WO2022118456A1 - Haptic device - Google Patents

Haptic device Download PDF

Info

Publication number
WO2022118456A1
WO2022118456A1 PCT/JP2020/045193 JP2020045193W WO2022118456A1 WO 2022118456 A1 WO2022118456 A1 WO 2022118456A1 JP 2020045193 W JP2020045193 W JP 2020045193W WO 2022118456 A1 WO2022118456 A1 WO 2022118456A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile
input
mechanoreceptor
presentation device
specified
Prior art date
Application number
PCT/JP2020/045193
Other languages
French (fr)
Japanese (ja)
Inventor
敏輝 和田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/045193 priority Critical patent/WO2022118456A1/en
Publication of WO2022118456A1 publication Critical patent/WO2022118456A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to a tactile presentation technique for presenting a virtual tactile sensation by driving a tactile presentation device.
  • a virtual reality reproduction device that can realistically reproduce the visual sense, auditory sense, and tactile sense by images and sounds.
  • VR virtual reality
  • a head-mounted display HMD: Head Mounted Display
  • tactile devices are attracting attention as devices that can reproduce human tactile sensations.
  • the tactile device is configured to present skin sensory feedback, that is, virtual tactile sensation, to a person by tactile sensation such as force, vibration, and temperature by driving a tactile presentation device such as a vibration device or a Peltier Device. (See, for example, Non-Patent Document 1 and the like).
  • the tactile presentation device has individual input / output characteristics for each element type and model, and the virtual tactile presentation efficiency differs depending on the strength and frequency of the applied drive signal.
  • the presentation efficiency is a presentation amount with respect to the drive signal strength, and when the tactile presentation device is a vibration device, the presentation amount corresponds to the vibration amount. Therefore, the tactile intensity of the tactile sensation actually output from the actuator may be different from the applied drive signal intensity. Therefore, there is a problem that it is not possible to present a highly realistic virtual tactile sensation, and the experience of the user who uses the haptic device is impaired.
  • the present invention is for solving such a problem, and an object of the present invention is to provide a tactile presentation technique capable of presenting a highly realistic virtual tactile sensation.
  • the tactile device is configured to present a tactile sensation corresponding to an applied drive signal, and generates the drive signal based on the input signal.
  • a control circuit configured to be applied to the tactile presentation device and a storage circuit are provided, and the storage circuit obtains the input / output characteristics of the tactile presentation device and the perceptual sensitivity characteristics of a mechanical receptor in the human body.
  • the compensation model to be compensated is stored in advance, and when the control circuit generates the drive signal, the input / output characteristics of the tactile presentation device and the perception of the machine acceptor are based on the compensation model stored in the storage circuit. It is configured to generate the drive signal that compensates for the sensitivity characteristics.
  • FIG. 1 is a block diagram showing a configuration of a tactile device.
  • FIG. 2 is a graph showing the frequency characteristics of each mechanoreceptor.
  • FIG. 3 is a graph showing the sensory sensitivity characteristics of mechanoreceptors.
  • FIG. 4 is a graph showing the frequency characteristics (by designated intensity) of the tactile presentation device.
  • FIG. 5 is a graph showing overall input / output characteristics including haptic devices and mechanoreceptors.
  • FIG. 6 is a graph showing the input / output characteristics of the vibrating device.
  • FIG. 1 is a block diagram showing a configuration of a tactile device.
  • This tactile device 10 is a device that presents skin sensory feedback, that is, a virtual tactile sensation, to a person by tactile sensation such as force, vibration, and temperature. As shown in FIG. 1, the tactile device 10 includes a control circuit 11, a storage circuit 12, and a tactile presentation device 13 as main circuit configurations.
  • the control circuit 11 comprises a signal processing circuit that processes and outputs the input signal as a whole, and is driven based on the input signal Si input from a host device (not shown) such as a PC, a smartphone, or a tablet.
  • a host device such as a PC, a smartphone, or a tablet.
  • the signal Sd is generated and applied to the tactile presentation device 13 to generate the drive signal Sd
  • the input / output characteristic G of the tactile presentation device 13 and the machine in the human body HB are based on the compensation model 12A stored in the storage circuit 12. It is configured to generate a drive signal Sd that compensates for the sensory sensitivity characteristic P of the receiver MR.
  • control circuit 11 has a predetermined relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the input / output characteristic F of the entire tactile device 10 is defined in advance.
  • a drive signal Sd having a signal strength v that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR in the human body HB is generated based on the compensation model 12A. It is configured to do.
  • the compensation model 12A compensates for the frequency characteristic of the tactile presentation device 13 and the frequency characteristic of the mechanical receptor MR.
  • the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanical receiver MR is defined in advance at the frequency f specified by the input signal Si, including the model.
  • the compensation model 12A includes the tactile device 10 and the mechanoreceptor MR, which show the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR.
  • It is configured to include the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR, which shows the relationship between the tactile intensity a of the tactile sensation presented by the device 13 and the detection intensity s detected by the mechanoreceptor MR.
  • the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13 and the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR may be configured to include the frequency f specified by the input signal Si as a variable. good.
  • the storage circuit 12 is composed of a semiconductor memory, and is configured to store in advance a compensation model 12A that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR.
  • the compensation model 12A the relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR matches the predetermined input / output characteristic F of the entire tactile device 10.
  • a model for compensation As the compensation model 12A, a function expression showing the correspondence between the input value and the output value and its parameters may be stored. A table showing the correspondence between the input value and the output value may be stored.
  • the tactile presentation device 13 is composed of a vibration device
  • the present invention is not limited to this.
  • another device such as a Pelche element may be used as the tactile sensation presenting device 13.
  • the vibration and the vibration intensity of the vibration device in the following description correspond to the tactile sensation (virtual tactile sensation) and the tactile sensation of another device used as the tactile presentation device 13.
  • a tactile presentation device 13 such as a vibration actuator that converts an input drive signal into a tactile sense and presents the tactile sense presents has a frequency characteristic in which the intensity of the tactile sense presented changes depending on the frequency.
  • the mechanoreceptor MR that detects the irritation of the human body HB to the skin has a frequency dependence in which the intensity to be detected changes depending on the frequency. Therefore, even if the strength of the drive signal is the same, if the frequency is different, the tactile strength of the presented tactile sensation and the detected detection strength may be different.
  • FIG. 2 is a graph showing the frequency characteristics of each mechanoreceptor.
  • FIG. 3 is a graph showing the sensory sensitivity characteristics of mechanoreceptors.
  • Mechanoreceptor MR is a type of receptor present in the skin of the human body HB, and generates an impulse (electrical signal) Sm by being subjected to physical force or deformation by force. This impulse Sm is transmitted to the brain BR via the afferent nerve, and the tactile sensation to the skin is recognized by the brain BR.
  • the mechanical receptor MR includes FA-I: Meissner corpuscle, SA-I: Merkel cells, FA-II: Pacinian corpuscle, SA-II: Ruffini terminal. There are four types of receptors (endings).
  • receptors differ from each other in the size of the receptive field and the speed of responsiveness (adaptation) to stimuli.
  • SA-I Merkel cells are most responsive to vibration stimuli near 1 Hz
  • FA-II Pacinian corpuscles. no response.
  • FA-II Pacinian corpuscle is most responsive to vibration stimuli at a frequency of around 200 Hz
  • SA-I Merkel cells do not.
  • the mechanoreceptor MR constitutes a tactile sensor of the human body HB by combining a plurality of receptors having different frequency characteristics. That is, the perceptual sensitivity characteristic P of the mechanoreceptor MR has frequency dependence as shown in FIG. Therefore, when vibration stimuli of different frequencies are applied, even if the vibration intensity is the same, the detection intensity detected by the mechanoreceptor MR changes depending on the frequency, and as a result, correct intensity design cannot be performed.
  • a developer who creates content, an application, or the like using the tactile device 10 specifies the tactile sensation to be presented by the tactile device 10 with a plurality of parameters by an input signal Si input from the host device to the tactile device 10.
  • the parameter for designating the tactile intensity a of the tactile sensation to be presented is the specified intensity i (N / A: no unit), and the vibration frequency of the tactile sensation to be presented is f (Hz).
  • the designated intensities i are set to 25, 50, 75, 100 and the frequency f is changed, a graph as shown in FIG. 4 can be obtained as the frequency characteristics.
  • the reason why the detection intensity s corresponding to the specified intensity i specified by the input signal Si is not correctly detected by the human body HB is the frequency dependence of the mechanoreceptor MR and the tactile presentation device 13 here, the vibration device. It focuses on the fact that it is frequency-dependent. Then, even if the frequencies f are different, the drive signal Sd is corrected by the control circuit 11 so that the detection intensity s corresponding to the designated intensity i specified by the input signal Si can be obtained.
  • the input / output characteristic of the control circuit 11 is H
  • the input / output characteristic of the tactile presentation device 13 is G
  • the perceptual sensitivity characteristic of the mechanoreceptor MR is P
  • the input of the entire tactile device 10 is entered.
  • the input / output characteristic H corresponds to the compensation model 12A for performing frequency compensation of the tactile presentation device 13.
  • the input / output characteristic F is defined at the time of designing the tactile device 10.
  • FIG. 5 is a graph showing overall input / output characteristics including tactile devices and mechanoreceptors. As shown in FIG. 5, the constant c indicating the slope of the graph corresponds to the entire linear gain including the tactile device 10 and the mechanoreceptor MR, and is perceptible to the human body HB and is not unpleasant to the designer. You can define it freely.
  • FIG. 6 is a graph showing the input / output characteristics of the vibrating device.
  • the input / output characteristic G as shown in FIG. 5, which shows the relationship between the signal strength v of Sd and the vibration strength a, can be obtained.
  • These input / output characteristics G can be derived from the simulation result of the vibration device or the actual measurement result. When using actual measurement results, it is desirable to consider individual differences and use multiple measurement results obtained from different individuals.
  • the perceptual sensitivity characteristic P of the mechanoreceptor MR will be described.
  • the perceptual sensitivity characteristic P has a frequency dependence as shown in FIG. 3 described above, but in reality, the characteristic corresponding to the operating range A of the tactile presentation device 13 is extracted and used in the compensation model 12A. It should be reflected.
  • a sensory evaluation test using the sensation of the human body HB first, when the signal intensity v of the reference frequency fx is applied to the tactile presentation device 13, the stimulus intensity recognized by the human body HB is mechanically received.
  • the reference detection strength sx of the container MR is used.
  • the detection intensities s corresponding to the designated intensities i in the range of 0 to 100 (%) are derived with respect to the reference detection intensities sx.
  • the characteristic P can be specified.
  • the input / output characteristic H of the control circuit 11 will be described.
  • the detection intensity s detected by the machine acceptor MR is specified from the intensity i specified by the input signal Si, and the perceived sensitivity characteristic P of the machine acceptor MR is specified.
  • the vibration intensity a required to detect the detection intensity s is specified at the frequency f specified by the input signal Si, and the input / output characteristic G of the tactile presentation device 13 is specified. If the signal intensity v of the drive signal Sd required to present the vibration of the vibration intensity a from the tactile presentation device 13 is specified at the frequency f specified by the input signal Si based on the inverse characteristic (inverse function). , The input / output characteristic H of the control circuit 11 will be specified.
  • simulation results may be used, or measurement results and sensory evaluation test results may be used.
  • measurement data increasing the number of frequencies makes it easier to compensate for individual differences.
  • the compensation model 12A when constructing the compensation model 12A based on the measurement results, either measure all the combinations of frequencies and intensities that can be set, or generate an approximate model from the measurement results of a specific frequency and intensity, and use all of them.
  • the compensation model 12A may be constructed by complementing the combination of.
  • the vibration intensity af to be presented by the presentation device 13 is specified.
  • the storage circuit 12 stores in advance the compensation model 12A relating to the tactile presentation device 13 and the mechanical receptor MR of the human body HB, and when the control circuit 11 generates the drive signal Sd. Based on the compensation model 12A stored in the storage circuit 12, the drive signal Sd compensated for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanical receptor MR is generated. Specifically, the control circuit 11 has a predetermined relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the input / output characteristic F of the entire tactile device 10 is defined in advance.
  • a drive signal Sd having a signal strength v that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR in the human body HB is generated based on the compensation model 12A. It is configured to do so.
  • the compensation model 12A compensates for the frequency characteristic of the tactile presentation device 13 and the frequency characteristic of the mechanical receptor MR.
  • the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanical receiver MR is defined in advance at the frequency f specified by the input signal Si, including the model.
  • the frequency characteristic of the tactile presentation device 13 input / output characteristic G
  • the frequency characteristic of the mechanical receptor MR in the human body HB in accordance with the input / output characteristic F of the entire tactile device 10. It is configured to generate a drive signal Sd having a signal strength v that compensates for the perceptual sensitivity characteristic P).
  • the compensation model 12A shows the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the overall input / output characteristic F including the tactile device 10 and the mechanoreceptor MR.
  • the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13 which shows the relationship between the signal intensity v of the drive signal Sd and the tactile intensity a of the tactile sensation presented by the tactile presentation device 13, and presented by the tactile presentation device 13. It may be configured to include the inverse characteristic with respect to the perceptual sensitivity characteristic P of the mechanoreceptor MR, which shows the relationship between the tactile intensity a of the tactile sensation and the detection intensity s detected by the mechanoreceptor MR.
  • the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13 and the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR may be configured to include the frequency f specified by the input signal Si as a variable. good.
  • the drive signal is compensated for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR based on the designated intensity i specified by the input signal Si. Sd will be applied from the control circuit 11 to the tactile presentation device 13. Therefore, even when the tactile presentation device 13 has frequency dependence and the mechanoreceptor MR of the human body HB has frequency dependence, for example, the input signal Si has the same specified intensity.
  • i is specified, a constant detection intensity s can be detected by the human body HB over a wide range of frequencies f. As a result, the tactile device 10 can present a highly realistic virtual tactile sensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

In a haptic presentation device (10) according to the present invention, a storage circuit (12) stores a compensation model (12A) for a haptic presentation device (13) and a mechanoreceptor (MR) of a human body (HB) in advance, and, when generating a driving signal (Sd), a control circuit (11) generates, on the basis of the compensation model (12A) stored by the storage circuit (12), the driving signal (Sd) that is compensated for an input/output property (G) of the haptic presentation device (13) and a perceptual sensitivity property (P) of the mechanoreceptor (MR). Consequently, a highly realistic virtual haptic sense can be presented.

Description

触覚デバイスTactile device
 本発明は、触覚提示デバイスを駆動させることにより仮想触覚を提示する触覚提示技術に関する。 The present invention relates to a tactile presentation technique for presenting a virtual tactile sensation by driving a tactile presentation device.
 近年、コンピューターで生成された仮想的な世界を、人にあたかも現実のように体験させる、仮想現実(VR:Virtual Reality)の研究が進んでいる。また、この仮想現実を、映像や音による視覚、聴覚、触覚をリアルに再現できる仮想現実再現装置も開発されつつある。例えば、立体的な映像や音声を再現できる装置として、ヘッドマウントディスプレー(HMD:Head Mounted Display)がある。一方、人の触覚を再現できるデバイスとして、触覚デバイスが注目されている。触覚デバイスは、振動デバイスやペルチェ素子(Peltier Device)などの触覚提示デバイスを駆動させることにより、力・振動・温度などの触覚によって、人に皮膚感覚フィードバック、すなわち仮想触覚を提示するように構成されている(例えば、非特許文献1など参照)。 In recent years, research on virtual reality (VR), which allows people to experience a virtual world generated by a computer as if it were real, is progressing. In addition, a virtual reality reproduction device that can realistically reproduce the visual sense, auditory sense, and tactile sense by images and sounds is being developed. For example, there is a head-mounted display (HMD: Head Mounted Display) as a device that can reproduce three-dimensional video and audio. On the other hand, tactile devices are attracting attention as devices that can reproduce human tactile sensations. The tactile device is configured to present skin sensory feedback, that is, virtual tactile sensation, to a person by tactile sensation such as force, vibration, and temperature by driving a tactile presentation device such as a vibration device or a Peltier Device. (See, for example, Non-Patent Document 1 and the like).
井上 康之他, "触原色原理に基づいた触覚提示システム", TVRSJ Vol.25 No.1 pp.86-94, 2020 Yasuyuki Inoue et al., "Tactile presentation system based on the principle of tactile primary colors", TVRSJ Vol.25 No.1 pp.86-94, 2020
 触覚デバイスを用いて、様々な仮想触覚を人に与えるためには、各種の強度や周波数で触覚提示デバイスを駆動する必要がある。一方、触覚提示デバイスは、素子の種別や型式ごとに個別の入出力特性を有しており、印加された駆動信号の強度や周波数によって仮想触覚の提示効率が異なる。ここで、提示効率とは駆動信号強度に対する提示量のことであり、触覚提示デバイスが振動デバイスの場合、提示量は振動量に相当する。このため、実際にアクチュエータから出力される触覚の触覚強度は、印加した駆動信号強度とは異なる結果となる場合がある。したがって、リアリティの高い仮想触覚を提示することができず、触覚デバイスを利用するユーザの体験を損なってしまうという問題点があった。 In order to give various virtual tactile sensations to humans using tactile devices, it is necessary to drive the tactile presentation devices with various intensities and frequencies. On the other hand, the tactile presentation device has individual input / output characteristics for each element type and model, and the virtual tactile presentation efficiency differs depending on the strength and frequency of the applied drive signal. Here, the presentation efficiency is a presentation amount with respect to the drive signal strength, and when the tactile presentation device is a vibration device, the presentation amount corresponds to the vibration amount. Therefore, the tactile intensity of the tactile sensation actually output from the actuator may be different from the applied drive signal intensity. Therefore, there is a problem that it is not possible to present a highly realistic virtual tactile sensation, and the experience of the user who uses the haptic device is impaired.
 本発明はこのような課題を解決するためのものであり、リアリティの高い仮想触覚を提示できる触覚提示技術を提供することを目的としている。 The present invention is for solving such a problem, and an object of the present invention is to provide a tactile presentation technique capable of presenting a highly realistic virtual tactile sensation.
 このような目的を達成するために、本発明にかかる触覚デバイスは、印加された駆動信号に応じた触覚を提示するように構成された触覚提示デバイスと、入力信号に基づいて前記駆動信号を生成して前記触覚提示デバイスへ印加するように構成された制御回路と、記憶回路とを備え、前記記憶回路は、前記触覚提示デバイスの入出力特性と人体にある機械受容器の知覚感度特性とを補償する補償モデルを予め記憶し、前記制御回路は、前記駆動信号を生成する際、前記記憶回路が記憶する前記補償モデルに基づいて、前記触覚提示デバイスの入出力特性と前記機械受容器の知覚感度特性とを補償した前記駆動信号を生成するように構成したものである。 In order to achieve such an object, the tactile device according to the present invention is configured to present a tactile sensation corresponding to an applied drive signal, and generates the drive signal based on the input signal. A control circuit configured to be applied to the tactile presentation device and a storage circuit are provided, and the storage circuit obtains the input / output characteristics of the tactile presentation device and the perceptual sensitivity characteristics of a mechanical receptor in the human body. The compensation model to be compensated is stored in advance, and when the control circuit generates the drive signal, the input / output characteristics of the tactile presentation device and the perception of the machine acceptor are based on the compensation model stored in the storage circuit. It is configured to generate the drive signal that compensates for the sensitivity characteristics.
 本発明によれば、リアリティの高い仮想触覚を提示することができる。 According to the present invention, it is possible to present a highly realistic virtual tactile sensation.
図1は、触覚デバイスの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a tactile device. 図2は、各機械受容器の周波数特性を示すグラフである。FIG. 2 is a graph showing the frequency characteristics of each mechanoreceptor. 図3は、機械受容器の知覚感度特性を示すグラフである。FIG. 3 is a graph showing the sensory sensitivity characteristics of mechanoreceptors. 図4は、触覚提示デバイスの周波数特性(指定強度別)を示すグラフである。FIG. 4 is a graph showing the frequency characteristics (by designated intensity) of the tactile presentation device. 図5は、触覚デバイスおよび機械受容器を含む全体の入出力特性を示すグラフである。FIG. 5 is a graph showing overall input / output characteristics including haptic devices and mechanoreceptors. 図6は、振動デバイスの入出力特性を示すグラフである。FIG. 6 is a graph showing the input / output characteristics of the vibrating device.
 次に、本発明の一実施の形態について図面を参照して説明する。
[触覚デバイス]
 まず、図1を参照して、本実施の形態にかかる触覚デバイス10について説明する。図1は、触覚デバイスの構成を示すブロック図である。
Next, an embodiment of the present invention will be described with reference to the drawings.
[Tactile device]
First, the tactile device 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a tactile device.
 この触覚デバイス10は、力・振動・温度などの触覚によって、人に皮膚感覚フィードバック、すなわち仮想触覚を提示する装置である。図1に示すように、触覚デバイス10は、主な回路構成として、制御回路11、記憶回路12、および触覚提示デバイス13を備えている。 This tactile device 10 is a device that presents skin sensory feedback, that is, a virtual tactile sensation, to a person by tactile sensation such as force, vibration, and temperature. As shown in FIG. 1, the tactile device 10 includes a control circuit 11, a storage circuit 12, and a tactile presentation device 13 as main circuit configurations.
[制御回路]
 制御回路11は、全体として入力された信号を信号処理して出力する信号処理回路からなり、PC、スマートフォン、タブレットなどの上位装置(図示せず)から入力された入力信号Siに基づいて、駆動信号Sdを生成して触覚提示デバイス13へ印加し、駆動信号Sdを生成する際、記憶回路12が記憶する補償モデル12Aに基づいて、触覚提示デバイス13の入出力特性Gと人体HBにある機械受容器MRの知覚感度特性Pとを補償した駆動信号Sdを生成するように構成されている。
[Control circuit]
The control circuit 11 comprises a signal processing circuit that processes and outputs the input signal as a whole, and is driven based on the input signal Si input from a host device (not shown) such as a PC, a smartphone, or a tablet. When the signal Sd is generated and applied to the tactile presentation device 13 to generate the drive signal Sd, the input / output characteristic G of the tactile presentation device 13 and the machine in the human body HB are based on the compensation model 12A stored in the storage circuit 12. It is configured to generate a drive signal Sd that compensates for the sensory sensitivity characteristic P of the receiver MR.
 具体的には、制御回路11が、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係が、予め定義されている触覚デバイス10全体の入出力特性Fと一致するように、補償モデル12Aに基づいて、触覚提示デバイス13の入出力特性Gと人体HBにある機械受容器MRの知覚感度特性Pとを補償した信号強度vを有する駆動信号Sdを生成するように構成されている。 Specifically, the control circuit 11 has a predetermined relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the input / output characteristic F of the entire tactile device 10 is defined in advance. A drive signal Sd having a signal strength v that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR in the human body HB is generated based on the compensation model 12A. It is configured to do.
 また、触覚提示デバイス13が、振動により触覚を提示する振動デバイスからなる場合、補償モデル12Aは、触覚提示デバイス13が有する周波数特性を補償するモデルと、機械受容器MRが有する周波数特性を補償するモデルとを含み、制御回路11は、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係が、入力信号Siで指定された周波数fにおいて、予め定義されている触覚デバイス10全体の入出力特性Fと一致するように、補償モデル12Aに基づいて、触覚提示デバイス13の入出力特性Gと人体HBにある機械受容器MRの知覚感度特性Pとを補償した信号強度vを有する駆動信号Sdを生成するように構成されている。 Further, when the tactile presentation device 13 is composed of a vibration device that presents a tactile sensation by vibration, the compensation model 12A compensates for the frequency characteristic of the tactile presentation device 13 and the frequency characteristic of the mechanical receptor MR. In the control circuit 11, the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanical receiver MR is defined in advance at the frequency f specified by the input signal Si, including the model. Compensates the input / output characteristic G of the tactile presentation device 13 and the sensory sensitivity characteristic P of the mechanical receptor MR in the human body HB based on the compensation model 12A so as to match the input / output characteristic F of the entire tactile device 10. It is configured to generate a drive signal Sd having the signal strength v.
 また、具体的には、補償モデル12Aに、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係を示す、触覚デバイス10および機械受容器MRを含む全体の入出力特性Fと、駆動信号Sdの信号強度vと触覚提示デバイス13から提示される触覚の触覚強度aとの関係を示す、触覚提示デバイス13の入出力特性Gに関する逆特性と、触覚提示デバイス13から提示される触覚の触覚強度aと機械受容器MRで検知される検知強度sとの関係を示す、機械受容器MRの知覚感度特性Pに関する逆特性と、を含むように構成してもよい。さらには、触覚提示デバイス13の入出力特性Gに関する逆特性、および機械受容器MRの知覚感度特性Pに関する逆特性は、入力信号Siで指定された周波数fを変数として含むように構成してもよい。 Specifically, the compensation model 12A includes the tactile device 10 and the mechanoreceptor MR, which show the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR. The inverse characteristic of the input / output characteristic G of the tactile presentation device 13 and the tactile presentation showing the relationship between the input / output characteristic F of the above, the signal intensity v of the drive signal Sd, and the tactile intensity a of the tactile sensation presented by the tactile presentation device 13. It is configured to include the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR, which shows the relationship between the tactile intensity a of the tactile sensation presented by the device 13 and the detection intensity s detected by the mechanoreceptor MR. May be good. Further, the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13 and the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR may be configured to include the frequency f specified by the input signal Si as a variable. good.
[記憶回路]
 記憶回路12は、半導体メモリからなり、触覚提示デバイス13の入出力特性Gと機械受容器MRの知覚感度特性Pとを補償する補償モデル12Aを予め記憶するように構成されている。補償モデル12Aは、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係が、予め定義されている触覚デバイス10全体の入出力特性Fと一致するように、補償するためのモデルである。補償モデル12Aとしては、入力値と出力値との対応関係を示す関数式とそのパラメータを記憶しておいてもよい。入力値と出力値の対応関係を示すテーブルを記憶しておいてもよい。
[Memory circuit]
The storage circuit 12 is composed of a semiconductor memory, and is configured to store in advance a compensation model 12A that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR. In the compensation model 12A, the relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR matches the predetermined input / output characteristic F of the entire tactile device 10. , A model for compensation. As the compensation model 12A, a function expression showing the correspondence between the input value and the output value and its parameters may be stored. A table showing the correspondence between the input value and the output value may be stored.
[触覚提示デバイス]
 触覚提示デバイス13は、力・振動・温度などの触覚によって、人に皮膚感覚フィードバック、すなわち仮想触覚Stを提示する一般的な素子である。力や振動により感覚を提示する触覚提示デバイス13の1つとして振動アクチュエータなどの振動デバイスがある。また、温度により感覚を提示する触覚提示デバイス13の1つとして、ペルチェ効果(Peltier Effect)を用いた板状の半導体熱電素子からなるペルチェ素子(Peltier Device)がある。
[Tactile presentation device]
The tactile presentation device 13 is a general element that presents skin sensory feedback, that is, virtual tactile St., to a human by tactile sensations such as force, vibration, and temperature. As one of the tactile presentation devices 13 that present a sensation by force or vibration, there is a vibration device such as a vibration actuator. Further, as one of the tactile presentation devices 13 that present a sensation by temperature, there is a Peltier Device made of a plate-shaped semiconductor thermoelectric element using the Peltier Effect.
 以下では、触覚提示デバイス13が振動デバイスからなる場合を例として説明するが、これに限定されるものではない。仮想触覚を提示する素子であれば、ペルチェ素子などの他のデバイスを触覚提示デバイス13として用いてもよい。この際、以下の説明における、振動デバイスの振動および振動強度は、触覚提示デバイス13として用いる他のデバイスの触覚(仮想触覚)および触覚強度に相当することになる。 Hereinafter, the case where the tactile presentation device 13 is composed of a vibration device will be described as an example, but the present invention is not limited to this. As long as it is an element that presents a virtual tactile sensation, another device such as a Pelche element may be used as the tactile sensation presenting device 13. At this time, the vibration and the vibration intensity of the vibration device in the following description correspond to the tactile sensation (virtual tactile sensation) and the tactile sensation of another device used as the tactile presentation device 13.
[本発明の原理]
 次に、図1を参照して、本発明の原理について説明する。
 一般に、振動アクチュエータなど、入力された駆動信号を触覚に変換して提示する触覚提示デバイス13は、周波数に依存して提示する触覚の強度が変化する周波数特性を有している。また、人体HBの皮膚への刺激を検出する機械受容体MRは、周波数に依存して検知する強度が変化する周波数依存性を有している。このため、駆動信号の強度は同じでも周波数が異なると、提示される触覚の触覚強度や検知される検知強度が異なる場合がある。
[Principle of the present invention]
Next, the principle of the present invention will be described with reference to FIG.
Generally, a tactile presentation device 13 such as a vibration actuator that converts an input drive signal into a tactile sense and presents the tactile sense presents has a frequency characteristic in which the intensity of the tactile sense presented changes depending on the frequency. Further, the mechanoreceptor MR that detects the irritation of the human body HB to the skin has a frequency dependence in which the intensity to be detected changes depending on the frequency. Therefore, even if the strength of the drive signal is the same, if the frequency is different, the tactile strength of the presented tactile sensation and the detected detection strength may be different.
[機械受容器の周波数依存性]
 図2および図3を参照して、機械受容器MRの周波数依存性について説明する。図2は、各機械受容器の周波数特性を示すグラフである。図3は、機械受容器の知覚感度特性を示すグラフである。
 機械受容器(Mechanoreceptor)MRは、人体HBの皮膚に存在する受容体の一種であり、物理的な力、あるいは力による変形を受けてインパルス(電気シグナル)Smを発生する。このインパルスSmは、求心性神経を介して脳BRに伝達され、皮膚への触覚が脳BRで認識される。
 機械受容体MRには、FA-I:マイスナー小体(Meissner corpuscle)、SA-I:メルケル細胞(Merkel cells)、FA-II:パチニ小体(Pacinian corpuscle)、SA-II:ルフィニ終末(Ruffini endings)の4種類の受容体がある。
[Frequency dependence of mechanoreceptors]
The frequency dependence of the mechanoreceptor MR will be described with reference to FIGS. 2 and 3. FIG. 2 is a graph showing the frequency characteristics of each mechanoreceptor. FIG. 3 is a graph showing the sensory sensitivity characteristics of mechanoreceptors.
Mechanoreceptor MR is a type of receptor present in the skin of the human body HB, and generates an impulse (electrical signal) Sm by being subjected to physical force or deformation by force. This impulse Sm is transmitted to the brain BR via the afferent nerve, and the tactile sensation to the skin is recognized by the brain BR.
The mechanical receptor MR includes FA-I: Meissner corpuscle, SA-I: Merkel cells, FA-II: Pacinian corpuscle, SA-II: Ruffini terminal. There are four types of receptors (endings).
 これら受容体は、受容野の広さや、刺激に対する応答のなれ(順応)の速さが互いに異なる。例えば、これら受容体に対して周波数の異なる振動刺激を与えた場合、周波数1Hz付近の振動刺激に対しては、SA-I:メルケル細胞が最も反応しやすいが、FA-II:パチニ小体は反応しない。一方、周波数200Hz付近の振動刺激に対しては、FA-II:パチニ小体は最も反応しやすいが、SA-I:メルケル細胞は反応しない。 These receptors differ from each other in the size of the receptive field and the speed of responsiveness (adaptation) to stimuli. For example, when vibration stimuli with different frequencies are applied to these receptors, SA-I: Merkel cells are most responsive to vibration stimuli near 1 Hz, but FA-II: Pacinian corpuscles. no response. On the other hand, FA-II: Pacinian corpuscle is most responsive to vibration stimuli at a frequency of around 200 Hz, but SA-I: Merkel cells do not.
 機械受容体MRは、このような周波数特性が異なる複数の受容器が組み合わさって、人体HBの触覚センサを構成している。すなわち、機械受容器MRの知覚感度特性Pは、図3に示すように、周波数依存性を有していることになる。したがって、異なる周波数の振動刺激を与えた場合、振動強度が同一であっても、周波数によって機械受容体MRで検知される検知強度が変化するため、結果として正しい強度設計ができなくなってしまう。 The mechanoreceptor MR constitutes a tactile sensor of the human body HB by combining a plurality of receptors having different frequency characteristics. That is, the perceptual sensitivity characteristic P of the mechanoreceptor MR has frequency dependence as shown in FIG. Therefore, when vibration stimuli of different frequencies are applied, even if the vibration intensity is the same, the detection intensity detected by the mechanoreceptor MR changes depending on the frequency, and as a result, correct intensity design cannot be performed.
[触覚提示デバイスの周波数依存性]
 次に、図4を参照して、触覚提示デバイスの周波数依存性について説明する。図4は、触覚提示デバイスの周波数特性(指定強度別)を示すグラフである。
 触覚提示デバイス13が振動デバイスからなる場合を例とすると、図4に示すように、駆動信号の強度が一定であっても、周波数が異なると、提示される振動強度(加速度)が異なる場合がある。図4において、周波数fpは、振動強度が最大となる周波数を示しており、この周波数fpの近傍の単一周波数で、振動デバイスを駆動するという使用方法が一般的である。
[Frequency dependence of tactile presentation device]
Next, the frequency dependence of the tactile presentation device will be described with reference to FIG. FIG. 4 is a graph showing the frequency characteristics (by designated intensity) of the tactile presentation device.
Taking the case where the tactile presentation device 13 is made of a vibration device as an example, as shown in FIG. 4, even if the strength of the drive signal is constant, the presented vibration strength (acceleration) may be different when the frequency is different. be. In FIG. 4, the frequency fp indicates the frequency at which the vibration intensity is maximized, and the general usage method is to drive the vibration device at a single frequency in the vicinity of this frequency fp.
 しかし、駆動する周波数を固定することは仮想触覚の表現が制限されることになる。様々な仮想触覚を人に与えるためには、各種の強度や周波数で振動デバイスを駆動する必要があるからである。このため、異なる周波数で駆動させようとして、周波数fpから離れた周波数を用いた場合、振動デバイスが提示する振動強度が大幅に低下し、結果として正しい強度設計ができなくなってしまう。 However, fixing the driving frequency limits the expression of virtual tactile sensation. This is because it is necessary to drive the vibration device with various intensities and frequencies in order to give various virtual tactile sensations to humans. Therefore, when a frequency far from the frequency fp is used in an attempt to drive at a different frequency, the vibration intensity presented by the vibration device is significantly reduced, and as a result, a correct intensity design cannot be performed.
 触覚デバイス10を用いてコンテンツやアプリ等を作成する開発者は、触覚デバイス10で提示させたい触覚を、上位装置から触覚デバイス10に入力する入力信号Siにより複数のパラメータで指定する。この際、提示する触覚の触覚強度aを指定するためのパラメータを指定強度i(N/A:無単位)とし、提示する触覚の振動周波数をf(Hz)とする。指定強度iを25,50,75,100として、周波数fを変化させた場合、周波数特性として図4に示すようなグラフが得られる。 A developer who creates content, an application, or the like using the tactile device 10 specifies the tactile sensation to be presented by the tactile device 10 with a plurality of parameters by an input signal Si input from the host device to the tactile device 10. At this time, the parameter for designating the tactile intensity a of the tactile sensation to be presented is the specified intensity i (N / A: no unit), and the vibration frequency of the tactile sensation to be presented is f (Hz). When the designated intensities i are set to 25, 50, 75, 100 and the frequency f is changed, a graph as shown in FIG. 4 can be obtained as the frequency characteristics.
 一方、振動デバイスの振動強度aは、駆動信号Sdの信号強度vと周波数fを変数とする関数g、すなわち、a=g(f,v)で表される。この関数gが、振動デバイス(触覚提示デバイス13)が有する、周波数に依存する入出力特性である。
 したがって、指定強度iを設定しても、駆動信号Sdの周波数fにより、振動強度aは異なるため、周波数f=f1、i=50の振動強度をa(f1,50)とし、周波数f=f2(≠f1)、i=50の振動強度をa(f2,50)とすると、a(f1,50)≠a(f2,50)となる。これにより、指定された指定強度iと対応する振動強度aが得られないことがわかる。
On the other hand, the vibration intensity a of the vibration device is represented by a function g having the signal intensity v of the drive signal Sd and the frequency f as variables, that is, a = g (f, v). This function g is a frequency-dependent input / output characteristic of the vibration device (tactile presentation device 13).
Therefore, even if the designated intensity i is set, the vibration intensity a differs depending on the frequency f of the drive signal Sd. Therefore, the vibration intensity at the frequencies f = f1 and i = 50 is set to a (f1, 50), and the frequency f = f2. If (≠ f1) and the vibration intensity of i = 50 is a (f2,50), then a (f1,50) ≠ a (f2,50). As a result, it can be seen that the vibration strength a corresponding to the designated designated strength i cannot be obtained.
[本発明の要旨]
 本発明は、入力信号Siで指定された指定強度iに応じた検知強度sが、人体HBで正しく検知されない原因が、機械受容器MRの周波数依存性と、触覚提示デバイス13ここでは振動デバイスの周波数依存性にあることに着目したものである。そして、異なる周波数fであっても、入力信号Siで指定された指定強度iに応じた検知強度sが得られるように、制御回路11で駆動信号Sdを補正するようにしたものである。
[Gist of the present invention]
In the present invention, the reason why the detection intensity s corresponding to the specified intensity i specified by the input signal Si is not correctly detected by the human body HB is the frequency dependence of the mechanoreceptor MR and the tactile presentation device 13 here, the vibration device. It focuses on the fact that it is frequency-dependent. Then, even if the frequencies f are different, the drive signal Sd is corrected by the control circuit 11 so that the detection intensity s corresponding to the designated intensity i specified by the input signal Si can be obtained.
 図1に示すように、制御回路11の入出力特性をHとし、触覚提示デバイス13の入出力特性をGとし、機械受容器MRの知覚感度特性をPとした場合、触覚デバイス10全体の入出力特性Fは、F=H・G・Pで表される。このうち、入出力特性Hが、触覚提示デバイス13の周波数補償を行うための補償モデル12Aに相当する。この際、入出力特性Fは、触覚デバイス10の設計時に定義される。 As shown in FIG. 1, when the input / output characteristic of the control circuit 11 is H, the input / output characteristic of the tactile presentation device 13 is G, and the perceptual sensitivity characteristic of the mechanoreceptor MR is P, the input of the entire tactile device 10 is entered. The output characteristic F is represented by F = HGP. Of these, the input / output characteristic H corresponds to the compensation model 12A for performing frequency compensation of the tactile presentation device 13. At this time, the input / output characteristic F is defined at the time of designing the tactile device 10.
 一方、入出力特性Gは、触覚提示デバイス13のシミュレーションや計測により得ることができる。また、知覚感度特性Pは、人体HBの感覚を用いた官能評価試験により得ることができる。
 したがって、Gの逆特性をG-1とし、Pの逆特性をP-1とすると、入出力特性Hは、H=F・G-1・P-1で表され、これら入出力特性F,G、および知覚感度特性Pから、入出力特性Hを特定することができる。
On the other hand, the input / output characteristic G can be obtained by simulation or measurement of the tactile presentation device 13. Further, the perceptual sensitivity characteristic P can be obtained by a sensory evaluation test using the sensation of the human body HB.
Therefore, assuming that the inverse characteristic of G is G -1 and the inverse characteristic of P is P -1 , the input / output characteristic H is represented by H = F · G -1 · P -1 , and these input / output characteristics F, The input / output characteristic H can be specified from G and the perceptual sensitivity characteristic P.
[入出力特性F]
 触覚デバイス10および機械受容器MRを含む全体の入出力特性Fについて説明する。
 入力信号Siで指定された指定強度をiとし、機械受容器MRの検知強度をsとすると、図5に示すように、検知強度sは指定強度iにより、s=c・i(cは定数)で線形に制御されるものと定義する。図5は、触覚デバイスおよび機械受容器を含む全体の入出力特性を示すグラフである。図5に示すように、グラフの傾きを示す定数cは、触覚デバイス10および機械受容器MRを含む全体の線形ゲインに相当し、人体HBが知覚でき、かつ不快ではない範囲で、設計者が自由に定義すればよい。
[I / O characteristics F]
The entire input / output characteristic F including the tactile device 10 and the mechanoreceptor MR will be described.
