WO2022118458A1 - 表示装置および画素回路 - Google Patents

表示装置および画素回路 Download PDF

Info

Publication number
WO2022118458A1
WO2022118458A1 PCT/JP2020/045197 JP2020045197W WO2022118458A1 WO 2022118458 A1 WO2022118458 A1 WO 2022118458A1 JP 2020045197 W JP2020045197 W JP 2020045197W WO 2022118458 A1 WO2022118458 A1 WO 2022118458A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
mode selection
transistor
voltage
capacitance
Prior art date
Application number
PCT/JP2020/045197
Other languages
English (en)
French (fr)
Inventor
諒 米林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2020/045197 priority Critical patent/WO2022118458A1/ja
Priority to US18/039,982 priority patent/US20240021161A1/en
Publication of WO2022118458A1 publication Critical patent/WO2022118458A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • the present invention relates to a display device, and more particularly to a display device including a pixel circuit including a current-driven light emitting element.
  • the pixel circuit of the organic EL display device includes a drive transistor, a write control transistor, and the like in addition to the organic EL element.
  • Thin film transistors (hereinafter referred to as TFTs) are used for these transistors.
  • the organic EL element is a current-driven light emitting element that emits light with a brightness corresponding to the amount of flowing current.
  • the drive transistor is provided in series with the organic EL element and controls the amount of current flowing through the organic EL element.
  • FIG. 20 is a circuit diagram of a pixel circuit of a conventional display device.
  • the TFT: Q4 functions as a drive transistor
  • the TFT: Q1 functions as a write control transistor.
  • TFT: Q1 and Q3 are turned on, and TFT: Q2 is turned off.
  • the gate voltage of the TFT: Q4 becomes equal to the voltage of the data line Sj (hereinafter referred to as the data voltage Vdata).
  • the data voltage Vdata the data voltage
  • TFT: Q1 and Q3 are turned off and TFT: Q2 is turned on.
  • a drive current Iold corresponding to the data voltage Vdata flows in the current path via the TFT: Q4, the TFT: Q2, and the organic EL element L9.
  • the organic EL element L9 emits light with a brightness corresponding to the drive current Iold.
  • Patent Document 1 accurately controls the drive current flowing through a light emitting element by applying a voltage divided by a capacitance provided outside the pixel circuit to the gate terminal of the drive transistor.
  • the electro-optical device to be used is described.
  • FIG. 21 is a diagram showing the relationship between the data voltage Vdata and the drive current Iold in the pixel circuit 9.
  • the data voltage Vdata is controlled to a low voltage when displaying a low gradation, and is controlled to a high voltage when displaying a high gradation.
  • the data voltage Vdata is controlled in the vicinity of the broken line portion shown in FIG. 21 in order to display a low gradation.
  • the amount of change in the drive current Iold with respect to the amount of change in the data voltage Vdata is large. Therefore, when the data voltage Vdata changes slightly in the vicinity of the broken line portion, the brightness of the organic EL element L9 changes significantly. Therefore, the conventional display device including the pixel circuit 9 has a problem that gradation control is difficult when displaying low gradation.
  • the above-mentioned problems include, for example, a display panel including a plurality of scanning lines, a plurality of data lines, a plurality of mode selection lines, a plurality of pixel circuits, a scanning line driving circuit for driving the scanning lines, and the like.
  • a data line drive circuit for driving a data line is provided, and the pixel circuit includes a light emitting element, a driving transistor for controlling the amount of current flowing through the light emitting element, and one conduction terminal connected to the data line for control.
  • a write control transistor whose terminals are connected to the scanning line, a first capacitance provided between the control terminal of the drive transistor and the conduction terminal on the light emitting element side, and the other conduction terminal of the write control transistor.
  • the above problem can also be solved by the pixel circuit included in the above display device.
  • the amount of electric charge accumulated in the first capacitance is changed and flows through the light emitting element.
  • the amount of drive current can be varied. Therefore, by short-circuiting the electrodes of the second capacitance according to the operating state to be set to reduce the amount of drive current, the amount of change in drive current with respect to the amount of change in voltage of the data line is reduced, and gradation control is performed. It can be done easily.
  • FIG. 1 It is a block diagram which shows the structure of the display device which concerns on 1st Embodiment. It is a figure which shows the layout of the mode selection line of the display device shown in FIG. It is a circuit diagram of the pixel circuit of the display device shown in FIG. It is a timing chart of the high-luminance mode of the display device shown in FIG. It is a timing chart of the low-luminance mode of the display device shown in FIG. It is a figure which shows the relationship between the data voltage and the drive current in the pixel circuit shown in FIG. It is a figure which shows the layout of the mode selection line of the display device which concerns on the modification of 1st Embodiment.
  • the display device according to each embodiment is an organic EL display device each including a plurality of pixel circuits including an organic EL element.
  • the voltage that the transistor turns on when applied to the control terminal of the transistor is called the on voltage
  • the voltage that the transistor turns off is called the off voltage.
  • the high level voltage is the on voltage
  • the low level voltage is the off voltage.
  • m and n are integers of 2 or more
  • i is an integer of 1 or more and m or less
  • j is an integer of 1 or more and n or less.
  • FIG. 1 is a block diagram showing a configuration of a display device according to the first embodiment.
  • the display device 10 shown in FIG. 1 includes a display unit 11, scanning line / light emission control line drive circuits 12a and 12b, and a data line drive circuit 13.
  • the display device 10 has a function of setting the display unit 11 to either a high-luminance mode or a low-luminance mode.
  • the display unit 11 is formed in a rectangular shape on the organic EL panel 15.
  • the display unit 11 is also called an active area.
  • the scanning line / light emitting control line driving circuits 12a and 12b include a scanning line driving circuit and a light emitting control line driving circuit, and are integrally formed with the display unit 11 on the organic EL panel 15 (gate driver monolithic configuration).
  • the data line drive circuit 13 is built in the drive circuit IC 14.
  • the drive circuit IC 14 is mounted on the organic EL panel 15.
  • the display unit 11 has m scanning lines G1 to Gm, n data lines S1 to Sn, m light emitting control lines E1 to Em, m mode selection lines (not shown), and (m ⁇ ).
  • the pixel circuit 1 is included.
  • the scanning lines G1 to Gm are arranged parallel to each other.
  • the data lines S1 to Sn are arranged so as to be orthogonal to the scanning lines G1 to Gm.
  • the light emission control lines E1 to Em are arranged in parallel with the scanning lines G1 to Gm.
  • the scanning lines G1 to Gm and the data lines S1 to Sn intersect at (m ⁇ n) points.
  • the (m ⁇ n) pixel circuits 1 are arranged corresponding to the intersections of the scanning lines G1 to Gm and the data lines S1 to Sn.
  • a power supply voltage and an initialization voltage are supplied to the display unit 11 using wiring or electrodes (not shown).
  • the scanning line / light emission control line drive circuit 12a is arranged along one side (left side in FIG. 1) of the display unit 11 and is connected to one end of the scanning lines G1 to Gm and the light emission control lines E1 to Em (left end in FIG. 1). Will be done.
  • the scanning line / light emission control line drive circuit 12a drives the scanning lines G1 to Gm and the light emission control lines E1 to Em from one end side.
  • the scanning line / emission control line drive circuit 12b is arranged along the opposite side (right side in FIG. 1) of the display unit 11, and is the other end of the scanning lines G1 to Gm and the emission control lines E1 to Em (right end in FIG. 1). ) Is connected.
  • the scanning line / light emission control line drive circuit 12b drives the scanning lines G1 to Gm and the light emission control lines E1 to Em from the other end side.
  • the scanning line / light emission control line drive circuits 12a and 12b select scanning lines G1 to Gm in ascending order for each horizontal period.
  • the drive circuit IC 14 is arranged along the other side (lower side in FIG. 1) of the display unit 11 and is connected to one end (lower end in FIG. 1) of the data lines S1 to Sn.
  • the data line drive circuit 13 built in the drive circuit IC 14 drives the data lines S1 to Sn.
  • two scanning line / light emission control line drive circuits are provided on both sides of the display unit 11, and the scanning lines G1 to Gm and the light emission control lines E1 to Em are driven from both sides.
  • one scanning line / light emission control line drive circuit may be provided on one side of the display unit 11, and the scanning lines G1 to Gm and the light emission control lines E1 to Em may be driven from one side.
  • the scanning line drive circuit and the light emission control line drive circuit may be configured by different circuits.
  • FIG. 2 is a diagram showing the layout of the mode selection line.
  • the display unit 11 includes m mode selection lines MD1 to MDm.
  • the mode selection lines MD1 to MDm are arranged in parallel with the scanning lines G1 to Gm.
  • the mode selection line MDi is arranged corresponding to the scanning line Gi.
  • Both ends of the mode selection lines MD1 to MDm are connected to the drive circuit IC 14 via the wirings 16a and 16b provided in the peripheral portion of the display unit 11.
  • the drive circuit IC 14 applies the same voltage (either high level voltage or low level voltage) to the mode selection lines MD1 to MDm according to the operating state to be set.
  • FIG. 3 is a circuit diagram of the pixel circuit 1.
  • FIG. 3 shows the pixel circuit 1 in the i-th row and the j-th column.
  • the pixel circuit 1 includes five TFTs: T1 to T5, two capacitances C1 and C2, and an organic EL element L1.
  • TFTs: T1 to T5 are all N-channel transistors.
  • a high level power supply voltage EL VDD and a low level power supply voltage ELVSS are supplied to the pixel circuit 1.
  • the pixel circuit 1 is connected to a scanning line Gi, a data line Sj, a light emitting control line Ei, a mode selection line MDi, and an initialization line INI to which an initialization voltage is applied.
  • a high level power supply voltage EL VDD is applied to the drain terminal of the TFT: T4.
  • the source terminal of TFT: T4 is connected to the drain terminal of TFT: T2.
  • the source terminal of the TFT: T2 is connected to the anode terminal of the organic EL element L1.
  • a low level power supply voltage ELVSS is applied to the cathode terminal of the organic EL element L1.
  • TFT: One conduction terminal of T1 (the terminal on the left side in FIG. 3) is connected to the data line Sj.
  • the capacitance C1 is provided between the gate terminal of the TFT: T4 and the source terminal (conduction terminal on the organic EL element L1 side).
  • the capacitance C2 is provided between the other conduction terminal of the TFT: T1 and the gate terminal of the TFT: T4.
  • TFT One conduction terminal of T3 (the terminal on the right side in FIG. 3) is connected to the initialization line INI.
  • the other conduction terminal of the TFT: T3 is connected to the source terminal of the TFT: T4, the drain terminal of the TFT: T2, and one electrode of the capacitance C1 (lower electrode in FIG. 2).
  • One conduction terminal of the TFT: T5 (the terminal on the left side in FIG. 3) is connected to the other conduction terminal of the TFT: T1 and one electrode of the capacitance C2 (the electrode on the left side in FIG. 2).
  • the other conduction terminal of the TFT: T5 is connected to the gate terminal of the TFT: T4, the other electrode of the capacitance C1, and the other electrode of the capacitance C2.
  • TFT: The gate terminals of T1 and T3 are connected to the scanning line Gi.
  • the gate terminal of the TFT: T2 is connected to the light emission control line Ei.
  • the gate terminal of the TFT: T5
  • the organic EL element L1 functions as a light emitting element.
  • TFT: T4 functions as a drive transistor that controls the amount of current flowing through the light emitting element.
  • the TFT: T1 functions as a write control transistor in which one conduction terminal is connected to the data line Sj and the control terminal is connected to the scanning line Gi.
  • the capacitance C1 functions as a first capacitance provided between the control terminal of the drive transistor and the conduction terminal on the light emitting element side.
  • the capacitance C2 functions as a second capacitance provided between the other conduction terminal of the write control transistor and the control terminal of the drive transistor.
  • the TFT: T2 is provided on a current path passing through the drive transistor and the light emitting element, and functions as a light emitting control transistor whose control terminal is connected to the light emitting control line Ei.
  • the TFT: T5 is a selection transistor in which one conduction terminal is connected to the other conduction terminal of the write control transistor, the other conduction terminal is connected to the control terminal of the drive transistor, and the control terminal is connected to the mode selection line MDi. Function.
  • the selection transistor is provided in parallel with the second capacitance, and constitutes a mode selection circuit that short-circuits and opens between the electrodes of the second capacitance according to the voltage of the mode selection line MDi.
  • FIG. 4 is a timing chart of the display device 10 in the high brightness mode.
  • FIG. 5 is a timing chart of the low-luminance mode of the display device 10.
  • the timing at which the voltage is written to the pixel circuit 1 in the i-th row and the j-th column is described.
  • the voltage of the mode selection line MDi is fixedly controlled to a high level (FIG. 4).
  • the TFT: T5 is fixedly turned on.
  • the voltage of the mode selection line MDi is fixedly controlled to a low level (FIG. 5).
  • the TFT: T5 is fixedly turned off.
  • the voltages of the scanning lines Gi-1, Gi, and Gi + 1 are controlled to high levels in order for each horizontal period (described as 1H in the drawing).
  • the period from the time t1 to the time t2 is a writing period for the pixel circuit 1 on the i-th row (hereinafter, referred to as a selection period Pi).
  • the selection period Pi the voltage of the scanning line Gi is controlled to a high level
  • the voltage of the data line Sj is controlled to the data voltage Vdata
  • the voltage of the light emitting control line Ei is controlled to a low level. Therefore, TFT: T1 and T3 are turned on, and TFT: T2 is turned off. At this time, since the drive current does not flow through the organic EL element L1, the organic EL element L1 does not emit light.
  • the voltages of the source terminal of the TFT: T4 and the drain terminal of the TFT: T2 become equal to the initialization voltage applied to the initialization line INI. Further, when the TFT: T1 is turned on at the time t1, the voltage Vdata of the data line Sj is written to the pixel circuit 1 via the TFT: T1.
  • the capacitance C1 stores an electric charge corresponding to the data voltage Vdata.
  • the capacitance C2 does not store an electric charge when the TFT: T5 is in the on state (in the high-luminance mode), and corresponds to the data voltage Vdata when the TFT: T5 is in the off state (in the low-luminance mode). Accumulates electric charge.
  • the voltage of the scanning line Gi changes to a low level, and the voltage of the light emitting control line Ei changes to a high level. Therefore, TFT: T1 and T3 are turned off, and TFT: T2 is turned on.
  • a drive current Iold corresponding to the gate-source voltage of the TFT: T4 flows in the current path via the TFT: T4, the TFT: T2, and the organic EL element L1, and the organic EL element L1 has a drive current. It emits light with a brightness corresponding to the OLED.
  • FIG. 6 is a diagram showing the relationship between the data voltage Vdata and the drive current Iold in the pixel circuit 1.
  • the TFT: T5 is fixedly on. Therefore, in the selection period Pi, the capacitance C1 accumulates an electric charge corresponding to the data voltage Vdata, and the capacitance C2 does not accumulate an electric charge.
  • the gate voltage of TFT: T4 is equal to the data voltage Vdata. Therefore, in the high-luminance mode, the drive current Iold changes as shown by a thin line in FIG. 6 according to the data voltage Vdata.
  • TFT: T5 In the low brightness mode, TFT: T5 is fixedly off. Therefore, in the selection period Pi, the capacitances C1 and C2 accumulate charges according to the ratio of the data voltage Vdata and the capacitance values of the capacitances C1 and C2, respectively.
  • the gate voltage of the TFT: T4 is a voltage obtained by dividing the data voltage Vdata by the capacitance values of the capacitances C1 and C2, and is lower than the data voltage Vdata. Therefore, in the low-luminance mode, the drive current Iold changes as shown by a thick line in FIG. 6 according to the data voltage Vdata.
  • the curve in the high luminance mode shown in FIG. 6 is the same as the curve shown in FIG. 21.
  • the curve in the low-luminance mode shown in FIG. 6 has a shape obtained by extending the curve in the high-luminance mode in the horizontal axis direction. Therefore, in the low-luminance mode, the amount of change in the drive current Iold with respect to the amount of change in the data voltage Vdata is smaller when displaying lower gradations than in the high-luminance mode.
  • the conventional display device including the pixel circuit 9 shown in FIG. 20 has a change amount of the drive current Ioled with respect to the change amount of the data voltage Vdata when displaying a low gradation. There is a problem that gradation control is difficult due to its large size.
  • the display unit 11 when it is necessary to display low gradation more accurately, the display unit 11 is set to the low luminance mode.
  • the amount of change in the drive current Iold with respect to the amount of change in the data voltage Vdata is smaller when displaying lower gradations than in the high-luminance mode. Therefore, by setting the low luminance mode, gradation control can be easily performed when displaying low gradation.
  • the display device 10 includes a plurality of scanning lines G1 to Gm, a plurality of data lines S1 to Sn, a plurality of emission control lines E1 to Em, and a plurality of mode selection lines MD1.
  • the line drive circuit) and the data line drive circuit 13 for driving the data lines S1 to Sn are provided.
  • a light emitting element (organic EL element L1), a drive transistor (TFT: T4) that controls the amount of current flowing through the light emitting element, and one conduction terminal are connected to a data line Sj, and a control terminal (gate) is connected.
  • a write control transistor (TFT: T1) whose terminal) is connected to the scanning line Gi, and a light emission control transistor whose control terminal is provided on the current path passing through the drive transistor and the light emitting element and whose control terminal is connected to the light emission control line Ei.
  • Mode selection in which the second capacitance (capacity C2) provided between the control terminal and the second capacitance is short-circuited and opened in parallel with the second capacitance according to the voltage of the mode selection line MDi. Includes circuits.
  • one conduction terminal is connected to the other conduction terminal of the write control transistor, the other conduction terminal is connected to the control terminal of the drive transistor, and the control terminal is connected to the mode selection line MDi (selection transistor).
  • TFT: T5 is included.
  • the mode selection line MDi is arranged in parallel with the scanning line Gi, and the mode selection line MDi has either an on voltage (high level voltage) or an off voltage (low level voltage) of the selection transistor depending on the operating state to be set. Is applied.
  • the charge accumulated in the first capacitance is charged by short-circuiting and opening the electrodes of the second capacitance using the mode selection circuit (TFT: T5).
  • TFT mode selection circuit
  • the amount of the drive current Ioled flowing through the light emitting element can be changed. Therefore, by short-circuiting the electrodes of the second capacitance according to the operating state to reduce the amount of the drive current Iold, the amount of change in the drive current Iold with respect to the amount of change in the voltage of the data line (data voltage Vdata) is reduced. Gradation control can be easily performed.
  • FIG. 7 is a diagram showing the layout of the mode selection line of the display device according to the modified example.
  • the display unit 17 formed on the organic EL panel 19 includes n mode selection lines MD1 to MDn arranged in parallel with the data lines S1 to Sn.
  • the mode selection line MDj is arranged corresponding to the data line Sj.
  • One end (lower end in FIG. 7) of the mode selection lines MD1 to MDn is connected to the drive circuit IC18.
  • the drive circuit IC 18 applies the same voltage (either high level voltage or low level voltage) to the mode selection lines MD1 to MDn according to the operating state to be set.
  • FIG. 7 is a diagram showing the layout of the mode selection line of the display device according to the modified example.
  • the display unit 17 formed on the organic EL panel 19 includes n mode selection lines MD1 to MDn arranged in parallel with the data lines S1 to Sn.
  • the mode selection line MDj is arranged corresponding to the data line Sj.
  • FIG. 8 is a circuit diagram of the pixel circuit 1 of the display device according to the modified example.
  • the gate terminal of the TFT: T5 is connected to the mode selection line MDj arranged in parallel with the data line Sj.
  • the display device according to the modified example can also obtain the same effect as the display device 10.
  • the display device according to the second embodiment has the same configuration (FIG. 1) as the display device 10 according to the first embodiment.
  • the display device according to the present embodiment has a function of setting a part of the display unit to the high-luminance mode and the rest to the low-luminance mode.
  • the differences from the first embodiment will be described.
  • FIG. 9 is a diagram showing the layout of the mode selection line of the display device according to the present embodiment.
  • the display unit 21 formed on the organic EL panel 25 includes m first mode selection lines MDX1 to MDXm and n second mode selection lines MDY1 to MDYn. I'm out.
  • the first mode selection lines MDX1 to MDXm are arranged in parallel with the scanning lines G1 to Gm.
  • the first mode selection line MDXi is arranged corresponding to the scanning line Gi.
  • the second mode selection lines MDY1 to MDYn are arranged in parallel with the data lines S1 to Sn.
  • the second mode selection line MDYj is arranged corresponding to the data line Sj.
  • One end (left end in FIG. 9) of the first mode selection lines MDX1 to MDXm is connected to the scanning line / light emission control line drive circuit 22a.
  • the scanning line / light emission control line drive circuit 22a drives the first mode selection lines MDX1 to MDXm from one end side.
  • the other ends of the first mode selection lines MDX1 to MDXm are connected to the scanning line / light emission control line drive circuit 22b.
  • the scanning line / light emission control line drive circuit 22b drives the first mode selection lines MDX1 to MDXm from the other end side.
  • the scanning line / light emission control line drive circuits 22a and 22b have high level voltage and low level on the first mode selection lines MDX1 to MDXm based on the control signal MDXC output from the drive circuit IC24 according to the operating state to be set.
  • One of the voltages is fixedly applied.
  • the m voltages applied to the first mode selection lines MDX1 to MDXm may include a high level voltage and a low level voltage.
  • the drive circuit IC 24 fixedly applies either a high level voltage or a low level voltage to the second mode selection lines MDY1 to MDYn according to the operating state to be set.
  • the n voltages applied to the second mode selection lines MDY1 to MDYn may include a high level voltage and a low level voltage.
  • FIG. 10 is a circuit diagram of a pixel circuit of the display device according to the present embodiment.
  • the pixel circuit 2 shown in FIG. 10 is a pixel circuit 1 according to the first embodiment in which the TFT: T5 is replaced with the TFTs: T6 and T7.
  • TFT: T6 and T7 are N-channel transistors.
  • the other conduction terminal of the TFT: T1 (the terminal on the right side in FIG. 10) is connected to one conduction terminal of the TFT: T7 (the terminal on the left side in FIG. 10) and one electrode of the capacitance C2 (the electrode on the left side in FIG. 10). Be connected.
  • the other conduction terminal of the TFT: T7 is connected to one conduction terminal of the TFT: T6 (the terminal on the left side in FIG. 10).
  • the other conduction terminal of the TFT: T6 is connected to the gate terminal of the TFT: T4, the other electrode of the capacitance C1 (the upper electrode in FIG. 10), and the other electrode of the capacitance C2.
  • the gate terminal of the TFT: T6 is connected to the first mode selection line MDXi.
  • the gate terminal of the TFT: T7 is connected to the second mode selection line MDYj.
  • TFT functions as a first selection transistor whose control terminal is connected to the first mode selection line MDXi.
  • the TFT: T7 functions as a second selection transistor whose control terminal is connected to the second mode selection line MDYj.
  • the first and second selection transistors are connected in series, provided in parallel with the second capacitance (capacity C2), and correspond to the voltage of the mode selection line (first mode selection line MDXi and second mode selection line MDYj).
  • a mode selection circuit for short-circuiting and opening the electrodes of the second capacitance is configured.
  • the TFTs: T6 and T7 may be connected in the reverse order.
  • TFT T6 is turned on when the voltage of the first mode selection line MDXi is high level, and is turned off when the voltage of the first mode selection line MDXi is low level.
  • the TFT: T7 is turned on when the voltage of the second mode selection line MDYj is high level, and is turned off when the voltage of the second mode selection line MDYj is low level. Therefore, when the voltage of the first mode selection line MDXi and the voltage of the second mode selection line MDYj are both at high levels, the TFTs: T6 and T7 are both turned on, and the pixel circuit 2 operates in the high luminance mode.
  • At least one of the voltage of the first mode selection line MDXi and the voltage of the second mode selection line MDYj is at a low level, at least one of the TFTs: T6 and T7 is turned off, and the pixel circuit 2 operates in the low luminance mode.
  • FIG. 11 is a diagram showing an operating state of the display unit 21.
  • the voltage of the first mode selection line MDXi is high level when is ⁇ i ⁇ ie, and low level at other times.
  • the voltage of the second mode selection line MDYj is high level when js ⁇ j ⁇ je, and low level at other times.
  • the shaded portion (the portion of is ⁇ i ⁇ ie and js ⁇ j ⁇ je) of the display unit 21 is set to the high-luminance mode, and the remaining portion is set to the low-luminance mode.
  • the pixel circuit 2 in the shaded area operates in the high-luminance mode, and the remaining pixel circuits 2 operate in the low-luminance mode.
  • a part of the display unit 21 is set to the high-luminance mode, and the rest is set to the low-luminance mode.
  • the plurality of mode selection lines are the plurality of first mode selection lines MDX1 to MDXm arranged in parallel with the scanning lines G1 to Gm, and the data lines S1 to Sn.
  • a plurality of second mode selection lines MDY1 to MDYn arranged in parallel with the above are included.
  • the mode selection circuit consists of a first selection transistor (TFT: T6) whose control terminal (gate terminal) is connected to the first mode selection line MDXi and a second selection transistor whose control terminal is connected to the second mode selection line MDYj.
  • the first and second selection transistors, including (TFT: T7), are connected in series and are provided in parallel with the second capacitance (capacity C2).
  • the first mode selection line MDXi and the second mode selection line MDYj have either an on voltage (high level voltage) or an off voltage (low level voltage) of the first and second selection transistors according to the operating state to be set. Is applied.
  • the data lines are reduced by short-circuiting the electrodes of the second capacitance according to the operating state to reduce the amount of the drive current flowing through the light emitting element.
  • the amount of change in the drive current with respect to the amount of change in the voltage can be reduced, and gradation control can be easily performed. Further, by setting a part of the display unit to the high-luminance mode and setting the remaining part to the low-luminance mode, it is possible to display low gradation more accurately in the portion set to the low-luminance mode.
  • the display device according to the third embodiment has the same configuration (FIG. 1) as the display device 10 according to the first embodiment.
  • the display unit includes the first mode selection lines MDX1 to MDXm and the second mode selection lines MDY1 to MDYn, as in the display device according to the second embodiment (FIG. 9).
  • the display device according to the present embodiment has a function of setting each pixel circuit to either a high-luminance mode or a low-luminance mode.
  • FIG. 12 is a circuit diagram of a pixel circuit of the display device according to the present embodiment.
  • the pixel circuit 3 shown in FIG. 12 is obtained by adding two TFTs: T8 and T9 to the pixel circuit 2 according to the second embodiment.
  • TFT: T8 and T9 are N-channel transistors.
  • the two conduction terminals of the TFT: T8 are connected to the two electrodes of the capacitance C1 respectively.
  • the two conduction terminals of the TFT: T9 are connected to the two electrodes of the capacitance C2, respectively.
  • TFT: The gate terminals of T8 and T9 are connected to the scanning line Gi-1.
  • TFT functions as a first reset transistor that short-circuits and opens between electrodes of the first capacitance (capacity C1) according to the voltage of the control line (scanning line Gi-1) selected before the scanning line Gi. do.
  • the TFT: T9 functions as a second reset transistor that short-circuits and opens between the electrodes of the second capacitance (capacity C2) according to the voltage of the control line.
  • the control line is the preceding scan line Gi-1 which is selected one horizontal period before the scan line Gi.
  • FIG. 13 is a timing chart when the high-luminance mode is set in the display device according to the present embodiment.
  • FIG. 14 is a timing chart when the low-luminance mode is set in the display device according to the present embodiment. 13 and 14 describe the timing at which the voltage is written while the pixel circuit 3 in the i-th row and j-th column is set to the high-luminance mode or the low-luminance mode.
  • the voltages of the scanning lines Gi-1, Gi, and Gi + 1 are controlled to high levels in order for each horizontal period.
  • the period from the time t10 to the time t11 is the selection period Pi-1 of the pixel circuit 3 in the (i-1) th row.
  • the period from the time t11 to the time t12 is the selection period Pi of the pixel circuit 3 on the i-th row.
  • the voltage of the scanning line Gi-1 is controlled to a high level. Therefore, the TFTs: T8 and T9 are turned on.
  • the TFT: T8 is turned on, the electrodes of the capacitance C1 are short-circuited, and the charge accumulated in the capacitance C1 is discharged.
  • the TFT: T9 is turned on, the electrodes of the capacitance C2 are short-circuited, and the charge accumulated in the capacitance C2 is discharged.
  • the voltage of the scanning line Gi and the first mode selection line MDXi is controlled to a high level
  • the voltage of the data line Sj is controlled by the data voltage Vdata
  • the voltage of the scanning line Gi-1 and the emission control line Ei is controlled. It is controlled to a low level
  • the voltage of the second mode selection line MDYj is controlled to either a high level or a low level. Therefore, TFT: T1, T3, T6 is turned on, TFT: T2, T8, T9 is turned off, and TFT: T7 is turned on or off.
  • the organic EL element L1 does not emit light.
  • the voltages of the source terminal of the TFT: T4 and the drain terminal of the TFT: T2 become equal to the initialization voltage applied to the initialization line INI. Further, when the TFT: T1 is turned on at the time t11, the voltage Vdata of the data line Sj is written to the pixel circuit 3 via the TFT: T1.
  • the capacitance C1 stores an electric charge corresponding to the data voltage Vdata.
  • the capacitance C2 does not store an electric charge when the TFT: T7 is in the on state (when set to the high brightness mode), and is a data voltage when the TFT: T7 is in the off state (when set to the low brightness mode). Accumulates electric charge according to Vdata.
  • TFT: T1, T3, and T6 are turned off, and TFT: T2 is turned on.
  • a drive current Iold corresponding to the gate-source voltage of the TFT: T4 flows in the current path via the TFT: T4, the TFT: T2, and the organic EL element L1, and the organic EL element L1 has a drive current. It emits light with a brightness corresponding to the OLED. Since the TFT: T6 is turned off at the time t12, the pixel circuit 3 is not affected even if the voltage of the second mode selection line MDYj changes after the time t12.
  • each pixel circuit 3 in the i-row and j-th column operates in the high-luminance mode when the voltage of the second mode selection line MDYj is high level in the selection period Pi, and the voltage of the second mode selection line MDYj is low level in the selection period Pi. At the time of, it operates in the low brightness mode.
  • each pixel circuit 3 is set to either the high-luminance mode or the low-luminance mode.
  • the first mode selection lines MDX1 to MDXm are driven by, for example, a scanning line driving circuit for driving the scanning lines G1 to Gm. Further, the first mode selection line MDX1 to MDXm may be driven by using the mode selection line drive circuit that performs the same operation as the scanning line drive circuit that drives the scanning lines G1 to Gm. Further, the first mode selection lines MDX1 to MDXm may be driven by using a scanning line drive circuit having a function of driving the mode selection lines MDX1 to MDXm.
  • the drive circuit of the first mode selection line MDX1 to MDXm may apply a high level voltage to all of the first mode selection lines MDX1 to MDXm in order within one frame period, and the first mode selection line may be applied in order within one frame period. A high level voltage may be applied to a part of MDX1 to MDXm in order, and a low level voltage may be applied to the remaining first mode selection line.
  • FIG. 15 is a block diagram showing a configuration of a scanning line drive circuit.
  • the scanning line drive circuit 31 shown in FIG. 15 has a configuration in which m unit circuits 32 are connected in multiple stages.
  • FIG. 16 is a circuit diagram of the unit circuit 32.
  • FIG. 17 is a timing chart of the scanning line drive circuit 31.
  • the unit circuit 32 has a clock terminal CK, an enable terminal EN, a set terminal S, a reset terminal R, and two output terminals Z1 and Z2.
  • a gate clock GCK, a negative signal GCKB thereof, a gate start pulse GSP, a gate end pulse GEP, and control signals MDXC1 and MDXC2 are supplied from the drive circuit IC (not shown) to the scanning line drive circuit 31.
  • the gate clock GCK is a clock signal having a period of two horizontal periods.
  • the gate clock GCK is input to the clock terminal CK of the odd-numbered unit circuit 32.
  • a negative signal GCKB of the gate clock is input to the clock terminal CK of the even-numbered unit circuit 32.
  • the control signal MDXC1 is input to the enable terminal EN of the odd-numbered unit circuit 32.
  • the control signal MDXC2 is input to the enable terminal EN of the even-numbered unit circuit 32.
  • a gate start pulse GSP is input to the set terminal S of the unit circuit 32 of the first stage.
  • the signal output from the output terminal Z1 of the unit circuit 32 in the previous stage is input to the set terminal S of the unit circuit 32 in the 2nd to mth stages.
  • a gate end pulse GEP is input to the reset terminal R of the unit circuit 32 in the mth stage.
  • the signal output from the output terminal Z1 of the unit circuit 32 of the next stage is input to the reset terminal R of the unit circuit 32 in the first to (m-1) stages.
  • the output terminals Z1 of the unit circuit 32 in the 1st to mth stages are connected to the scanning lines G1 to Gm, respectively.
  • the output terminals Z2 of the unit circuit 32 in the i to m stages are connected to the first mode selection lines MDX1 to MDXm, respectively.
  • the output signal of the unit circuit of the previous stage is input from the set terminal S, and the output signal of the unit circuit of the next stage is input from the reset terminal R.
  • the voltage of the node N1 shown in FIG. 16 becomes high level in two horizontal periods from the change of the output signal of the unit circuit of the previous stage to the high level to the change of the output signal of the unit circuit of the next stage to the high level.
  • the voltage of the output terminal Z1 becomes high level when the signal input from the node N1 and the clock terminal CK is high level, and becomes low level at other times.
  • the voltage of the output terminal Z2 becomes high level when the voltage of the signal input from the node N1 and the enable terminal EN is high level, and becomes low level at other times.
  • the voltages of the scanning lines Gi-1, Gi, Gi + 1, and Gi + 2 are controlled to high levels in order for each horizontal period.
  • the control signal MDXC1 changes in the same manner as the gate clock GCK until the selection period Pi, and is fixed at a low level thereafter.
  • the control signal MDXC2 changes in the same manner as the negative signal GCKB of the gate clock until the selection period Pi-1, and is fixed at a low level thereafter.
  • the voltages of the first mode selection lines MDXi-1 and MDXi become high level in the selection period Pi-1 and Pi, respectively, and become low level in other cases.
  • the voltage of the first mode selection line MDXi + 1 and MDXi + 2 is always at a low level.
  • a high level is applied to a part of the first mode selection lines MDX1 to MDXm within one frame period.
  • Voltages can be applied in sequence to set the pixel circuit 3 in a row within a range of the display to either the high-luminance mode or the low-luminance mode.
  • the pixel circuit 3 has a first capacitance (capacity C1) according to the voltage of the control line (scanning line Gi-1) selected before the scanning line Gi. ),
  • the first reset transistor (TFT: T8) that shorts and opens between the electrodes
  • the second reset transistor (TFT:) that shorts and opens between the electrodes of the second capacitance (capacity C2) according to the voltage of the control line.
  • Either the on voltage or the off voltage of the second selection transistor (TFT: T7) is applied to the second mode selection line MDYj according to the operation state to be set according to the drive timing of the scanning line Gi. ..
  • the control line is the preceding scan line Gi-1 which is selected one horizontal period before the scan line Gi.
  • the second capacitance electrodes are short-circuited according to the operating state to reduce the amount of drive current flowing through the light emitting element.
  • the amount of change in the drive current with respect to the amount of change in the voltage of the data line can be reduced, and gradation control can be easily performed.
  • by setting each pixel circuit 3 to either the high-luminance mode or the low-luminance mode low gradation can be displayed more accurately in the portion set to the low-luminance mode.
  • the display device according to the fourth embodiment has the same configuration (FIG. 1) as the display device 10 according to the first embodiment.
  • the display unit includes mode selection lines MD1 to MDn arranged in parallel with the data lines S1 to Sn, as in the display device according to the modified example of the first embodiment (FIG. 7).
  • the display device according to the present embodiment is a display device according to the third embodiment in which scanning lines G1 to Gm and first mode selection lines MDX1 to MDXm are shared.
  • FIG. 18 is a circuit diagram of a pixel circuit of the display device according to the present embodiment.
  • the pixel circuit 4 shown in FIG. 18 is the pixel circuit 3 according to the third embodiment, in which the gate terminal of the TFT: T6 is connected to the scanning line Gi and the gate terminal of the TFT: T7 is connected to the mode selection line MDj. Is. In this way, the gate terminal of the TFT: T7 is connected to the mode selection line MDj arranged in parallel with the data line Sj.
  • the mode selection line MDj is arranged in parallel with the data line Sj, and in the mode selection circuit, the control terminal (gate terminal) is connected to the scanning line Gi.
  • TFT: T8 that short-circuits and opens between the electrodes of the first capacitance (capacity C1) according to the voltage of the above, and the electrodes of the second capacitance (capacity C2) according to the voltage of the control line.
  • the first and second selection transistors are connected in series and are provided in parallel with the second capacitance (capacity C2), including a second reset transistor (TFT: T9) that short-circuits and opens.
  • the mode selection line MDj has either an on voltage (high level voltage) or an off voltage (low level voltage) of the second selection transistor according to the operating state to be set according to the drive timing of the scanning line Gi. Applied.
  • the control line is the preceding scan line Gi-1 which is selected one horizontal period before the scan line Gi.
  • the same effect as that of the display device according to the third embodiment can be obtained. Further, since the mode selection line parallel to the data lines S1 to Sn is not provided, the layout area of the circuit and the display unit for driving the mode selection line can be reduced.
  • the display device according to the fifth embodiment is a display device according to the third embodiment in which the N-channel transistor included in the pixel circuit is replaced with the P-channel transistor.
  • the differences from the third embodiment will be described.
  • FIG. 19 is a circuit diagram of a pixel circuit of a display device according to this embodiment.
  • the pixel circuit 5 shown in FIG. 19 includes eight TFTs: T11 to T14, T16 to T19, two capacitances C1 and C2, and an organic EL element L1.
  • TFTs: T11 to T14 and T16 to T19 are all P-channel transistors.
  • the connection form of the TFTs: T11 to T14, T16 to T19, the capacitances C1 and C2, and the organic EL element L1 in the pixel circuit 4 is the TFT: T1 to T4 in the pixel circuit 3 (FIG. 12) according to the third embodiment.
  • T6 to T9, the capacitances C1, C2, and the organic EL element L1 are the same as the connection form.
  • the voltage polarities of the scanning lines Gi-1, Gi, the light emission control line Ei, the first mode selection line MDXi, and the second mode selection line MDYj supplied to the pixel circuit 5 are supplied to the pixel circuit 3. It is the opposite of the polarity of the voltage.
  • the data voltage Vdata is controlled to a low voltage when displaying a high gradation, and is controlled to a high voltage when displaying a low gradation.
  • the voltage of the first mode selection line MDXi is controlled to a low level in the selection period Pi of the pixel circuit 5 in the i-th row, and is controlled to a high level in other cases.
  • the pixel circuit 5 in the i-row and j-th column operates in the high-luminance mode when the voltage of the second mode selection line MDYj is low level in the selection period Pi, and the voltage of the second mode selection line MDYj is high level in the selection period Pi. At the time of, it operates in the low brightness mode.
  • the same effect as that of the display device according to the third embodiment can be obtained.
  • the N-channel transistor included in the pixel circuit may be replaced with the P-channel transistor in the display devices according to the first, second, and fourth embodiments.
  • the pixel circuit of the display device according to the modification has other configurations as long as it includes a light emitting element, a drive transistor, a write control transistor, a first capacitance, a second capacitance, and a mode selection circuit connected to the above embodiment. You may be doing it.
  • the pixel circuit of the display device according to the modification may not include the TFT: T2.
  • the display device may include a display panel that does not include a light emission control line, and may include a scan line drive circuit instead of the scan line / light emission control line drive circuit.
  • an organic EL display device having a pixel circuit including an organic EL element organic light emitting diode
  • a display device may be configured. Further, the features of the display device and the pixel circuit described above may be arbitrarily combined as long as they do not contradict the properties thereof to form the display device and the pixel circuit having the features of the above-described embodiment and the modified example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

