WO2022118481A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2022118481A1
WO2022118481A1 PCT/JP2020/045350 JP2020045350W WO2022118481A1 WO 2022118481 A1 WO2022118481 A1 WO 2022118481A1 JP 2020045350 W JP2020045350 W JP 2020045350W WO 2022118481 A1 WO2022118481 A1 WO 2022118481A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
transmission
overlap
pucch
terminal
Prior art date
Application number
PCT/JP2020/045350
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
慎也 熊谷
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/045350 priority Critical patent/WO2022118481A1/en
Publication of WO2022118481A1 publication Critical patent/WO2022118481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • 5G or NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • 5G or NR New Radio
  • 5G various radio techniques and network architectures have been studied in order to satisfy the requirement that the delay of the radio section be 1 ms or less while achieving a throughput of 10 Gbps or more (for example, Non-Patent Document 1).
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a type 1 set in the upper layer and a type 2 set in the upper layer and activated in the lower layer.
  • DG dynamic grant
  • the PUSCH transmission supports repetition (for example, Non-Patent Document 3).
  • PUCCH Physical Uplink Control Channel
  • the present invention has been made in view of the above points, and an object thereof is to determine an uplink channel to be transmitted when the uplink channels overlap in the time domain.
  • a terminal having a control unit that resolves the overlap and determines which of the plurality of channels is to be transmitted, and a transmission unit that transmits the channel determined to be transmitted to the base station.
  • a technique capable of determining the uplink channel to be transmitted is provided.
  • the existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
  • FIG. 1 is a diagram for explaining an example (1) of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
  • TTI Transmission Time Interval
  • the base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, and the like to the terminal 20.
  • Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink).
  • DL Downlink
  • UL Uplink
  • a control channel such as PUCCH or PDCCH
  • data such as a name is an example. Is.
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services.
  • the terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
  • the terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • PUCCH-S Cell having PUCCH may be used.
  • FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is executed.
  • a base station 10A serving as an MN (MasterNode) and a base station 10B serving as an SN (SecondaryNode) are provided.
  • Base station 10A and base station 10B are each connected to the core network.
  • the terminal 20 can communicate with both the base station 10A and the base station 10B.
  • the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
  • the processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these.
  • PUSCH Physical Uplink Shared Channel
  • CG Physical Uplink Shared Channel
  • DG dynamic grant assigned by DCI (Downlink Control Information) in the physical layer
  • the UL channel priority and the UL channel to which the control information is multiplexed are dropped based on the UL channel type and / or the control information type.
  • UL channel and the like are determined.
  • FIG. 3 is a diagram showing an example (1) in which UL channels overlap.
  • the terminal 20 may perform the operation shown in 1) -3) below.
  • the operation shown in A1) -A3) may be executed when the repetition transmission (Repetition) is not applied to the PUCCH.
  • A1 When the UCI (Uplink Control Information) in the PUCCH is HARQ-ACK, the HARQ-ACK is multiplexed with the PUSCH as shown in FIG. 3, the PUCCH is dropped, and the PUSCH is transmitted.
  • A2) When the UCI in the PUCCH is CSI, if the PUSCH does not include the CSI, the CSI is multiplexed with the PUSCH as shown in FIG. 3, the PUCCH is dropped, and the PUSCH is transmitted. If the PUSCH contains CSI, the PUCCH is dropped and the PUSCH is transmitted without multiplexing.
  • FIG. 4 is a diagram showing an example (2) in which UL channels overlap.
  • A'1- which PUSCH the operation shown in the above A1) -A3) is applied.
  • the terminal 20 may be determined by the rule shown in A'4).
  • the rule is applied in both cases of CA (Carrier Aggregation) and non-CA.
  • CA Carrier Aggregation
  • non-CA Non-CA
  • A'1 Of the N PUSCHs, if there is a PUSCH set to transmit an aperiodic CSI (hereinafter, also referred to as "A-CSI"), the PUSCH A'2) If there is 1 or more M 1 DG (Dynamic grant) -PUSCH and 1 or more M 2 CG (Configured grant) -PUSCH, any one of M 1 DG-PUSCH A ′ 3) If there are N PUSCHs across multiple serving cells, one or more M 3 PUSCHs in the cell with the smallest serving cell ID A ′ 4) 1 or more M 4 PUSCHs in the same serving cell Among them, PUSCH with the earliest start symbol
  • the priority of the DG-PUSCH set to transmit the A-CSI in CC1 is the highest 1.
  • the priority of DG-PUSCH in CC0 becomes 2.
  • the priority of the preceding DG-PUSCH in CC2 is 3, and the priority of the following DG-PUSCH is 4.
  • the priority of CG-PUSCH is 5.
  • the terminal 20 may perform the operation shown in B1) -B2) below.
  • the MAC PDU contains zero MAC SDU (SDU does not exist), and the MAC PDU contains only periodic BSR (Buffer Status Report), and there is no logical channel data or padding. If only BSR is included, PUSCH transmission may be skipped. PUSCH transmission can be skipped regardless of the settings from the network.
  • the parameter skipUplinkTxDynamic is set to true and it is a PUSCH corresponding to C-RNTI (Cell Radio Network Temporary Identifier), and the MAC PDU includes zero MAC SDU (SDU does not exist).
  • the MAC PDU contains only the periodic BSR (Buffer Status Report) and there is no data of the logical channel or contains only the padding BSR, the PUSCH transmission may be skipped. In cases other than the above, PUSCH transmission cannot be skipped. That is, the terminal 20 generates and transmits an empty MAC PDU.
  • the terminal 20 may perform the operation shown in C0) -C2) below.
  • the operation may be determined depending on the implementation of the terminal 20. That is, when the case occurs, the base station 10 needs to perform blind decoding. Alternatively, the base station 10 schedules so that the case does not occur.
  • C1 In the case of DG-PUSCH, it is assumed that all PUSCHs are transmitted, and the terminal 20 determines to which PUSCH the UCI is to be multiplexed. The terminal 20 cannot skip the PUSCH determined to multiplex the UCI, and always transmits it.
  • the MAC layer generates a MAC PDU for the PUSCH determined to multiplex the UCI.
  • C1) there is no prioritization of LCH, and a single PHY priority is assumed. It may be assumed that there is no PUSCH repeated transmission.
  • C2 In the case of CG-PUSCH, it is assumed that all PUSCHs are transmitted, and the terminal 20 determines to which PUSCH the UCI is to be multiplexed. The terminal 20 cannot skip the PUSCH determined to multiplex the UCI, and always transmits it.
  • the MAC layer generates a MAC PDU for the PUSCH determined to multiplex the UCI.
  • C2) there is no prioritization of LCH, and it is assumed that there is no single PHY priority and no PUSCH repeated transmission.
  • the terminal 20 may perform the operation shown in D1) or D2) below.
  • the terminal 20 may perform the operation shown in E) below.
  • the terminal 20 may perform the operation shown in F) below.
  • PUSCH corresponding to UL grant for CS-RNTI Configured Scheduling RNTI
  • C-RNTI with NDI New Data Indicator
  • PUSCH corresponding to UL grant for CS-RNTI or C-RNTI with NDI set to 1 and PUCCH with SR
  • PUSCH corresponding to the configured grant and PUSCH corresponding to other configured grants in the same BWP PUSCH corresponding to the set grant and PUCCH with SR
  • the terminal 20 may perform the operation shown in G) below.
  • the terminal 20 may perform the operation shown in H1) -H4) below.
  • the terminal 20 can start the transmission of the CG-PUSCH.
  • a PUSCH containing the UCI of the PUCCH may be transmitted regardless of the restrictions of.
  • the terminal 20 When a transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 precedes the transmission opportunity overlapping with the PUCCH in terms of time. Even if the PUSCH is not transmitted at the transmission opportunity, the UCI of the PUCCH may be included (multiplexed) in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
  • FIG. 5 is a diagram showing an example (3) in which UL channels overlap.
  • FIG. 5 shows an example in which a transmission opportunity among a plurality of transmission opportunities of a CG-PUSCH for which repeated transmission is set overlaps with the PUCCH in the time domain.
  • four PUSCH transmission opportunities are set from the front in the time direction.
  • the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain.
  • the terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG.
  • the terminal 20 detects that the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain among the four transmission opportunities shown in the example of FIG.
  • the terminal 20 does not have to transmit the PUSCH.
  • the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
  • UCI may be included (multiplexed), in which case the MAC layer of the terminal 20 may generate a MAC PDU.
  • the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
  • UCI may be included (multiplexed), in which case the MAC layer of terminal 20 is a MAC PDU containing no data to transmit (eg, zero MAC Service Data Unit (SDU), periodic).
  • SDU MAC Service Data Unit
  • a MAC PDU containing only a Buffer Status Report (BSR) and no data available in the logical channel group, or a MAC PDU containing only a padding BSR) may generate a MAC PDU. ..
  • the terminal 20 may set the RV to the RV corresponding to the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH.
  • the terminal 20 may set the RV to 0 regardless of the transmission opportunity of the PUSCH that overlaps with the PUCCH in the time domain.
  • the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
  • the UCI may be included (multiplexed), and in this case, the MAC layer of the terminal 20 may generate a MAC PDU even when there is no data to be transmitted.
  • the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU). You may send the PUSCH (with).
  • the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. .. Alternatively, the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
  • the terminal 20 can start the transmission of the CG-PUSCH. It may be determined whether or not it is possible to include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH based on the constraint of.
  • the MAC layer of the terminal 20 may generate a MAC PDU.
  • the MAC layer of the terminal 20 only receives a MAC PDU including zero MAC Service Data Unit (SDU) and a periodic Buffer Status Report (BSR) when there is no data to be transmitted.
  • MAC PDUs that include MAC PDUs that do not have data available in the logical channel group, or MAC PDUs that contain only padding BSRs) may also generate MAC PDUs.
  • the terminal 20 may set the RV to the RV corresponding to the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH.
  • the terminal 20 may set the RV to 0 regardless of the transmission opportunity of the PUSCH that overlaps with the PUCCH in the time domain.
  • the MAC layer of the terminal 20 may generate a MAC PDU even when there is no data to be transmitted.
  • the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU).
  • You may send the PUSCH (with).
  • the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. ..
  • the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
  • the terminal 20 may determine that it is not possible to start the transmission of the CG-PUSCH at the transmission opportunity of the PUSCH overlapping with the PUCCH.
  • the terminal 20 determines that the UCI of the PUCCH cannot be included in the PUSCH of the transmission opportunity overlapping with the PUCCH (cannot be multiplexed). You may. In this case, the terminal 20 may skip the transmission of the PUSCH at the transmission opportunity of the PUSCH later in the time direction than the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH (without performing the transmission of the PUSCH). May be good).
  • FIG. 6 is a diagram showing an example (4) in which UL channels overlap.
  • FIG. 6 shows an example in which a transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set overlaps with the PUCCH in the time domain.
  • four PUSCH transmission opportunities are set from the front in the time direction.
  • the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain.
  • the terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG.
  • the terminal 20 detects that the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain among the four transmission opportunities shown in the example of FIG.
  • FIG. 6 It may be determined that the UCI of the PUCCH cannot be included in the PUSCH of the second transmission opportunity because the PUSCH is not transmitted at the first transmission opportunity for the time of the example. After that, at the third and fourth transmission opportunities in the time direction, the terminal 20 does not have to transmit the PUSCH.
  • the terminal 20 is more time-related than the transmission opportunity overlapping with the PUCCH. Based on the presence or absence of transmission of the PUSCH in the previous transmission opportunity, it may be determined whether or not the UCI of the PUCCH can be included in the PUSCH of the transmission opportunity overlapping with the PUCCH.
  • the transmission opportunity overlapping with the PUCCH is the first transmission opportunity with respect to the time of repeated transmission.
  • the terminal 20 may determine that it is possible to include the UCI of the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
  • the transmission opportunity that overlaps with the PUCCH is the first transmission opportunity with respect to the time of repeated transmission.
  • the terminal 20 may include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH (may be multiplexed), and in this case, the MAC layer of the terminal 20 is a MAC PDU. May be generated.
  • the transmission opportunity overlapping with the PUCCH is the first transmission opportunity with respect to the time of the repeated transmission.
  • the terminal 20 may include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH (may be multiplexed), and in this case, the MAC layer of the terminal 20 transmits.
  • a MAC PDU may be generated even if there is no data.
  • the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU).
  • You may send the PUSCH (with).
  • the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. ..
  • the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
  • the terminal 20 When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 repeatedly transmits the overlapping transmission opportunity in the time domain with the PUCCH. It may be determined that it is not the first transmission opportunity with respect to the time of.
  • the overlapping transmission opportunity in the time domain is the time of the repeated transmission. If the terminal 20 does not transmit the PUSCH at the transmission opportunity that precedes the transmission opportunity that overlaps with the PUCCH in the time domain in the time domain when it is determined that the transmission opportunity is not the first. It may be determined that the UCI of the PUCCH cannot be included (cannot be multiplexed) in the PUSCH of the transmission opportunity that overlaps with the PUCCH in the time domain.
  • the terminal 20 may skip the transmission of the PUSCH at the transmission opportunity of the PUSCH later in the time direction than the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH (without performing the transmission of the PUSCH). May be good).
  • the overlapping transmission opportunity in the time domain is the time of the repeated transmission.
  • the terminal 20 transmits the PUSCH at a transmission opportunity earlier in the time direction than the transmission opportunity overlapping in the time domain with the PUCCH when it is determined that it is not the first transmission opportunity, the terminal 20 transmits the PUCCH. It may be determined that it is possible (and possible to multiplex) the UCI of the PUCCH to be included in the PUSCH of the transmission opportunities that overlap in the time domain.
  • FIG. 7 is a diagram showing an example (5) in which UL channels overlap.
  • FIG. 7 shows an example in which a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH set to be repeatedly transmitted and the PUCCH overlap in the time domain.
  • four PUSCH transmission opportunities are set from the front in the time direction.
  • the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain.
  • the terminal 20 determines that the transmission opportunity that overlaps with the PUCCH in the time domain is not the first transmission opportunity with respect to the time of repeated transmission. It is assumed that the terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG.
  • the terminal 20 does not have to transmit the PUSCH at the transmission opportunity of the second PUSCH from the front in the time direction among the four transmission opportunities shown in the example of FIG. After that, at the third and fourth transmission opportunities in the time direction, the terminal 20 does not have to transmit the PUSCH.
  • the terminal 20 When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 performs the MAC PDU at the transmission opportunity of the PUSCH repeated transmission.
  • the PUCCH may be transmitted by dropping the PUSCH of the transmission opportunity without generating the PUCCH, or if there is another PUSCH, the PUSCH may be multiplexed with the other PUSCH.
  • the PUSCH of the transmission opportunity may be dropped, and the data may be transmitted at the subsequent transmission opportunity.
  • the terminal 20 may skip the transmission of all PUSCHs, or may transmit all PUSCHs.
  • 5 to 7 show an example in which CG-PUSCH is repeatedly transmitted in slot units, but this embodiment is not limited to this example.
  • repeated transmission of CG-PUSCH may be performed in symbol units.
  • the case where the repeated transmission of CG-PUSCH is performed in slot units may be referred to as PUSCH reproduction type A, and the case where the repeated transmission of CG-PUSCH is performed in symbol units may be referred to as PUSCH repetition type B.
  • the example shown in H1) -H4) above may target only the PUCCH that does not repeatedly transmit, or may target the PUCCH that repeatedly transmits.
  • repeated transmission may mean repeated transmission of the same transport block (that is, MAC PDU).
  • the terminal 20 is the PUCCH.
  • the operation of including the UCI in the PUSCH and the operation of skipping the transmission of the PUSCH are clarified.
  • the operation of the terminal 20 including the UCI of the PUCCH in the PUSCH can be the same as the operation without the repeated transmission of the PUSCH. Further, for the operation in which the terminal 20 does not include the UCI of the PUCCH in the PUSCH, it is possible to avoid unnecessary (or additional functions) PUSCH transmission.
  • the operation of the terminal 20 when a plurality of the above conditions A, A', B, C, D, E, F and G are satisfied at the same time is not clear.
  • one or more PUSCH transmissions are set or instructed, at least one PUSCH is set or instructed to repeatedly transmit, and either PUSCH and PUCCH overlap at least in the time domain and are transmitted by at least one PUSCH resource.
  • PUSCH could be skipped, and the operation of the terminal 20 when the priority of the logical channel and / or the priority in the physical layer was set or instructed was not specified.
  • the overlap between PUSCH and PUCCH may be resolved by a predetermined method.
  • the high priority is described as HP (Higher priority) and the low priority is described as LP (Lower priority).
  • HP and LP may be priorities in the physical layer, or may be priorities in higher layers such as logical channels.
  • the priority is 3 or more, the priority may be divided into two groups, the group with high priority may be referred to as HP, and the group with low priority may be referred to as LP.
  • the above-mentioned predetermined conditions may be the conditions shown in 1) -5) below.
  • the above-mentioned predetermined method may be the method shown in Proposal 1) -Proposal 3) below.
  • Proposal 1) After processing the overlap between channels for each priority, handle the overlap between channels with different priorities.
  • Proposal 2) After processing the overlap related to the channel having high priority, the overlap related to the channel having low priority is processed based on the channel having high priority after processing.
  • Proposal 3) Overlapping to a channel with a high priority After dropping a channel with a low priority, the overlap between the channels is processed for each priority.
  • FIGS. 8 to 15 are examples in which the assumed channels overlap.
  • FIG. 8 is a diagram showing an example (1) of UL transmission in the embodiment of the present invention.
  • PUSCH-LP is repeatedly transmitted
  • PUCCH-LP and PUSCH-HP overlap at a certain transmission opportunity in the repeated transmission
  • PUCCH-LP and PUSCH-HP also overlap each other. A case is assumed.
  • FIG. 9 is a diagram showing an example (2) of UL transmission in the embodiment of the present invention. As shown in FIG. 9, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUCCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUCCH-HP also overlap each other. A case is assumed.
  • FIG. 10 is a diagram showing an example (3) of UL transmission in the embodiment of the present invention.
  • PUSCH-LP is repeatedly transmitted
  • PUCCH-LP and PUSCH-HP overlap at a certain transmission opportunity in the repeated transmission
  • PUCCH-LP and PUSCH-HP overlap each other. It is assumed that this is not the case.
  • FIG. 11 is a diagram showing an example (4) of UL transmission in the embodiment of the present invention. As shown in FIG. 11, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUCCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUCCH-HP overlap each other. It is assumed that this is not the case.
  • FIG. 12 is a diagram showing an example (5) of UL transmission in the embodiment of the present invention. As shown in FIG. 12, PUSCH-LP is repeatedly transmitted, PUCCH-LP overlaps with one transmission opportunity and other PUSCH-HP in the repeated transmission, and PUSCH-LP and PUSCH-HP overlap. It is assumed that there is no wrapping.
  • FIG. 13 is a diagram showing an example (6) of UL transmission in the embodiment of the present invention. As shown in FIG. 13, PUSCH-LP is repeatedly transmitted, PUCCH-HP overlaps with one transmission opportunity and other PUSCH-HP in the repeated transmission, and PUSCH-LP and PUSCH-HP overlap. It is assumed that there is no wrapping.
  • FIG. 14 is a diagram showing an example (7) of UL transmission in the embodiment of the present invention.
  • PUSCH-LP is repeatedly transmitted, another PUSCH-HP overlaps with one transmission opportunity and PUCCH-LP in the repeated transmission, and PUSCH-LP and PUCCH-LP overlap. It is assumed that there is no wrapping.
  • FIG. 15 is a diagram showing an example (8) of UL transmission in the embodiment of the present invention.
  • PUSCH-LP is repeatedly transmitted, another PUSCH-HP overlaps with one transmission opportunity and PUCCH-HP in the repeated transmission, and PUSCH-LP and PUCCH-HP overlap. It is assumed that there is no wrapping.
  • FIG. 16 is a flowchart for explaining an example (1) of UL transmission in the embodiment of the present invention.
  • the terminal 20 may process the overlap between channels having different priorities after processing the overlap between channels for each priority. That is, if there is no data to be transmitted in the PUSCH repeated transmission, the PUSCH transmission at the transmission opportunity can be skipped, and the PUCCHs of the same priority overlap at a certain transmission opportunity, the solution is to use channels of different priorities. It does not have to be related to overlap. For example, when PUCCHs having the same priority overlap, the terminal 20 may solve the problem by the method shown in H1) -H4) above.
  • step S11 the terminal 20 processes the overlap between channels for each priority.
  • step S12 the terminal 20 handles the overlap between channels having different priorities.
  • step S12 the overlap between channels having different priorities may be resolved by the method shown in 1) -4) below.
  • Priority is given to HP channels for overlap between HP channels that are confirmed to be transmitted (for example, PUCCH, PUSCH with UCI, DG-PUSCH that is not allowed to skip, etc.) and LP channels. You may drop the LP channel.
  • a MAC PDU is generated in the PUSCH-HP, and the overlapping LP channel may be dropped. That is, it does not have to depend on whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity at which transmission can be started.
  • the process may be determined based on at least one of whether or not there is data and whether or not it is a transmission opportunity that can start transmission among repeated transmissions. For example, in the case of repeated transmission of PUSCH-HP, MAC PDU may not be generated in PUSCH-HP, and in the case of repeated transmission of PUSCH-HP, MAC PDU may be generated in PUSCH-HP.
  • a MAC PDU is not generated in PUSCH-HP, and if it is a transmission opportunity that can start transmission, a MAC PDU is generated in PUSCH-HP. You may.
  • FIG. 17 is a flowchart for explaining an example (2) of UL transmission in the embodiment of the present invention. Even if the overlap related to the channel having high priority is processed and then the overlap related to the channel having low priority is processed based on the channel having high priority after processing as in the above proposal 2. good.
  • step S21 the terminal 20 processes the overlap related to the channel having a high priority.
  • step S22 the terminal 20 processes the overlap relating to the channel having the lower priority based on the channel having the higher priority after the processing.
  • step S22 the overlap resolution of different priorities and the overlap resolution of the LP channels may be performed by the methods shown in 1) -5) below.
  • the overlapping LP channel is further combined with the HP channel.
  • the PUSCH-LP that does not overlap for example, in the case of FIG. 12
  • a MAC PDU may be generated in the PUSCH-HP and the LP channel may be dropped.
  • the MAC PDU is not generated in the PUSCH-HP and the overlap related to the LP channel is solved.
  • the method shown in H1) -H4) above may be applied to solve the overlap. That is, it does not have to depend on whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity at which transmission can be started.
  • PUSCH-HP Whether or not the PUSCH is repeatedly transmitted, whether or not there is data, and among the repeated transmissions, with respect to the overlap between the PUSCH-HP that can be skipped by the PUSCH-HP after the step S21 processing and the LP channel.
  • the process may be determined based on at least one of whether or not the transmission opportunity can be started. For example, in the case of repeated transmission of PUSCH-HP, MAC PDU may not be generated in PUSCH-HP, and in the case of repeated transmission of PUSCH-HP, MAC PDU may be generated in PUSCH-HP.
  • a MAC PDU is not generated in PUSCH-HP, and if it is a transmission opportunity that can start transmission, a MAC PDU is generated in PUSCH-HP. You may.
  • FIG. 18 is a flowchart for explaining an example (3) of UL transmission in the embodiment of the present invention.
  • the overlap between the channels may be processed for each priority.
  • step S31 the terminal 20 drops a channel having a low priority that overlaps with the channel having a high priority.
  • step S32 the terminal 20 processes the overlap between the channels for each priority. Then, if there is an overlap between channels of different priority, resolve the overlap.
  • the terminal 20 may apply either the above proposal 1 or the above proposal 2 to the overlap processing in step S31 or step S32.
  • the terminal 20 is based on at least one of whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity where transmission can be started.
  • the above-mentioned Proposal 1, the above-mentioned Proposal 2 and the above-mentioned Proposal 3 may be decided.
  • the PUSCH to which the repeated transmission is not applied may be replaced with the PUSCH to which the repeated transmission is applied.
  • the above embodiment may be applied to either the repeated transmission of CG-PUSCH or the repeated transmission of DG-PUSCH.
  • the repeated transmission is performed in slot units in the above embodiment, it may be applied to repeated transmission in symbol units.
  • Repeated transmission in slot units is referred to as PUSCH repeat type A
  • repeated transmission in symbol units is referred to as PUSCH repeat type B.
  • Type B if the invalid symbol determines the actual iteration from the nominal iteration, the embodiment may be applied to the actual iteration.
  • the PUCCH in this embodiment may be targeted only at the PUCCH that is not repeatedly transmitted, or may be the target of the PUCCH that is repeatedly transmitted.
  • repeated transmission may mean repeated transmission of the same transport block (that is, MAC PDU).
  • the confirmation of the PUSCH preparation time and the PDSCH processing time is executed for each transmission of the repeated transmission, and it may be determined whether or not the present embodiment is applicable, and the transmission at the beginning of the repeated transmission may be performed. However, it may be determined whether or not the present embodiment is applicable.
  • the priority may be binary or more than binary. When the priority is more than two values, the above embodiment may be applied to the two values among them.
  • the terminal 20 it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case.
  • the uplink channel to be transmitted can be determined.
  • the base station 10 and the terminal 20 include a function of executing the above-described embodiment. However, the base station 10 and the terminal 20 may each have only the proposed function of any one of the embodiments.
  • FIG. 19 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 19 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them out from the storage device as needed.
  • the control unit 140 for example, allocates resources, controls the entire base station 10, and the like.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120. Further, the transmitting unit 110 and the receiving unit 120 may be referred to as a transmitter and a receiver, respectively.
  • FIG. 20 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 20 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 controls the entire terminal 20 and the like.
  • the transmission unit 210 may include the function unit related to signal transmission in the control unit 240
  • the reception unit 220 may include the function unit related to signal reception in the control unit 240.
  • the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
  • each functional block (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be mounted by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and a specific condition is detected.
  • the terminal 20 it is possible to clarify the operation of the terminal 20 when a plurality of conditions related to the overlap between UL channels are satisfied at the same time. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case. That is, when the uplink channels overlap in the time domain, the uplink channel to be transmitted can be determined.
  • the specific condition is that repeated transmission is set to at least one physical uplink shared channel among the plurality of channels, and one of the plurality of physical uplink shared channels and one of the physical uplinks are set.
  • the control channel overlaps with the control channel at least in the time domain, and there is no data to be transmitted by the resource of at least one physical uplink shared channel among the plurality of channels, and the transmission of the physical uplink shared channel can be skipped.
  • the priority of the logical channel or the priority in the physical layer may be set for each of the plurality of channels.
  • the specific condition is that repeated transmission is set to at least one physical uplink shared channel among the plurality of channels, and one of the plurality of physical uplink shared channels and one of the physical uplinks are set.
  • the control channel overlaps with the control channel at least in the time domain, and there is no data to be transmitted by the resource of at least one physical uplink shared channel among the plurality of channels, and the transmission of the physical uplink shared channel can be skipped.
  • the priority of the logical channel or the priority in the physical layer may be set for each of the plurality of channels.
  • the specific method may be a method of resolving the overlap between the plurality of channels for each priority and then resolving the overlap between the plurality of channels having different priorities.
  • the specific method is a method of resolving the overlap relating to the channel having the higher priority among the plurality of channels and then resolving the overlap relating to the channel having the lower priority among the plurality of channels. May be good. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
  • the specific method is a method of dropping a channel having a low priority that overlaps with a channel having a high priority among the plurality of channels, and then resolving the overlap between the plurality of channels for each priority. There may be. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
  • a communication method in which a terminal executes a control procedure for determining which of a plurality of channels is to be transmitted and a transmission procedure for transmitting the channel determined to be transmitted to a base station.
  • the terminal 20 it is possible to clarify the operation of the terminal 20 when a plurality of conditions related to the overlap between UL channels are satisfied at the same time. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case. That is, when the uplink channels overlap in the time domain, the uplink channel to be transmitted can be determined.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these).
  • MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these.
  • the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” is a part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the above-mentioned user terminal.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • the bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the terminal 20.
  • At least one of the configured BWPs may be active, and the terminal 20 does not have to assume that a predetermined signal / channel is transmitted or received outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises: a control unit that detects overlaps between multiple channels including at least one physical uplink shared channel and at least one physical uplink control channel and that, if a particular condition is satisfied, uses a particular method to solve the overlaps and then determines which one of the multiple channels should be transmitted; and a transmission unit that transmits, to a base station, the channel the transmission of which has been determined.

Description

端末及び通信方法Terminal and communication method
 本発明は、無線通信システムにおける端末及び通信方法に関連するものである。 The present invention relates to a terminal and a communication method in a wireless communication system.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。 In 3GPP (3rd Generation Partnership Project), 5G or NR (New Radio) is used to realize further increase in system capacity, further increase in data transmission speed, and further reduction in delay in wireless sections. Studies on a so-called wireless communication method (hereinafter, the wireless communication method is referred to as "NR") are in progress. In 5G, various radio techniques and network architectures have been studied in order to satisfy the requirement that the delay of the radio section be 1 ms or less while achieving a throughput of 10 Gbps or more (for example, Non-Patent Document 1).
 また、NRでは、PUSCH(Physical Uplink Shared Channel)のスケジューリングにあたり、上位レイヤで設定されるタイプ1及び上位レイヤで設定されて下位レイヤでアクティベーションされるタイプ2がある設定済グラント(Configured grant, CG)と、動的グラント(Dynamic grant, DG)とが規定されている(例えば、非特許文献2)。また、PUSCH送信は、繰り返し送信(repetition)がサポートされている(例えば、非特許文献3)。 In NR, when scheduling PUSCH (Physical Uplink Shared Channel), there is a type 1 set in the upper layer and a type 2 set in the upper layer and activated in the lower layer. ) And a dynamic grant (DG) are specified (for example, Non-Patent Document 2). Further, the PUSCH transmission supports repetition (for example, Non-Patent Document 3).
