WO2022121321A1 - 多级ao短程反硝化耦合anammox工艺结合污泥水解酸化强化脱氮除磷的方法 - Google Patents

多级ao短程反硝化耦合anammox工艺结合污泥水解酸化强化脱氮除磷的方法 Download PDF

Info

Publication number
WO2022121321A1
WO2022121321A1 PCT/CN2021/107609 CN2021107609W WO2022121321A1 WO 2022121321 A1 WO2022121321 A1 WO 2022121321A1 CN 2021107609 W CN2021107609 W CN 2021107609W WO 2022121321 A1 WO2022121321 A1 WO 2022121321A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
zone
anaerobic
acidification
secondary sedimentation
Prior art date
Application number
PCT/CN2021/107609
Other languages
English (en)
French (fr)
Inventor
彭永臻
赵琪
高锐涛
李健伟
邓丽艳
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/642,146 priority Critical patent/US20240067546A1/en
Publication of WO2022121321A1 publication Critical patent/WO2022121321A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present application relates to a short-range denitrification coupled Anammox technology based on multi-stage AO, which utilizes sludge hydrolysis and acidification mixture to strengthen nitrogen and phosphorus removal, and belongs to the field of sewage biological treatment. It is suitable for high-efficiency, energy-saving nitrogen and phosphorus removal process in urban sewage treatment plants.
  • the multi-stage AO staged water denitrification and phosphorus removal process for urban sewage is a sewage treatment process with great potential for application. Its research and application at home and abroad is still in its infancy, and it has significant advantages compared to traditional sewage treatment processes: (1) The raw water enters each anaerobic zone or anoxic zone in stages, which ensures the even distribution of the carbon source in the raw water in the anaerobic zone and the anoxic zone. Nitrogen is reduced to nitrite nitrogen through short-range denitrification, or nitrogen denitrification is directly generated by full-range denitrification, which avoids the consumption of carbon sources by heterotrophic bacteria in aerobic areas, and is especially suitable for treating domestic low C/N ratio urban sewage.
  • the nitrifying liquid in the aerobic zone directly enters the anaerobic zone or the anoxic zone, without the need to set up nitrifying liquid return pipelines and devices, which simplifies the system structure and saves the cost of transportation power; (3) The reaction occurs in the anaerobic zone and the anoxic zone. Nitrification produces alkalinity, and the effluent directly enters the aerobic zone, which makes up for the alkalinity consumed in the aerobic zone to a certain extent and saves the addition of alkalinity substances; (4) The sewage alternately flows through the anoxic zone and the aerobic zone, It has a certain inhibitory effect on the growth of filamentous bacteria and reduces the risk of sludge bulking.
  • Short-range denitrification coupled with Anammox is considered to be one of the most potential ways for Anammox to be applied in urban sewage treatment plants.
  • denitrifying bacteria use organic matter in sewage as electron donor and nitrate nitrogen as electron acceptor to reduce nitrate nitrogen to nitrite nitrogen instead of directly reducing it to nitrogen, and the resulting nitrous Nitrogen can provide the necessary substrate for Anammox bacteria under anoxic conditions for autotrophic nitrogen removal by Anammox bacteria.
  • Short-range denitrification coupled with Anammox and full-range denitrification are often carried out at the same time, thus forming two main denitrification pathways, which not only achieves high-efficiency denitrification, but also ensures stability and high resistance to shock loads.
  • several studies have shown that the short-range denitrification process can be better achieved and maintained when small molecular organics are used as electron donors.
  • the device and method for multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance denitrification and phosphorus removal takes the multi-stage AO staged water inflow mode as the process carrier, in which the short-range denitrification coupled Anammox process is realized, combining the two advantage.
  • the hydrolysis and acidification of part of the excess sludge in the secondary sedimentation tank provides a high-quality small molecular carbon source for the short-range denitrification process in the biochemical reaction zone, which promotes the short-range denitrification and solves the problem of sludge treatment in urban sewage treatment plants to a certain extent. .
  • the device and method of multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance nitrogen and phosphorus removal have the potential to achieve high-efficiency and energy-saving treatment of urban sewage.
  • Multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to strengthen denitrification and phosphorus removal The following devices are used: raw water tank (1), feed pump (2), anaerobic zone (3), first anoxic Zone (4), first aerobic zone (5), second anoxic zone (6), second aerobic zone (7), third anoxic zone (8), third aerobic zone (9), The sedimentation tank (10), and the sludge hydrolysis and acidification tank (11); the inlet water pump (2) and the anaerobic zone (3), the second anoxic zone (6) and the third anoxic zone (8) are separated
  • the water inlet pipeline (12) is connected to each section, and each section of the water inlet pipeline is provided with a water inlet valve (14);
  • the biochemical reaction zone consists of an anaerobic zone (3), a first anoxic zone (4), and a first aerobic zone ( 5), the second anoxic zone (6), the second aerobic zone (7), the third
