WO2022121690A1 - 机械臂避障方法、机械臂及机器人 - Google Patents

机械臂避障方法、机械臂及机器人 Download PDF

Info

Publication number
WO2022121690A1
WO2022121690A1 PCT/CN2021/132917 CN2021132917W WO2022121690A1 WO 2022121690 A1 WO2022121690 A1 WO 2022121690A1 CN 2021132917 W CN2021132917 W CN 2021132917W WO 2022121690 A1 WO2022121690 A1 WO 2022121690A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
moving part
acceleration
conductor
position information
Prior art date
Application number
PCT/CN2021/132917
Other languages
English (en)
French (fr)
Inventor
刘培超
林俊凯
郎需林
刘主福
Original Assignee
深圳市越疆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市越疆科技有限公司 filed Critical 深圳市越疆科技有限公司
Publication of WO2022121690A1 publication Critical patent/WO2022121690A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture

Definitions

  • the present application relates to the field of robots, and in particular to a method for avoiding obstacles of a robotic arm, a robotic arm and a robot.
  • a robot is an intelligent machine that can work semi-autonomously or fully autonomously. It has basic characteristics such as perception, decision-making, and execution. It can assist or even replace humans in completing dangerous, heavy and complex tasks.
  • collision detection is to determine whether the robot collides by detecting the change of force or the sudden change of the joint current through the force sensor.
  • the obstacle needs to collide with the robot before triggering an emergency stop.
  • the existing robot collision detection needs to collide with an obstacle before triggering an emergency stop of the robot. After the robot collides with objects or people, it is easy to damage objects or cause injuries. After a collision, the robot stops working. In severe cases, it is necessary to check whether the robot is damaged before continuing to work, which reduces the working efficiency of the robot.
  • the main purpose of the present application is to propose an obstacle avoidance method for a robotic arm, which aims to solve the technical problems raised in the above background art.
  • the present application proposes an obstacle avoidance method for a robotic arm.
  • the obstacle avoidance method for a robotic arm includes: receiving monitoring data sent by an electronic skin module; When the degree is less than the preset threshold, the robotic arm is controlled to decelerate and the position information of the conductor is determined according to the proximity degree; and, based on the position information of the conductor and the position information of the robotic arm, the robotic arm is controlled to avoid the conductor.
  • the electronic skin module includes a detection circuit and an electrode electrically connected to the detection circuit;
  • the electrodes are capable of forming a capacitance with the proximate conductor and transmitting an electrical signal characterizing the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • controlling the movement of the robot arm to avoid the conductor includes:
  • the second position information of the manipulator is acquired, and the second motion trajectory is planned according to the second position information and the target position information of the manipulator.
  • the deceleration motion of the robotic arm includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the robot when it senses the obstacle
  • V 0 is the speed of the robot when it senses the obstacle
  • a 0 is the acceleration of the robot when it senses the obstacle
  • j eck is the set jerk
  • t 1 is The acceleration and deceleration time of the robot
  • V1 is the speed of the robot in the acceleration and deceleration section
  • t2 is the deceleration and acceleration time of the robot
  • V2 is the speed of the robot in the deceleration and acceleration section
  • t3 is the deceleration and deceleration time of the robot
  • a m is the robot. deceleration.
  • the obstacle avoidance motion of the manipulator includes acceleration section, acceleration and deceleration section and constant speed section;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the robot in the jerk stage
  • Va 2 is the speed of the robot in the acceleration and deceleration stage.
  • the application further proposes a robotic arm, which includes:
  • the moving part is connected to the base and can swing, rotate or move linearly relative to the base;
  • Drive parts used to drive moving parts to move or brake moving parts
  • Electronic skin covering at least part of the surface of the moving part, for detecting the proximity of the external conductor to the robotic arm;
  • a control system includes a processor and a memory, the memory stores executable program instructions, and the processor executes the executable program instructions to perform the following steps:
  • the moving part is controlled to avoid the conductor.
  • the electronic skin includes a detection circuit and an electrode electrically connected to the detection circuit;
  • the electrodes are capable of forming a capacitance with the proximate conductor and transmitting an electrical signal characterizing the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the processor also performs the following steps when executing the executable program instructions:
  • the second position information of the moving part is acquired, and the second movement track is planned according to the second position information and the target position information of the moving part.
  • the deceleration motion of the moving part includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the moving part when it senses the conductor
  • V 0 is the velocity of the moving part when it senses the conductor
  • a 0 is the acceleration of the moving part when it senses the conductor
  • j eck is the set jerk
  • t 1 is The acceleration and deceleration time of the moving part
  • V1 is the speed of the moving part in the acceleration and deceleration section
  • t2 is the deceleration and acceleration time of the moving part
  • V2 is the speed of the moving part in the deceleration and acceleration section
  • t3 is the deceleration and deceleration time of the moving part
  • a m is the deceleration of the moving parts.
  • the obstacle avoidance motion of the moving parts includes the acceleration section, the acceleration and deceleration section and the constant speed section;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the moving parts of the machine in the jerk stage
  • Va 2 is the speed of the manipulator in the acceleration and deceleration stage.
  • the present application also proposes a robot, including a robotic arm, wherein the robotic arm includes:
  • the moving part is connected to the base and can swing, rotate or move linearly relative to the base;
  • Drive parts used to drive moving parts to move or brake moving parts
  • Electronic skin covering at least part of the surface of the moving part, for detecting the proximity of the external conductor to the robotic arm;
  • a control system includes a processor and a memory, the memory stores executable program instructions, and the processor executes the executable program instructions to perform the following steps:
  • the moving part is controlled to avoid the conductor.
  • the electronic skin includes a detection circuit and an electrode electrically connected to the detection circuit;
  • the electrodes are capable of forming a capacitance with the proximate conductor and transmitting an electrical signal characterizing the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the processor also performs the following steps when executing the executable program instructions:
  • the second position information of the moving part is acquired, and the second movement track is planned according to the second position information and the target position information of the moving part.
  • the deceleration motion of the moving part includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the moving part when it senses the conductor
  • V 0 is the velocity of the moving part when it senses the conductor
  • a 0 is the acceleration of the moving part when it senses the conductor
  • j eck is the set jerk
  • t 1 is The acceleration and deceleration time of the moving part
  • V1 is the speed of the moving part in the acceleration and deceleration section
  • t2 is the deceleration and acceleration time of the moving part
  • V2 is the speed of the moving part in the deceleration and acceleration section
  • t3 is the deceleration and deceleration time of the moving part
  • a m is the deceleration of the moving parts.
  • the obstacle avoidance motion of the moving parts includes the acceleration section, the acceleration and deceleration section and the constant speed section;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the moving part in the jerk segment
  • Va 2 is the speed of the moving part in the acceleration and deceleration segment.
  • This application is based on the non-contact sensing of obstacles based on the electronic skin, which triggers the robot to avoid obstacles instead of emergency stop after sensing the obstacles. It avoids collisions with obstacles by planning the obstacle avoidance trajectory in advance, and makes The robot operates without stopping, thereby improving the working efficiency of the robot. Specifically, if the robot senses that there is an obstacle ahead during the operation, the robot will decelerate according to the originally set motion trajectory. During the deceleration movement of the robot, the robot will plan according to the current position and the position of the obstacle. After the obstacle is avoided, the robot will re-plan a new motion trajectory according to its current position and target position, so as to control the robot to move to the target position according to the re-planned motion trajectory, thereby To achieve the purpose of non-stop operation.
  • FIG. 1 is a flowchart of the first embodiment of the obstacle avoidance method for a robotic arm according to the present application
  • Fig. 2 is the trajectory planned by the obstacle avoidance method of the robotic arm of the present application
  • FIG. 3 is a flowchart of a second embodiment of the obstacle avoidance method for a robotic arm according to the present application
  • FIG. 4 is a functional block diagram of an embodiment of an obstacle avoidance device for a robotic arm according to the present application.
  • the present application discloses an obstacle avoidance method for a robotic arm.
  • the obstacle avoidance method for a robotic arm includes:
  • Step S10 receiving monitoring data sent by the electronic skin module
  • Step S20 judging the proximity of the manipulator and the conductor close to it according to the monitoring data
  • Step S30 when the proximity degree is less than the preset threshold, control the robotic arm to decelerate and determine the position information of the conductor according to the proximity degree;
  • Step S40 based on the position information of the conductor and the position information of the manipulator, the manipulator is controlled to avoid the conductor.
  • the electronic skin module includes electrodes covered on the manipulator arm and a detection circuit, the detection circuit is electrically connected to the motor, the electrodes can form a capacitance with an approaching conductor and transmit an electrical signal used to characterize the capacitance or its variation To the detection circuit, the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the electrode can be copper foil wrapped on the surface of the joint of the manipulator, which is only an example and not a limitation.
  • the copper foil-air-conductor constitutes a capacitor. This capacitance or its variation determines the proximity of the robot arm to the conductors that are close to it.
  • the conductor can be a human hand.
  • the electronic skin module can detect the capacitance change of the capacitor formed by the electronic skin module and the human hand in real time.
  • the proximity degree according to the proximity degree, the controller of the robotic arm adjusts the current motion of the robotic arm before the collision between the human hand and the robotic arm, so as to avoid the collision between the robotic arm and the human hand.
  • the robotic arm Before the robotic arm moves, it first sets the motion trajectory according to the current position and the target position, and then moves toward the target position according to the motion trajectory.
  • the electronic skin module can detect whether there is an obstacle in front. If the electronic skin module senses the existence of an obstacle, it will control the robot arm to decelerate according to the originally set movement trajectory, so as to avoid the robot arm and the front.
  • the motion trajectory corresponding to this deceleration motion is defined as a "deceleration trajectory", as shown in Figure 2.
  • the robotic arm will re-plan the movement trajectory to avoid the obstacles existing in front, that is, the obstacle avoidance trajectory, as shown in Figure 2.
  • This obstacle avoidance trajectory is specifically planned according to the current position of the robotic arm and the position of the obstacle ahead. During the obstacle avoidance process, the moving direction of the robotic arm is always towards the target position.
  • the starting point of the original motion trajectory of the manipulator is P 1
  • the target point is P 2
  • the deceleration stop point is P n
  • the obstacle avoidance stop point is P m .
  • the deceleration stop point P n refers to the position where the robot arm decelerates and stops according to the originally set motion trajectory after sensing the obstacle, and the robot arm does not collide with the obstacle at this position
  • the obstacle avoidance stop point P m It refers to the point where the robotic arm moves according to the obstacle avoidance trajectory to the point where the electronic skin module cannot perceive the obstacle.
  • the robotic arm can re-plan a new motion trajectory according to the current position point P m and the target point P 2 of the original motion trajectory, and the re-planned motion trajectory is defined as "recovery trajectory" ,as shown in picture 2.
  • the robot After planning the "recovery trajectory", the robot continues to move according to this "recovery trajectory". If the robot arm senses an obstacle again during the movement, it will decelerate, avoid obstacles and recover again until the robot arm is no longer in contact with the obstacle. Move to the target point under the premise of collision and running without stopping.
  • controlling the manipulator to avoid the movement of the conductor includes:
  • Step S41 acquiring first position information of the robotic arm during the deceleration movement of the robotic arm
  • Step S42 planning a first motion trajectory avoiding the conductor according to the first position information and the position information of the conductor;
  • Step S43 after avoiding the conductor, obtain the second position information of the manipulator, and plan the second motion trajectory according to the second position information and the target position information of the manipulator.
  • the robotic arm when the robotic arm senses that there is an obstacle ahead, the robotic arm starts to decelerate on the original motion trajectory, and during the deceleration movement, the current position information of the robotic arm (the first position) can be acquired in real time. information).
  • the first motion trajectory to avoid the obstacle can be planned.
  • the manipulator moves according to the first motion trajectory.
  • the robotic arm uses the electronic skin module to sense whether the obstacle is still within the preset distance of the robotic arm. If the electronic skin module cannot sense the existence of the obstacle, it means that the robotic arm has avoided the obstacle. .
  • the second motion trajectory is re-planned according to the current position information (second position information) and target position information of the robotic arm. After planning the second motion trajectory, the robotic arm moves according to the second motion trajectory until it reaches the target position.
  • the deceleration motion of the robotic arm proposed in this application includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the manipulator when it senses the obstacle
  • V 0 is the speed of the manipulator when it senses the obstacle
  • a 0 is the acceleration of the manipulator when it senses the obstacle
  • j eck is the set acceleration Acceleration
  • t 1 is the acceleration and deceleration time of the manipulator
  • V 1 is the speed of the manipulator in the acceleration and deceleration section
  • t 2 is the deceleration and acceleration time of the manipulator
  • V 2 is the speed of the manipulator in the deceleration and acceleration section
  • t 3 is the speed of the manipulator
  • a m is the deceleration rate of the mechanical arm.
  • the trajectory of the robot arm running from point P 1 to point P 2 is S(t), and it encounters an obstacle at time t0.
  • the movement speed of the robot arm is V 0
  • the jerk is j eck , in:
  • Acceleration and deceleration time t 1 a 0 /j eck ;
  • Acceleration and deceleration time period displacement formula S S 0 +V 0 (tt 0 )+0.5a 0 (tt 0 ) 2 -1/6j eck (tt 0 ) 3 , (t 0 ⁇ t ⁇ t 0 +t 1 ) ( 2)
  • V 1 V 0 +a 0 t 1 -0.5j eck t 1 2
  • Displacement formula S S 2 +V 2 (tt 0 -t 1 -t 2 ) -0.5am (tt 0 -t 1 -t 2 ) 2 +1/6j eck (tt 0 -t 1 - t 2 ) 3 , (t 0 +t 1 +t 2 ⁇ t ⁇ t 0 +t 1 + t 2 +t 3 ) (6)
  • the obstacle avoidance motion proposed in this application includes a jerk segment, an acceleration/deceleration segment, and a constant velocity segment;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the manipulator in the jerk segment
  • Va 2 is the speed of the manipulator in the acceleration and deceleration segment.
  • V a V a1 +a am (tt a0 )-0.5j a (tt a0 ) 2 , (t a0 ⁇ t ⁇ t a0 +t a1 ) (9)
  • the present application further proposes a robotic arm obstacle avoidance device, see FIG. 4 , the robotic arm obstacle avoidance device includes:
  • a data receiving module 10 for receiving monitoring data sent by the electronic skin module
  • the judgment module 20 is used for judging the proximity degree of the manipulator and the conductor close to it according to the monitoring data;
  • a position acquisition module 30 configured to control the robotic arm to decelerate and determine the position information of the conductor according to the proximity degree when the proximity degree is less than a preset threshold;
  • the motion control module 40 is configured to control the manipulator to avoid the conductor based on the position information of the conductor and the position information of the manipulator.
  • the electronic skin module proposed in this application includes:
  • the electrode can form a capacitance with the adjacent conductor, and transmit the electrical signal used to characterize the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the motion control module proposed by the embodiments of the present application includes:
  • the position acquisition unit is used to acquire the first position information of the manipulator during the deceleration movement of the manipulator;
  • a first motion trajectory planning unit configured to plan a first motion trajectory avoiding the conductor according to the first position information and the position information of the conductor;
  • the second motion trajectory planning unit is configured to acquire the second position information of the manipulator after avoiding the conductor, and plan the second motion trace according to the second position information and the target position information of the manipulator.
  • the deceleration motion of the robotic arm proposed in the present application includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the manipulator when it senses the obstacle
  • V 0 is the speed of the manipulator when it senses the obstacle
  • a 0 is the acceleration of the manipulator when it senses the obstacle
  • j eck is the set acceleration Acceleration
  • t 1 is the acceleration and deceleration time of the manipulator
  • V 1 is the speed of the manipulator in the acceleration and deceleration section
  • t 2 is the deceleration and acceleration time of the manipulator
  • V 2 is the speed of the manipulator in the deceleration and acceleration section
  • t 3 is the speed of the manipulator
  • a m is the deceleration rate of the mechanical arm.
  • the trajectory of the robot running from point P 1 to point P 2 is S(t), and it encounters an obstacle at time t0.
  • the moving speed of the robot arm is V 0
  • the jerk is j eck , where :
  • Acceleration and deceleration time t 1 a 0 /j eck ;
  • Acceleration and deceleration time period displacement formula S S 0 +V 0 (tt 0 )+0.5a 0 (tt 0 ) 2 -1/6j eck (tt 0 ) 3 , (t 0 ⁇ t ⁇ t 0 +t 1 ) ( 2)
  • V 1 V 0 +a 0 t 1 -0.5j eck t 1 2
  • Displacement formula S S 2 +V 2 (tt 0 -t 1 -t 2 ) -0.5am (tt 0 -t 1 -t 2 ) 2 +1/6j eck (tt 0 -t 1 - t 2 ) 3 , (t 0 +t 1 +t 2 ⁇ t ⁇ t 0 +t 1 + t 2 +t 3 ) (6)
  • the obstacle avoidance motion proposed in this application includes a jerk segment, an acceleration/deceleration segment, and a constant velocity segment;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the manipulator in the jerk segment
  • Va 2 is the speed of the manipulator in the acceleration and deceleration segment.
  • V a V a1 +a am (tt a0 )-0.5j a (tt a0 ) 2 , (t a0 ⁇ t ⁇ t a0 +t a1 ) (9)
  • the application further proposes a robotic arm, the robotic arm comprising:
  • the moving part is connected to the base and can swing, rotate or move linearly relative to the base;
  • Drive parts used to drive moving parts to move or brake moving parts
  • Electronic skin covering at least part of the surface of the moving part, for detecting the proximity of the external conductor to the robotic arm;
  • a control system includes a processor and a memory, the memory stores executable program instructions, and the processor executes the executable program instructions to perform the following steps:
  • the moving part is controlled to avoid the conductor.
  • the electronic skin includes a detection circuit and electrodes electrically connected to the detection circuit;
  • the electrodes are capable of forming a capacitance with the proximate conductor and transmitting an electrical signal characterizing the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the processor further performs the following steps when executing the executable program instructions:
  • the second position information of the moving part is acquired, and the second movement track is planned according to the second position information and the target position information of the moving part.
  • the deceleration motion of the moving member includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the moving part when it senses the conductor
  • V 0 is the velocity of the moving part when it senses the conductor
  • a 0 is the acceleration of the moving part when it senses the conductor
  • j eck is the set jerk
  • t 1 is The acceleration and deceleration time of the moving part
  • V1 is the speed of the moving part in the acceleration and deceleration section
  • t2 is the deceleration and acceleration time of the moving part
  • V2 is the speed of the moving part in the deceleration and acceleration section
  • t3 is the deceleration and deceleration time of the moving part
  • a m is the deceleration of the moving parts.
  • the obstacle avoidance motion of the moving component includes a jerk segment, an acceleration/deceleration segment and a constant velocity segment;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the moving part in the jerk segment
  • Va 2 is the speed of the moving part in the acceleration and deceleration segment.
  • the present application also proposes a robot, including a robotic arm, wherein the robotic arm includes:
  • the moving part is connected to the base and can swing, rotate or move linearly relative to the base;
  • Drive parts used to drive moving parts to move or brake moving parts
  • Electronic skin covering at least part of the surface of the moving part, for detecting the proximity of the external conductor to the robotic arm;
  • a control system includes a processor and a memory, the memory stores executable program instructions, and the processor executes the executable program instructions to perform the following steps:
  • the moving part is controlled to avoid the conductor.
  • the electronic skin includes a detection circuit and electrodes electrically connected to the detection circuit;
  • the electrodes are capable of forming a capacitance with the proximate conductor and transmitting an electrical signal characterizing the capacitance or its variation to the detection circuit;
  • the detection circuit is used to convert the electrical signal representing the capacitance or its variation into an electrical signal of the capacitance value or its variation.
  • the processor further performs the following steps when executing the executable program instructions:
  • the second position information of the moving part is acquired, and the second movement track is planned according to the second position information and the target position information of the moving part.
  • the deceleration motion of the moving member includes an acceleration and deceleration section, a deceleration and acceleration section, and a deceleration and deceleration section;
  • S 0 is the displacement of the moving part when it senses the conductor
  • V 0 is the velocity of the moving part when it senses the conductor
  • a 0 is the acceleration of the moving part when it senses the conductor
  • j eck is the set jerk
  • t 1 is The acceleration and deceleration time of the moving part
  • V1 is the speed of the moving part in the acceleration and deceleration section
  • t2 is the deceleration and acceleration time of the moving part
  • V2 is the speed of the moving part in the deceleration and acceleration section
  • t3 is the deceleration and deceleration time of the moving part
  • a m is the deceleration of the moving parts.
  • the obstacle avoidance motion of the moving component includes a jerk segment, an acceleration/deceleration segment and a constant velocity segment;
  • j a is the set jerk
  • t a0 is the jerk time
  • t a1 is the acceleration and deceleration time
  • Va 1 is the speed of the moving part in the jerk segment
  • Va 2 is the speed of the moving part in the acceleration and deceleration segment.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division.
  • there may be other division methods for example, multiple modules or components may be combined or integrated.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as independent products, can be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本申请公开一种机械臂避障方法、机械臂及机器人,该机械臂避障方法包括:接收电子皮肤模块发送的监测数据;根据监测数据判断机械臂和与其接近的导体的接近程度;当接近程度小于预设阈值时,控制机械臂减速并根据接近程度确定导体的位置信息;基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体。本申请是基于电子皮肤非接触式感应障碍物,在感应到障碍物后触发机器人避障而非紧急停止,其通过提前规划出避障轨迹,防止与障碍物发生碰撞,以绕行的方式使得机器人不停机的运作,从而提升机器人的工作效率。

Description

机械臂避障方法、机械臂及机器人 技术领域
本申请涉及机器人领域,具体涉及一种机械臂避障方法、机械臂及机器人。
背景技术
机器人是一种能够半自主或全自主工作的智能机器,其具有感知、决策、执行等基本特征,可以辅助甚至替代人类完成危险、繁重、复杂的工作。
现有机器人碰撞检测技术,碰撞检测是通过力传感器检测到力发生了变化或者检测关节电流发生突变来判断机器人是否发生碰撞,障碍物需要与机器人发生碰撞后,才触发紧急停止。
然而,现有的机器人碰撞检测需要与障碍物发生碰撞后,才触发机器人紧急停止。机器人与物品或人发生碰撞后,容易损坏物品,或造成人员受伤。发生碰撞后机器人停止运作,严重时需要检修机器人是否损坏才能继续工作,降低了机器人的工作效率。
申请内容
本申请的主要目的在于提出一种机械臂避障方法,旨在解决上述背景技术中所提出的技术问题。
为实现上述目的,本申请提出一种机械臂避障方法,该机械臂避障方法包括:接收电子皮肤模块发送的监测数据;根据监测数据判断机械臂和与其接近的导体的接近程度;当接近程度小于预设阈值时,控制机械臂减速并根据接近程度确定导体的位置信息;以及,基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体。
其中,电子皮肤模块包括检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;以及,
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量 的电信号。
其中,基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体运动包括:
在机械臂减速运动过程中,获取机械臂的第一位置信息;
根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
在避开导体后,获取机械臂的第二位置信息,并根据第二位置信息和机械臂的目标位置信息规划第二运动轨迹。
其中,机械臂的减速运动包括加减速段、减加速段和减减速段;
机器人在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0 t 1 2-1/6j eckt 1 3
机器人在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
机器人在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
S 0为机器人在感知到障碍物时的位移,V 0为机器人在感知到障碍物时的速度,a 0为机器人在感知到障碍物时的加速度,j eck为设定加加速度,t 1为机器人的加减速时间,V 1为机器人在加减速段的速度,t 2为机器人的减加速时间,V 2为机器人在减加速段的速度,t 3为机器人的减减速时间,a m为机器人的减加速度。
其中,机械臂的避障运动包括加加速段、加减速段和匀速段;
机器人在加加速段的运动轨迹为:S a1=1/6j a t a0 3
机器人在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
机器人在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1加加速段机器人的速度,Va 2为加减速段机器人的速度。
本申请进一步提出一种机械臂,其中,包括:
基座;
运动部件,连接在基座上,可相对于基座摆动、转动或直线运动;
驱动部件,用于驱动运动部件运动或制动运动部件;
电子皮肤,覆盖运动部件的至少部分表面,用于检测外界导体与机械臂的接近程度;
控制***,包括处理器和存储器,存储器存储可执行程序指令,处理器执行可执行程序指令以执行如下步骤:
接收电子皮肤发送的监测数据;
根据监测数据判断运动部件和与其接近的导体的接近程度;
当接近程度小于预设阈值时,控制运动部件减速并根据接近程度确定导体的位置信息;以及,
基于导体的位置信息和运动部件的位置信息,控制运动部件避开导体。
其中,电子皮肤包括检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;以及,
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
其中,处理器执行可执行程序指令时还执行如下步骤:
在运动部件减速运动过程中,获取运动部件的第一位置信息;
根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
在避开导体后,获取运动部件的第二位置信息,并根据第二位置信息和运动部件的目标位置信息规划第二运动轨迹。
其中,运动部件的减速运动包括加减速段、减加速段和减减速段;
运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
S 0为运动部件在感知到导体时的位移,V 0为运动部件在感知到导体时的速度,a 0为运动部件在感知到导体时的加速度,j eck为设定加加速度,t 1为运动部件的加减速时间,V 1为运动部件在加减速段的速度,t 2为运动部件的减加速时间,V 2为运动部件在减加速段的速度,t 3为运动部件的减减速时间,a m为运动部件的减加速度。
其中,运动部件的避障运动包括加加速段、加减速段和匀速段;
运动部件在加加速段的运动轨迹为:S a1=1/6j a t a0 3
运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1为加加速段机运动部件的速度,Va 2为加减速段机械臂的速度。
本申请还提出一种机器人,包括机械臂,其中,机械臂包括:
基座;
运动部件,连接在基座上,可相对于基座摆动、转动或直线运动;
驱动部件,用于驱动运动部件运动或制动运动部件;
电子皮肤,覆盖运动部件的至少部分表面,用于检测外界导体与机械臂的接近程度;
控制***,包括处理器和存储器,存储器存储可执行程序指令,处理器执行可执行程序指令以执行如下步骤:
接收电子皮肤发送的监测数据;
根据监测数据判断运动部件和与其接近的导体的接近程度;
当接近程度小于预设阈值时,控制运动部件减速并根据接近程度确定导体的位置信息;以及,
基于导体的位置信息和运动部件的位置信息,控制运动部件避开导体。
其中,电子皮肤包括检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;以及,
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
其中,处理器执行可执行程序指令时还执行如下步骤:
在运动部件减速运动过程中,获取运动部件的第一位置信息;
根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
在避开导体后,获取运动部件的第二位置信息,并根据第二位置信息和运动部件的目标位置信息规划第二运动轨迹。
其中,运动部件的减速运动包括加减速段、减加速段和减减速段;
运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5 am t 3 2+1/6j eck t 3 3
S 0为运动部件在感知到导体时的位移,V 0为运动部件在感知到导体时的速度,a 0为运动部件在感知到导体时的加速度,j eck为设定加加速度,t 1为运动部件的加减速时间,V 1为运动部件在加减速段的速度,t 2为运动部件的减 加速时间,V 2为运动部件在减加速段的速度,t 3为运动部件的减减速时间,a m为运动部件的减加速度。
其中,运动部件的避障运动包括加加速段、加减速段和匀速段;
运动部件在加加速段的运动轨迹为:S a1=1/6j a t a0 3
运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1加加速段运动部件的速度,Va 2为加减速段运动部件的速度。
本申请是基于电子皮肤非接触式感应障碍物,在感应到障碍物后触发机器人避障而非紧急停止,其通过提前规划出避障轨迹,防止与障碍物发生碰撞,以绕行的方式使得机器人不停机的运作,从而提升机器人的工作效率。具体的,机器人在运行过程中若感知到前方存在障碍物,则机器人会按照原先设定的运动轨迹进行减速运动,而在机器人减速运动的过程中,机器人会根据当前位置和障碍物的位置规划出绕开障碍物的避障轨迹,在绕开障碍物后,机器人会再根据其当前位置和目标位置重新规划新的运动轨迹,以控制机器人按照此重新规划的运动轨迹运动至目标位置,从而达到不停机运行的目的。
附图说明
图1为本申请机械臂避障方法第一实施例的流程图;
图2为本申请机械臂避障方法所规划出的运动轨迹;
图3为本申请机械臂避障方法第二实施例的流程图;
图4为本申请机械臂避障装置一实施例的功能模块图。
本申请的实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制,基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请公开一种机械臂避障方法,在一实施方式中,参见图1,该机械臂避障方法包括:
步骤S10,接收电子皮肤模块发送的监测数据;
步骤S20,根据监测数据判断机械臂和与其接近的导体的接近程度;
步骤S30,当接近程度小于预设阈值时,控制机械臂减速并根据接近程度确定导体的位置信息;以及,
步骤S40,基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体。
本实施例中,电子皮肤模块包括有覆盖在机械臂上的电极和检测电路,检测电路与电机电连接,电极能够与接近的导体构成电容并将用于表征电容或其变化量的电信号传输至检测电路,检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
电极具体可以是包覆在机械臂关节表面的铜箔,此仅为示例性的,而非限制性的,铜箔-空气-导体构成电容器,检测电路能够检测出电容或其变化量,从而根据该电容或其变化量判断机械臂和与其接近的导体的接近程度。
更具体的,导体可以是人手,在人手逐渐靠近机械臂的过程中,电子皮肤模块能够实时检测由电子皮肤模块与人手所构成电容器的电容变化,根据此电容变化则可判断人手与机械臂的接近程度,机械臂的控制器根据此接近程度,以在人手与机械臂发生碰撞之前,对机械臂的当前运动进行调整,从而避免机械臂与人手发生碰撞。
机械臂在运动之前,先根据当前位置和目标位置设定运动轨迹,再按照此运动轨迹朝向目标位置运动。在运动过程中,通过电子皮肤模块可检测到前方是否存在障碍物,若电子皮肤模块感知到障碍物的存在,则控制机械臂按照原先设定的运动轨迹减速运动,以避免机械臂与前方所存在的障碍物发生碰撞,此减速运动所对应的运动轨迹定义为“减速轨迹”,如图2所示。
机械臂在减速运动的过程中,机械臂会重新规划运动轨迹以避开前方所存在的障碍物,也即避障轨迹,如图2所示。此避障轨迹具体是根据机械臂的当前位置和前方障碍物的位置进行规划的,在避障过程中机械臂的运动方向始终是朝向目标位置的。
本实施例中,假设机械臂原先运动轨迹的起始点是P 1,目标点是P 2,减速停止点是P n,避障停止点是P m。其中,减速停止点P n是指机械臂在感知到 障碍物后按照原先设定的运动轨迹减速停止的位置点,并且在此位置点机械臂没有与障碍物发生碰撞;避障停止点P m是指机械臂按照避障轨迹运动至电子皮肤模块感知不到障碍物时的位置点。在避障停止点P m后,机械臂可根据当前所处的位置点P m和原先运动轨迹的目标点P 2重新规划出新的运动轨迹,此重新规划的运动轨迹定义为“恢复轨迹”,如图2所示。
在规划出“恢复轨迹”后,机器人按照此“恢复轨迹”继续运动,若机械臂在运动过程中再次感知到障碍物,则重新进行减速、避障和恢复,直至机械臂在不与障碍物发生碰撞且不停机运行的前提下运动至目标点。
在一实施例中,参见图3,本申请实施例所提出的基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体运动包括:
步骤S41,在机械臂减速运动过程中,获取机械臂的第一位置信息;
步骤S42,根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
步骤S43,在避开导体后,获取机械臂的第二位置信息,并根据第二位置信息和机械臂的目标位置信息规划第二运动轨迹。
本实施例中,机械臂在感知到前方存在障碍物时,机械臂开始在原先的运动轨迹上进行减速运动,而在其减速运动过程中,可实时获取机械臂的当前位置信息(第一位置信息)。根据机械臂的当前位置信息和障碍物(导体)的位置信息,便可规划出避开障碍物的第一运动轨迹,在规划出此第一运动轨迹后,机械臂按照第一运动轨迹运动。机械臂在按照第一轨迹运动时,通过电子皮肤模块感知障碍物是否还在机械臂的预设距离内,若电子皮肤模块已感知不到障碍物的存在,则表明机械臂已避开障碍物。此后,再根据机械臂的当前位置信息(第二位置信息)和目标位置信息,重新规划第二运动轨迹,在规划出第二运动轨迹后,机械臂按照第二运动轨迹运动直至到达目标位置。
在另一实施例中,本申请所提出的机械臂的减速运动包括有加减速段、减加速段和减减速段;
机械臂在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
机械臂在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
机械臂在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
其中,S 0为机械臂在感知到障碍物时的位移,V 0为机械臂在感知到障碍 物时的速度,a 0为机械臂在感知到障碍物时的加速度,j eck为设定加加速度,t 1为机械臂的加减速时间,V 1为机械臂在加减速段的速度,t 2为机械臂的减加速时间,V 2为机械臂在减加速段的速度,t 3为机械臂的减减速时间,a m为机械臂的减加速度。
本实施例中,设机械臂从P 1点运行到P 2点的轨迹为S(t),在t0时刻遇到障碍物,此时机械臂的运动速度为V 0,加加速度为j eck,其中:
加减速时间t 1=a 0/j eck
加减速时间段速度公式V=V 0+a 0(t-t 0)-0.5j eck((t-t 0) 2,(t 0<t<t 0+t 1)  (1)
加减速时间段位移公式S=S 0+V 0(t-t 0)+0.5a 0(t-t 0) 2-1/6j eck(t-t 0) 3,(t 0<t<t 0+t 1)      (2)
将t 0+t 1代入公式(1):V 1=V 0+a 0t 1-0.5j eck t 1 2
将t 0+t 1代入公式(2):S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
减加速时间和减减速时间
Figure PCTCN2021132917-appb-000001
减加速度a m=j eck t 2
减加速时间段速度公式V=V 1-0.5j eck(t-t 0-t 1) 2,(t 0+t 1<t<t 0+t 1+t 2)   (3)
减加速时间段位移公式S=S 1+V 1(t-t 0-t 1)-1/6j eck(t-t 0-t 1) 3,(t 0+t 1<t<t 0+t 1+t 2)       (4)
将t 0+t 1+t 2代入公式(3):V 2=V 1-0.5j eck t 2 2
将t 0+t 1+t 2代入公式(4):S 2=S 1+V 1t 2-1/6j eck t 2 3
减减速时间段速度公式V=V 2-a m(t-t 0-t 1-t 2)+0.5j eck(t-t 0-t 1-t 2) 2,(t 0+t 1+t 2<t<t 0+t 1+t 2+t 3)       (5)
减减速时间段位移公式S=S 2+V 2(t-t 0-t 1-t 2)-0.5a m(t-t 0-t 1-t 2) 2+1/6j eck(t-t 0-t 1-t 2) 3,(t 0+t 1+t 2<t<t 0+t 1+t 2+t 3)      (6)
将t 0+t 1+t 2+t 3代入公式(5):V 3=V 2-a m t 3+0.5j eck t 3 2
将t 0+t 1+t 2+t 3代入公式(6):S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
在又一实施例中,本申请所提出的避障运动包括有加加速段、加减速段和匀速段;
机械臂在加加速段的运动轨迹为:S a1=1/6j a t a0 3
机械臂在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
机械臂在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
其中,j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1 加加速段机械臂的速度,Va 2为加减速段机械臂的速度。
本实施例中,设避障轨迹为S at,避障轨迹最大速度为V am,加加速度为j a,其中:
避障加加速时间和避障加减速时间:
Figure PCTCN2021132917-appb-000002
避障加速度:a am=j a t a0
加加速时间段避障速度公式:V a=0.5j a t 2,(0<t<t a0)      (7)
加加速时间段避障位移公式:S a=1/6j at 2,(0<t<t a0)      (8)
将t a0代入公式(7):V a1=0.5j a t a0 2
将t a0代入公式(8):S a1=1/6j a t a0 3
加减速时间段避障速度公式:V a=V a1+a am(t-t a0)-0.5j a(t-t a0) 2,(t a0<t<t a0+t a1)        (9)
加减速时间段避障位移公式:S a=S a1+V a1(t-t a0)-1/6j a(t-t a0) 3,(t a0<t<t a0+t a1)         (10)
将t a0+t a1代入公式(9):V a2=V a1+a am t a1-0.5j at a1 2
将t a0+t a1代入公式(10):S a2=S a1+Va 1t a1-1/6j a t a1 3
匀速段位移公式:S a3=S a2+V a2(t-t a0-t a1),(t a0+t a1<t)      (11)
本申请进一步提出一种机械臂避障装置,参见图4,该机械臂避障装置包括:
数据接收模块10,用于接收电子皮肤模块发送的监测数据;
判断模块20,用于根据监测数据判断机械臂和与其接近的导体的接近程度;
位置获取模块30,用于在接近程度小于预设阈值时,控制机械臂减速并根据接近程度确定导体的位置信息;
运动控制模块40,用于基于导体的位置信息和机械臂的位置信息,控制机械臂避开导体。
在一实施例中,本申请所提出的电子皮肤模块包括:
检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
在另一实施例中,本申请实施例所提出的运动控制模块包括:
位置获取单元,用于在机械臂减速运动过程中,获取机械臂的第一位置信息;
第一运动轨迹规划单元,用于根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;
第二运动轨迹规划单元,用于在避开导体后,获取机械臂的第二位置信息,并根据第二位置信息和机械臂的目标位置信息规划第二运动轨迹。
在又一实施例中,本申请所提出的机械臂的减速运动包括有加减速段、减加速段和减减速段;
机械臂在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
机械臂在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3
机械臂在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
其中,S 0为机械臂在感知到障碍物时的位移,V 0为机械臂在感知到障碍物时的速度,a 0为机械臂在感知到障碍物时的加速度,j eck为设定加加速度,t 1为机械臂的加减速时间,V 1为机械臂在加减速段的速度,t 2为机械臂的减加速时间,V 2为机械臂在减加速段的速度,t 3为机械臂的减减速时间,a m为机械臂的减加速度。
本实施例中,设机器人从P 1点运行到P 2点的轨迹为S(t),在t0时刻遇到障碍物,此时机械臂的运动速度为V 0,加加速度为j eck,其中:
加减速时间t 1=a 0/j eck
加减速时间段速度公式V=V 0+a 0(t-t 0)-0.5j eck((t-t 0) 2,(t 0<t<t 0+t 1)  (1)
加减速时间段位移公式S=S 0+V 0(t-t 0)+0.5a 0(t-t 0) 2-1/6j eck(t-t 0) 3,(t 0<t<t 0+t 1)     (2)
将t 0+t 1代入公式(1):V 1=V 0+a 0t 1-0.5j eck t 1 2
将t 0+t 1代入公式(2):S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
减加速时间和减减速时间
Figure PCTCN2021132917-appb-000003
减加速度a m=j eck t 2
减加速时间段速度公式V=V 1-0.5j eck(t-t 0-t 1) 2,(t 0+t 1<t<t 0+t 1+t 2)  (3)
减加速时间段位移公式S=S 1+V 1(t-t 0-t 1)-1/6j eck(t-t 0-t 1) 3,(t 0+t 1<t<t 0+t 1+t 2)      (4)
将t 0+t 1+t 2代入公式(3):V 2=V 1-0.5j eck t 2 2
将t 0+t 1+t 2代入公式(4):S 2=S 1+V 1t 2-1/6j eck t 2 3
减减速时间段速度公式V=V 2-a m(t-t 0-t 1-t 2)+0.5j eck(t-t 0-t 1-t 2) 2,(t 0+t 1+t 2<t<t 0+t 1+t 2+t 3)         (5)
减减速时间段位移公式S=S 2+V 2(t-t 0-t 1-t 2)-0.5a m(t-t 0-t 1-t 2) 2+1/6j eck(t-t 0-t 1-t 2) 3,(t 0+t 1+t 2<t<t 0+t 1+t 2+t 3)      (6)
将t 0+t 1+t 2+t 3代入公式(5):V 3=V 2-a m t 3+0.5j eck t 3 2
将t 0+t 1+t 2+t 3代入公式(6):S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
在再一实施例中,本申请所提出的避障运动包括有加加速段、加减速段和匀速段;
机械臂在加加速段的运动轨迹为:S a1=1/6j a t a0 3
机械臂在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3
机械臂在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
其中,j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1加加速段机械臂的速度,Va 2为加减速段机械臂的速度。
本实施例中,设避障轨迹为S at,避障轨迹最大速度为V am,加加速度为j a,其中:
避障加加速时间和避障加减速时间:
Figure PCTCN2021132917-appb-000004
避障加速度:a am=j a t a0
加加速时间段避障速度公式:V a=0.5j a t 2,(0<t<t a0)     (7)
加加速时间段避障位移公式:S a=1/6j at 2,(0<t<t a0)      (8)
将t a0代入公式(7):V a1=0.5j a t a0 2
将t a0代入公式(8):S a1=1/6j a t a0 3
加减速时间段避障速度公式:V a=V a1+a am(t-t a0)-0.5j a(t-t a0) 2,(t a0<t<t a0+t a1)       (9)
加减速时间段避障位移公式:S a=S a1+V a1(t-t a0)-1/6j a(t-t a0) 3,(t a0<t<t a0+t a1)       (10)
将t a0+t a1代入公式(9):V a2=V a1+a am t a1-0.5j at a1 2
将t a0+t a1代入公式(10):S a2=S a1+Va 1t a1-1/6j a t a1 3
匀速段位移公式:S a3=S a2+V a2(t-t a0-t a1),(t a0+t a1<t)     (11)
本申请进一步提出一种机械臂,该机械臂包括:
基座;
运动部件,连接在基座上,可相对于基座摆动、转动或直线运动;
驱动部件,用于驱动运动部件运动或制动运动部件;
电子皮肤,覆盖运动部件的至少部分表面,用于检测外界导体与机械臂的接近程度;
控制***,包括处理器和存储器,存储器存储可执行程序指令,处理器执行可执行程序指令以执行如下步骤:
接收电子皮肤发送的监测数据;
根据监测数据判断运动部件和与其接近的导体的接近程度;
当接近程度小于预设阈值时,控制运动部件减速并根据接近程度确定导体的位置信息;以及,
基于导体的位置信息和运动部件的位置信息,控制运动部件避开导体。
在一实施例中,电子皮肤包括检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;以及,
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
在另一实施例中,处理器执行可执行程序指令时还执行如下步骤:
在运动部件减速运动过程中,获取运动部件的第一位置信息;
根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
在避开导体后,获取运动部件的第二位置信息,并根据第二位置信息和运动部件的目标位置信息规划第二运动轨迹。
在又一实施例中,运动部件的减速运动包括加减速段、减加速段和减减速段;
运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
S 0为运动部件在感知到导体时的位移,V 0为运动部件在感知到导体时的速度,a 0为运动部件在感知到导体时的加速度,j eck为设定加加速度,t 1为运动部件的加减速时间,V 1为运动部件在加减速段的速度,t 2为运动部件的减加速时间,V 2为运动部件在减加速段的速度,t 3为运动部件的减减速时间, a m为运动部件的减加速度。
在再一实施例中,运动部件的避障运动包括加加速段、加减速段和匀速段;
运动部件在加加速段的运动轨迹为:S a1=1/6j a t a0 3
运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1加加速段运动部件的速度,Va 2为加减速段运动部件的速度。
本申请还提出一种机器人,包括机械臂,其中,机械臂包括:
基座;
运动部件,连接在基座上,可相对于基座摆动、转动或直线运动;
驱动部件,用于驱动运动部件运动或制动运动部件;
电子皮肤,覆盖运动部件的至少部分表面,用于检测外界导体与机械臂的接近程度;
控制***,包括处理器和存储器,存储器存储可执行程序指令,处理器执行可执行程序指令以执行如下步骤:
接收电子皮肤发送的监测数据;
根据监测数据判断运动部件和与其接近的导体的接近程度;
当接近程度小于预设阈值时,控制运动部件减速并根据接近程度确定导体的位置信息;以及,
基于导体的位置信息和运动部件的位置信息,控制运动部件避开导体。
在一实施例中,电子皮肤包括检测电路和与检测电路电连接的电极;
电极能够与接近的导体构成电容,并将用于表征电容或其变化量的电信号传输至检测电路;以及,
检测电路用于将表征电容或其变化量的电信号转换为电容值或其变化量的电信号。
在另一实施例中,处理器执行可执行程序指令时还执行如下步骤:
在运动部件减速运动过程中,获取运动部件的第一位置信息;
根据第一位置信息和导体的位置信息,规划避开导体的第一运动轨迹;以及,
在避开导体后,获取运动部件的第二位置信息,并根据第二位置信息和 运动部件的目标位置信息规划第二运动轨迹。
在又一实施例中,运动部件的减速运动包括加减速段、减加速段和减减速段;
运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eck t 1 3
运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eck t 2 3;以及,
运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a m t 3 2+1/6j eck t 3 3
S 0为运动部件在感知到导体时的位移,V 0为运动部件在感知到导体时的速度,a 0为运动部件在感知到导体时的加速度,j eck为设定加加速度,t 1为运动部件的加减速时间,V 1为运动部件在加减速段的速度,t 2为运动部件的减加速时间,V 2为运动部件在减加速段的速度,t 3为运动部件的减减速时间,a m为运动部件的减加速度。
在再一实施例中,运动部件的避障运动包括加加速段、加减速段和匀速段;
运动部件在加加速段的运动轨迹为:S a1=1/6j a t a0 3
运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j a t a1 3;以及,
运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
j a为设定加加速度,t a0为加加速时间,t a1为加减速时间,Va 1加加速段运动部件的速度,Va 2为加减速段运动部件的速度。
本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中, 也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上的仅为本申请的部分或优选实施例,无论是文字还是附图都不能因此限制本申请保护的范围,凡是在与本申请一个整体的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请保护的范围内。

Claims (15)

  1. 一种机械臂避障方法,所述机械臂上设有电子皮肤模块,所述电子皮肤模块用于检测所述机械臂运动路径上的导体,其中,包括:
    接收电子皮肤模块发送的监测数据;
    根据所述监测数据判断所述机械臂和与其接近的导体的接近程度;
    当所述接近程度小于预设阈值时,控制所述机械臂减速并根据所述接近程度确定所述导体的位置信息;以及,
    基于所述导体的位置信息和所述机械臂的位置信息,控制所述机械臂避开所述导体。
  2. 根据权利要求1所述的机械臂避障方法,其中,
    所述电子皮肤模块包括检测电路和与所述检测电路电连接的电极;
    所述电极能够与接近的导体构成电容,并将用于表征所述电容或其变化量的电信号传输至所述检测电路;以及,
    所述检测电路用于将表征所述电容或其变化量的电信号转换为电容值或其变化量的电信号。
  3. 根据权利要求1所述的机械臂避障方法,其中,所述基于导体的位置信息和机械臂的位置信息,控制所述机械臂避开所述导体运动包括:
    在所述机械臂减速运动过程中,获取所述机械臂的第一位置信息;
    根据所述第一位置信息和所述导体的位置信息,规划避开所述导体的第一运动轨迹;以及,
    在避开所述导体后,获取所述机械臂的第二位置信息,并根据所述第二位置信息和所述机械臂的目标位置信息规划第二运动轨迹。
  4. 根据权利要求3所述的机械臂避障方法,其中,所述机械臂的减速运动包括加减速段、减加速段和减减速段;
    所述机械臂在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eckt 1 3
    所述机械臂在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eckt 2 3;以及,
    所述机械臂在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a mt 3 2+1/6j eckt 3 3
    所述S 0为所述机械臂在感知到所述导体时的位移,所述V 0为所述机械臂在感知到所述导体时的速度,所述a 0为所述机械臂在感知到所述导体时的加速度,所述j eck为设定加加速度,所述t 1为所述机械臂的加减速时间,所述V 1为所述机械臂在加减速段的速度,所述t 2为所述机械臂的减加速时间,所述V 2为所述机械臂在减加速段的速度,所述t 3为所述机械臂的减减速时间,所述a m为所述机械臂的减加速度。
  5. 根据权利要求3所述的机械臂避障方法,其中,所述机械臂的避障运动包括加加速段、加减速段和匀速段;
    所述机械臂在加加速段的运动轨迹为:S a1=1/6j at a0 3
    所述机械臂在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j at a1 3;以及,
    所述机械臂在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
    所述j a为设定加加速度,所述t a0为加加速时间,所述t a1为加减速时间,所述Va 1加加速段所述机械臂的速度,所述Va 2为加减速段所述机械臂的速度。
  6. 一种机械臂,其中,包括:
    基座;
    运动部件,连接在所述基座上,可相对于所述基座摆动、转动或直线运动;
    驱动部件,用于驱动所述运动部件运动或制动所述运动部件;
    电子皮肤,覆盖所述运动部件的至少部分表面,用于检测外界导体与所述机械臂的接近程度;
    控制***,包括处理器和存储器,所述存储器存储可执行程序指令,所述处理器执行所述可执行程序指令以执行如下步骤:
    接收电子皮肤发送的监测数据;
    根据所述监测数据判断所述运动部件和与其接近的导体的接近程度;
    当所述接近程度小于预设阈值时,控制所述运动部件减速并根据所述接近程度确定所述导体的位置信息;以及,
    基于所述导体的位置信息和所述运动部件的位置信息,控制所述运动部 件避开所述导体。
  7. 根据权利要求6所述的机械臂,其中,
    所述电子皮肤包括检测电路和与所述检测电路电连接的电极;
    所述电极能够与接近的导体构成电容,并将用于表征所述电容或其变化量的电信号传输至所述检测电路;以及,
    所述检测电路用于将表征所述电容或其变化量的电信号转换为电容值或其变化量的电信号。
  8. 根据权利要求6所述的机械臂,其中,所述处理器执行所述可执行程序指令时还执行如下步骤:
    在所述运动部件减速运动过程中,获取所述运动部件的第一位置信息;
    根据所述第一位置信息和所述导体的位置信息,规划避开所述导体的第一运动轨迹;以及,
    在避开所述导体后,获取所述运动部件的第二位置信息,并根据所述第二位置信息和所述运动部件的目标位置信息规划第二运动轨迹。
  9. 根据权利要求8所述的机械臂,其中,所述运动部件的减速运动包括加减速段、减加速段和减减速段;
    所述运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eckt 1 3
    所述运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eckt 2 3;以及,
    所述运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a mt 3 2+1/6j eckt 3 3
    所述S 0为所述运动部件在感知到所述导体时的位移,所述V 0为所述运动部件在感知到所述导体时的速度,所述a 0为所述运动部件在感知到所述导体时的加速度,所述j eck为设定加加速度,所述t 1为所述运动部件的加减速时间,所述V 1为所述运动部件在加减速段的速度,所述t 2为所述运动部件的减加速时间,所述V 2为所述运动部件在减加速段的速度,所述t 3为所述运动部件的减减速时间,所述a m为所述运动部件的减加速度。
  10. 根据权利要求8所述的机械臂,其中,所述运动部件的避障运动包括 加加速段、加减速段和匀速段;
    所述运动部件在加加速段的运动轨迹为:S a1=1/6j at a0 3
    所述运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j at a1 3;以及,
    所述运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
    所述j a为设定加加速度,所述t a0为加加速时间,所述t a1为加减速时间,所述Va 1加加速段所述运动部件的速度,所述Va 2为加减速段所述运动部件的速度。
  11. 一种机器人,包括机械臂,其中,机械臂包括:
    基座;
    运动部件,连接在所述基座上,可相对于所述基座摆动、转动或直线运动;
    驱动部件,用于驱动所述运动部件运动或制动所述运动部件;
    电子皮肤,覆盖所述运动部件的至少部分表面,用于检测外界导体与所述机械臂的接近程度;
    控制***,包括处理器和存储器,所述存储器存储可执行程序指令,所述处理器执行所述可执行程序指令以执行如下步骤:
    接收电子皮肤发送的监测数据;
    根据所述监测数据判断所述运动部件和与其接近的导体的接近程度;
    当所述接近程度小于预设阈值时,控制所述运动部件减速并根据所述接近程度确定所述导体的位置信息;以及,
    基于所述导体的位置信息和所述运动部件的位置信息,控制所述运动部件避开所述导体。
  12. 根据权利要求11所述的机器人,其中,
    所述电子皮肤包括检测电路和与所述检测电路电连接的电极;
    所述电极能够与接近的导体构成电容,并将用于表征所述电容或其变化量的电信号传输至所述检测电路;以及,
    所述检测电路用于将表征所述电容或其变化量的电信号转换为电容值或其变化量的电信号。
  13. 根据权利要求11所述的机器人,其中,所述处理器执行所述可执行程序指令时还执行如下步骤:
    在所述运动部件减速运动过程中,获取所述运动部件的第一位置信息;
    根据所述第一位置信息和所述导体的位置信息,规划避开所述导体的第一运动轨迹;以及,
    在避开所述导体后,获取所述运动部件的第二位置信息,并根据所述第二位置信息和所述运动部件的目标位置信息规划第二运动轨迹。
  14. 根据权利要求13所述的机器人,其中,所述运动部件的减速运动包括加减速段、减加速段和减减速段;
    所述运动部件在加减速段的运动轨迹为:S 1=S 0+V 0t 1+0.5a 0t 1 2-1/6j eckt 1 3
    所述运动部件在减加速段的运动轨迹为:S 2=S 1+V 1t 2-1/6j eckt 2 3;以及,
    所述运动部件在减减速段的运动轨迹为:S 3=S 2+V 2t 3-0.5a mt 3 2+1/6j eckt 3 3
    所述S 0为所述运动部件在感知到所述导体时的位移,所述V 0为所述运动部件在感知到所述导体时的速度,所述a 0为所述运动部件在感知到所述导体时的加速度,所述j eck为设定加加速度,所述t 1为所述运动部件的加减速时间,所述V 1为所述运动部件在加减速段的速度,所述t 2为所述运动部件的减加速时间,所述V 2为所述运动部件在减加速段的速度,所述t 3为所述运动部件的减减速时间,所述a m为所述运动部件的减加速度。
  15. 根据权利要求13所述的机器人,其中,所述运动部件的避障运动包括加加速段、加减速段和匀速段;
    所述运动部件在加加速段的运动轨迹为:S a1=1/6j at a0 3
    所述运动部件在加减速段的运动轨迹为:S a2=S a1+Va 1t a1-1/6j at a1 3;以及,
    所述运动部件在匀速段的运动轨迹为:S a3=S a2+Va 2(t-t a0-t a1);
    所述j a为设定加加速度,所述t a0为加加速时间,所述t a1为加减速时间,所述Va 1为加加速段所述运动部件的速度,所述Va 2为加减速段所述运动部件的速度。
PCT/CN2021/132917 2020-12-11 2021-11-24 机械臂避障方法、机械臂及机器人 WO2022121690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011463416.9 2020-12-11
CN202011463416.9A CN112476438B (zh) 2020-12-11 2020-12-11 机械臂避障方法、装置、机械臂及机器人

Publications (1)

Publication Number Publication Date
WO2022121690A1 true WO2022121690A1 (zh) 2022-06-16

Family

ID=74917874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132917 WO2022121690A1 (zh) 2020-12-11 2021-11-24 机械臂避障方法、机械臂及机器人

Country Status (2)

Country Link
CN (1) CN112476438B (zh)
WO (1) WO2022121690A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123941B (zh) * 2019-12-27 2022-01-11 深圳市越疆科技有限公司 物体面积识别方法、装置、设备及计算机可读存储介质
CN112476438B (zh) * 2020-12-11 2022-07-29 深圳市越疆科技有限公司 机械臂避障方法、装置、机械臂及机器人
CN113733089B (zh) * 2021-05-27 2023-05-16 深圳市越疆科技有限公司 机械臂控制方法、装置、设备、***、存储介质及机械臂
CN113649359B (zh) * 2021-08-02 2022-08-12 江苏百世诺智能科技有限公司 用于飞机整机除漆的智能激光除漆设备、***及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100235033A1 (en) * 2006-09-11 2010-09-16 Kenjiro Yamamoto Moving device
US20170174199A1 (en) * 2015-12-18 2017-06-22 General Electric Company Control system and method for brake bleeding
CN110315556A (zh) * 2019-08-02 2019-10-11 深圳市越疆科技有限公司 一种机器人电子皮肤、机器人及交互方法
CN111546347A (zh) * 2020-06-03 2020-08-18 中国人民解放军海军工程大学 一种适用于动态环境下的机械臂路径规划方法
CN211806132U (zh) * 2019-12-27 2020-10-30 深圳市越疆科技有限公司 机械臂电子皮肤、机械臂及机器人
CN111897323A (zh) * 2020-06-24 2020-11-06 深圳市越疆科技有限公司 基于接近觉感知的机器人急停控制方法、装置及存储介质
CN111890359A (zh) * 2020-07-01 2020-11-06 深圳市越疆科技有限公司 机器人避障方法、机械臂式机器人及存储介质
CN111923038A (zh) * 2020-07-01 2020-11-13 深圳市越疆科技有限公司 机械臂式机器人、机器人的避障方法及存储介质
CN112476438A (zh) * 2020-12-11 2021-03-12 深圳市越疆科技有限公司 机械臂避障方法、装置、机械臂及机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168790B (zh) * 2016-02-29 2020-08-18 华南理工大学 一种在线改变目标速度和位置的s形加减速控制方法
JP7036399B2 (ja) * 2017-11-08 2022-03-15 学校法人早稲田大学 自律移動ロボット、並びに、その制御装置及び動作制御プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100235033A1 (en) * 2006-09-11 2010-09-16 Kenjiro Yamamoto Moving device
US20170174199A1 (en) * 2015-12-18 2017-06-22 General Electric Company Control system and method for brake bleeding
CN110315556A (zh) * 2019-08-02 2019-10-11 深圳市越疆科技有限公司 一种机器人电子皮肤、机器人及交互方法
CN211806132U (zh) * 2019-12-27 2020-10-30 深圳市越疆科技有限公司 机械臂电子皮肤、机械臂及机器人
CN111546347A (zh) * 2020-06-03 2020-08-18 中国人民解放军海军工程大学 一种适用于动态环境下的机械臂路径规划方法
CN111897323A (zh) * 2020-06-24 2020-11-06 深圳市越疆科技有限公司 基于接近觉感知的机器人急停控制方法、装置及存储介质
CN111890359A (zh) * 2020-07-01 2020-11-06 深圳市越疆科技有限公司 机器人避障方法、机械臂式机器人及存储介质
CN111923038A (zh) * 2020-07-01 2020-11-13 深圳市越疆科技有限公司 机械臂式机器人、机器人的避障方法及存储介质
CN112476438A (zh) * 2020-12-11 2021-03-12 深圳市越疆科技有限公司 机械臂避障方法、装置、机械臂及机器人

Also Published As

Publication number Publication date
CN112476438B (zh) 2022-07-29
CN112476438A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022121690A1 (zh) 机械臂避障方法、机械臂及机器人
JP5283622B2 (ja) 機械の衝突防止のためのカメラを利用した監視方法及び装置
CN111923038B (zh) 机械臂式机器人、机器人的避障方法及存储介质
CN108241373B (zh) 避障方法和智能机器人
KR102418451B1 (ko) 로봇 제어 시스템
CN113733089B (zh) 机械臂控制方法、装置、设备、***、存储介质及机械臂
CN111975745B (zh) 机器人***
CN104991560A (zh) 自主移动式智能机器人
KR20140112824A (ko) 백스테핑 기법을 이용한 선도 추종자 대형제어 장치, 방법 및 이동로봇
CN110000807B (zh) 一种机器的舵机保护方法、***和可读存储介质
CN111360851B (zh) 一种融合触觉和视觉的机器人混合伺服控制装置及方法
CN107030700A (zh) 一种六轴焊接工业机器人防碰撞控制***
CN207014366U (zh) 一种六轴焊接工业机器人防碰撞控制***
Becker et al. Collision Detection for a Mobile Robot using Logistic Regression.
CN113467468B (zh) 一种基于嵌入式的机器人智能避障***及方法
US20220108104A1 (en) Method for recognizing recognition target person
US20240083031A1 (en) Method of Controlling Mechanical Impedance of Robot, Control System and Robot
CN111168681B (zh) 面向人机安全交互的机械臂智能避障方法、***及机器人
KR20220120009A (ko) 로봇의 충돌 감지 장치 및 그 방법
CN112621795A (zh) 机械臂末端执行器及其控制方法、机械臂和存储器
Šimundić et al. Safety system for industrial robots based on human detection using an rgb-d camera
US20230158671A1 (en) Intelligent obstacle avoidance of multi-axis robot arm
US20230384793A1 (en) Learning data collection device and learning system
CN113580130B (zh) 六轴机械臂避障控制方法、***及计算机可读存储介质
JP2004348249A (ja) 車両用外界認識装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902397

Country of ref document: EP

Kind code of ref document: A1