Assuming that the specified intensity specified by the input signal Si is i and the detection intensity of the mechanoreceptor MR is s, the detection intensity s is the specified intensity i and s = c · i (c is a constant) as shown in FIG. ) Is defined as being linearly controlled. FIG. 5 is a graph showing overall input / output characteristics including tactile devices and mechanoreceptors. As shown in FIG. 5, the constant c indicating the slope of the graph corresponds to the entire linear gain including the tactile device 10 and the mechanoreceptor MR, and is perceptible to the human body HB and is not unpleasant to the designer. You can define it freely.
[入出力特性G]
 触覚提示デバイス13の入出力特性Gについて説明する。
 図6は、振動デバイスの入出力特性を示すグラフである。前述したa=g(f,v)を周波数f(f1,f2,f3)ごとに生成し、得られたa=g(v)をグラフ化すると、各周波数f1,f2,f3における駆動信号Sdの信号強度vと振動強度aとの関係を示す、図5に示すような入出力特性Gが得られる。
 これら入出力特性Gは、振動デバイスのシミュレーション結果、もしくは、実際の計測結果から導出することができる。実際の計測結果を利用する場合は、個体差を考慮し、異なる個体から得た複数の計測結果を用いることが望ましい。
[I / O characteristics G]
The input / output characteristic G of the tactile presentation device 13 will be described.
FIG. 6 is a graph showing the input / output characteristics of the vibrating device. When the above-mentioned a = g (f, v) is generated for each frequency f (f1, f2, f3) and the obtained a = g f (v) is graphed, the drive signals at each frequency f1, f2, f3 are obtained. The input / output characteristic G as shown in FIG. 5, which shows the relationship between the signal strength v of Sd and the vibration strength a, can be obtained.
These input / output characteristics G can be derived from the simulation result of the vibration device or the actual measurement result. When using actual measurement results, it is desirable to consider individual differences and use multiple measurement results obtained from different individuals.
[知覚感度特性P]
 機械受容器MRの知覚感度特性Pについて説明する。
 知覚感度特性Pは、前述した図3に示したような周波数依存性を有しているが、実際には、触覚提示デバイス13の動作範囲Aに相当する特性を抽出して、補償モデル12Aに反映させればよい。
 具体的には、人体HBの感覚を用いた官能評価試験により、まず、基準とする周波数fxの信号強度vを触覚提示デバイス13に印可した際に、人体HBで認識した刺激強度を、機械受容器MRの基準検知強度sxとする。次に、この基準検知強度sxに対して、0~100(%)の範囲の指定強度iに対応する検知強度sをそれぞれ導出する。この後、前述した入出力特性Gにおける信号強度vと振動強度aとの関係式と同様にして、振動強度aと知覚強度sとの関係をs=p(a)で表すことにより、知覚感度特性Pを特定することができる。
[Perceptual sensitivity characteristic P]
The perceptual sensitivity characteristic P of the mechanoreceptor MR will be described.
The perceptual sensitivity characteristic P has a frequency dependence as shown in FIG. 3 described above, but in reality, the characteristic corresponding to the operating range A of the tactile presentation device 13 is extracted and used in the compensation model 12A. It should be reflected.
Specifically, by a sensory evaluation test using the sensation of the human body HB, first, when the signal intensity v of the reference frequency fx is applied to the tactile presentation device 13, the stimulus intensity recognized by the human body HB is mechanically received. The reference detection strength sx of the container MR is used. Next, the detection intensities s corresponding to the designated intensities i in the range of 0 to 100 (%) are derived with respect to the reference detection intensities sx. After that, the perceptual sensitivity is expressed by s = p (a) by expressing the relationship between the vibration intensity a and the perceived intensity s in the same manner as the relational expression between the signal intensity v and the vibration intensity a in the input / output characteristic G described above. The characteristic P can be specified.
[入出力特性H]
 制御回路11の入出力特性Hについて説明する。
 前述の図5に示した、周波数f1,f2,f3における振動デバイスの入出力特性Gを、
  f=f1におけるaf1=gf1(v)
  f=f2におけるaf2=gf2(v)
  f=f3におけるaf3=gf3(v)
とすると、これらの逆特性は、
  v=gf1 -1(af1
  v=gf2 -1(af2
  v=gf3 -1(af3
と表される。これら逆特性により、周波数f1,f2,f3ごとに、提示したい振動強度aに対して、実際に印加すべき駆動信号Sdの信号強度vを特定できる。
[I / O characteristics H]
The input / output characteristic H of the control circuit 11 will be described.
The input / output characteristics G of the vibrating device at frequencies f1, f2, and f3 shown in FIG. 5 described above are
a f1 = g f1 (v) at f = f1
a f2 = g f2 (v) at f = f2
a f3 = g f3 (v) at f = f3
Then, these reverse characteristics are
v = g f1-1 ( a f1 )
v = g f2-1 ( a f2 )
v = g f3-1 ( a f3 )
It is expressed as. From these inverse characteristics, the signal intensity v of the drive signal Sd to be actually applied can be specified for the vibration intensity a to be presented for each of the frequencies f1, f2, and f3.
 したがって、触覚デバイス10全体の入出力特性Fに基づいて、入力信号Siで指定された強度iから、機械受容器MRで検知される検知強度sを特定し、機械受容器MRの知覚感度特性Pの逆特性(逆関数)に基づいて、入力信号Siで指定された周波数fにおいて、検知強度sを検知させるのに必要となる振動強度aを特定し、触覚提示デバイス13の入出力特性Gの逆特性(逆関数)に基づいて、入力信号Siで指定された周波数fにおいて、触覚提示デバイス13から振動強度aの振動を提示するのに必要となる駆動信号Sdの信号強度vを特定すれば、制御回路11の入出力特性Hが特定されることになる。 Therefore, based on the input / output characteristic F of the entire tactile device 10, the detection intensity s detected by the machine acceptor MR is specified from the intensity i specified by the input signal Si, and the perceived sensitivity characteristic P of the machine acceptor MR is specified. Based on the inverse characteristic (inverse function) of, the vibration intensity a required to detect the detection intensity s is specified at the frequency f specified by the input signal Si, and the input / output characteristic G of the tactile presentation device 13 is specified. If the signal intensity v of the drive signal Sd required to present the vibration of the vibration intensity a from the tactile presentation device 13 is specified at the frequency f specified by the input signal Si based on the inverse characteristic (inverse function). , The input / output characteristic H of the control circuit 11 will be specified.
 このように、制御回路11の入出力特性Hすなわち補償モデル12Aは、入出力特性Fに相当するs=c・iと、入出力特性Gの逆特性(逆関数)に相当するv=g -1(a)と、知覚感度特性Pの逆特性(逆関数)に相当するa=p -1(s)と、から構成される。したがって、入出力特性Hは、これらを組み合わせて補償関数v=g -1(p -1(c・i))と表現してもよい。 As described above, in the input / output characteristic H of the control circuit 11, that is, the compensation model 12A, s = c · i corresponding to the input / output characteristic F and v = g f corresponding to the inverse characteristic (inverse function) of the input / output characteristic G. It is composed of -1 (a f ) and a f = p f -1 (s) corresponding to the inverse characteristic (inverse function) of the perceptual sensitivity characteristic P. Therefore, the input / output characteristic H may be expressed as a compensation function v = g f -1 (p f -1 (c · i)) by combining these.
 補償モデル12Aのモデル構築については、シミュレーション結果を活用してもよいし、計測結果や官能評価試験結果を活用してもよい。計測データの場合は周波数の数を増やすことにより、個体差も補償しやすくなる。特に、計測結果をベースに補償モデル12Aを構築する場合は、設定可能とする周波数および強度の組合せを全て計測するか、もしくは特定の周波数および強度の計測結果から近似モデルを生成し、これをすべての組合せについて補完することで補償モデル12Aを構築してもよい。 For the model construction of the compensation model 12A, simulation results may be used, or measurement results and sensory evaluation test results may be used. In the case of measurement data, increasing the number of frequencies makes it easier to compensate for individual differences. In particular, when constructing the compensation model 12A based on the measurement results, either measure all the combinations of frequencies and intensities that can be set, or generate an approximate model from the measurement results of a specific frequency and intensity, and use all of them. The compensation model 12A may be constructed by complementing the combination of.
[本実施の形態の動作]
 次に、本実施の形態にかかる触覚デバイス10の動作について説明する。
 まず、制御回路11は、入力された入力信号Siの指定強度iの値から、補償モデル12Aの関数s=c・i(入出力特性H)に基づいて、機械受容器MRで検知されるべき検知強度sを特定する。
 次に、制御回路11は、入力された入力信号Siの周波数fに対応する、補償モデル12Aの関数a=p -1(s)(知覚感度特性Pの逆関数)に基づいて、触覚提示デバイス13から提示されるべき振動強度aを特定する。
[Operation of this embodiment]
Next, the operation of the tactile device 10 according to the present embodiment will be described.
First, the control circuit 11 should be detected by the mechanoreceptor MR based on the function s = c · i (input / output characteristic H) of the compensation model 12A from the value of the designated intensity i of the input signal Si. Specify the detection intensity s.
Next, the control circuit 11 is tactile based on the function a f = pf -1 (s) (inverse function of the perceptual sensitivity characteristic P) of the compensation model 12A corresponding to the frequency f of the input signal Si. The vibration intensity af to be presented by the presentation device 13 is specified.
 次に、制御回路11は、入力された入力信号Siの周波数fに対応する、補償モデル12Aの関数v=g -1(a)(入出力特性Gの逆関数)に基づいて、触覚提示デバイス13から周波数fの振動強度aを提示するために必要となる信号強度vを特定し、この信号強度vを有する駆動信号、すなわち周波数fにおける、触覚提示デバイス13の入出力特性Gおよび機械受容器MRの知覚感度特性Pを補償する駆動信号Sdを生成する。 Next, the control circuit 11 is tactile based on the function v = g f -1 (a f ) (inverse function of the input / output characteristic G) of the compensation model 12A corresponding to the frequency f of the input signal Si. The signal strength v required to present the vibration intensity af of the frequency f is specified from the presentation device 13, and the drive signal having this signal strength v, that is, the input / output characteristic G and the input / output characteristics G of the tactile presentation device 13 at the frequency f. A drive signal Sd that compensates for the perceptual sensitivity characteristic P of the machine acceptor MR is generated.
 これにより、触覚提示デバイス13の周波数依存性と機械受容器MRの周波数依存性の両方を補償する駆動信号Sdを生成することができる。したがって、このような補償を制御回路11で行うことにより、入力信号Siで同じ指定強度iを指定した場合には、広い範囲の周波数fにわたって、一定の検知強度sを人体HBで検知させることが可能となる。 This makes it possible to generate a drive signal Sd that compensates for both the frequency dependence of the tactile presentation device 13 and the frequency dependence of the mechanoreceptor MR. Therefore, by performing such compensation in the control circuit 11, when the same specified intensity i is specified in the input signal Si, a constant detection intensity s can be detected by the human body HB over a wide range of frequencies f. It will be possible.
[本実施の形態の効果]
 このように、本実施の形態は、記憶回路12で、触覚提示デバイス13および人体HBの機械受容器MRに関する補償モデル12Aを予め記憶しておき、制御回路11が、駆動信号Sdを生成する際、記憶回路12が記憶する補償モデル12Aに基づいて触覚提示デバイス13の入出力特性G、および機械受容器MRの知覚感度特性Pを補償した駆動信号Sdを生成するように構成したものである。
 具体的には、制御回路11が、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係が、予め定義されている触覚デバイス10全体の入出力特性Fと一致するように、補償モデル12Aに基づいて、触覚提示デバイス13の入出力特性Gと人体HBにある機械受容器MRの知覚感度特性Pとを補償した信号強度vを有する駆動信号Sdを生成するように構成したものである。
[Effect of this embodiment]
As described above, in the present embodiment, the storage circuit 12 stores in advance the compensation model 12A relating to the tactile presentation device 13 and the mechanical receptor MR of the human body HB, and when the control circuit 11 generates the drive signal Sd. Based on the compensation model 12A stored in the storage circuit 12, the drive signal Sd compensated for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanical receptor MR is generated.
Specifically, the control circuit 11 has a predetermined relationship between the designated intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the input / output characteristic F of the entire tactile device 10 is defined in advance. A drive signal Sd having a signal strength v that compensates for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR in the human body HB is generated based on the compensation model 12A. It is configured to do so.
 また、触覚提示デバイス13が、振動により触覚を提示する振動デバイスからなる場合、補償モデル12Aは、触覚提示デバイス13が有する周波数特性を補償するモデルと、機械受容器MRが有する周波数特性を補償するモデルとを含み、制御回路11は、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係が、入力信号Siで指定された周波数fにおいて、予め定義されている触覚デバイス10全体の入出力特性Fと一致するように、補償モデル12Aに基づいて、触覚提示デバイス13の周波数特性(入出力特性G)と人体HBにある機械受容器MRの周波数特性(知覚感度特性P)とを補償した信号強度vを有する駆動信号Sdを生成するように構成したものである。 Further, when the tactile presentation device 13 is composed of a vibration device that presents a tactile sensation by vibration, the compensation model 12A compensates for the frequency characteristic of the tactile presentation device 13 and the frequency characteristic of the mechanical receptor MR. In the control circuit 11, the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanical receiver MR is defined in advance at the frequency f specified by the input signal Si, including the model. Based on the compensation model 12A, the frequency characteristic of the tactile presentation device 13 (input / output characteristic G) and the frequency characteristic of the mechanical receptor MR in the human body HB (in accordance with the input / output characteristic F of the entire tactile device 10). It is configured to generate a drive signal Sd having a signal strength v that compensates for the perceptual sensitivity characteristic P).
 また、補償モデル12Aに、入力信号Siで指定された指定強度iと機械受容器MRが検知する検知強度sとの関係を示す、触覚デバイス10および機械受容器MRを含む全体の入出力特性Fと、駆動信号Sdの信号強度vと触覚提示デバイス13から提示される触覚の触覚強度aとの関係を示す、触覚提示デバイス13の入出力特性Gに関する逆特性と、触覚提示デバイス13から提示される触覚の触覚強度aと機械受容器MRで検知される検知強度sとの関係を示す、機械受容器MRの知覚感度特性Pに関する逆特性と、を含むように構成してもよい。さらには、触覚提示デバイス13の入出力特性Gに関する逆特性、および機械受容器MRの知覚感度特性Pに関する逆特性は、入力信号Siで指定された周波数fを変数として含むように構成してもよい。 Further, the compensation model 12A shows the relationship between the specified intensity i specified by the input signal Si and the detection intensity s detected by the mechanoreceptor MR, and the overall input / output characteristic F including the tactile device 10 and the mechanoreceptor MR. And the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13, which shows the relationship between the signal intensity v of the drive signal Sd and the tactile intensity a of the tactile sensation presented by the tactile presentation device 13, and presented by the tactile presentation device 13. It may be configured to include the inverse characteristic with respect to the perceptual sensitivity characteristic P of the mechanoreceptor MR, which shows the relationship between the tactile intensity a of the tactile sensation and the detection intensity s detected by the mechanoreceptor MR. Further, the inverse characteristic regarding the input / output characteristic G of the tactile presentation device 13 and the inverse characteristic regarding the perceptual sensitivity characteristic P of the mechanoreceptor MR may be configured to include the frequency f specified by the input signal Si as a variable. good.
 したがって、本実施の形態によれば、入力信号Siで指定された指定強度iに基づいて、触覚提示デバイス13の入出力特性Gと機械受容器MRの知覚感度特性Pとが補償された駆動信号Sdが、制御回路11から触覚提示デバイス13へ印加されることになる。このため、例えば、振動デバイスのように触覚提示デバイス13が周波数依存性を有しており、人体HBの機械受容器MRが周波数依存性を有している場合でも、入力信号Siで同じ指定強度iを指定した場合には、広い範囲の周波数fにわたって、人体HBで一定の検知強度sを検知させることができる。これにより、結果として、触覚デバイス10において、リアリティの高い仮想触覚を提示することが可能となる。 Therefore, according to the present embodiment, the drive signal is compensated for the input / output characteristic G of the tactile presentation device 13 and the perceptual sensitivity characteristic P of the mechanoreceptor MR based on the designated intensity i specified by the input signal Si. Sd will be applied from the control circuit 11 to the tactile presentation device 13. Therefore, even when the tactile presentation device 13 has frequency dependence and the mechanoreceptor MR of the human body HB has frequency dependence, for example, the input signal Si has the same specified intensity. When i is specified, a constant detection intensity s can be detected by the human body HB over a wide range of frequencies f. As a result, the tactile device 10 can present a highly realistic virtual tactile sensation.
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
[Extension of embodiment]
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 10…触覚デバイス、11…制御回路、12…記憶回路、12A…補償モデル、13…触覚提示デバイス、MR…機械受容器、HB…人体、Si…入力信号、f,f1,f2,f3,fp…周波数、Sd…駆動信号、v…信号強度、St…触覚(振動)、a…触覚強度(振動強度)、Sm…インパルス、s…検知強度、F,G,H…入出力特性、P…知覚感度特性。 10 ... Tactile device, 11 ... Control circuit, 12 ... Storage circuit, 12A ... Compensation model, 13 ... Tactile presentation device, MR ... Machine receptor, HB ... Human body, Si ... Input signal, f, f1, f2, f3, fp ... Frequency, Sd ... Drive signal, v ... Signal intensity, St ... Tactile (vibration), a ... Tactile intensity (vibration intensity), Sm ... Impulse, s ... Detection intensity, F, G, H ... Input / output characteristics, P ... Perceptual sensitivity characteristics.

Claims (5)

  1.  印加された駆動信号に応じた触覚を提示するように構成された触覚提示デバイスと、
     入力信号に基づいて前記駆動信号を生成して前記触覚提示デバイスへ印加するように構成された制御回路と、
     記憶回路とを備え、
     前記記憶回路は、前記触覚提示デバイスの入出力特性と人体にある機械受容器の知覚感度特性とを補償する補償モデルを予め記憶し、
     前記制御回路は、前記駆動信号を生成する際、前記記憶回路が記憶する前記補償モデルに基づいて、前記触覚提示デバイスの入出力特性と前記機械受容器の知覚感度特性とを補償した前記駆動信号を生成する
     ことを特徴とする触覚デバイス。
    A tactile presentation device configured to present a tactile sensation in response to an applied drive signal, and a tactile presentation device.
    A control circuit configured to generate the drive signal based on the input signal and apply it to the tactile presentation device.
    Equipped with a storage circuit
    The storage circuit stores in advance a compensation model that compensates for the input / output characteristics of the tactile presentation device and the perceptual sensitivity characteristics of the mechanoreceptor in the human body.
    When the control circuit generates the drive signal, the drive signal compensates for the input / output characteristics of the tactile presentation device and the perceptual sensitivity characteristics of the mechanoreceptor based on the compensation model stored in the storage circuit. A tactile device characterized by producing.
  2.  請求項1に記載の触覚デバイスにおいて、
     前記制御回路は、前記入力信号で指定された指定強度と前記機械受容器が検知する検知強度との関係が、予め定義されている前記触覚デバイスおよび前記機械受容器を含む全体の入出力特性と一致するように、前記補償モデルに基づいて、前記触覚提示デバイスの入出力特性と前記機械受容器の知覚感度特性とを補償した信号強度を有する前記駆動信号を生成する、ように構成されていることを特徴とする触覚デバイス。
    In the tactile device according to claim 1,
    In the control circuit, the relationship between the specified intensity specified by the input signal and the detection intensity detected by the mechanoreceptor is defined as the overall input / output characteristics including the tactile device and the mechanoreceptor. Consistently, based on the compensation model, it is configured to generate the drive signal having a signal strength that compensates for the input / output characteristics of the tactile presentation device and the perceptual sensitivity characteristics of the mechanoreceptor. A tactile device characterized by that.
  3.  請求項1に記載の触覚デバイスにおいて、
     前記触覚提示デバイスは、振動により触覚を提示する振動デバイスからなり、
     前記補償モデルは、前記振動デバイスが有する周波数特性を補償するモデルと、前記機械受容器が有する周波数特性を補償するモデルとを含み、
     前記制御回路は、前記入力信号で指定された指定強度と前記機械受容器が検知する検知強度との関係が、前記入力信号で指定された周波数において、予め定義されている前記触覚デバイスおよび前記機械受容器を含む全体の入出力特性と一致するように、前記補償モデルに基づいて、前記振動デバイスの周波数特性と前記機械受容器の周波数特性とを補償した信号強度を有する前記駆動信号を生成する、ように構成されている
     ことを特徴とする触覚デバイス。
    In the tactile device according to claim 1,
    The tactile presentation device comprises a vibration device that presents a tactile sensation by vibration.
    The compensation model includes a model that compensates for the frequency characteristics of the vibration device and a model that compensates for the frequency characteristics of the mechanoreceptor.
    In the control circuit, the tactile device and the machine in which the relationship between the specified intensity specified by the input signal and the detection intensity detected by the mechanical receptor is defined in advance at the frequency specified by the input signal. Based on the compensation model, the drive signal having a signal strength that compensates for the frequency characteristics of the vibration device and the frequency characteristics of the mechanical receiver is generated so as to match the overall input / output characteristics including the receiver. A tactile device characterized by being configured as.
  4.  請求項1に記載の触覚デバイスにおいて、
     前記補償モデルは、前記入力信号で指定された指定強度と前記機械受容器が検知する検知強度との関係を示す、前記触覚デバイスおよび前記機械受容器を含む全体の入出力特性と、前記駆動信号の信号強度と前記触覚提示デバイスから提示される触覚の触覚強度との関係を示す、前記触覚提示デバイスの入出力特性に関する逆特性と、前記触覚デバイスから提示される触覚の触覚強度と前記機械受容器で検知される検知強度との関係を示す、前記機械受容器の知覚感度特性に関する逆特性とを含むことを特徴とする触覚デバイス。
    In the tactile device according to claim 1,
    The compensation model shows the relationship between the specified intensity specified by the input signal and the detection intensity detected by the mechanoreceptor, the entire input / output characteristics including the tactile device and the mechanoreceptor, and the drive signal. The inverse characteristic of the input / output characteristics of the tactile presentation device, which shows the relationship between the signal strength of the tactile presentation device and the tactile strength of the tactile sensation presented by the tactile presentation device, and the tactile strength of the tactile sensation presented by the tactile device and the mechanoreceptor. A tactile device comprising an inverse characteristic relating to the perceptual sensitivity characteristic of the mechanoreceptor, which indicates a relationship with the detection intensity detected in the container.
  5.  請求項4に記載の触覚デバイスにおいて、
     前記触覚提示デバイスの入出力特性に関する逆特性、および前記機械受容器の知覚感度特性に関する逆特性は、前記入力信号で指定された周波数を変数として含むことを特徴とする触覚デバイス。
    In the tactile device according to claim 4,
    A tactile device characterized in that the inverse characteristic relating to the input / output characteristic of the tactile presentation device and the inverse characteristic relating to the perceptual sensitivity characteristic of the mechanoreceptor include a frequency specified by the input signal as a variable.
PCT/JP2020/045193 2020-12-04 2020-12-04 Haptic device WO2022118456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045193 WO2022118456A1 (en) 2020-12-04 2020-12-04 Haptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045193 WO2022118456A1 (en) 2020-12-04 2020-12-04 Haptic device

Publications (1)

Publication Number Publication Date
WO2022118456A1 true WO2022118456A1 (en) 2022-06-09

Family

ID=81854065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045193 WO2022118456A1 (en) 2020-12-04 2020-12-04 Haptic device

Country Status (1)

Country Link
WO (1) WO2022118456A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042799A1 (en) * 2016-08-29 2018-03-08 ソニー株式会社 Information processing device, information processing method, and program
US20200150767A1 (en) * 2018-11-09 2020-05-14 Immersion Corporation Devices and methods for controlling a haptic actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042799A1 (en) * 2016-08-29 2018-03-08 ソニー株式会社 Information processing device, information processing method, and program
US20200150767A1 (en) * 2018-11-09 2020-05-14 Immersion Corporation Devices and methods for controlling a haptic actuator

Similar Documents

Publication Publication Date Title
CN104049733A (en) Automatic haptic effect adjustment system
JP6939797B2 (en) Information processing equipment, information processing methods, and programs
CN106128201B (en) A kind of attention training system of immersion vision and the combination of discrete force control task
Peiris et al. LiquidReality: wetness sensations on the face for virtual reality
KR20160033969A (en) Terminal apparatus and controlling method thereof
US11482086B2 (en) Drive control device, drive control method, and program
Peruzzini et al. Electro-tactile device for texture simulation
CN111566595A (en) Information processing apparatus, information processing method, and program
Altinsoy The quality of auditory-tactile virtual environments
Adilkhanov et al. Vibero: Vibrotactile stiffness perception interface for virtual reality
Turchet et al. Emotion rendering in plantar vibro-tactile simulations of imagined walking styles
García-Valle et al. Estimation of torso vibrotactile thresholds using eccentric rotating mass motors
Aracil et al. The human role in telerobotics
WO2022118456A1 (en) Haptic device
WO2022070300A1 (en) Haptic device
WO2022118457A1 (en) Haptic device
Tanaka et al. Frequency-specific masking effect by vibrotactile stimulation to the forearm
WO2022259301A1 (en) Tactile device and control method
WO2021049083A1 (en) Control device, control method, and program
Papetti Design and perceptual investigations of audio-tactile interactions
Montano-Murillo et al. It Sounds Cool: Exploring Sonification of Mid-Air Haptic Textures Exploration on Texture Judgments, Body Perception, and Motor Behaviour
Karam et al. Designing a model human cochlea: Issues and challenges in crossmodal audio-haptic displays
KR101128628B1 (en) Interface Apparatus and Method that produce sense feedback about user input
Kurzweg et al. Assignment of a Vibration to a Graphical Object Induced by Resonant Frequency
Bernard Perception of audio-haptic textures for new touchscreen interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP