WO2022121918A1 - 无线局域网中的功率控制方法及相关装置 - Google Patents

无线局域网中的功率控制方法及相关装置 Download PDF

Info

Publication number
WO2022121918A1
WO2022121918A1 PCT/CN2021/136298 CN2021136298W WO2022121918A1 WO 2022121918 A1 WO2022121918 A1 WO 2022121918A1 CN 2021136298 W CN2021136298 W CN 2021136298W WO 2022121918 A1 WO2022121918 A1 WO 2022121918A1
Authority
WO
WIPO (PCT)
Prior art keywords
beamforming
parameter
rssi
ndp
power control
Prior art date
Application number
PCT/CN2021/136298
Other languages
English (en)
French (fr)
Inventor
阮卫
于健
陈聪
刘辰辰
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21902623.4A priority Critical patent/EP4240067A4/en
Publication of WO2022121918A1 publication Critical patent/WO2022121918A1/zh
Priority to US18/330,323 priority patent/US20230319732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a power control method and related apparatus in a wireless local area network.
  • Wireless local area networks have been developed for many generations, including 802.11a/b/g, 802.11n, 802.11ac, 802.11ax, and 802.11be, which is currently under discussion.
  • 802.11a/b/g only supports single spatial stream transmission, and does not support multiple input multiple output (MIMO) transmission.
  • 802.11n supports MIMO transmission of up to 4 space-time streams, and each space-time stream can adopt different modulation and coding schemes (MCS) to adapt to the signal to noise ratio (signal to noise ratio) of different space-time streams. , SNR).
  • MCS modulation and coding schemes
  • 802.11ac and 802.11ax support up to 8 space-time streams, which do not consider different MCSs for different spatial streams.
  • space-time streams consider both different spatial streams (spatial streams) and space-time block coding (STBC) in the time dimension.
  • STBC space-time block coding
  • the number of space-time streams is equal to the number of spatial streams.
  • the 802.11be standard also known as the extremely high throughput (EHT) standard
  • EHT extremely high throughput
  • 802.11ac considers up to 256-order quadrature amplitude modulation (QAM), and 802.11ax increases to 1024-order QAM. 802.11be further considers using 4096-order QAM. Higher-order QAM modulation can support higher data rates, but also has higher requirements on the signal-to-noise ratio.
  • QAM quadrature amplitude modulation
  • the embodiments of the present application provide a power control method and a related device in a wireless local area network, which can support a higher-order modulation method with a higher number of spatial streams, and achieve “double high” of the number of spatial streams and the modulation order, thereby improving the system performance. throughput.
  • the present application provides a power control method in a wireless local area network, the method comprising: a beamforming generator transmits a Null Data Packet (NDP) by using multiple spatial streams; the beamforming generator receives a beamforming report , the beamforming report includes a first parameter, the first parameter is determined based on the received signal strength indicators (Received Signal Strength Indicator, RSSI) on multiple receiving antennas when the beamforming receiver receives the NDP, or the first parameter is based on Signal to Noise Ratio (SNR) of multiple spatial streams is determined when the beamforming receiver receives the NDP, and the first parameter is used for power control.
  • RSSI Receiveived Signal Strength Indicator
  • SNR Signal to Noise Ratio
  • the method further includes: the beamforming generator determines power control parameters of the plurality of spatial streams according to the first parameter, and sends a data signal using the power control parameters.
  • the first parameter is fed back in the beamforming report, so that the beamforming generator determines the power control parameter of each spatial stream based on the feedback in the beamforming report, and uses the power control parameter to adjust the transmission of each spatial stream when sending data subsequently Power (or power control for subsequent data transmission) to support higher-order modulation methods with higher spatial streams, achieve "double high" of spatial streams and modulation orders, and improve system throughput.
  • the method further includes: the beamforming generator sends a Null Data Packet Announcement (NDPA) frame, where the NDPA frame contains Including indication information, the indication information is used to indicate whether the (beamforming receiver) feeds back the first parameter.
  • NDPA Null Data Packet Announcement
  • the beamforming receiver can be designated to perform ordinary channel sounding and feed back the ordinary beamforming report, that is, the beamforming report does not carry the first parameter ; It is also possible to designate a beamforming receiver to perform special channel sounding, and feed back the beamforming report including the first parameter in this scheme, which makes the channel sounding process more flexible.
  • the indication information is carried in the NDPA frame, indicating whether to feed back the first parameter, so that the beamforming receiver can determine whether it needs to obtain the first parameter earlier, and can directly obtain the first parameter after receiving the NDP.
  • the present application provides a power control method in a wireless local area network, the method includes: a beamforming receiver receives an NDP; the beamforming receiver sends a beamforming report, the beamforming report includes a first parameter, the first parameter The parameter is determined based on RSSI on multiple receive antennas when the NDP is received by the beamforming receiver, or the first parameter is determined based on the SNRs of multiple spatial streams when the NDP is received by the beamforming receiver, the first parameter being used for power control.
  • the beamforming receiver obtains the first parameter
  • the method for obtaining the first parameter may be: determining the first parameter according to the RSSIs on the multiple receiving antennas when the beamforming receiver receives the NDP. a parameter; or, the first parameter is determined according to the SNRs of the multiple spatial streams when the beamforming receiver receives the NDP.
  • the method further includes: the beamforming receiver receives a data signal sent by the beamforming generator using a power control parameter, where the power control parameter is determined based on the first parameter.
  • the method before the beamforming receiver receives the NDP, the method further includes: the beamforming receiver receives an NDPA frame, where the NDPA frame includes indication information, where the indication information is used to indicate ( whether the beamforming receiver) feeds back the first parameter.
  • the present application provides a communication device, where the communication device may be a beamforming generator or a chip in the beamforming generator, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for sending an NDP; the transceiver unit for receiving a beamforming report, where the beamforming report includes a first parameter, and the first parameter is based on a plurality of when the beamforming receiver receives the NDP.
  • the RSSI on the receiving antenna is determined, or the first parameter is determined based on the SNR of the plurality of spatial streams when the NDP is received by the beamforming receiver, and the first parameter is used for power control.
  • the communication device further includes a processing unit.
  • the processing unit is configured to determine the power control parameters of the multiple spatial streams according to the first parameter; the above-mentioned transceiver unit is further configured to send data signals by using the power control parameters.
  • the above-mentioned transceiver unit is further configured to send an NDPA frame, where the NDPA frame includes indication information, and the indication information is used to indicate whether the beamforming receiver feeds back the first parameter .
  • the present application provides a communication device, where the communication device may be a beamforming receiver or a chip in the beamforming receiver, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving an NDP; the transceiver unit is further configured to send a beamforming report, where the beamforming report includes a first parameter, and the first parameter is based on how often the beamforming receiver receives the NDP.
  • the RSSI on each receive antenna is determined, or the first parameter is determined based on the SNR of the multiple spatial streams when the beamforming receiver receives the NDP, and the first parameter is used for power control.
  • the communication device may further include a processing unit for acquiring the first parameter; the processing unit is specifically configured to: determine the first parameter according to the RSSIs on the multiple receiving antennas when the beamforming receiver receives the NDP; or, according to The SNR of the plurality of spatial streams when the beamforming receiver receives the NDP determines the first parameter.
  • the above-mentioned transceiver unit is further configured to receive a data signal sent by the beamforming generator using a power control parameter, where the power control parameter is determined based on the first parameter.
  • the above-mentioned transceiver unit is further configured to receive an NDPA frame, where the NDPA frame includes indication information, and the indication information is used to indicate whether the (beamforming receiver) feeds back the first parameter .
  • the first parameter includes power control parameters of multiple spatial streams, and the power control parameters are generated based on the first RSSI, the first RSSI threshold, and the first antenna index.
  • the first RSSI is the largest RSSI on multiple receiving antennas when the beamforming receiver receives the NDP
  • the first antenna index is the index of the receiving antenna corresponding to the first RSSI
  • the first RSSI threshold is the first RSSI corresponding to the first RSSI
  • the RSSI threshold of the receive antenna is determined based on the low-noise-amplification characteristics of the receiving antenna.
  • the power control parameter of the ith spatial stream in the above multiple spatial streams is:
  • PC i f(RSSI j -RSSIX j );
  • PC i represents the power control parameter of the ith spatial stream, the value of i is in the interval [1, N], and N is the number of spatial streams used by the beamformer to transmit NDP;
  • f() represents the jth receiver
  • the mapping function of the antenna to the spatial stream RSSI j represents the RSSI on the j-th receiving antenna, j is the index of the receiving antenna with the largest RSSI when the beamforming receiver receives the NDP, and RSSIX j represents the RSSI threshold on the j-th receiving antenna.
  • f() is determined based on the channel state information on the jth receive antenna, which is determined based on the long training sequence in the NDP.
  • This solution provides a method for calculating the power control parameters of spatial streams through the RSSI of the receiving antenna, and feeding back the power control parameters of multiple spatial streams in the beamforming report, thereby helping the beamforming generator to adjust the power of each spatial stream.
  • the above-mentioned first parameter includes power control parameters of multiple spatial streams
  • the power control parameter of the ith spatial stream in the multiple spatial streams is based on the ith spatial stream when the beamforming receiver receives the NDP.
  • the SNRs of the i spatial streams, the smallest SNR among the SNRs of the multiple spatial streams when the beamforming receiver receives the NDP, and a preset value are determined.
  • the power control parameters of the ith spatial stream satisfy the following conditions:
  • SNR i represents the SNR of the ith spatial stream when the beamforming receiver receives NDP
  • i is in the interval [1, N]
  • N is the number of spatial streams used by the beamforming receiver when sending NDP
  • PC i represents The power control parameter of the ith spatial stream
  • SNR min denotes the smallest SNR among the SNRs of the multiple spatial streams when the beamforming receiver receives the NDP.
  • the default value is a constant value chosen based on the implementation, such as 5dB.
  • This solution provides a method for calculating the power control parameters of a spatial stream based on the SNR of the spatial stream, and feeds back the power control parameters of multiple spatial streams in the beamforming report, thereby helping the beamforming generator to adjust the power of each spatial stream.
  • improve the SNR on spatial streams with poor original SNR here, the signal-to-noise ratio in the channel detection phase is poor
  • support higher spatial streams with higher numbers of spatial streams The high-order modulation mode achieves the "double high" of the number of spatial streams and modulation order, and improves the system throughput.
  • the original beamforming report includes a compressed beamforming report field, which contains the average SNR of each spatial stream, this solution can save power consumption without increasing additional measurement operations of the beamforming receiver.
  • the above-mentioned first parameter includes a first RSSI and a first receiving antenna index
  • the first RSSI is the largest RSSI on the multiple receiving antennas when the beamforming receiver receives the NDP
  • the first RSSI is the largest RSSI on the multiple receiving antennas when the beamforming receiver receives the NDP
  • a receiving antenna index is the index of the receiving antenna corresponding to the first RSSI.
  • the above-mentioned first parameter further includes a first RSSI threshold, where the first RSSI threshold is an RSSI threshold corresponding to the first receiving antenna index.
  • the RSSI used to calculate the power control parameters and the corresponding radio frequency parameters are fed back in the beamforming report, so that the beamforming generator can calculate the power adjustment parameters of each spatial stream based on the feedback. , and adjust the transmit power of each spatial stream to appropriately reduce the RSSI on the receive antenna of the beamforming receiver.
  • the overall transmission power is reduced.
  • the power of all spatial streams can be collectively amplified by the power amplifier, thereby improving the SNR of the spatial streams with poor channel quality.
  • the foregoing NDP includes indication information for indicating whether to feed back the first parameter. This solution makes the channel sounding process of the beamforming receiver more flexible and diverse by indicating whether the first parameter needs to be fed back in the NDP.
  • the present application provides a communication apparatus, in particular the beamforming generator in the first aspect, including a processor and a transceiver.
  • the processor is configured to generate an NDP; the transceiver is configured to send the NDP; the transceiver is further configured to receive a beamforming report, where the beamforming report includes a first parameter based on when the beamforming receiver receives the NDP.
  • the RSSI on multiple receive antennas is determined, or the first parameter is determined based on the SNR of multiple spatial streams when the beamforming receiver receives the NDP, the first parameter being used for power control.
  • the processor is configured to determine power control parameters of the multiple spatial streams according to the first parameter; the transceiver is further configured to send a data signal by using the power control parameters.
  • the present application provides a communication apparatus, in particular the beamforming receiver in the second aspect, including a processor and a transceiver.
  • the transceiver is used to receive the NDP; the processor is used to generate a beamforming report; the transceiver is also used to send a beamforming report, the beamforming report includes a first parameter, and the first parameter is based on a plurality of The RSSI on the receiving antenna is determined, or the first parameter is determined based on the SNR of multiple spatial streams when the NDP is received, and the first parameter is used for power control.
  • the processor is further configured to receive a data signal sent by the beamforming generator using a power control parameter, where the power control parameter is determined based on the first parameter.
  • the present application provides a device, which is implemented in the form of a chip, and includes an input and output interface and a processing circuit.
  • the device is a chip in the beamforming generator of the first aspect above.
  • the processing circuit is used to generate the NDP; the input and output interface is used to output the NDP and processed by the radio frequency circuit, and then send the NDP through the antenna; the input and output interface is also used to input the beamforming received by the antenna and the radio frequency circuit
  • a report, the beamforming report includes a first parameter, the first parameter is determined based on the RSSI on a plurality of receive antennas when the beamforming receiver receives the NDP, or the first parameter is based on the time when the beamforming receiver receives the NDP.
  • the SNR of each spatial stream is determined, and the first parameter is used for power control.
  • the present application provides another device, which is implemented in the form of a chip, and includes an input and output interface and a processing circuit.
  • the device is a chip in the beamforming receiver of the second aspect.
  • the input and output interface is also used to input the NDP received through the antenna and the radio frequency circuit;
  • the processing circuit is used to generate a beamforming report;
  • the input and output interface is also used to output the beamforming report and processed by the radio frequency circuit, and then processed by the radio frequency circuit.
  • the antenna sends a beamforming report, where the beamforming report includes a first parameter determined based on RSSIs on multiple receiving antennas when receiving the NDP, or the first parameter is based on SNRs of multiple spatial streams when receiving the NDP It is determined that the first parameter is used for power control.
  • the present application provides a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are executed on a computer, the computer is made to execute the above-mentioned first aspect or the above-mentioned second aspect.
  • the power control method in the wireless local area network is made to execute the above-mentioned first aspect or the above-mentioned second aspect.
  • the present application provides a computer program product including program instructions, which, when run on a computer, enables the computer to execute the power control method in the wireless local area network according to the first aspect or the second aspect.
  • a higher-order modulation mode with a higher number of spatial streams can be supported, and the "double-high" of the number of spatial streams and the modulation order can be achieved, thereby improving the system throughput rate.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between RSSI and SNR on a receiving antenna provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a power control method in a wireless local area network provided by an embodiment of the present application
  • FIG. 5a is a schematic time sequence diagram of single-user channel state information feedback provided by an embodiment of the present application.
  • FIG. 5b is a schematic sequence diagram of feedback of multi-user channel state information provided by an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a power control method in a wireless local area network provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • system architecture of the methods provided by the embodiments of the present application will be described below. It is understandable that the system architecture described in the embodiments of the present application is to more clearly describe the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a power control method in a wireless local area network, which can feed back power control parameters of each spatial stream in a beamforming report, or feed back a received signal strength indicator (RSSI) used to calculate the power control parameters ) and the corresponding radio frequency parameters (such as the RSSI thresholds of different receiving antennas), so that the beamforming generator can adjust the transmission power of each spatial stream when sending data subsequently based on the feedback in the beamforming report.
  • RSSI received signal strength indicator
  • the higher-order modulation method under the number of streams achieves the "double high" of the number of spatial streams and the modulation order, and improves the system throughput.
  • the power control method in the wireless local area network can be applied to a wireless communication system, such as a wireless local area network system, and the power control method in the wireless local area network can be implemented by a communication device in the wireless communication system or a chip or processor in the communication device.
  • the communication device may be an access point device or a station device; the communication device may also be a wireless communication device that supports parallel transmission of multiple links, for example, the communication device may be referred to as a multi-link device , MLD) or multi-band devices. Compared with communication devices that only support single-link transmission, multi-link devices have higher transmission efficiency and greater throughput.
  • MLD multi-link device
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include one or more APs (such as AP1 or AP2 in FIG. 1 ) and one or more STAs (such as STA1 , STA2 or STA3 in FIG. 1 ).
  • the AP and the STA support a WLAN communication protocol, which may include IEEE 802.11be (or Wi-Fi 7, EHT protocol), and may also include IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • IEEE 802.11be or Wi-Fi 7, EHT protocol
  • the communication protocol may also include the next-generation protocol of IEEE 802.11be, and the like.
  • the device implementing the method of the present application may be an AP or STA in the WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point (such as AP1 or AP2 in FIG. 1 ) is a device with wireless communication function, supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network, Of course, it can also have the function of communicating with other devices.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station (such as STA1, STA2 or STA3 in FIG. 1 ) is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports And equipment for music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • FIG. 2a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • the AP may be multi-antenna/multi-radio, or may be single-antenna/single-radio, and the antenna/radio is used to send/receive data packets.
  • the antenna or radio frequency part of the AP can be separated from the main body part of the AP in a structure of a remote layout.
  • the AP may include a physical layer processing circuit and a medium access control processing circuit, the physical layer processing circuit may be used for processing physical layer signals, and the MAC layer processing circuit may be used for processing MAC layer signals.
  • FIG. 2b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • Figure 2b shows a schematic diagram of the STA structure with a single antenna/radio.
  • a STA may also be multi-antenna/multi-radio, and may be a device with more than two antennas, and the antenna/radio is used to send/receive data packets .
  • the antenna or radio frequency part of the STA may be separated from the main part of the STA, in a structure of a remote layout.
  • the STA may include a PHY processing circuit and a MAC processing circuit
  • the physical layer processing circuit may be used for processing physical layer signals
  • the MAC layer processing circuit may be used for processing MAC layer signals.
  • 802.11be supports up to 16 spatial streams, and considers the use of 4096-order QAM, and higher-order QAM modulation requires higher signal-to-noise ratios, how to support higher-order spatial streams in 802.11be It is an urgent problem to be solved in order to realize the "double-high" of the number of spatial streams and the modulation order.
  • beamforming techniques can be used to improve the output SNR of some of all spatial streams.
  • the transmitting end that is, the beamforming generator
  • the transmitting end generates the corresponding beamforming steering matrix (Beamforming Steering Matrix) Q based on the channel state information obtained by the receiving end (that is, the beamforming receiver) at both ends of the transceiver, and then multiplies Q by on the vector output by the constellation point map.
  • the Q matrix may be generated based on the beamforming report fed back in the channel sounding process (the beamforming report includes the compressed beamforming feedback matrix V, and the matrix V is obtained by performing singular value decomposition on the channel state information of the transmitting and receiving ends) the Q matrix.
  • the Q matrix adjusts the amplitude and phase of the vector output by the constellation point mapping, so that the equivalent SNR of the receiving end (ie, the beamforming receiver) is higher, and the channel selective fading can be effectively alleviated.
  • beamforming can effectively improve the output SNR of some spatial streams among all spatial streams, it will cause the signal-to-noise ratio of a small number of spatial streams to deteriorate, making the signal-to-noise ratio of these few spatial streams a bottleneck.
  • the transmitter and receiver have 4 antennas (this kind of In this case, a maximum of 4 spatial streams can be sent, because the number of spatial streams supported by the sender is equal to the minimum of the number of antennas at the sender and the number of antennas at the receiver).
  • An embodiment of the present application provides a power control method in a wireless local area network.
  • a beamforming receiver feeds back power control parameters of each spatial stream in a beamforming report, or feeds back parameters used to calculate power control parameters, so that the beamforming
  • After obtaining the power control parameters of each spatial stream adjust the transmit power of each spatial stream when sending data subsequently (or perform power control on the data to be sent subsequently), so as to improve the SNR without affecting the SNR of the spatial stream with better channel.
  • the original SNR is poor (here refers to the signal-to-noise ratio of the channel detection stage) on the spatial stream, and then supports higher-order modulation methods at higher spatial streams, and achieves the “higher” spatial stream and modulation order. Double high" to improve system throughput.
  • FIG. 3 is a schematic diagram of a relationship between RSSI and SNR on a receiving antenna provided by an embodiment of the present application.
  • the horizontal axis represents the RSSI on a certain receiving antenna
  • the vertical axis represents the SNR.
  • SNR and RSSI are linear. relationship, and the positive correlation grows synchronously.
  • the present application provides a power control method in a wireless local area network, which can be used for a receiving antenna with a relatively large RSSI, especially when the RSSI is greater than that shown by the intersection of the first vertical line and the horizontal axis. value (the value shown at this intersection is called the RSSI threshold of this receiving antenna in the embodiment of this application, which is about -48dB in Figure 3).
  • Beamformer performs power control on the spatial stream based on this feedback to appropriately reduce the RSSI on the receiving antenna of the beamforming receiver (Beamformee) (for example, move the second vertical line from left to right in Figure 3 to the first vertical line , which roughly reduces RSSI from -34dB to -48dB).
  • Beamformee each receive antenna of the beamforming receiver has its own RSSI threshold. That is, the total transmission power is reduced as a whole without affecting the SNR of the spatial stream with better channel quality. In this way, at the receiving end (ie, the beamforming receiver), the power of all spatial streams can be collectively amplified by the power amplifier, thereby improving the SNR of the spatial streams with poor channel quality.
  • the technical solutions provided in this application are described in detail through two embodiments.
  • the first embodiment describes that in the channel sounding process, the beamforming receiver (Beamformee) feeds back power control parameters of each spatial stream to help the beamformer (Beamformer) adjust the transmit power of each spatial stream.
  • Embodiment 2 illustrates that in the channel sounding process, the beamforming receiver (Beamformee) feeds back the received signal strength indicator (RSSI) of some (or all) of its own receiving antennas and corresponding radio frequency parameters (such as different receiving antennas).
  • RSSI received signal strength indicator
  • the beamformer (Beamformer) calculates the power adjustment parameters of each spatial stream based on the feedback from the beamforming receiver (Beamformee), and adjusts the transmit power of each spatial stream.
  • the beamforming generator in this application may be an AP, such as any AP in FIG. 1 ; the beamforming receiver in this application may be a STA, such as any STA in FIG. 1 .
  • the beamformer can support IEEE802.11be protocol (or called Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as IEEE802.11ax, IEEE 802.11ac and other protocols.
  • the beamforming receiver can support the IEEE 802.11be protocol.
  • the beamforming generators and beamforming receivers in this application may also support the next generation protocol of IEEE 802.11be. That is to say, the power control method in the wireless local area network provided by this application is not only applicable to the IEEE 802.11be protocol, but also applicable to the next-generation protocol of IEEE 802.11be.
  • the beamforming receiver may notify one or more beamforming receivers (Beamformee) to perform channel sounding in parallel/simultaneously.
  • Beamformee the following uses a beamforming receiver (Beamformee)
  • the interaction/communication/channel sounding with the beamformer (Beamformer) is taken as an example for description, and the operations of other beamforming receivers are the same/similar to the beamforming receiver, and will not be repeated here.
  • the first embodiment of the present application mainly introduces that during the channel sounding process, the beamforming receiver (Beamformee) feeds back the power control parameters of each spatial stream through a beamforming report (BFR), which helps the beamformer (Beamformer) adjust each spatial stream Therefore, without affecting the SNR of the spatial stream with better channel quality, the signal-to-noise ratio on the spatial stream with the original poor SNR (here refers to the poor signal-to-noise ratio in the channel sounding stage) is improved.
  • BFR beamforming report
  • FIG. 4 is a schematic flowchart of a power control method in a wireless local area network provided by an embodiment of the present application. As shown in FIG. 4 , the power control method in the wireless local area network includes but is not limited to the following steps:
  • the beamforming generator sends a Null Data Packet (NDP) by using multiple spatial streams.
  • NDP Null Data Packet
  • the beamforming receiver receives the NDP.
  • the beamforming generator sends a Null Data Packet Announcement (NDPA) frame to notify one or more beamforming receivers (or stations) that need to perform channel sounding and parameters related to channel sounding.
  • NDPA Null Data Packet Announcement
  • the beamformer uses multiple spatial streams to send Null Data Packet (NDP), which is used for the beam.
  • the shaping receiver performs channel estimation and obtains channel state information. Accordingly, the beamforming receiver receives the NDPA frame and the NDP.
  • NDP in this application refers to a data packet without a data field part and without a medium access control (medium access control, MAC) frame.
  • MAC medium access control
  • the signaling field of the above NDP may carry indication information, which is used to indicate whether the first parameter needs to be fed back.
  • the first parameter here may be the power control parameters of the above-mentioned multiple spatial streams. If the indication information indicates to feed back the first parameter, the beamforming receiver may carry the first parameter in the feedback beamforming report; if the indication information indicates not to feed back the first parameter, the beamforming receiver performs ordinary channel sounding and feeds back A common beamforming report, that is, the beamforming report does not carry the first parameter.
  • the foregoing NDPA frame may further include indication information, where the indication information is used to indicate whether the (beamforming receiver) needs to feed back the first parameter.
  • the indication information can be carried in the user information field where the AID (association identifier) of the NDPA frame is a reserved value (such as 2044); or the reserved bits in the user information field of the NDPA frame can be used to indicate whether the beamforming receiver needs Feedback the first parameter.
  • the first parameter here may be the power control parameters of the above-mentioned multiple spatial streams.
  • the beamforming receiver may carry the first parameter in the feedback beamforming report; if the indication information indicates not to feed back the first parameter, the beamforming receiver performs ordinary channel sounding and feeds back A common beamforming report, that is, the beamforming report does not carry the first parameter.
  • the indication information may be carried in either the NDPA frame, the NDP, or both the NDPA frame and the NDP.
  • the indication information is carried in both the NDPA frame and the NDP, the content indicated by the indication information in the NDP should be consistent with the content indicated by the indication information in the NDPA frame. That is, the indication information in the NDPA frame and the NDP either indicates that the first parameter is fed back, or both indicate that the first parameter is not fed back.
  • the above-mentioned NDP signaling field and the above-mentioned NDPA frame may also not carry the indication information, but directly through the protocol to stipulate that the beamforming receiver feeds back the first parameter during the channel sounding process. Specifically, it can be fed back through the beamforming report, or Feedback is possible individually.
  • the beamforming receiver sends a beamforming report, where the beamforming report includes a first parameter, where the first parameter includes power control parameters of multiple spatial streams, and the first parameter is based on how often the beamforming receiver receives the NDP.
  • the Received Signal Strength Indicator (RSSI) on each receiving antenna is determined, or the first parameter is determined based on the SNR of the plurality of spatial streams when the beamforming receiver receives the NDP, and the first parameter is used for power control.
  • RSSI Received Signal Strength Indicator
  • the beamforming generator receives the beamforming report.
  • a beamforming report is an Action No ACK frame (Action No ACK frame).
  • the beamforming report will include a multiple input multiple output (multiple input multiple output, MIMO) control field (control field) for indicating various parameters of the beamforming report.
  • the beamforming report also includes one or more fields of a compressed beamforming report, a multi-user unique beamforming report, and a channel quality information report.
  • the multi-user unique beamforming report contains the difference between the SNR and the average SNR based on each Ng subcarrier per spatial stream.
  • the beamforming report further includes a first parameter, where the first parameter includes power control parameters of the multiple spatial streams.
  • the power control parameters of the multiple spatial streams are generated based on a first Received Signal Strength Indicator (RSSI), a first RSSI threshold, and a first antenna index.
  • the first RSSI is the largest RSSI on multiple receiving antennas when the beamforming receiver receives the NDP
  • the first antenna index is the index of the receiving antenna corresponding to the first RSSI
  • the first RSSI threshold is the first RSSI corresponding to the first RSSI
  • the RSSI threshold of the receive antenna may be determined based on a low noise amplifier (LNA) characteristic of the receiving antenna.
  • LNA low noise amplifier
  • the power control parameters of the multiple spatial streams may also be determined based on the SNRs of the multiple spatial streams when the beamforming receiver receives the NDP.
  • the power control parameter of the ith spatial stream in the plurality of spatial streams is based on the signal-to-noise ratio (Signal to Noise Ratio, SNR) of the ith spatial stream when the beamforming receiver receives the NDP, and the beamforming receiver
  • SNR Signal to Noise Ratio
  • the smallest SNR among the SNRs of the multiple spatial streams is determined, and a preset value (or a fixed value) is determined.
  • the ith spatial stream may be any one of the multiple spatial streams.
  • the value of i can be a closed interval [1, N], where N is the number of spatial streams used by the beamformer to transmit NDP.
  • the preset value (or fixed value) may be based on a constant value chosen by the implementation, such as 5dB.
  • the above-mentioned first parameter may be independently included in the beamforming report, or the first parameter may be included in one or more of the MIMO control field, compressed beamforming report, multi-user unique beamforming report, channel quality information report, etc. in the field.
  • the beamforming generator may also send a beamforming report poll (Beamforming report poll, BFRP) trigger (trigger) frame, and the BFRP trigger frame is used to trigger feedback from the beamforming receiver (such as a site) Beamforming report.
  • Beamforming report poll Beamforming report poll, BFRP
  • the BFRP trigger frame is used to trigger feedback from the beamforming receiver (such as a site) Beamforming report.
  • Beamformer sends the BFRP trigger frame after the NDP, it can be divided into two modes.
  • the technical solutions provided by the embodiments of the present application may be either mode 1 or mode 2.
  • FIG. 5 a is a schematic time sequence diagram of single-user channel state information feedback provided by an embodiment of the present application.
  • the AP sends an NDPA frame and sends an NDP after an interval of one SIFS; after receiving the NDP, the STA performs channel estimation and sends a beamforming report (BF report) after an interval of one SIFS.
  • BF report beamforming report
  • FIG. 5b is a schematic sequence diagram of the multi-user channel state information feedback provided by the embodiment of the present application.
  • the AP sends an NDPA frame and sends an NDP after an interval of one SIFS; after the AP sends an NDP, it sends a BFRP trigger frame at an interval of one SIFS; STA1, STA2, and STA3 receive the BFRP trigger frame respectively, and in parallel Or feed back its own beamforming report at the same time, and each beamforming report includes the first parameter.
  • the beamforming report fed back by STA1 includes the first parameter obtained by STA1
  • the beamforming report fed back by STA2 includes the first parameter obtained by STA2
  • the beamforming report fed back by STA3 includes the first parameter obtained by STA3. parameter.
  • the beamforming receiver before the beamforming receiver sends the beamforming report, it needs to acquire the first parameter first.
  • Two implementation manners for the beamforming receiver to acquire the first parameter are described in detail below.
  • the first implementation describes how the beamforming receiver obtains the first parameter by calculating the RSSI on multiple receiving antennas; the second implementation describes how the beamforming receiver obtains the first parameter by calculating the SNR of multiple spatial streams. .
  • the beamforming receiver measures (or acquires) the RSSI on each receiving antenna when receiving the above-mentioned NDP (the RSSI obtained here is the RSSI when all spatial streams are mixed together and received).
  • the beamforming receiver determines the largest RSSI from the RSSIs on the multiple receiving antennas, denoted as the first RSSI (or RSSI j , j is the index of the receiving antenna with the largest RSSI measured when the beamforming receiver receives the NDP) , and the index of the receiving antenna corresponding to the first RSSI is denoted as the first antenna index (or j).
  • the beamforming receiver obtains a first RSSI threshold (referred to as RSSIX j ) corresponding to the first antenna index, and the first RSSI threshold is determined based on a low noise amplifier (low noise amplifier, LNA) characteristic of the receiving antenna. It should be understood that one receive antenna corresponds to one RSSI threshold. If the first RSSI is greater than the first RSSI threshold, the beamforming receiver calculates according to the difference between the first RSSI and the first RSSI threshold (ie RSSI j ⁇ RSSIX j ) and the first antenna index (ie j) Power control parameters for each of the multiple spatial streams.
  • RSSIX j low noise amplifier
  • the power control parameter on the kth subcarrier is shown in the following formula (1-1):
  • PC i represents the power control parameter of the ith spatial stream
  • i is the closed interval [1, N]
  • N is the spatial stream used by the beamformer to send the NDP.
  • f() represents the mapping function from the jth receiving antenna to the spatial stream.
  • RSSI j represents the RSSI on the j-th receive antenna
  • RSSIX j represents the RSSI threshold on the j-th receive antenna.
  • j represents the index of the receive antenna with the largest RSSI when the beamforming receiver receives the NDP.
  • f( ) in the above formula (1-1) may be determined based on the channel state information on the jth receiving antenna, and the channel state information may be determined based on the long training sequence in the NDP.
  • the beamforming receiver can obtain the channel state information on the jth receiving antenna through the long training sequence in the NDP, so as to calculate f().
  • f() is the channel matrix at both ends of the transceiver Steering Matrix with Beamforming matrix product of The value of the jth row of .
  • the beamforming steering matrix is an orthogonal P matrix.
  • the transmit signal in the long training sequence field with the received signal vector is a known value
  • the noise is also known, so the channel matrix at both ends of the transceiver can be calculated by the following formula (1-2)
  • N TX represents the number of transmit antennas, that is, the number of antennas of the beamforming generator
  • N RX represents the number of receiving antennas, that is, the number of antennas of the beamforming receiver
  • N SS represents the number of spatial streams used by the beamformer to transmit NDP.
  • the above example takes one receiving antenna with the largest RSSI as an example, and the calculation method of the power control parameter can also be extended to the receiving antennas of the first M largest RSSIs.
  • the power control parameter on the kth subcarrier may also be shown in the following formula (1-3):
  • PC i represents the power control parameter of the ith spatial stream
  • i is the closed interval [1, N]
  • N is the spatial stream used by the beamformer to send the NDP number.
  • f( ) represents the mapping function of the jth and mth receiving antennas to the spatial stream.
  • RSSI j represents the RSSI on the j-th receive antenna
  • RSSIX j represents the RSSI threshold on the j-th receive antenna.
  • j represents the index of the receive antenna with the largest RSSI when the beamforming receiver receives the NDP.
  • RSSI m represents the RSSI on the mth receive antenna
  • RSSIX m represents the RSSI threshold on the mth receive antenna.
  • m denotes the index of the receive antenna with the second largest RSSI when the beamforming receiver receives the NDP.
  • j is not equal to m.
  • the "second largest” here refers to only the second largest in descending order of RSSI.
  • the above formula (1-3) can also be extended to the first 3, the first 4, and the first M receiving antennas in descending order of RSSI.
  • the value of M is less than N.
  • f() in the above formula (1-3) can be determined based on the channel state information on the jth receiving antenna and the mth receiving antenna, and the channel state information can be determined based on the long training sequence in the NDP. .
  • the beamforming receiver can obtain the channel state information on the jth receiving antenna and the mth receiving antenna through the long training sequence in the NDP, so as to calculate f().
  • f() is the channel matrix at both ends of the transceiver Steering Matrix with Beamforming matrix product of The value of row j and row m of .
  • the above two examples schematically express the calculation method of the power control parameter on a single subcarrier.
  • the beamforming receiver can obtain the power control parameters on each subcarrier, and can feed back the average value of the power control parameters of each spatial stream for the entire bandwidth, or it can also be based on subbandwidths (such as every 10MHz, or 5MHz, or 20MHz, etc. ) to feed back the power control parameters of each spatial stream.
  • subbandwidths such as every 10MHz, or 5MHz, or 20MHz, etc.
  • subbandwidths such as every 10MHz, or 5MHz, or 20MHz, etc.
  • the entire bandwidth of 20MHz includes a total of 256 subcarriers (the subcarrier index is from -128 to 127, ie -128,...,-1,0,1,...,127), usually 4 subcarriers or 16 subcarriers are a set of feedback.
  • the subcarrier index to be fed back is [-122,-120:4:-4,-2,2,4:4:120,122], a total of 64 subcarriers. If the number of spatial streams used by the beamformer to send NDP is 4, the 64 subcarriers can be fed back for the first spatial stream (the subcarrier indices are [-122,-120:4:-4,-2, 2,4:4:120,122]) on the average of the power control parameters (for the 1st spatial stream, there are 64 power control parameter values on 64 subcarriers).
  • avg() represents the average function, represents the power control parameter of the first spatial stream on the first subcarrier of the 64 subcarriers, Indicates the power control parameters of the first spatial stream on the second subcarrier of the 64 subcarriers, Indicates the power control parameter of the first spatial stream on the qth subcarrier of the 64 subcarriers, where q is an integer in the interval [1,64].
  • the average value of the power control parameters on the 64 subcarriers (for the second spatial stream, there are 64 power control parameter values on the 64 subcarriers) is fed back, namely Feedback the average value of the power control parameters on the 64 subcarriers for the third spatial stream (for the third spatial stream, there are 64 power control parameter values on the 64 subcarriers), that is, Feedback the average value of the power control parameters on the 64 subcarriers for the 4th spatial stream (for the 4th spatial stream, there are 64 power control parameter values on 64 subcarriers), that is,
  • the average value of the power control parameters on the first 32 subcarriers can be fed back for each spatial stream, and Average value of power control parameters over 32 subcarriers.
  • the SNR of the first spatial stream when the beamforming receiver receives the subsequent data signal needs to be greater than or equal to the SNR of the second spatial stream when the beamforming receiver receives the subsequent data signal.
  • the SNR of the first spatial stream when the beamforming receiver receives subsequent data signals needs to be greater than or equal to the sum of the SNR of the second spatial stream when the beamforming receiver receives subsequent data signals and a preset value (or fixed value).
  • the first spatial stream is the spatial stream with the largest SNR among the multiple spatial streams when the beamforming receiver receives the NDP
  • the second spatial stream is the spatial stream with the smallest SNR among the multiple spatial streams when the beamforming receiver receives the NDP.
  • the preset or fixed value may be 5dB.
  • the SNR of the spatial stream with the largest SNR before adjustment and the SNR of the spatial stream with the smallest SNR before adjustment the former cannot be less than the latter; further, the former cannot be less than the latter + a fixed value, such as 5dB, thus It is guaranteed that after the adjustment, the spatial stream with the original SNR is still better than the spatial stream with the original SNR, and it is better than or equal to 5dB.
  • the beamforming receiver acquires the SNR of each spatial stream in the multiple spatial streams when receiving the NDP.
  • the beamforming receiver calculates the multiple spatial streams according to the SNR of the ith spatial stream when it receives the NDP, the smallest SNR among the SNRs of the multiple spatial streams when it receives the NDP, and a preset value (or a fixed value). Power control parameters for this ith spatial stream in the stream.
  • the preset value (or fixed value) is a constant value selected based on implementation experience, such as 5dB.
  • the power control parameters of the ith spatial stream satisfy the following conditions:
  • SNR i represents the SNR of the ith spatial stream when the beamforming receiver receives the NDP
  • PC i represents the power control parameter of the ith spatial stream
  • SNR min represents the smallest SNR among the SNRs of the multiple spatial streams when the beamforming receiver receives the NDP. It should be understood that in inequalities (1-4), PC i is unknown and the other terms are known.
  • i can be the index of the spatial stream with the largest SNR when the beamforming receiver receives the NDP.
  • the value of i is the index of the spatial stream with the highest SNR when the beamforming receiver receives the NDP. For example, when 4 spatial streams are used when sending the NDP, M is equal to 2. Assuming that the SNR of the first spatial stream is the largest, the first spatial stream has the highest SNR. The SNR of the three spatial streams is the second largest, and the values of i are 1 and 3.
  • power control is performed on all the spatial streams with the highest SNR (that is, the power control parameters of the spatial streams with the highest M before SNR need to be calculated, such as the power control parameters of the first spatial stream and the third spatial stream).
  • power control parameters for each spatial stream Alternatively, the value of i is in the interval [1, N], where N is the number of spatial streams used by the beamformer to transmit NDP.
  • power control is performed on all spatial streams (ie, power control parameters for each spatial stream need to be calculated). It should be understood that M is less than N.
  • the beamforming receiver determines a PC i according to the above inequality (1-4)
  • it can further obtain the corresponding relationship between the receiving antenna and the spatial stream (that is, the mapping function f from the receiving antenna to the spatial stream) according to the channel state information. ()), and then calculate the maximum RSSI (ie RSSI j ) or the first n RSSIs (such as RSSI j and RSSI m ) corresponding to the determined PC i according to the above formula (1-1) or the above formula (1-3) .
  • the maximum RSSI ie RSSI j
  • the first n RSSIs such as RSSI j and RSSI m
  • the beamforming receiver reduces the current PC i , but the reduced PC i needs to satisfy the above inequality (1-4) to ensure that the PC i calculated by PC i RSSI j is not less than RSSIX j , and finally PC i is obtained. It should be understood that the finally obtained PC i needs to satisfy two conditions, one is to satisfy the above inequality (1-4), and the other is to satisfy that the RSSI j calculated by the PC i is not less than RSSIX j .
  • the power control method in the wireless local area network further includes:
  • the beamforming generator determines power control parameters of the multiple spatial streams according to the first parameter.
  • the beamforming generator transmits the data signal by using the power control parameter. Accordingly, the beamforming receiver receives the data signal sent by the beamforming generator using the power control parameter.
  • the above-mentioned first parameter includes power control parameters of a plurality of spatial streams.
  • the beamforming generator analyzes the first parameter in the beamforming report to obtain power control parameters of the multiple spatial streams.
  • the beamformer transmits the data signal using the power control parameter, in other words, the beamformer transmits the data signal using a plurality of spatial streams, the transmit power of each of the plurality of spatial streams being adjusted based on the power control parameter. Accordingly, the beamforming receiver receives the data signal sent by the beamforming generator using the power control parameter.
  • the maximum RSSI on the multiple receiving antennas is less than or equal to a second RSSI threshold
  • the second RSSI threshold is the maximum RSSI received by the multiple receiving antennas when the beamforming receiver receives the data signal Antenna RSSI threshold.
  • the second RSSI threshold is determined based on the low-noise-amplification characteristic of the receive antenna with the largest RSSI among the plurality of receive antennas when the beamforming receiver receives the data signal.
  • the receiving antenna with the largest RSSI when the beamforming receiver receives the data signal is the same as the receiving antenna with the largest RSSI when it receives the NDP, then the receiving antenna identified by the first receiving antenna index when the beamforming receiver receives the data signal is the same
  • the RSSI is less than or equal to the above-mentioned first RSSI threshold.
  • the beamforming generator uses the power control parameter to transmit the data signal, which can be expressed as the following formula (1-5):
  • N RX represents the number of receiving antennas, that is, the number of antennas of the beamforming receiver
  • N TX represents the number of transmitting antennas, that is, the number of antennas of the beamforming receiver
  • N SS represents the number of spatial streams used by the beamformer to transmit NDP. is the channel matrix of N RX rows and N TX columns at both ends of the transceiver, Beamforming steering matrix for N TX rows and N SS columns.
  • the power control matrix is a power control matrix of spatial streams with N SS rows and N SS columns, the power control matrix may be a diagonal matrix, and power control is performed separately for each spatial stream.
  • NSS spatial streams is a noise signal. It should be understood that the power control matrix of the spatial stream The power control parameters of the above-mentioned plurality of spatial streams are included.
  • the beamforming generator is in the signal to be transmitted (referring to equation (1-5) in ) multiplied by the power control matrix of the spatial stream to adjust the transmit power of each spatial stream, thereby reducing the RSSI on the receive antenna of the beamforming receiver.
  • the beamforming steering matrix (ie, the Q matrix) in the above formula (1-5) is generated based on the V matrix obtained after performing singular value decomposition (Singular value decomposition, SVD) on the channel state information.
  • the SVD decomposition is shown in the following formula (1-6):
  • the beamformer performs further power control on the basis of the Q matrix (or V matrix), i.e. multiplied by the power control matrix of the spatial stream Alternatively, combine the Q matrix with the power control matrix of the spatial stream
  • the product of is regarded as the precoding matrix Q'; the beamforming generator directly multiplies the precoding matrix Q' during precoding,
  • the beamforming receiver in this embodiment of the present application feeds back the power control parameters of each spatial stream in the beamforming report, and the beamforming generator adjusts the transmit power of each spatial stream based on the feedback to indirectly reduce the power on the receiving antenna of the beamforming receiver.
  • RSSI reduces the overall transmission power without affecting the SNR of the spatial stream with better channel quality.
  • the power of all spatial streams can be collectively amplified by the power amplifier, thereby improving the SNR of the spatial stream with the original poor SNR (that is, the bottleneck spatial stream), and achieving a higher number of spatial streams.
  • the higher-order modulation method can achieve the "double high" of the number of spatial streams and the modulation order, and improve the system throughput.
  • the second embodiment of this application mainly introduces that in the channel sounding process, the beamforming receiver (Beamformee) feeds back the RSSI on the receiving antenna, the receiving antenna index, and the RSSI threshold, so that the beamforming receiver (Beamformer) is based on the beamforming receiver ( Beamformee) feedback to calculate the power adjustment parameters of each spatial stream, and adjust the transmit power of each spatial stream, so as to improve the original poor SNR without affecting the SNR of the spatial stream with better channel quality (here refers to the channel detection stage). signal-to-noise ratio on spatial streams with poor signal-to-noise ratio).
  • Embodiment 2 of the present application is similar to Embodiment 1 above, except that Embodiment 2 of the present application is different from Embodiment 1 in the feedback content, and the power control parameters for calculating spatial streams are switched from the Beamformee (receiving) end to the Beamformer (sending) side.
  • FIG. 6 is another schematic flowchart of a power control method in a wireless local area network provided by an embodiment of the present application. As shown in FIG. 6 , the power control method in the wireless local area network includes but is not limited to the following steps:
  • the beamforming generator transmits a null data packet NDP by using multiple spatial streams.
  • the beamforming receiver receives the NDP.
  • step S201 and step S202 in this embodiment of the present application reference may be made to the implementation manner of step S101 and step S102 in the foregoing embodiment 1, and details are not described herein again.
  • the beamforming receiver sends a beamforming report, where the beamforming report includes a first parameter, the first parameter includes a first RSSI and a first receiving antenna index, and the first parameter is based on when the beamforming receiver receives the NDP RSSI on multiple receive antennas is determined, and this first parameter is used for power control.
  • the beamforming generator receives the beamforming report.
  • a beamforming report is an Action No ACK frame (Action No ACK frame).
  • a MIMO control field is included in the beamforming report to indicate various parameters of the beamforming report.
  • the beamforming report also includes one or more fields of a compressed beamforming report, a multi-user unique beamforming report, and a channel quality information report.
  • the multi-user unique beamforming report contains the difference between the SNR and the average SNR based on each spatial stream per Ng subcarriers.
  • the beamforming report further includes a first parameter, where the first parameter includes the first RSSI and the first receiving antenna index.
  • the first RSSI is the maximum RSSI on the multiple receiving antennas when the beamforming receiver receives the NDP
  • the first antenna index is the index of the receiving antenna corresponding to the first RSSI.
  • the first parameter is used to determine the power control parameters of the multiple spatial streams in combination with the first RSSI threshold, and the power control parameters of the multiple spatial streams are used for power control or for adjusting the transmit power of each spatial stream when the data signal is subsequently transmitted .
  • the first RSSI threshold is the RSSI threshold of the receiving antenna identified by the first antenna index, which is determined based on the low noise amplifier characteristic of the receiving antenna identified by the first antenna index.
  • the beamforming receiver eg, STA
  • the RSSI threshold of each receiving antenna needs to be fed back only once (that is, it is not necessary to repeatedly feed back the RSSI threshold of each receiving antenna) for subsequent use.
  • the above-mentioned first parameter may further include a first RSSI threshold, where the first RSSI threshold is an RSSI threshold of a receiving antenna corresponding to the first RSSI.
  • the first RSSI threshold may be determined based on the low-noise-amplification characteristics of the receiving antenna. It should be understood that when the first parameter further includes the first RSSI threshold, the first parameter can be directly used to determine the power control parameters of multiple spatial streams, and the power control parameters of the multiple spatial streams are used for power control Or used to adjust the transmit power of each spatial stream when the data signal is subsequently transmitted.
  • the above-mentioned first parameter (including the first RSSI and the first receiving antenna index, or including the first RSSI, the first receiving antenna index, and the first RSSI threshold) may be included in the beamforming report independently, or may be included in the beamforming report.
  • the above-mentioned first parameter may be included in the beamforming report independently, or may be included in the beamforming report.
  • the above-mentioned first parameter may be included in the beamforming report independently, or may be included in the beamforming report.
  • the beamforming generator may also send a beamforming report polling trigger (BFRP trigger) frame, where the BFRP trigger frame is used to trigger a beamforming receiver (such as a station) to feed back a beamforming report.
  • BFRP trigger beamforming report polling trigger
  • the beamforming receiver measures (or acquires) the RSSI on each receiving antenna when receiving the above-mentioned NDP (the RSSI obtained here is the RSSI when all spatial streams are mixed together and received).
  • the beamforming receiver determines the largest RSSI from the RSSIs on the multiple receiving antennas, denoted as the first RSSI (or RSSI j , j is the index of the receiving antenna with the largest RSSI measured when the beamforming receiver receives the NDP) , and the index of the receiving antenna corresponding to the first RSSI is denoted as the first antenna index (or j).
  • the beamforming receiver obtains the first RSSI threshold (referred to as RSSIX j ) corresponding to the first antenna index, and the first RSSI threshold is determined based on the low noise amplifier characteristic of the receiving antenna. It should be understood that one receive antenna corresponds to one RSSI threshold. If the first RSSI is greater than the first RSSI threshold, the beamforming receiver carries the first RSSI (that is, RSSI j ) and the first antenna index (that is, j) in the beamforming report, and optionally, also carries the first RSSI threshold (that is, the first RSSI threshold). RSSIX j ) and send the beamforming report. Accordingly, the beamforming generator receives the beamforming report.
  • RSSIX j the first RSSI threshold
  • the RSSI is different on each subcarrier, only one maximum average value can be fed back in the entire bandwidth (all subcarriers), that is, the above-mentioned first RSSI is on the entire bandwidth (or all subcarriers)
  • the maximum value of the average RSSI For example, taking the entire bandwidth of 20MHz as an example, it includes a total of 256 subcarriers (the subcarrier index is from -128 to 127, ie -128,...,-1,0,1,...,127), usually 4 subcarriers or 16 subcarriers are a set of feedback.
  • the subcarrier index to be fed back is [-122,-120:4:-4,-2,2,4:4:120,122], a total of 64 subcarriers.
  • the maximum RSSI average value ie, the first RSSI
  • the maximum RSSI average value is determined from the RSSI average values of all the receiving antennas, and the first receiving antenna index is the index of the receiving antenna corresponding to the maximum RSSI average value.
  • a maximum average value may be fed back every 10MHz, or 5MHz, or 20MHz, etc. as a unit. For the RSSI threshold of the receiving antenna, only one can be fed back in the entire bandwidth.
  • the first RSSI and the first receiving antenna index are carried in the beamforming report, and the first RSSI threshold is optionally carried, and the amount of information carried is small, which can reduce signaling overhead and reduce beamforming reception. the computational complexity of the device.
  • the power control method in the wireless local area network further includes:
  • the beamforming generator determines power control parameters of the multiple spatial streams according to the first RSSI and the first receiving antenna index included in the first parameter, or further according to the first RSSI threshold.
  • the above-mentioned first parameter includes a first RSSI (ie, RSSI j ) and a first receiving antenna index (ie, j), and optionally also includes a first RSSI threshold (ie, RSSIX j ).
  • the beamforming generator After receiving the beamforming report, the beamforming generator obtains the first parameter from the beamforming report. If the first parameter does not include the first RSSI threshold (ie RSSIX j ), the beamformer may obtain (or request from the beamformer) the first RSSI threshold corresponding to the first receive antenna index (ie, from local storage) RSSIXj ).
  • the beamforming generator calculates and obtains each spatial stream in the plurality of spatial streams. Power control parameters for the stream.
  • the beamforming generator calculates each spatial stream in the multiple spatial streams according to the difference between the first RSSI and the first RSSI threshold (ie RSSI j ⁇ RSSIX j ) and the first antenna index (ie j).
  • first RSSI the first RSSI threshold
  • RSSIX j the first antenna index
  • the beamforming generator can also calculate the mapping function from the receiving antenna to the spatial stream according to the channel state information at both ends of the transceiver, so that according to the above formula (1-1) Obtain power control parameters for each spatial stream.
  • the beamforming generator sends the data signal by using the power control parameter. Accordingly, the beamforming receiver receives the data signal sent by the beamforming generator using the power control parameter.
  • step S206 in the embodiment of the present application, reference may be made to the implementation manner of step S106 in the foregoing embodiment 1, and details are not described herein again.
  • the beamforming receiver in the embodiment of the present application feeds back the RSSI on the receiving antenna, the receiving antenna index, and the RSSI threshold in the beamforming report, and the beamforming receiver calculates the power adjustment parameters of each spatial stream based on the feedback from the beamforming receiver , and adjust the transmit power of each spatial stream in subsequent data signal transmission to indirectly reduce the RSSI on the receiving antenna of the beamforming receiver, and reduce the overall transmit power without affecting the SNR of the spatial stream with better channel quality .
  • the power of all spatial streams can be collectively amplified by the power amplifier, thereby improving the SNR of the spatial stream with the original poor SNR (that is, the bottleneck spatial stream), and achieving a higher number of spatial streams.
  • the higher-order modulation method can achieve the "double high" of the number of spatial streams and the modulation order, and improve the system throughput.
  • the beamforming generator and the beamforming receiver may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one in the processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 7 to 9 . Wherein, the communication device is a beamforming generator or a beamforming receiver, and further, the communication device may be a device in a beamforming generator; or, the communication device is a device in a beamforming receiver.
  • FIG. 7 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • the communication device 1 may be a beamforming generator or a chip in a beamforming generator, such as a Wi-Fi chip.
  • the communication device 1 includes a transceiver unit 11 , and optionally includes a processing unit 12 .
  • the transceiver unit 11 is used to send a null data packet NDP; the transceiver unit 11 is also used to receive a beamforming report, where the beamforming report includes a first parameter, and the first parameter is based on how often the beamforming receiver receives the NDP.
  • the received signal strength indication RSSI on each receive antenna is determined, or the first parameter is determined based on the signal-to-noise ratio (SNR) of the multiple spatial streams when the beamforming receiver receives the NDP, and the first parameter is used for power control.
  • SNR signal-to-noise ratio
  • the processing unit 12 includes a generating sub-unit 121 .
  • the generating subunit 121 is used to generate the NDP.
  • the processing unit 12 includes a determination sub-unit 122 .
  • the determining subunit 122 is configured to determine the power control parameters of the plurality of spatial streams according to the first parameter; the above-mentioned transceiver unit 11 is further configured to send data signals using the power control parameters.
  • the above-mentioned transceiver unit 11 is further configured to send a null data packet declaration NDPA frame, where the NDPA frame includes indication information, and the indication information is used to indicate whether the beamforming receiver feeds back the first parameter.
  • the above-mentioned communication device 1 can correspondingly execute the foregoing first embodiment or the foregoing second embodiment, and the above-mentioned operations or functions of each unit in the foregoing communication device 1 are for realizing the beamforming generation in the foregoing first embodiment or the foregoing second embodiment, respectively.
  • the corresponding operations of the device are not repeated here for brevity.
  • FIG. 8 is a schematic structural diagram of a communication apparatus 2 provided by an embodiment of the present application.
  • the communication device 2 may be a beamforming receiver or a chip in a beamforming receiver, such as a Wi-Fi chip.
  • the communication device 2 includes a transceiver unit 21 and optionally includes a processing unit 22 .
  • the transceiver unit 21 is used for receiving the NDP; the transceiver unit 21 is also used for sending a beamforming report, where the beamforming report includes a first parameter, and the first parameter is based on multiple receptions when the beamforming receiver receives the NDP.
  • the RSSI on the antenna is determined, or the first parameter is determined based on the SNR of the plurality of spatial streams when the NDP is received by the beamforming receiver, and the first parameter is used for power control.
  • the processing unit 22 is configured to acquire the first parameter and generate a beamforming report.
  • the above-mentioned transceiver unit 21 is further configured to receive a data signal sent by the beamforming generator using a power control parameter, where the power control parameter is determined based on the first parameter.
  • the above-mentioned transceiver unit 21 is further configured to receive an NDPA frame, where the NDPA frame includes indication information, where the indication information is used to indicate whether the beamforming receiver feeds back the first parameter.
  • the above-mentioned communication apparatus 2 can correspondingly execute the foregoing first embodiment or the foregoing second embodiment, and the foregoing operations or functions of each unit in the foregoing communication apparatus 2 are to implement the beamforming reception in the foregoing first embodiment or the foregoing second embodiment, respectively.
  • the corresponding operations of the device are not repeated here for brevity.
  • the beamforming generator and the beamforming receiver described in the embodiments of the present application may be implemented by a general bus architecture.
  • FIG. 9 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 may be a beamforming generator or a beamforming receiver, or a chip therein.
  • FIG. 9 shows only the main components of the communication device 1000 .
  • the communication device may further include a memory 1003, and an input and output device (not shown).
  • the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a control circuit and an antenna, and the control circuit is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the processor 1001, the transceiver 1002, and the memory 1003 may be connected through a communication bus.
  • the communication apparatus 1000 may be used to perform the function of the beamforming generator in the foregoing first embodiment: the processor 1001 may be used to generate the NDP sent in step S101 in FIG. 4 , or be used to perform step S105 in FIG. 4 . , and/or other processes for performing the techniques described herein; transceiver 1002 may be used to perform steps S101 , S104 and S106 in FIG. 4 , and/or other processes for performing the techniques described herein.
  • the communication apparatus 1000 may be configured to perform the function of the beamforming receiver in the foregoing first embodiment: the processor 1001 may be configured to generate the beamforming report sent in step S103 in FIG. Other processes for the techniques described; transceiver 1002 may be used to perform steps S102 and S103 in Figure 4, and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the beamforming generator in the foregoing second embodiment: the processor 1001 may be used to generate the NDP sent in step S201 in FIG. 6 , or be used to perform step S205 in FIG. 6 . , and/or other processes for performing the techniques described herein; transceiver 1002 may be used to perform steps S201 , S204 and S206 in FIG. 6 , and/or other processes for performing the techniques described herein.
  • the communication apparatus 1000 may be configured to perform the function of the beamforming receiver in the foregoing second embodiment: the processor 1001 may be configured to generate the beamforming report sent in step S203 in FIG. 6 , and/or be configured to execute this document Other processes for the techniques described; transceiver 1002 may be used to perform steps S202 and S203 in FIG. 6, and/or other processes for the techniques described herein.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1001 may store instructions, which may be a computer program, and the computer program runs on the processor 1001 to enable the communication device 1000 to execute the method described in any of the above method embodiments.
  • the computer program may be embodied in the processor 1000, in which case the processor 1001 may be implemented by hardware.
  • the communication apparatus 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 9 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the beamforming generator and the beamforming receiver described in the embodiments of the present application may be implemented by a general-purpose processor.
  • a general purpose processor implementing a beamformer includes a processing circuit and an input and output interface in communication with the internal connections of the processing circuit.
  • the general-purpose processor may be used to perform the function of the beamforming generator in the foregoing first embodiment.
  • the processing circuit can be used to generate the NDP sent in step S101 in FIG. 4 , or to perform step S105 in FIG. 4 , and/or to perform other processes of the techniques described herein; the input and output interface is used for for performing steps S101, S104, and S106 in FIG. 4, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the function of the beamforming generator in the foregoing second embodiment.
  • the processing circuit can be used to generate the NDP sent in step S201 in FIG. 6 , or to perform step S205 in FIG. 6 , and/or to perform other processes of the techniques described herein; the input and output interface is used for for performing steps S201, S204, and S206 in FIG. 6, and/or other processes for the techniques described herein.
  • a general purpose processor implementing a beamforming receiver includes a processing circuit and an input and output interface in communication with the internal connections of the processing circuit.
  • the general-purpose processor may be used to perform the function of the beamforming receiver in the foregoing first embodiment.
  • the processing circuit can be used to generate the beamforming report sent in step S103 in FIG. 4 , and/or be used to perform other processes of the techniques described herein; the input and output interface is used to perform steps S102 and S102 in FIG. 4 and S103, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to perform the function of the beamforming receiver in the foregoing second embodiment.
  • the processing circuit can be used to generate the beamforming report sent in step S203 in FIG. 6 , and/or be used to perform other processes of the techniques described herein; the input and output interface is used to perform steps S202 and S202 in FIG. 6 and S203, and/or other processes for the techniques described herein.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the processor executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the above-mentioned The method of any of the embodiments.
  • the embodiments of the present application further provide a wireless communication system, including a beamforming generator and a beamforming receiver, where the beamforming generator and the beamforming receiver can perform the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请涉及无线通信领域,应用于支持802.11be标准的无线局域网中,尤其涉及一种无线局域网中的功率控制方法及相关装置,该方法包括:波束成形生成器采用多个空间流发送NDP;波束成形生成器接收波束成形接收器发送的包括第一参数的波束成形报告;第一参数基于波束成形接收器接收NDP时多个接收天线上的RSSI确定,或者第一参数基于波束成形接收器接收NDP时多个空间流的SNR确定,该第一参数用于功率控制。采用本申请实施例,可以支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的"双高",从而提高***吞吐率。

Description

无线局域网中的功率控制方法及相关装置
本申请要求于2020年12月11日提交中国专利局、申请号为202011445480.4、申请名称为“无线局域网中的功率控制方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种无线局域网中的功率控制方法及相关装置。
背景技术
无线局域网(wireless local area networks,WLAN)发展至今已历经多代,包括802.11a/b/g、802.11n、802.11ac、802.11ax以及现在正在讨论中的802.11be等。其中,802.11a/b/g只支持单空间流传输,不支持多输入多输出(multiple input multiple output,MIMO)传输。802.11n最多支持4个空时流的MIMO传输,并且每个空时流可以采用不同的调制编码策略(modulation and coding scheme,MCS),以适应不同空时流的信噪比(signal to noise ratio,SNR)。而802.11ac和802.11ax,最多支持8个空时流,其没有考虑不同的空间流采用不同的MCS。其中,空时流(space-time streams)同时考虑了不同的空间流(spatial stream)和时间维度上的空时块编码(space-time block coding,STBC)。当发送端没有采用STBC时,空时流数等于空间流数。因为802.11be标准(又称极高吞吐率(extremely high throughput,EHT)标准)不考虑STBC,所以802.11be标准关注空间流,其最多支持16个空间流。
在调制与编码方面,各代标准考虑的调制阶数也逐渐增加。802.11ac最高考虑到256阶的正交幅度调制(quadrature amplitude modulation,QAM),802.11ax增加到1024阶QAM。802.11be进一步考虑采用4096阶QAM。更高阶的QAM调制可以支持更高的数据速率,但对信噪比也有着更高的要求。
因此,如何支持更高空间流数下更高阶的调制方式,达到空间流数和调制阶数的“双高”,成为了亟待解决的问题。
发明内容
本申请实施例提供一种无线局域网中的功率控制方法及相关装置,可以支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,从而提高***吞吐率。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种无线局域网中的功率控制方法,该方法包括:波束成形生成器采用多个空间流发送空数据分组(Null Data Packet,NDP);波束成形生成器接收波束成形报告,该波束成形报告中包括第一参数,该第一参数基于波束成形接收器接收该NDP时多个接收天线上的接收信号强度指示(Received Signal Strength Indicator,RSSI)确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的信噪比(Signal to Noise Ratio,SNR)确定,该第一参数用于功率控制。
可选的,波束成形生成器接收到波束成形报告之后,该方法还包括:波束成形生成器根据该第一参数确定该多个空间流的功率控制参数,并使用该功率控制参数发送数据信号。
本方案在波束成形报告中反馈第一参数,以使波束成形生成器基于波束成形报告中的反 馈确定各个空间流的功率控制参数,并利用该功率控制参数调整后续发送数据时各个空间流的发送功率(或对后续发送的数据进行功率控制),以支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。
结合第一方面,在一种可能的实现方式中,波束成形生成器发送NDP之前,该方法还包括:波束成形生成器发送空数据分组声明(Null Data Packet Announcement,NDPA)帧,该NDPA帧中包括指示信息,该指示信息用于指示(波束成形接收器)是否反馈第一参数。
本方案通过在NDPA帧中指示波束成形接收器是否需要反馈第一参数,既可以指定波束成形接收器进行普通的信道探测,反馈普通的波束成形报告,即该波束成形报告不携带该第一参数;也可以指定波束成形接收器进行特殊的信道探测,反馈本方案中包括第一参数的波束成形报告;使得信道探测过程更为灵活。此外,在NDPA帧中携带指示信息,指示是否反馈第一参数,可以让波束成形接收器更早确定是否需要去获取第一参数,在后续接收到NDP后可以直接去获取第一参数。
第二方面,本申请提供一种无线局域网中的功率控制方法,该方法包括:波束成形接收器接收NDP;波束成形接收器发送波束成形报告,该波束成形报告中包括第一参数,该第一参数基于该波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
应理解,波束成形接收器发送波束成形报告之前,波束成形接收器获取第一参数,其获取第一参数的方式可以是:根据波束成形接收器接收该NDP时多个接收天线上的RSSI确定第一参数;或者,根据波束成形接收器接收该NDP时多个空间流的SNR确定第一参数。
可选的,波束成形接收器发送波束成形报告之后,该方法还包括:波束成形接收器接收波束成形生成器使用功率控制参数发送的数据信号,该功率控制参数基于该第一参数确定。
结合第二方面,在一种可能的实现方式中,波束成形接收器接收NDP之前,该方法还包括:波束成形接收器接收NDPA帧,该NDPA帧中包括指示信息,该指示信息用于指示(波束成形接收器)是否反馈第一参数。
第三方面,本申请提供一种通信装置,该通信装置可以为波束成形生成器或波束成形生成器中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于发送NDP;该收发单元,还用于接收波束成形报告,该波束成形报告中包括第一参数,该第一参数基于波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
可选的,该通信装置还包括处理单元。该处理单元,用于根据该第一参数确定该多个空间流的功率控制参数;上述收发单元,还用于使用该功率控制参数发送数据信号。
结合第三方面,在一种可能的实现方式中,上述收发单元,还用于发送NDPA帧,该NDPA帧中包括指示信息,该指示信息用于指示(波束成形接收器)是否反馈第一参数。
第四方面,本申请提供一种通信装置,该通信装置可以为波束成形接收器或波束成形接收器中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收NDP;该收发单元,还用于发送波束成形报告,该波束成形报告中包括第一参数,该第一参数基于该波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
应理解,该通信装置还可以包括处理单元,用于获取第一参数;该处理单元具体用于:根据波束成形接收器接收该NDP时多个接收天线上的RSSI确定第一参数;或者,根据波束成形接收器接收该NDP时多个空间流的SNR确定第一参数。
可选的,上述收发单元,还用于接收波束成形生成器使用功率控制参数发送的数据信号,该功率控制参数基于该第一参数确定。
结合第四方面,在一种可能的实现方式中,上述收发单元,还用于接收NDPA帧,该NDPA帧中包括指示信息,该指示信息用于指示(波束成形接收器)是否反馈第一参数。
上述任一方面的一种实现方式中,上述第一参数包括多个空间流的功率控制参数,该功率控制参数基于第一RSSI、第一RSSI阈值以及第一天线索引生成。该第一RSSI为波束成形接收器接收上述NDP时多个接收天线上最大的RSSI,该第一天线索引为该第一RSSI对应的接收天线的索引,该第一RSSI阈值为该第一RSSI对应的接收天线的RSSI阈值。其中,RSSI阈值基于接收天线的低噪放特性确定。
可选的,上述多个空间流中第i个空间流的功率控制参数为:
PC i=f(RSSI j-RSSIX j);
其中,PC i表示第i个空间流的功率控制参数,i的取值为区间[1,N],N为波束成形生成器发送NDP时采用的空间流数;f()表示第j个接收天线到空间流的映射函数,RSSI j表示第j个接收天线上的RSSI,j为波束成形接收器接收NDP时RSSI最大的接收天线的索引,RSSIX j表示第j个接收天线上的RSSI阈值。f()基于第j个接收天线上的信道状态信息确定,信道状态信息基于NDP中的长训练序列确定。
本方案提供一种通过接收天线的RSSI计算空间流的功率控制参数的方法,并在波束成形报告中反馈多个空间流的功率控制参数,从而帮助波束成形生成器调整各个空间流的功率,在不影响信道较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比,进而支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。
上述任一方面的一种实现方式中,上述第一参数包括多个空间流的功率控制参数,该多个空间流中第i个空间流的功率控制参数基于波束成形接收器接收该NDP时第i个空间流的SNR、和波束成形接收器接收该NDP时多个空间流的SNR中最小的SNR,以及预设值确定。
可选的,第i个空间流的功率控制参数满足以下条件:
SNR i-PC i≤SNR min+预设值;
其中,SNR i表示波束成形接收器接收NDP时第i个空间流的SNR,i的取值为区间[1,N],N为波束成形生成器发送NDP时采用的空间流数,PC i表示第i个空间流的功率控制参数,SNR min表示波束成形接收器接收NDP时多个空间流的SNR中最小的SNR。预设值是基于实现选取的一个常数值,比如5dB。
本方案提供一种通过空间流的SNR计算空间流的功率控制参数的方法,并在波束成形报告中反馈多个空间流的功率控制参数,从而帮助波束成形生成器调整各个空间流的功率,在不影响信道较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比,进而支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。此外,由于原有的波束成形报告中包括压缩波束成形报告字段,该字段中包含每个空间流的平均SNR,所以,本方案可以不增加波束成形接收器的额外测量操作,节省功耗。
上述任一方面的一种实现方式中,上述第一参数包括第一RSSI和第一接收天线索引,该第一RSSI为波束成形接收器接收该NDP时多个接收天线上最大的RSSI,该第一接收天线索引为第一RSSI对应的接收天线的索引。
可选的,上述第一参数还包括第一RSSI阈值,该第一RSSI阈值为该第一接收天线索引 对应的RSSI阈值。
本方案通过在波束成形报告中反馈用于计算功率控制参数的RSSI以及相应的射频参数(比如不同接收天线的RSSI阈值),以使波束成形生成器基于该反馈,计算各个空间流的功率调整参数,并调整各个空间流的发送功率,以适当降低波束成形接收器的接收天线上的RSSI。在不影响信道质量较好的空间流的SNR的情况下,整体降低发送总功率。这样在接收端(即波束成形接收器),可以通过功率放大器集体放大所有空间流的功率,从而提升信道质量较差的空间流的SNR。
上述任一方面的一种实现方式中,上述NDP中包括指示信息,用于指示是否反馈第一参数。本方案通过在NDP中指示是否需要反馈第一参数,使得波束成形接收器的信道探测过程更为灵活多样。
第五方面,本申请提供一种通信装置,具体为第一方面中的波束成形生成器,包括处理器和收发器。该处理器用于生成NDP;该收发器,用于发送NDP;该收发器还用于接收波束成形报告,该波束成形报告中包括第一参数,该第一参数基于波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
可选的,该处理器用于根据该第一参数确定该多个空间流的功率控制参数;该收发器还用于使用该功率控制参数发送数据信号。
第六方面,本申请提供一种通信装置,具体为第二方面中的波束成形接收器,包括处理器和收发器。该收发器,用于接收NDP;该处理器用于生成波束成形报告;该收发器还用于发送波束成形报告,该波束成形报告中包括第一参数,该第一参数基于接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
可选的,该处理器,还用于接收波束成形生成器使用功率控制参数发送的数据信号,该功率控制参数基于该第一参数确定。
第七方面,本申请提供一种装置,该装置以芯片的产品形态实现,包括输入输出接口和处理电路。该装置为上述第一方面的波束成形生成器中的芯片。该处理电路,用于生成NDP;该输入输出接口用于输出该NDP并通过射频电路进行处理后,经过天线发送该NDP;该输入输出接口,还用于输入通过天线和射频电路接收的波束成形报告,该波束成形报告中包括第一参数,该第一参数基于波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
第八方面,本申请提供另一种装置,该装置以芯片的产品形态实现,包括输入输出接口和处理电路。该装置为上述第二方面的波束成形接收器中的芯片。该输入输出接口,还用于输入通过天线和射频电路接收的NDP;该处理电路,用于生成波束成形报告;该输入输出接口还用于输出该波束成形报告并通过射频电路进行处理后,经过天线发送波束成形报告,该波束成形报告中包括第一参数,该第一参数基于接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
第九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面所述的无线局域网中的功率控制方法。
第十方面,本申请提供一种包含程序指令的计算机程序产品,当其在计算机上运行时, 使得计算机执行上述第一方面、或上述第二方面所述的无线局域网中的功率控制方法。
实施本申请实施例,可以支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,从而提高***吞吐率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的无线通信***的架构示意图;
图2a是本申请实施例提供的接入点的结构示意图;
图2b是本申请实施例提供的站点的结构示意图;
图3是本申请实施例提供的接收天线上RSSI与SNR的关系示意图;
图4是本申请实施例提供的无线局域网中的功率控制方法的一示意流程图;
图5a是本申请实施例提供的单用户信道状态信息反馈的时序示意图;
图5b是本申请实施例提供的多用户信道状态信息反馈的时序示意图;
图6是本申请实施例提供的无线局域网中的功率控制方法的另一示意流程图;
图7是本申请实施例提供的通信装置1的结构示意图;
图8是本申请实施例提供的通信装置2的结构示意图;
图9是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的提供方法,下面将对本申请实施例提供的方法的***架构进行说明。可理解的,本申请实施例描述的***架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种无线局域网中的功率控制方法,可以在波束成形报告中反馈各个空间流的功率控制参数,或者反馈用于计算功率控制参数的接收信号强度指示(received signal strength indicator,RSSI)以及相应的射频参数(比如不同接收天线的RSSI阈值),以使波束成形生成器基于波束成形报告中的反馈,调整后续发送数据时各个空间流的发送功率(或对后续发送的数据进行功率控制),从而在不影响信道较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比,进而支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。该无线局域网中的功率控制方法可以应用于无线通信***中,比如无线局域网***中,该无线局域网中的功率控制方法可以由无线通信***中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点设备或站点设备;该通信设备还可以是一种支持多条链路并行传输的无线通信设备,例如,该通信设备可以称为多链路设备(multi-link device,MLD)或多频段设备。相比于仅支持单条链路传输的通信设备来说,多链路设备具有更高的传输效率和更大的吞吐率。
本申请实施例提供的无线局域网中的功率控制方法,AP与一个或多个STA通信的场景中,还可以应用于AP与AP的通信场景,也同样适用于STA与STA的通信场景。参见图1,图1是本申请实施例提供的无线通信***的架构示意图。如图1所示,该无线通信***可以包括一个或多个AP(如图1中的AP1或AP2)和一个或多个STA(如图1中的STA1、STA2 或STA3)。其中,AP和STA支持WLAN通信协议,该通信协议可以包括IEEE 802.11be(或称为Wi-Fi 7,EHT协议),还可以包括IEEE 802.11ax,IEEE 802.11ac等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括IEEE 802.11be的下一代协议等。以WLAN为例,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理***。
接入点(例如图1中的AP1或AP2)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN***中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理***等,安装这些芯片或处理***的设备可以在芯片或处理***的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理***,从而实现本申请实施例的方法和功能。
站点(例如图1中的STA1、STA2或STA3)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN***中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理***等,安装这些芯片或处理***的设备可以在芯片或处理***的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或***,全球定位***设备等,STA还可以为上述这些终端中的芯片和处理***。
WLAN***可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN***将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
802.11标准关注物理(physical layer,PHY)层和介质介入控制(medium access control,MAC)层部分。一个示例中,参见图2a,图2a是本申请实施例提供的接入点的结构示意图。其中,AP可以是多天线/多射频的,也可以是单天线/单射频的,该天线/射频用于发送/接收数据分组。一种实现中,AP的天线或射频部分可以与AP的主体部分分离,呈拉远布局的结构。图2a中,AP可以包括物理层处理电路和媒体接入控制处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。另一个示例中,参见图2b, 图2b是本申请实施例提供的站点的结构示意图。图2b示出了单个天线/射频的STA结构示意图,实际场景中,STA也可以是多天线/多射频的,并且可以是两个以上天线的设备,该天线/射频用于发送/接收数据分组。一种实现中,STA的天线或射频部分可以与STA的主体部分分离,呈拉远布局的结构。图2b中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
由于802.11be最多支持16个空间流,并考虑采用4096阶QAM,而更高阶的QAM调制对信噪比的要求也更高,所以如何在802.11be中支持更高空间流数下更高阶的调制方式,以实现空间流数和调制阶数的“双高”,成为了亟待解决的问题。
一种实现方式中,可以通过波束成形技术来提高所有空间流中部分空间流的输出SNR。具体地,发送端(即波束成形生成器)基于接收端(即波束成形接收器)获取到的收发两端的信道状态信息,生成相应的波束成形转向矩阵(Beamforming Steering Matrix)Q,再将Q乘在星座点映射输出的向量上。其中,Q矩阵可以是基于信道探测(sounding)过程中反馈的波束成形报告(波束成形报告中包括压缩波束成形反馈矩阵V,矩阵V是对收发两端的信道状态信息进行奇异值分解后获得)生成的Q矩阵。Q矩阵通过对星座点映射输出的向量进行幅度和相位的调整,使得接收端(即波束成形接收器)的等效SNR更高,可以有效减轻信道选择性衰落。
虽然波束成形能够有效提升所有空间流中部分空间流的输出SNR,但是会造成少部分空间流的信噪比变差,使得这少部分空间流的信噪比成为瓶颈。另外,为了提高QAM阶数(更高阶的QAM调制可以支持更高的数据速率),通常是通过降低空间流数的方法来实现,比如,发送端和接收端均有4根天线(此种情况下,最多可发4个空间流,这是因为发送端支持的空间流数等于发送端天线数量与接收端天线数量的最小值),可以只发3个空间流,不在信噪比差的空间流上发送数据。因此,发送端(即波束成形生成器)无法在所有空间流上都采用较高阶的QAM,也无法实现空间流数和QAM阶数的“双高”。
本申请实施例提供一种无线局域网中的功率控制方法,波束成形接收器在波束成形报告中反馈各个空间流的功率控制参数,或者反馈用于计算功率控制参数的参数,以使波束成形生成器获得各个空间流的功率控制参数之后,调整后续发送数据时各个空间流的发送功率(或对后续发送的数据进行功率控制),从而在不影响信道较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比,进而支持更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。
在介绍本申请提供的技术方案之前,先介绍本申请中波束成形接收器(Beamformee)的接收天线的一个特性:低噪放(low noise amplifier,LNA)特性。参见图3,图3是本申请实施例提供的接收天线上RSSI与SNR的关系示意图。图3中,横轴表示某个接收天线上的RSSI,纵轴表示SNR。从图3可以看出,从左到右,在第一条竖线的左边(即第一条竖线所对应的RSSI之前,图3中大概是RSSI小于-48dB),SNR和RSSI是呈线性关系,且正相关同步增长。但在该第一条竖线右边,即使该接收天线的RSSI进一步增大,SNR也不会线性增加,而是呈现一个平台(floor)。这说明,在该第一条竖线右边(图3中RSSI大概大于-48dB时),增大RSSI不能使SNR变好,也就是说,这种情况下,再增大RSSI也不会提高接收天线的性能。
所以,基于接收天线的低噪放特性,本申请提供一种无线局域网中的功率控制方法,可以针对RSSI较大的接收天线,尤其是RSSI大于该第一条竖线与横轴的交点所示值(本申请 实施例中将这个交点所示值称为这个接收天线的RSSI阈值,图3中大概是-48dB)的接收天线,通过波束成形接收器(Beamformee)的反馈,波束成形生成器(Beamformer)基于这个反馈对空间流进行功率控制,以适当降低波束成形接收器(Beamformee)的接收天线上的RSSI(比如将图3中从左到右第二条竖线移动到第一条竖线处,即大概将RSSI从-34dB减小到-48dB)。应理解,波束成形接收器的每个接收天线都有自己的RSSI阈值。也就是,在不影响信道质量较好的空间流的SNR的情况下,整体降低发送总功率。这样在接收端(即波束成形接收器),可以通过功率放大器集体放大所有空间流的功率,从而提升信道质量较差的空间流的SNR。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过两个实施例来详细说明。其中,实施例一阐述在信道探测过程中,波束成形接收器(Beamformee)反馈各个空间流的功率控制参数,帮助波束成形生成器(Beamformer)调整各个空间流的发送功率。实施例二阐述在信道探测过程中,波束成形接收器(Beamformee)反馈自己的部分(或全部)接收天线的接收信号强度指示(received signal strength indicator,RSSI)以及相应的射频参数(比如不同接收天线的RSSI阈值);波束成形生成器(Beamformer)基于波束成形接收器(Beamformee)的反馈,计算各个空间流的功率调整参数,并调整各个空间流的发送功率。
可理解的,本申请中的波束成形生成器可以是AP,如图1中的任一AP;本申请中的波束成形接收器可以是STA,如图1中的任一STA。其中,波束成形生成器可以支持IEEE802.11be协议(或称为Wi-Fi 7,EHT协议),还可以支持其他WLAN通信协议,如IEEE802.11ax,IEEE 802.11ac等协议。波束成形接收器可以支持IEEE 802.11be协议。应理解,本申请中的波束成形生成器和波束成形接收器还可以支持IEEE 802.11be的下一代协议。也就是说,本申请提供的无线局域网中的功率控制方法不仅适用于IEEE 802.11be协议,还可以适用于IEEE 802.11be的下一代协议。
还应理解,信道探测过程中,波束成形生成器(Beamformer)可以通知一个或多个波束成形接收器(Beamformee)并行/同时进行信道探测,为便于理解,下文以一个波束成形接收器(Beamformee)与波束成形生成器(Beamformer)的交互/通信/信道探测为例进行说明,其他波束成形接收器的操作与该波束成形接收器相同/类似,在此不一一赘述。
实施例一
本申请实施例一主要介绍信道探测过程中,波束成形接收器(Beamformee)通过波束成形报告(Beamforming report,BFR)反馈各个空间流的功率控制参数,帮助波束成形生成器(Beamformer)调整各个空间流的发送功率,从而在不影响信道质量较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比。
参见图4,图4是本申请实施例提供的无线局域网中的功率控制方法的一示意流程图。如图4所示,该无线局域网中的功率控制方法包括但不限于以下步骤:
S101,波束成形生成器采用多个空间流发送空数据分组(Null Data Packet,NDP)。
S102,波束成形接收器接收NDP。
具体地,波束成形生成器发送空数据分组声明(Null Data Packet Announcement,NDPA)帧,通知需要进行信道探测(sounding)的一个或多个波束成形接收器(或站点)、相关信道探测的参数。接着,波束成形生成器在间隔一段时间(比如短帧间间隔(short inter-frame space,SIFS))后,采用多个空间流发送空数据分组(Null Data Packet,NDP),该NDP用于波束成形接收器进行信道估计,获得信道状态信息。相应地,波束成形接收器接收NDPA帧和NDP。 其中,本申请中的NDP指代一个没有数据字段部分,且不携带介质介入控制(medium access control,MAC)帧的数据分组。
可选的,上述NDP的信令字段中可以携带指示信息,用于指示是否需要反馈第一参数。这里的第一参数可以为上述多个空间流的功率控制参数。如果该指示信息指示反馈第一参数,波束成形接收器可以在反馈的波束成形报告中携带该第一参数;如果该指示信息指示不反馈第一参数,波束成形接收器进行普通的信道探测,反馈普通的波束成形报告,即该波束成形报告不携带该第一参数。
可选的,上述NDPA帧中还可以包括指示信息,该指示信息用于指示(波束成形接收器)是否需要反馈第一参数。比如,该指示信息可以携带在NDPA帧的AID(关联标识)为预留值(如2044)的用户信息字段中;或者利用NDPA帧的用户信息字段的预留比特来指示波束成形接收器是否需要反馈第一参数。这里的第一参数可以为上述多个空间流的功率控制参数。如果该指示信息指示反馈第一参数,波束成形接收器可以在反馈的波束成形报告中携带该第一参数;如果该指示信息指示不反馈第一参数,波束成形接收器进行普通的信道探测,反馈普通的波束成形报告,即该波束成形报告不携带该第一参数。
可理解的,该指示信息既可以携带在NDPA帧中,也可以携带在NDP中,还可以在NDPA帧和NDP中都携带。当该指示信息在NDPA帧和NDP中都携带时,NDP中该指示信息所指示的内容应与该NDPA帧中该指示信息所指示的内容一致。也就是说,NDPA帧和NDP中该指示信息要么都指示反馈第一参数,要么都指示不反馈第一参数。
还应理解,上述NDP的信令字段和上述NDPA帧也可以不携带指示信息,而是直接通过协议约定波束成形接收器在信道探测过程中反馈第一参数,具体可以通过波束成形报告反馈,也可以单独反馈。
S103,波束成形接收器发送波束成形报告,该波束成形报告中包括第一参数,该第一参数包括多个空间流的功率控制参数,该第一参数基于该波束成形接收器接收该NDP时多个接收天线上的接收信号强度指示(Received Signal Strength Indicator,RSSI)确定,或者该第一参数基于该波束成形接收器接收该NDP时该多个空间流的SNR确定,该第一参数用于功率控制。
S104,波束成形生成器接收波束成形报告。
可选的,波束成形报告(Beamforming report,BFR)是一种无需确认的动作帧(Action No ACK frame)。在该波束成形报告中会包含多输入多输出(multiple input multiple output,MIMO)控制字段(control field),用于指示该波束成形报告的各项参数。此外,该波束成形报告中还包含压缩波束成形报告、多用户独有波束成形报告、信道质量信息报告等字段中的一个或者多个。其中,压缩波束成形报告中包含每个空间流的平均SNR,以及基于每个空间流每Ng(Number of grouping,分组数,其中Ng=4或16)个子载波的压缩波束成形反馈矩阵V。多用户独有波束成形报告中包含基于每个空间流每Ng个子载波的SNR与平均SNR的差值。
可选的,上述波束成形报告还包括第一参数,该第一参数包括上述多个空间流的功率控制参数。应理解的,这里的空间流数可以小于或等于波束成形生成器发送NDP时所采用的空间流数。该多个空间流的功率控制参数基于第一接收信号强度指示(Received Signal Strength Indicator,RSSI)、第一RSSI阈值以及第一天线索引生成。该第一RSSI为波束成形接收器接收上述NDP时多个接收天线上最大的RSSI,该第一天线索引为该第一RSSI对应的接收天线的索引,该第一RSSI阈值为该第一RSSI对应的接收天线的RSSI阈值。该第一RSSI阈值可以是基于接收天线的低噪放(low noise amplifier,LNA)特性确定的。该多个空间流的功率 控制参数用于功率控制或用于调整后续发送数据信号时每个空间流的发送功率。
或者,该多个空间流的功率控制参数还可以是基于波束成形接收器接收该NDP时该多个空间流的SNR确定。具体地,该多个空间流中第i个空间流的功率控制参数基于波束成形接收器接收该NDP时该第i个空间流的信噪比(Signal to Noise Ratio,SNR)、和波束成形接收器接收该NDP时多个空间流的SNR中最小的SNR,以及预设值(或固定值)确定。第i个空间流可以是这多个空间流中的任一个空间流。i的取值可以是闭区间[1,N],N为波束成形生成器发送NDP时所采用的空间流数。该预设值(或固定值)可以基于实现选取的常数值,比如5dB。
可选的,上述第一参数可以独立包含在波束成形报告中,或者该第一参数包含在MIMO控制字段、压缩波束成形报告、多用户独有波束成形报告、信道质量信息报告等一个或多个字段中。
可选的,上述步骤S101之后,波束成形生成器还可以发送波束成形报告轮询(Beamforming report poll,BFRP)触发(trigger)帧,该BFRP触发帧用于触发波束成形接收器(如站点)反馈波束成形报告。其中,按照波束成形生成器(Beamformer)是否在NDP之后发送BFRP trigger帧,可以分为两种模式。比如,针对波束成形接收器(Beamfomee)的个数来区分是模式一还是模式二,本申请实施例提供的技术方案既可以是模式一也可以是模式二。
一个示例中,对于单个波束成形接收器(Beamfomee)的情况,由于Beamfomee需要额外计算每个空间流的功率控制参数,其需要更多的处理时延,所以也可能需要在NDP之后发送BFRP触发帧。以Beamformer为AP,Beamfomee为STA为例,参见图5a,图5a是本申请实施例提供的单用户信道状态信息反馈的时序示意图。如图5a所示,AP发送NDPA帧,并在间隔一个SIFS后发送NDP;STA接收到NDP后,进行信道估计,并在间隔一个SIFS后发送波束成形报告(BF report),该波束成形报告中包括信道状态信息;AP接收到该波束成形报告后,间隔一个SIFS发送BFRP trigger帧;STA接收到该BFRP trigger帧后,间隔一个SIFS发送新的波束成形报告,该新的波束成形报告中包括上述第一参数。
另一个示例中,对于多个波束成形接收器(Beamfomee)的情况,为了提高传输效率,可以通过BFRP trigger帧触发多个Beamfomee同时或并行反馈波束成形报告。以Beamformer为AP,Beamfomee为STA为例,参见图5b,图5b是本申请实施例提供的多用户信道状态信息反馈的时序示意图。如图5b所示,AP发送NDPA帧,并在间隔一个SIFS后发送NDP;AP发送完NDP后,再间隔一个SIFS发送BFRP trigger帧;STA1、STA2、以及STA3分别接收到该BFRP trigger帧,并行或同时反馈自己的波束成形报告,每个波束成形报告中包括第一参数。换句话说,STA1反馈的波束成形报告中包括STA1获取到的第一参数,STA2反馈的波束成形报告中包括STA2获取到的第一参数,STA3反馈的波束成形报告中包括STA3获取到的第一参数。
具体地,针对上述步骤S103,波束成形接收器发送波束成形报告之前,先要获取第一参数。下面对波束成形接收器获取第一参数的两种实现方式进行详细介绍。其中,第一种实现方式讲述波束成形接收器如何通过多个接收天线上的RSSI计算得到第一参数;第二种实现方式讲述波束成形接收器如何通过多个空间流的SNR计算得到第一参数。
第一种实现方式中,波束成形接收器接收上述NDP时测量(或获取)每个接收天线上的RSSI(这里得到的RSSI是所有空间流混合在一起接收时的RSSI)。波束成形接收器再从多个接收天线上的RSSI中确定出最大的RSSI,记为第一RSSI(或RSSI j,j是波束成形接收器接 收NDP时测得的RSSI最大的接收天线的索引),该第一RSSI对应的接收天线的索引记为第一天线索引(或j)。波束成形接收器获取该第一天线索引对应的第一RSSI阈值(记为RSSIX j),第一RSSI阈值基于接收天线的低噪放(low noise amplifier,LNA)特性确定。应理解,一个接收天线对应一个RSSI阈值。如果第一RSSI大于第一RSSI阈值,波束成形接收器根据第一RSSI与第一RSSI阈值之间的差值(即RSSI j-RSSIX j)以及该第一天线索引(即j),计算得出多个空间流中每个空间流的功率控制参数。
一个示例中,以一个子载波上的功率控制参数的计算方法为例,具体地,第k个子载波上的功率控制参数如下述公式(1-1)所示:
PC i=f(RSSI j-RSSIX j)……………………………………………………………(1-1)
其中,公式(1-1)中,PC i表示第i个空间流的功率控制参数,i的取值为闭区间[1,N],N为波束成形生成器发送NDP时所采用的空间流数。f()表示第j个接收天线到空间流的映射函数。RSSI j表示第j个接收天线上的RSSI,RSSIX j表示第j个接收天线上的RSSI阈值。j表示波束成形接收器接收NDP时RSSI最大的接收天线的索引。
换句话说,因为i的取值为1至N,所以上述公式(1-1)还可以描述为{PC 1,PC 2,PC 3,…,PC N}=f(RSSI j-RSSIX j)。也就是说,上述公式(1-1)表示一个输入(即RSSI j-RSSIX j),N个输出(即PC 1,PC 2,PC 3,…,PC N)。这是因为这里的RSSI j是所有空间流混合在一起接收时测得的RSSI,所以通过第j个接收天线上的RSSI可以映射出所有空间流。
可选的,上述公式(1-1)中的f()可以基于第j个接收天线上的信道状态信息确定,该信道状态信息又可以基于NDP中的长训练序列确定。具体地,波束成形接收器可以通过NDP中的长训练序列,获取第j个接收天线上的信道状态信息,从而计算f()。f()为收发两端的信道矩阵
Figure PCTCN2021136298-appb-000001
与波束成形转向矩阵
Figure PCTCN2021136298-appb-000002
的矩阵乘积
Figure PCTCN2021136298-appb-000003
的第j行的值。
其中,如果发送NDP时没有采用波束成形,且空间流数和天线数相同,波束成形转向矩阵
Figure PCTCN2021136298-appb-000004
是一个正交的P矩阵。此外,长训练序列字段中的发送信号
Figure PCTCN2021136298-appb-000005
与接收信号向量
Figure PCTCN2021136298-appb-000006
是已知值,噪声
Figure PCTCN2021136298-appb-000007
也已知,因此可以通过下述公式(1-2)可以计算出收发两端的信道矩阵
Figure PCTCN2021136298-appb-000008
Figure PCTCN2021136298-appb-000009
公式(1-2)中,N TX表示发送天线数量,即波束成形生成器的天线数量;N RX表示接收天线数量,即波束成形接收器的天线数量。N SS表示波束成形生成器发送NDP时所采用的空间流数。
上述示例是以RSSI最大的一个接收天线为例,该功率控制参数的计算方法还可以扩展到最大的前M个RSSI的接收天线。
另一个示例中,以RSSI最大的接收天线和RSSI第二大的接收天线为例,第k个子载波上的功率控制参数还可以如下述公式(1-3)所示:
PC i=f(RSSI j-RSSIX j,RSSI m-RSSIX m)………………………………………………(1-3)
其中,公式(1-3)中,PC i表示第i个空间流的功率控制参数,i的取值为闭区间[1,N],N为波束成形生成器发送NDP时所采用的空间流数。f()表示第j个和第m个接收天线到空间流的映射函数。RSSI j表示第j个接收天线上的RSSI,RSSIX j表示第j个接收天线上的RSSI阈值。j表示波束成形接收器接收NDP时RSSI最大的接收天线的索引。RSSI m表示第m个接收天线上的RSSI,RSSIX m表示第m个接收天线上的RSSI阈值。m表示波束成形接收器接收NDP时RSSI第二大的接收天线的索引。j不等于m。应理解的,这里的“第二大”是 指仅小于最大,也就是说,按照RSSI从大到小排序的第二个。还应理解,上述公式(1-3)还可以扩展到按照RSSI从大到小排序的前3个、前4个、前M个接收天线。M的取值小于N。
换句话说,上述公式(1-3)还可以描述为{PC 1,PC 2,PC 3,…,PC N}=f(RSSI j-RSSIX j,RSSI m-RSSIX m)。也就是说,上述公式(1-3)表示两个输入(即RSSI j-RSSIX j和RSSI m-RSSIX m),但仍然只有N个输出(即PC 1,PC 2,PC 3,…,PC N)。
可选的,上述公式(1-3)中的f()可以基于第j个接收天线和第m个接收天线上的信道状态信息确定,该信道状态信息又可以基于NDP中的长训练序列确定。具体地,波束成形接收器可以通过NDP中的长训练序列,获取第j个接收天线和第m个接收天线上的信道状态信息,从而计算f()。f()为收发两端的信道矩阵
Figure PCTCN2021136298-appb-000010
与波束成形转向矩阵
Figure PCTCN2021136298-appb-000011
的矩阵乘积
Figure PCTCN2021136298-appb-000012
的第j行和第m行的值。
可选的,上述两个示例示意性的表达了单个子载波上的功率控制参数的计算方法。波束成形接收器可以获取每个子载波上的功率控制参数,并可以针对整个带宽反馈每个空间流的功率控制参数的平均值,或者也可以基于子带宽(如每10MHz,或者5MHz,或者20MHz等为单位)来反馈每个空间流的功率控制参数。例如,以整个带宽为20MHz为例,共包括256个子载波(子载波索引从-128到127,即-128,…,-1,0,1,…,127),通常以4个子载波或16个子载波为一组反馈。当Ng(分组数)为4时(4个子载波为一组),需要反馈的子载波索引为[-122,-120:4:-4,-2,2,4:4:120,122],共64个子载波。如果波束成形生成器发送NDP时采用的空间流数为4,则可以针对第1个空间流反馈这64个子载波(子载波索引分别是[-122,-120:4:-4,-2,2,4:4:120,122])上的功率控制参数(针对第1个空间流,64个子载波上有64个功率控制参数值)的平均值。即
Figure PCTCN2021136298-appb-000013
其中,avg()表示平均值函数,
Figure PCTCN2021136298-appb-000014
表示第1个空间流在这64个子载波的第1个子载波上的功率控制参数,
Figure PCTCN2021136298-appb-000015
表示第1个空间流在这64个子载波的第2个子载波上的功率控制参数,
Figure PCTCN2021136298-appb-000016
表示第1个空间流在这64个子载波的第q个子载波上的功率控制参数,q取值为区间[1,64]中的整数。同理,针对第2个空间流反馈这64个子载波上的功率控制参数(针对第2个空间流,64个子载波上有64个功率控制参数值)的平均值,即
Figure PCTCN2021136298-appb-000017
针对第3个空间流反馈这64个子载波上的功率控制参数(针对第3个空间流,64个子载波上有64个功率控制参数值)的平均值,即
Figure PCTCN2021136298-appb-000018
针对第4个空间流反馈这64个子载波上的功率控制参数(针对第4个空间流,64个子载波上有64个功率控制参数值)的平均值,即
Figure PCTCN2021136298-appb-000019
又如,以整个带宽为20MHz为例,基于10MHz带宽为粒度来反馈每个空间流的功率控制参数,则可以针对每个空间流反馈前32个子载波上的功率控制参数的平均值,和后32个子载波上的功率控制参数的平均值。
可选的,在计算每个空间流的功率控制参数时,还可以考虑与其他因素结合。比如,波束成形接收器接收后续数据信号时第一空间流的SNR需要大于或等于波束成形接收器接收后续数据信号时第二空间流的SNR。或者,波束成形接收器接收后续数据信号时第一空间流的SNR需要大于或等于波束成形接收器接收后续数据信号时第二空间流的SNR与预设值(或固定值)之和。其中,第一空间流为波束成形接收器接收NDP时多个空间流中SNR最大的空间流,第二空间流为波束成形接收器接收NDP时多个空间流中SNR最小的空间流。该预设值或固定值可以是5dB。换句话说,调整前SNR最大的空间流的SNR,和调整前SNR最小的空间流的SNR在调整后,前者不能小于后者;进一步的,前者不能小于后者+固定值, 如5dB,从而保证调整以后,原来SNR好的空间流仍然要比原来SNR差的空间流好,而且要好大于或等于5dB。
第二种实现方式中,波束成形接收器接收上述NDP时获取上述多个空间流中每个空间流的SNR。波束成形接收器根据其接收该NDP时第i个空间流的SNR、和其接收NDP时该多个空间流的SNR中最小的SNR,以及预设值(或固定值),计算该多个空间流中该第i个空间流的功率控制参数。其中,预设值(或固定值)是一个基于实现经验选取的常数值,如5dB。
一个示例中,第i个空间流的功率控制参数满足以下条件:
SNR i-PC i≤SNR min+预设值…………………………………………………………(1-4)
其中,SNR i表示波束成形接收器接收NDP时第i个空间流的SNR,PC i表示第i个空间流的功率控制参数。SNR min表示波束成形接收器接收NDP时多个空间流的SNR中最小的SNR。应理解,在不等式(1-4)中,PC i未知,其他各项为已知。
可选的,i可以是波束成形接收器接收NDP时SNR最大的空间流的索引,换句话说,此种情况下,只对SNR最大的空间流进行功率控制(即只计算SNR最大的空间流的功率控制参数)。或者,i的取值为波束成形接收器接收NDP时SNR前M高的空间流的索引,比如发送NDP时采用了4个空间流,M等于2,假设第1个空间流的SNR最大,第3个空间流的SNR第二大,则i的取值为1和3。换句话说,此种情况下,对SNR前M高的空间流都进行功率控制(即需要计算SNR前M高的空间流的功率控制参数,如第1个空间流的功率控制参数和第3个空间流的功率控制参数)。或者,i的取值为区间[1,N],N为波束成形生成器发送NDP时采用的空间流数。换句话说,此种情况下,对所有空间流都进行功率控制(即需要计算每个空间流的功率控制参数)。应理解,M小于N。
可选的,波束成形接收器根据上述不等式(1-4)确定出一个PC i后,还可以进一步根据信道状态信息获取接收天线和空间流的对应关系(即接收天线到空间流的映射函数f()),再根据上述公式(1-1)或上述公式(1-3)计算这个确定出的PC i对应的最大RSSI(即RSSI j)或前n个RSSI(如RSSI j和RSSI m)。应理解,此时公式(1-1)或公式(1-3)中除RSSIX j或RSSIX m之外其他各项均为已知。如果通过PC i计算得到的RSSI j小于RSSIX j,则波束成形接收器减小当前的PC i,但减小后的PC i需要满足上述不等式(1-4),以保证通过PC i计算得到的RSSI j不小于RSSIX j,最终获得PC i。应理解,最终得到的PC i需要满足2个条件,其一是满足上述不等式(1-4),其二是满足通过该PC i计算得到的RSSI j不小于RSSIX j
可选的,在步骤S104之后,该无线局域网中的功率控制方法还包括:
S105,波束成形生成器根据该第一参数确定该多个空间流的功率控制参数。
S106,波束成形生成器使用该功率控制参数发送数据信号。相应地,波束成形接收器接收波束成形生成器使用该功率控制参数发送的数据信号。
具体地,上述第一参数包括多个空间流的功率控制参数。波束成形生成器接收到上述波束成形报告后,解析该波束成形报告中的第一参数,获得该多个空间流的功率控制参数。波束成形生成器使用该功率控制参数发送数据信号,换句话说,波束成形生成器采用多个空间流发送数据信号,该多个空间流中每个空间流的发送功率基于该功率控制参数调整。相应地,波束成形接收器接收波束成形生成器使用该功率控制参数发送的数据信号。其中,波束成形接收器接收该数据信号时多个接收天线上最大的RSSI小于或等于第二RSSI阈值,第二RSSI阈值为波束成形接收器接收该数据信号时多个接收天线中最大RSSI的接收天线的RSSI阈 值。该第二RSSI阈值基于波束成形接收器接收该数据信号时多个接收天线中最大RSSI的接收天线的低噪放特性确定。换句话说,如果波束成形接收器接收数据信号时RSSI最大的接收天线与其接收NDP时RSSI最大的接收天线相同,则波束成形接收器接收该数据信号时第一接收天线索引所标识的接收天线上的RSSI小于或等于上述第一RSSI阈值。
可选的,波束成形生成器使用该功率控制参数发送数据信号可以表现为下述公式(1-5):
Figure PCTCN2021136298-appb-000020
其中,
Figure PCTCN2021136298-appb-000021
表示N RX行×1列的接收信号矩阵(或表示N RX行的接收信号向量,此向量为行向量),每一行对应一个接收天线的接收信号。N RX表示接收天线数量,即波束成形接收器的天线数量;N TX表示发送天线数量,即波束成形生成器的天线数量。N SS表示波束成形生成器发送NDP时所采用的空间流数。
Figure PCTCN2021136298-appb-000022
为收发两端N RX行N TX列的信道矩阵,
Figure PCTCN2021136298-appb-000023
为N TX行N SS列的波束成形转向矩阵。
Figure PCTCN2021136298-appb-000024
为N SS行N SS列的空间流的功率控制矩阵,该功率控制矩阵可以是对角阵,针对每个空间流分别进行功率控制。
Figure PCTCN2021136298-appb-000025
为NSS个空间流的发送信号,
Figure PCTCN2021136298-appb-000026
为噪声信号。应理解,该空间流的功率控制矩阵
Figure PCTCN2021136298-appb-000027
包括上述多个空间流的功率控制参数。
换句话说,波束成形生成器在待发送信号(指公式(1-5)中的
Figure PCTCN2021136298-appb-000028
)上乘以空间流的功率控制矩阵
Figure PCTCN2021136298-appb-000029
来调整每个空间流的发送功率,从而降低波束成形接收器的接收天线上的RSSI。
可选的,上述公式(1-5)中的波束成形转向矩阵(即Q矩阵),是基于信道状态信息进行奇异值分解(Singular value decomposition,SVD)后获得的V矩阵生成的。SVD分解如下述公式(1-6)所示:
Figure PCTCN2021136298-appb-000030
其中,
Figure PCTCN2021136298-appb-000031
表示矩阵
Figure PCTCN2021136298-appb-000032
的共轭转置。换句话说,波束成形生成器在Q矩阵(或V矩阵)的基础上进一步进行功率控制,即乘以空间流的功率控制矩阵
Figure PCTCN2021136298-appb-000033
或者,将Q矩阵与空间流的功率控制矩阵
Figure PCTCN2021136298-appb-000034
的乘积,视为预编码矩阵Q′;波束成形生成器在预编码时,直接乘以预编码矩阵Q′,
Figure PCTCN2021136298-appb-000035
可见,本申请实施例的波束成形接收器在波束成形报告中反馈各个空间流的功率控制参数,波束成形生成器基于反馈调整各个空间流的发送功率,以间接降低波束成形接收器接收天线上的RSSI,在不影响信道质量较好的空间流的SNR的情况下,整体降低发送总功率。这样在接收端(即波束成形接收器),就可以通过功率放大器集体放大所有空间流的功率,从而提升原来SNR较差的空间流(即瓶颈空间流)的SNR,实现更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。
实施例二
本申请实施例二主要介绍在信道探测过程中,波束成形接收器(Beamformee)反馈接收天线上的RSSI、接收天线索引、以及RSSI阈值,以使波束成形生成器(Beamformer)基于波束成形接收器(Beamformee)的反馈计算各个空间流的功率调整参数,并调整各个空间流的发送功率,从而在不影响信道质量较好的空间流的SNR的情况下,提高原来SNR较差(这里指信道探测阶段信噪比较差)的空间流上的信噪比。
应理解,本申请实施例二与前述实施例一类似,区别在于:本申请实施例二与前述实施例一反馈的内容不同,以及计算空间流的功率控制参数由Beamformee(接收)端切换到了Beamformer(发送)端。
参见图6,图6是本申请实施例提供的无线局域网中的功率控制方法的另一示意流程图。如图6所示,该无线局域网中的功率控制方法包括但不限于以下步骤:
S201,波束成形生成器采用多个空间流发送空数据分组NDP。
S202,波束成形接收器接收NDP。
具体地,本申请实施例中的步骤S201和步骤S202的实现方式可以参考前述实施例一中步骤S101和步骤S102的实现方式,在此不再赘述。
S203,波束成形接收器发送波束成形报告,该波束成形报告中包括第一参数,该第一参数包括第一RSSI和第一接收天线索引,该第一参数基于该波束成形接收器接收该NDP时多个接收天线上的RSSI确定,该第一参数用于功率控制。
S204,波束成形生成器接收波束成形报告。
可选的,波束成形报告(Beamforming report,BFR)是一种无需确认的动作帧(Action No ACK frame)。在该波束成形报告中会包含MIMO控制字段(MIMO control field),用于指示该波束成形报告的各项参数。此外,该波束成形报告中还包含压缩波束成形报告、多用户独有波束成形报告、信道质量信息报告等字段中的一个或者多个。其中,压缩波束成形报告中包含每个空间流的平均SNR,以及基于每个空间流每Ng(Number of grouping,分组数,其中Ng=4或16)个子载波的压缩波束成形反馈矩阵V。多用户独有波束成形报告中包含基于每个空间流每Ng个子载波的SNR同平均SNR的差值。
可选的,上述波束成形报告还包括第一参数,该第一参数包括第一RSSI和第一接收天线索引。该第一RSSI为波束成形接收器接收上述NDP时多个接收天线上最大的RSSI,该第一天线索引为该第一RSSI对应的接收天线的索引。该第一参数用于结合第一RSSI阈值确定多个空间流的功率控制参数,该多个空间流的功率控制参数用于功率控制或用于调整后续发送数据信号时每个空间流的发送功率。其中,该第一RSSI阈值是该第一天线索引所标识的接收天线的RSSI阈值,其基于该第一天线索引所标识的接收天线的低噪放特性确定。针对一个接收天线,因为RSSI阈值是与射频特征相关的参数,所以波束成形接收器(如STA)可以在与波束成形生成器(如AP)关联(association)的过程中反馈波束成形接收器的每个接收天线的RSSI阈值,且只需要反馈一次(即无需重复反馈每个接收天线的RSSI阈值),以便后续使用。
可选的,上述第一参数中还可以包括第一RSSI阈值,该第一RSSI阈值为该第一RSSI对应的接收天线的RSSI阈值。该第一RSSI阈值可以是基于接收天线的低噪放特性确定的。应理解,当该第一参数还包括第一RSSI阈值的情况下,该第一参数就可以直接用于确定多个空间流的功率控制参数,该多个空间流的功率控制参数用于功率控制或用于调整后续发送数据信号时每个空间流的发送功率。
可选的,上述第一参数(包括第一RSSI和第一接收天线索引,或者包括第一RSSI、第一接收天线索引、以及第一RSSI阈值)可以独立包含在波束成形报告中,也可以包含在压缩波束成形报告、多用户独有波束成形报告、信道质量信息报告等一个或者多个字段中。
可选的,上述步骤S201之后,波束成形生成器还可以发送波束成形报告轮询触发(BFRP trigger)帧,该BFRP触发帧用于触发波束成形接收器(如站点)反馈波束成形报告。
具体地,波束成形接收器接收上述NDP时测量(或获取)每个接收天线上的RSSI(这 里得到的RSSI是所有空间流混合在一起接收时的RSSI)。波束成形接收器再从多个接收天线上的RSSI中确定出最大的RSSI,记为第一RSSI(或RSSI j,j是波束成形接收器接收NDP时测得的RSSI最大的接收天线的索引),该第一RSSI对应的接收天线的索引记为第一天线索引(或j)。可选的,波束成形接收器获取该第一天线索引对应的第一RSSI阈值(记为RSSIX j),第一RSSI阈值基于接收天线的低噪放特性确定。应理解,一个接收天线对应一个RSSI阈值。如果第一RSSI大于第一RSSI阈值,波束成形接收器在波束成形报告中携带第一RSSI(即RSSI j)和第一天线索引(即j),可选的,还携带第一RSSI阈值(即RSSIX j),并发送该波束成形报告。相应地,波束成形生成器接收该波束成形报告。
可选的,因为RSSI在每个子载波上不相同,所以可以是整个带宽(所有子载波)只反馈一个最大的平均值,也就是说,上述第一RSSI是整个带宽(或所有子载波)上平均RSSI的最大值。例如,以整个带宽为20MHz为例,共包括256个子载波(子载波索引从-128到127,即-128,…,-1,0,1,…,127),通常以4个子载波或16个子载波为一组反馈。当Ng(分组数)为4时(4个子载波为一组),需要反馈的子载波索引为[-122,-120:4:-4,-2,2,4:4:120,122],共64个子载波。首先针对每个接收天线,计算这64个子载波(子载波索引分别是[-122,-120:4:-4,-2,2,4:4:120,122])上的RSSI的平均值,然后从所有接收天线的RSSI平均值中确定出最大的RSSI平均值(即上述第一RSSI),上述第一接收天线索引就是这个最大的RSSI平均值对应的接收天线的索引。或者,也可以基于子带宽,每10MHz,或者5MHz,或者20MHz等为单位反馈一个最大的平均值。对于接收天线的RSSI阈值,可以是整个带宽只反馈一个。
可见,本申请实施例只在波束成形报告中携带第一RSSI和第一接收天线索引,可选的携带第一RSSI阈值,携带的信息量少,可以减少信令开销,并可以降低波束成形接收器的计算复杂度。
可选的,在步骤S204之后,该无线局域网中的功率控制方法还包括:
S205,波束成形生成器根据该第一参数包括的第一RSSI和该第一接收天线索引、或进一步根据第一RSSI阈值,确定该多个空间流的功率控制参数。
具体地,上述第一参数包括第一RSSI(即RSSI j)和第一接收天线索引(即j),可选的还包括第一RSSI阈值(即RSSIX j)。波束成形生成器接收到波束成形报告后,从该波束成形报告中获取第一参数。如果该第一参数中不包括第一RSSI阈值(即RSSIX j),波束成形生成器可以从本地存储获取(或向波束成形生成器请求)与第一接收天线索引对应的第一RSSI阈值(即RSSIX j)。波束成形生成器根据该第一RSSI与该第一RSSI阈值之间的差值(即RSSI j-RSSIX j)以及该第一天线索引(即j),计算得出多个空间流中每个空间流的功率控制参数。
其中,波束成形生成器根据该第一RSSI与该第一RSSI阈值之间的差值(即RSSI j-RSSIX j)以及该第一天线索引(即j),计算多个空间流中每个空间流的功率控制参数的实现方式,可参考前述实施例一的步骤S103中第一种实现方式的相应描述。
应理解,上述波束成形报告中会携带收发两端的信道状态信息,所以波束成形生成器也可以根据收发两端的信道状态信息计算接收天线到空间流的映射函数,从而根据上述公式(1-1)获得每个空间流的功率控制参数。
S206,波束成形生成器使用该功率控制参数发送数据信号。相应地,波束成形接收器接收波束成形生成器使用该功率控制参数发送的数据信号。
具体地,本申请实施例中的步骤S206的实现方式可以参考前述实施例一中步骤S106的实现方式,在此不再赘述。
可见,本申请实施例的波束成形接收器在波束成形报告中反馈接收天线上的RSSI、接收天线索引、以及RSSI阈值,波束成形生成器基于波束成形接收器的反馈计算各个空间流的功率调整参数,并调整后续发送数据信号时的各个空间流的发送功率,以间接降低波束成形接收器接收天线上的RSSI,在不影响信道质量较好的空间流的SNR的情况下,整体降低发送总功率。这样在接收端(即波束成形接收器),就可以通过功率放大器集体放大所有空间流的功率,从而提升原来SNR较差的空间流(即瓶颈空间流)的SNR,实现更高空间流数下的更高阶调制方式,达到空间流数和调制阶数的“双高”,提高***吞吐率。
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对波束成形生成器和波束成形接收器进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图7至图9详细描述本申请实施例的通信装置。其中,该通信装置是波束成形生成器或波束成形接收器,进一步的,该通信装置可以为波束成形生成器中的装置;或者,该通信装置为波束成形接收器中的装置。
在采用集成的单元的情况下,参见图7,图7是本申请实施例提供的通信装置1的结构示意图。该通信装置1可以为波束成形生成器或波束成形生成器中的芯片,比如Wi-Fi芯片等。如图7所示,该通信装置1包括收发单元11,可选的包括处理单元12。
该收发单元11,用于发送空数据分组NDP;该收发单元11,还用于接收波束成形报告,该波束成形报告中包括第一参数,该第一参数基于波束成形接收器接收该NDP时多个接收天线上的接收信号强度指示RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的信噪比SNR确定,该第一参数用于功率控制。
可选的,该处理单元12包括生成子单元121。该生成子单元121用于生成NDP。
可选的,该处理单元12包括确定子单元122。该确定子单元122用于根据该第一参数确定该多个空间流的功率控制参数;上述收发单元11,还用于使用该功率控制参数发送数据信号。
可选的,上述收发单元11,还用于发送空数据分组声明NDPA帧,该NDPA帧中包括指示信息,该指示信息用于指示波束成形接收器是否反馈第一参数。
应理解,上述通信装置1可对应执行前述实施例一或前述实施例二,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一或前述实施例二中波束成形生成器的相应操作,为了简洁,在此不再赘述。
参见图8,图8是本申请实施例提供的通信装置2的结构示意图。该通信装置2可以为波束成形接收器或波束成形接收器中的芯片,比如Wi-Fi芯片等。如图8所示,该通信装置2包括收发单元21,可选的包括处理单元22。
该收发单元21,用于接收NDP;该收发单元21,还用于发送波束成形报告,该波束成形报告中包括第一参数,该第一参数基于该波束成形接收器接收该NDP时多个接收天线上的RSSI确定,或者该第一参数基于该波束成形接收器接收该NDP时多个空间流的SNR确定,该第一参数用于功率控制。
可选的,该处理单元22,用于获取第一参数并生成波束成形报告。
可选的,上述收发单元21,还用于接收波束成形生成器使用功率控制参数发送的数据信号,该功率控制参数基于该第一参数确定。
可选的,上述收发单元21,还用于接收NDPA帧,该NDPA帧中包括指示信息,该指示信息用于指示该波束成形接收器是否反馈第一参数。
应理解,上述通信装置2可对应执行前述实施例一或前述实施例二,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例一或前述实施例二中波束成形接收器的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的波束成形生成器和波束成形接收器,以下介绍所述波束成形生成器和波束成形接收器可能的产品形态。应理解,但凡具备上述图7所述的波束成形生成器的功能的任何形态的产品,但凡具备上述图8所述的波束成形接收器的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的波束成形生成器和波束成形接收器的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的波束成形生成器和波束成形接收器,可以由一般性的总线体系结构来实现。
为了便于说明,参见图9,图9是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为波束成形生成器或波束成形接收器,或其中的芯片。图9仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中波束成形生成器的功能:处理器1001可以用于生成图4中步骤S101发送的NDP,或用于执行图4中的步骤S105,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S101、S104以及S106,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中波束成形接收器的功能:处理器1001可以用于生成图4中步骤S103发送的波束成形报告,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S102和S103,和/或用于本文所描 述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例二中波束成形生成器的功能:处理器1001可以用于生成图6中步骤S201发送的NDP,或用于执行图6中的步骤S205,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S201、S204以及S206,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中波束成形接收器的功能:处理器1001可以用于生成图6中步骤S203发送的波束成形报告,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S202和S203,和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述任一方法实施例中描述的方法。计算机程序可能固化在处理器1000中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的波束成形生成器和波束成形接收器,可以由通用处理器来实现。
实现波束成形生成器的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中波束成形生成器的功能。具体 地,该处理电路可以用于生成图4中步骤S101发送的NDP,或用于执行图4中的步骤S105,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图4中的步骤S101、S104以及S106,和/或用于本文所描述的技术的其它过程。
另一种设计中,该通用处理器可以用于执行前述实施例二中波束成形生成器的功能。具体地,该处理电路可以用于生成图6中步骤S201发送的NDP,或用于执行图6中的步骤S205,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图6中的步骤S201、S204以及S206,和/或用于本文所描述的技术的其它过程。
实现波束成形接收器的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中波束成形接收器的功能。具体地,该处理电路可以用于生成图4中步骤S103发送的波束成形报告,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图4中的步骤S102和S103,和/或用于本文所描述的技术的其它过程。
另一种设计中,该通用处理器可以用于执行前述实施例二中波束成形接收器的功能。具体地,该处理电路可以用于生成图6中步骤S203发送的波束成形报告,和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图6中的步骤S202和S203,和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中波束成形生成器或波束成形接收器的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信***,包括波束成形生成器和波束成形接收器,该波束成形生成器和波束成形接收器可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地 方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (30)

  1. 一种无线局域网中的功率控制方法,其特征在于,包括:
    波束成形生成器发送空数据分组NDP;
    所述波束成形生成器接收波束成形报告,所述波束成形报告中包括第一参数,所述第一参数基于波束成形接收器接收所述NDP时多个接收天线上的接收信号强度指示RSSI确定,或者所述第一参数基于所述波束成形接收器接收所述NDP时多个空间流的信噪比SNR确定,所述第一参数用于功率控制。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述波束成形生成器根据所述第一参数确定所述多个空间流的功率控制参数;
    所述波束成形生成器使用所述功率控制参数发送数据信号。
  3. 一种无线局域网中的功率控制方法,其特征在于,包括:
    波束成形接收器接收NDP;
    所述波束成形接收器发送波束成形报告,所述波束成形报告中包括第一参数,所述第一参数基于所述波束成形接收器接收所述NDP时多个接收天线上的RSSI确定,或者所述第一参数基于所述波束成形接收器接收所述NDP时多个空间流的SNR确定,所述第一参数用于功率控制。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述波束成形接收器接收波束成形生成器使用功率控制参数发送的数据信号,所述功率控制参数基于所述第一参数确定。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参数包括多个空间流的功率控制参数,所述功率控制参数基于第一RSSI、第一RSSI阈值以及第一天线索引生成,所述第一RSSI为所述波束成形接收器接收所述NDP时多个接收天线上最大的RSSI,所述第一天线索引为所述第一RSSI对应的接收天线的索引,所述第一RSSI阈值为所述第一RSSI对应的接收天线的RSSI阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述多个空间流中第i个空间流的功率控制参数为:
    PC i=f(RSSI j-RSSIX j);
    其中,所述PC i表示所述第i个空间流的功率控制参数,i的取值为区间[1,N],所述N为波束成形生成器发送所述NDP时采用的空间流数;
    所述f()表示所述第j个接收天线到空间流的映射函数,所述RSSI j表示第j个接收天线上的RSSI,所述j为所述波束成形接收器接收所述NDP时RSSI最大的接收天线的索引,所述RSSIX j表示第j个接收天线上的RSSI阈值;
    所述f()基于所述第j个接收天线上的信道状态信息确定,所述信道状态信息基于所述NDP中的长训练序列确定。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参数包括第一RSSI和第一接收天线索引,所述第一RSSI为所述波束成形接收器接收所述NDP时多个接收天线上最大的RSSI,所述第一接收天线索引为所述第一RSSI对应的接收天线的索引。
  8. 根据权利要求7所述的方法,其特征在于,所述第一参数还包括第一RSSI阈值,所述第一RSSI阈值为所述第一接收天线索引对应的RSSI阈值。
  9. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参数包括多个空间流的功率控制参数,所述多个空间流中第i个空间流的功率控制参数基于所述波束成形接收器接收所述NDP时所述第i个空间流的SNR、和所述波束成形接收器接收所述NDP时多个空间流的SNR中最小的SNR,以及预设值确定。
  10. 根据权利要求9所述的方法,其特征在于,所述第i个空间流的功率控制参数满足以下条件:
    SNR i-PC i≤SNR min+预设值;
    其中,所述SNR i表示所述波束成形接收器接收所述NDP时第i个空间流的SNR,i的取值为区间[1,N],所述N为波束成形生成器发送所述NDP时采用的空间流数,所述PC i表示所述第i个空间流的功率控制参数,所述SNR min表示所述波束成形接收器接收所述NDP时多个空间流的SNR中最小的SNR。
  11. 根据权利要求1或2所述的方法,其特征在于,所述波束成形生成器发送NDP之前,所述方法还包括:
    所述波束成形生成器发送空数据分组声明NDPA帧,所述NDPA帧中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  12. 根据权利要求3或4所述的方法,其特征在于,所述波束成形接收器接收NDP之前,所述方法还包括:
    所述波束成形接收器接收NDPA帧,所述NDPA帧中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述NDP中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  14. 一种通信装置,其特征在于,包括:
    收发单元,用于发送空数据分组NDP;
    所述收发单元,还用于接收波束成形报告,所述波束成形报告中包括第一参数,所述第一参数基于波束成形接收器接收所述NDP时多个接收天线上的接收信号强度指示RSSI确定,或者所述第一参数基于所述波束成形接收器接收所述NDP时多个空间流的信噪比SNR确定,所述第一参数用于功率控制。
  15. 根据权利要求14所述的通信装置,其特征在于,所述通信装置还包括:
    处理单元,用于根据所述第一参数确定所述多个空间流的功率控制参数;
    所述收发单元,还用于使用所述功率控制参数发送数据信号。
  16. 一种通信装置,其特征在于,包括:
    收发单元,用于接收NDP;
    所述收发单元,还用于发送波束成形报告,所述波束成形报告中包括第一参数,所述第一参数基于所述通信装置接收所述NDP时多个接收天线上的RSSI确定,或者所述第一参数基于所述通信装置接收所述NDP时多个空间流的SNR确定,所述第一参数用于功率控制。
  17. 根据权利要求16所述的通信装置,其特征在于,所述收发单元,还用于接收波束成形生成器使用功率控制参数发送的数据信号,所述功率控制参数基于所述第一参数确定。
  18. 根据权利要求14-17任一项所述的通信装置,其特征在于,所述第一参数包括多个空间流的功率控制参数,所述功率控制参数基于第一RSSI、第一RSSI阈值以及第一天线索引生成,所述第一RSSI为波束成形接收器接收所述NDP时多个接收天线上最大的RSSI,所述第一天线索引为所述第一RSSI对应的接收天线的索引,所述第一RSSI阈值为所述第一RSSI对应的接收天线的RSSI阈值。
  19. 根据权利要求18所述的通信装置,其特征在于,所述多个空间流中第i个空间流的功率控制参数为:
    PC i=f(RSSI j-RSSIX j);
    其中,所述PC i表示所述第i个空间流的功率控制参数,i的取值为区间[1,N],所述N为波束成形生成器发送所述NDP时采用的空间流数;
    所述f()表示所述第j个接收天线到空间流的映射函数,所述RSSI j表示第j个接收天线上的RSSI,所述j为所述波束成形接收器接收所述NDP时RSSI最大的接收天线的索引,所述RSSIX j表示第j个接收天线上的RSSI阈值;
    所述f()基于所述第j个接收天线上的信道状态信息确定,所述信道状态信息基于所述NDP中的长训练序列确定。
  20. 根据权利要求14-17任一项所述的通信装置,其特征在于,所述第一参数包括第一RSSI和第一接收天线索引,所述第一RSSI为波束成形接收器接收所述NDP时多个接收天线上最大的RSSI,所述第一接收天线索引为所述第一RSSI对应的接收天线的索引。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一参数还包括第一RSSI阈值,所述第一RSSI阈值为所述第一接收天线索引对应的RSSI阈值。
  22. 根据权利要求14-17任一项所述的通信装置,其特征在于,所述第一参数包括多个空间流的功率控制参数,所述多个空间流中第i个空间流的功率控制参数基于波束成形接收器接收所述NDP时所述第i个空间流的SNR、和所述波束成形接收器接收所述NDP时多个空间流的SNR中最小的SNR,以及预设值确定。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第i个空间流的功率控制参数满足以下条件:
    SNR i-PC i≤SNR min+预设值;
    其中,所述SNR i表示所述波束成形接收器接收所述NDP时第i个空间流的SNR,i的取值为区间[1,N],所述N为波束成形生成器发送所述NDP时采用的空间流数,所述PC i表示所述第i个空间流的功率控制参数,所述SNR min表示所述波束成形接收器接收所述NDP时多个空间流的SNR中最小的SNR。
  24. 根据权利要求14或15所述的通信装置,其特征在于,所述收发单元,还用于发送空数据分组声明NDPA帧,所述NDPA帧中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  25. 根据权利要求16或17所述的通信装置,其特征在于,所述收发单元,还用于接收NDPA帧,所述NDPA帧中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  26. 根据权利要求14-25任一项所述的通信装置,其特征在于,所述NDP中包括指示信息,所述指示信息用于指示是否反馈第一参数。
  27. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述收发器用于收发NDP,所述处理器用于执行如权利要求1-13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-13任一项所述的方法。
  29. 一种包含程序指令的计算机程序产品,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-13任一项所述的方法。
  30. 一种装置,其特征在于,所述装置包括输入输出接口和处理电路,所述输入输出接口用于收发NDP,所述处理电路用于执行如权利要求1-13中任一项所述的方法。
PCT/CN2021/136298 2020-12-11 2021-12-08 无线局域网中的功率控制方法及相关装置 WO2022121918A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902623.4A EP4240067A4 (en) 2020-12-11 2021-12-08 METHOD FOR POWER CONTROL IN WIRELESS LOCAL NETWORK AND RELATED APPARATUS
US18/330,323 US20230319732A1 (en) 2020-12-11 2023-06-06 Power control method in wireless local area network and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011445480.4A CN114630412A (zh) 2020-12-11 2020-12-11 无线局域网中的功率控制方法及相关装置
CN202011445480.4 2020-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/330,323 Continuation US20230319732A1 (en) 2020-12-11 2023-06-06 Power control method in wireless local area network and related apparatus

Publications (1)

Publication Number Publication Date
WO2022121918A1 true WO2022121918A1 (zh) 2022-06-16

Family

ID=81895485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136298 WO2022121918A1 (zh) 2020-12-11 2021-12-08 无线局域网中的功率控制方法及相关装置

Country Status (4)

Country Link
US (1) US20230319732A1 (zh)
EP (1) EP4240067A4 (zh)
CN (1) CN114630412A (zh)
WO (1) WO2022121918A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108383A (zh) * 2011-08-25 2013-05-15 华为技术有限公司 控制功率的方法和无线站点设备
CN107852617A (zh) * 2015-08-31 2018-03-27 松下知识产权经营株式会社 用于上行链路多用户通信的探测方法
CN110034803A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 无线通信***中信道状态信息反馈方法和装置
US20200112350A1 (en) * 2018-10-03 2020-04-09 Qualcomm Incorporated Null data packet-based implicit sounding and calibration in a wireless local area network
CN111049558A (zh) * 2018-10-15 2020-04-21 华为技术有限公司 通信方法和通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088393B2 (en) * 2010-07-30 2015-07-21 Lg Electronics Inc. Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
US9332449B2 (en) * 2011-11-24 2016-05-03 Lg Electronics Inc. Method and apparatus for feedback of channel state information
US9763259B2 (en) * 2014-09-23 2017-09-12 Newracom, Inc. Sounding method
CN114221683A (zh) * 2017-07-06 2022-03-22 华为技术有限公司 波束赋形训练的方法、接收设备和发送设备
US11101867B2 (en) * 2018-10-09 2021-08-24 Mediatek Singapore Pte. Ltd. Reducing beamforming feedback size in WLAN communication
CN111628809B (zh) * 2019-02-28 2021-12-03 华为技术有限公司 确定波束赋形的加权参数的方法及wlan中的ap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108383A (zh) * 2011-08-25 2013-05-15 华为技术有限公司 控制功率的方法和无线站点设备
CN107852617A (zh) * 2015-08-31 2018-03-27 松下知识产权经营株式会社 用于上行链路多用户通信的探测方法
CN110034803A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 无线通信***中信道状态信息反馈方法和装置
US20200112350A1 (en) * 2018-10-03 2020-04-09 Qualcomm Incorporated Null data packet-based implicit sounding and calibration in a wireless local area network
CN111049558A (zh) * 2018-10-15 2020-04-21 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240067A4

Also Published As

Publication number Publication date
CN114630412A (zh) 2022-06-14
US20230319732A1 (en) 2023-10-05
EP4240067A4 (en) 2024-04-17
EP4240067A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US9450726B2 (en) Method of performing link adaptation procedure
TWI744327B (zh) 在毫米波無線區域網路中波束成形反饋系統及方法
US8738085B2 (en) Method and system for communicating feedback information in a multiple user multiple input multiple output (MU-MIMO) communication system
JP6599333B2 (ja) マルチユーザ多入力多出力(mu−mimo)フィードバックプロトコル
KR101923200B1 (ko) 통신 네트워크에서 하향링크 다중 사용자 mimo 구성을 위한 대안적인 피드백 방법 및 시스템
US9843962B2 (en) Dual-stream signal (SIG) field encoding with higher order modulation
US20120281620A1 (en) Beamforming feedback format
MX2012010051A (es) Metodo y aparato para transmitir-recibir un paquete de entrada multiple salida multiple en un sistema de red de area local inalambrica.
JP6042567B2 (ja) ワイヤレス通信システムにおけるデュアルモード(シングルユーザおよびマルチユーザ)パケット誤り率ベースのレート制御のための方法およびシステム
Redieteab et al. PHY+ MAC channel sounding interval analysis for IEEE 802.11 ac MU-MIMO
CN114499797A (zh) Ppdu中空间复用参数字段的确定方法及相关装置
CN102572915B (zh) 一种基于自适应双层波束赋型传输数据流的基站及方法
WO2022121918A1 (zh) 无线局域网中的功率控制方法及相关装置
CN101783699A (zh) 多用户mimo***中下行链路的信号发射方法和装置
US8868124B2 (en) Frequency domain equalizer for a beamformed system
CN115913301A (zh) 波束成型报告的反馈方法及装置
WO2023029907A1 (zh) Ndpa帧的传输方法及相关装置
EP4207619A1 (en) Cyclic shift delay (csd) determining method and communication apparatus
CN118075698A (zh) 无线网络中的组播传输方法、装置及可读存储介质
CN116707591A (zh) 一种天线模式切换方法及相关装置
CN118102334A (zh) 一种通信方法、装置及计算机可读存储介质
CN115150865A (zh) 信道质量信息确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021902623

Country of ref document: EP

Effective date: 20230601

NENP Non-entry into the national phase

Ref country code: DE