 設定済グラント又は動的グラントによってスケジューリングされる1又は複数のPUSCH、繰り返し送信されたPUSCHあるいは物理チャネル又は論理チャネルに優先度が設定されているPUSCHと、PUCCH(Physical Uplink Control Channel)とが少なくとも時間領域でオーバラップする場合、上りリンクチャネルの優先順位又はオーバラップを解決する動作が規定されていないケースが存在する。 One or more PUSCHs scheduled by a configured grant or dynamic grant, a repeatedly transmitted PUSCH or a PUSCH with a priority set on a physical or logical channel, and a PUCCH (Physical Uplink Control Channel) at least time. When overlapping in the domain, there are cases where the priority of the uplink channel or the operation for resolving the overlap is not specified.
 本発明は上記の点に鑑みてなされたものであり、上りリンクチャネルが時間領域でオーバラップする場合、送信する上りリンクチャネルを決定することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to determine an uplink channel to be transmitted when the uplink channels overlap in the time domain.
 開示の技術によれば、少なくとも1つの物理上りリンク共有チャネルと少なくとも1つの物理上りリンク制御チャネルを含む複数のチャネル間のオーバラップを検出し、特定の条件が満たされる場合、特定の方法で前記オーバラップを解決して前記複数のチャネルのうちいずれのチャネルを送信するか決定する制御部と、前記送信すると決定されたチャネルを基地局に送信する送信部とを有する端末が提供される。 According to the disclosed technique, overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and if a specific condition is satisfied, the above-mentioned method is used. A terminal is provided having a control unit that resolves the overlap and determines which of the plurality of channels is to be transmitted, and a transmission unit that transmits the channel determined to be transmitted to the base station.
 開示の技術によれば、上りリンクチャネルが時間領域でオーバラップする場合、送信する上りリンクチャネルを決定することを可能とする技術が提供される。 According to the disclosed technique, when the uplink channels overlap in the time domain, a technique capable of determining the uplink channel to be transmitted is provided.
本発明の実施の形態における無線通信システムの例(1)を説明するための図である。It is a figure for demonstrating the example (1) of the wireless communication system in embodiment of this invention. 本発明の実施の形態における無線通信システムの例(2)を説明するための図である。It is a figure for demonstrating the example (2) of the wireless communication system in embodiment of this invention. ULチャネルがオーバラップする例(1)を示す図である。It is a figure which shows the example (1) in which UL channels overlap. ULチャネルがオーバラップする例(2)を示す図である。It is a figure which shows the example (2) that UL channels overlap. ULチャネルがオーバラップする例(3)を示す図である。It is a figure which shows the example (3) in which UL channels overlap. ULチャネルがオーバラップする例(4)を示す図である。It is a figure which shows the example (4) which UL channels overlap. ULチャネルがオーバラップする例(5)を示す図である。It is a figure which shows the example (5) which UL channels overlap. 本発明の実施の形態におけるUL送信の例(1)を示す図である。It is a figure which shows the example (1) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(2)を示す図である。It is a figure which shows the example (2) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(3)を示す図である。It is a figure which shows the example (3) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(4)を示す図である。It is a figure which shows the example (4) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(5)を示す図である。It is a figure which shows the example (5) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(6)を示す図である。It is a figure which shows the example (6) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(7)を示す図である。It is a figure which shows the example (7) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(8)を示す図である。It is a figure which shows the example (8) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(1)を説明するためのフローチャートである。It is a flowchart for demonstrating the example (1) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(2)を説明するためのフローチャートである。It is a flowchart for demonstrating the example (2) of UL transmission in embodiment of this invention. 本発明の実施の形態におけるUL送信の例(3)を説明するためのフローチャートである。It is a flowchart for demonstrating the example (3) of UL transmission in embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the terminal 20 in embodiment of this invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station 10 or the terminal 20 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。 The existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. The existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
 図1は、本発明の実施の形態における無線通信システムの例(1)を説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram for explaining an example (1) of a wireless communication system according to an embodiment of the present invention. The wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。 The base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, and the like to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Here, what is transmitted on a control channel such as PUCCH or PDCCH is called a control signal, and what is transmitted on a shared channel such as PUSCH or PDSCH is called data. Such a name is an example. Is.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services. The terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
 端末20は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10. In carrier aggregation, one PCell (primary cell) and one or more SCells (secondary cells) are used. Moreover, PUCCH-S Cell having PUCCH may be used.
 図2は、本発明の実施の形態における無線通信システムの例(2)を説明するための図である。図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。 FIG. 2 is a diagram for explaining an example (2) of a wireless communication system according to an embodiment of the present invention. FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connectivity) is executed. As shown in FIG. 2, a base station 10A serving as an MN (MasterNode) and a base station 10B serving as an SN (SecondaryNode) are provided. Base station 10A and base station 10B are each connected to the core network. The terminal 20 can communicate with both the base station 10A and the base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCG Cell)と1以上のSCellから構成される。 The cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group). Further, in the DC, the MCG is composed of one PCell and one or more SCells, and the SCG is composed of one PSCell (Primary SCG Cell) and one or more SCells.
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。 The processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these.
 ここで、NRでは、PUSCH(Physical Uplink Shared Channel)のスケジューリングにあたり、上位レイヤで設定されるタイプ1及び上位レイヤで設定されて下位レイヤでアクティベーションされるタイプ2がある設定済グラント(Configured grant, CG)と、物理レイヤでDCI(Downlink Control Information)によって割り当てられる動的グラント(Dynamic grant, DG)とが規定されている。また、複数のULチャネルが時間領域でオーバラップする場合、例えば、ULチャネルの種別及び/又は制御情報の種別に基づいて、ULチャネルの優先順位、制御情報を多重する先のULチャネル、ドロップされるULチャネル等が決定される。 Here, in NR, when scheduling PUSCH (Physical Uplink Shared Channel), there is a type 1 set in the upper layer and a type 2 set in the upper layer and activated in the lower layer. CG) and a dynamic grant (DG) assigned by DCI (Downlink Control Information) in the physical layer are defined. When a plurality of UL channels overlap in the time domain, for example, the UL channel priority and the UL channel to which the control information is multiplexed are dropped based on the UL channel type and / or the control information type. UL channel and the like are determined.
 図3は、ULチャネルがオーバラップする例(1)を示す図である。図3に示されるように、PUCCHとPUSCHとが時間領域でオーバラップした場合、端末20は、以下1)-3)に示される動作を行ってもよい。なお、以下A1)-A3)に示される動作は、PUCCHに繰り返し送信(Repetition)が適用されない場合に実行されてもよい。 FIG. 3 is a diagram showing an example (1) in which UL channels overlap. As shown in FIG. 3, when the PUCCH and the PUSCH overlap in the time domain, the terminal 20 may perform the operation shown in 1) -3) below. The operation shown in A1) -A3) may be executed when the repetition transmission (Repetition) is not applied to the PUCCH.
A1)PUCCH内のUCI(Uplink Control Information)がHARQ-ACKである場合、図3に示されるようにPUSCHにHARQ-ACKを多重し、PUCCHをドロップしてPUSCHを送信する。
A2)PUCCH内のUCIがCSIの場合、PUSCHにCSIが含まれなければ図3に示されるようにPUSCHにCSIを多重し、PUCCHをドロップしてPUSCHを送信する。PUSCHにCSIが含まれる場合、多重せずにPUCCHをドロップしてPUSCHを送信する。
A3)PUCCH内のUCIがSRの場合、PUSCHにUL-SCH(Uplink Shared Channel)が含まれなければ、PUSCHをドロップしてPUCCHを送信する。PUSCHにUL-SCHが含まれる場合、MAC(Media Access Control)レイヤで処理を行う。MACレイヤでは、論理チャネルの優先度処理が設定されていない場合はPUSCH(UL-SCH)を優先してPUCCH(SR)をドロップする。論理チャネルの優先度処理が設定されている場合は、PUSCHがランダムアクセスレスポンスに紐づくPUSCHでなく、かつ2ステップのランダムアクセスにおけるメッセージAのPUSCHでなく、かつSRに関連する論理チャネルがUL-SCHに関連する優先度よりも高い場合にはPUCCH(SR)を優先してPUSCH(UL-SCH)をドロップし、それ以外の場合にはPUSCH(UL-SCH)を優先してPUCCH(SR)をドロップする。
A1) When the UCI (Uplink Control Information) in the PUCCH is HARQ-ACK, the HARQ-ACK is multiplexed with the PUSCH as shown in FIG. 3, the PUCCH is dropped, and the PUSCH is transmitted.
A2) When the UCI in the PUCCH is CSI, if the PUSCH does not include the CSI, the CSI is multiplexed with the PUSCH as shown in FIG. 3, the PUCCH is dropped, and the PUSCH is transmitted. If the PUSCH contains CSI, the PUCCH is dropped and the PUSCH is transmitted without multiplexing.
A3) When the UCI in the PUCCH is SR, if the PUSCH does not include the UL-SCH (Uplink Shared Channel), the PUSCH is dropped and the PUCCH is transmitted. When UL-SCH is included in PUSCH, processing is performed in the MAC (Media Access Control) layer. In the MAC layer, if the priority processing of the logical channel is not set, PUSCH (UL-SCH) is prioritized and PUCCH (SR) is dropped. When the priority processing of the logical channel is set, the PUSCH is not the PUSCH associated with the random access response, is not the PUSCH of the message A in the two-step random access, and the logical channel related to SR is UL-. If the priority is higher than the priority related to SCH, PUCCH (SR) is given priority and PUSCH (UL-SCH) is dropped. In other cases, PUSCH (UL-SCH) is given priority and PUCCH (SR). To drop.
 図4は、ULチャネルがオーバラップする例(2)を示す図である。図4に示されるように、PUCCHとN個のPUSCHとが時間領域でオーバラップする場合、いずれのPUSCHに、上記A1)-A3)に示される動作を適用するかを以下A′1)-A′4)に示されるルールで端末20は決定してもよい。なお、当該ルールは、CA(Carrier Aggregation)の場合及び非CAの場合のいずれにおいても適用される。なお、CAの場合、オーバーラップに対する処理は同一のPUCCHグループのCCに限定される。すなわち、PUCCHとN個のPUSCHとは、同一のPUCCHグループのCCにあると想定する。 FIG. 4 is a diagram showing an example (2) in which UL channels overlap. As shown in FIG. 4, when the PUCCH and the N PUSCHs overlap in the time domain, which PUSCH the operation shown in the above A1) -A3) is applied is hereinafter A'1)-. The terminal 20 may be determined by the rule shown in A'4). The rule is applied in both cases of CA (Carrier Aggregation) and non-CA. In the case of CA, the processing for overlap is limited to CCs of the same PUCCH group. That is, it is assumed that the PUCCH and the N PUSCHs are in the same PUCCH group CC.
A′1)N個のPUSCHのうち、非周期型(Aperiodic)CSI(以下、「A-CSI」ともいう。)を送信するよう設定されたPUSCHがある場合、当該PUSCH
A′2)1以上のM個のDG(Dynamic grant)-PUSCHと、1以上のM個のCG(Configured grant)-PUSCHとがある場合、M個のDG-PUSCHのいずれか
A′3)複数のサービングセルにわたりN個のPUSCHがある場合、最小のサービングセルIDを有するセルにおける1以上のM個のPUSCHのいずれか
A′4)同一サービングセルにおける1以上のM個のPUSCHのうち、開始シンボルが最も早いPUSCH
A'1) Of the N PUSCHs, if there is a PUSCH set to transmit an aperiodic CSI (hereinafter, also referred to as "A-CSI"), the PUSCH
A'2) If there is 1 or more M 1 DG (Dynamic grant) -PUSCH and 1 or more M 2 CG (Configured grant) -PUSCH, any one of M 1 DG-PUSCH A ′ 3) If there are N PUSCHs across multiple serving cells, one or more M 3 PUSCHs in the cell with the smallest serving cell ID A ′ 4) 1 or more M 4 PUSCHs in the same serving cell Among them, PUSCH with the earliest start symbol
 すなわち、図4の例では、A′1)により、CC1におけるA-CSIを送信するよう設定されたDG-PUSCHの優先順位が最も高い1となる。A′3)により、CC0におけるDG-PUSCHの優先順位が2となる。A′4)により、CC2における先行するDG-PUSCHの優先順位が3、続くDG-PUSCHの優先順位が4となる。CG-PUSCHの優先順位は5となる。 That is, in the example of FIG. 4, according to A'1), the priority of the DG-PUSCH set to transmit the A-CSI in CC1 is the highest 1. According to A'3), the priority of DG-PUSCH in CC0 becomes 2. According to A'4), the priority of the preceding DG-PUSCH in CC2 is 3, and the priority of the following DG-PUSCH is 4. The priority of CG-PUSCH is 5.
 また、PUSCHリソースが割り当てられたものの、送信すべきデータがない場合、端末20は以下B1)-B2)に示される動作をしてもよい。 Further, when the PUSCH resource is allocated but there is no data to be transmitted, the terminal 20 may perform the operation shown in B1) -B2) below.
B1)CG-PUSCHの場合、MAC PDUがzero MAC SDU(SDUが存在しない)を含み、かつ、MAC PDUが周期的(periodic)BSR(Buffer Status Report)のみを含み論理チャネルのデータがない又はパディングBSRのみを含む場合、PUSCH送信をスキップしてもよい。ネットワークからの設定によらず、PUSCH送信のスキップが可能となる。 B1) In the case of CG-PUSCH, the MAC PDU contains zero MAC SDU (SDU does not exist), and the MAC PDU contains only periodic BSR (Buffer Status Report), and there is no logical channel data or padding. If only BSR is included, PUSCH transmission may be skipped. PUSCH transmission can be skipped regardless of the settings from the network.
B2)DG-PUSCHの場合、パラメータskipUplinkTxDynamicがtrueに設定されC-RNTI(Cell Radio Network Temporary Identifier)に対応するPUSCHであること、かつ、MAC PDUがzero MAC SDU(SDUが存在しない)を含み、かつ、MAC PDUが周期的(periodic)BSR(Buffer Status Report)のみを含み論理チャネルのデータがない又はパディングBSRのみを含む場合、PUSCH送信をスキップしてもよい。上記以外の場合、PUSCH送信をスキップすることはできない。すなわち、端末20は空のMAC PDUを生成して送信する。 B2) In the case of DG-PUSCH, the parameter skipUplinkTxDynamic is set to true and it is a PUSCH corresponding to C-RNTI (Cell Radio Network Temporary Identifier), and the MAC PDU includes zero MAC SDU (SDU does not exist). Moreover, when the MAC PDU contains only the periodic BSR (Buffer Status Report) and there is no data of the logical channel or contains only the padding BSR, the PUSCH transmission may be skipped. In cases other than the above, PUSCH transmission cannot be skipped. That is, the terminal 20 generates and transmits an empty MAC PDU.
 また、PUSCHリソースが割り当てられたものの、送信すべきデータがなく、かつ当該PUSCHとPUCCHが時間領域でオーバラップする場合、端末20は以下C0)-C2)に示される動作をしてもよい。 Further, when the PUSCH resource is allocated but there is no data to be transmitted and the PUSCH and the PUCCH overlap in the time domain, the terminal 20 may perform the operation shown in C0) -C2) below.
C0)端末20の実装に依存して動作を決定してもよい。すなわち、当該ケースが発生した場合、基地局10はブラインドデコーディングを行う必要がある。あるいは、当該ケースが発生しないように基地局10はスケジューリングを行う。 C0) The operation may be determined depending on the implementation of the terminal 20. That is, when the case occurs, the base station 10 needs to perform blind decoding. Alternatively, the base station 10 schedules so that the case does not occur.
C1)DG-PUSCHの場合、すべてのPUSCHを送信するものと想定し、いずれのPUSCHにUCIを多重するかを端末20は決定する。端末20は、UCIを多重すると決定されたPUSCHをスキップすることはできず、必ず送信する。UCIを多重すると決定されたPUSCHに対して、MACレイヤはMAC PDUを生成する。なお、C1)ではLCHの優先順位付けはなく、単一のPHY優先度を想定する。PUSCH繰り返し送信なしが想定されてもよい。 C1) In the case of DG-PUSCH, it is assumed that all PUSCHs are transmitted, and the terminal 20 determines to which PUSCH the UCI is to be multiplexed. The terminal 20 cannot skip the PUSCH determined to multiplex the UCI, and always transmits it. The MAC layer generates a MAC PDU for the PUSCH determined to multiplex the UCI. In C1), there is no prioritization of LCH, and a single PHY priority is assumed. It may be assumed that there is no PUSCH repeated transmission.
C2)CG-PUSCHの場合、すべてのPUSCHを送信するものと想定し、いずれのPUSCHにUCIを多重するかを端末20は決定する。端末20は、UCIを多重すると決定されたPUSCHをスキップすることはできず、必ず送信する。UCIを多重すると決定されたPUSCHに対して、MACレイヤはMAC PDUを生成する。なお、C2)ではLCHの優先順位付けはなく、単一のPHY優先度、PUSCH繰り返し送信なしを想定する。 C2) In the case of CG-PUSCH, it is assumed that all PUSCHs are transmitted, and the terminal 20 determines to which PUSCH the UCI is to be multiplexed. The terminal 20 cannot skip the PUSCH determined to multiplex the UCI, and always transmits it. The MAC layer generates a MAC PDU for the PUSCH determined to multiplex the UCI. In C2), there is no prioritization of LCH, and it is assumed that there is no single PHY priority and no PUSCH repeated transmission.
 また、繰り返し送信されるPUSCHに関して、端末20は以下D1)又はD2)に示される動作をしてもよい。 Further, with respect to the repeatedly transmitted PUSCH, the terminal 20 may perform the operation shown in D1) or D2) below.
D1)DG-PUSCHの場合、繰り返し送信機会の先頭から送信を開始する。繰り返し送信機会の途中から送信を開始しない。 D1) In the case of DG-PUSCH, transmission is started from the beginning of the repeated transmission opportunity. Do not start transmission in the middle of repeated transmission opportunities.
D2)CG-PUSCHの場合、グラント時のパラメータ「startingFromRV0-r16」が「off」に設定された場合、繰り返し送信機会の先頭から送信を開始する。繰り返し送信機会の途中から送信を開始しない。それ以外の場合、例えば「startingFromRV0-r16」が「on」に設定された場合、RV(Redundancy Version)=0に関連付けられた繰り返し送信機会から送信を開始することができる。例えば、RVシーケンスが{0,2,3,1}のとき、繰り返し送信機会の先頭から送信を開始することができる。また、例えば、RVシーケンスが{0,3,0,3}のとき、繰り返し送信機会の奇数番目、例えば先頭及び3番目から送信を開始することができる。また、例えば、RVシーケンスが{0,0,0,0}のとき、繰り返し送信機会のいずれの送信機会からも送信を開始することができる。ただし、繰り返し送信機会が8以上の場合、最後の送信機会では送信を開始することはできない。 D2) In the case of CG-PUSCH, when the parameter "startingFromRV0-r16" at the time of grant is set to "off", transmission is started from the beginning of the repeated transmission opportunity. Do not start transmission in the middle of repeated transmission opportunities. In other cases, for example, when "startingFromRV0-r16" is set to "on", transmission can be started from the repeated transmission opportunity associated with RV (RedundancyVersion) = 0. For example, when the RV sequence is {0,2,3,1}, transmission can be started from the beginning of the repeated transmission opportunity. Further, for example, when the RV sequence is {0,3,0,3}, transmission can be started from the odd-numbered number of repeated transmission opportunities, for example, the beginning and the third. Further, for example, when the RV sequence is {0,0,0,0}, transmission can be started from any transmission opportunity of the repeated transmission opportunity. However, if the repeated transmission opportunity is 8 or more, transmission cannot be started at the last transmission opportunity.
 また、繰り返し送信されるPUSCHとPUCCHがオーバラップした場合、端末20は以下E)に示される動作をしてもよい。 Further, when the repeatedly transmitted PUSCH and PUCCH overlap, the terminal 20 may perform the operation shown in E) below.
E)単一スロットのPUCCHが、繰り返し送信されるPUSCHの送信機会にオーバラップする場合、当該送信機会にのみUCIを多重する。A1)-A3)及びA′1)-A′4)に示される動作が適用されてもよい。 E) If the PUCCH of a single slot overlaps the transmission opportunity of the repeatedly transmitted PUSCH, the UCI is multiplexed only at the transmission opportunity. The operations shown in A1) -A3) and A'1) -A'4) may be applied.
 また、論理チャネル(LCH)に優先度が設定された場合、端末20は以下F)に示される動作をしてもよい。 Further, when the priority is set for the logical channel (LCH), the terminal 20 may perform the operation shown in F) below.
F)MAC優先順位が異なる以下1)-4)に示される2チャネルが少なくとも時間領域でオーバラップする場合、MAC優先順位が高いチャネルを優先して使用する。 F) MAC priority is different When the two channels shown in 1) -4) overlap at least in the time domain, the channel with the higher MAC priority is preferentially used.
1)NDI(New Data Indicator)が1に設定されたCS-RNTI(Configured Scheduling RNTI)又はC-RNTIに対するULグラントに対応するPUSCHと、同一のBWPにおける設定済グラントに対応するPUSCH
2)NDIが1に設定されたCS-RNTI又はC-RNTIに対するULグラントに対応するPUSCHと、SRを伴うPUCCH
3)設定済グラントに対応するPUSCHと、同一のBWPにおける他の設定済グラントに対応するPUSCH
4)設定済グラントに対応するPUSCHと、SRを伴うPUCCH
1) PUSCH corresponding to UL grant for CS-RNTI (Configured Scheduling RNTI) or C-RNTI with NDI (New Data Indicator) set to 1 and PUSCH corresponding to configured grant in the same BWP.
2) PUSCH corresponding to UL grant for CS-RNTI or C-RNTI with NDI set to 1 and PUCCH with SR
3) PUSCH corresponding to the configured grant and PUSCH corresponding to other configured grants in the same BWP
4) PUSCH corresponding to the set grant and PUCCH with SR
 また、物理レイヤにおける優先度(PHY priorities)が設定された場合、端末20は以下G)に示される動作をしてもよい。 Further, when the priority (PHY priorities) in the physical layer is set, the terminal 20 may perform the operation shown in G) below.
G)物理レイヤにおける優先順位が異なる以下1)-7)に示される2チャネルが少なくとも時間領域でオーバラップする場合、物理レイヤにおける優先順位が高いチャネルを優先して使用する。 G) Different priorities in the physical layer When the two channels shown in 1) -7) overlap at least in the time domain, the channel with the higher priority in the physical layer is preferentially used.
1)DCIによりスケジューリングされたより高い優先順位のPUSCHと、すべてのPUCCH又はより低い優先順位のPUSCH
2)DCIによりスケジューリングされたより高い優先順位のPUSCHと、より低い優先順位のPUCCH
3)SRを伴うより高い優先順位のPUCCHと、すべてのPUCCH又はより低い優先順位のPUSCH
4)より高い優先順位のCG-PUSCHと、すべてのより低い優先順位のPUCCH
5)対応するPDCCHを伴わないPDSCH受信に対する応答であるHARQ-ACKを伴うより高い優先順位のPUCCHと、SR及び/又はCSIを伴うより低い優先順位のPUCCH
6)対応するPDCCHを伴わないSP-CSIを伴うより高い優先順位のPUSCHと、SR、CSI又は対応するPDCCHを伴わないPDSCH受信に対する応答のみであるHARQ-ACKを伴うより低い優先順位のPUCCH
7)より高い優先順位のCG-PUSCHと、同一のサービングセルにおけるより低い優先順位のCG-PUSCH
1) Higher priority PUSCH scheduled by DCI and all PUCCH or lower priority PUSCH
2) Higher priority PUSCH and lower priority PUCCH scheduled by DCI
3) Higher priority PUCCH with SR and all PUCCH or lower priority PUSCH
4) Higher priority CG-PUSCH and all lower priority PUCCH
5) Higher priority PUCCH with HARQ-ACK and lower priority PUCCH with SR and / or CSI in response to PDSCH reception without the corresponding PDCCH.
6) Higher priority PUSCH with SP-CSI without corresponding PDCCH and lower priority PUCCH with HARQ-ACK which is only a response to reception of SR, CSI or PDSCH without corresponding PDCCH.
7) Higher priority CG-PUSCH and lower priority CG-PUSCH in the same serving cell
 なお、同一の優先順位のチャネルがオーバラップする場合、端末20は以下H1)-H4)に示される動作を行ってもよい。 When channels of the same priority overlap, the terminal 20 may perform the operation shown in H1) -H4) below.
H1)繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合、端末20は、CG-PUSCHの送信を開始可能な送信機会についての制約にかかわらず、PUCCHのUCIを含めるPUSCHを送信してもよい。 H1) When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 can start the transmission of the CG-PUSCH. A PUSCH containing the UCI of the PUCCH may be transmitted regardless of the restrictions of.
(1-1)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと重複した送信機会よりも時間に関して前の送信機会でPUSCHの送信を行わなかった場合であっても、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよい(多重してもよい)。
(1-1)
When a transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 precedes the transmission opportunity overlapping with the PUCCH in terms of time. Even if the PUSCH is not transmitted at the transmission opportunity, the UCI of the PUCCH may be included (multiplexed) in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
 図5は、ULチャネルがオーバラップする例(3)を示す図である。図5は、繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが時間領域において重複した例を示す。図5の例では、時間方向において、前の方から4つのPUSCHの送信機会が設定されている。時間方向において前の方から2番目のPUSCHの送信機会は時間領域においてPUCCHと重複している。端末20は、図5の例に示される4つの送信機会のうち、時間に関して最初の送信機会ではPUSCHの送信を行わない。端末20は、図5の例に示される4つの送信機会のうち、時間方向において前の方から2番目のPUSCHの送信機会が時間領域においてPUCCHと重複することを検出し、PUCCHのUCIを2番目の送信機会のPUSCHに含め、当該PUSCHの送信を行ってもよい。その後、時間方向において3番目及び4番目の送信機会において、端末20は、PUSCHの送信を行わなくてもよい。 FIG. 5 is a diagram showing an example (3) in which UL channels overlap. FIG. 5 shows an example in which a transmission opportunity among a plurality of transmission opportunities of a CG-PUSCH for which repeated transmission is set overlaps with the PUCCH in the time domain. In the example of FIG. 5, four PUSCH transmission opportunities are set from the front in the time direction. The transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain. The terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG. The terminal 20 detects that the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain among the four transmission opportunities shown in the example of FIG. 5, and sets the UCI of the PUCCH to 2. It may be included in the PUSCH of the second transmission opportunity and the PUSCH may be transmitted. After that, at the third and fourth transmission opportunities in the time direction, the terminal 20 does not have to transmit the PUSCH.
(1-2)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよく(多重してもよく)、この場合において、端末20のMACレイヤは、MAC PDUを生成してもよい。
(1-2)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH. UCI may be included (multiplexed), in which case the MAC layer of the terminal 20 may generate a MAC PDU.
(1-3)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよく(多重してもよく)、この場合において、端末20のMACレイヤは、送信するデータがない場合(例えば、zero MAC Service Data Unit(SDU)を含むMAC PDU、周期的なBuffer Status Report(BSR)のみを含むMAC PDUであって、ロジカルチャネルグループで使用できるデータがないMAC PDU、又はパディングBSRのみを含むMAC PDU)であっても、MAC PDUを生成してもよい。この場合において、端末20は、RVを、当該PUCCHと時間領域において重複するPUSCHの送信機会に対応するRVに設定してもよい。代替的に、端末20は、当該PUCCHと時間領域において重複するPUSCHの送信機会にかかわらず、RVを0に設定してもよい。
(1-3)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in a time region, the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH. UCI may be included (multiplexed), in which case the MAC layer of terminal 20 is a MAC PDU containing no data to transmit (eg, zero MAC Service Data Unit (SDU), periodic). A MAC PDU containing only a Buffer Status Report (BSR) and no data available in the logical channel group, or a MAC PDU containing only a padding BSR) may generate a MAC PDU. .. In this case, the terminal 20 may set the RV to the RV corresponding to the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH. Alternatively, the terminal 20 may set the RV to 0 regardless of the transmission opportunity of the PUSCH that overlaps with the PUCCH in the time domain.
(1-4)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよく(多重してもよく)、この場合において、端末20のMACレイヤは、送信するデータがない場合であっても、MAC PDUを生成してもよい。この場合において、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、当該PUCCHと重複した送信機会のPUSCHに含めたMAC PDUと同じMAC PDUを含めて(MAC PDUをのせて)PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、任意のMAC PDUを含めて(任意のMAC PDUをのせて)、PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、PUSCHを送信しなくてもよい。
(1-4)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 sets the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH. The UCI may be included (multiplexed), and in this case, the MAC layer of the terminal 20 may generate a MAC PDU even when there is no data to be transmitted. In this case, the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU). You may send the PUSCH (with). Alternatively, the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. .. Alternatively, the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
H2)繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合、端末20は、CG-PUSCHの送信を開始可能な送信機会についての制約に基づいて、当該PUCCHと重複する送信機会のPUSCHに、当該PUCCHのUCIを含めることが可能であるか否かを判定してもよい。 H2) When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 can start the transmission of the CG-PUSCH. It may be determined whether or not it is possible to include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH based on the constraint of.
(2-1)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合であって、CG-PUSCHの送信を開始可能な送信機会についての制約に基づいて、端末20が、当該PUCCHと重複するPUSCHの送信機会において、CG-PUSCHの送信を開始することが可能であると判定した場合において、端末20は、当該PUCCHと重複した送信機会よりも時間に関して前の送信機会でPUSCHの送信を行わなかった場合であっても、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよい(多重してもよい)。
(2-1)
In the case where a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, there is a restriction on the transmission opportunity that can start the transmission of the CG-PUSCH. Based on this, when the terminal 20 determines that it is possible to start the transmission of the CG-PUSCH at the transmission opportunity of the PUSCH overlapping with the PUCCH, the terminal 20 is more than the transmission opportunity overlapping with the PUCCH. Even if the PUSCH is not transmitted in the previous transmission opportunity in terms of time, the UCI of the PUCCH may be included (multiplexed) in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
(2-1-2)
 上記(2-1)の場合において、端末20のMACレイヤは、MAC PDUを生成してもよい。
(2-1-2)
In the case of (2-1) above, the MAC layer of the terminal 20 may generate a MAC PDU.
(2-1-3)
 上記(2-1)の場合において、端末20のMACレイヤは、送信するデータがない場合(例えば、zero MAC Service Data Unit(SDU)を含むMAC PDU、周期的なBuffer Status Report(BSR)のみを含むMAC PDUであって、ロジカルチャネルグループで使用できるデータがないMAC PDU、又はパディングBSRのみを含むMAC PDU)であっても、MAC PDUを生成してもよい。この場合において、端末20は、RVを、当該PUCCHと時間領域において重複するPUSCHの送信機会に対応するRVに設定してもよい。代替的に、端末20は、当該PUCCHと時間領域において重複するPUSCHの送信機会にかかわらず、RVを0に設定してもよい。
(2-1-3)
In the case of (2-1) above, the MAC layer of the terminal 20 only receives a MAC PDU including zero MAC Service Data Unit (SDU) and a periodic Buffer Status Report (BSR) when there is no data to be transmitted. MAC PDUs that include MAC PDUs that do not have data available in the logical channel group, or MAC PDUs that contain only padding BSRs) may also generate MAC PDUs. In this case, the terminal 20 may set the RV to the RV corresponding to the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH. Alternatively, the terminal 20 may set the RV to 0 regardless of the transmission opportunity of the PUSCH that overlaps with the PUCCH in the time domain.
(2-1-4)
 上記(2-1)の場合において、端末20のMACレイヤは、送信するデータがない場合であっても、MAC PDUを生成してもよい。この場合において、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、当該PUCCHと重複した送信機会のPUSCHに含めたMAC PDUと同じMAC PDUを含めて(MAC PDUをのせて)PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、任意のMAC PDUを含めて(任意のMAC PDUをのせて)、PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、PUSCHを送信しなくてもよい。
(2-1-4)
In the case of (2-1) above, the MAC layer of the terminal 20 may generate a MAC PDU even when there is no data to be transmitted. In this case, the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU). You may send the PUSCH (with). Alternatively, the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. .. Alternatively, the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
(2-2)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、CG-PUSCHの送信を開始可能な送信機会についての制約に基づいて、端末20は、当該PUCCHと重複するPUSCHの送信機会において、CG-PUSCHの送信を開始することが可能でないと判定してもよい。
(2-2)
Based on the constraint on the transmission opportunity that can start the transmission of the CG-PUSCH when the transmission opportunity of the multiple transmission opportunities of the CG-PUSCH set to repeat transmission and the PUCCH overlap at least in the time domain. , The terminal 20 may determine that it is not possible to start the transmission of the CG-PUSCH at the transmission opportunity of the PUSCH overlapping with the PUCCH.
(2-2-1)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、当該PUCCHと時間領域において重複したPUSCHの送信機会よりも時間方向において前のPUSCHの送信機会でPUSCHの送信を行わなかった場合、端末20は、当該PUCCHと重複する送信機会のPUSCHに、当該PUCCHのUCIを含めることはできない(多重することはできない)と判定してもよい。この場合において、端末20は、当該PUCCHと時間領域において重複したPUSCHの送信機会よりも時間方向において後のPUSCHの送信機会において、PUSCHの送信をスキップしてもよい(PUSCHの送信を行わなくてもよい)。
(2-2-1)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the PUCCH and the overlapping PUSCH transmission opportunity in the time domain overlap in the time direction. If the PUSCH is not transmitted at the transmission opportunity of the previous PUSCH, the terminal 20 determines that the UCI of the PUCCH cannot be included in the PUSCH of the transmission opportunity overlapping with the PUCCH (cannot be multiplexed). You may. In this case, the terminal 20 may skip the transmission of the PUSCH at the transmission opportunity of the PUSCH later in the time direction than the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH (without performing the transmission of the PUSCH). May be good).
 図6は、ULチャネルがオーバラップする例(4)を示す図である。図6は、繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが時間領域において重複した例を示す。図6の例では、時間方向において、前の方から4つのPUSCHの送信機会が設定されている。時間方向において前の方から2番目のPUSCHの送信機会は時間領域においてPUCCHと重複している。端末20は、図6の例に示される4つの送信機会のうち、時間に関して最初の送信機会ではPUSCHの送信を行わない。端末20は、図6の例に示される4つの送信機会のうち、時間方向において前の方から2番目のPUSCHの送信機会が時間領域においてPUCCHと重複することを検出した場合において、図6の例の時間に関して最初の送信機会においてPUSCHの送信を行っていないため、PUCCHのUCIを2番目の送信機会のPUSCHに含めることはできないと判定してもよい。その後、時間方向において3番目及び4番目の送信機会において、端末20は、PUSCHの送信を行わなくてもよい。 FIG. 6 is a diagram showing an example (4) in which UL channels overlap. FIG. 6 shows an example in which a transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set overlaps with the PUCCH in the time domain. In the example of FIG. 6, four PUSCH transmission opportunities are set from the front in the time direction. The transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain. The terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG. When the terminal 20 detects that the transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain among the four transmission opportunities shown in the example of FIG. 6, FIG. It may be determined that the UCI of the PUCCH cannot be included in the PUSCH of the second transmission opportunity because the PUSCH is not transmitted at the first transmission opportunity for the time of the example. After that, at the third and fourth transmission opportunities in the time direction, the terminal 20 does not have to transmit the PUSCH.
(2-2-2)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、当該PUCCHと時間領域において重複したPUSCHの送信機会よりも時間方向において前のPUSCHの送信機会でPUSCHの送信を行った場合、端末20は、当該PUCCHと重複する送信機会のPUSCHに、当該PUCCHのUCIを含める(多重する)ことが可能であると判定してもよい。
(2-2-2)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the PUCCH and the overlapping PUSCH transmission opportunity in the time domain overlap in the time direction. When the PUSCH is transmitted at the transmission opportunity of the previous PUSCH, even if the terminal 20 determines that the UCI of the PUCCH can be included (multiplexed) in the PUSCH of the transmission opportunity overlapping with the PUCCH. good.
H3)繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと重複した送信機会よりも時間に関して前の送信機会におけるPUSCHの送信の有無に基づいて、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めることが可能か否かを判定してもよい。 H3) In the case where a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 is more time-related than the transmission opportunity overlapping with the PUCCH. Based on the presence or absence of transmission of the PUSCH in the previous transmission opportunity, it may be determined whether or not the UCI of the PUCCH can be included in the PUSCH of the transmission opportunity overlapping with the PUCCH.
(3-1)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、当該PUCCHと重複した送信機会が繰り返し送信の時間に関して最初の送信機会である場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めることが可能であると判定してもよい。
(3-1)
When a transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the transmission opportunity overlapping with the PUCCH is the first transmission opportunity with respect to the time of repeated transmission. In this case, the terminal 20 may determine that it is possible to include the UCI of the PUCCH in the PUSCH of the transmission opportunity that overlaps with the PUCCH.
(3-1-2)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、当該PUCCHと重複した送信機会が繰り返し送信の時間に関して最初の送信機会である場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよく(多重してもよく)、この場合において、端末20のMACレイヤは、MAC PDUを生成してもよい。
(3-1-2)
When one of the multiple transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the transmission opportunity that overlaps with the PUCCH is the first transmission opportunity with respect to the time of repeated transmission. In this case, the terminal 20 may include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH (may be multiplexed), and in this case, the MAC layer of the terminal 20 is a MAC PDU. May be generated.
(3-1-3)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、当該PUCCHと重複した送信機会が繰り返し送信の時間に関して最初の送信機会である場合において、端末20は、当該PUCCHと重複した送信機会のPUSCHに、当該PUCCHのUCIを含めてもよく(多重してもよく)、この場合において、端末20のMACレイヤは、送信するデータがない場合であっても、MAC PDUを生成してもよい。この場合において、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、当該PUCCHと重複した送信機会のPUSCHに含めたMAC PDUと同じMAC PDUを含めて(MAC PDUをのせて)PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、任意のMAC PDUを含めて(任意のMAC PDUをのせて)、PUSCHを送信してもよい。代替的に、端末20は、当該PUCCHと重複したPUSCHの送信機会の後のPUSCHの送信機会において、PUSCHを送信しなくてもよい。
(3-1-3)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the transmission opportunity overlapping with the PUCCH is the first transmission opportunity with respect to the time of the repeated transmission. In this case, the terminal 20 may include the UCI of the PUCCH in the PUSCH of the transmission opportunity overlapping with the PUCCH (may be multiplexed), and in this case, the MAC layer of the terminal 20 transmits. A MAC PDU may be generated even if there is no data. In this case, the terminal 20 includes the same MAC PDU as the MAC PDU included in the PUSCH of the transmission opportunity overlapping with the PUCCH in the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH (MAC PDU). You may send the PUSCH (with). Alternatively, the terminal 20 may transmit the PUSCH including any MAC PDU (with an arbitrary MAC PDU) at the transmission opportunity of the PUSCH after the transmission opportunity of the PUSCH overlapping with the PUCCH. .. Alternatively, the terminal 20 does not have to transmit the PUSCH at the PUSCH transmission opportunity after the PUSCH transmission opportunity that overlaps with the PUCCH.
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、当該PUCCHと時間領域において重複した送信機会が繰り返し送信の時間に関して最初の送信機会ではないと判定してもよい。 When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 repeatedly transmits the overlapping transmission opportunity in the time domain with the PUCCH. It may be determined that it is not the first transmission opportunity with respect to the time of.
(3-2-1)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合であって、当該PUCCHと時間領域において重複した送信機会が繰り返し送信の時間に関して最初の送信機会ではないと判定した場合において、端末20が当該PUCCHと時間領域において重複した送信機会よりも時間方向において前の送信機会でPUSCHの送信を行わなかった場合、端末20は、当該PUCCHと時間領域において重複した送信機会のPUSCHに当該PUCCHのUCIを含めることはできない(多重することはできない)と判定してもよい。この場合において、端末20は、当該PUCCHと時間領域において重複したPUSCHの送信機会よりも時間方向において後のPUSCHの送信機会において、PUSCHの送信をスキップしてもよい(PUSCHの送信を行わなくてもよい)。
(3-2-1)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the overlapping transmission opportunity in the time domain is the time of the repeated transmission. If the terminal 20 does not transmit the PUSCH at the transmission opportunity that precedes the transmission opportunity that overlaps with the PUCCH in the time domain in the time domain when it is determined that the transmission opportunity is not the first. It may be determined that the UCI of the PUCCH cannot be included (cannot be multiplexed) in the PUSCH of the transmission opportunity that overlaps with the PUCCH in the time domain. In this case, the terminal 20 may skip the transmission of the PUSCH at the transmission opportunity of the PUSCH later in the time direction than the transmission opportunity of the PUSCH overlapping in the time domain with the PUCCH (without performing the transmission of the PUSCH). May be good).
(3-2-2)
 繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合であって、当該PUCCHと時間領域において重複した送信機会が繰り返し送信の時間に関して最初の送信機会ではないと判定した場合において、端末20が当該PUCCHと時間領域において重複した送信機会よりも時間方向において前の送信機会でPUSCHの送信を行った場合、端末20は、当該PUCCHと時間領域において重複した送信機会のPUSCHに当該PUCCHのUCIを含めることは可能である(多重することは可能である)と判定してもよい。
(3-2-2)
When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the overlapping transmission opportunity in the time domain is the time of the repeated transmission. When the terminal 20 transmits the PUSCH at a transmission opportunity earlier in the time direction than the transmission opportunity overlapping in the time domain with the PUCCH when it is determined that it is not the first transmission opportunity, the terminal 20 transmits the PUCCH. It may be determined that it is possible (and possible to multiplex) the UCI of the PUCCH to be included in the PUSCH of the transmission opportunities that overlap in the time domain.
 図7は、ULチャネルがオーバラップする例(5)を示す図である。図7は、繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが時間領域において重複した例を示す。図7の例では、時間方向において、前の方から4つのPUSCHの送信機会が設定されている。時間方向において前の方から2番目のPUSCHの送信機会は時間領域においてPUCCHと重複している。例えば、端末20は、当該PUCCHと時間領域において重複した送信機会が繰り返し送信の時間に関して最初の送信機会ではないと判定する。端末20は、図7の例に示される4つの送信機会のうち、時間に関して最初の送信機会ではPUSCHの送信を行わなかったとする。この場合において、端末20は、図7の例に示される4つの送信機会のうち、時間方向において前の方から2番目のPUSCHの送信機会においてPUSCHの送信を行わなくてもよい。その後、時間方向において3番目及び4番目の送信機会において、端末20は、PUSCHの送信を行わなくてもよい。 FIG. 7 is a diagram showing an example (5) in which UL channels overlap. FIG. 7 shows an example in which a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH set to be repeatedly transmitted and the PUCCH overlap in the time domain. In the example of FIG. 7, four PUSCH transmission opportunities are set from the front in the time direction. The transmission opportunity of the second PUSCH from the front in the time domain overlaps with the PUCCH in the time domain. For example, the terminal 20 determines that the transmission opportunity that overlaps with the PUCCH in the time domain is not the first transmission opportunity with respect to the time of repeated transmission. It is assumed that the terminal 20 does not transmit the PUSCH at the first transmission opportunity in terms of time among the four transmission opportunities shown in the example of FIG. In this case, the terminal 20 does not have to transmit the PUSCH at the transmission opportunity of the second PUSCH from the front in the time direction among the four transmission opportunities shown in the example of FIG. After that, at the third and fourth transmission opportunities in the time direction, the terminal 20 does not have to transmit the PUSCH.
H4)繰り返し送信が設定されたCG-PUSCHの複数の送信機会のうちのある送信機会とPUCCHとが少なくとも時間領域において重複した場合において、端末20は、PUSCH繰り返し送信のうち当該送信機会にMAC PDUを生成せず、当該送信機会のPUSCHをドロップして、PUCCHを送信してもよいし、他のPUSCHがあれば当該他のPUSCHに多重してもよい。 H4) When a certain transmission opportunity among a plurality of transmission opportunities of the CG-PUSCH for which repeated transmission is set and the PUCCH overlap at least in the time domain, the terminal 20 performs the MAC PDU at the transmission opportunity of the PUSCH repeated transmission. The PUCCH may be transmitted by dropping the PUSCH of the transmission opportunity without generating the PUCCH, or if there is another PUSCH, the PUSCH may be multiplexed with the other PUSCH.
 当該送信機会で、送信すべきデータが存在する場合であっても、当該送信機会のPUSCHはドロップされてもよく、後続の送信機会は当該データを送信してもよい。 Even if there is data to be transmitted at the transmission opportunity, the PUSCH of the transmission opportunity may be dropped, and the data may be transmitted at the subsequent transmission opportunity.
 上述のH1)-H4)に示される例では、CG-PUSCHの繰り返し送信の場合に、複数のPUSCHの送信機会のうちのいずれかの送信機会がPUCCHと時間領域において重複した場合の端末20の動作例が説明されている。しかしながら、実施例は、CG-PUSCHの繰り返し送信の場合に限定されず、DG-PUSCHの繰り返し送信の場合に適用されてもよい。 In the example shown in H1) -H4) above, in the case of repeated transmission of CG-PUSCH, in the case of the transmission opportunity of one of a plurality of PUSCHs, the transmission opportunity of the terminal 20 overlaps with the PUCCH in the time domain. An example of operation is explained. However, the embodiment is not limited to the case of repeated transmission of CG-PUSCH, and may be applied to the case of repeated transmission of DG-PUSCH.
 DG-PUSCHの繰り返し送信の場合、端末20は、全てのPUSCHの送信をスキップしてもよく、あるいは全てのPUSCHの送信を行ってもよい。 In the case of repeated transmission of DG-PUSCH, the terminal 20 may skip the transmission of all PUSCHs, or may transmit all PUSCHs.
 DG-PUSCHの繰り返し送信の場合において、複数のPUSCHの送信機会のうち、時間方向において途中の送信機会から送信してもよいか否か、時間方向において後続の送信機会の扱いをどうするかについて、上述の実施例を適用することが可能である。 In the case of repeated transmission of DG-PUSCH, whether or not transmission may be performed from an intermediate transmission opportunity in the time direction among the transmission opportunities of a plurality of PUSCHs, and how to handle the subsequent transmission opportunity in the time direction. It is possible to apply the above embodiment.
 図5-図7において、CG-PUSCHの繰り返し送信がスロット単位で行われている例が示されているが、本実施例は、この例には限定されない。例えば、CG-PUSCHの繰り返し送信は、シンボル単位で行われてもよい。なお、CG-PUSCHの繰り返し送信がスロット単位で行われる場合をPUSCH repetition type Aと呼び、CG-PUSCHの繰り返し送信がシンボル単位で行われる場合をPUSCH repetition type Bと呼んでもよい。 5 to 7 show an example in which CG-PUSCH is repeatedly transmitted in slot units, but this embodiment is not limited to this example. For example, repeated transmission of CG-PUSCH may be performed in symbol units. The case where the repeated transmission of CG-PUSCH is performed in slot units may be referred to as PUSCH reproduction type A, and the case where the repeated transmission of CG-PUSCH is performed in symbol units may be referred to as PUSCH repetition type B.
 PUSCH repetition type Bにおいて、invalid symbolにyほってnominal repetitionから複数のactual repetitionが決定された場合、当該actual repetitionに対して上述のH1)-H4)に示される例を適用してもよい。 In the PUSCH representation type B, when a plurality of actual repitations are determined from the negative symbol y, the example shown in H1) -H4) above may be applied to the actual repitation.
 上述のH1)-H4)に示される例は、繰り返し送信を行わないPUCCHのみを対象としてもよく、繰り返し送信を行うPUCCHを対象としてもよい。 The example shown in H1) -H4) above may target only the PUCCH that does not repeatedly transmit, or may target the PUCCH that repeatedly transmits.
 なお、上述の繰り返し送信は、同じトランスポートブロック(すなわち、MAC PDU)の繰り返し送信を意味してもよい。 Note that the above-mentioned repeated transmission may mean repeated transmission of the same transport block (that is, MAC PDU).
 上述のH1)-H4)に示される例によれば、PUCCHと複数のPUSCHのうちのいずれかのPUSCHとが少なくとも時間領域で重複する場合のうちの特定のケースにおいて、端末20が、PUCCHのUCIをPUSCHに含める動作及びPUSCHの送信をスキップする動作が明確化される。端末20が、PUCCHのUCIをPUSCHに含める動作については、PUSCHの繰り返し送信無しの場合と同じ動作にすることができる。また、端末20が、PUCCHのUCIをPUSCHに含ない動作については、不要な(あるいは追加の機能を必要とする)PUSCH送信を回避できる。 According to the example shown in H1) -H4) above, in a specific case where the PUCCH and the PUSCH of any of the plurality of PUSCHs overlap at least in the time domain, the terminal 20 is the PUCCH. The operation of including the UCI in the PUSCH and the operation of skipping the transmission of the PUSCH are clarified. The operation of the terminal 20 including the UCI of the PUCCH in the PUSCH can be the same as the operation without the repeated transmission of the PUSCH. Further, for the operation in which the terminal 20 does not include the UCI of the PUCCH in the PUSCH, it is possible to avoid unnecessary (or additional functions) PUSCH transmission.
 ここで、上記A、A′、B、C、D、E、F及びGの条件のうち複数が同時に満たされる場合の端末20の動作が明確ではなかった。例えば、1以上のPUSCH送信が設定又は指示され、少なくとも一つのPUSCHに繰り返し送信が設定又は指示され、いずれかのPUSCHとPUCCHとが少なくとも時間領域でオーバラップし、少なくとも一つのPUSCHリソースで送信すべきデータがなく、PUSCHのスキップが可能であり、論理チャネルの優先度及び/又は物理レイヤにおける優先度が設定又は指示される場合の端末20の動作が規定されていなかった。 Here, the operation of the terminal 20 when a plurality of the above conditions A, A', B, C, D, E, F and G are satisfied at the same time is not clear. For example, one or more PUSCH transmissions are set or instructed, at least one PUSCH is set or instructed to repeatedly transmit, and either PUSCH and PUCCH overlap at least in the time domain and are transmitted by at least one PUSCH resource. There was no data to be written, PUSCH could be skipped, and the operation of the terminal 20 when the priority of the logical channel and / or the priority in the physical layer was set or instructed was not specified.
 そこで、所定の条件が満たされた場合、所定の方法でPUSCHとPUCCHのオーバラップを解決してもよい。なお、以下、優先度の記載について、高い優先順位をHP(Higher priority)、低い優先順位をLP(Lower priority)と記載する。HP及びLPは、物理レイヤにおける優先度であってもよく、例えば論理チャネルのような上位レイヤにおける優先度であってもよい。優先順位が3以上ある場合、優先順位を2グループに分けて優先度が高いグループをHP、優先度が低いグループをLPとしてもよい。 Therefore, if a predetermined condition is satisfied, the overlap between PUSCH and PUCCH may be resolved by a predetermined method. Hereinafter, regarding the description of the priority, the high priority is described as HP (Higher priority) and the low priority is described as LP (Lower priority). HP and LP may be priorities in the physical layer, or may be priorities in higher layers such as logical channels. When the priority is 3 or more, the priority may be divided into two groups, the group with high priority may be referred to as HP, and the group with low priority may be referred to as LP.
 例えば、上記所定の条件は、以下1)-5)に示される条件であってもよい。 For example, the above-mentioned predetermined conditions may be the conditions shown in 1) -5) below.
1)1以上のPUSCH送信が設定又は指示される場合。
2)少なくとも一つのPUSCHに繰り返し送信が設定又は指示される場合。
3)いずれかのPUSCHとPUCCHとが少なくとも時間領域でオーバラップする場合。
4)少なくとも一つのPUSCHリソースで送信すべきデータがなく、当該PUSCH送信のスキップが可能である場合。上記B1)又はB2)に示されるルールに基づいてPUSCH送信がスキップできる場合であってもよい。
5)論理チャネルの優先度及び/又は物理レイヤにおける優先度が設定又は指示される場合。
1) When one or more PUSCH transmissions are set or instructed.
2) When repeated transmission is set or instructed to at least one PUSCH.
3) When either PUSCH and PUCCH overlap at least in the time domain.
4) When there is no data to be transmitted by at least one PUSCH resource and the PUSCH transmission can be skipped. It may be the case that the PUSCH transmission can be skipped based on the rule shown in B1) or B2) above.
5) When the priority of the logical channel and / or the priority in the physical layer is set or specified.
 例えば、上記所定の方法は、以下提案1)-提案3)に示される方法であってもよい。 For example, the above-mentioned predetermined method may be the method shown in Proposal 1) -Proposal 3) below.
提案1)優先度ごとにチャネル間のオーバラップを処理した後、異なる優先度を有するチャネル間のオーバラップを処理する。
提案2)高い優先度を有するチャネルに係るオーバラップを処理した後、処理後の高い優先度を有するチャネルに基づいて、低い優先度を有するチャネルに係るオーバラップを処理する。
提案3)高い優先度を有するチャネルにオーバラップする低い優先度を有するチャネルをドロップした後、優先度ごとにチャネル間のオーバラップを処理する。
Proposal 1) After processing the overlap between channels for each priority, handle the overlap between channels with different priorities.
Proposal 2) After processing the overlap related to the channel having high priority, the overlap related to the channel having low priority is processed based on the channel having high priority after processing.
Proposal 3) Overlapping to a channel with a high priority After dropping a channel with a low priority, the overlap between the channels is processed for each priority.
 以下、図8-図15は、想定されるチャネルがオーバラップする例である。 Hereinafter, FIGS. 8 to 15 are examples in which the assumed channels overlap.
 図8は、本発明の実施の形態におけるUL送信の例(1)を示す図である。図8に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会に、PUCCH-LP及びPUSCH-HPがオーバラップし、PUCCH-LPとPUSCH-HPも互いにオーバラップするケースが想定される。 FIG. 8 is a diagram showing an example (1) of UL transmission in the embodiment of the present invention. As shown in FIG. 8, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUSCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUSCH-HP also overlap each other. A case is assumed.
 図9は、本発明の実施の形態におけるUL送信の例(2)を示す図である。図9に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会に、PUCCH-LP及びPUCCH-HPがオーバラップし、PUCCH-LPとPUCCH-HPも互いにオーバラップするケースが想定される。 FIG. 9 is a diagram showing an example (2) of UL transmission in the embodiment of the present invention. As shown in FIG. 9, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUCCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUCCH-HP also overlap each other. A case is assumed.
 図10は、本発明の実施の形態におけるUL送信の例(3)を示す図である。図10に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会に、PUCCH-LP及びPUSCH-HPがオーバラップし、PUCCH-LPとPUSCH-HPは互いにオーバラップしていないケースが想定される。 FIG. 10 is a diagram showing an example (3) of UL transmission in the embodiment of the present invention. As shown in FIG. 10, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUSCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUSCH-HP overlap each other. It is assumed that this is not the case.
 図11は、本発明の実施の形態におけるUL送信の例(4)を示す図である。図11に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会に、PUCCH-LP及びPUCCH-HPがオーバラップし、PUCCH-LPとPUCCH-HPは互いにオーバラップしていないケースが想定される。 FIG. 11 is a diagram showing an example (4) of UL transmission in the embodiment of the present invention. As shown in FIG. 11, PUSCH-LP is repeatedly transmitted, PUCCH-LP and PUCCH-HP overlap at a certain transmission opportunity in the repeated transmission, and PUCCH-LP and PUCCH-HP overlap each other. It is assumed that this is not the case.
 図12は、本発明の実施の形態におけるUL送信の例(5)を示す図である。図12に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会及び他のPUSCH-HPにPUCCH-LPがオーバラップしており、PUSCH-LPとPUSCH-HPはオーバラップしていないケースが想定される。 FIG. 12 is a diagram showing an example (5) of UL transmission in the embodiment of the present invention. As shown in FIG. 12, PUSCH-LP is repeatedly transmitted, PUCCH-LP overlaps with one transmission opportunity and other PUSCH-HP in the repeated transmission, and PUSCH-LP and PUSCH-HP overlap. It is assumed that there is no wrapping.
 図13は、本発明の実施の形態におけるUL送信の例(6)を示す図である。図13に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会及び他のPUSCH-HPにPUCCH-HPがオーバラップしており、PUSCH-LPとPUSCH-HPはオーバラップしていないケースが想定される。 FIG. 13 is a diagram showing an example (6) of UL transmission in the embodiment of the present invention. As shown in FIG. 13, PUSCH-LP is repeatedly transmitted, PUCCH-HP overlaps with one transmission opportunity and other PUSCH-HP in the repeated transmission, and PUSCH-LP and PUSCH-HP overlap. It is assumed that there is no wrapping.
 図14は、本発明の実施の形態におけるUL送信の例(7)を示す図である。図14に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会及びPUCCH-LPに他のPUSCH-HPがオーバラップしており、PUSCH-LPとPUCCH-LPはオーバラップしていないケースが想定される。 FIG. 14 is a diagram showing an example (7) of UL transmission in the embodiment of the present invention. As shown in FIG. 14, PUSCH-LP is repeatedly transmitted, another PUSCH-HP overlaps with one transmission opportunity and PUCCH-LP in the repeated transmission, and PUSCH-LP and PUCCH-LP overlap. It is assumed that there is no wrapping.
 図15は、本発明の実施の形態におけるUL送信の例(8)を示す図である。図15に示されるように、PUSCH-LPが繰り返し送信され、当該繰り返し送信のうちある送信機会及びPUCCH-HPに他のPUSCH-HPがオーバラップしており、PUSCH-LPとPUCCH-HPはオーバラップしていないケースが想定される。 FIG. 15 is a diagram showing an example (8) of UL transmission in the embodiment of the present invention. As shown in FIG. 15, PUSCH-LP is repeatedly transmitted, another PUSCH-HP overlaps with one transmission opportunity and PUCCH-HP in the repeated transmission, and PUSCH-LP and PUCCH-HP overlap. It is assumed that there is no wrapping.
 なお、図8-図15において、PUSCH-LPとPUSCH-HPを置換したケースも想定される。 It should be noted that in FIGS. 8 to 15, it is assumed that PUSCH-LP and PUSCH-HP are replaced.
 図16は、本発明の実施の形態におけるUL送信の例(1)を説明するためのフローチャートである。上記提案1)のように、端末20は、優先度ごとにチャネル間のオーバラップを処理した後、異なる優先度を有するチャネル間のオーバラップを処理してもよい。すなわち、PUSCH繰り返し送信で送信すべきデータがなく、送信機会におけるPUSCH送信がスキップ可能であって、ある送信機会に同一の優先度のPUCCHがオーバラップした場合の解決は、異なる優先度のチャネルのオーバラップに関わらなくてもよい。例えば、同一の優先度のPUCCHがオーバラップした場合、端末20は、上記H1)-H4)に示される方法で解決してもよい。 FIG. 16 is a flowchart for explaining an example (1) of UL transmission in the embodiment of the present invention. As in the above proposal 1), the terminal 20 may process the overlap between channels having different priorities after processing the overlap between channels for each priority. That is, if there is no data to be transmitted in the PUSCH repeated transmission, the PUSCH transmission at the transmission opportunity can be skipped, and the PUCCHs of the same priority overlap at a certain transmission opportunity, the solution is to use channels of different priorities. It does not have to be related to overlap. For example, when PUCCHs having the same priority overlap, the terminal 20 may solve the problem by the method shown in H1) -H4) above.
 ステップS11において、端末20は、優先度ごとにチャネル間のオーバラップを処理する。続くステップS12において、端末20は、異なる優先度を有するチャネル間のオーバラップを処理する。ステップS12において、以下1)-4)に示される方法で、異なる優先度を有するチャネル間のオーバラップを解決してもよい。 In step S11, the terminal 20 processes the overlap between channels for each priority. In a subsequent step S12, the terminal 20 handles the overlap between channels having different priorities. In step S12, the overlap between channels having different priorities may be resolved by the method shown in 1) -4) below.
1)送信されることが確定しているHPチャネル(例えば、PUCCH、UCIを伴うPUSCH、スキップが許可されていないDG-PUSCH等)と、LPチャネルのオーバラップに対して、HPチャネルを優先してLPチャネルをドロップしてもよい。 1) Priority is given to HP channels for overlap between HP channels that are confirmed to be transmitted (for example, PUCCH, PUSCH with UCI, DG-PUSCH that is not allowed to skip, etc.) and LP channels. You may drop the LP channel.
2)スキップされ得るPUSCH-HPと、LPチャネルとのオーバラップとに対して、PUSCH-HPにMAC PDUを生成し、オーバラップするLPチャネルはドロップしてもよい。すなわち、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、には依存しなくてもよい。 2) For the overlap between the PUSCH-HP that can be skipped and the LP channel, a MAC PDU is generated in the PUSCH-HP, and the overlapping LP channel may be dropped. That is, it does not have to depend on whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity at which transmission can be started.
3)スキップされ得るPUSCH-HPと、LPチャネルとのオーバラップとに対して、PUSCH-HPにMAC PDUを生成しなくてもよい。すなわち、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、には依存しなくてもよい。 3) It is not necessary to generate a MAC PDU in the PUSCH-HP for the overlap between the PUSCH-HP that can be skipped and the LP channel. That is, it does not have to depend on whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity at which transmission can be started.
4)スキップされ得るPUSCH-HPと、LPチャネルとのオーバラップとに対して、スキップされ得るPUSCH-HPと、LPチャネルとのオーバラップとに対して、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、の少なくとも一つに基づいて、処理を決定してもよい。例えば、PUSCH-HPの繰り返し送信である場合、PUSCH-HPにMAC PDUを生成せず、PUSCH-HPの繰り返し送信でない場合、PUSCH-HPにMAC PDUを生成してもよい。例えば、PUSCH-HPの繰り返し送信であって送信開始可能な送信機会ではない場合、PUSCH-HPにMAC PDUを生成せず、送信開始可能な送信機会である場合、PUSCH-HPにMAC PDUを生成してもよい。 4) Whether or not the PUSCH is repeatedly transmitted with respect to the overlap between the PUSCH-HP which can be skipped and the LP channel and the overlap between the PUSCH-HP which can be skipped and the LP channel. The process may be determined based on at least one of whether or not there is data and whether or not it is a transmission opportunity that can start transmission among repeated transmissions. For example, in the case of repeated transmission of PUSCH-HP, MAC PDU may not be generated in PUSCH-HP, and in the case of repeated transmission of PUSCH-HP, MAC PDU may be generated in PUSCH-HP. For example, if it is a repeated transmission of PUSCH-HP and it is not a transmission opportunity that can start transmission, a MAC PDU is not generated in PUSCH-HP, and if it is a transmission opportunity that can start transmission, a MAC PDU is generated in PUSCH-HP. You may.
 図17は、本発明の実施の形態におけるUL送信の例(2)を説明するためのフローチャートである。上記提案2のように、高い優先度を有するチャネルに係るオーバラップを処理した後、処理後の高い優先度を有するチャネルに基づいて、低い優先度を有するチャネルに係るオーバラップを処理してもよい。 FIG. 17 is a flowchart for explaining an example (2) of UL transmission in the embodiment of the present invention. Even if the overlap related to the channel having high priority is processed and then the overlap related to the channel having low priority is processed based on the channel having high priority after processing as in the above proposal 2. good.
 ステップS21において、端末20は、高い優先度を有するチャネルに係るオーバラップを処理する。続くステップS22において、端末20は、処理後の高い優先度を有するチャネルに基づいて、低い優先度を有するチャネルに係るオーバラップを処理する。 In step S21, the terminal 20 processes the overlap related to the channel having a high priority. In a subsequent step S22, the terminal 20 processes the overlap relating to the channel having the lower priority based on the channel having the higher priority after the processing.
 ステップS21におけるHPチャネルに係るオーバラップの処理において、PUCCH-HP及びPUSCHのオーバラップ解決にPUSCHの繰り返し送信が含まれる場合、上記H1)-H4)に示される方法を適用してもよい。 In the overlap processing related to the HP channel in step S21, when the overlap resolution of PUCCH-HP and PUSCH includes repeated transmission of PUSCH, the method shown in H1) -H4) above may be applied.
 ステップS22において、以下1)-5)に示される方法で、異なる優先度のオーバラップ解決及びLPチャネルのオーバラップ解決を行ってもよい。 In step S22, the overlap resolution of different priorities and the overlap resolution of the LP channels may be performed by the methods shown in 1) -5) below.
1)ステップS21処理後のPUCCH-HP/PUSCH-HPで送信が確定したチャネルがPUCCH-LP/PUSCH-LPにオーバラップしている場合、当該PUCCH-LP/PUSCH-LPを除いたチャネルでLPチャネルのオーバラップを解決してもよい。PUSCH-LPの繰り返し送信が含まれる場合、上記H1)-H4)の方法を適用してもよい。また、除かれるチャネルはPUSCH-LPに限定されてもよい。また、LPチャネルのオーバラップ解決後に、HPチャネルとオーバラップするLPチャネルはドロップされてもよい。 1) When the channel whose transmission is confirmed by PUCCH-HP / PUSCH-HP after the step S21 processing overlaps with PUCCH-LP / PUSCH-LP, LP is performed on the channel excluding the PUCCH-LP / PUSCH-LP. Channel overlap may be resolved. When the repeated transmission of PUSCH-LP is included, the method of H1) -H4) may be applied. Further, the channel to be excluded may be limited to PUSCH-LP. Further, the LP channel that overlaps with the HP channel may be dropped after the overlap of the LP channel is resolved.
2)ステップS21処理後のPUCCH-HP/PUSCH-HPで送信が確定したチャネルがPUCCH-LP/PUSCH-LPにオーバラップしている場合、さらに、オーバラップしているLPチャネルに、HPチャネルとオーバラップしないPUSCH-LPがある場合(例えば図12のケース)、当該PUSCH-LPについて、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、の少なくとも一つに基づいて、処理を決定してもよい。 2) When the channel whose transmission is confirmed by PUCCH-HP / PUSCH-HP after the step S21 processing overlaps with PUCCH-LP / PUSCH-LP, the overlapping LP channel is further combined with the HP channel. When there is a PUSCH-LP that does not overlap (for example, in the case of FIG. 12), whether or not the PUSCH is repeatedly transmitted, whether or not there is data, and a transmission opportunity that can start transmission among the repeated transmissions. The process may be determined based on at least one of whether or not.
3)ステップS21処理後のPUSCH-HPでスキップされ得るPUSCH-HPと、LPチャネルとのオーバラップに対して、PUSCH-HPにはMAC PDUを生成し、LPチャネルをドロップしてもよい。 3) With respect to the overlap between the PUSCH-HP that can be skipped by the PUSCH-HP after the step S21 processing and the LP channel, a MAC PDU may be generated in the PUSCH-HP and the LP channel may be dropped.
4)ステップS21処理後のPUSCH-HPでスキップされ得るPUSCH-HPと、LPチャネルとのオーバラップに対して、PUSCH-HPにはMAC PDUを生成せず、LPチャネルに係るオーバラップを解決してもよい。LPチャネルに係るオーバラップには、上記H1)-H4)に示される方法を適用してオーバラップを解決してもよい。すなわち、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、には依存しなくてもよい。 4) With respect to the overlap between the PUSCH-HP that can be skipped by the PUSCH-HP after the step S21 processing and the LP channel, the MAC PDU is not generated in the PUSCH-HP and the overlap related to the LP channel is solved. You may. For the overlap related to the LP channel, the method shown in H1) -H4) above may be applied to solve the overlap. That is, it does not have to depend on whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity at which transmission can be started.
5)ステップS21処理後のPUSCH-HPでスキップされ得るPUSCH-HPと、LPチャネルとのオーバラップに対して、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、の少なくとも一つに基づいて処理を決定してもよい。例えば、PUSCH-HPの繰り返し送信である場合、PUSCH-HPにMAC PDUを生成せず、PUSCH-HPの繰り返し送信でない場合、PUSCH-HPにMAC PDUを生成してもよい。また、PUSCH-HPの繰り返し送信であって、送信開始可能な送信機会でない場合、PUSCH-HPにMAC PDUを生成せず、送信開始可能な送信機会である場合、PUSCH-HPにMAC PDUを生成してもよい。 5) Whether or not the PUSCH is repeatedly transmitted, whether or not there is data, and among the repeated transmissions, with respect to the overlap between the PUSCH-HP that can be skipped by the PUSCH-HP after the step S21 processing and the LP channel. The process may be determined based on at least one of whether or not the transmission opportunity can be started. For example, in the case of repeated transmission of PUSCH-HP, MAC PDU may not be generated in PUSCH-HP, and in the case of repeated transmission of PUSCH-HP, MAC PDU may be generated in PUSCH-HP. Further, if it is a repeated transmission of PUSCH-HP and it is not a transmission opportunity that can start transmission, a MAC PDU is not generated in PUSCH-HP, and if it is a transmission opportunity that can start transmission, a MAC PDU is generated in PUSCH-HP. You may.
 図18は、本発明の実施の形態におけるUL送信の例(3)を説明するためのフローチャートである。上記提案3のように、高い優先度を有するチャネルにオーバラップする低い優先度を有するチャネルをドロップした後、優先度ごとにチャネル間のオーバラップを処理してもよい。 FIG. 18 is a flowchart for explaining an example (3) of UL transmission in the embodiment of the present invention. As in Proposal 3 above, after dropping a channel having a low priority that overlaps with a channel having a high priority, the overlap between the channels may be processed for each priority.
 ステップS31において、端末20は、高い優先度を有するチャネルにオーバラップする低い優先度を有するチャネルをドロップする。続くステップS32において、端末20は、優先度ごとにチャネル間のオーバラップを処理する。その後、異なる優先度のチャネル間でオーバラップが存在する場合、オーバラップを解決する。 In step S31, the terminal 20 drops a channel having a low priority that overlaps with the channel having a high priority. In the following step S32, the terminal 20 processes the overlap between the channels for each priority. Then, if there is an overlap between channels of different priority, resolve the overlap.
 端末20は、ステップS31又はステップS32におけるオーバラップ処理に、上記提案1及び上記提案2のいずれを適用してもよい。 The terminal 20 may apply either the above proposal 1 or the above proposal 2 to the overlap processing in step S31 or step S32.
 なお、提案4として、端末20は、PUSCHが繰り返し送信であるか否か、データがあるか否か、繰り返し送信のうち送信開始可能な送信機会であるか否か、の少なくとも一つに基づいて、上記提案1、上記提案2及び上記提案3のいずれを使用するか決定してもよい。 As a proposal 4, the terminal 20 is based on at least one of whether or not the PUSCH is a repetitive transmission, whether or not there is data, and whether or not the repetitive transmission is a transmission opportunity where transmission can be started. , The above-mentioned Proposal 1, the above-mentioned Proposal 2 and the above-mentioned Proposal 3 may be decided.
 なお、PUCCH-HPと繰り返し送信されるPUSCH-HPとのオーバラップ解決と、PUCCH-LPと繰り返し送信されるPUSCH-LPとのオーバラップ解決とには異なる処理方法が適用されてもよい。例えば、PUCCH-HPと繰り返し送信されるPUSCH-HPとのオーバラップの場合、上記H1)を適用し、PUCCH-LPと繰り返し送信されるPUSCH-LPとのオーバラップの場合、上記H2)を適用してもよい。 Note that different processing methods may be applied to the overlap resolution between PUCCH-HP and PUSCH-HP repeatedly transmitted and the overlap resolution between PUCCH-LP and PUSCH-LP repeatedly transmitted. For example, in the case of the overlap between PUCCH-HP and the repeatedly transmitted PUSCH-HP, the above H1) is applied, and in the case of the overlap between the PUCCH-LP and the repeatedly transmitted PUSCH-LP, the above H2) is applied. You may.
 なお、上記実施例において、繰り返し送信が適用されないPUSCHは、繰り返し送信が適用されるPUSCHに置換されてもよい。 In the above embodiment, the PUSCH to which the repeated transmission is not applied may be replaced with the PUSCH to which the repeated transmission is applied.
 なお、上記実施例は、CG-PUSCHの繰り返し送信、DG-PUSCHの繰り返し送信のいずれに適用されてもよい。 The above embodiment may be applied to either the repeated transmission of CG-PUSCH or the repeated transmission of DG-PUSCH.
 なお、上記実施例において、繰り返し送信はスロット単位で行う記載としたが、シンボル単位の繰り返し送信に適用されてもよい。スロット単位の繰り返し送信をPUSCH繰り返しタイプA、シンボル単位の繰り返し送信をPUSCH繰り返しタイプBという。上記タイプBにおいて、無効なシンボルによって名目上の繰り返しから実際の繰り返しが決定された場合、実際の繰り返し送信に対して上記実施例が適用されてもよい。 Although it is described that the repeated transmission is performed in slot units in the above embodiment, it may be applied to repeated transmission in symbol units. Repeated transmission in slot units is referred to as PUSCH repeat type A, and repeated transmission in symbol units is referred to as PUSCH repeat type B. In Type B, if the invalid symbol determines the actual iteration from the nominal iteration, the embodiment may be applied to the actual iteration.
 なお、本実施例におけるPUCCHは、繰り返し送信を行わないPUCCHのみを対象としてもよく、繰り返し送信を行うPUCCHも対象としてもよい。 Note that the PUCCH in this embodiment may be targeted only at the PUCCH that is not repeatedly transmitted, or may be the target of the PUCCH that is repeatedly transmitted.
 なお、繰り返し送信は、同一トランスポートブロック(すなわちMAC PDU)の繰り返し送信を意味してもよい。 Note that repeated transmission may mean repeated transmission of the same transport block (that is, MAC PDU).
 なお、例えば図8から図15に示されるオーバラップケースごとに、異なるオーバラップ解決方法が適用されてもよい。 Note that, for example, different overlap resolution methods may be applied to each of the overlap cases shown in FIGS. 8 to 15.
 なお、PUSCH準備時間、PDSCH処理時間(PUCCH準備時間)の確認は、繰り返し送信の送信ごとに実行され、本実施例が適用可能か否かが判定されてもよく、繰り返し送信の先頭の送信に対して実行され、本実施例が適用可能か否かが判定されてもよい。 It should be noted that the confirmation of the PUSCH preparation time and the PDSCH processing time (PUCCH preparation time) is executed for each transmission of the repeated transmission, and it may be determined whether or not the present embodiment is applicable, and the transmission at the beginning of the repeated transmission may be performed. However, it may be determined whether or not the present embodiment is applicable.
 なお、優先度は2値であってもよく、2値より多くてもよい。優先度が2値より多い場合、その中の2値に対して上記実施例が適用されてもよい。 The priority may be binary or more than binary. When the priority is more than two values, the above embodiment may be applied to the two values among them.
 上述の実施例により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。また、基地局10のブラインドデコーディング数を低減することができる。また、オーバラップケースによらず端末20の動作を共通にすることができる。 According to the above embodiment, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case.
 すなわち、上りリンクチャネルが時間領域でオーバラップする場合、送信する上りリンクチャネルを決定することができる。 That is, when the uplink channels overlap in the time domain, the uplink channel to be transmitted can be determined.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実行する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 and the terminal 20 that execute the processes and operations described so far will be described. The base station 10 and the terminal 20 include a function of executing the above-described embodiment. However, the base station 10 and the terminal 20 may each have only the proposed function of any one of the embodiments.
 <基地局10>
 図19は、基地局10の機能構成の一例を示す図である。図19に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
<Base station 10>
FIG. 19 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. 19, the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 19 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed. The transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明した設定情報等を送信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the embodiment.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them out from the storage device as needed. The control unit 140, for example, allocates resources, controls the entire base station 10, and the like. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120. Further, the transmitting unit 110 and the receiving unit 120 may be referred to as a transmitter and a receiver, respectively.
 <端末20>
 図20は、端末20の機能構成の一例を示す図である。図20に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図20に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
<Terminal 20>
FIG. 20 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. 20, the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in FIG. 20 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed. The transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明した設定情報等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed. The setting unit 230 also stores preset setting information. The control unit 240 controls the entire terminal 20 and the like. The transmission unit 210 may include the function unit related to signal transmission in the control unit 240, and the reception unit 220 may include the function unit related to signal reception in the control unit 240. Further, the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図19及び図20)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram (FIGS. 19 and 20) used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 21 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図19に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図20に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station 10 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although it has been described that the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be mounted by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (ReadOnlyMemory), EPROM (ErasableProgrammableROM), EEPROM (ElectricallyErasableProgrammableROM), RAM (RandomAccessMemory), and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、少なくとも1つの物理上りリンク共有チャネルと少なくとも1つの物理上りリンク制御チャネルを含む複数のチャネル間のオーバラップを検出し、特定の条件が満たされる場合、特定の方法で前記オーバラップを解決して前記複数のチャネルのうちいずれのチャネルを送信するか決定する制御部と、前記送信すると決定されたチャネルを基地局に送信する送信部とを有する端末が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, the overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and a specific condition is detected. When is satisfied, a control unit that resolves the overlap by a specific method to determine which of the plurality of channels to transmit, and a transmission unit that transmits the channel determined to be transmitted to the base station. A terminal having and is provided.
 上記の構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。また、基地局10のブラインドデコーディング数を低減することができる。また、オーバラップケースによらず端末20の動作を共通にすることができる。すなわち、上りリンクチャネルが時間領域でオーバラップする場合、送信する上りリンクチャネルを決定することができる。 With the above configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions related to the overlap between UL channels are satisfied at the same time. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case. That is, when the uplink channels overlap in the time domain, the uplink channel to be transmitted can be determined.
 前記特定の条件は、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルに繰り返し送信が設定され、かつ、前記複数のチャネルのうちいずれかの物理上りリンク共有チャネルといずれかの物理上りリンク制御チャネルとが少なくとも時間領域でオーバラップし、かつ、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルのリソースで送信すべきデータがなく当該物理上りリンク共有チャネルの送信がスキップ可能であり、かつ、前記複数のチャネルそれぞれに論理チャネルの優先度又は物理レイヤにおける優先度が設定されることであってもよい。当該構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。 The specific condition is that repeated transmission is set to at least one physical uplink shared channel among the plurality of channels, and one of the plurality of physical uplink shared channels and one of the physical uplinks are set. The control channel overlaps with the control channel at least in the time domain, and there is no data to be transmitted by the resource of at least one physical uplink shared channel among the plurality of channels, and the transmission of the physical uplink shared channel can be skipped. Moreover, the priority of the logical channel or the priority in the physical layer may be set for each of the plurality of channels. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
 前記特定の条件は、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルに繰り返し送信が設定され、かつ、前記複数のチャネルのうちいずれかの物理上りリンク共有チャネルといずれかの物理上りリンク制御チャネルとが少なくとも時間領域でオーバラップし、かつ、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルのリソースで送信すべきデータがなく当該物理上りリンク共有チャネルの送信がスキップ可能であり、かつ、前記複数のチャネルそれぞれに論理チャネルの優先度又は物理レイヤにおける優先度が設定されることであってもよい。当該構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。 The specific condition is that repeated transmission is set to at least one physical uplink shared channel among the plurality of channels, and one of the plurality of physical uplink shared channels and one of the physical uplinks are set. The control channel overlaps with the control channel at least in the time domain, and there is no data to be transmitted by the resource of at least one physical uplink shared channel among the plurality of channels, and the transmission of the physical uplink shared channel can be skipped. Moreover, the priority of the logical channel or the priority in the physical layer may be set for each of the plurality of channels. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
 前記特定の方法は、優先度ごとに前記複数のチャネル間のオーバラップを解決した後、異なる優先度を有する前記複数のチャネル間のオーバラップを解決する方法であってもよい。当該構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。 The specific method may be a method of resolving the overlap between the plurality of channels for each priority and then resolving the overlap between the plurality of channels having different priorities. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
 前記特定の方法は、前記複数のチャネルのうち高い優先度を有するチャネルに係るオーバラップを解決した後、前記複数のチャネルのうち低い優先度を有するチャネルに係るオーバラップを解決する方法であってもよい。当該構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。 The specific method is a method of resolving the overlap relating to the channel having the higher priority among the plurality of channels and then resolving the overlap relating to the channel having the lower priority among the plurality of channels. May be good. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
 前記特定の方法は、前記複数のチャネルのうち高い優先度を有するチャネルにオーバラップする低い優先度を有するチャネルをドロップした後、優先度ごとに前記複数のチャネル間のオーバラップを解決する方法であってもよい。当該構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。 The specific method is a method of dropping a channel having a low priority that overlaps with a channel having a high priority among the plurality of channels, and then resolving the overlap between the plurality of channels for each priority. There may be. With this configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions relating to the overlap between UL channels are simultaneously satisfied.
 少なくとも1つの物理上りリンク共有チャネルと少なくとも1つの物理上りリンク制御チャネルを含む複数のチャネル間のオーバラップを検出し、特定の条件が満たされる場合、特定の方法で前記オーバラップを解決して前記複数のチャネルのうちいずれのチャネルを送信するか決定する制御手順と、前記送信すると決定されたチャネルを基地局に送信する送信手順とを端末が実行する通信方法が提供される。 The overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and if a specific condition is satisfied, the overlap is resolved by a specific method. A communication method is provided in which a terminal executes a control procedure for determining which of a plurality of channels is to be transmitted and a transmission procedure for transmitting the channel determined to be transmitted to a base station.
 上記の構成により、ULチャネル間のオーバラップに係る複数の条件が同時に満たされる場合の端末20の動作を明確にすることができる。また、基地局10のブラインドデコーディング数を低減することができる。また、オーバラップケースによらず端末20の動作を共通にすることができる。すなわち、上りリンクチャネルが時間領域でオーバラップする場合、送信する上りリンクチャネルを決定することができる。 With the above configuration, it is possible to clarify the operation of the terminal 20 when a plurality of conditions related to the overlap between UL channels are satisfied at the same time. Further, the number of blind decodings of the base station 10 can be reduced. Further, the operation of the terminal 20 can be made common regardless of the overlap case. That is, when the uplink channels overlap in the time domain, the uplink channel to be transmitted can be determined.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed inventions are not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. May apply (as long as there is no conflict) to the matters described in. The boundary of the functional part or the processing part in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. Regarding the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of processing, the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize appropriate systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station 10, various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 ( For example, MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these). In the above example, the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be stored in a specific location (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website. When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "wireless base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNodeB) gNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”,“ Terms such as "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" is a part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the terminal 20 may have the functions of the base station 10 described above. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the above-mentioned user terminal.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. The subframe may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (eg, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 The bandwidth part (BWP: Bandwidth Part) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the terminal 20.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 does not have to assume that a predetermined signal / channel is transmitted or received outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (6)

  1.  少なくとも1つの物理上りリンク共有チャネルと少なくとも1つの物理上りリンク制御チャネルを含む複数のチャネル間のオーバラップを検出し、特定の条件が満たされる場合、特定の方法で前記オーバラップを解決して前記複数のチャネルのうちいずれのチャネルを送信するか決定する制御部と、
     前記送信すると決定されたチャネルを基地局に送信する送信部とを有する端末。
    The overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and if a specific condition is satisfied, the overlap is resolved by a specific method. A control unit that determines which of the multiple channels to transmit,
    A terminal having a transmission unit that transmits the channel determined to be transmitted to the base station.
  2.  前記特定の条件は、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルに繰り返し送信が設定され、かつ、前記複数のチャネルのうちいずれかの物理上りリンク共有チャネルといずれかの物理上りリンク制御チャネルとが少なくとも時間領域でオーバラップし、かつ、前記複数のチャネルのうち少なくとも1つの物理上りリンク共有チャネルのリソースで送信すべきデータがなく当該物理上りリンク共有チャネルの送信がスキップ可能であり、かつ、前記複数のチャネルそれぞれに論理チャネルの優先度又は物理レイヤにおける優先度が設定されることである請求項1記載の端末。 The specific condition is that repeated transmission is set to at least one physical uplink shared channel among the plurality of channels, and one of the plurality of physical uplink shared channels and one of the physical uplinks are set. The control channel overlaps with the control channel at least in the time domain, and there is no data to be transmitted by the resource of at least one physical uplink shared channel among the plurality of channels, and the transmission of the physical uplink shared channel can be skipped. The terminal according to claim 1, wherein the priority of the logical channel or the priority in the physical layer is set for each of the plurality of channels.
  3.  前記特定の方法は、優先度ごとに前記複数のチャネル間のオーバラップを解決した後、異なる優先度を有する前記複数のチャネル間のオーバラップを解決する方法である請求項2記載の端末。 The terminal according to claim 2, wherein the specific method is a method of resolving the overlap between the plurality of channels for each priority and then resolving the overlap between the plurality of channels having different priorities.
  4.  前記特定の方法は、前記複数のチャネルのうち高い優先度を有するチャネルに係るオーバラップを解決した後、前記複数のチャネルのうち低い優先度を有するチャネルに係るオーバラップを解決する方法である請求項2記載の端末。 The specific method is a method of resolving the overlap relating to the channel having the higher priority among the plurality of channels, and then resolving the overlap relating to the channel having the lower priority among the plurality of channels. Item 2 The terminal.
  5.  前記特定の方法は、前記複数のチャネルのうち高い優先度を有するチャネルにオーバラップする低い優先度を有するチャネルをドロップした後、優先度ごとに前記複数のチャネル間のオーバラップを解決する方法である請求項2記載の端末。 The specific method is a method of dropping a channel having a low priority that overlaps with a channel having a high priority among the plurality of channels, and then resolving the overlap between the plurality of channels for each priority. The terminal according to claim 2.
  6.  少なくとも1つの物理上りリンク共有チャネルと少なくとも1つの物理上りリンク制御チャネルを含む複数のチャネル間のオーバラップを検出し、特定の条件が満たされる場合、特定の方法で前記オーバラップを解決して前記複数のチャネルのうちいずれのチャネルを送信するか決定する制御手順と、
     前記送信すると決定されたチャネルを基地局に送信する送信手順とを端末が実行する通信方法。
    The overlap between a plurality of channels including at least one physical uplink shared channel and at least one physical uplink control channel is detected, and if a specific condition is satisfied, the overlap is resolved by a specific method. A control procedure that determines which of the multiple channels to transmit, and
    A communication method in which a terminal executes a transmission procedure for transmitting a channel determined to be transmitted to a base station.
PCT/JP2020/045350 2020-12-04 2020-12-04 Terminal and communication method WO2022118481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045350 WO2022118481A1 (en) 2020-12-04 2020-12-04 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045350 WO2022118481A1 (en) 2020-12-04 2020-12-04 Terminal and communication method

Publications (1)

Publication Number Publication Date
WO2022118481A1 true WO2022118481A1 (en) 2022-06-09

Family

ID=81854111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045350 WO2022118481A1 (en) 2020-12-04 2020-12-04 Terminal and communication method

Country Status (1)

Country Link
WO (1) WO2022118481A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019143982A1 (en) * 2018-01-19 2019-07-25 Qualcomm Incorporated Uci transmission for overlapping uplink resource assignments with repetition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019143982A1 (en) * 2018-01-19 2019-07-25 Qualcomm Incorporated Uci transmission for overlapping uplink resource assignments with repetition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Intra-UE Multiplexing/Prioritization Enhancements for IIoT/URLLC", 3GPP DRAFT; R1-2007710, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946495 *
NTT DOCOMO, INC.: "Discussion on intra-UE multiplexing/prioritization for Rel.17 URLLC", 3GPP DRAFT; R1-2006731, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915461 *

Similar Documents

Publication Publication Date Title
JP7084497B2 (en) Wireless node and wireless communication method
WO2021064972A1 (en) Terminal and communication method
WO2021033246A1 (en) Terminal
WO2021172337A1 (en) Terminal and communication method
WO2022130645A1 (en) Terminal, base station, and communication method
WO2021140674A1 (en) Terminal and communication method
WO2022149223A1 (en) Terminal, base station, and communication method
WO2022029983A1 (en) Terminal, base station device, and reception method
WO2022029947A1 (en) Terminal, base station device, and feedback method
WO2021171995A1 (en) Terminal, communication method, and base station
WO2021140677A1 (en) Terminal and communication method
WO2021149159A1 (en) Terminal, base station, and communication method
JP7301957B2 (en) Terminal, communication system and communication method
WO2022118481A1 (en) Terminal and communication method
WO2021064973A1 (en) Terminal and base station
WO2021090440A1 (en) Terminal and transmission method
WO2022118448A1 (en) Terminal and communication method
WO2022097640A1 (en) Terminal, communication method, and base station
CN114930925A (en) Terminal and transmission power control method
JPWO2020157874A1 (en) User equipment and base station equipment
WO2022259556A1 (en) Terminal and communication method
WO2022153551A1 (en) Terminal and communication method
WO2022137472A1 (en) Terminal and communication method
WO2021157039A1 (en) Terminal and communication method
WO2021157040A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP