WO2022117407A1 - Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine - Google Patents

Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine Download PDF

Info

Publication number
WO2022117407A1
WO2022117407A1 PCT/EP2021/082779 EP2021082779W WO2022117407A1 WO 2022117407 A1 WO2022117407 A1 WO 2022117407A1 EP 2021082779 W EP2021082779 W EP 2021082779W WO 2022117407 A1 WO2022117407 A1 WO 2022117407A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
gas
heat
compression
liquid
Prior art date
Application number
PCT/EP2021/082779
Other languages
English (en)
Inventor
Elsa MULLER-SHERNETSKY
David Teixeira
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2022117407A1 publication Critical patent/WO2022117407A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to the field of storage and production of energy by compression and expansion of gas, in particular air.
  • CAES Compressed Air Energy Storage
  • CAES CAES
  • ACAES adiabatic compressed air energy storage
  • the main difference with the original CAES is that the heat resulting from the compression is no longer evacuated between each stage, but stored in order to be able to heat the air upstream of the turbines during the electricity production phase. Thanks to this reuse of the thermal energy internal to the process, the efficiency of the ACAES reaches around 70%.
  • the cooling of the air in the compression phase can be done via an indirect contact exchange in a heat exchanger with a heat transfer fluid.
  • the hot heat transfer fluid is then stored and insulated as much as possible thermally in order to be able to transfer its heat to the air during the expansion phase.
  • the document CN105569753B discloses an ACAES process in which an Organic Rankine Cycle (ORC) is associated during the expansion phase and for which the hot source is ensured by the waste heat of the thermal energy used to preheat the air upstream of the turbine, and where the cold source is provided by the expanded air flow from the turbine.
  • ORC Organic Rankine Cycle
  • the document FR3074846A1 discloses an ACAES process in which an Organic Rankine Cycle (ORC) is associated during the expansion phase and for which the hot source is ensured by the waste heat of the thermal energy used to preheat the air upstream of the turbines.
  • ORC Organic Rankine Cycle
  • the document WO16079485A1 discloses an ACAES process in which the thermal energy resulting from the compression phase is used within an Organic Rankine Cycle (ORC) to heat the working fluid. Said Rankine Cycle therefore only works during the compression phase.
  • the object of the present invention is to improve the performance of an ACAES-type adiabatic compressed gas energy storage process by associating it with at least one Rankine cycle, for example an Organic Rankine cycle (ORC), energy producer, in which the use of the hot source and the cold source make it possible to use the waste heat of the process or even to improve the process.
  • Rankine cycle for example an Organic Rankine cycle (ORC), energy producer, in which the use of the hot source and the cold source make it possible to use the waste heat of the process or even to improve the process.
  • ORC Organic Rankine cycle
  • the invention relates to a compressed gas energy storage and recovery system comprising:
  • each compression stage (3) comprising compression means (100, 101, 102) and means for storing and recovering the heat (200, 201, 202) arranged downstream of said compression means (100, 101, 102), in the direction of circulation of said gas,
  • gas expansion line (2) for expanding said compressed gas stored in said compressed gas storage means (1000), said gas expansion line (2) comprising at least one expansion stage (4), each stage expansion (4) comprising expansion means (700, 701, 702) and conduits configured to circulate said compressed gas in at least one of said heat storage and recovery means (200, 201, 202) of said stages compression (3) so as to heat said compressed gas,
  • At least one Rankine cycle comprising an expansion turbine (703), a condenser (800), a pump (900) and an evaporator (801), and pipes configured to circulate a working fluid adapting to the temperatures involved in said Rankine cycle, to produce an additional quantity of energy on expansion, and arranged between said compressed gas storage means (1000) whose output flow (26), optionally mixed with a liquid, constitutes the cold source and said expansion means (702) whose outlet flow (39) constitutes the hot source in the direction of circulation of said gas.
  • Each expansion stage (4) may comprise means for introducing a liquid (600, 601, 602), said means for introducing said liquid (600, 601, 602) being provided upstream, in the direction of circulation said gas, said heat storage means (200, 201, 202) and said Rankine cycle being arranged between said means for introducing said liquid (600) whose outlet stream (28) constitutes the cold source and said expansion means (702) whose outlet stream (39) constitutes the hot source in the direction of circulation of said gas.
  • said heat storage and recovery means (200, 201, 202) comprise heat storage particles.
  • Each compression stage (3) may include means for separating said gas and a liquid (400, 401, 402).
  • said gas and liquid separation means (400, 401, 402) can be arranged downstream of said heat storage and recovery means (200, 201, 202), in the direction of circulation. of said gas.
  • Said system may comprise a plurality of liquid storage means (500, 501, 502) for storing said liquid at the outlet of said gas and liquid separation means (400, 401, 402), and said introduction means (600 , 601, 602) can introduce said liquid from said liquid storage means (500, 501, 502).
  • a plurality of liquid storage means 500, 501, 502 for storing said liquid at the outlet of said gas and liquid separation means (400, 401, 402), and said introduction means (600 , 601, 602) can introduce said liquid from said liquid storage means (500, 501, 502).
  • said compression line (1) comprises as many compression stages (3) as the expansion line (2) comprises expansion stages (4), each means for storing and recovering the heat (200, 201, 202) of a compression stage (3) being used in the corresponding expansion stage (4).
  • Said compression line (1) and said expansion line (2) may comprise three stages respectively.
  • At least one compression stage (3) may include cooling means (300, 301, 302) downstream of the heat storage and recovery means (200, 201, 202), in the direction of circulation of said gas, preferably, said cooling means (300, 301, 302) comprising an air cooler or heat exchangers exchanging with a coolant.
  • the system may include a second Rankine cycle comprising an expander (704), a condenser (802), a pump (901) and an evaporator (803), and lines configured to circulate a working fluid adapting at the temperatures involved in said second Rankine cycle, said second Rankine cycle being arranged between two liquid storage means (503) and (504), said liquid storage means (503) collecting the output flows of the heat transfer fluid of said cooling means and said liquid storage means (504) distributing the inflows of heat transfer fluid from said cooling means, the hot source of said second Rankine cycle being the heat transfer fluid from said cooling means (300, 301, 302 ) stored in the liquid storage means (503) and the cold source of said second cycle being an external flow of cooling liquid, preferably water (49).
  • the working fluid of said one or more Rankine cycle(s) can be chosen from among propane, butane or any other coolant adapting to the temperatures involved in said Rankine cycle.
  • the invention also relates to a method for storing and recovering energy by compressed gas comprising at least the following steps:
  • a gas is successively compressed at least once in a compression line (1) comprising at least one compression stage (3), each compression stage (3) comprising at least one compression means (100, 101, 102); b) after each compression step, the heat of said compressed gas is recovered in at least one heat storage and recovery means (200, 201, 202); c) said cooled compressed gas is stored in at least one compressed gas storage means (1000);
  • the compressed gas leaving the compressed gas storage means (1000) is circulated in an expansion line (2) comprising at least one expansion stage (4), and in each expansion stage (4), the compressed gas is heated by circulating it in one of said heat storage and recovery means (200, 201, 202) using the heat stored during the compression stage and then expanded the compressed gas heated in an expansion means (700, 701, 702); e) an additional quantity of energy is produced on expansion, by means of at least one Rankine cycle comprising an expansion turbine (703), a condenser (800), a pump (900) and an evaporator (801) , the flow of gas leaving the low pressure turbine (702) being used as a heat source within the evaporator (801) to evaporate the working fluid of said Rankine cycle before its expansion in the expansion turbine (703) and the flow composed of compressed gas leaving the compressed gas storage means (1000) or the flow consisting of compressed gas and liquid coming from the mixer (600) being used as a cold source within the condenser (
  • the heat is stored in heat storage particles. After each compression step, said gas and a liquid present in said gas can be separated.
  • Said separated liquid can be stored, and said liquid introduced into said compressed gas is said stored liquid.
  • the heat storage and recovery means (200, 201, 202) of each of the steps b) are used to heat the compressed gas from the corresponding relaxation step.
  • the compressed gas is cooled at the outlet of the heat storage and recovery means (200, 201, 202) in a cooling means (300, 301, 302 ) before the gas is sent to the next compression stage or to the compressed gas storage means (1000).
  • an additional quantity of expansion energy can be produced by means of a second Rankine cycle comprising an expansion turbine (704), a condenser (802), a pump (901) and an evaporator (803), arranged between a liquid storage means (503) making it possible to collect the hot heat transfer fluid at the outlet of said cooling means (300, 301, 302) and a liquid storage means (504) making it possible to supply cold heat transfer fluid said cooling means (300, 301, 302), the flow of hot heat transfer fluid from said cooling means (300, 301, 302) being used as a heat source within the evaporator (803) to evaporate the working fluid of said Rankine cycle before its expansion in the expansion turbine (704); an external flow of cooling liquid (49), preferably water, being used as a cold source within the condenser (802) to condense the working fluid of said second Rankine cycle before its compression in the pump (901) ; and the cooled coolant flow exiting the evaporator (803) being stored in
  • Figure 1 illustrates the general operation of a Rankine cycle as implemented in the system and the method according to the invention.
  • Figure 2 illustrates an adiabatic, non-Rankine cycle compressed gas energy storage and recovery system and process.
  • FIG. 3 illustrates a system and a method for storing and recovering energy by compressed gas including a Rankine cycle according to the invention, in its various variants.
  • FIG. 4 illustrates a system and method for storing and recovering energy by compressed gas in one embodiment including a second Rankine cycle located between the coolant fluid inlets and outlets of the cooling means.
  • the present invention relates to a system and a method for storing and recovering energy by compressed gas, implementing at least one Rankine cycle, preferably an Organic Rankine Cycle (ORC).
  • ORC Organic Rankine Cycle
  • upstream In the present invention the terms “upstream”, “downstream”, “input”, “output”, “before”, “after” are defined by the direction of circulation of the gas, respectively during the energy storage phase (compression phase), and during the energy recovery phase (relaxation phase).
  • the Rankine cycle is a thermodynamic cycle which notably makes it possible to convert heat into another energy, for example electrical energy or mechanical energy.
  • a Rankine cycle ( Figure 1) is a cycle in which a working fluid circulating in a closed circuit CF is successively subjected to the following stages:
  • the closed circuit operating according to the Rankine cycle further comprises conduits for connecting the various components of the closed circuit.
  • the working fluid can be any refrigerant adapting to the temperatures involved in the Rankine cycle.
  • Organic Rankine Cycle is meant a Rankine Cycle in which the working fluid is an organic compound, for example propane, butane, or any other organic refrigerant fluid adapting to the temperatures involved in the Cycle.
  • Organic Rankine is meant a Rankine Cycle in which the working fluid is an organic compound, for example propane, butane, or any other organic refrigerant fluid adapting to the temperatures involved in the Cycle.
  • the system according to the invention comprises:
  • each compression stage comprises: - a means of compressing the gas (compressor), making it possible to increase the pressure of the gas, with a view to its storage, the means of compression can be axial compressors, centrifugal, or any other technology,
  • a heat storage and recovery means arranged downstream of the compression means, in order to store the heat generated by the compression, and to reduce the temperature of the gas before the next compression stage or before the storage means of compressed gas,
  • the compressed gas storage means possibly being a natural cavity such as a saline cavity, an old mine or an aquifer or artificial storage;
  • each expansion stage comprises at least one means for expanding the compressed gas to generate energy, for example a turbine that can be coupled to an alternator, pipes to make circulating the gas in one of the storage means of the compression line, so as to recover the stored heat and to increase the temperature of the gas to increase the energy produced in the expansion means.
  • the heat storage and recovery means advantageously comprise heat storage particles.
  • the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means.
  • the material can be stones, concrete, gravel, balls of phase change material (PCM) optionally encapsulated, preferably with a solid-liquid phase change, zeolites, or any similar material allowing the exchange and storage of heat at the temperatures involved by the compressed gas (preferably air).
  • PCM phase change material
  • each expansion stage may include a means for introducing a liquid.
  • the liquid introduction means allows mixing between the gas from the expansion line and the liquid.
  • the gas flow can be increased in each expansion stage, which makes it possible to increase the efficiency of the system and process.
  • the means for introducing and mixing the liquid are provided in the expansion line upstream of the heat storage means, in this way, the gas and liquid mixture (preferably air and water) reinjected is reheated in the storage means heat, which makes it possible to vaporize the liquid, and in this way only a gas is led into the expansion means.
  • the gas may be air. This may be air taken from the ambient environment. Alternatively, it may include other gases.
  • the liquid is water. This may be in particular the humidity present in the gas, in particular when the gas is air from the ambient environment. Alternatively, it may include other liquids.
  • At least one compression stage may include cooling means.
  • This cooling means can be arranged downstream of the heat storage and recovery means. This cooling means makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat.
  • These heat cooling means can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant suitable for the necessary cooling.
  • the cooling means can be adapted to the pressure of the air entering and exchanging with each of them.
  • each compression stage may comprise a gas/liquid separation means, which makes it possible to extract the liquid present in the gas, in particular due to the condensation of the water present in the gas, and making it possible to eliminate traces of liquid which could be contained in the gas after it has cooled and which could damage the system, in particular the compression means.
  • the gas/liquid separation means can be arranged downstream of the cooling means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling means.
  • the system may include liquid storage means to store liquid extracted from the compression line.
  • a liquid storage means may be provided per compression stage (therefore per gas-liquid separation means).
  • the liquid can be stored at different pressures.
  • the liquid introduction means can allow the introduction of liquid leaving the liquid storage means, thus making possible the use of liquid recovered from condensation, in the compression line.
  • the gas/liquid separation means can be arranged downstream of the heat storage and recovery means or downstream of the cooling means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means.
  • gas/liquid separation means can be arranged upstream of the compression means, or between the compression means and the heat storage and recovery means.
  • the compression line and the expansion line can comprise as many stages.
  • the number of compression stages and the number of expansion stages can be identical.
  • This embodiment allows a "symmetrical" design of the compression and expansion lines, with in particular similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means, and which allows in particular a reinjection of the liquid into an expansion stage which corresponds to the compression stage in terms of pressure.
  • the system and method are simplified.
  • the number of compression and expansion stages can be between two and six, preferably between three and five.
  • the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
  • the number of compression stages and the number of expansion stages may be different.
  • provision may be made to pool at least part of the heat storage and recovery means, as well as at least part of the liquid introduction means.
  • the expansion line comprises according to the invention at least one means for recovering additional heat and producing additional energy, in the form of a Rankine cycle arranged in parallel with said expansion line, said Rankine cycle implementing two heat exchange means: a means for heating, in which the heat of the gas leaving the expansion line exchanges with the working fluid of said Rankine cycle, and a means for cooling, in which the gas leaving the air storage exchanges with the working fluid of said Rankine cycle.
  • Said at least one Rankine cycle is arranged in an expansion stage comprised between the first and the last expansion stage.
  • the means for cooling the working fluid is arranged in an expansion stage between the first and the last expansion stage.
  • the term "first expansion stage" refers to the first expansion stage through which the gas passes in the expansion line. In other words, the first expansion stage is close to the compressed gas storage means.
  • the heat of the gas leaving the line of expansion is used to heat up the working fluid of the Rankine cycle.
  • the means for cooling the working fluid can be arranged in the first expansion stage.
  • the system according to the invention may comprise a second Rankine cycle arranged between the coolant fluid inlets and outlets of the cooling means, more precisely between at least one liquid storage means collecting the coolant fluid flows at the outlet of said cooling means and at least one liquid storage means distributing the heat transfer fluid flows at the inlet of said cooling means.
  • Said second Rankine cycle comprises an expansion turbine, a condenser, a pump, and an evaporator, and pipes configured to circulate a working fluid adapting to the temperatures involved in said second Rankine cycle.
  • the hot source of said second Rankine cycle is the hot heat transfer fluid from said cooling means and the cold source of said second Rankine cycle is an external flow of cooling liquid, preferably water.
  • the working fluid can be the same or different for each of the Rankine cycles.
  • the invention relates to a method for storing and recovering energy by compressed gas.
  • the method according to the invention implements the following steps:
  • compression phase In the energy storage phase (compression phase): a) a gas is successively compressed at least once in a compression line comprising at least one compression stage, each compression stage comprising at least one compression means; b) after each compression step, the heat of the compressed gas is recovered in at least one heat storage and recovery means, c) the compressed gas cooled at the outlet of the compression line is stored in a heat storage means compressed gas;
  • the compressed gas leaving the compressed gas storage means is circulated in an expansion line comprising at least one expansion stage, and in each expansion stage, the compressed gas is heated by circulating it in one of the means for storing and recovering the heat thanks to the heat stored during the compression step and then the heated compressed gas is expanded in an expansion means;
  • an additional quantity of energy for example electrical, hydraulic or pneumatic
  • the flow of gas leaving the turbine being used as a heat source within an evaporator to evaporate the working fluid of said Rankine cycle before its expansion in an expansion turbine and the flow composed of compressed gas at the outlet of the compressed gas storage means or the flow composed compressed gas and liquid from a gas-liquid mixer being used as a cold source within a condenser to condense the working fluid of said Rankine cycle before its compression in the pump.
  • the heat is stored and recovered in heat storage particles.
  • the heat storage and recovery means advantageously comprise heat storage particles.
  • the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means.
  • the material can be stones, concrete, gravel, beads of phase change material (PCM), zeolites, or any similar material.
  • each expansion stage may comprise a means of introducing and mixing the liquid, thus making it possible to use the liquid recovered from condensation, in the compression line.
  • the gas flow is increased in each expansion stage, which makes it possible to increase the efficiency of the system and the process.
  • the means for introducing and mixing the liquid are provided in the expansion line upstream of the heat storage means, in this way the injected gas and liquid mixture is heated in the heat storage means, which allows to vaporize the liquid, and in this way only a gas is led into the expansion means.
  • the compressed gas energy storage and recovery method can implement the compressed gas energy storage and recovery system according to any one of the variants or combinations of variants as described below. above.
  • the gas may be air. This may be air taken from the ambient environment.
  • the liquid can be water. It may be in particular the humidity present in the gas, in particular when the gas is air. According to one embodiment of the invention, after each compression step, the gas and a liquid present in the gas can be separated.
  • the method may include a liquid storage step to store liquid extracted from the compression line.
  • a liquid storage means may be provided per compression stage (therefore per gas-liquid separation stage).
  • the liquid can be stored at different pressures.
  • the liquid introduced into the gas is the liquid resulting from the storage step, thus making it possible to use liquid recovered from condensation, in the compression line.
  • the compression line and the expansion line can comprise as many stages.
  • the number of compression stages and the number of expansion stages can be identical.
  • This embodiment allows a "symmetrical" design of the compression and expansion lines, with in particular similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means, and which allows a reinjection of the liquid into an expansion stage which corresponds to the corresponding compression stage.
  • the system and method are simplified.
  • the number of compression and expansion stages can be between one and six, preferably between three and five.
  • the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
  • the energy storage phase can include at least one cooling step in one of the compression stages.
  • This cooling step can be carried out after the heat storage step by a cooling means.
  • This cooling step makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat.
  • These cooling means can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant suitable for the necessary cooling.
  • the cooling means can be adapted to the pressure of the air entering and exchanging with each of them.
  • the gas/liquid separation step can be carried out after the cooling step. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling stage.
  • the energy recovery phase comprises at least two stages of complementary heat exchange, a first between the gas at the outlet of the expansion line and the working fluid of said at least one Rankine cycle and a second between the compressed gas and the working fluid of the Rankine cycle.
  • the hot gas at the outlet of the expansion line acts as a hot source, while the compressed gas in the expansion line, optionally mixed with a liquid (for example liquid condensed during the compression phase), plays the role of the cold source.
  • a liquid for example liquid condensed during the compression phase
  • the hot gas at the outlet of the expansion line is sent to a first heat exchanger (evaporator) in order to vaporize the working fluid of the Rankine cycle.
  • the working fluid is sent to the Rankine cycle expansion turbine which will produce additional energy (for example electrical, pneumatic or hydraulic) to that produced by the compressed gas expansion line, via a alternator for electric power example.
  • additional energy for example electrical, pneumatic or hydraulic
  • the working fluid has seen its pressure decrease as well as its temperature, but remains mainly in vapor form.
  • the working fluid is sent to a second heat exchanger (condenser) of the Rankine cycle in order to be condensed there. Once condensed, the working fluid is sent to the Rankine cycle pump to increase its pressure.
  • the source hot is the heat transfer fluid, preferably water, from the cooling means or means, and whose cold source is a flow of external cooling liquid, preferably cooling water, for example from a river, network or any other source of cold water.
  • the humid air at atmospheric pressure from the external environment (10) is compressed via a first low pressure compression means (100) which increases the flow temperature at the compression outlet (11) to a temperature between 200° C. and 400°C.
  • the air is then cooled in a heat storage and recovery means (low pressure direct contact (200) until it reaches an outlet temperature (12) between 100°C and 50°C.
  • the heat exchanged is stored directly in the heat storage and recovery means (200).
  • the air can then be sent to an additional cooling means (300) to reach, for example, an outlet temperature (13) less than or equal to 50° C.
  • the condensed water (14) can then be separated from the air stream (15) in a gas-liquid separator (400) operating at the pressure and temperature of the inlet stream (13) and sent to a storage tank (500).
  • the air separated from the condensed water (15) is compressed via a second medium pressure compressor (101) until it reaches a temperature at the compression outlet (16) between 200° C. and 400° C.
  • the air is then cooled in a storage means and medium pressure direct contact heat recovery (201) until an outlet temperature (17) between 100°C and 50°C is reached.
  • the exchanged heat is stored directly in the heat storage and recovery means (201).
  • the air can then be sent to additional cooling means (301) to reach an outlet temperature (18) of less than or equal to 50°C. Part of the humidity in the air condenses during cooling under pressure.
  • the condensed water (19) can then be separated from the air stream (20) in a gas-liquid separator (401) operating at the pressure and temperature of the inlet stream (18) and sent to a storage tank ( 501).
  • the air separated from the condensed water (20) is compressed via a third high pressure compressor (102) until it reaches a temperature at the compression outlet (21) between 200°C and 400°C.
  • the air is then cooled in a high pressure direct contact heat storage and recovery means (202) until it reaches an outlet temperature (22) between 100° C. and 50° C., preferably between 80° C. C and 50°C.
  • the exchanged heat is stored directly in the heat storage and recovery means (202).
  • the air can then be sent to an additional cooling means (302) to reach an outlet temperature (23) less than or equal to the air storage temperature. Part of the humidity in the air condenses during cooling under pressure.
  • the condensed water (24) can then be separated from the air stream (25) in a gas-liquid separator (402) operating at the pressure and temperature of the inlet stream (23) and sent to a storage tank ( 502).
  • the compressed air flow (25) is sent to the compressed air storage means (1000).
  • the compressed air (26) is extracted from the compressed air storage means (1000) and can be mixed via a system (600) with a flow of condensed water (27) coming from the high pressure storage (502).
  • the flow rate (27) is optimized so that it is constant throughout the electricity production phase.
  • the compressed air stream (26), optionally mixed with the condensed water stream (27), is sent to the high pressure direct contact heat storage and recovery means (202) so as to be heated between 200°C and 400°C.
  • the condensed water (27) is vaporized in the heat storage and recovery means (202).
  • the hot air flow (29) is expanded in the high pressure turbine (700) which will produce electricity via an alternator. At the turbine outlet, the air pressure has decreased as well as its temperature.
  • the compressed air (30) can then be mixed via a system (601) with a flow of condensed water (31) coming from the medium pressure storage (501).
  • the flow rate (31) is optimized so that it is constant throughout the electricity production phase.
  • the flow of compressed air, optionally mixed with condensed water (32) is sent to the medium pressure direct contact heat storage and recovery means (201) so as to be heated between 200° C. and 400° C. vs.
  • the condensed water (31) is completely vaporized in the heat storage and recovery means (201).
  • the hot air flow (33) is expanded in the medium pressure turbine (701) which will produce electricity via an alternator. At the turbine outlet, the air pressure has further decreased as well as its temperature.
  • the compressed air (34) can be mixed via a system (602) with a flow of condensed water (35) coming from the low pressure storage (500).
  • the flow rate (35) is optimized so that it is constant throughout the electricity production phase.
  • the mixed air or air and condensed water flow (36) is sent to the low pressure direct contact heat storage and recovery means (200) so as to be heated between 200°C and 400°C.
  • the condensed water (35) is completely vaporized in the heat storage and recovery means (200).
  • the hot air flow (37) is expanded in the low pressure turbine (702) which will produce electricity via an alternator.
  • FIG. 3 illustrates, schematically and in a nonlimiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a particular embodiment of the invention.
  • compressed gas in this case air
  • the flows and steps are detailed below respectively for the electricity storage phase and for the electricity production phase, in the case where the gas is humid air.
  • the condensed water (14) is then separated from the air stream (15) in a gas-liquid separator (400) operating at the pressure and temperature of the inlet stream (13) and sent to a storage tank (500 ).
  • the air separated from the condensed water (15) is compressed via a second medium-pressure compressor (101) until it reaches a temperature at the compression outlet (16) between 200° C. and 400° C., preferably between 250° C. C and 350°C.
  • the air is then cooled in a medium pressure direct contact heat storage and recovery means (201) until it reaches an outlet temperature (17) between 100° C. and 50° C., preferably between 80° C. C and 50°C.
  • the exchanged heat is stored directly in the heat storage and recovery means (201).
  • the air is then sent to additional cooling means (301) to reach an outlet temperature (18) of less than or equal to 50°C. Part of the humidity in the air condenses during cooling under pressure.
  • the condensed water (19) is then separated from the air stream (20) in a gas-liquid separator (401) operating at the pressure and temperature of the inlet stream (18) and sent to a storage tank (501 ).
  • the air separated from the condensed water (20) is compressed via a third high pressure compressor (102) until it reaches a temperature at the compression outlet (21) between 200° C. and 400° C., preferably between 250° C. C and 350°C.
  • the air is then cooled in a high pressure direct contact heat storage and recovery means (202) until it reaches an outlet temperature (22) between 100° C.
  • the exchanged heat is stored directly in the heat storage and recovery means (202).
  • the air is then sent to an additional cooling means (302) to reach an outlet temperature (23) lower than or equal to the air storage temperature. A part of the moisture in the air condenses when cooling under pressure.
  • the condensed water (24) is then separated from the air stream (25) in a gas-liquid separator (402) operating at the pressure and temperature of the inlet stream (23) and sent to a storage tank (502 ).
  • the compressed air flow (25) is sent to the compressed air storage means (1000).
  • the compressed air (26) is extracted from the compressed air storage means (1000) and is mixed via a system (600) with a flow of condensed water (27) coming from the high pressure liquid storage (502).
  • the flow rate (27) is optimized so that it is constant throughout the electricity production phase.
  • the mixed air and condensed water stream (28) is heated in the heat exchanger (800) by the Organic Rankine Cycle working fluid (11').
  • the reheated stream (29) is sent to the high pressure direct contact heat storage and recovery means (202) so as to be reheated between 200°C and 400°C, preferably between 250°C and 350°C. .
  • the condensed water (27) is totally vaporized in the exchanger (800) and/or in the heat storage and recovery means (202).
  • the hot air flow (30) is expanded in the high pressure turbine (700) which will produce electricity via an alternator. At the turbine outlet, the air pressure has decreased as well as its temperature.
  • the compressed air (31) is then mixed via a system (601) with a flow of condensed water (32) coming from the medium pressure storage (501).
  • the flow rate of the flux (32) is optimized so that it is constant throughout the electricity production phase.
  • the mixed air and condensed water stream (33) is sent to the medium pressure direct contact heat storage and recovery means (201) so as to be heated between 200°C and 400°C, preferably between 250°C and 350°C.
  • the condensed water (32) is completely vaporized in the heat storage and recovery means (201).
  • the hot air flow (34) is expanded in the medium pressure turbine (701) which will produce electricity via an alternator. At the turbine outlet, the air pressure has further decreased as well as its temperature.
  • the compressed air (35) is mixed via a system (602) with a flow of condensed water (36) coming from the low pressure storage (500).
  • the flow rate of the flux (36) is optimized so that it is constant throughout the electricity production phase.
  • the mixed air and condensed water flow (37) is sent to the low pressure direct contact heat storage and recovery means (200) so as to be heated between 200°C and 400°C, preferably between 250°C and 350°C.
  • the condensed water (36) is completely vaporized in the heat storage and recovery means (200).
  • the hot air flow (38) is expanded in the low pressure turbine (702) which will produce electricity via an alternator.
  • the air flow (39) is sent to the heat exchanger (801) in order to vaporize the flow of working fluid (13') of the Rankine cycle.
  • the flow of working fluid (10') is sent to the expansion turbine (703) which will produce additional electricity to that produced by the expansion stages, via an alternator.
  • the flow of working fluid (11') has seen its pressure decrease as well as its temperature, but remains in vapor form.
  • the working fluid flow (11') is sent to the heat exchanger (800) in order to be condensed there. Once condensed, the working fluid flow (12') is sent to the pump (900) in order to increase its pressure.
  • the stream (40) is released to the atmosphere.
  • FIG. 4 illustrates the embodiment of the invention in which a second Rankine cycle is provided.
  • the embodiment of FIG. 4 differs from the embodiment of FIG. 3 only by the addition of a second Rankine cycle, which is why only this second Rankine cycle is described.
  • the second Rankine cycle is arranged between the outlets of the heat transfer fluid from the cooling means (300, 301, 302) and the inlets of the heat transfer fluid from the cooling means (300, 301, 302), the hot source being water ( heat transfer fluid) from the cooling means (300, 301, 302) and collected in a water storage means at a pressure between 4 and 100 bar (between 0.4 and 10 MPa), preferably at the pressure of the first compression stage (503) and the cold source being cooling water (49), for example from a river, the network or any other source of cold water.
  • the flow of water (44), at a temperature between 50°C and 100°C, is sent to the heat exchanger, called evaporator (803) in order to vaporize the flow of working fluid (16') of said second Rankine cycle.
  • the flow of working fluid (14') is sent to the expansion turbine (704) which will produce additional electricity, via an alternator.
  • the flow of working fluid (15') has seen its pressure decrease as well as its temperature but remains in vapor form.
  • the flow of working fluid (15') is sent to the heat exchanger, called condenser (802) fed by the cold source in order to be condensed there.
  • Example 1 (according to the invention):
  • This example implements the system and the method according to the embodiment of the invention with reinjection of water illustrated in FIG. 3, in the embodiment in which the water condensed in the compression phase is stored, then reinjected into the flow of compressed air leaving the compressed air storage means (1000) before the expansion phase (FIG. 3 with the dotted elements).
  • This flow (11) is sent to a low-pressure heat storage and recovery means (200) which cools the air to a temperature of 80° C. (12) and stores this thermal energy until the cooling phase. relaxation (2).
  • the stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the process air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a storage (500) under a maintained pressure of 6 bar (0.6 MPa).
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • the stream (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 82°C (17) and stores this thermal energy until the relaxation (2).
  • the stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18).
  • the flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the phase of cooling in (201).
  • This condensed water (19) is separated from the process air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a storage (501) under a maintained pressure of 28 bar (2.8 MPa).
  • the flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the stream (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 80°C (22) and stores this thermal energy until the cooling phase. relaxation (2).
  • the stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature.
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302).
  • This condensed water (24) is separated from the process air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a storage (502) under a maintained pressure of 117 bar (11.7 MPa).
  • the flow of compressed air at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. (25) is then sent to the compressed air storage means (1000) while awaiting the destocking phase. (2).
  • a flow of condensed water (27) coming from the storage (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is reinjected into the flow of compressed air (26) leaving the compressed air storage means (1000) via the mixer (600) to form the flow (28).
  • the stream (28) is preheated in a heat exchanger (800) in order to reach a temperature of 35°C at the outlet (29).
  • the stream (29) is then reheated in the high pressure thermal energy storage (202) which releases the heat stored during the compression phase until the stream (30) reaches a temperature of 240°C.
  • This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet
  • the stream (33) is heated in the medium pressure thermal energy storage (201) which releases the heat stored during the compression phase until the stream (34) reaches a temperature of 255°C.
  • This flow of hot, compressed air (34) is expanded in the medium-pressure turbine (701) producing electricity via an alternator, until it reaches a pressure of 5 bar (0.5 MPa) at the outlet (35). and a temperature of 70°C.
  • a flow of condensed water (36) coming from the storage (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50° C. is reinjected into the flow of compressed air (35) via the mixer ( 602) to form the stream (37).
  • the stream (37) is heated in the thermal energy storage low pressure (200) which releases the heat stored during the compression phase until the flow (38) reaches a temperature of 245°C.
  • This flow of hot, compressed air (38) is expanded in the low-pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.102 MPa) at the outlet (39). and a temperature of 80°C.
  • This flow (39) is then sent to the heat exchanger (801) allowing the evaporation of the working fluid of said Rankine cycle, here, propane (13').
  • the stream (10') is completely gaseous at a pressure of 28 bar (2.8 MPa) and a temperature of 75°C, it is sent to the expansion turbine (703) producing electricity via a alternator, until a pressure of 13 bar (1.3 MPa) is reached at the outlet (11').
  • This stream (11') is completely condensed in the heat exchanger (800) used as a condenser until the temperature of 35°C is reached at the stream (12').
  • This stream (12') is then sent to the pump (900) in order to increase its pressure and to reach 28 bar (2.8 MPa) at the stream (13').
  • the efficiency of the energy storage process is 70.6% (compared to 69.6% for conventional AA-CAES without water reinjection and without ORC and compared to 70 .3% for an AA-CAES with water reinjection, but without ORC, as described in FIG. 2 not in accordance with the invention) for a power consumption of 100.0 MW at the compressors.
  • the total flow of condensed water at the three compression stages is 7.5 t/h.
  • the thermal storage power is 87.2 MWth and the cooling power required is 20.3 MWth.
  • the Rankine cycle produces an additional 0.48 MW of electricity compared to a conventional ACAES process as described in Figure 2 (AA-CAES process with expansion water reinjection, but without ORC).
  • Example 2 implements the system and the method according to the embodiment of the invention without reinjection of water illustrated in FIG. 3 (FIG. 3, without the dotted elements).
  • the water condensed and separated from the air after cooling in the compression phase is not reinjected in the expansion phase, but is definitively extracted from the process.
  • This flow (11) is sent to a low-pressure heat storage and recovery means (200) which cools the air to a temperature of 90° C. (12) and stores this thermal energy until the cooling phase. relaxation (2).
  • the stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the process air flow (15) in a gas-liquid separator (400), operating at the pressure of the flow (13), then definitively extracted from the process.
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • the stream (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 100°C (17) and stores this thermal energy until the relaxation (2).
  • the stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18).
  • the flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301).
  • This condensed water (19) is separated from the process air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then definitively extracted from the process.
  • the flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the stream (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 46°C (22) and stores this thermal energy until the cooling phase. relaxation (2).
  • the stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature.
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302).
  • This condensed water (24) is separated from the process air flow (25) in a gas-liquid separator (402), operating at the pressure of the flow (23), then definitively extracted from the process.
  • the flow of compressed air at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. (25) is then sent to the compressed air storage means (1000) while awaiting the destocking phase ( 2).
  • the flow of compressed air (26) leaving the compressed air storage means (1000) is preheated in a heat exchanger (800) in order to reach the outlet (29 ) a temperature of 35°C.
  • the stream (29) is then reheated in the high pressure thermal energy storage (202) which releases the heat stored during the compression phase until the stream (30) reaches a temperature of 240°C.
  • This flow of hot, compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches a pressure of 28 bar (2.8 MPa) at the outlet (31). and a temperature of 85°C.
  • This flow (39) is then sent to the heat exchanger (801) used as an evaporator and allowing the evaporation of the working fluid of said Rankine cycle, here, propane (13').
  • the heat exchanger (801) used as an evaporator and allowing the evaporation of the working fluid of said Rankine cycle, here, propane (13').
  • propane (13') is then sent to the heat exchanger (801) used as an evaporator and allowing the evaporation of the working fluid of said Rankine cycle, here, propane (13').
  • the expansion turbine (703) producing gas. electricity via an alternator, until a pressure of 13 bar (1.3 MPa) is reached at the outlet (11').
  • This stream (11') is completely condensed in the heat exchanger (800) used as a condenser until the temperature of 35°C is reached at the stream (12').
  • This stream (12') is then sent to the pump (900) in order to increase its pressure and to reach 28 bar (2.8 MPa
  • the efficiency of the energy storage process is 70.0% (compared to 69.6% for conventional AA-CAES without water reinjection as depicted in Figure 2) for a power consumption of 100.0 MW at the compressors.
  • the total flow of condensed water at the three compression stages is 7.5 t/h.
  • the thermal storage power is 87.0 MWth and the cooling power required is 20.5 MWth.
  • the Rankine cycle produces an additional 0.44 MW of electricity compared to a conventional AACAES process without ORC.
  • This flow (11) is sent to a low pressure heat storage and recovery means (200) which cools the air to a temperature of 80°C (12) and stores this thermal energy until the relaxation (2).
  • the stream (12) is cooled again by the water cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the cold water flow (46) from the storage (504) is then reheated in said cooling means (300) to form the flow (41) which is stored in the hot water storage (503).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the process air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a storage (500) under a maintained pressure of 6 bar (0.6 MPa).
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • This condensed water (19) is separated from the process air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a storage (501) under a maintained pressure of 28 bar (2.8 MPa).
  • the flow (20) again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the flow (21) is sent to a means of storage and high pressure heat recovery (202) which cools the air to a temperature of 45°C (22) and stores this thermal energy until the phase of relaxation (2).
  • the stream (22) is cooled again by the water exchanger (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C.
  • the cold water flow (48) from the storage (504) is then reheated in the water cooling means (302) to form the flow (43) which is stored in the hot water storage (503).
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302).
  • This condensed water (24) is separated from the process air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a storage (502) under a maintained pressure of 117 bar (11.7 MPa).
  • the flow of compressed air at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. (25) is then sent to the compressed air storage means (1000) while awaiting the destocking phase ( 2).
  • a stream of condensed water (27) coming from the storage (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is reinjected into the stream. of compressed air (26) leaving the compressed air storage means (1000) via the mixer (600) to form the flow (28).
  • the stream (28) is preheated in a heat exchanger (800) in order to reach a temperature of 35°C at the outlet (29).
  • the flow (29) is then reheated in the high pressure thermal energy storage (202) which releases the heat stored during the compression phase until the stream (30) reaches a temperature of 240°C.
  • This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet
  • the stream (33) is heated in the medium pressure thermal energy storage (201) which releases the heat stored during the compression phase until the stream (34) reaches a temperature of 255°C.
  • This flow of hot, compressed air (34) is expanded in the medium-pressure turbine (701) producing electricity via an alternator, until it reaches a pressure of 5 bar (0.5 MPa) at the outlet (35). and a temperature of 70°C.
  • a flow of condensed water (36) coming from the storage (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50° C. is reinjected into the flow of compressed air (35) via the mixer ( 602) to form the stream (37).
  • the stream (37) is heated in the low pressure thermal energy storage (200) which releases the heat stored during the compression phase until the stream (38) reaches a temperature of 245°C.
  • This flow of hot, compressed air (38) is expanded in the low-pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.102 MPa) at the outlet (39). and a temperature of 80°C.
  • This flow (39) is then sent to the heat exchanger (evaporator) (801) allowing the evaporation of the working fluid of said Rankine cycle 1, here, propane (13').
  • a Rankine cycle 2 arranged in parallel with the previous one, involves a working fluid, here, propane (17') which is vaporized via the evaporator (803).
  • This evaporator is supplied with hot water (44) from the storage (503) collecting the water from the cooling means (300, 301, 302). Once cooled, the water (45) is returned to the cold water storage (504).
  • the vaporized propane (14') is sent to the expansion turbine (704) producing electricity via an alternator, until it reaches a pressure of 10 bar (1 MPa) at the outlet (15').
  • This propane stream (15') is then sent to the condenser (802) fed with water at 20°C.
  • the Rankine cycle 1 makes it possible to produce 0.48 MW of additional electricity and the Rankine cycle 2 makes it possible to produce 1.23 MW of additional electricity compared to a conventional AACAES process as described in Figure 2 (AA-CAES process with reinjection of water in relaxation, but without ORC).
  • examples 1 to 3 show that the implementation of at least one Rankine cycle in the system and the method according to the invention in any one of its variants, makes it possible to increase the performance of the AA- CAES, while limiting the power required for cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Système de stockage et de récupération d'énergie par gaz comprimé comprenant : • -Une ligne de compression (1) de gaz comprenant au moins un moyen de compression (100, 101, 102); • -Au moins un moyen de stockage de gaz comprimé (1000); • -Une ligne de détente de gaz (2) comprenant au moins un moyen de détente (700, 701, 702), • - Au moins un cycle de Rankine entre ledit moyen de stockage de gaz comprimé (1000) dont le flux de sortie (26) constitue la source froide et ledit moyen de détente (702) dont le flux de sortie (39) constitue la source chaude,