  • the water pipe (16) and the water inlet valve (15) of the secondary sedimentation tank are connected with the central pipe (18) of the secondary sedimentation tank, the water outlet of the secondary sedimentation tank (10) is connected with the water outlet pipe (17); the secondary sedimentation tank (10) is connected with the sludge A sludge pump (28) and a sludge pipeline (29) are connected between the hydrolysis and acidification tanks (11), and a sludge pump (27) is connected between the sludge hydrolysis and acidification tanks (11) and the sludge return main pipe (20).
  • a sludge return pump (24) is connected between the sludge return main pipe and the anaerobic zone to return the excess sludge and the sludge hydrolysis and acidification mixture to the anaerobic zone, and the remaining sludge in the secondary sedimentation tank is returned to the anaerobic zone. It is discharged to the sludge treatment system through the sludge discharge pipeline (30).
  • Raw water enters the anaerobic zone (3), the second anoxic zone (6), and the third anoxic zone (8) from the raw water tank (1) through the inlet pump (2), and the effluent treated by the biochemical reaction zone It flows out from the third aerobic zone (9), flows into the secondary sedimentation tank (10) through the secondary sedimentation tank inlet pipe (15) and the secondary sedimentation tank central pipe (18), and the supernatant liquid of the secondary sedimentation tank is discharged as effluent, and the bottom of the secondary sedimentation tank is discharged.
  • the raw water enters the anaerobic zone (3), the second anoxic zone (6) and the third anoxic zone (8) in stages, ensuring the stability of the anaerobic zone and the anoxic zone. carbon source.
  • the reflux of nitrifying liquid in the aerobic zone brings nitrate nitrogen into the anaerobic zone (3), the second anoxic zone (6) and the third anoxic zone (8), and the denitrifying bacteria use organic matter as electron donors for short-range
  • the denitrification process provides substrate nitrite nitrogen for anammox bacteria to realize short-range denitrification coupled with Anammox.
  • a biofilm carrier is added to the anaerobic and anoxic zones, and the submersible agitator (14) is used to make it evenly mix and fully contact with the activated sludge.
  • the biofilm carrier provides anammox bacteria with enrichment and proliferation. Under the conditions of attachment, anammox bacteria use ammonia nitrogen in raw water and nitrite nitrogen produced by short-range denitrification process as substrates to achieve autotrophic denitrification.
  • the aerobic zone can finally oxidize the ammonia nitrogen in the raw water to nitrate nitrogen under the action of nitrifying bacteria, and the phosphorus accumulating bacteria in the aerobic zone can use their own PHAs as electron donors and oxygen as electron acceptors for good performance.
  • part of the phosphorus-rich sludge is discharged from the secondary sedimentation tank to realize the removal of phosphorus in the sewage.
  • a part of the excess sludge enters the hydrolysis and acidification tank through the sludge pipeline, and is hydrolyzed and acidified under anaerobic conditions to convert macromolecular organic matter into small molecular organic matter, and the hydrolysis and acidification mixture and part of the excess sludge in the secondary sedimentation tank are returned to the In the anaerobic zone, while ensuring a stable sludge concentration in the system, small organic matter as a high-quality carbon source further promotes the short-range denitrification process.
  • the method of multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance nitrogen and phosphorus removal including the following steps:
  • the residual sludge from the secondary sedimentation tank of the urban sewage treatment plant is added to the biochemical reaction zone as seed sludge, and the raw water flows through the inlet water pump and enters the anaerobic zone, the second anoxic zone and the third zone of the reactor through the segmented water inlet pipeline.
  • the mixed suspended solids concentration (MLSS) in the reactor is kept at 4000-5000mg/L; when the hydrolysis and acidification of the sludge in the hydrolysis acidification tank is not obvious in the initial stage, a carbon source is added to the raw water tank to make the raw water C/N If the ratio is 3-5, after the sludge hydrolysis and acidification tank is started, stop adding carbon source; monitor the dissolved oxygen (DO) in the aerobic section through the real-time monitoring system, and control the DO in the first aerobic zone to be 1-1.5mg /L, control the DO of the second aerobic zone and the third aerobic zone to 2-3 mg/L; adjust the hydraulic retention time (HRT) of each section by controlling the flow rate
  • the device and method for multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance denitrification and phosphorus removal takes the multi-stage AO staged water inflow mode as the process carrier, in which the short-range denitrification coupled Anammox process is realized, combining the two advantage.
  • the hydrolysis and acidification of part of the excess sludge in the secondary sedimentation tank provides a high-quality small molecular carbon source for the short-range denitrification process in the biochemical reaction zone, which promotes the short-range denitrification and solves the problem of sludge treatment in urban sewage treatment plants to a certain extent. .
  • the device and method of multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance nitrogen and phosphorus removal have the potential to achieve high-efficiency and energy-saving treatment of urban sewage.
  • FIG. 1 is a schematic structural diagram of the continuous flow staged influent denitrification and partial anaerobic ammonia oxidation coupled with sludge hydrolysis and acidification to strengthen the denitrification and phosphorus removal system of the present application.
  • FIG. 1 1-raw water tank; 2-inlet pump; 3-anaerobic zone; 4-first anoxic zone; 5-first aerobic zone; 6-second anoxic zone; 7-second aerobic zone 8- the third anoxic zone; 9- the third aerobic zone; 10- sedimentation tank; 11- sludge hydrolysis and acidification tank; 12- segmented water inlet pipeline; 13- submersible mixer; 14- water inlet valve ; 15-water inlet valve of secondary sedimentation tank; 16-water inlet pipe of secondary sedimentation tank; 17-water outlet pipe; 18-central pipe of secondary sedimentation tank; 19-air compressor; 20-sludge return main pipe; 21-aeration pipeline ; 22- Aeration device; 23- Rotameter; 24- Sludge return pump; 25- Air valve; 26- Sludge pipeline; 27- Sludge pump; 28- Sludge pump; 29- Sludge pipeline pump.
  • Raw water enters the anaerobic zone (3), the second anoxic zone (6), and the third anoxic zone (8) from the raw water tank (1) through the inlet pump (2), and the effluent treated by the biochemical reaction zone It flows out from the third aerobic zone (9), flows into the secondary sedimentation tank (10) through the secondary sedimentation tank inlet pipe (15) and the secondary sedimentation tank central pipe (18), and the supernatant liquid of the secondary sedimentation tank is discharged as effluent, and the bottom of the secondary sedimentation tank is discharged.
  • the raw water enters the anaerobic zone (3), the second anoxic zone (6) and the third anoxic zone (8) in stages, ensuring the stability of the anaerobic zone and the anoxic zone. carbon source.
  • the reflux of nitrifying liquid in the aerobic zone brings nitrate nitrogen into the anaerobic zone (3), the second anoxic zone (6) and the third anoxic zone (8), and the denitrifying bacteria use organic matter as electron donors for short-range
  • the denitrification process provides substrate nitrite nitrogen for anammox bacteria to realize short-range denitrification coupled with Anammox.
  • a biofilm carrier is added to the anaerobic and anoxic zones, and the submersible agitator (14) is used to make it evenly mix and fully contact with the activated sludge.
  • the biofilm carrier provides anammox bacteria with enrichment and proliferation. Under the conditions of attachment, anammox bacteria use ammonia nitrogen in raw water and nitrite nitrogen produced by short-range denitrification process as substrates to achieve autotrophic denitrification.
  • the aerobic zone can finally oxidize the ammonia nitrogen in the raw water to nitrate nitrogen under the action of nitrifying bacteria, and the phosphorus accumulating bacteria in the aerobic zone can use their own PHAs as electron donors and oxygen as electron acceptors for good performance.
  • part of the phosphorus-rich sludge is discharged from the secondary sedimentation tank to realize the removal of phosphorus in the sewage.
  • a part of the excess sludge enters the hydrolysis and acidification tank through the sludge pipeline, and is hydrolyzed and acidified under anaerobic conditions to convert macromolecular organic matter into small molecular organic matter, and the hydrolysis and acidification mixture and part of the excess sludge in the secondary sedimentation tank are returned to the In the anaerobic zone, while ensuring a stable sludge concentration in the system, small organic matter as a high-quality carbon source further promotes the short-range denitrification process.
  • the residual sludge from the secondary sedimentation tank of the urban sewage treatment plant is added to the biochemical reaction zone as seed sludge, and the raw water flows through the inlet water pump and enters the anaerobic zone, the second anoxic zone and the third zone of the reactor through the segmented water inlet pipeline.
  • the volume ratio of the three-stage influent water is controlled to be 4:3:3; the reflux ratio of the excess sludge to the sludge hydrolysis and acidification mixture is controlled to be 100%-150%, and the sludge and the sludge hydrolysis and acidification liquid are simultaneously refluxed to the anaerobic zone.
  • the oxygen zone keep the mixed suspended solids concentration (MLSS) in the reactor at 4000-5000 mg/L; in the initial stage, when the hydrolysis and acidification of the sludge in the acidification tank is not obvious, add a carbon source to the raw water tank to make the raw water C/L
  • the device and method for multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance denitrification and phosphorus removal takes the multi-stage AO staged water inflow mode as the process carrier, in which the short-range denitrification coupled Anammox process is realized, combining the two advantage.
  • the hydrolysis and acidification of part of the excess sludge in the secondary sedimentation tank provides a high-quality small molecular carbon source for the short-range denitrification process in the biochemical reaction zone, which promotes the short-range denitrification and solves the problem of sludge treatment in urban sewage treatment plants to a certain extent. .
  • the device and method of multi-stage AO short-range denitrification coupled with Anammox process combined with sludge hydrolysis and acidification mixture to enhance nitrogen and phosphorus removal have the potential to achieve high-efficiency and energy-saving treatment of urban sewage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法属于活性污泥法污水处理技术领域。该***包括水箱、水泵、生化反应区、水解酸化罐等装置;多级AO分段进水管路将原水分段注入反应区,保证了原水中有机物的高效利用;在厌、缺氧区投加生物膜载体富集厌氧氨氧化菌,短程反硝化产生亚硝态氮为厌氧氨氧化菌提供底物,实现氮素自养去除;在好氧区进行硝化作用和聚磷菌好氧吸磷;二沉池中的一部分剩余污泥进入水解酸化罐中将大分子有机物转化为小分子有机物,水解酸化混合物与二沉池剩余污泥同步回流至厌氧区,小分子有机物作为优质碳源能够促进短程反硝化。该***为城镇污水的高效、节能处理提供了一种新方法。

Description

[根据细则37.2由ISA制定的发明名称] 多级AO短程反硝化耦合ANAMMOX工艺结合污泥水解酸化强化脱氮除磷的方法
交叉引用
本申请要求在2020年12月12日提交中国专利局、申请号为202011460641.7、发明名称为“多级AO短程反硝化耦合Anammox结合污泥水解酸化强化脱氮除磷的装置与方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种基于多级AO的利用污泥水解酸化混合物强化脱氮除磷的短程反硝化耦合Anammox技术,属于污水生物处理领域。适用于城镇污水处理厂的高效、节能脱氮除磷过程。
背景技术
我国的城镇污水产量逐年递增,污水中的氮、磷等污染物排放到缓流水体中会引起严重的水体富营养化现象,表现为藻类爆发、水生生态***破坏、环流水体水质恶化等现象。城镇污水生物脱氮除磷被认为是解决水体富营养化的有效途径。目前,国内的城市城镇污水处理厂大多采用A/O、AAO、CAST、氧化沟等传统工艺,大多数的城镇污水处理厂不能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。提高污水处理厂传统工艺的脱氮除磷效果,成为现阶段城镇污水处理领域的重大需求。
城镇污水多级AO分段进水脱氮除磷工艺是目前十分具有应用潜力的污水处理工艺,其在国内外的研究与应用仍处于初期阶段,相比传统污水处 理工艺具有显著的优势:(1)原水分段进入各厌氧区或缺氧区,保证了原水中的碳源在厌氧区和缺氧区的平均分配,反硝化菌利用这部分碳源将好氧区硝化作用产生的硝态氮通过短程反硝化作用还原为亚硝态氮或全程反硝化作用直接产生氮气脱氮,这避免了好氧区异养菌对碳源的消耗,尤其适合处理国内的低C/N比城镇污水;(2)好氧区硝化液直接进入厌氧区或缺氧区,无需设置硝化液回流管道及装置,简化***构造,节省输送动力费用;(3)厌氧区及缺氧区中发生反硝化作用产生碱度,出水直接进入好氧区,一定程度上弥补了好氧区消耗的碱度,节省了碱度物质的投加;(4)污水交替流经缺氧区和好氧区,对丝状菌的生长起到了一定的抑制作用,减小了发生污泥膨胀的风险。
短程反硝化耦合Anammox被认为是Anammox在城镇污水处理厂中应用的最具潜力的方式之一。在一定条件下,反硝化菌以污水中的有机物为电子供体、以硝态氮为电子受体,将硝态氮还原为亚硝态氮而不是直接还原为氮气,由此产生的亚硝态氮能够在缺氧条件下为Anammox菌提供必需底物,供Anammox菌进行自养脱氮。短程反硝化耦合Anammox和全程反硝化作用往往同时进行,由此形成了两条主要的脱氮通路,在实现高效脱氮的同时也保证了稳定性和较高的抗冲击负荷的能力。另外,多项研究表明,在以小分子有机物作为电子供体时,短程反硝化过程能够更好地实现与维持。
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法以多级AO分段进水模式为工艺载体,在其中实现短程反硝化耦合Anammox过程,结合了两者的优点。另外,二沉池部分剩余污 泥水解酸化为生化反应区中的短程反硝化过程提供了优质小分子碳源,促进短程反硝化作用的同时一定程度上解决了城镇污水处理厂污泥处理的难题。综合来看,多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法有潜力实现城镇污水高效、节能处理。
发明内容
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的方法,应用以下装置:原水水箱(1)、进水泵(2)、厌氧区(3)、第一缺氧区(4)、第一好氧区(5)、第二缺氧区(6)、第二好氧区(7)、第三缺氧区(8)、第三好氧区(9)、沉淀池(10)、以及污泥水解酸化罐(11);进水泵(2)与厌氧区(3)、第二缺氧区(6)及第三缺氧区(8)之间通过分段进水管路(12)连接,各段进水管路均设有进水阀(14);生化反应区由厌氧区(3)、第一缺氧区(4)、第一好氧区(5)、第二缺氧区(6)、第二好氧区(7)、第三缺氧区(8)、第三好氧区(9)依次连接组成,实际应用中每一区的格室数与体积根据运行情况灵活调整;三段缺氧区均投加有生物膜载体并安装潜水搅拌器(13);三段好氧区均设有曝气装置(22),曝气头经曝气管路(21)与转子流量计(23)、空气阀门(26)及空气压缩机(19)相连;第三好氧区设有溢流堰,溢流堰管路经二沉池进水管(16)、二沉池进水阀(15)与二沉池中心管(18)相连,二沉池(10)出水口与出水管(17)相连;二沉池(10)与污泥水解酸化罐(11)之间连接有污泥泵(28)及污泥管道(29),污泥水解酸化罐(11)与污泥回流总管(20)之间连接有污泥泵(27)及污泥管道(26),污泥回流总管与厌氧区之间连接有污泥回流泵(24)将剩余污泥与污泥水解酸化 混合物回流至厌氧区,其余二沉池剩余污泥通过排泥管道(30)排至污泥处理***。
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法,其特征在于:
1)原水由原水水箱(1)经过进水泵(2)分别进入厌氧区(3)、第二缺氧区(6)、第三缺氧区(8),经生化反应区处理过的出水由第三好氧区(9)流出,通过二沉池进水管(15)与二沉池中心管(18)流入二沉池(10),二沉池上清液作为出水排出,二沉池底部的部分剩余污泥经污泥管道(29)进入水解酸化罐(11),水解酸化罐中的混合物和部分二沉池剩余污泥经污泥回流总管(20)共同回流至厌氧区,其余二沉池剩余污泥通过排泥管道(30)排至污泥处理***。
2)多级AO分段进水***中,原水分段进入厌氧区(3)、第二缺氧区(6)和第三缺氧区(8),保证了厌氧区和缺氧区有稳定的碳源来源。
3)厌氧区(3)中的聚磷菌摄取原水及活性污泥水解酸化混合物中的VFA合成PHAs并释磷。
4)好氧区硝化液回流将硝态氮带入厌氧区(3)、第二缺氧区(6)和第三缺氧区(8),反硝化菌利用有机物为电子供体进行短程反硝化过程为厌氧氨氧化菌提供底物亚硝态氮,实现短程反硝化耦合Anammox。
5)厌、缺氧区中投加有生物膜载体,通过潜水搅拌器(14)使其与活性污泥混合均匀并充分接触,生物膜载体为厌氧氨氧化菌提供了富集和增殖的附着条件,厌氧氨氧化菌以原水中的氨态氮和短程反硝化过程产生的亚硝态氮为底物实现自养脱氮。
6)好氧区能够将原水中的氨氮在硝化细菌的作用下最终氧化为硝态氮,好氧区中的聚磷菌能够以自身的PHAs为电子供体,以氧气为电子受体进行好氧吸磷过程,部分富磷污泥从二沉池排出***以实现污水中磷的去除。
7)一部分剩余污泥经污泥管道进入水解酸化罐,在厌氧条件下进行水解酸化,将大分子有机物转化为小分子有机物,水解酸化混合物与二沉池中的部分剩余污泥共同回流至厌氧区,在保证***中稳定的污泥浓度的同时,小分子有机物作为优质碳源进一步促进短程反硝化过程。
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的方法,包括以下步骤:
将城市城镇污水处理厂二沉池剩余污泥投加至生化反应区中作为种泥,原水通过进水泵流经分段进水管路进入反应器的厌氧区、第二缺氧区和第三缺氧区,控制三段进水体积之比为4:3:3;控制剩余污泥与污泥水解酸化混合液回流比为100%-150%,污泥与污泥水解酸化液同步回流至厌氧区,保持反应器内混合悬浮固体浓度(MLSS)为4000-5000mg/L;初始阶段水解酸化罐中的污泥水解酸化作用不明显时,在原水水箱中投加碳源,使得原水C/N比在3-5,在污泥水解酸化罐启动完成之后,停止投加碳源;通过实时监测***监控好氧段的溶解氧(DO),控制第一好氧区的DO为1-1.5mg/L,控制第二好氧区和第三好氧区的DO为2-3mg/L;通过控制***各段的流量调节各段的水力停留时间(HRT),使生化反应区的HRT保持在12-14h,HRT厌氧区:HRT缺氧区:HRT好氧区=1:3:3;通过控制二沉池剩余污泥直接排泥量维持生化反应区中的污泥停留时间为13-15天;通 过控制潜水搅拌的速度使厌、缺氧区中的生物膜载体和活性污泥混合均匀、充分接触。
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法以多级AO分段进水模式为工艺载体,在其中实现短程反硝化耦合Anammox过程,结合了两者的优点。另外,二沉池部分剩余污泥水解酸化为生化反应区中的短程反硝化过程提供了优质小分子碳源,促进短程反硝化作用的同时一定程度上解决了城镇污水处理厂污泥处理的难题。综合来看,多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法有潜力实现城镇污水高效、节能处理。
附图说明
图1是本申请城镇污水连续流分段进水反硝化部分厌氧氨氧化耦合污泥水解酸化强化脱氮除磷***的结构示意图。
图1中:1-原水水箱;2-进水泵;3-厌氧区;4-第一缺氧区;5-第一好氧区;6-第二缺氧区;7-第二好氧区;8-第三缺氧区;9-第三好氧区;10-沉淀池;11-污泥水解酸化罐;12-分段进水管路;13-潜水搅拌器;14-进水阀;15-二沉池进水阀;16-二沉池进水管;17-出水管;18-二沉池中心管;19-空气压缩机;20-污泥回流总管;21-曝气管路;22-曝气装置;23-转子流量计;24-污泥回流泵;25-空气阀门;26-污泥管道;27-污泥泵;28-污泥泵;29-污泥管道泵。
具体实施方式
结合图1,具体说明本申请的实施方式:
1)原水由原水水箱(1)经过进水泵(2)分别进入厌氧区(3)、第 二缺氧区(6)、第三缺氧区(8),经生化反应区处理过的出水由第三好氧区(9)流出,通过二沉池进水管(15)与二沉池中心管(18)流入二沉池(10),二沉池上清液作为出水排出,二沉池底部的部分剩余污泥经污泥管道(29)进入水解酸化罐(11),水解酸化罐中的混合物和部分二沉池剩余污泥经污泥回流总管(20)共同回流至厌氧区,其余二沉池剩余污泥通过排泥管道(30)排至污泥处理***。
2)多级AO分段进水***中,原水分段进入厌氧区(3)、第二缺氧区(6)和第三缺氧区(8),保证了厌氧区和缺氧区有稳定的碳源来源。
3)厌氧区(3)中的聚磷菌摄取原水及活性污泥水解酸化混合物中的VFA合成PHAs并释磷。
4)好氧区硝化液回流将硝态氮带入厌氧区(3)、第二缺氧区(6)和第三缺氧区(8),反硝化菌利用有机物为电子供体进行短程反硝化过程为厌氧氨氧化菌提供底物亚硝态氮,实现短程反硝化耦合Anammox。
5)厌、缺氧区中投加有生物膜载体,通过潜水搅拌器(14)使其与活性污泥混合均匀并充分接触,生物膜载体为厌氧氨氧化菌提供了富集和增殖的附着条件,厌氧氨氧化菌以原水中的氨态氮和短程反硝化过程产生的亚硝态氮为底物实现自养脱氮。
6)好氧区能够将原水中的氨氮在硝化细菌的作用下最终氧化为硝态氮,好氧区中的聚磷菌能够以自身的PHAs为电子供体,以氧气为电子受体进行好氧吸磷过程,部分富磷污泥从二沉池排出***以实现污水中磷的去除。
7)一部分剩余污泥经污泥管道进入水解酸化罐,在厌氧条件下进行水 解酸化,将大分子有机物转化为小分子有机物,水解酸化混合物与二沉池中的部分剩余污泥共同回流至厌氧区,在保证***中稳定的污泥浓度的同时,小分子有机物作为优质碳源进一步促进短程反硝化过程。
具体步骤:
将城市城镇污水处理厂二沉池剩余污泥投加至生化反应区中作为种泥,原水通过进水泵流经分段进水管路进入反应器的厌氧区、第二缺氧区和第三缺氧区,控制三段进水体积比之比为4:3:3;控制剩余污泥与污泥水解酸化混合液回流比为100%-150%,污泥与污泥水解酸化液同步回流至厌氧区,保持反应器内混合悬浮固体浓度(MLSS)为4000-5000mg/L;初始阶段水解酸化罐中的污泥水解酸化作用不明显时,在原水水箱中投加碳源,使得原水C/N比在3-5,在污泥水解酸化罐启动完成之后,停止投加碳源;通过实时监测***监控好氧段的溶解氧(DO),控制第一好氧区的DO为1-1.5mg/L,控制第二好氧区和第三好氧区的DO为2-3mg/L;通过控制***各段的流量调节各段的水力停留时间(HRT),使生化反应区的HRT保持在12-14h,HRT厌氧区:HRT缺氧区:HRT好氧区=1:3:3;通过控制二沉池剩余污泥直接排泥量维持生化反应区中的污泥停留时间为13-15天;通过控制潜水搅拌的速度使厌、缺氧区中的生物膜载体和活性污泥混合均匀、充分接触。
多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法以多级AO分段进水模式为工艺载体,在其中实现短程反硝化耦合Anammox过程,结合了两者的优点。另外,二沉池部分剩余污泥水解酸化为生化反应区中的短程反硝化过程提供了优质小分子碳源,促 进短程反硝化作用的同时一定程度上解决了城镇污水处理厂污泥处理的难题。综合来看,多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的装置与方法有潜力实现城镇污水高效、节能处理。

Claims (3)

  1. 多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的方法,应用以下装置:原水水箱(1)中的原水经进水泵(2)和分段进水管路(12)从厌氧区(3)、第二缺氧区(6)及第三缺氧区(8)进入生化反应区;生化反应区由厌氧区(3)、第一缺氧区(4)、第一好氧区(5)、第二缺氧区(6)、第二好氧区(7)、第三缺氧区(8)、第三好氧区(9)依次连接组成;分段进水管路(12)中的各个支段进水管路均设有进水阀(14);第一缺氧区(4)、第二缺氧区(6)和第三缺氧区(8)均投加有生物膜载体并安装潜水搅拌器(13);第一好氧区(5)、第二好氧区(7)和第三好氧区(9)均设有曝气装置(22),曝气头经曝气管路(21)与转子流量计(23)、空气阀门(26)及空气压缩机(19)相连;第三好氧区(9)设有溢流堰,溢流堰管路经二沉池进水管(16)、二沉池进水阀(15)与二沉池中心管(18)相连,二沉池(10)出水口与出水管(17)相连;二沉池(10)中的活性污泥通过污泥泵(28)及污泥管道(29)被注入污泥水解酸化罐(11),污泥水解酸化产物通过污泥泵(27)及污泥管道(26)进入污泥回流总管(20),污泥水解酸化混合物与二沉池剩余污泥通过污泥回流泵(24)和污泥回流总管(20)回流至厌氧区,二沉池剩余污泥通过排泥管道(30)排至污泥处理***。
  2. 根据权利要求1所述的多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的方法,其特征在于在厌、缺氧区投加比表面积为400-500m 2/m 3,填充比为20%-40%的生物膜载体,为厌氧氨氧化菌的附着提供条件。
  3. 多级AO短程反硝化耦合Anammox工艺结合污泥水解酸化混合物强化脱氮除磷的方法,包括以下步骤:
    将城市城镇污水处理厂二沉池剩余污泥投加至生化反应区中作为种泥,厌氧区、第二缺氧区和第三缺氧区的进水体积之比为4:3:3;控制剩余污泥与污泥水解酸化混合液回流比为100%-150%,污泥与污泥水解酸化液同步回流至厌氧区,保持反应器内混合悬浮固体浓度(MLSS)为4000-5000mg/L;水解酸化罐处于启动阶段时,在原水水箱中投加碳源,控制原水C/N比在3-5,在污泥水解酸化罐启动完成之后,停止投加碳源;通过实时监测***监控好氧段的溶解氧(DO),控制第一好氧区的DO为1-1.5mg/L,控制第二好氧区和第三好氧区的DO为2-3mg/L;通过控制***各段的流量调节各段的水力停留时间(HRT),使生化反应区的HRT保持在12-14h,HRT厌氧区:HRT缺氧区:HRT好氧区=1:3:3;通过控制二沉池剩余污泥直接排泥量维持生化反应区中的污泥停留时间为13-15天;通过控制潜水搅拌的速度使厌、缺氧区中的生物膜载体和活性污泥混合均匀、充分接触。
PCT/CN2021/107609 2020-12-12 2021-07-21 多级ao短程反硝化耦合anammox工艺结合污泥水解酸化强化脱氮除磷的方法 WO2022121321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/642,146 US20240067546A1 (en) 2020-12-12 2021-07-21 Device and Method for Enhancing Nitrogen and Phosphorus Removal Based on Multistage AO Partial Denitrification Coupled with Anammox in Combination with Sludge Hydrolytic Acidification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011460641.7 2020-12-12
CN202011460641.7A CN112645449B (zh) 2020-12-12 2020-12-12 多级AO短程反硝化耦合Anammox结合污泥水解酸化强化脱氮除磷的装置与方法

Publications (1)

Publication Number Publication Date
WO2022121321A1 true WO2022121321A1 (zh) 2022-06-16

Family

ID=75353686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107609 WO2022121321A1 (zh) 2020-12-12 2021-07-21 多级ao短程反硝化耦合anammox工艺结合污泥水解酸化强化脱氮除磷的方法

Country Status (3)

Country Link
US (1) US20240067546A1 (zh)
CN (1) CN112645449B (zh)
WO (1) WO2022121321A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043495A (zh) * 2022-07-06 2022-09-13 武汉辰雨环保科技有限公司 乡村污水集装箱式a2o一体化处理装置
CN115043494A (zh) * 2022-07-06 2022-09-13 武汉辰雨环保科技有限公司 一种集装箱式污水处理装备***及工艺方法
CN115072934A (zh) * 2022-07-06 2022-09-20 武汉辰雨环保科技有限公司 集装箱式污水脱氮除磷深度处理装置
CN115353203A (zh) * 2022-08-24 2022-11-18 天津天一爱拓科技有限公司 一种多点配水aaaoa—mbr组合工艺脱氮除磷污水处理***
CN115611407A (zh) * 2022-07-28 2023-01-17 北京工业大学 连续流aoa中基于羟胺与间歇曝气快速启动并维持短程硝化/厌氧氨氧化的装置与方法
CN115745161A (zh) * 2022-11-05 2023-03-07 北京工业大学 将基于悬浮污泥的城市污水脱氮传统工艺改造为纯生物膜pda脱氮工艺的装置与方法
CN115745166A (zh) * 2022-10-19 2023-03-07 北京工业大学 基于液体单向流动的升流式好氧/缺氧***强化城市污水脱氮同步污泥减量的装置和方法
CN115893654A (zh) * 2022-11-05 2023-04-04 北京工业大学 利用剩余污泥发酵上清液在pda-mbbr中实现城市污水深度脱氮的装置与方法
CN116102172A (zh) * 2023-04-17 2023-05-12 中国市政工程华北设计研究总院有限公司 一种耦合资源回收的污水处理***及工艺
CN116332353A (zh) * 2023-05-01 2023-06-27 山东绿立冠环保科技有限公司 一种高效脱氮除磷的污水处理工艺
CN117228841A (zh) * 2023-11-16 2023-12-15 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645449B (zh) * 2020-12-12 2022-03-29 北京工业大学 多级AO短程反硝化耦合Anammox结合污泥水解酸化强化脱氮除磷的装置与方法
CN113929210A (zh) * 2021-08-18 2022-01-14 北京工业大学 侧流污泥发酵产酸强化主流城市污水内碳源利用与深度脱氮的装置与方法
CN113880239B (zh) * 2021-11-08 2023-12-22 南京市市政设计研究院有限责任公司 曝气动力横向内循环无限ao脱氮***及工艺
CN114506967A (zh) * 2021-12-29 2022-05-17 浙江省生态环境科学设计研究院 一种生物强化处理高盐高硝态氮废水的方法
CN114349161B (zh) * 2022-01-17 2022-10-14 郑州轻工业大学 一种利用废弃污泥快速启动厌氧氨氧化的方法
CN115286107A (zh) * 2022-08-29 2022-11-04 中国电建集团华东勘测设计研究院有限公司 一种通过铁盐反硝化强化短程反硝化厌氧氨氧化工艺实现城镇污水脱氮除磷的装置与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466444B2 (ja) * 1997-11-21 2003-11-10 株式会社西原環境テクノロジー 廃水処理装置
CN105217786A (zh) * 2015-10-25 2016-01-06 北京工业大学 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
CN106830324A (zh) * 2017-03-22 2017-06-13 北京工业大学 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
RU2636707C1 (ru) * 2016-12-09 2017-11-27 Общество с ограниченной ответственностью "Джи-Эс-Пи Прожект" Способ и установка для биологической очистки сточных вод
CN108545830A (zh) * 2018-05-14 2018-09-18 北京工业大学 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN110078303A (zh) * 2019-05-09 2019-08-02 北京工业大学 分段进水a2/o工艺中实现短程硝化/厌氧氨氧化的方法与装置
CN110104774A (zh) * 2019-05-21 2019-08-09 北京工业大学 连续流分段进水、污泥与发酵污泥分段回流部分反硝化/厌氧氨氧化处理城市污水的装置
CN112645449A (zh) * 2020-12-12 2021-04-13 北京工业大学 多级AO短程反硝化耦合Anammox结合污泥水解酸化强化脱氮除磷的装置与方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609650B (zh) * 2015-01-01 2016-03-09 北京工业大学 一种剩余污泥发酵耦合双污泥反硝化除磷脱氮的装置和方法
CN112174316A (zh) * 2020-07-20 2021-01-05 北京工业大学 一种连续流工艺主流发酵同步脱氮除磷的装置与方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466444B2 (ja) * 1997-11-21 2003-11-10 株式会社西原環境テクノロジー 廃水処理装置
CN105217786A (zh) * 2015-10-25 2016-01-06 北京工业大学 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
RU2636707C1 (ru) * 2016-12-09 2017-11-27 Общество с ограниченной ответственностью "Джи-Эс-Пи Прожект" Способ и установка для биологической очистки сточных вод
CN106830324A (zh) * 2017-03-22 2017-06-13 北京工业大学 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN108545830A (zh) * 2018-05-14 2018-09-18 北京工业大学 一种利用污泥发酵强化连续流城市污水部分短程硝化厌氧氨氧化的工艺
CN110078303A (zh) * 2019-05-09 2019-08-02 北京工业大学 分段进水a2/o工艺中实现短程硝化/厌氧氨氧化的方法与装置
CN110104774A (zh) * 2019-05-21 2019-08-09 北京工业大学 连续流分段进水、污泥与发酵污泥分段回流部分反硝化/厌氧氨氧化处理城市污水的装置
CN112645449A (zh) * 2020-12-12 2021-04-13 北京工业大学 多级AO短程反硝化耦合Anammox结合污泥水解酸化强化脱氮除磷的装置与方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043494A (zh) * 2022-07-06 2022-09-13 武汉辰雨环保科技有限公司 一种集装箱式污水处理装备***及工艺方法
CN115072934A (zh) * 2022-07-06 2022-09-20 武汉辰雨环保科技有限公司 集装箱式污水脱氮除磷深度处理装置
CN115043495A (zh) * 2022-07-06 2022-09-13 武汉辰雨环保科技有限公司 乡村污水集装箱式a2o一体化处理装置
CN115611407A (zh) * 2022-07-28 2023-01-17 北京工业大学 连续流aoa中基于羟胺与间歇曝气快速启动并维持短程硝化/厌氧氨氧化的装置与方法
CN115611407B (zh) * 2022-07-28 2024-04-26 北京工业大学 连续流aoa中基于羟胺与间歇曝气快速启动并维持短程硝化/厌氧氨氧化的装置与方法
CN115353203A (zh) * 2022-08-24 2022-11-18 天津天一爱拓科技有限公司 一种多点配水aaaoa—mbr组合工艺脱氮除磷污水处理***
CN115745166B (zh) * 2022-10-19 2024-04-19 北京工业大学 基于液体单向流动的升流式好氧/缺氧***强化城市污水脱氮同步污泥减量的装置和方法
CN115745166A (zh) * 2022-10-19 2023-03-07 北京工业大学 基于液体单向流动的升流式好氧/缺氧***强化城市污水脱氮同步污泥减量的装置和方法
CN115745161A (zh) * 2022-11-05 2023-03-07 北京工业大学 将基于悬浮污泥的城市污水脱氮传统工艺改造为纯生物膜pda脱氮工艺的装置与方法
CN115893654A (zh) * 2022-11-05 2023-04-04 北京工业大学 利用剩余污泥发酵上清液在pda-mbbr中实现城市污水深度脱氮的装置与方法
CN115745161B (zh) * 2022-11-05 2024-04-26 北京工业大学 将基于悬浮污泥的城市污水脱氮传统工艺改造为纯生物膜pda脱氮工艺的装置与方法
CN116102172A (zh) * 2023-04-17 2023-05-12 中国市政工程华北设计研究总院有限公司 一种耦合资源回收的污水处理***及工艺
CN116332353B (zh) * 2023-05-01 2023-11-28 山东美清生态环保材料有限公司 一种高效脱氮除磷的污水处理工艺
CN116332353A (zh) * 2023-05-01 2023-06-27 山东绿立冠环保科技有限公司 一种高效脱氮除磷的污水处理工艺
CN117228841B (zh) * 2023-11-16 2024-02-09 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置
CN117228841A (zh) * 2023-11-16 2023-12-15 北京华益德环境科技有限责任公司 一种侧流颗粒化连续流好氧颗粒污泥处理装置

Also Published As

Publication number Publication date
CN112645449A (zh) 2021-04-13
CN112645449B (zh) 2022-03-29
US20240067546A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022121321A1 (zh) 多级ao短程反硝化耦合anammox工艺结合污泥水解酸化强化脱氮除磷的方法
WO2020220922A1 (zh) Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN110143725B (zh) 混合污泥发酵液为碳源连续流短程反硝化耦合厌氧氨氧化工艺处理城市污水装置和方法
CN106830324B (zh) 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN107162193B (zh) 低氧硝化耦合短程反硝化厌氧氨氧化处理生活污水的装置及方法
CN101284697B (zh) 通过fa与fna联合控制实现污泥消化液短程硝化的装置与方法
CN108409033B (zh) Fna强化短程硝化的分段进水uct深度脱氮除磷的装置与方法
CN102633359B (zh) 一种适用于含氮化工废水总氮的处理方法
CN102964035B (zh) 复合式生物膜自养脱氮装置的运行方法
CN105461061A (zh) 一种城市污水a2/o-生物同步脱氮除磷装置及方法
CN103951059B (zh) 多循环式复合型生物反应器及其工艺
WO2022213586A1 (zh) 一种通过传统活性污泥实现主流厌氧氨氧化原位富集的方法与装置
CN106745743A (zh) 一种污水脱氮除磷***
CN105217890A (zh) 基于deamox强化a2/o+生物接触氧化工艺生物脱氮除磷的装置与方法
CN102502962A (zh) 表面曝气氧化沟工艺同步硝化反硝化控制方法及装置
US20230100166A1 (en) Device and method for treating urban domestic sewage based on two-stage combined process of partial denitrification-anammox
CN112479361A (zh) 一种深度处理含盐废水的装置及方法
CN112225397A (zh) 基于双污泥反硝化除磷及生物滤塔的污水处理***及方法
CN103833134A (zh) 连续流污水处理***实现短程脱氮的方法
CN205442793U (zh) 一种城市污水a2/o-生物同步脱氮除磷装置
CN102826656B (zh) 一种工业污水深度脱氮及回用工艺
CN110015818B (zh) 连续流除磷亚硝化耦合厌氧氨氧化脱氮除磷sbr工艺
CN202279730U (zh) 表面曝气氧化沟工艺同步硝化反硝化控制装置
CN112960773B (zh) 一种基于氧化态氮常态投加的低c/n生活污水深度脱氮的方法
CN113149215A (zh) 一种造纸污水中置曝气脱氮处理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17642146

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902032

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/11/2023)