熱交換器61a、第2熱交換器61b側に配置され、ヒータ203,204は、流路切替部90よりもポンプ60a,60b側に配置され、いずれのヒータも分岐した2つの配管の両方のバイパス流路を加熱するように構成され、温度センサT5,T6,T7,T8がバイパス流路のヒータ下流に配置されている。 In the configuration of FIG. 9, the heaters 201 and 202 are arranged on the ports P1A and P1B side of the flow path switching unit 90, respectively, and the heaters 203 and 204 are arranged on the ports P2A and P2B side of the flow path switching unit 90, respectively. It had been. On the other hand, in the configuration of FIG. 10, the heaters 201 and 202 are arranged on the first heat exchanger 61a and the second heat exchanger 61b side of the flow path switching unit 90, and the heaters 203 and 204 are channel switching. Arranged on the pump 60a and 60b sides of the section 90, both heaters are configured to heat the bypass flow paths of both of the two branched pipes, and the temperature sensors T5, T6, T7 and T8 are connected to the bypass flow paths. It is located downstream of the heater.
 このような配置を採用することによって、中継機内の空きスペースを生かしてヒータを配置することができる場合もある。 By adopting such an arrangement, it may be possible to arrange the heater by making the best use of the empty space in the repeater.
 実施の形態5.
 実施の形態5では、実施の形態1~4の構成において、制御装置がヒータへの給電するタイミングを制御する。室内機がすべて運転していなければ、中継機のポンプも停止されており、ヒータによって流量を計測する必要もない。しかし、室内機が少なくともひとつでも運転していれば、課金などのために室内機の空調能力を算出する必要がある。
Embodiment 5.
In the fifth embodiment, in the configurations of the first to fourth embodiments, the control device controls the timing of supplying power to the heater. If all the indoor units are not operating, the pump of the repeater is also stopped and there is no need to measure the flow rate with a heater. However, if at least one indoor unit is in operation, it is necessary to calculate the air conditioning capacity of the indoor unit for billing.
 実施の形態5では、そのような場合にもヒータへの通電を制御して、消費電力を低減させる。 In the fifth embodiment, even in such a case, the energization of the heater is controlled to reduce the power consumption.
 図11は、実施の形態5で実行されるヒータの通電制御を説明するためのフローチャートである。以下、実施の形態1の図1の構成に適用する場合について説明するが、他の実施の形態の場合でも同様な制御を適用することができる。 FIG. 11 is a flowchart for explaining the energization control of the heater executed in the fifth embodiment. Hereinafter, the case of applying to the configuration of FIG. 1 of the first embodiment will be described, but the same control can be applied to the case of other embodiments.
 ステップS51では、制御装置70は、空気調和装置100が運転中であるか否かを判断する。運転中でない場合(S51でNO)は、このフローチャートの処理から抜けるが、運転中である場合(S51でYES)は、ステップS52に処理が進められる。 In step S51, the control device 70 determines whether or not the air conditioner 100 is in operation. If it is not in operation (NO in S51), the process of this flowchart is exited, but if it is in operation (YES in S51), the process proceeds to step S52.
 ステップS52では、制御装置70は、流量Gの測定時間になったか(または測定中であるか)否かを判断する。 In step S52, the control device 70 determines whether or not the measurement time of the flow rate G has come (or is being measured).
 測定時間である場合(S52でYES)、ステップS53において、制御装置は、ヒータ201,202を通電する。そして、ステップS53において、実施の形態1の式(1)、(2)を用いて、流量Gおよび空調能力Qを算出する。 When it is the measurement time (YES in S52), in step S53, the control device energizes the heaters 201 and 202. Then, in step S53, the flow rate G and the air conditioning capacity Q are calculated using the equations (1) and (2) of the first embodiment.
 一方、測定時間でない場合(S52でNO)、ステップS54において、制御装置は、ヒータ201,202をOFFする。 On the other hand, when it is not the measurement time (NO in S52), in step S54, the control device turns off the heaters 201 and 202.
 ステップS52における測定時間は、測定開始時刻から測定終了時刻の間であり、たとえば1分間である。そして、たとえば10分ごとに測定開始され、1分間の測定時間が終了すると残りの9分間はヒータが非通電となる。この場合は、室内機の運転中であってもヒータの消費電力は10分の1に低減できる。 The measurement time in step S52 is between the measurement start time and the measurement end time, for example, 1 minute. Then, for example, the measurement is started every 10 minutes, and when the measurement time of 1 minute ends, the heater is de-energized for the remaining 9 minutes. In this case, the power consumption of the heater can be reduced to 1/10 even while the indoor unit is in operation.
 以上説明したように、実施の形態5では、計測オフモードを有する構成とする。計測オフモードでは、少なくともひとつの室内機の運転中に、すべての往路側ヒータ(および全ての復路側ヒータへ)の給電を停止する。室内機の空調能力は頻繁に大きく変動することは殆どないため、実用的にはヒータ常時通電による常時の空調能力演算は不要である。実施の形態5では、一定周期ごとに、計測オフモードを一定時間設け、ヒータ消費電力の削減による省エネルギーを実現できる。 As described above, in the fifth embodiment, the configuration has a measurement off mode. In the measurement off mode, the power supply to all the outward side heaters (and all the return side heaters) is stopped while at least one indoor unit is in operation. Since the air-conditioning capacity of the indoor unit rarely fluctuates significantly frequently, it is not necessary to calculate the air-conditioning capacity at all times by constantly energizing the heater. In the fifth embodiment, the measurement off mode is provided for a certain period of time at regular intervals, and energy saving can be realized by reducing the heater power consumption.
 (まとめ)
 以上説明した実施の形態について、再び図面を参照して説明する。
(summary)
The embodiments described above will be described again with reference to the drawings.
 本開示は、第1熱媒体を用いる熱源機10と第2熱媒体を用いる複数の室内機50a,50bとの間に配置される中継機30に関する。図1に示す中継機30は、第1熱交換器61aおよび第2熱交換器61bと、第1ポンプ60aと、第2ポンプ60bと、複数の第1ポートP1A,P1Bと、複数の第2ポートP2A,P2Bと、流路切替部90と、複数の往路側ヒータ201,202と、複数の第1温度センサT1,T3とを備える。 The present disclosure relates to a repeater 30 arranged between a heat source machine 10 using a first heat medium and a plurality of indoor units 50a and 50b using a second heat medium. The repeater 30 shown in FIG. 1 includes a first heat exchanger 61a and a second heat exchanger 61b, a first pump 60a, a second pump 60b, a plurality of first ports P1A and P1B, and a plurality of second units. It includes ports P2A and P2B, a flow path switching unit 90, a plurality of outbound side heaters 201 and 202, and a plurality of first temperature sensors T1 and T3.
 第1熱交換器61aおよび第2熱交換器61bは、各々が第1熱媒体と第2熱媒体との間で熱交換を行なうように構成される。第1ポンプ60aは、第1熱交換器61aに第2熱媒体を循環させるように第2熱媒体を送出する。第2ポンプ60bは、第2熱交換器61bに第2熱媒体を循環させるように第2熱媒体を送出する。 The first heat exchanger 61a and the second heat exchanger 61b are configured to exchange heat between the first heat medium and the second heat medium, respectively. The first pump 60a sends out the second heat medium so as to circulate the second heat medium to the first heat exchanger 61a. The second pump 60b sends out the second heat medium so as to circulate the second heat medium through the second heat exchanger 61b.
 複数の第1ポートP1A,P1Bの各々は、複数の室内機50a,50bのうちの対応する1つの室内機に対して、第2熱媒体を送出可能である。複数の第2ポートP2A,P2Bの各々は、複数の室内機50a,50bのうちの対応する1つの室内機から戻る第2熱媒体を受け入れ可能である。 Each of the plurality of first ports P1A and P1B can send the second heat medium to the corresponding one indoor unit among the plurality of indoor units 50a and 50b. Each of the plurality of second ports P2A and P2B can accept the second heat medium returning from the corresponding one indoor unit among the plurality of indoor units 50a and 50b.
 流路切替部90は、複数の第1ポートP1A,P1Bおよび複数の第2ポートP2A,P2Bの各々を第1熱交換器61aおよび第2熱交換器61bのいずれか一方に接続するように構成される。 The flow path switching unit 90 is configured to connect each of the plurality of first ports P1A and P1B and the plurality of second ports P2A and P2B to either the first heat exchanger 61a or the second heat exchanger 61b. Will be done.
 複数の往路側ヒータ201,202は、複数の第1ポートP1A,P1Bに第2熱媒体を送ることが可能である複数の往路側配管31a,31bにそれぞれ設けられる。複数の第1温度センサT1,T3は、複数の往路側配管31a,31bにおいて複数の往路側ヒータ201,202のそれぞれ下流に配置される。 The plurality of outbound side heaters 201 and 202 are provided in a plurality of outbound side pipes 31a and 31b capable of sending the second heat medium to the plurality of first ports P1A and P1B, respectively. The plurality of first temperature sensors T1 and T3 are arranged downstream of the plurality of outward path side heaters 201 and 202 in the plurality of outward path side pipes 31a and 31b.
 このように、温度センサとヒータによって流量を検出するため、圧力センサを用いるよりも、センサの配置の自由度が増す。特に中継機30に温度センサを集合的に配置しているので、室内機と中継機との間の通信の負荷が低減され、細やかな制御を行なう点で有利である。 In this way, since the flow rate is detected by the temperature sensor and the heater, the degree of freedom in arranging the sensor is increased compared to using the pressure sensor. In particular, since the temperature sensors are collectively arranged in the repeater 30, the load of communication between the indoor unit and the repeater is reduced, which is advantageous in that fine control is performed.
 好ましくは、図7に示すように、中継機330において、複数の往路側配管31a,31bの各々は、第1配管31a1,31b1と、第2配管31a2,31b2とを含む。第2配管31a2,31b2は、第1配管31a1,31b1よりもそれぞれ流路断面積が小さく、第1配管31a1,31b1からそれぞれ分岐した後に第1配管31a1,31b1にそれぞれ再び合流する。複数の第1温度センサT1,T3の各々、および複数の往路側ヒータ201,202の各々は、対応する第2配管31a2,31b2に配置される。 Preferably, as shown in FIG. 7, in the repeater 330, each of the plurality of outbound side pipes 31a and 31b includes the first pipes 31a1 and 31b1 and the second pipes 31a2 and 31b2. The second pipes 31a2 and 31b2 have smaller flow path cross sections than the first pipes 31a1 and 31b1, respectively, and after branching from the first pipes 31a1 and 31b1, they rejoin the first pipes 31a1 and 31b1, respectively. Each of the plurality of first temperature sensors T1 and T3 and each of the plurality of outbound side heaters 201 and 202 are arranged in the corresponding second pipes 31a2 and 31b2.
 このような構成とすることによって、流量を検出する際の往路側ヒータ201,202の消費電力を低減することができる。 With such a configuration, it is possible to reduce the power consumption of the outbound side heaters 201 and 202 when detecting the flow rate.
 好ましくは、図4に示すように、中継機230は、複数の復路側ヒータ203,204と、複数の第2温度センサT56,T78とをさらに備える。複数の復路側ヒータ203,204は、複数の第2ポートP2A,P2Bに流入する第2熱媒体が通る複数の復路側配管32a,32bにそれぞれ設けられる。複数の第2温度センサT56,T78の各々は、複数の復路側配管32a,32bにおいて複数の復路側ヒータ203,204のいずれかの下流に配置される。 Preferably, as shown in FIG. 4, the repeater 230 further includes a plurality of return side heaters 203 and 204, and a plurality of second temperature sensors T56 and T78. The plurality of return- side heaters 203 and 204 are provided in the plurality of return- side pipes 32a and 32b through which the second heat medium flowing into the plurality of second ports P2A and P2B passes. Each of the plurality of second temperature sensors T56 and T78 is arranged downstream of any one of the plurality of return side heaters 203 and 204 in the plurality of return side pipes 32a and 32b.
 このような構成とすることによって、室内機で冷房を行なう場合には第2冷媒の室内機流通後の流量を測定することが可能となる。したがって、冷房時に室内機に流入する第2冷媒をヒータで加熱するような冷房に不利な状況を避けることができる。 With such a configuration, when cooling is performed by the indoor unit, it is possible to measure the flow rate of the second refrigerant after the indoor unit is distributed. Therefore, it is possible to avoid a situation that is disadvantageous to cooling, such as heating the second refrigerant flowing into the indoor unit with a heater during cooling.
 好ましくは、図9に示すように、中継機430において、複数の復路側配管32a,32bは、それぞれ第3配管32a1,32b1と、第4配管32a2,32b2とを含む。第4配管32a2,32b2は、それぞれ第3配管32a1,32b1よりも流路断面積が小さく、第3配管32a1,32b1からそれぞれ分岐した後に第3配管32a1,32b1にそれぞれ再び合流する。複数の第2温度センサT11,T12の各々、および複数の復路側ヒータ203,204の各々は、対応する第4配管32a2,32b2に配置される。 Preferably, as shown in FIG. 9, in the repeater 430, the plurality of return path side pipes 32a and 32b include the third pipes 32a1 and 32b1 and the fourth pipes 32a2 and 32b2, respectively. The fourth pipes 32a2 and 32b2 have a smaller flow path cross-sectional area than the third pipes 32a1 and 32b1, respectively, and after branching from the third pipes 32a1 and 32b1, they rejoin the third pipes 32a1 and 32b1, respectively. Each of the plurality of second temperature sensors T11 and T12 and each of the plurality of return side heaters 203 and 204 are arranged in the corresponding fourth pipes 32a2 and 32b2.
 このような構成とすることによって、流量を検出する際の復路側ヒータ203,204の消費電力を低減することができる。 With such a configuration, it is possible to reduce the power consumption of the return path side heaters 203 and 204 when detecting the flow rate.
 中継機30は、第1ポンプ60a、第2ポンプ60b、流路切替部90、複数の往路側ヒータ201,202を制御する制御装置70をさらに備える。図11で説明したように、制御装置70は、複数の室内機50a,50bのうちの少なくとも1つが運転中である場合に、複数の往路側ヒータ201,202の少なくとも1つをオンして、流量Ga,Gbを計測する計測モードと、複数の往路側ヒータ201,202のすべてをオフする計測オフモードとを繰返す。 The repeater 30 further includes a first pump 60a, a second pump 60b, a flow path switching unit 90, and a control device 70 for controlling a plurality of outbound side heaters 201 and 202. As described with reference to FIG. 11, the control device 70 turns on at least one of the plurality of outbound side heaters 201 and 202 when at least one of the plurality of indoor units 50a and 50b is in operation. The measurement mode for measuring the flow rates Ga and Gb and the measurement off mode for turning off all of the plurality of outbound side heaters 201 and 202 are repeated.
 このように、流量を間欠的に検出することによって、流量を検出する際の往路側ヒータ201,202の消費電力を低減することができる。 By intermittently detecting the flow rate in this way, it is possible to reduce the power consumption of the outbound side heaters 201 and 202 when detecting the flow rate.
 好ましくは、第2熱媒体は、水または不凍液である。
 本開示は、他の局面では、中継機30、130,230,330,430のいずれかと、熱源機10と、複数の室内機50a,50bとを備える、空気調和装置100、200,300,400に関する。
Preferably, the second heat medium is water or antifreeze.
In another aspect, the present disclosure comprises an air conditioner 100, 200, 300, 400 comprising any of the repeaters 30, 130, 230, 330, 430, a heat source unit 10, and a plurality of indoor units 50a, 50b. Regarding.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 1,2,3a,3b,4a,4b,5,6,7,8,31a,31b,32a,32b,31a1,31b1,32a1,32b1,31a2,31b2,32a2,32b2 配管、10 熱源機、11 圧縮機、12 六方弁、13,51a,51b,61a,61b 熱交換器、30,30A,230,230A,330,330A,430,430A 中継機、50,50a,50b 室内機、52a,52b,62a,62b,81,82 流量調節弁、60a,60b ポンプ、70,270 制御装置、71a,71b,72a,72b,91,92,93,94,95,96,97,98 開閉弁、71 CPU、72 メモリ、90 流路切替部、100,100A,200,200A,300,300A,400,400A 空気調和装置、201,201A,202,202A,203,204 ヒータ、G11,T1,T3,T5~T8,T11,T12,T56,T78,Ta,Tai,Tao,Tbi,Tbo 温度センサ、P1A,P1B,P2A,P2B,P3,P4 ポート。 1,2,3a, 3b, 4a, 4b, 5,6,7,8,31a, 31b, 32a, 32b, 31a1, 31b1, 32a1, 32b1, 31a2, 31b2, 32a2, 32b2 piping, 10 heat source machine, 11 Compressor, 12 hexagonal valve, 13,51a, 51b, 61a, 61b heat exchanger, 30,30A, 230,230A, 330,330A, 430,430A repeater, 50,50a, 50b indoor unit, 52a, 52b, 62a, 62b, 81,82 flow control valve, 60a, 60b pump, 70,270 control device, 71a, 71b, 72a, 72b, 91,92,93,94,95,96,97,98 on-off valve, 71 CPU , 72 memory, 90 flow path switching unit, 100, 100A, 200, 200A, 300, 300A, 400, 400A air conditioner, 201,201A, 202,202A, 203,204 heater, G11, T1, T3, T5 ~ T8, T11, T12, T56, T78, Ta, Tai, Tao, Tbi, Tbo temperature sensor, P1A, P1B, P2A, P2B, P3, P4 ports.

Claims (7)

  1.  第1熱媒体を用いる熱源機と第2熱媒体を用いる複数の室内機との間に配置される中継機であって、
     各々が前記第1熱媒体と前記第2熱媒体との間で熱交換を行なうように構成された第1熱交換器および第2熱交換器と、
     前記第1熱交換器に前記第2熱媒体を循環させるように、前記第2熱媒体を送出する第1ポンプと、
     前記第2熱交換器に前記第2熱媒体を循環させるように、前記第2熱媒体を送出する第2ポンプと、
     前記複数の室内機のうちの対応する1つの室内機に対して、前記第2熱媒体を各々が送出可能である複数の第1ポートと、
     前記複数の室内機のうちの対応する1つの室内機から戻る前記第2熱媒体を各々が受け入れ可能である複数の第2ポートと、
     前記複数の第1ポートおよび前記複数の第2ポートの各々を前記第1熱交換器および前記第2熱交換器のいずれか一方に接続するように構成された流路切替部と、
     前記複数の第1ポートに前記第2熱媒体を送ることが可能である複数の往路側配管にそれぞれ設けられた複数の往路側ヒータと、
     前記複数の往路側配管において前記複数の往路側ヒータのそれぞれ下流に配置された複数の第1温度センサとを備える、中継機。
    It is a repeater arranged between a heat source machine using the first heat medium and a plurality of indoor units using the second heat medium.
    A first heat exchanger and a second heat exchanger configured to exchange heat between the first heat medium and the second heat medium, respectively.
    A first pump that sends out the second heat medium so as to circulate the second heat medium in the first heat exchanger.
    A second pump that sends out the second heat medium so as to circulate the second heat medium in the second heat exchanger.
    A plurality of first ports capable of transmitting the second heat medium to the corresponding indoor unit among the plurality of indoor units, and a plurality of first ports.
    A plurality of second ports each capable of accepting the second heat medium returning from the corresponding indoor unit among the plurality of indoor units, and a plurality of second ports.
    A flow path switching unit configured to connect each of the plurality of first ports and the plurality of second ports to either the first heat exchanger or the second heat exchanger.
    A plurality of outbound side heaters provided in each of the plurality of outbound side pipes capable of sending the second heat medium to the plurality of first ports, and a plurality of outbound side heaters.
    A repeater including a plurality of first temperature sensors arranged downstream of each of the plurality of outward path side heaters in the plurality of outward path side pipes.
  2.  前記複数の往路側配管の各々は、
     第1配管と、
     前記第1配管よりも流路断面積が小さく、前記第1配管から分岐した後に前記第1配管に再び合流する第2配管とを含み、
     前記複数の第1温度センサの各々、および前記複数の往路側ヒータの各々は、対応する前記第2配管に配置される、請求項1に記載の中継機。
    Each of the plurality of outbound pipes
    The first pipe and
    The cross-sectional area of the flow path is smaller than that of the first pipe, and includes a second pipe that branches from the first pipe and then rejoins the first pipe.
    The repeater according to claim 1, wherein each of the plurality of first temperature sensors and each of the plurality of outbound side heaters are arranged in the corresponding second pipe.
  3.  前記複数の第2ポートに流入する前記第2熱媒体が通る複数の復路側配管にそれぞれ設けられた複数の復路側ヒータと、
     前記複数の復路側配管において前記複数の復路側ヒータのいずれかの下流に各々が配置された複数の第2温度センサとをさらに備える、請求項1に記載の中継機。
    A plurality of return side heaters provided in each of the plurality of return side pipes through which the second heat medium flowing into the plurality of second ports passes, and a plurality of return side heaters.
    The repeater according to claim 1, further comprising a plurality of second temperature sensors, each of which is arranged downstream of any of the plurality of return-side heaters in the plurality of return-side pipes.
  4.  前記複数の復路側配管の各々は、
     第3配管と、
     前記第3配管よりも流路断面積が小さく、前記第3配管から分岐した後に前記第3配管に再び合流する第4配管とを含み、
     前記複数の第2温度センサの各々、および前記複数の復路側ヒータの各々は、対応する前記第4配管に配置される、請求項3に記載の中継機。
    Each of the plurality of return-side pipes
    With the third pipe
    The cross section of the flow path is smaller than that of the third pipe, and includes a fourth pipe that branches from the third pipe and then rejoins the third pipe.
    The repeater according to claim 3, wherein each of the plurality of second temperature sensors and each of the plurality of return side heaters are arranged in the corresponding fourth pipe.
  5.  前記第1ポンプ、前記第2ポンプ、前記流路切替部、および前記複数の往路側ヒータを制御する制御装置をさらに備え、
     前記制御装置は、前記複数の室内機のうちの少なくとも1つが運転中である場合に、前記複数の往路側ヒータの少なくとも1つをオンして、流量を計測する計測モードと、前記複数の往路側ヒータのすべてをオフする計測オフモードとを繰返す、請求項1に記載の中継機。
    A control device for controlling the first pump, the second pump, the flow path switching unit, and the plurality of outbound side heaters is further provided.
    The control device has a measurement mode in which at least one of the plurality of indoor units is in operation, at least one of the plurality of outbound side heaters is turned on to measure the flow rate, and the plurality of outbound routes. The repeater according to claim 1, wherein the measurement off mode for turning off all the side heaters is repeated.
  6.  前記第2熱媒体は、水または不凍液である、請求項1~5のいずれか1項に記載の中継機。 The repeater according to any one of claims 1 to 5, wherein the second heat medium is water or antifreeze.
  7.  請求項1~6のいずれか1項に記載の中継機と、
     前記熱源機と、
     前記複数の室内機とを備える、空気調和装置。
    The repeater according to any one of claims 1 to 6 and the repeater.
    With the heat source machine
    An air conditioner including the plurality of indoor units.
PCT/JP2020/045861 2020-12-09 2020-12-09 Relay device and air conditioning device WO2022123689A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/045861 WO2022123689A1 (en) 2020-12-09 2020-12-09 Relay device and air conditioning device
CN202080107630.2A CN116507859A (en) 2020-12-09 2020-12-09 Relay and air conditioning device
EP20965072.0A EP4261474A4 (en) 2020-12-09 2020-12-09 Relay device and air conditioning device
JP2022567949A JPWO2022123689A1 (en) 2020-12-09 2020-12-09
US18/247,898 US20230375195A1 (en) 2020-12-09 2020-12-09 Branch Unit and Air Conditioning Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045861 WO2022123689A1 (en) 2020-12-09 2020-12-09 Relay device and air conditioning device

Publications (1)

Publication Number Publication Date
WO2022123689A1 true WO2022123689A1 (en) 2022-06-16

Family

ID=81973389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045861 WO2022123689A1 (en) 2020-12-09 2020-12-09 Relay device and air conditioning device

Country Status (5)

Country Link
US (1) US20230375195A1 (en)
EP (1) EP4261474A4 (en)
JP (1) JPWO2022123689A1 (en)
CN (1) CN116507859A (en)
WO (1) WO2022123689A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378837B2 (en) 1982-02-10 1991-12-16 Sony Corp
WO2013144996A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device
WO2014103013A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Heat pump system
JP2018185140A (en) * 2018-06-28 2018-11-22 アズビル株式会社 Air conditioning charging system and method
WO2019163042A1 (en) * 2018-02-22 2019-08-29 三菱電機株式会社 Air conditioning device and air handling unit
JP6678837B1 (en) * 2019-05-22 2020-04-08 三菱電機株式会社 Air conditioner and heat medium flow rate calculation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304832B2 (en) * 2000-06-22 2009-07-29 ダイキン工業株式会社 Air conditioner
EP2508819B1 (en) * 2009-11-30 2019-09-04 Mitsubishi Electric Corporation Air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378837B2 (en) 1982-02-10 1991-12-16 Sony Corp
WO2013144996A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Air conditioning device
WO2014103013A1 (en) * 2012-12-28 2014-07-03 三菱電機株式会社 Heat pump system
WO2019163042A1 (en) * 2018-02-22 2019-08-29 三菱電機株式会社 Air conditioning device and air handling unit
JP2018185140A (en) * 2018-06-28 2018-11-22 アズビル株式会社 Air conditioning charging system and method
JP6678837B1 (en) * 2019-05-22 2020-04-08 三菱電機株式会社 Air conditioner and heat medium flow rate calculation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261474A4

Also Published As

Publication number Publication date
EP4261474A4 (en) 2023-12-27
EP4261474A1 (en) 2023-10-18
US20230375195A1 (en) 2023-11-23
JPWO2022123689A1 (en) 2022-06-16
CN116507859A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
US7640763B2 (en) Hot water supply system
JP5328933B2 (en) Air conditioner
CN102770718A (en) Air conditioning system and method of controlling air conditioning system
WO2012172731A1 (en) Air conditioner
JP6490232B2 (en) Air conditioner
CN102713460A (en) Heat-pump system
US20190301750A1 (en) Heat pump use apparatus
US10436463B2 (en) Air-conditioning apparatus
WO2020174618A1 (en) Air-conditioning device
WO2022123689A1 (en) Relay device and air conditioning device
JP5708421B2 (en) Refrigeration equipment
WO2011080804A1 (en) Heat source unit power consumption prorating system
KR101727730B1 (en) Energy measuring system with high efficient and control method for energy measuring system with high efficient using the same
CN109764516B (en) Energy system, control method thereof and storage medium
JP2001235182A (en) Air conditioning system for building
WO2020235058A1 (en) Air conditioner device and heat medium flow rate calculation method
WO2020035944A1 (en) Heat source system
EP3779309B1 (en) Air conditioning system control device, outdoor unit, relay device, heat source device, and air conditioning system
KR101641245B1 (en) Chiller
CN109764515B (en) Energy system, control method thereof and storage medium
GB2573224A (en) Air conditioner
JPWO2017195294A1 (en) Refrigeration cycle equipment
KR101983667B1 (en) Cooling and heating energy saving type automatic control system with low flux refrigerator and low flux controlling of cool and heating fluid
JP5677571B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567949

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107630.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020965072

Country of ref document: EP

Effective date: 20230710