Description

SYSTEME ET PROCEDE DE STOCKAGE ET DE RECUPERATION D’ENERGIE PAR GAZ
COMPRIME AVEC CYCLE DE RANKINE
Domaine technique
La présente invention concerne le domaine du stockage et de la production d’énergie par compression et détente de gaz, notamment de l’air.
Alors que les objectifs énergétiques mondiaux visent à favoriser les énergies renouvelables par rapport aux énergies fossiles et à en augmenter progressivement la proportion dans le mix énergétique, leur caractère variable demeure leur inconvénient majeur. Pour répondre à cette problématique, le stockage d’énergie apparaît comme la solution idéale. En stockant le surplus d’électricité produit au pic de production afin d’en disposer lorsque celle-ci devient inférieure à la demande, le stockage permet de s’affranchir de la contrainte de variabilité et apporte une continuité, ou tout du moins une flexibilité, à la base inexistante, aux énergies renouvelables. Ainsi, le besoin en procédé de stockage d’énergie existe et va aller grandissant avec la proportion de ce type d’énergies dans le mix énergétique mondial.
De nombreuses technologies de stockage matures existent déjà à l’heure actuelle comme les stockages de type mécanique tels que les Stations de Transfert d’Energie par Pompage (STEP) utilisant l’hydroélectricité produite par deux réservoirs d’eau situés à différentes altitudes. En phase de stockage d’électricité, l’eau du réservoir inférieur est pompée vers le réservoir supérieur et stockée à cette altitude. Lorsque la demande en électricité augmente, l’eau du réservoir supérieur est renvoyée vers le réservoir inférieur en passant par une turbine hydraulique qui va alors générer, via un alternateur, de l’électricité. Les barrages hydroélectriques fonctionnent également sur le même concept : le barrage retient l’eau à une altitude plus importante en amont qu’en aval et lorsque la demande en électricité augmente, le barrage libère l’eau en la faisant passer par des turboalternateurs hydrauliques produisant l’électricité. La technologie de stockage d’énergie par air comprimé (CAES de l’anglais « compressed air energy storage ») fait partie des solutions de type mécanique. D’autres technologies de type électrochimique peuvent être également utilisées pour le stockage d’énergie telles que les batteries lithium-ion, plomb-acide ou encore nickel-cadmium, ou bien des batteries à circulation utilisant des électrolytes.
Le stockage d’énergie par air comprimé (CAES) est une technologie mature dont la première installation a été construite en Allemagne à la fin des années 1970, produisant 290 MW. Le principe du CAES est d’utiliser l’électricité produite et non consommée pour comprimer de l’air. Afin d’éviter tout dommage sur les compresseurs, la chaleur résultant de la compression est évacuée entre chaque étage. L’air comprimé à moyenne ou haute pression (40 bar à 300 bar, soit 4 à 30 MPa) est envoyé dans un stockage de type naturel tel qu’une cavité saline, une mine (sel, calcaire, charbon) ou encore dans un stockage artificiel en attendant la phase de décharge de l’énergie. Lors de la phase de production d’électricité, l’air stocké est extrait du stockage afin d’être détendu dans des turboalternateurs. Pour le système CAES de base tel que celui établi à la fin des années 1970, l’air comprimé était utilisé pour alimenter des turbines à gaz (appelées également turbines à combustion). Ces turbines brûlent via une chambre de combustion du gaz naturel en présence d’air comprimé pour produire des gaz de combustion très chauds (500°C-800°C), détendus pour produire l’électricité. Le procédé CAES possède un rendement énergétique de l’ordre de 50%.
Technique antérieure
Une variante du CAES est le procédé adiabatique ou ACAES (de l’anglais « adiabatic compressed air energy storage »). La différence principale avec le CAES d’origine est que la chaleur résultant de la compression n’est plus évacuée entre chaque étage, mais stockée afin de pouvoir réchauffer l’air en amont des turbines en phase de production d’électricité. Grâce à cette réutilisation de l’énergie thermique interne au procédé, le rendement de l’ACAES atteint environ 70%. Le refroidissement de l’air en phase de compression peut se faire via un échange à contact indirect dans un échangeur de chaleur avec un fluide caloporteur. Le fluide caloporteur chaud est alors stocké et isolé au maximum thermiquement afin de pouvoir céder sa chaleur à l’air lors de la phase de détente. Il peut également être effectué via un échange en contact direct entre l’air et une masse de stockage thermique fonctionnant par chaleur sensible ou grâce à des matériaux à changement de phase. Dans les deux cas, la chaleur issue de l’air va être stockée directement dans la masse, soit au sein du matériau, soit en effectuant un changement de phase du matériau. Lors de la phase de détente, l’air froid est réinjecté dans la masse de stockage thermique et par contact direct, l’air va se réchauffer en captant la chaleur du matériau ou bien permettant le changement de phase inverse libérant cette chaleur. Ce refroidissement de l’air peut alors induire une condensation d’eau si l’air possède une certaine humidité. Cette eau condensée doit alors être extraite du circuit d’air afin de ne pas endommager les compresseurs en aval.
Le document CN105569753B dévoile un procédé ACAES dans lequel un Cycle de Rankine Organique (ORC) est associé durant la phase de détente et pour lequel la source chaude est assurée par la chaleur fatale de l’énergie thermique utilisée pour préchauffer l’air en amont de la turbine, et où la source froide est assurée par le flux d’air détendu issu de la turbine.
Le document FR3074846A1 dévoile un procédé ACAES dans lequel un Cycle de Rankine Organique (ORC) est associé durant la phase de détente et pour lequel la source chaude est assurée par la chaleur fatale de l’énergie thermique utilisée pour préchauffer l’air en amont des turbines. Le document WO16079485A1 dévoile un procédé ACAES dans lequel l’énergie thermique issue de la phase de compression est utilisée au sein d’un Cycle de Rankine Organique (ORC) pour réchauffer le fluide de travail. Ledit Cycle de Rankine ne fonctionne donc que durant la phase de compression.
L’objet de la présente invention est d’améliorer les performances d’un procédé de stockage d’énergie par gaz comprimé adiabatique de type ACAES en lui associant au moins un cycle de Rankine, par exemple un cycle de Rankine Organique (ORC), producteur d’énergie, dans lequel l’utilisation de la source chaude et de la source froide permettent d’utiliser la chaleur fatale du procédé ou encore d’améliorer le procédé.
Résumé de l’invention
L’invention concerne un système de stockage et de récupération d’énergie par gaz comprimé comprenant :
-Une ligne de compression (1) de gaz avec au moins un étage de compression (3), chaque étage de compression (3) comprenant un moyen de compression (100, 101 , 102) et un moyen de stockage et de récupération de la chaleur (200, 201 , 202) agencé en aval dudit moyen de compression (100, 101 , 102), dans le sens de circulation dudit gaz,
-Au moins un moyen de stockage de gaz comprimé (1000) agencé en sortie de ladite ligne de compression de gaz (1 ) pour stocker ledit gaz comprimé,
-Une ligne de détente de gaz (2) pour détendre ledit gaz comprimé stocké dans ledit moyen de stockage de gaz comprimé (1000), ladite ligne de détente de gaz (2) comprenant au moins un étage de détente (4), chaque étage de détente (4) comportant un moyen de détente (700, 701 , 702) et des conduites configurées pour faire circuler ledit gaz comprimé dans au moins un desdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) desdits étages de compression (3) de manière à réchauffer ledit gaz comprimé,
- Au moins un cycle de Rankine comprenant une turbine de détente (703), un condenseur (800), une pompe (900) et un évaporateur (801), et des conduites configurées pour faire circuler un fluide de travail s’adaptant aux températures mises en jeu dans ledit cycle de Rankine, pour produire une quantité supplémentaire d’énergie à la détente, et agencé entre ledit moyen de stockage de gaz comprimé (1000) dont le flux de sortie (26), éventuellement en mélange avec un liquide, constitue la source froide et ledit moyen de détente (702) dont le flux de sortie (39) constitue la source chaude dans le sens de circulation dudit gaz.
Chaque étage de détente (4) peut comprendre un moyen d’introduction d’un liquide (600, 601 , 602), lesdits moyens d’introduction dudit liquide (600, 601 , 602) étant prévus en amont, dans le sens de circulation dudit gaz, desdits moyens de stockage de la chaleur (200, 201 , 202) et ledit cycle de Rankine étant agencé entre ledit moyen d’introduction dudit liquide (600) dont le flux de sortie (28) constitue la source froide et ledit moyen de détente (702) dont le flux de sortie (39) constitue la source chaude dans le sens de circulation dudit gaz.
De préférence, lesdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) comprennent des particules de stockage de la chaleur.
Chaque étage de compression (3) peut comprendre un moyen de séparation dudit gaz et d’un liquide (400, 401 , 402).
Pour chaque étage de compression, ledit moyen de séparation de gaz et de liquide (400, 401 , 402) peut être agencé en aval dudit moyen de stockage et de récupération de la chaleur (200, 201 , 202), dans le sens de circulation dudit gaz.
Ledit système peut comprendre une pluralité de moyens de stockage de liquide (500, 501 , 502) pour stocker ledit liquide en sortie desdits moyens de séparation de gaz et de liquide (400, 401 , 402), et lesdits moyens d’introduction (600, 601 , 602) peuvent introduire ledit liquide desdits moyens de stockage de liquide (500, 501 , 502).
Dans un mode de réalisation, ladite ligne de compression (1) comprend autant d’étages de compression (3) que la ligne de détente (2) comprend d’étages de détente (4), chaque moyen de stockage et de récupération de la chaleur (200, 201 , 202) d’un étage de compression (3) étant utilisé dans l’étage de détente (4) correspondant.
Ladite ligne de compression (1) et ladite ligne de détente (2) peuvent comporter respectivement trois étages.
Au moins un étage de compression (3) peut comprendre un moyen de refroidissement (300, 301 , 302) en aval du moyen de stockage et de récupération de la chaleur (200, 201 , 202), dans le sens de circulation dudit gaz, de préférence, ledit moyen de refroidissement (300, 301 , 302) comprenant un aéro-réfrigérant ou des échangeurs de chaleur échangeant avec un fluide caloporteur.
Le système peut comprendre un deuxième cycle de Rankine comprenant une turbine de détente (704), un condenseur (802), une pompe (901) et un évaporateur (803), et des conduites configurées pour faire circuler un fluide de travail s’adaptant aux températures mises en jeu dans ledit deuxième cycle de Rankine, ledit deuxième cycle de Rankine étant agencé entre deux moyens de stockage de liquide (503) et (504), ledit moyen de stockage liquide (503) collectant les flux de sortie du fluide caloporteur desdits moyens de refroidissement et ledit moyen de stockage liquide (504) distribuant les flux d’entrée du fluide caloporteur desdits moyens de refroidissement, la source chaude dudit deuxième cycle de Rankine étant le fluide caloporteur issu desdits moyens de refroidissement (300, 301 , 302) stocké dans le moyen de stockage de liquide (503) et la source froide dudit deuxième cycle étant un flux externe de liquide de refroidissement, de préférence de l’eau (49). Le fluide de travail dudit ou desdits cycle(s) de Rankine peut être choisi parmi le propane, le butane ou tout autre fluide réfrigérant s’adaptant aux températures mises en jeu dans ledit cycle de Rankine.
L’invention concerne également un procédé de stockage et de récupération d’énergie par gaz comprimé comprenant au moins les étapes suivantes :
- En phase de stockage d’énergie : a) on comprime successivement au moins une fois un gaz dans une ligne de compression (1) comprenant au moins un étage de compression (3), chaque étage de compression (3) comprenant au moins un moyen de compression (100, 101 , 102) ; b) après chaque étape de compression, on récupère la chaleur dudit gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur (200, 201 , 202) ; c) on stocke ledit gaz comprimé refroidi dans au moins un moyen de stockage de gaz comprimé (1000) ;
- En phase de récupération d’énergie : d) on fait circuler le gaz comprimé sortant du moyen de stockage de gaz comprimé (1000) dans une ligne de détente (2) comprenant au moins un étage de détente (4), et dans chaque étage de détente (4), on réchauffe le gaz comprimé en le faisant circuler dans un desdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) grâce à la chaleur stockée lors de l’étape de compression puis on détend le gaz comprimé réchauffé dans un moyen de détente (700, 701 , 702) ; e) on produit une quantité supplémentaire d’énergie à la détente, au moyen d’au moins un cycle de Rankine comportant une turbine de détente (703), un condenseur (800), une pompe (900) et un évaporateur (801 ), le flux de gaz sortant de la turbine basse pression (702) étant utilisé comme source chaude au sein de l’évaporateur (801) pour évaporer le fluide de travail dudit cycle de Rankine avant sa détente dans la turbine de détente (703) et le flux composé de gaz comprimé en sortie du moyen de stockage de gaz comprimé (1000) ou le flux composé de gaz comprimé et de liquide issu du mélangeur (600) étant utilisé comme source froide au sein du condenseur (800) pour condenser le fluide de travail dudit cycle de Rankine avant sa compression dans la pompe (900).
Avantageusement, on stocke la chaleur dans des particules de stockage de la chaleur, Après chaque étape de compression, on peut séparer ledit gaz et un liquide présent dans ledit gaz.
On peut stocker ledit liquide séparé, et ledit liquide introduit dans ledit gaz comprimé est ledit liquide stocké.
On peut réaliser autant d’étapes de compression que d’étapes de détente, et on utilise le moyen de stockage et de récupération de la chaleur (200, 201 , 202) de chacune des étapes b) pour réchauffer le gaz comprimé de l’étape de détente correspondante. Dans un mode de réalisation, après chaque étape de récupération de la chaleur, on refroidit le gaz comprimé en sortie du moyen de stockage et de récupération de la chaleur (200, 201 , 202) dans un moyen de refroidissement (300, 301 , 302) avant que le gaz ne soit envoyé dans l’étape de compression suivante ou dans le moyen de stockage de gaz comprimé (1000).
Dans une variante de ce mode de réalisation, on peut produire une quantité supplémentaire d’énergie à la détente au moyen d’un deuxième cycle de Rankine comportant une turbine de détente (704), un condenseur (802), une pompe (901) et un évaporateur (803), agencé entre un moyen de stockage liquide (503) permettant de collecter le fluide caloporteur chaud en sortie desdits moyens de refroidissement (300, 301 , 302) et un moyen de stockage liquide (504) permettant d’alimenter en fluide caloporteur froid lesdits moyens de refroidissement (300, 301 , 302), le flux de fluide caloporteur chaud issu desdits moyens de refroidissement (300, 301 , 302) étant utilisé comme source chaude au sein de l’évaporateur (803) pour évaporer le fluide de travail dudit cycle de Rankine avant sa détente dans la turbine de détente (704) ; un flux externe de liquide de refroidissement (49), de préférence de l’eau, étant utilisé comme source froide au sein du condenseur (802) pour condenser le fluide de travail dudit deuxième cycle de Rankine avant sa compression dans la pompe (901) ; et le flux de fluide caloporteur refroidi sortant de l’évaporateur (803) étant stocké dans ledit moyen de stockage liquide (504).
D’autres caractéristiques et avantages du système et du procédé selon l’invention, apparaîtront à la lecture de la description ci-après d’exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
Liste des figures
La figure 1 illustre le fonctionnement général d’un cycle de Rankine tel que mis en oeuvre dans le système et le procédé selon l’invention.
La figure 2 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé adiabatiques, sans cycle de Rankine.
La figure 3 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé incluant un cycle de Rankine selon l’invention, dans ses différentes variantes. La figure 4 illustre un système et procédé de stockage et récupération d’énergie par gaz comprimé dans un mode de réalisation incluant un deuxième cycle de Rankine situé entre les entrées et sorties en fluide caloporteur des moyens de refroidissement.
Description des modes de réalisation
La présente invention concerne un système et un procédé de stockage et de récupération d’énergie par gaz comprimé, mettant en oeuvre au moins un cycle de Rankine, de préférence un Cycle de Rankine Organique (ORC).
Dans la présente invention les termes « amont », « aval », « en entrée », « en sortie », « avant », « après » sont définis par le sens de circulation du gaz, respectivement pendant la phase de stockage d’énergie (phase de compression), et pendant la phase de récupération d’énergie (phase de détente).
Le cycle de Rankine est un cycle thermodynamique qui permet notamment de convertir de la chaleur en une autre énergie, par exemple une énergie électrique ou une énergie mécanique. Un cycle de Rankine (Figure 1 ) est un cycle dans lequel un fluide de travail circulant dans un circuit fermé CF est soumis successivement aux étapes suivantes :
- vaporisation, par exemple au moyen d’un échangeur dit évaporateur (801 ) avec une source chaude C,
- détente, par un moyen de détente du fluide de travail, par exemple une turbine (703), qui convertit l’énergie thermique en énergie mécanique, voire en énergie électrique,
- condensation, par exemple au moyen d’un échangeur dit condenseur (800) qui échange des frigories avec une source froide F, et
- compression et mise en circulation, par exemple au moyen d’une pompe (900).
Le circuit fermé fonctionnant selon le cycle de Rankine comprend en outre des conduits pour relier les différents composants du circuit fermé. Le fluide de travail peut être tout fluide réfrigérant s’adaptant aux températures mises en jeu dans le cycle de Rankine. On entend par Cycle de Rankine Organique (ORC) un Cycle de Rankine dans lequel le fluide de travail est un composé organique, par exemple du propane, du butane, ou tout autre fluide réfrigérant organique s’adaptant aux températures mises en jeu dans le Cycle de Rankine Organique.
Le système selon l’invention comprend :
- une ligne de compression (on appelle « ligne de compression », la ligne de gaz allant de l’entrée de gaz jusqu’au moyen de stockage de gaz comprimé passant par au moins un moyen de compression), avec au moins un étage de compression (lesdits étages successifs étant en série lorsqu’il y en a plusieurs), chaque étage de compression comprend : - un moyen de compression du gaz (compresseur), permettant d’augmenter la pression du gaz, en vue de son stockage, les moyens de compression peuvent être des compresseurs axiaux, centrifuges, ou de toute autre technologie,
- un moyen de stockage et de récupération de la chaleur agencé en aval du moyen de compression, afin de stocker la chaleur générée par la compression, et de diminuer la température du gaz avant l’étage de compression suivant ou avant le moyen de stockage de gaz comprimé,
- au moins un moyen de stockage du gaz comprimé, pour stocker le gaz comprimé en sortie de la ligne de compression afin de le réutiliser ultérieurement, le moyen de stockage du gaz comprimé pouvant être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel ;
-une ligne de détente de gaz (on appelle « ligne de détente », la ligne de gaz allant du moyen de stockage du gaz comprimé à la sortie du gaz en passant par au moins un moyen de détente) avec au moins un étage de détente (les étages successifs étant en série lorsqu’il y en a plusieurs), chaque étage de détente comprend au moins un moyen de détente du gaz comprimé pour générer une énergie, par exemple une turbine pouvant être couplée à un alternateur, des conduites pour faire circuler le gaz dans un des moyens de stockage de la ligne de compression, de manière à récupérer la chaleur stockée et d’augmenter la température du gaz pour augmenter l’énergie produite dans le moyen de détente.
- au moins un cycle de Rankine agencé en parallèle de la ligne de détente afin de valoriser la chaleur fatale issue de la détente et de produire de l’énergie supplémentaire.
Selon l’invention, les moyens de stockage et de récupération de la chaleur comprennent avantageusement des particules de stockage de la chaleur. Ainsi, l’échange de chaleur est réalisé par échange direct entre le gaz et un matériau, le matériau restant dans le moyen de stockage et de récupération de la chaleur. En d’autres termes, il n’y pas de circulation des particules de stockage de la chaleur. Par conséquent, il n’est pas nécessaire d’avoir un système dédié qui comporte des réservoirs de stockage d’un fluide caloporteur, des moyens de pompage, et des conduites dédiées. Par exemple, le matériau peut être des pierres, du béton, des graviers, des billes de matériau à changement de phase (MCP) éventuellement encapsulés, de préférence avec un changement de phase solide-liquide, zéolites, ou tout matériau analogue permettant l’échange et le stockage de chaleur aux températures mises en jeu par le gaz comprimé (de préférence l’air).
De plus, chaque étage de détente peut comporter un moyen d’introduction d’un liquide. Le moyen d’introduction du liquide permet le mélange entre le gaz de la ligne de détente et le liquide. Ainsi, grâce à l’injection du liquide (par exemple de l’eau), le débit de gaz peut être augmenté dans chaque étage de détente, ce qui permet d’augmenter le rendement du système et du procédé. Les moyens d’introduction et de mélange du liquide sont prévus dans la ligne de détente en amont des moyens de stockage de chaleur, de cette manière, le mélange gaz et liquide (de préférence air et eau) réinjecté est réchauffé dans le moyen de stockage de la chaleur, ce qui permet de vaporiser le liquide, et de cette manière seul un gaz est conduit dans le moyen de détente.
Conformément à un mode de réalisation de l’invention, le gaz peut être de l’air. Il peut s’agir de l’air prélevé dans le milieu ambiant. En variante, il peut comporter d’autres gaz.
Selon un aspect de l’invention, le liquide est de l’eau. Il peut s’agir notamment de l’humidité présente dans le gaz, en particulier quand le gaz est de l’air issu du milieu ambiant. En variante, il peut comporter d’autres liquides.
De plus, au moins un étage de compression peut comprendre un moyen de refroidissement. Ce moyen de refroidissement peut être agencé en aval du moyen de stockage et de récupération de la chaleur. Ce moyen de refroidissement permet de refroidir de manière plus importante le gaz, ce qui permet de réduire les dimensions des moyens de stockage et de récupération de la chaleur. Ces moyens de refroidissement de chaleur peuvent être des aéro-réfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement peuvent être adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux.
Selon un mode de réalisation, chaque étage de compression peut comprendre un moyen de séparation gaz/liquide, qui permet d’extraire le liquide présent dans le gaz, notamment en raison de la condensation de l’eau présente dans le gaz, et permettant d’éliminer les traces de liquide qui pourraient être contenues dans le gaz après son refroidissement et qui pourraient endommager le système, notamment les moyens de compression.
Dans ce mode de réalisation, le moyen de séparation gaz/liquide peut être agencé en aval du moyen de refroidissement. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur ainsi que dans le moyen de refroidissement.
De plus, le système peut comprendre des moyens de stockage de liquide, afin de stocker le liquide extrait de la ligne de compression. Par exemple, il peut être prévu un moyen de stockage de liquide par étage de compression (donc par moyen de séparation gaz liquide). Ainsi, on peut stocker le liquide à différentes pressions. De manière avantageuse, les moyens d’introduction du liquide peuvent permettre l’introduction du liquide sortant du moyen de stockage de liquide, rendant ainsi possible l’utilisation de liquide récupéré de condensation, dans la ligne de compression. Selon un mode de réalisation de l’invention, le moyen de séparation gaz/liquide peut être agencé en aval du moyen de stockage et de récupération de la chaleur ou en aval du moyen de refroidissement. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur.
Alternativement, le moyen de séparation gaz/liquide peut être agencé en amont du moyen de compression, ou entre le moyen de compression et le moyen de stockage et de récupération de la chaleur.
Avantageusement, la ligne de compression et la ligne de détente peuvent comprendre autant d’étages. En d’autres termes, le nombre d’étages de compression et le nombre d’étages de détente peuvent être identiques. Cette réalisation permet une conception « symétrique » des lignes de compression et de détente, avec notamment des pressions et des températures de fonctionnement similaires, ce qui favorise les échanges de chaleur dans les moyens de stockage et de récupération de la chaleur, et ce qui permet notamment une réinjection du liquide dans un étage de détente qui correspond à l’étage de compression en termes de pression. Ainsi, le système et le procédé sont simplifiés.
Pour ce mode de réalisation, le nombre d’étages de compression et de détente peut être compris entre deux et six, préférentiellement compris entre trois et cinq. Par exemple, le nombre d’étages de compression et de détente peut valoir trois, ce qui permet une bonne gestion des températures et des pressions, tout en conservant une conception simple.
En variante, le nombre d’étages de compression et le nombre d’étages de détente peuvent être différents. Pour cette réalisation, il peut être prévu de mutualiser au moins une partie des moyens de stockage et de récupération de la chaleur, ainsi qu’au moins une partie des moyens d’introduction du liquide.
La ligne de détente comporte selon l’invention au moins un moyen de valorisation de chaleur complémentaire et de production d’énergie supplémentaire, sous forme d’un cycle de Rankine agencé en parallèle de ladite ligne de détente, ledit cycle de Rankine mettant en oeuvre deux moyens d’échange de chaleur : un moyen pour réchauffer, dans lequel la chaleur du gaz en sortie de la ligne de détente échange avec le fluide de travail dudit cycle de Rankine, et un moyen pour refroidir, dans lequel le gaz en sortie du stockage d’air échange avec le fluide de travail dudit cycle de Rankine.
Ledit au moins un cycle de Rankine est agencé dans un étage de détente compris entre le premier et le dernier étage de détente. Autrement dit, le moyen pour refroidir le fluide de travail est agencé dans un étage de détente compris entre le premier et le dernier étage de détente. On appelle « premier étage de détente », le premier étage de détente traversé par le gaz dans la ligne de détente. En d’autres termes, le premier étage de détente est voisin du moyen de stockage de gaz comprimé. Ainsi, la chaleur du gaz en sortie de la ligne de détente est utilisée pour réchauffer le fluide de travail du cycle de Rankine. De préférence, le moyen pour refroidir le fluide de travail peut être agencé dans le premier étage de détente.
Dans un mode de réalisation, le système selon l’invention peut comprendre un deuxième cycle de Rankine agencé entre les entrées et sorties en fluide caloporteur des moyens de refroidissement, plus précisément entre au moins un moyen de stockage de liquide collectant les flux de fluide caloporteur en sortie desdits moyens de refroidissement et au moins un moyen de stockage liquide distribuant les flux de fluide caloporteur en entrée desdits moyens de refroidissement. Ledit deuxième cycle de Rankine comprend une turbine de détente, un condenseur, une pompe, et un évaporateur, et des conduites configurées pour faire circuler un fluide de travail s’adaptant aux températures mises en jeu dans ledit deuxième cycle de Rankine. Ainsi, il est possible de récupérer de l’énergie supplémentaire du système et du procédé de stockage et de récupération d’énergie par gaz comprimé.
La source chaude dudit deuxième cycle de Rankine est le fluide caloporteur chaud issu desdits moyens de refroidissement et la source froide dudit deuxième cycle de Rankine est un flux externe de liquide de refroidissement, de préférence de l’eau.
Le fluide de travail peut être identique ou différent pour chacun des cycles de Rankine.
En outre, l’invention concerne un procédé de stockage et de récupération d’énergie par gaz comprimé.
Le procédé selon l’invention met en oeuvre les étapes suivantes :
- En phase de stockage d’énergie (phase de compression) : a) on comprime successivement au moins une fois un gaz dans une ligne de compression comprenant au moins un étage de compression, chaque étage de compression comprenant au moins un moyen de compression ; b) après chaque étape de compression, on récupère la chaleur du gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur, c) on stocke le gaz comprimé refroidi en sortie de la ligne de compression dans un moyen de stockage de gaz comprimé ;
- En phase de récupération d’énergie (phase de détente) : d) on fait circuler le gaz comprimé sortant du moyen de stockage de gaz comprimé dans une ligne de détente comprenant au moins un étage de détente, et dans chaque étage de détente, on réchauffe le gaz comprimé en le faisant circuler dans un des moyens de stockage et de récupération de la chaleur grâce à la chaleur stockée lors de l’étape de compression puis on détend le gaz comprimé réchauffé dans un moyen de détente ; e) on produit une quantité supplémentaire d’énergie (par exemple électrique, hydraulique ou pneumatique) à la détente, au moyen d’un cycle de Rankine, le flux de gaz sortant de la turbine étant utilisé comme source chaude au sein d’un évaporateur pour évaporer le fluide de travail dudit cycle de Rankine avant sa détente dans une turbine de détente et le flux composé de gaz comprimé en sortie du moyen de stockage de gaz comprimé ou le flux composé de gaz comprimé et de liquide issu d’un mélangeur gaz-liquide étant utilisé comme source froide au sein d’un condenseur pour condenser le fluide de travail dudit cycle de Rankine avant sa compression dans la pompe.
La mise en oeuvre du cycle de Rankine dans le procédé selon l’invention permet également de valoriser une partie de la chaleur fatale de la détente, qui serait perdue.
De plus, selon l’invention, de manière avantageuse, on stocke et on récupère la chaleur dans des particules de stockage de la chaleur. En d’autres termes, les moyens de stockage et de récupération de la chaleur comprennent avantageusement des particules de stockage de la chaleur. Ainsi, l’échange de chaleur est réalisé par échange direct entre le gaz et un matériau, le matériau restant dans le moyen de stockage et de récupération de la chaleur. En d’autres termes, il n’y pas de circulation des particules de stockage de la chaleur. Par conséquent, il n’est pas nécessaire d’avoir un système dédié qui comporte des réservoirs de stockage d’un fluide caloporteur, des moyens de pompage, et des conduites dédiées. Par exemple, le matériau peut être des pierres, du béton, des graviers, des billes de matériau à changement de phase (MCP), zéolites, ou tout matériau analogue.
De plus, avant chaque étape de détente, on peut introduire et mélanger un liquide dans le gaz comprimé avant l’étape de réchauffage du gaz. Dans ce but, chaque étage de détente peut comporter un moyen d’introduction et de mélange du liquide, rendant ainsi possible l’utilisation du liquide récupéré de condensation, dans la ligne de compression. Ainsi, grâce à l’injection de liquide, le débit de gaz est augmenté dans chaque étage de détente, ce qui permet d’augmenter le rendement du système et du procédé. Les moyens d’introduction et de mélange du liquide sont prévus dans la ligne de détente en amont des moyens de stockage de chaleur, de cette manière, le mélange gaz et liquide injecté est réchauffé dans le moyen de stockage de la chaleur, ce qui permet de vaporiser le liquide, et de cette manière seul un gaz est conduit dans le moyen de détente.
De préférence, le procédé de stockage et de récupération d’énergie par gaz comprimé peut mettre en oeuvre le système de stockage et de récupération d’énergie par gaz comprimé selon l’une quelconque des variantes ou des combinaisons de variantes telles que décrites ci-dessus.
Conformément à un mode de réalisation de l’invention, le gaz peut être de l’air. Il peut s’agir de l’air prélevé dans le milieu ambiant.
Selon un aspect de l’invention, le liquide peut être de l’eau. Il peut s’agir notamment de l’humidité présente dans le gaz, en particulier quand le gaz est de l’air. Selon un mode de réalisation de l’invention, après chaque étape de compression, on peut séparer le gaz et un liquide présent dans le gaz.
En outre, le procédé peut comprendre une étape de stockage de liquide, afin de stocker le liquide extrait de la ligne de compression. Par exemple, il peut être prévu un moyen de stockage de liquide par étape de compression (donc par étape de séparation gaz liquide). Ainsi, on peut stocker le liquide à différentes pressions. De manière avantageuse, le liquide introduit dans le gaz est le liquide issu de l’étape de stockage, rendant ainsi possible l’utilisation de liquide récupéré de condensation, dans la ligne de compression.
Selon un mode de réalisation de l’invention, l’étape de séparation gaz/liquide peut être réalisée après l’étape de stockage de la chaleur. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur.
Avantageusement, on peut réaliser autant d’étapes de compression que d’étapes de détente. Dans ce cas, la ligne de compression et la ligne de détente peuvent comprendre autant d’étages. En d’autres termes, le nombre d’étapes de compression et le nombre d’étapes de détente peuvent être identiques. Cette réalisation permet une conception « symétrique » des lignes de compression et de détente, avec notamment des pressions et des températures de fonctionnement similaires, ce qui favorise les échanges de chaleur dans les moyens de stockage et de récupération de la chaleur, et ce qui permet une réinjection du liquide dans un étage de détente qui correspond à l’étage de compression correspondant. Ainsi, le système et le procédé sont simplifiés.
Pour ce mode de réalisation, le nombre d’étapes de compression et de détente peut être compris entre un et six, préférentiellement compris entre trois et cinq. Par exemple, le nombre d’étapes de compression et de détente peut valoir trois, ce qui permet une bonne gestion des températures et des pressions, tout en conservant une conception simple.
En variante, le nombre d’étapes de compression et le nombre d’étages de détente peuvent être différents. Pour cette réalisation, il peut être prévu de mutualiser au moins une partie des moyens de stockage et de récupération de la chaleur, ainsi qu’au moins une partie des moyens d’introduction du liquide.
De plus, la phase de stockage d’énergie peut comprendre au moins une étape de refroidissement dans un des étages de compression. Cette étape de refroidissement peut être réalisée après l’étape de stockage de la chaleur par un moyen de refroidissement. Cette étape de refroidissement permet de refroidir de manière plus importante le gaz, ce qui permet de réduire les dimensions des moyens de stockage et de récupération de la chaleur. Ces moyens de refroidissement peuvent être des aéro-réfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement peuvent être adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux.
Pour ce mode de réalisation, l’étape de séparation gaz/liquide peut être réalisée après l’étape de refroidissement. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur ainsi que dans l’étape de refroidissement.
Selon l’invention, la phase de récupération d’énergie comporte au moins deux étapes d’échange de chaleur complémentaire, une première entre le gaz en sortie de la ligne de détente et le fluide de travail dudit au moins un cycle de Rankine et une deuxième entre le gaz comprimé et le fluide de travail du cycle de Rankine.
Ainsi, dans ledit au moins un cycle de Rankine, le gaz chaud en sortie de la ligne de détente joue le rôle de source chaude, alors que le gaz comprimé dans la ligne de détente, éventuellement en mélange avec un liquide (par exemple du liquide condensé pendant la phase de compression), joue le rôle de la source froide. De cette manière, on peut récupérer de l’énergie thermique perdue, et ainsi valoriser la chaleur fatale issue du procédé afin d’en améliorer le rendement. Plus précisément, en sortie de turbine de la ligne de détente, le gaz chaud en sortie de la ligne de détente est envoyé à un premier échangeur de chaleur (évaporateur) afin de vaporiser le fluide de travail du cycle de Rankine. Une fois vaporisé, le fluide de travail est envoyé à la turbine de détente du cycle de Rankine qui va produire de l’énergie supplémentaire (par exemple électrique, pneumatique ou hydraulique) à celle produite par la ligne de détente du gaz comprimé, via un alternateur pour l’exemple de l’énergie électrique. En sortie de turbine de détente du cycle de Rankine, le fluide de travail a vu sa pression diminuer ainsi que sa température, mais reste majoritairement sous forme vapeur. Le fluide de travail est envoyé à un deuxième échangeur de chaleur (condenseur) du cycle de Rankine afin d’y être condensé. Une fois condensé, le fluide de travail est envoyé à la pompe du cycle de Rankine afin d’augmenter sa pression.
Selon une variante du mode de réalisation de l’invention dans lequel un ou plusieurs moyens de refroidissement sont présents dans la ligne de compression, il est possible d’intégrer dans le système selon l’invention un deuxième Cycle de Rankine, dans lequel la source chaude est le fluide caloporteur, de préférence de l’eau, issu du ou des moyens de refroidissement, et dont la source froide est un flux de liquide de refroidissement externe, de préférence de l’eau de refroidissement, par exemple issue de rivière, du réseau ou toute autre source d’eau froide.
Description des figures
La figure 1 précédemment décrite illustre le fonctionnement d’un cycle de Rankine. La figure 2 illustre, schématiquement et de manière non limitative, un système et un procédé ACAES classique de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air).
Les flux et étapes sont détaillés ci-dessous respectivement pour la phase de stockage d’électricité et pour la phase de production d’électricité, dans le cas où le gaz est de l’air humide.
Phase de stockage de l’électricité
L’air humide à pression atmosphérique issu du milieu extérieur (10) est comprimé via un premier moyen de compression basse pression (100) ce qui augmente la température de flux en sortie de compression (11) à une température comprise entre 200°C et 400°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur (à contact direct basse pression (200) jusqu’à atteindre une température en sortie (12) entre 100°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (200). L’air peut alors être envoyé dans un moyen de refroidissement supplémentaire (300) pour atteindre par exemple une température en sortie (13) inférieure ou égale à 50°C. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (14) peut alors être séparée du flux d’air (15) dans un séparateur gaz-liquide (400) opérant à la pression et température du flux d’entrée (13) et envoyée dans un bac de stockage (500). L’air séparé de l’eau condensé (15) est comprimé via un deuxième compresseur moyenne pression (101 ) jusqu’à atteindre une température en sortie de compression (16) entre 200°C et 400°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur à contact direct moyenne pression (201) jusqu’à atteindre une température en sortie (17) entre 100°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (201). L’air peut alors être envoyé dans un moyen de refroidissement supplémentaire (301 ) pour atteindre une température en sortie (18) inférieure ou égale à 50°C. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (19) peut alors être séparée du flux d’air (20) dans un séparateur gaz- liquide (401 ) opérant à la pression et température du flux d’entrée (18) et envoyée dans un bac de stockage (501). L’air séparé de l’eau condensé (20) est comprimé via un troisième compresseur haute pression (102) jusqu’à atteindre une température en sortie de compression (21) entre 200°C et 400°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur à contact direct haute pression (202) jusqu’à atteindre une température en sortie (22) entre 100°C et 50°C, de préférence entre 80°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (202). L’air peut alors être envoyé dans un moyen de refroidissement supplémentaire (302) pour atteindre une température en sortie (23) inférieure ou égale à la température de stockage de l’air. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (24) peut alors être séparée du flux d’air (25) dans un séparateur gaz-liquide (402) opérant à la pression et température du flux d’entrée (23) et envoyée dans un bac de stockage (502). Le flux d’air comprimé (25) est envoyé au moyen de stockage d’air comprimé (1000).
Phase de production d’électricité
L’air comprimé (26) est extrait du moyen de stockage d’air comprimé (1000) et peut être mélangé via un système (600) à un flux d’eau condensée (27) provenant du stockage haute pression (502). Le débit du flux (27) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux d’air comprimé (26), éventuellement en mélange avec le flux d’eau condensée (27), est envoyé au moyen de stockage et de récupération de la chaleur à contact direct haute pression (202) de façon à être réchauffé entre 200°C et 400°C. L’eau condensée (27) est vaporisée dans le moyen de stockage et de récupération de la chaleur (202). Le flux d’air chaud (29) est détendu dans la turbine haute pression (700) qui va produire de l’électricité via un alternateur. En sortie de turbine, la pression de l’air a diminué ainsi que sa température. L’air comprimé (30) peut alors être mélangé via un système (601 ) à un flux d’eau condensée (31 ) provenant du stockage moyenne pression (501 ). Le débit du flux (31 ) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux d’air comprimé, éventuellement en mélange avec l’eau condensée (32) est envoyé au moyen de stockage et de récupération de la chaleur à contact direct moyenne pression (201 ) de façon à être réchauffé entre 200°C et 400°C. L’eau condensée (31 ) est totalement vaporisée dans le moyen de stockage et de récupération de la chaleur (201 ). Le flux d’air chaud (33) est détendu dans la turbine moyenne pression (701 ) qui va produire de l’électricité via un alternateur. En sortie de turbine, la pression de l’air a encore diminué ainsi que sa température. L’air comprimé (34) peut être mélangé via un système (602) à un flux d’eau condensée (35) provenant du stockage basse pression (500). Le débit du flux (35) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux d’air ou d’air et eau condensée mélangé (36) est envoyé au moyen de stockage et de récupération de la chaleur à contact direct basse pression (200) de façon à être réchauffé entre 200°C et 400°C. L’eau condensée (35) est totalement vaporisée dans le moyen de stockage et de récupération de la chaleur (200). Le flux d’air chaud (37) est détendu dans la turbine basse pression (702) qui va produire de l’électricité via un alternateur.
En sortie de turbine, le flux d’air (38), à pression atmosphérique et à une température entre 30°C et 100°C, est rejeté à l’atmosphère. La figure 3 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un mode de réalisation particulier de l’invention. Les flux et étapes sont détaillés ci-dessous respectivement pour la phase de stockage d’électricité et pour la phase de production d’électricité, dans le cas où le gaz est de l’air humide.
Phase de stockage de l’électricité
L’air humide à pression atmosphérique issu du milieu extérieur (10) est comprimé via un premier moyen de compression basse pression (100) jusqu’à atteindre une température de flux en sortie de compression (11) entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur à contact direct basse pression (200) jusqu’à atteindre une température en sortie (12) entre 100°C et 50°C, de préférence entre 80°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (200). L’air est alors envoyé dans un moyen de refroidissement supplémentaire (300) pour atteindre une température en sortie (13) inférieure ou égale à 50°C. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (14) est alors séparée du flux d’air (15) dans un séparateur gaz-liquide (400) opérant à la pression et température du flux d’entrée (13) et envoyée dans un bac de stockage (500). L’air séparé de l’eau condensé (15) est comprimé via un deuxième compresseur moyenne pression (101) jusqu’à atteindre une température en sortie de compression (16) entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur à contact direct moyenne pression (201) jusqu’à atteindre une température en sortie (17) entre 100°C et 50°C, de préférence entre 80°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (201 ). L’air est alors envoyé dans un moyen de refroidissement supplémentaire (301) pour atteindre une température en sortie (18) inférieure ou égale à 50°C. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (19) est alors séparée du flux d’air (20) dans un séparateur gaz-liquide (401 ) opérant à la pression et température du flux d’entrée (18) et envoyée dans un bac de stockage (501 ). L’air séparé de l’eau condensé (20) est comprimé via un troisième compresseur haute pression (102) jusqu’à atteindre une température en sortie de compression (21) entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’air est alors refroidi dans un moyen de stockage et de récupération de la chaleur à contact direct haute pression (202) jusqu’à atteindre une température en sortie (22) entre 100°C et 50°C, de préférence entre 80°C et 50°C. La chaleur échangée est stockée directement dans le moyen de stockage et de récupération de la chaleur (202). L’air est alors envoyé dans un moyen de refroidissement supplémentaire (302) pour atteindre une température en sortie (23) inférieure ou égale à la température de stockage de l’air. Une partie de l’humidité de l’air se condense lors du refroidissement sous pression. L’eau condensée (24) est alors séparée du flux d’air (25) dans un séparateur gaz-liquide (402) opérant à la pression et température du flux d’entrée (23) et envoyée dans un bac de stockage (502). Le flux d’air comprimé (25) est envoyé au moyen de stockage d’air comprimé (1000).
Phase de production d’électricité
L’air comprimé (26) est extrait du moyen de stockage d’air comprimé (1000) et est mélangé via un système (600) à un flux d’eau condensée (27) provenant du stockage de liquide haute pression (502). Le débit du flux (27) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux air et eau condensée mélangé (28) est réchauffé dans l’échangeur de chaleur (800) par le fluide de travail du Cycle de Rankine Organique (11 ’). Le flux (29) réchauffé est envoyé au moyen de stockage et de récupération de la chaleur à contact direct haute pression (202) de façon à être réchauffé entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’eau condensée (27) est totalement vaporisée dans l’échangeur (800) et/ou dans le moyen de stockage et de récupération de la chaleur (202). Le flux d’air chaud (30) est détendu dans la turbine haute pression (700) qui va produire de l’électricité via un alternateur. En sortie de turbine, la pression de l’air a diminué ainsi que sa température. L’air comprimé (31) est alors mélangé via un système (601 ) à un flux d’eau condensée (32) provenant du stockage moyenne pression (501). Le débit du flux (32) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux air et eau condensée mélangé (33) est envoyé au moyen de stockage et de récupération de la chaleur à contact direct moyenne pression (201) de façon à être réchauffé entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’eau condensée (32) est totalement vaporisée dans le moyen de stockage et de récupération de la chaleur (201 ). Le flux d’air chaud (34) est détendu dans la turbine moyenne pression (701 ) qui va produire de l’électricité via un alternateur. En sortie de turbine, la pression de l’air a encore diminué ainsi que sa température. L’air comprimé (35) est mélangé via un système (602) à un flux d’eau condensée (36) provenant du stockage basse pression (500). Le débit du flux (36) est optimisé afin qu’il soit constant tout au long de la phase de production d’électricité. Le flux air et eau condensée mélangé (37) est envoyé au moyen de stockage et de récupération de la chaleur à contact direct basse pression (200) de façon à être réchauffé entre 200°C et 400°C, de préférence entre 250°C et 350°C. L’eau condensée (36) est totalement vaporisée dans le moyen de stockage et de récupération de la chaleur (200). Le flux d’air chaud (38) est détendu dans la turbine basse pression (702) qui va produire de l’électricité via un alternateur. En sortie de turbine, le flux d’air (39), à pression atmosphérique et à une température entre 30°C et 100°C, est envoyé à l’échangeur de chaleur (801) afin de vaporiser le flux de fluide de travail (13’) du cycle de Rankine. Une fois vaporisé, le flux de fluide de travail (10’) est envoyé à la turbine de détente (703) qui va produire de l’électricité supplémentaire à celle produite par les étages de détente, via un alternateur. En sortie de turbine (703), le flux de fluide de travail (11 ’) a vu sa pression diminuer ainsi que sa température, mais reste sous forme vapeur. Le flux de fluide de travail (11 ’) est envoyé à l’échangeur de chaleur (800) afin d’y être condensé. Une fois condensé, le flux de fluide de travail (12’) est envoyé à la pompe (900) afin d’augmenter sa pression. Le flux (40) est rejeté à l’atmosphère.
L’intégration d’un cycle de Rankine dans lequel la source chaude est la sortie de la turbine basse pression et la source froide est la sortie du stockage d’air comprimé, dans la phase de détente du procédé de stockage d’air comprimé adiabatique, permet de valoriser la chaleur fatale du procédé (production supplémentaire de 0,48 MW) tout en augmentant le rendement, qui passe de 70,4% à 70,6%.
La figure 4 illustre le mode de réalisation de l’invention dans lequel un deuxième cycle de Rankine est prévu. Le mode de réalisation de la figure 4 diffère du mode de réalisation de la figure 3 uniquement par l’ajout d’un deuxième cycle de Rankine, c’est pourquoi, seul ce deuxième cycle de Rankine est décrit. Le deuxième cycle de Rankine est agencé entre les sorties du fluide caloporteur des moyens de refroidissement (300, 301 , 302) et les entrées du fluide caloporteur des moyens de refroidissement (300, 301 , 302), la source chaude étant l’eau (fluide caloporteur) issue des moyens de refroidissement (300, 301 , 302) et collectée dans un moyen de stockage d’eau à une pression entre 4 et 100 bar (entre 0,4 et 10 MPa), de préférence à la pression du premier étage de compression (503) et la source froide étant de l’eau de refroidissement (49), par exemple issue de rivière, du réseau ou toute autre source d’eau froide. En sortie du moyen de stockage (503), le flux d’eau (44), à une température entre 50°C et 100° C, est envoyé à l’échangeur de chaleur, dit évaporateur (803) afin de vaporiser le flux de fluide de travail (16’) dudit deuxième cycle de Rankine. Une fois vaporisé, le flux de fluide de travail (14’) est envoyé à la turbine de détente (704) qui va produire de l’électricité supplémentaire, via un alternateur. En sortie de turbine (704), le flux de fluide de travail (15’) a vu sa pression diminuer ainsi que sa température mais reste sous forme vapeur. Le flux de fluide de travail (15’) est envoyé à l’échangeur de chaleur, dit condenseur (802) alimenté par la source froide afin d’y être condensé. Une fois condensé, le flux de fluide de travail (16’) est envoyé à la pompe (901) afin d’augmenter sa pression. Le flux (45) d’eau refroidie est envoyé vers un moyen de stockage (504), qui réalimente les moyens de refroidissement (300, 301 , 302). Le flux d’eau réchauffé (50) entre 30°C et 40°C sort du procédé et peut être restitué au milieu extérieur. Comme il va de soi, l’invention ne se limite pas aux seules formes de réalisation du système et du procédé décrits ci-dessus à titre d’exemple, elle embrasse au contraire toutes les variantes de réalisation. En particulier, pour les modes de réalisations des figures 3 et 4, les étapes de séparation eau/liquide, de stockage de liquide, d’injection de liquide, de refroidissement supplémentaire sont des étapes facultatives. De plus, sur ces figures, les lignes de compression et de détente comprennent chacune trois étages. Toutefois, d’autres modes de réalisation peuvent être envisagés, par exemple deux étages dans chaque ligne.
Exemples
Les caractéristiques et avantages du procédé selon l'invention apparaîtront plus clairement à la lecture des exemples d’application ci-après.
Exemple 1 (selon l’invention) :
Cet exemple met en oeuvre le système et le procédé selon le mode de réalisation de l’invention avec réinjection d’eau illustré en figure 3, dans le mode de réalisation dans lequel l’eau condensée en phase de compression est stockée, puis réinjectée dans le flux d’air comprimé sortant du moyen de stockage d’air comprimé (1000) avant la phase de détente (Figure 3 avec les éléments en pointillés).
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar (0,102 MPa) et une température de 27°C et possédant une humidité de 14,6 geau/kgair, est comprimé par un compresseur basse pression (100) d’où il sort (11 ) à une température de 255°C et une pression de 6 bar (0,6 MPa). Ce flux (11 ) est envoyé vers un moyen de stockage et de récupération de chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 80°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée du flux d’air process (15) dans un séparateur gaz-liquide (400), opérant à la pression du flux (13), puis envoyée vers un stockage (500) sous une pression maintenue de 6 bar (0,6 MPa). Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2,8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de chaleur moyenne pression (201) qui refroidit l’air jusqu’à une température de 82°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par le moyen de refroidissement (301 ) jusqu’à atteindre une température de 50°C en sortie (18). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant la phase de refroidissement en (201 ). Cette eau condensée (19) est séparée du flux d’air process (20) dans un séparateur gaz-liquide (401 ), opérant à la pression du flux (18), puis envoyée vers un stockage (501 ) sous une pression maintenue de 28 bar (2,8 MPa). Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21 ) à une température de 250°C et une pression de 117 bar (11 ,7 MPa). Le flux (21 ) est envoyé vers un moyen de stockage et de récupération de chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 80°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par le moyen de refroidissement (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée du flux d’air process (25) dans un séparateur gaz- liquide (402), opérant à la pression du flux (23), puis envoyée vers un stockage (502) sous une pression maintenue de 1 17 bar (11 ,7 MPa).
Le flux d’air comprimé à une pression de 117 bar (1 1 ,7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de déstockage (2).
Lorsque l’on veut produire de l’électricité, un flux d’eau condensée (27) provenant du stockage (502) à une pression de 1 17 bar (11 ,7 MPa) et une température de 30°C est réinjecté dans le flux d’air comprimé (26) sortant du moyen de stockage d’air comprimé (1000) via le mélangeur (600) pour former le flux (28). Le flux (28) est préchauffé dans un échangeur de chaleur (800) afin d’atteindre en sortie (29) une température de 35°C. Le flux (29) est alors réchauffé dans le stockage d’énergie thermique haute pression (202) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (30) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (30) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie
(31 ) une pression de 28 bar (2,8 MPa) et une température de 85°C. Un flux d’eau condensée
(32) provenant du stockage (501 ) à une pression de 28 bar (2,8 MPa) et une température de 50°C est réinjecté dans le flux d’air comprimé (31 ) via le mélangeur (601 ) pour former le flux
(33). Le flux (33) est réchauffé dans le stockage d’énergie thermique moyenne pression (201 ) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (34) atteigne une température de 255°C. Ce flux d’air chaud et comprimé (34) est détendu dans la turbine moyenne pression (701 ) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (35) une pression de 5 bar (0,5 MPa) et une température de 70°C. Un flux d’eau condensée (36) provenant du stockage (500) à une pression de 6 bar (0,6 MPa) et une température de 50°C est réinjecté dans le flux d’air comprimé (35) via le mélangeur (602) pour former le flux (37). Le flux (37) est réchauffé dans le stockage d’énergie thermique basse pression (200) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (38) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (38) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (39) une pression de 1 ,02 bar (0,102 MPa) et une température de 80°C. Ce flux (39) est alors envoyé à l’échangeur de chaleur (801) permettant l’évaporation du fluide de travail dudit cycle de Rankine, ici, du propane (13’). Une fois le flux (10’) sous forme totalement gazeuse à une pression de 28 bar (2,8 MPa) et une température de 75°C, il est envoyé à la turbine de détente (703) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (11 ’) une pression de 13 bar (1 ,3 MPa). Ce flux (11 ’) est condensé totalement dans l’échangeur de chaleur (800) utilisé comme condenseur jusqu’à atteindre la température de 35°C au flux (12’). Ce flux (12’) est alors envoyé vers la pompe (900) afin d’augmenter sa pression et d’atteindre 28 bar (2,8 MPa) au flux (13’).
Tel que décrit ci-dessus, le rendement du procédé de stockage d’énergie est de 70,6% (par rapport à 69,6% pour l’AA-CAES classique sans réinjection d’eau et sans ORC et par rapport à 70,3% pour un AA-CAES avec réinjection d’eau, mais sans ORC, tels que décrits sur la Figure 2 non conforme à l’invention) pour une puissance consommée de 100,0 MW aux compresseurs. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 87,2 MWth et la puissance de refroidissement nécessaire est de 20,3 MWth. Le cycle de Rankine permet de produire 0,48 MW électrique supplémentaire par rapport à un procédé ACAES classique tel que décrit sur la Figure 2 (procédé AA-CAES avec réinjection d’eau en détente, mais sans ORC).
Exemple 2 (selon l’invention) :
L’exemple 2 met en oeuvre le système et le procédé selon le mode de réalisation de l’invention sans réinjection d’eau illustré en figure 3 (Figure 3, sans les éléments en pointillés). Dans cet exemple, l’eau condensée et séparée de l’air après refroidissement en phase de compression n’est pas réinjectée en phase de détente, mais est extraite définitivement du procédé.
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar (0,102 MPa) et une température de 27°C et possédant une humidité de 14,6 geau/kgair, est comprimé par un compresseur basse pression (100) d’où il sort (11) à une température de 255°C et une pression de 6 bar (0,6 MPa). Ce flux (11 ) est envoyé vers un moyen de stockage et de récupération de chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 90°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée du flux d’air process (15) dans un séparateur gaz-liquide (400), opérant à la pression du flux (13), puis extraite définitivement du procédé. Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2,8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de chaleur moyenne pression (201) qui refroidit l’air jusqu’à une température de 100°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par le moyen de refroidissement (301 ) jusqu’à atteindre une température de 50°C en sortie (18). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (201) et/ou (301). Cette eau condensée (19) est séparée du flux d’air process (20) dans un séparateur gaz-liquide (401), opérant à la pression du flux (18), puis extraite définitivement du procédé. Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21 ) à une température de 250°C et une pression de 117 bar (11 ,7 MPa). Le flux (21 ) est envoyé vers un moyen de stockage et de récupération de chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 46°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par le moyen de refroidissement (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée du flux d’air process (25) dans un séparateur gaz- liquide (402), opérant à la pression du flux (23), puis extraite définitivement du procédé.
Le flux d’air comprimé à une pression de 117 bar (11 ,7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de déstockage (2).
Lorsque l’on veut produire de l’électricité, le flux d’air comprimé (26) sortant du moyen de stockage d’air comprimé (1000) est préchauffé dans un échangeur de chaleur (800) afin d’atteindre en sortie (29) une température de 35°C. Le flux (29) est alors réchauffé dans le stockage d’énergie thermique haute pression (202) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (30) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (30) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (31 ) une pression de 28 bar (2,8 MPa) et une température de 85°C. Le flux d’air comprimé (31) est réchauffé dans le stockage d’énergie thermique moyenne pression (201 ) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (34) atteigne une température de 266°C. Ce flux d’air chaud et comprimé (34) est détendu dans la turbine moyenne pression (701) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (35) une pression de 5 bar (0,5 MPa) et une température de 75°C. Le flux d’air comprimé (35) est réchauffé dans le stockage d’énergie thermique basse pression (200) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (38) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (38) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (39) une pression de 1 ,02 bar (0,102 MPa) et une température de 82°C. Ce flux (39) est alors envoyé à l’échangeur de chaleur (801) utilisé comme évaporateur et permettant l’évaporation du fluide de travail dudit cycle de Rankine, ici, du propane (13’). Une fois le flux de fluide de travail (10’) sous forme totalement gazeuse à une pression de 28 bar (2,8 MPa) et une température de 75°C, il est envoyé à la turbine de détente (703) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (11 ’) une pression de 13 bar (1 ,3 MPa). Ce flux (11 ’) est condensé totalement dans l’échangeur de chaleur (800) utilisé comme condenseur jusqu’à atteindre la température de 35°C au flux (12’). Ce flux (12’) est alors envoyé vers la pompe (900) afin d’augmenter sa pression et d’atteindre 28 bar (2,8 MPa) au flux (13’).
Tel que décrit ci-dessus, le rendement du procédé de stockage d’énergie est de 70,0% (par rapport à 69,6% pour l’AA-CAES classique sans réinjection d’eau tel que décrit sur la Figure 2) pour une puissance consommée de 100,0 MW aux compresseurs. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 87,0 MWth et la puissance de refroidissement nécessaire est de 20,5 MWth. Le cycle de Rankine permet de produire 0,44 MW électrique supplémentaire par rapport à un procédé AACAES classique sans ORC.
Exemple 3 (selon l’invention) :
Cet exemple illustre le mode de réalisation du système et procédé selon l’invention dans lequel on met en oeuvre un deuxième cycle de Rankine entre les entrées et sorties en fluide caloporteur des moyens de refroidissement de la ligne de compression (Figure 4).
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar (0,102 MPa) et une température de 27°C et possédant une humidité de 14,6 geau/kgair, est comprimé par un compresseur basse pression (100) d’où il sort (11 ) à une température de 255°C et une pression de 6 bar (0,6 MPa). Ce flux (11) est envoyé vers un moyen de stockage et de récupération de chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 80°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement à eau (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux d’eau froide (46) issu du stockage (504) est alors réchauffé dans ledit moyen de refroidissement (300) pour former le flux (41) qui est stocké dans le stockage d’eau chaude (503). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée du flux d’air process (15) dans un séparateur gaz-liquide (400), opérant à la pression du flux (13), puis envoyée vers un stockage (500) sous une pression maintenue de 6 bar (0,6 MPa). Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2,8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de chaleur moyenne pression (201) qui refroidit l’air jusqu’à une température de 82°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par le moyen de refroidissement à eau (301) jusqu’à atteindre une température de 50°C en sortie (18). Le flux d’eau froide (47) issu du stockage (504) est alors réchauffé dans le moyen de refroidissement (301) pour former le flux (42) qui est stocké dans le stockage d’eau chaude (503). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (201) et/ou (301). Cette eau condensée (19) est séparée du flux d’air process (20) dans un séparateur gaz-liquide (401 ), opérant à la pression du flux (18), puis envoyée vers un stockage (501 ) sous une pression maintenue de 28 bar (2,8 MPa). Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21) à une température de 250°C et une pression de 117 bar (11 ,7 MPa). Le flux (21) est envoyé vers un moyen de stockage et de récupération de chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 45°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par l’échangeur à eau (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux d’eau froide (48) issu du stockage (504) est alors réchauffé dans le moyen de refroidissement à eau (302) pour former le flux (43) qui est stocké dans le stockage d’eau chaude (503). Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée du flux d’air process (25) dans un séparateur gaz-liquide (402), opérant à la pression du flux (23), puis envoyée vers un stockage (502) sous une pression maintenue de 117 bar (11 ,7 MPa).
Le flux d’air comprimé à une pression de 117 bar (11 ,7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de déstockage (2).
Lorsque l’on veut produire de l’électricité, un flux d’eau condensée (27) provenant du stockage (502) à une pression de 117 bar (11 ,7 MPa) et une température de 30°C est réinjecté dans le flux d’air comprimé (26) sortant du moyen de stockage d’air comprimé (1000) via le mélangeur (600) pour former le flux (28). Le flux (28) est préchauffé dans un échangeur de chaleur (800) afin d’atteindre en sortie (29) une température de 35°C. Le flux (29) est alors réchauffé dans le stockage d’énergie thermique haute pression (202) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (30) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (30) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie
(31 ) une pression de 28 bar (2,8 MPa) et une température de 85°C. Un flux d’eau condensée
(32) provenant du stockage (501) à une pression de 28 bar (2,8 MPa) et une température de 50°C est réinjecté dans le flux d’air comprimé (31) via le mélangeur (601) pour former le flux
(33). Le flux (33) est réchauffé dans le stockage d’énergie thermique moyenne pression (201) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (34) atteigne une température de 255°C. Ce flux d’air chaud et comprimé (34) est détendu dans la turbine moyenne pression (701 ) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (35) une pression de 5 bar (0,5 MPa) et une température de 70°C. Un flux d’eau condensée (36) provenant du stockage (500) à une pression de 6 bar (0,6 MPa) et une température de 50°C est réinjecté dans le flux d’air comprimé (35) via le mélangeur (602) pour former le flux (37). Le flux (37) est réchauffé dans le stockage d’énergie thermique basse pression (200) qui libère la chaleur stockée durant la phase de compression jusqu’à ce que le flux (38) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (38) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (39) une pression de 1 ,02 bar (0,102 MPa) et une température de 80°C. Ce flux (39) est alors envoyé à l’échangeur de chaleur (évaporateur) (801) permettant l’évaporation du fluide de travail dudit cycle de Rankine 1 , ici, du propane (13’). Une fois le flux de fluide de travail (10’) sous forme totalement gazeuse à une pression de 28 bar (2,8 MPa) et une température de 75°C, il est envoyé à la turbine de détente (703) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (11 ’) une pression de 13 bar (1 ,3 MPa). Ce flux (11 ’) est condensé totalement dans l’échangeur de chaleur (800) utilisé comme condenseur jusqu’à atteindre la température de 35°C en sortie (flux (12’)). Ce flux (12’) est alors envoyé vers la pompe (900) afin d’augmenter sa pression et d’atteindre 28 bar (2, 8 MPa) au flux (13’).
Un cycle de Rankine 2, disposé en parallèle du précédent fait intervenir un fluide de travail, ici, du propane (17’) qui est vaporisé via l’évaporateur (803). Cet évaporateur est alimenté par l’eau chaude (44) issue du stockage (503) collectant l’eau issue des moyens de refroidissement (300, 301 , 302). Une fois refroidie, l’eau (45) est renvoyée au stockage d’eau froide (504). Le propane vaporisé (14’) est envoyé à la turbine de détente (704) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (15’) une pression de 10 bar (1 MPa). Ce flux de propane (15’) est alors envoyé au condenseur (802) alimenté par de l’eau à 20°C. Une fois condensé, le flux (16’) est alors envoyé vers la pompe (901) afin d’augmenter sa pression et d’atteindre 22 bar (2,2 MPa) au flux (17’). Dans le mode de réalisation décrit ci-dessus, le rendement du procédé de stockage d’énergie est de 72,2% (par rapport à 69,6% pour l’AA-CAES classique sans réinjection d’eau et sans ORC et par rapport à 70,3% pour un AA-CAES avec réinjection d’eau mais sans ORC) pour une puissance consommée de 100,0 MW aux compresseurs. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 87,2 MWth et la puissance de refroidissement nécessaire est de 20,3 MWth. Le cycle de Rankine 1 permet de produire 0,48 MW électrique supplémentaire et le cycle de Rankine 2 permet de produire 1 ,23 MW électrique supplémentaire par rapport à un procédé AACAES classique tel que décrit sur la Figure 2 (procédé AA-CAES avec réinjection d’eau en détente, mais sans ORC).
Ainsi, les exemples 1 à 3 montrent que la mise en oeuvre d’au moins un cycle de Rankine dans le système et le procédé selon l’invention dans l’une quelconque de ses variantes, permet d’augmenter les performances du procédé AA-CAES, tout en limitant la puissance nécessaire au refroidissement.

Claims

Revendications
1 .Système de stockage et de récupération d’énergie par gaz comprimé comprenant :
-Une ligne de compression (1) de gaz avec au moins un étage de compression (3), chaque étage de compression (3) comprenant un moyen de compression (100, 101 , 102) et un moyen de stockage et de récupération de la chaleur (200, 201 , 202) agencé en aval dudit moyen de compression (100, 101 , 102), dans le sens de circulation dudit gaz,
-Au moins un moyen de stockage de gaz comprimé (1000) agencé en sortie de ladite ligne de compression de gaz (1 ) pour stocker ledit gaz comprimé,
-Une ligne de détente de gaz (2) pour détendre ledit gaz comprimé stocké dans ledit moyen de stockage de gaz comprimé (1000), ladite ligne de détente de gaz (2) comprenant au moins un étage de détente (4), chaque étage de détente (4) comportant un moyen de détente (700, 701 , 702) et des conduites configurées pour faire circuler ledit gaz comprimé dans au moins un desdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) desdits étages de compression (3) de manière à réchauffer ledit gaz comprimé,
- Au moins un cycle de Rankine comprenant une turbine de détente (703), un condenseur (800), une pompe (900) et un évaporateur (801), et des conduites configurées pour faire circuler un fluide de travail s’adaptant aux températures mises en jeu dans ledit cycle de Rankine, pour produire une quantité supplémentaire d’énergie à la détente, et agencé entre ledit moyen de stockage de gaz comprimé (1000) dont le flux de sortie (26), éventuellement en mélange avec un liquide, constitue la source froide et ledit moyen de détente (702) dont le flux de sortie (39) constitue la source chaude dans le sens de circulation dudit gaz.
2. Système selon la revendication 1 dans lequel chaque étage de détente (4) comprend un moyen d’introduction d’un liquide (600, 601 , 602), lesdits moyens d’introduction dudit liquide (600, 601 , 602) étant prévus en amont, dans le sens de circulation dudit gaz, desdits moyens de stockage de la chaleur (200, 201 , 202) et ledit cycle de Rankine étant agencé entre ledit moyen d’introduction dudit liquide (600) dont le flux de sortie (28) constitue la source froide et ledit moyen de détente (702) dont le flux de sortie (39) constitue la source chaude dans le sens de circulation dudit gaz.
3. Système selon la revendication 1 ou 2, dans lequel lesdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) comprennent des particules de stockage de la chaleur.
4.Système selon l’une des revendications précédentes dans lequel chaque étage de compression (3) comprend un moyen de séparation dudit gaz et d’un liquide (400, 401 , 402).
5. Système selon la revendication 4, dans lequel, pour chaque étage de compression, ledit moyen de séparation de gaz et de liquide (400, 401 , 402) est agencé en aval dudit moyen de stockage et de récupération de la chaleur (200, 201 , 202), dans le sens de circulation dudit gaz.
6.Système selon l’une des revendications 4 ou 5, dans lequel ledit système comprend une pluralité de moyens de stockage de liquide (500, 501 , 502) pour stocker ledit liquide en sortie desdits moyens de séparation de gaz et de liquide (400, 401 , 402), et lesdits moyens d’introduction (600, 601 , 602) introduisent ledit liquide desdits moyens de stockage de liquide (500, 501 , 502).
7.Système selon l’une des revendications précédentes, dans lequel ladite ligne de compression (1) comprend autant d’étages de compression (3) que la ligne de détente (2) comprend d’étages de détente (4), chaque moyen de stockage et de récupération de la chaleur (200, 201 , 202) d’un étage de compression (3) étant utilisé dans l’étage de détente (4) correspondant.
8.Système selon la revendication 7, dans lequel ladite ligne de compression (1) et ladite ligne de détente (2) comportent respectivement trois étages.
9. Système selon l’une des revendications précédentes, dans lequel au moins un étage de compression (3) comprend un moyen de refroidissement (300, 301 , 302) en aval du moyen de stockage et de récupération de la chaleur (200, 201 , 202), dans le sens de circulation dudit gaz, de préférence, ledit moyen de refroidissement (300, 301 , 302) comprend un aéroréfrigérant ou des échangeurs de chaleur échangeant avec un fluide caloporteur.
10. Système selon la revendication 9 comprenant un deuxième cycle de Rankine comprenant une turbine de détente (704), un condenseur (802), une pompe (901) et un évaporateur (803), et des conduites configurées pour faire circuler un fluide de travail s’adaptant aux températures mises en jeu dans ledit deuxième cycle de Rankine, ledit deuxième cycle de Rankine étant agencé entre deux moyens de stockage de liquide (503) et (504), ledit moyen de stockage liquide (503) collectant les flux de sortie du fluide caloporteur desdits moyens de refroidissement et ledit moyen de stockage liquide (504) distribuant les flux d’entrée du fluide caloporteur desdits moyens de refroidissement, la source chaude dudit deuxième cycle de Rankine étant le fluide caloporteur issu desdits moyens de refroidissement (300, 301 , 302) stocké dans le moyen de stockage de liquide (503) et la source froide dudit deuxième cycle étant un flux externe de liquide de refroidissement, de préférence de l’eau (49).
11. Système selon l’une des revendications précédentes dans lequel le fluide de travail dudit ou desdits cycle(s) de Rankine est choisi parmi le propane, le butane ou tout autre fluide réfrigérant s’adaptant aux températures mises en jeu dans ledit cycle de Rankine.
12. Procédé de stockage et de récupération d’énergie par gaz comprimé comprenant au moins les étapes suivantes :
- En phase de stockage d’énergie : a) on comprime successivement au moins une fois un gaz dans une ligne de compression (1) comprenant au moins un étage de compression (3), chaque étage de compression (3) comprenant au moins un moyen de compression (100, 101 , 102) ; b) après chaque étape de compression, on récupère la chaleur dudit gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur (200, 201 , 202) ; c) on stocke ledit gaz comprimé refroidi dans au moins un moyen de stockage de gaz comprimé (1000) ;
- En phase de récupération d’énergie : d) on fait circuler le gaz comprimé sortant du moyen de stockage de gaz comprimé (1000) dans une ligne de détente (2) comprenant au moins un étage de détente (4), et dans chaque étage de détente (4), on réchauffe le gaz comprimé en le faisant circuler dans un desdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) grâce à la chaleur stockée lors de l’étape de compression puis on détend le gaz comprimé réchauffé dans un moyen de détente (700, 701 , 702) ; e) on produit une quantité supplémentaire d’énergie à la détente, au moyen d’au moins un cycle de Rankine comportant une turbine de détente (703), un condenseur (800), une pompe (900) et un évaporateur (801 ), le flux de gaz sortant de la turbine basse pression (702) étant utilisé comme source chaude au sein de l’évaporateur (801) pour évaporer le fluide de travail dudit cycle de Rankine avant sa détente dans la turbine de détente (703) et le flux composé de gaz comprimé en sortie du moyen de stockage de gaz comprimé (1000) ou le flux composé de gaz comprimé et de liquide issu du mélangeur (600) étant utilisé comme source froide au sein du condenseur (800) pour condenser le fluide de travail dudit cycle de Rankine avant sa compression dans la pompe (900).
13. Procédé selon la revendication 12, dans lequel on stocke la chaleur dans des particules de stockage de la chaleur,
14. Procédé selon la revendication 12 ou 13 dans lequel après chaque étape de compression, on sépare ledit gaz et un liquide présent dans ledit gaz.
15. Procédé selon la revendication 14, dans lequel on stocke ledit liquide séparé, et ledit liquide introduit dans ledit gaz comprimé est ledit liquide stocké.
16. Procédé selon l’une des revendication 12 à 15, dans lequel on réalise autant d’étapes de compression que d’étapes de détente, et on utilise le moyen de stockage et de récupération de la chaleur (200, 201 , 202) de chacune des étapes b) pour réchauffer le gaz comprimé de l’étape de détente correspondante.
17. Procédé selon l’une des revendications 12 à 16, dans lequel après chaque étape de récupération de la chaleur, on refroidit le gaz comprimé en sortie du moyen de stockage et de récupération de la chaleur (200, 201 , 202) dans un moyen de refroidissement (300, 301 , 302) avant que le gaz ne soit envoyé dans l’étape de compression suivante ou dans le moyen de stockage de gaz comprimé (1000).
18. Procédé selon la revendication 17 dans lequel on produit une quantité supplémentaire d’énergie à la détente au moyen d’un deuxième cycle de Rankine comportant une turbine de détente (704), un condenseur (802), une pompe (901) et un évaporateur (803), agencé entre un moyen de stockage liquide (503) permettant de collecter le fluide caloporteur chaud en sortie desdits moyens de refroidissement (300, 301 , 302) et un moyen de stockage liquide (504) permettant d’alimenter en fluide caloporteur froid lesdits moyens de refroidissement (300, 301 , 302), le flux de fluide caloporteur chaud issu desdits moyens de refroidissement
(300, 301 , 302) étant utilisé comme source chaude au sein de l’évaporateur (803) pour évaporer le fluide de travail dudit cycle de Rankine avant sa détente dans la turbine de détente (704) ; un flux externe de liquide de refroidissement (49), de préférence de l’eau, étant utilisé comme source froide au sein du condenseur (802) pour condenser le fluide de travail dudit deuxième cycle de Rankine avant sa compression dans la pompe (901) ; et le flux de fluide caloporteur refroidi sortant de l’évaporateur (803) étant stocké dans ledit moyen de stockage liquide (504).
PCT/EP2021/082779 2020-12-03 2021-11-24 Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine WO2022117407A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012641A FR3117164B1 (fr) 2020-12-03 2020-12-03 Système et procédé de stockage et de récupération d’énergie par gaz comprimé avec cycle de Rankine
FRFR2012641 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022117407A1 true WO2022117407A1 (fr) 2022-06-09

Family

ID=74206067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082779 WO2022117407A1 (fr) 2020-12-03 2021-11-24 Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine

Country Status (2)

Country Link
FR (1) FR3117164B1 (fr)
WO (1) WO2022117407A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150000248A1 (en) * 2012-02-23 2015-01-01 Prextor Systems, S.L. Combined Cycle CAES Technology (CCC)
EP2634383B1 (fr) * 2012-03-01 2016-04-27 Institut Für Luft- Und Kältetechnik Gemeinnützige GmbH Procédé et agencement pour l'accumulation d'énergie
CN105569753A (zh) 2016-01-20 2016-05-11 中国科学院工程热物理研究所 一种利用caes过程余热的有机朗肯循环发电装置
WO2016079485A1 (fr) 2014-11-17 2016-05-26 Demetair Systems Ltd Système de récupération de chaleur résiduelle combiné à un stockage d'énergie à air comprimé
US10317008B2 (en) * 2016-07-15 2019-06-11 IFP Energies Nouvelles Container for a system for storing and restoring heat, comprising at least two modules formed from concrete
FR3074846A1 (fr) 2017-12-11 2019-06-14 IFP Energies Nouvelles Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150000248A1 (en) * 2012-02-23 2015-01-01 Prextor Systems, S.L. Combined Cycle CAES Technology (CCC)
EP2634383B1 (fr) * 2012-03-01 2016-04-27 Institut Für Luft- Und Kältetechnik Gemeinnützige GmbH Procédé et agencement pour l'accumulation d'énergie
WO2016079485A1 (fr) 2014-11-17 2016-05-26 Demetair Systems Ltd Système de récupération de chaleur résiduelle combiné à un stockage d'énergie à air comprimé
CN105569753A (zh) 2016-01-20 2016-05-11 中国科学院工程热物理研究所 一种利用caes过程余热的有机朗肯循环发电装置
US10317008B2 (en) * 2016-07-15 2019-06-11 IFP Energies Nouvelles Container for a system for storing and restoring heat, comprising at least two modules formed from concrete
FR3074846A1 (fr) 2017-12-11 2019-06-14 IFP Energies Nouvelles Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire

Also Published As

Publication number Publication date
FR3117164A1 (fr) 2022-06-10
FR3117164B1 (fr) 2022-11-18

Similar Documents

Publication Publication Date Title
EP3052773B1 (fr) Système thermodynamique de stockage/production d'énergie électrique
EP3283734B1 (fr) Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
EP3732743B1 (fr) Ensemble de production d'énergie couplant une pile à combustible et un système thermodynamique réversible
FR3016025A1 (fr) Combinaison d'une unite de stockage d'energie par air comprime et d'une centrale thermique
FR3074846A1 (fr) Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire
WO2013057427A1 (fr) Stockage adiabatique ameliore d'energie sous forme de chaleur et d'air comprime.
EP2764243A1 (fr) Procédé et système perfectionné de conversion de l'énergie thermique marine
US20200347783A1 (en) Improved method for storing and producing energy with optimised water management
EP1488843B1 (fr) Procédé de traitement de fumées
WO2022117407A1 (fr) Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine
WO2014020277A1 (fr) Dispositif de stockage et de restitution d'énergie électrique et procédé de stockage et de restitution d'énergie électrique par un tel dispositif
WO2022117398A1 (fr) Systeme et procede de stockage et de recuperation d'energie par gaz comprime avec recuperation de liquide
FR3133431A1 (fr) Pompe a chaleur a deux systemes de stockage et restitution d’energie thermique
WO2022117397A1 (fr) Systeme et procede de stockage et de recuperation d'energie par gaz comprime avec rechauffage de liquide
WO2022117406A1 (fr) Procede de stockage et de recuperation d'energie avec optimisation thermique a la detente
WO2022268830A1 (fr) Procede de stockage et de recuperation d'energie avec stockage de chaleur indirect a la compression
FR3117163A1 (fr) procédé de stockage et de récupération d’énergie comprenant une turbine à gaz pour réchauffer le gaz comprimé à la détente
WO2019115119A1 (fr) Systeme de stockage et de recuperation d'energie ameliore
WO2023170300A1 (fr) Pompe a chaleur a deux systemes de stockage et restitution d'energie thermique
FR3029612A1 (fr) Systeme de liquefaction de gaz a machine a absorption et pompe a chaleur stirling
FR2964693A1 (fr) Installation de restitution d'energie
WO2024134651A1 (fr) Système et procédé de stockage et de récupération d'hydrogène
FR2938003A1 (fr) Procede et dispositif de production d'electricite en utilisant de l'energie thermique a partir d'une source chaude,d'une source froide et d'un gaz moteur.
FR2997445A1 (fr) Procede et systeme de conversion d'une energie thermique en energie mecanique, notamment pour la conversion de l'energie thermique des mers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21819434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21819434

Country of ref document: EP

Kind code of ref document: A1