表示装置の画素回路は、発光素子と、駆動トランジスタと、一方の導通端子がデータ線に接続され、制御端子が走査線に接続された書き込み制御トランジスタと、駆動トランジスタの制御端子と発光素子側の導通端子との間に設けられた第1容量と、書き込み制御トランジスタの他方の導通端子と駆動トランジスタの制御端子との間に設けられた第2容量と、第2容量と並列に設けられ、モード選択線の電圧に応じて第2容量の電極間を短絡および開放するモード選択回路とを含む。これにより、階調制御を容易に行える表示装置を提供する。

Description

表示装置および画素回路
 本発明は、表示装置に関し、特に、電流駆動型の発光素子を含む画素回路を備えた表示装置に関する。
 近年、有機エレクトロルミネッセンス(Electro Luminescence:以下、ELという)素子を含む画素回路を備えた有機EL表示装置が実用化されている。有機EL表示装置の画素回路は、有機EL素子に加えて、駆動トランジスタや書き込み制御トランジスタなどを含んでいる。これらのトランジスタには、薄膜トランジスタ(Thin Film Transistor:以下、TFTという)が用いられる。有機EL素子は、流れる電流の量に応じた輝度で発光する電流駆動型の発光素子である。駆動トランジスタは、有機EL素子と直列に設けられ、有機EL素子に流れる電流の量を制御する。
 図20は、従来の表示装置の画素回路の回路図である。図20に示す画素回路9では、TFT:Q4は駆動トランジスタとして機能し、TFT:Q1は書き込み制御トランジスタとして機能する。画素回路9に対する書き込み期間では、TFT:Q1、Q3はオンし、TFT:Q2はオフする。このときTFT:Q4のゲート電圧は、データ線Sjの電圧(以下、データ電圧Vdataという)に等しくなる。書き込み期間の終了時に、TFT:Q1、Q3はオフし、TFT:Q2はオンする。これ以降、TFT:Q4、TFT:Q2、および、有機EL素子L9を経由する電流経路に、データ電圧Vdata(TFT:Q4のゲート電圧)に応じた駆動電流Ioledが流れる。有機EL素子L9は、駆動電流Ioledに応じた輝度で発光する。
 本願発明に関連して、特許文献1には、画素回路の外部に設けた容量を用いて分圧した電圧を駆動トランジスタのゲート端子に印加することにより、発光素子に流れる駆動電流を精度良く制御する電気光学装置が記載されている。
日本国特開2013-88611号公報
 図21は、画素回路9におけるデータ電圧Vdataと駆動電流Ioledの関係を示す図である。データ電圧Vdataは、低い階調を表示するときには低い電圧に制御され、高い階調を表示するときには高い電圧に制御される。低い階調を表示するために、データ電圧Vdataを図21に示す破線部付近に制御する場合を考える。破線部付近では、データ電圧Vdataの変化量に対する駆動電流Ioledの変化量は大きい。このため、データ電圧Vdataが破線部付近で少し変化すると、有機EL素子L9の輝度は大きく変化する。したがって、画素回路9を含む従来の表示装置には、低い階調を表示するときに階調制御が困難であるという問題がある。
 それ故に、階調制御を容易に行える表示装置を提供することが課題として挙げられる。
 上記の課題は、例えば、複数の走査線と、複数のデータ線と、複数のモード選択線と、複数の画素回路とを含む表示パネルと、前記走査線を駆動する走査線駆動回路と、前記データ線を駆動するデータ線駆動回路とを備え、前記画素回路は、発光素子と、前記発光素子に流れる電流の量を制御する駆動トランジスタと、一方の導通端子が前記データ線に接続され、制御端子が前記走査線に接続された書き込み制御トランジスタと、前記駆動トランジスタの制御端子と前記発光素子側の導通端子との間に設けられた第1容量と、前記書き込み制御トランジスタの他方の導通端子と前記駆動トランジスタの制御端子との間に設けられた第2容量と、前記第2容量と並列に設けられ、前記モード選択線の電圧に応じて前記第2容量の電極間を短絡および開放するモード選択回路とを含む表示装置によって解決することができる。
 上記の課題は、上記の表示装置に含まれる画素回路によっても解決することができる。
 上記の表示装置および画素回路によれば、モード選択回路を用いて第2容量の電極間を短絡および開放することにより、第1容量に蓄積される電荷の量を変化させて、発光素子を流れる駆動電流の量を変化させることができる。したがって、設定すべき動作状態に応じて第2容量の電極間を短絡させて駆動電流の量を減らすことにより、データ線の電圧の変化量に対する駆動電流の変化量を小さくし、階調制御を容易に行うことができる。
第1の実施形態に係る表示装置の構成を示すブロック図である。 図1に示す表示装置のモード選択線のレイアウトを示す図である。 図1に示す表示装置の画素回路の回路図である。 図1に示す表示装置の高輝度モードのタイミングチャートである。 図1に示す表示装置の低輝度モードのタイミングチャートである。 図3に示す画素回路におけるデータ電圧と駆動電流の関係を示す図である。 第1の実施形態の変形例に係る表示装置のモード選択線のレイアウトを示す図である。 第1の実施形態の変形例に係る表示装置の画素回路の回路図である。 第2の実施形態に係る表示装置のモード選択線のレイアウトを示す図である。 第2の実施形態に係る表示装置の画素回路の回路図である。 第2の実施形態に係る表示装置の表示部の動作状態を示す図である。 第3の実施形態に係る表示装置の画素回路の回路図である。 第3の実施形態に係る表示装置において高輝度モードに設定するときのタイミングチャートである。 第3の実施形態に係る表示装置において低輝度モードに設定するときのタイミングチャートである。 第3の実施形態に係る表示装置の走査線駆動回路の構成を示すブロック図である。 図15に示す走査線駆動回路の単位回路の回路図である。 図15に示す走査線駆動回路のタイミングチャートである。 第4の実施形態に係る表示装置の画素回路の回路図である。 第5の実施形態に係る表示装置の画素回路の回路図である。 従来の表示装置の画素回路の回路図である。 図20に示す画素回路におけるデータ電圧と駆動電流の関係を示す図である。
 以下、図面を参照して、各実施形態に係る表示装置を説明する。各実施形態に係る表示装置は、それぞれが有機EL素子を含む複数の画素回路を備えた有機EL表示装置である。以下の説明では、トランジスタの制御端子に与えたときにトランジスタがオンする電圧をオン電圧といい、トランジスタがオフする電圧をオフ電圧という。例えば、Nチャネル型トランジスタについては、ハイレベル電圧はオン電圧、ローレベル電圧はオフ電圧である。また、mおよびnは2以上の整数、iは1以上m以下の整数、jは1以上n以下の整数であるとする。
 (第1の実施形態)
 図1は、第1の実施形態に係る表示装置の構成を示すブロック図である。図1に示す表示装置10は、表示部11、走査線/発光制御線駆動回路12a、12b、および、データ線駆動回路13を備えている。表示装置10は、表示部11を高輝度モードおよび低輝度モードのいずれかに設定する機能を有する。
 表示部11は、有機ELパネル15上に矩形状に形成される。表示部11は、アクティブエリアとも呼ばれる。走査線/発光制御線駆動回路12a、12bは、走査線駆動回路と発光制御線駆動回路を含み、有機ELパネル15上に表示部11と一体に形成される(ゲートドライバモノリシック構成)。データ線駆動回路13は、駆動回路IC14に内蔵される。駆動回路IC14は、有機ELパネル15上に実装される。
 表示部11は、m本の走査線G1~Gm、n本のデータ線S1~Sn、m本の発光制御線E1~Em、m本のモード選択線(図示せず)、および、(m×n)個の画素回路1を含んでいる。走査線G1~Gmは、互いに平行に配置される。データ線S1~Snは、走査線G1~Gmと直交するように配置される。発光制御線E1~Emは、走査線G1~Gmと平行に配置される。走査線G1~Gmとデータ線S1~Snは、(m×n)箇所で交差する。(m×n)個の画素回路1は、走査線G1~Gmとデータ線S1~Snの交点に対応して配置される。表示部11には、図示しない配線または電極を用いて電源電圧と初期化電圧が供給される。
 走査線/発光制御線駆動回路12aは、表示部11の一辺(図1では左辺)に沿って配置され、走査線G1~Gmと発光制御線E1~Emの一端(図1では左端)に接続される。走査線/発光制御線駆動回路12aは、走査線G1~Gmと発光制御線E1~Emを一端側から駆動する。走査線/発光制御線駆動回路12bは、表示部11の対向する辺(図1では右辺)に沿って配置され、走査線G1~Gmと発光制御線E1~Emの他端(図1では右端)に接続される。走査線/発光制御線駆動回路12bは、走査線G1~Gmと発光制御線E1~Emを他端側から駆動する。走査線/発光制御線駆動回路12a、12bは、走査線G1~Gmを昇順に1水平期間ずつ順に選択する。駆動回路IC14は、表示部11の他の一辺(図1では下辺)に沿って配置され、データ線S1~Snの一端(図1では下端)に接続される。駆動回路IC14に内蔵されたデータ線駆動回路13は、データ線S1~Snを駆動する。
 なお、図1では、表示部11の両側に2個の走査線/発光制御線駆動回路を設け、走査線G1~Gmと発光制御線E1~Emを両側から駆動することとした。これに代えて、表示部11の片側に1個の走査線/発光制御線駆動回路を設け、走査線G1~Gmと発光制御線E1~Emを片側から駆動してもよい。また、走査線駆動回路と発光制御線駆動回路を別の回路で構成してもよい。
 図2は、モード選択線のレイアウトを示す図である。図2に示すように、表示部11は、m本のモード選択線MD1~MDmを含んでいる。モード選択線MD1~MDmは、走査線G1~Gmと平行に配置される。モード選択線MDiは、走査線Giに対応して配置される。モード選択線MD1~MDmの両端は、表示部11の周辺部に設けられた配線16a、16bを介して駆動回路IC14に接続される。駆動回路IC14は、設定すべき動作状態に応じて、モード選択線MD1~MDmに同じ電圧(ハイレベル電圧およびローレベル電圧のいずれか)を印加する。
 図3は、画素回路1の回路図である。図3には、i行j列目の画素回路1が記載されている。画素回路1は、5個のTFT:T1~T5、2個の容量C1、C2、および、有機EL素子L1を含んでいる。TFT:T1~T5は、いずれもNチャネル型トランジスタである。画素回路1には、ハイレベル電源電圧ELVDDとローレベル電源電圧ELVSSが供給される。画素回路1は、走査線Gi、データ線Sj、発光制御線Ei、モード選択線MDi、および、初期化電圧が印加された初期化線INIに接続される。
 TFT:T4のドレイン端子には、ハイレベル電源電圧ELVDDが印加される。TFT:T4のソース端子は、TFT:T2のドレイン端子に接続される。TFT:T2のソース端子は、有機EL素子L1のアノード端子に接続される。有機EL素子L1のカソード端子には、ローレベル電源電圧ELVSSが印加される。TFT:T1の一方の導通端子(図3では左側の端子)は、データ線Sjに接続される。容量C1は、TFT:T4のゲート端子とソース端子(有機EL素子L1側の導通端子)との間に設けられる。容量C2は、TFT:T1の他方の導通端子とTFT:T4のゲート端子との間に設けられる。
 TFT:T3の一方の導通端子(図3では右側の端子)は、初期化線INIに接続される。TFT:T3の他方の導通端子は、TFT:T4のソース端子、TFT:T2のドレイン端子、および、容量C1の一方の電極(図2では下側の電極)に接続される。TFT:T5の一方の導通端子(図3では左側の端子)は、TFT:T1の他方の導通端子と容量C2の一方の電極(図2では左側の電極)に接続される。TFT:T5の他方の導通端子は、TFT:T4のゲート端子、容量C1の他方の電極、および、容量C2の他方の電極に接続される。TFT:T1、T3のゲート端子は、走査線Giに接続される。TFT:T2のゲート端子は、発光制御線Eiに接続される。TFT:T5のゲート端子は、モード選択線MDiに接続される。
 画素回路1において、有機EL素子L1は、発光素子として機能する。TFT:T4は、発光素子に流れる電流の量を制御する駆動トランジスタとして機能する。TFT:T1は、一方の導通端子がデータ線Sjに接続され、制御端子が走査線Giに接続された書き込み制御トランジスタとして機能する。容量C1は、駆動トランジスタの制御端子と発光素子側の導通端子との間に設けられた第1容量として機能する。容量C2は、書き込み制御トランジスタの他方の導通端子と駆動トランジスタの制御端子との間に設けられた第2容量として機能する。TFT:T2は、駆動トランジスタと発光素子とを通過する電流経路上に設けられ、制御端子が発光制御線Eiに接続された発光制御トランジスタとして機能する。TFT:T5は、一方の導通端子が書き込み制御トランジスタの他方の導通端子に接続され、他方の導通端子が駆動トランジスタの制御端子に接続され、制御端子がモード選択線MDiに接続された選択トランジスタとして機能する。選択トランジスタは、第2容量と並列に設けられ、モード選択線MDiの電圧に応じて第2容量の電極間を短絡および開放するモード選択回路を構成する。
 図4は、表示装置10の高輝度モードのタイミングチャートである。図5は、表示装置10の低輝度モードのタイミングチャートである。図4および図5には、i行j列目の画素回路1に対して電圧を書き込むときのタイミングが記載されている。高輝度モードのときには、モード選択線MDiの電圧は、固定的にハイレベルに制御される(図4)。このときTFT:T5は、固定的にオン状態になる。低輝度モードのときには、モード選択線MDiの電圧は、固定的にローレベルに制御される(図5)。このときTFT:T5は、固定的にオフ状態になる。
 図4および図5に示すように、走査線Gi-1、Gi、Gi+1の電圧は、1水平期間(図面では1Hと記載)ずつ順にハイレベルに制御される。時刻t1から時刻t2までの期間は、i行目の画素回路1に対する書き込み期間(以下、選択期間Piという)である。選択期間Piでは、走査線Giの電圧はハイレベルに制御され、データ線Sjの電圧はデータ電圧Vdataに制御され、発光制御線Eiの電圧はローレベルに制御される。このため、TFT:T1、T3はオンし、TFT:T2はオフする。このとき有機EL素子L1に駆動電流は流れないので、有機EL素子L1は発光しない。
 時刻t1においてTFT:T3がオンすると、TFT:T4のソース端子およびTFT:T2のドレイン端子の電圧は、初期化線INIに印加された初期化電圧に等しくなる。また、時刻t1においてTFT:T1がオンすると、データ線Sjの電圧VdataはTFT:T1を経由して画素回路1に書き込まれる。容量C1は、データ電圧Vdataに応じた電荷を蓄積する。容量C2は、TFT:T5がオン状態のとき(高輝度モードのとき)には電荷を蓄積せず、TFT:T5がオフ状態のとき(低輝度モードのとき)にはデータ電圧Vdataに応じた電荷を蓄積する。
 時刻t2において、走査線Giの電圧はローレベルに変化し、発光制御線Eiの電圧はハイレベルに変化する。このため、TFT:T1、T3はオフし、TFT:T2はオンする。時刻t2以降、TFT:T4、TFT:T2、および、有機EL素子L1を経由する電流経路に、TFT:T4のゲート-ソース間電圧に応じた駆動電流Ioledが流れ、有機EL素子L1は駆動電流Ioledに応じた輝度で発光する。
 図6は、画素回路1におけるデータ電圧Vdataと駆動電流Ioledの関係を示す図である。高輝度モードのときには、TFT:T5は固定的にオン状態である。このため、選択期間Piでは、容量C1はデータ電圧Vdataに応じた電荷を蓄積し、容量C2は電荷を蓄積しない。このとき、TFT:T4のゲート電圧は、データ電圧Vdataに等しい。したがって、高輝度モードのときには、駆動電流Ioledは、データ電圧Vdataに応じて図6に細線で示すように変化する。
 低輝度モードのときには、TFT:T5は固定的にオフ状態である。このため、選択期間Piでは、容量C1、C2は、それぞれ、データ電圧Vdataと容量C1、C2の容量値の比に応じた電荷を蓄積する。このとき、TFT:T4のゲート電圧は、データ電圧Vdataを容量C1、C2の容量値で按分した電圧になり、データ電圧Vdataよりも低くなる。したがって、低輝度モードのときには、駆動電流Ioledは、データ電圧Vdataに応じて図6に太線で示すように変化する。
 図6に示す高輝度モードのときの曲線は、図21に示す曲線と同じである。図6に示す低輝度モードのときの曲線は、高輝度モードのときの曲線を横軸方向に引き延ばした形状を有する。したがって、低輝度モードでは高輝度モードよりも、低い階調を表示するときにデータ電圧Vdataの変化量に対する駆動電流Ioledの変化量は小さくなる。
 図21を参照して説明したように、図20に示す画素回路9を含む従来の表示装置には、低い階調を表示するときに、データ電圧Vdataの変化量に対する駆動電流Ioledの変化量が大きいために、階調制御が困難であるという問題がある。
 これに対して、本実施形態に係る表示装置10では、低い階調をより正確に表示する必要があるときには、表示部11は低輝度モードに設定される。低輝度モードでは高輝度モードよりも、低い階調を表示するときにデータ電圧Vdataの変化量に対する駆動電流Ioledの変化量は小さい。したがって、低輝度モードに設定することにより、低い階調を表示するときに、階調制御を容易に行うことができる。
 以上に示すように、本実施形態に係る表示装置10は、複数の走査線G1~Gmと、複数のデータ線S1~Snと、複数の発光制御線E1~Emと、複数のモード選択線MD1~MDmと、複数の画素回路1とを含む表示パネル(有機ELパネル15)と、走査線G1~Gmを駆動する走査線駆動回路(走査線/発光制御線駆動回路12a、12bに含まれる走査線駆動回路)と、データ線S1~Snを駆動するデータ線駆動回路13とを備えている。画素回路1は、発光素子(有機EL素子L1)と、発光素子に流れる電流の量を制御する駆動トランジスタ(TFT:T4)と、一方の導通端子がデータ線Sjに接続され、制御端子(ゲート端子)が走査線Giに接続された書き込み制御トランジスタ(TFT:T1)と、駆動トランジスタと発光素子とを通過する電流経路上に設けられ、制御端子が発光制御線Eiに接続された発光制御トランジスタ(TFT:T2)と、駆動トランジスタの制御端子と発光素子側の導通端子(ソース端子)との間に設けられた第1容量(容量C1)と、書き込み制御トランジスタの他方の導通端子と駆動トランジスタの制御端子との間に設けられた第2容量(容量C2)と、第2容量と並列に設けられ、モード選択線MDiの電圧に応じて第2容量の電極間を短絡および開放するモード選択回路とを含んでいる。モード選択回路は、一方の導通端子が書き込み制御トランジスタの他方の導通端子に接続され、他方の導通端子が駆動トランジスタの制御端子に接続され、制御端子がモード選択線MDiに接続された選択トランジスタ(TFT:T5)を含んでいる。モード選択線MDiは走査線Giと平行に配置され、モード選択線MDiには、設定すべき動作状態に応じて、選択トランジスタのオン電圧(ハイレベル電圧)およびオフ電圧(ローレベル電圧)のいずれかが印加される。
 本実施形態に係る表示装置10および画素回路1によれば、モード選択回路(TFT:T5)を用いて第2容量の電極間を短絡および開放することにより、第1容量に蓄積される電荷の量を変化させて、発光素子を流れる駆動電流Ioledの量を変化させることができる。したがって、動作状態に応じて第2容量の電極間を短絡させて駆動電流Ioledの量を減らすことにより、データ線の電圧(データ電圧Vdata)の変化量に対する駆動電流Ioledの変化量を小さくし、階調制御を容易に行うことができる。
 本実施形態に係る表示装置10については、以下の変形例を構成することができる。図7は、変形例に係る表示装置のモード選択線のレイアウトを示す図である。変形例に係る表示装置では、有機ELパネル19上に形成された表示部17は、データ線S1~Snと平行に配置されたn本のモード選択線MD1~MDnを含んでいる。モード選択線MDjは、データ線Sjに対応して配置される。モード選択線MD1~MDnの一端(図7では下端)は、駆動回路IC18に接続される。駆動回路IC18は、設定すべき動作状態に応じて、モード選択線MD1~MDnに同じ電圧(ハイレベル電圧およびローレベル電圧のいずれか)を印加する。図7ではモード選択線MD1~MDnの下端を別々に駆動回路IC18に接続することとしたが、モード選択線MD1~MDnの下端を表示部17の周辺部に設けられた1本または複数の配線を介して駆動回路IC18に接続してもよい。図8は、変形例に係る表示装置の画素回路1の回路図である。図8では、TFT:T5のゲート端子は、データ線Sjと平行に配置されたモード選択線MDjに接続される。変形例に係る表示装置でも、表示装置10と同じ効果を得ることができる。
 (第2の実施形態)
 第2の実施形態に係る表示装置は、第1の実施形態に係る表示装置10と同じ構成(図1)を有する。本実施形態に係る表示装置は、表示部の一部を高輝度モードに設定し、残りの部分を低輝度モードに設定する機能を有する。以下、第1の実施形態との相違点を説明する。
 図9は、本実施形態に係る表示装置のモード選択線のレイアウトを示す図である。本実施形態に係る表示装置では、有機ELパネル25上に形成された表示部21は、m本の第1モード選択線MDX1~MDXmと、n本の第2モード選択線MDY1~MDYnとを含んでいる。第1モード選択線MDX1~MDXmは、走査線G1~Gmと平行に配置される。第1モード選択線MDXiは、走査線Giに対応して配置される。第2モード選択線MDY1~MDYnは、データ線S1~Snと平行に配置される。第2モード選択線MDYjは、データ線Sjに対応して配置される。
 第1モード選択線MDX1~MDXmの一端(図9では左端)は、走査線/発光制御線駆動回路22aに接続される。走査線/発光制御線駆動回路22aは、第1モード選択線MDX1~MDXmを一端側から駆動する。第1モード選択線MDX1~MDXmの他端は、走査線/発光制御線駆動回路22bに接続される。走査線/発光制御線駆動回路22bは、第1モード選択線MDX1~MDXmを他端側から駆動する。走査線/発光制御線駆動回路22a、22bは、設定すべき動作状態に応じて、駆動回路IC24から出力された制御信号MDXCに基づき、第1モード選択線MDX1~MDXmにハイレベル電圧およびローレベル電圧のいずれかを固定的に印加する。第1モード選択線MDX1~MDXmに印加されるm個の電圧は、ハイレベル電圧とローレベル電圧を含んでいてもよい。
 第2モード選択線MDY1~MDYnの一端(図9では下端)は、駆動回路IC24に接続される。駆動回路IC24は、設定すべき動作状態に応じて、第2モード選択線MDY1~MDYnにハイレベル電圧およびローレベル電圧のいずれかを固定的に印加する。第2モード選択線MDY1~MDYnに印加されるn個の電圧は、ハイレベル電圧とローレベル電圧を含んでいてもよい。
 図10は、本実施形態に係る表示装置の画素回路の回路図である。図10に示す画素回路2は、第1の実施形態に係る画素回路1において、TFT:T5をTFT:T6、T7に置換したものである。TFT:T6、T7は、Nチャネル型トランジスタである。TFT:T1の他方の導通端子(図10では右側の端子)は、TFT:T7の一方の導通端子(図10では左側の端子)と容量C2の一方の電極(図10では左側の電極)に接続される。TFT:T7の他方の導通端子は、TFT:T6の一方の導通端子(図10では左側の端子)に接続される。TFT:T6の他方の導通端子は、TFT:T4のゲート端子、容量C1の他方の電極(図10では上側の電極)、および、容量C2の他方の電極に接続される。TFT:T6のゲート端子は、第1モード選択線MDXiに接続される。TFT:T7のゲート端子は、第2モード選択線MDYjに接続される。
 TFT:T6は、制御端子が第1モード選択線MDXiに接続された第1選択トランジスタとして機能する。TFT:T7は、制御端子が第2モード選択線MDYjに接続された第2選択トランジスタとして機能する。第1および第2選択トランジスタは、直列に接続され、第2容量(容量C2)と並列に設けられ、モード選択線(第1モード選択線MDXiと第2モード選択線MDYj)の電圧に応じて第2容量の電極間を短絡および開放するモード選択回路を構成する。なお、TFT:T6、T7を逆の順序に接続してもよい。
 TFT:T6は、第1モード選択線MDXiの電圧がハイレベルのときにはオンし、第1モード選択線MDXiの電圧がローレベルのときにはオフする。TFT:T7は、第2モード選択線MDYjの電圧がハイレベルのときにはオンし、第2モード選択線MDYjの電圧がローレベルのときにはオフする。このため、第1モード選択線MDXiの電圧と第2モード選択線MDYjの電圧が共にハイレベルのときには、TFT:T6、T7は共にオンし、画素回路2は高輝度モードで動作する。第1モード選択線MDXiの電圧と第2モード選択線MDYjの電圧の少なくとも一方がローレベルのときには、TFT:T6、T7の少なくとも一方はオフし、画素回路2は低輝度モードで動作する。
 図11は、表示部21の動作状態を示す図である。図11に示す例では、第1モード選択線MDXiの電圧は、is≦i≦ieのときにはハイレベルであり、それ以外のときにはローレベルである。第2モード選択線MDYjの電圧は、js≦j≦jeのときにはハイレベルであり、それ以外のときにはローレベルである。この場合、表示部21のうち斜線部(is≦i≦ieかつjs≦j≦jeの部分)は高輝度モードに設定され、残りの部分は低輝度モードに設定される。斜線部内の画素回路2は高輝度モードで動作し、残りの画素回路2は低輝度モードで動作する。このように本実施形態に係る表示装置は、表示部21の一部を高輝度モードに設定し、残りの部分を低輝度モードに設定する。
 以上に示すように、本実施形態に係る表示装置では、複数のモード選択線は、走査線G1~Gmと平行に配置された複数の第1モード選択線MDX1~MDXmと、データ線S1~Snと平行に配置された複数の第2モード選択線MDY1~MDYnとを含んでいる。モード選択回路は、制御端子(ゲート端子)が第1モード選択線MDXiに接続された第1選択トランジスタ(TFT:T6)と、制御端子が第2モード選択線MDYjに接続された第2選択トランジスタ(TFT:T7)とを含み、第1および第2選択トランジスタは、直列に接続され、第2容量(容量C2)と並列に設けられている。第1モード選択線MDXiと第2モード選択線MDYjには、設定すべき動作状態に応じて、第1および第2選択トランジスタのオン電圧(ハイレベル電圧)およびオフ電圧(ローレベル電圧)のいずれかが印加される。
 本実施形態に係る表示装置によれば、第1の実施形態と同様に、動作状態に応じて第2容量の電極間を短絡させて発光素子を流れる駆動電流の量を減らすことにより、データ線の電圧の変化量に対する駆動電流の変化量を小さくし、階調制御を容易に行うことができる。また、表示部の一部を高輝度モードに設定し、残りの部分を低輝度モードに設定することにより、低輝度モードに設定した部分では低い階調をより正確に表示することができる。
 (第3の実施形態)
 第3の実施形態に係る表示装置は、第1の実施形態に係る表示装置10と同じ構成(図1)を有する。表示部は、第2の実施形態に係る表示装置と同様に、第1モード選択線MDX1~MDXmと第2モード選択線MDY1~MDYnを含んでいる(図9)。本実施形態に係る表示装置は、各画素回路を高輝度モードおよび低輝度モードのいずれかに設定する機能を有する。以下、第1および第2の実施形態との相違点を説明する。
 図12は、本実施形態に係る表示装置の画素回路の回路図である。図12に示す画素回路3は、第2の実施形態に係る画素回路2に2個のTFT:T8、T9を追加したものである。TFT:T8、T9は、Nチャネル型トランジスタである。TFT:T8の2個の導通端子は、容量C1の2個の電極にそれぞれ接続される。TFT:T9の2個の導通端子は、容量C2の2個の電極にそれぞれ接続される。TFT:T8、T9のゲート端子は、走査線Gi-1に接続される。
 TFT:T8は、走査線Giよりも前に選択される制御線(走査線Gi-1)の電圧に応じて第1容量(容量C1)の電極間を短絡および開放する第1リセットトランジスタとして機能する。TFT:T9は、上記制御線の電圧に応じて第2容量(容量C2)の電極間を短絡および開放する第2リセットトランジスタとして機能する。制御線は、走査線Giよりも1水平期間前に選択される先行走査線Gi-1である。
 図13は、本実施形態に係る表示装置において高輝度モードに設定するときのタイミングチャートである。図14は、本実施形態に係る表示装置において低輝度モードに設定するときのタイミングチャートである。図13および図14には、i行j列目の画素回路3を高輝度モードまたは低輝度モードに設定しながら、電圧を書き込むときのタイミングが記載されている。
 図13および図14に示すように、走査線Gi-1、Gi、Gi+1の電圧は、1水平期間ずつ順にハイレベルに制御される。時刻t10から時刻t11までの期間は、(i-1)行目の画素回路3の選択期間Pi-1である。時刻t11から時刻t12までの期間は、i行目の画素回路3の選択期間Piである。
 選択期間Pi-1では、走査線Gi-1の電圧はハイレベルに制御される。このため、TFT:T8、T9はオンする。TFT:T8がオンすると、容量C1の電極間は短絡され、容量C1に蓄積されていた電荷は放電される。TFT:T9がオンすると、容量C2の電極間は短絡され、容量C2に蓄積されていた電荷は放電される。
 選択期間Piでは、走査線Giおよび第1モード選択線MDXiの電圧はハイレベルに制御され、データ線Sjの電圧はデータ電圧Vdataに制御され、走査線Gi-1および発光制御線Eiの電圧はローレベルに制御され、第2モード選択線MDYjの電圧はハイレベルおよびローレベルのいずれかに制御される。このため、TFT:T1、T3、T6はオンし、TFT:T2、T8、T9はオフし、TFT:T7はオンまたはオフする。このとき有機EL素子L1に駆動電流は流れないので、有機EL素子L1は発光しない。
 時刻t11においてTFT:T3がオンすると、TFT:T4のソース端子およびTFT:T2のドレイン端子の電圧は、初期化線INIに印加された初期化電圧に等しくなる。また、時刻t11においてTFT:T1がオンすると、データ線Sjの電圧VdataはTFT:T1を経由して画素回路3に書き込まれる。容量C1は、データ電圧Vdataに応じた電荷を蓄積する。容量C2は、TFT:T7がオン状態のとき(高輝度モードに設定するとき)には電荷を蓄積せず、TFT:T7がオフ状態のとき(低輝度モードに設定するとき)にはデータ電圧Vdataに応じた電荷を蓄積する。
 時刻t12において、走査線Giおよび第1モード選択線MDXiの電圧はローレベルに変化し、発光制御線Eiの電圧はハイレベルに変化する。このため、TFT:T1、T3、T6はオフし、TFT:T2はオンする。時刻t12以降、TFT:T4、TFT:T2、および、有機EL素子L1を経由する電流経路に、TFT:T4のゲート-ソース間電圧に応じた駆動電流Ioledが流れ、有機EL素子L1は駆動電流Ioledに応じた輝度で発光する。時刻t12においてTFT:T6がオフするので、時刻t12以降に第2モード選択線MDYjの電圧が変化しても、画素回路3は影響を受けない。
 このように第1モード選択線MDX1~MDXmには、走査線G1~Gmの駆動タイミングに合わせて、ハイレベル電圧およびローレベル電圧のいずれかが印加される。第2モード選択線MDY1~MDYnには、走査線G1~Gmの駆動タイミングに合わせて、設定すべき動作状態に応じて、ハイレベル電圧およびローレベル電圧のいずれかが印加される。i行j列目の画素回路3は、選択期間Piにおいて第2モード選択線MDYjの電圧がハイレベルのときには高輝度モードで動作し、選択期間Piにおいて第2モード選択線MDYjの電圧がローレベルのときには低輝度モードで動作する。このように本実施形態に係る表示装置は、各画素回路3を高輝度モードおよび低輝度モードのいずれかに設定する。
 第1モード選択線MDX1~MDXmは、例えば、走査線G1~Gmを駆動する走査線駆動回路を用いて駆動される。また、走査線G1~Gmを駆動する走査線駆動回路と同じ動作を行うモード選択線駆動回路を用いて、第1モード選択線MDX1~MDXmを駆動してもよい。また、モード選択線MDX1~MDXmを駆動する機能を追加した走査線駆動回路を用いて、第1モード選択線MDX1~MDXmを駆動してもよい。第1モード選択線MDX1~MDXmの駆動回路は、1フレーム期間内に第1モード選択線MDX1~MDXmのすべてにハイレベル電圧を順に印加してもよく、1フレーム期間内に第1モード選択線MDX1~MDXmの一部にハイレベル電圧を順に印加し、残りの第1モード選択線にローレベル電圧を印加してもよい。
 図15~図17を参照して、第1モード選択線MDX1~MDXmを駆動する機能を有する走査線駆動回路の例を説明する。図15は、走査線駆動回路の構成を示すブロック図である。図15に示す走査線駆動回路31は、m個の単位回路32を多段接続した構成を有する。図16は、単位回路32の回路図である。図17は、走査線駆動回路31のタイミングチャートである。
 図15に示すように、単位回路32は、クロック端子CK、イネーブル端子EN、セット端子S、リセット端子R、および、2個の出力端子Z1、Z2を有する。駆動回路IC(図示せず)から走査線駆動回路31には、ゲートクロックGCK、その否定信号GCKB、ゲートスタートパルスGSP、ゲートエンドパルスGEP、および、制御信号MDXC1、MDXC2が供給される。ゲートクロックGCKは、周期が2水平期間のクロック信号である。
 奇数段目の単位回路32のクロック端子CKには、ゲートクロックGCKが入力される。偶数段目の単位回路32のクロック端子CKには、ゲートクロックの否定信号GCKBが入力される。奇数段目の単位回路32のイネーブル端子ENには、制御信号MDXC1が入力される。偶数段目の単位回路32のイネーブル端子ENには、制御信号MDXC2が入力される。1段目の単位回路32のセット端子Sには、ゲートスタートパルスGSPが入力される。2~m段目の単位回路32のセット端子Sには、前段の単位回路32の出力端子Z1から出力された信号が入力される。m段目の単位回路32のリセット端子Rには、ゲートエンドパルスGEPが入力される。1~(m-1)段目の単位回路32のリセット端子Rには、次段の単位回路32の出力端子Z1から出力された信号が入力される。1~m段目の単位回路32の出力端子Z1は、それぞれ、走査線G1~Gmに接続される。i~m段目の単位回路32の出力端子Z2は、それぞれ、第1モード選択線MDX1~MDXmに接続される。
 単位回路32では、セット端子Sから前段の単位回路の出力信号が入力され、リセット端子Rから次段の単位回路の出力信号が入力される。図16に示すノードN1の電圧は、前段の単位回路の出力信号がハイレベルに変化してから次段の単位回路の出力信号がハイレベルに変化するまでの2水平期間においてハイレベルになる。出力端子Z1の電圧は、ノードN1およびクロック端子CKから入力される信号がハイレベルのときにはハイレベルになり、それ以外のときにはローレベルになる。出力端子Z2の電圧は、ノードN1およびイネーブル端子ENから入力される信号の電圧がハイレベルのときにはハイレベルになり、それ以外のときにはローレベルになる。
 図17に示すように、走査線Gi-1、Gi、Gi+1、Gi+2の電圧は、1水平期間ずつ順にハイレベルに制御される。制御信号MDXC1は、選択期間PiまではゲートクロックGCKと同様に変化し、それ以降はローレベルに固定される。制御信号MDXC2は、選択期間Pi-1まではゲートクロックの否定信号GCKBと同様に変化し、それ以降はローレベルに固定される。この場合、第1モード選択線MDXi-1、MDXiの電圧は、それぞれ、選択期間Pi-1、Piでハイレベルなり、それ以外ではローレベルになる。第1モード選択線MDXi+1、MDXi+2の電圧は、常にローレベルになる。
 走査線駆動回路31によれば、制御信号MDXC1、MDXC2の電圧をハイレベルに制御する期間を好適に設定することにより、1フレーム期間内に第1モード選択線MDX1~MDXmの一部にハイレベル電圧を順に印加して、表示部のある範囲内の行の画素回路3を高輝度モードおよび低輝度モードのいずれかに設定することができる。
 以上に示すように、本実施形態に係る表示装置では、画素回路3は、走査線Giよりも前に選択される制御線(走査線Gi-1)の電圧に応じて第1容量(容量C1)の電極間を短絡および開放する第1リセットトランジスタ(TFT:T8)と、上記制御線の電圧に応じて第2容量(容量C2)の電極間を短絡および開放する第2リセットトランジスタ(TFT:T9)とをさらに含んでいる。第1モード選択線MDXiには、走査線Giの駆動タイミングに合わせて、第1選択トランジスタ(TFT:T6)のオン電圧(ハイレベル電圧)およびオフ電圧(ローレベル電圧)のいずれかが印加される。第2モード選択線MDYjには、走査線Giの駆動タイミングに合わせて、設定すべき動作状態に応じて、第2選択トランジスタ(TFT:T7)のオン電圧およびオフ電圧のいずれかが印加される。制御線は、走査線Giよりも1水平期間前に選択される先行走査線Gi-1である。
 本実施形態に係る表示装置によれば、第1および第2の実施形態と同様に、動作状態に応じて第2容量の電極間を短絡させて発光素子を流れる駆動電流の量を減らすことにより、データ線の電圧の変化量に対する駆動電流の変化量を小さくし、階調制御を容易に行うことができる。また、各画素回路3を高輝度モードおよび低輝度モードのいずれかに設定することにより、低輝度モードに設定した部分では低い階調をより正確に表示することができる。
 (第4の実施形態)
 第4の実施形態に係る表示装置は、第1の実施形態に係る表示装置10と同じ構成(図1)を有する。表示部は、第1の実施形態の変形例に係る表示装置と同様に、データ線S1~Snと平行に配置されたモード選択線MD1~MDnを含んでいる(図7)。本実施形態に係る表示装置は、第3の実施形態に係る表示装置において、走査線G1~Gmと第1モード選択線MDX1~MDXmを共通化したものである。以下、第3の実施形態との相違点を説明する。
 図18は、本実施形態に係る表示装置の画素回路の回路図である。図18に示す画素回路4は、第3の実施形態に係る画素回路3において、TFT:T6のゲート端子を走査線Giに接続し、TFT:T7のゲート端子をモード選択線MDjに接続したものである。このようにTFT:T7のゲート端子は、データ線Sjと平行に配置されたモード選択線MDjに接続される。
 以上に示すように、本実施形態に係る表示装置では、モード選択線MDjはデータ線Sjと平行に配置され、モード選択回路は、制御端子(ゲート端子)が走査線Giに接続された第1選択トランジスタ(TFT:T6)と、制御端子がモード選択線MDjに接続された第2選択トランジスタ(TFT:T7)と、走査線Giよりも前に選択される制御線(走査線Gi-1)の電圧に応じて第1容量(容量C1)の電極間を短絡および開放する第1リセットトランジスタ(TFT:T8)と、上記制御線の電圧に応じて第2容量(容量C2)の電極間を短絡および開放する第2リセットトランジスタ(TFT:T9)とを含み、第1および第2選択トランジスタは、直列に接続され、第2容量(容量C2)と並列に設けられている。モード選択線MDjには、走査線Giの駆動タイミングに合わせて、設定すべき動作状態に応じて、第2選択トランジスタのオン電圧(ハイレベル電圧)およびオフ電圧(ローレベル電圧)のいずれかが印加される。制御線は、走査線Giよりも1水平期間前に選択される先行走査線Gi-1である。
 本実施形態に係る表示装置によれば、第3の実施形態に係る表示装置と同じ効果を得ることができる。また、データ線S1~Snと平行なモード選択線を設けないので、当該モード選択線を駆動する回路や表示部のレイアウト面積を削減することができる。
 (第5の実施形態)
 第5の実施形態に係る表示装置は、第3の実施形態に係る表示装置において、画素回路に含まれるNチャネル型トランジスタをPチャネル型トランジスタに置換したものである。以下、第3の実施形態との相違点を説明する。
 図19は、本実施形態に係る表示装置の画素回路の回路図である。図19に示す画素回路5は、8個のTFT:T11~T14、T16~T19、2個の容量C1、C2、および、有機EL素子L1を含んでいる。TFT:T11~T14、T16~T19は、いずれもPチャネル型トランジスタである。画素回路4におけるTFT:T11~T14、T16~T19、容量C1、C2、および、有機EL素子L1の接続形態は、第3の実施形態に係る画素回路3(図12)におけるTFT:T1~T4、T6~T9、容量C1、C2、および、有機EL素子L1の接続形態と同じである。
 画素回路5に供給される走査線Gi-1、Gi、発光制御線Ei、第1モード選択線MDXi、および、第2モード選択線MDYjの電圧の極性は、画素回路3に供給されるこれらの電圧の極性とは逆である。データ電圧Vdataは、高い階調を表示するときには低い電圧に制御され、低い階調を表示するときには高い電圧に制御される。第1モード選択線MDXiの電圧は、例えば、i行目の画素回路5の選択期間Piではローレベルに制御され、それ以外ではハイレベルに制御される。i行j列目の画素回路5は、選択期間Piにおいて第2モード選択線MDYjの電圧がローレベルのときには高輝度モードで動作し、選択期間Piにおいて第2モード選択線MDYjの電圧がハイレベルのときには低輝度モードで動作する。
 本実施形態に係る表示装置によれば、第3の実施形態に係る表示装置と同じ効果を得ることができる。なお、同様の方法で、第1、第2および第4の実施形態に係る表示装置についても、画素回路に含まれるNチャネル型トランジスタをPチャネル型トランジスタに置換してもよい。
 以上に述べた各実施形態に係る表示装置および画素回路については、各種の変形例を構成することができる。変形例に係る表示装置の画素回路は、上記の態様に接続された発光素子、駆動トランジスタ、書き込み制御トランジスタ、第1容量、第2容量、および、モード選択回路を含む限り、他の構成を有していてもよい。例えば、変形例に係る表示装置の画素回路は、TFT:T2を含んでいなくてもよい。この場合、表示装置は、発光制御線を含まない表示パネルを備え、走査線/発光制御線駆動回路に代えて走査線駆動回路を備えていればよい。
 ここまで、発光素子を含む画素回路を備えた表示装置の例として、有機EL素子(有機発光ダイオード)を含む画素回路を備えた有機EL表示装置について説明したが、同様の方法で、無機発光ダイオードを含む画素回路を備えた無機EL表示装置や、量子ドット発光ダイオードを含む画素回路を備えたQLED(Quantum-dot Light Emitting Diode)表示装置や、ミニLEDまたはマイクロLEDを含む画素回路を備えたLED表示装置を構成してもよい。また、以上に述べた表示装置および画素回路の特徴をその性質に反しない限り任意に組み合わせて、上記実施形態および変形例の特徴を併せ持つ表示装置および画素回路を構成してもよい。
 1、2、3、4、5…画素回路
 10…表示装置
 11、17、21…表示部
 12、22…走査線/発光制御線駆動回路
 13…データ線駆動回路
 14、18、24…駆動回路IC
 15、19、25…有機ELパネル
 31…走査線駆動回路

Claims (19)

  1.  複数の走査線と、複数のデータ線と、複数のモード選択線と、複数の画素回路とを含む表示パネルと、
     前記走査線を駆動する走査線駆動回路と、
     前記データ線を駆動するデータ線駆動回路とを備え、
     前記画素回路は、
      発光素子と、
      前記発光素子に流れる電流の量を制御する駆動トランジスタと、
      一方の導通端子が前記データ線に接続され、制御端子が前記走査線に接続された書き込み制御トランジスタと、
      前記駆動トランジスタの制御端子と前記発光素子側の導通端子との間に設けられた第1容量と、
      前記書き込み制御トランジスタの他方の導通端子と前記駆動トランジスタの制御端子との間に設けられた第2容量と、
      前記第2容量と並列に設けられ、前記モード選択線の電圧に応じて前記第2容量の電極間を短絡および開放するモード選択回路とを含むことを特徴とする、表示装置。
  2.  前記モード選択回路は、一方の導通端子が前記書き込み制御トランジスタの他方の導通端子に接続され、他方の導通端子が前記駆動トランジスタの制御端子に接続され、制御端子が前記モード選択線に接続された選択トランジスタを含むことを特徴とする、請求項1に記載の表示装置。
  3.  前記モード選択線は、前記走査線と平行に配置されていることを特徴とする、請求項2に記載の表示装置。
  4.  前記モード選択線は、前記データ線と平行に配置されていることを特徴とする、請求項2に記載の表示装置。
  5.  前記モード選択線には、設定すべき動作状態に応じて、前記選択トランジスタのオン電圧およびオフ電圧のいずれかが印加されることを特徴とする、請求項2~4のいずれかに記載の表示装置。
  6.  前記複数のモード選択線は、
      前記走査線と平行に配置された複数の第1モード選択線と、
      前記データ線と平行に配置された複数の第2モード選択線とを含み、
     前記モード選択回路は、
      制御端子が前記第1モード選択線に接続された第1選択トランジスタと、
      制御端子が前記第2モード選択線に接続された第2選択トランジスタとを含み、
     前記第1および第2選択トランジスタは、直列に接続され、前記第2容量と並列に設けられていることを特徴とする、請求項1に記載の表示装置。
  7.  前記第1および第2モード選択線には、設定すべき動作状態に応じて、前記第1および第2選択トランジスタのオン電圧およびオフ電圧のいずれかが印加されることを特徴とする、請求項6に記載の表示装置。
  8.  前記画素回路は、
      前記走査線よりも前に選択される制御線の電圧に応じて前記第1容量の電極間を短絡および開放する第1リセットトランジスタと、
      前記制御線の電圧に応じて前記第2容量の電極間を短絡および開放する第2リセットトランジスタとをさらに含み、
     前記第1モード選択線には、前記走査線の駆動タイミングに合わせて、前記第1選択トランジスタのオン電圧およびオフ電圧のいずれかが印加され、
     前記第2モード選択線には、前記走査線の駆動タイミングに合わせて、設定すべき動作状態に応じて、前記第2選択トランジスタのオン電圧およびオフ電圧のいずれかが印加されることを特徴とする、請求項6に記載の表示装置。
  9.  前記制御線は、前記走査線よりも1水平期間前に選択される先行走査線であることを特徴とする、請求項8に記載の表示装置。
  10.  前記モード選択線は、前記データ線と平行に配置され、
     前記モード選択回路は、
      制御端子が前記走査線に接続された第1選択トランジスタと、
      制御端子が前記モード選択線に接続された第2選択トランジスタとを含み、
     前記第1および第2選択トランジスタは、直列に接続され、前記第2容量と並列に設けられていることを特徴とする、請求項1に記載の表示装置。
  11.  前記画素回路は、
      前記走査線よりも前に選択される制御線の電圧に応じて前記第1容量の電極間を短絡および開放する第1リセットトランジスタと、
      前記制御線の電圧に応じて前記第2容量の電極間を短絡および開放する第2リセットトランジスタとをさらに含み、
     前記モード選択線には、前記走査線の駆動タイミングに合わせて、設定すべき動作状態に応じて、前記第2選択トランジスタのオン電圧およびオフ電圧のいずれかが印加されることを特徴とする、請求項10に記載の表示装置。
  12.  前記制御線は、前記走査線よりも1水平期間前に選択される先行走査線であることを特徴とする、請求項11に記載の表示装置。
  13.  前記表示パネルは、複数の発光制御線をさらに含み、
     前記画素回路は、前記駆動トランジスタと前記発光素子とを通過する電流経路上に設けられ、制御端子が前記発光制御線に接続された発光制御トランジスタをさらに含むことを特徴とする、請求項1~12のいずれかに記載の表示装置。
  14.  表示パネルに設けられる画素回路であって、
     発光素子と、
     前記発光素子に流れる電流の量を制御する駆動トランジスタと、
     一方の導通端子がデータ線に接続され、制御端子が走査線に接続された書き込み制御トランジスタと、
     前記駆動トランジスタの制御端子と前記発光素子側の導通端子との間に設けられた第1容量と、
     前記書き込み制御トランジスタの他方の導通端子と前記駆動トランジスタの制御端子との間に設けられた第2容量と、
     前記第2容量と並列に設けられ、モード選択線の電圧に応じて前記第2容量の電極間を短絡および開放するモード選択回路とを備えた、画素回路。
  15.  前記モード選択回路は、一方の導通端子が前記書き込み制御トランジスタの他方の導通端子に接続され、他方の導通端子が前記駆動トランジスタの制御端子に接続され、制御端子が前記モード選択線に接続された選択トランジスタを含むことを特徴とする、請求項14に記載の画素回路。
  16.  前記モード選択回路は、
      制御端子が前記モード選択線に含まれる第1モード選択線に接続された第1選択トランジスタと、
      制御端子が前記モード選択線に含まれる第2モード選択線に接続された第2選択トランジスタとを含み、
     前記第1および第2選択トランジスタは、直列に接続され、前記第2容量と並列に設けられていることを特徴とする、請求項14に記載の画素回路。
  17.  制御線の電圧に応じて前記第1容量の電極間を短絡および開放する第1リセットトランジスタと、
     前記制御線の電圧に応じて前記第2容量の電極間を短絡および開放する第2リセットトランジスタとをさらに備えた、請求項16に記載の画素回路。
  18.  前記モード選択回路は、
      制御端子が前記走査線に接続された第1選択トランジスタと、
      制御端子が前記モード選択線に接続された第2選択トランジスタとを含み、
     前記第1および第2選択トランジスタは、直列に接続され、前記第2容量と並列に設けられていることを特徴とする、請求項14に記載の画素回路。
  19.  前記駆動トランジスタと前記発光素子とを通過する電流経路上に設けられ、制御端子が発光制御線に接続された発光制御トランジスタをさらに備えた、請求項14~18のいずれかに記載の画素回路。
PCT/JP2020/045197 2020-12-04 2020-12-04 表示装置および画素回路 WO2022118458A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/045197 WO2022118458A1 (ja) 2020-12-04 2020-12-04 表示装置および画素回路
US18/039,982 US20240021161A1 (en) 2020-12-04 2020-12-04 Display device and pixel circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045197 WO2022118458A1 (ja) 2020-12-04 2020-12-04 表示装置および画素回路

Publications (1)

Publication Number Publication Date
WO2022118458A1 true WO2022118458A1 (ja) 2022-06-09

Family

ID=81852740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045197 WO2022118458A1 (ja) 2020-12-04 2020-12-04 表示装置および画素回路

Country Status (2)

Country Link
US (1) US20240021161A1 (ja)
WO (1) WO2022118458A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023402A (ja) * 2004-07-06 2006-01-26 Sharp Corp 表示装置およびその駆動方法
JP2011090070A (ja) * 2009-10-21 2011-05-06 Nippon Hoso Kyokai <Nhk> アクティブ型表示装置およびその駆動方法
JP2014048485A (ja) * 2012-08-31 2014-03-17 Sony Corp 表示装置及び電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061390A (ja) * 2011-09-12 2013-04-04 Canon Inc 表示装置
KR102322707B1 (ko) * 2014-12-24 2021-11-09 엘지디스플레이 주식회사 유기전계발광표시장치와 이의 구동방법
JP2020166099A (ja) * 2019-03-29 2020-10-08 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
KR20220084473A (ko) * 2020-12-14 2022-06-21 엘지디스플레이 주식회사 데이터 구동 회로 및 디스플레이 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023402A (ja) * 2004-07-06 2006-01-26 Sharp Corp 表示装置およびその駆動方法
JP2011090070A (ja) * 2009-10-21 2011-05-06 Nippon Hoso Kyokai <Nhk> アクティブ型表示装置およびその駆動方法
JP2014048485A (ja) * 2012-08-31 2014-03-17 Sony Corp 表示装置及び電子機器

Also Published As

Publication number Publication date
US20240021161A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US7365714B2 (en) Data driving apparatus and method of driving organic electro luminescence display panel
JP6076468B2 (ja) 表示装置およびその駆動方法
KR100842511B1 (ko) 화상 표시 장치
US8552938B2 (en) Display device and method of driving the same
JP4160032B2 (ja) 表示装置およびその駆動方法
US7924245B2 (en) Electro-luminescence display device with data driver capable of applying current and voltage signals and driving method thereof
KR100666549B1 (ko) 유기전계 발광표시장치 및 그의 구동방법
JP4024557B2 (ja) 発光装置、電子機器
US7173612B2 (en) EL display device providing means for delivery of blanking signals to pixel elements
WO2015059966A1 (ja) 表示装置およびその駆動方法
EP1783738A2 (en) Organic light emitting display device and driving method thereof
US20050093464A1 (en) Light-emitting display, driving method thereof, and light-emitting display panel
TWI431591B (zh) 影像顯示裝置
TWI537922B (zh) Display device
US20060087478A1 (en) Light emitting display and driving method thereof
US11158257B2 (en) Display device and driving method for same
KR100667664B1 (ko) 화소 회로의 구동 방법, 화소 회로 및 전자 기기
US7463224B2 (en) Light emitting device and display device
US8810488B2 (en) Display device and method for driving the same
CN111052216A (zh) 显示装置及其驱动方法
WO2014125752A1 (ja) 表示装置およびその駆動方法
KR20050070342A (ko) 일렉트로-루미네센스 표시장치와 그의 구동방법
KR20090057484A (ko) 유기발광다이오드 표시장치와 그 구동방법
KR20200036415A (ko) 표시 장치
KR20050100888A (ko) 디지털 구동을 위한 유기전계 발광 디스플레이 장치 및이의 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP