WO2022116966A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022116966A1
WO2022116966A1 PCT/CN2021/134417 CN2021134417W WO2022116966A1 WO 2022116966 A1 WO2022116966 A1 WO 2022116966A1 CN 2021134417 W CN2021134417 W CN 2021134417W WO 2022116966 A1 WO2022116966 A1 WO 2022116966A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
information
antenna port
srs
antenna
Prior art date
Application number
PCT/CN2021/134417
Other languages
English (en)
French (fr)
Inventor
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/039,886 priority Critical patent/US20240007173A1/en
Priority to EP21899997.7A priority patent/EP4240085A4/en
Publication of WO2022116966A1 publication Critical patent/WO2022116966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • the existing uplink enhancement solutions mainly include the realization of cooperative transmission of multiple frequency points through technologies such as carrier aggregation (CA) and supplementary uplink (SUL), which can improve the utilization of spectrum resources or improve the uplink to a certain extent. cover.
  • CA carrier aggregation
  • SUL supplementary uplink
  • Embodiments of the present application provide a communication method and apparatus for improving uplink performance.
  • a communication method is provided, and the method can be executed by a terminal device, or executed by a chip system, and the chip system can realize the functions of the terminal device.
  • the method includes: sending a first message to a network device, where the first message includes capability information of the terminal device, where the capability information is used to indicate the antenna ports supported by the P frequency domain units of the terminal device, wherein the The antenna ports supported by the i-th frequency-domain unit in the P frequency-domain units include the antenna ports associated with the i-th frequency-domain unit, and include the associated antenna ports of the N i frequency-domain units in the P frequency-domain units.
  • the antenna ports that can be switched to the ith frequency domain unit, the N i frequency domain units do not include the ith frequency domain unit, and at least two of the P frequency domain units
  • the frequency domain unit is associated with the respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P; receiving configuration information from the network device, the configuration information is used for the
  • the first frequency domain unit of the terminal device is configured with at least two SRS resources, the first frequency domain unit is associated with the first uplink transmission configuration information, and the SRS ports of the at least two SRS resources of the first frequency domain unit are the same as those of the first frequency domain unit. are associated with the antenna ports supported by the first frequency domain unit.
  • one or more antenna ports included in the terminal device can be connected to a switch, and the switch can be switched to radio frequency links associated with more frequency domain units, so that more radio frequency links associated with the links can be sent.
  • Carrier information that is to say, in this embodiment of the present application, the antenna ports are switched between radio frequency links of different frequency domain units, so that one radio frequency link can be connected to more antenna ports, and then a single frequency domain unit can support more Multiple antenna ports and high flexibility to improve uplink transmission performance.
  • the capability information is used to indicate the antenna ports supported by the P frequency domain units of the terminal device, including: the capability information is used to indicate The antenna port index x i supported by the ith frequency domain unit in the P frequency domain units, x i is an integer greater than or equal to 1 and less than or equal to N t , or x i is a non-negative integer less than N t , N t is the total number of antenna ports associated with the P frequency domain units; or, the capability information is used to indicate the total number N t of antenna ports of the terminal device, and the P frequency domain units are associated with the N t antenna ports .
  • the capability information may indicate the indices of the antenna ports supported by the P frequency domain units, which makes the indication of the capability information clearer and helps the network device to know the capabilities of the UE more clearly.
  • the capability information may indicate the total number of antenna ports, and there is no need to distinguish which antenna ports are supported by each frequency domain unit, which helps to reduce signaling overhead.
  • the capability information is used to indicate the antenna ports supported by the P frequency domain units of the terminal device, including: the capability information is used to indicate the number M i of antenna ports associated with the i th frequency domain unit in the P frequency domain units; and the first message further includes first information, where the first information is used to indicate the M i antennas
  • the port can be switched to the information of the jth frequency domain unit, i is not equal to j, and i and j are integers greater than or equal to 1 and less than or equal to P.
  • This method is equivalent to using the existing information and adding new information on the basis of the existing information, so as to realize the indication of the antenna ports supported by the P frequency domain units.
  • the number of antenna ports associated with the P frequency domain units is existing information
  • the first message can also add first information
  • the existing information and the first information can indicate the antenna ports supported by the P frequency domain units.
  • the existing information is used to indicate the features of the embodiments of the present application, which improves the utilization rate of the existing information.
  • the first information is used to indicate that the M i antenna ports can be switched to the j th antenna port
  • the first information also has different indication modes, which can indicate the number of antenna ports that can be switched to the j-th frequency domain unit among the M i antenna ports. This mode is relatively simple and helps to reduce signaling overhead. Alternatively, the first information may also indicate which antenna port can be switched to the jth frequency domain unit, so as to make the indication more explicit.
  • the configuration information is further used to configure the association relationship between different SRS ports of the at least two SRS resources and different antenna ports supported by the first frequency domain unit, wherein one SRS The port has an associated relationship with one antenna port, and is used to instruct the terminal device to send the SRS of the one SRS port through the one antenna port.
  • the SRS port is associated with the antenna port, which can be understood as sending the SRS of the SRS port through the antenna port.
  • the terminal device can specify which antenna port the SRS corresponding to an SRS port should be sent through, and the network device can also specify the SRS corresponding to an SRS port after receiving it. Which antenna of the terminal device sends the data, so that the network device can perform channel estimation on the uplink channel corresponding to the antenna, so as to more accurately schedule the terminal device.
  • the configuration information is further used to configure a second SRS resource for the second frequency domain unit of the terminal device. If the second SRS resource and the first SRS resource occupy the same time unit, the The second SRS resource and the first SRS resource are not associated with the same antenna port, and the first SRS resource is one of the at least two SRS resources. It can be understood that one antenna port is only used to transmit information on one carrier at a time, so as to facilitate the scheduling of network devices and avoid confusion.
  • the method further includes: receiving scheduling information from a network device, the scheduling information is used to schedule uplink data on the first frequency domain unit, the scheduling information further includes second information, the The second information is used to indicate the SRS port of the SRS resource associated with the antenna port for sending the uplink data; the uplink data is sent to the network device through the antenna port associated with the SRS port of the SRS resource.
  • the network device may indicate an antenna port for sending the uplink data, so that the terminal device may send the uplink data through the antenna port indicated by the network device.
  • These antenna ports are, for example, determined by the network device according to channel estimation performed on the uplink channel corresponding to the antenna of the terminal device, so that the uplink transmission quality can be improved.
  • the SRS resource associated with the antenna port for sending the uplink data indicated by the second information is
  • the SRS port includes a first SRS port
  • the scheduling information further includes third information, where the third information is used to indicate a phase of an antenna port associated with the first SRS port.
  • the antenna ports can be switched to radio frequency links associated with different carriers through switches, so that information on different carriers can be sent. Considering that if the phase of the antenna port remains unchanged after switching to a radio frequency link associated with a different carrier, the antenna port may experience poor transmission performance when transmitting information on some carriers.
  • the phase of the antenna port can also be adjusted, for example, the phase difference between multiple antenna ports connected by a radio frequency link can be adjusted by a phase shifter, and the beamforming gain that can be obtained by each carrier of the terminal device can be flexibly adjusted, to improve the upstream transmission performance.
  • the method can be executed by a network device, or by a chip system, and the chip system can realize the function of the network device.
  • the network device is an access network device, such as a base station.
  • the method includes: receiving a first message from a terminal device, where the first message includes capability information of the terminal device, where the capability information is used to indicate antenna ports supported by P frequency domain units of the terminal device, wherein, the antenna ports supported by the i-th frequency-domain unit in the P frequency-domain units include the antenna ports associated with the i-th frequency-domain unit, and include the N i frequency-domain units in the P frequency-domain units.
  • the antenna port can be switched to the ith frequency domain unit, the N i frequency domain units do not include the ith frequency domain unit, and the P frequency domain units At least two frequency domain units are associated with respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P; send configuration information to the terminal device, the configuration information is used for
  • the first frequency domain unit of the terminal device is configured with at least two SRS resources, the first frequency domain unit is associated with the first uplink transmission configuration information, and the SRS ports of the at least two SRS resources of the first frequency domain unit is associated with an antenna port supported by the first frequency domain unit.
  • the capability information is used to indicate the antenna ports supported by the P frequency domain units of the terminal device, including: the capability information is used to indicate The antenna port index x i supported by the ith frequency domain unit in the P frequency domain units, x i is an integer greater than or equal to 1 and less than or equal to N t , or x i is a non-negative integer less than N t , N t is the total number of antenna ports associated with the P frequency domain units; or, the capability information is used to indicate the total number N t of antenna ports of the terminal device, and the P frequency domain units are associated with the N t antenna ports .
  • the capability information is used to indicate the antenna ports supported by the P frequency domain units of the terminal device, including: the capability information is used to indicate the number M i of antenna ports associated with the i th frequency domain unit in the P frequency domain units; and the first message further includes first information, where the first information is used to indicate the M i antennas
  • the port can be switched to the information of the jth frequency domain unit, i is not equal to j, and i and j are integers greater than or equal to 1 and less than or equal to P.
  • the first information is used to indicate that the M i antenna ports can be switched to the j th antenna port
  • the configuration information is further used to configure the association relationship between different SRS ports of the at least two SRS resources and different antenna ports supported by the first frequency domain unit, wherein one SRS The port has an associated relationship with one antenna port, and is used to instruct the terminal device to send the SRS of the one SRS port through the one antenna port.
  • the configuration information is further used to configure a second SRS resource for the second frequency domain unit of the terminal device. If the second SRS resource and the first SRS resource occupy the same time unit, the The second SRS resource and the first SRS resource are not associated with the same antenna port, and the first SRS resource is one of the at least two SRS resources.
  • the method further includes: if the first condition is satisfied, sending new configuration information to the terminal device, where the new configuration information is used to configure at least one frequency domain unit for the first frequency domain unit.
  • An SRS resource The network device may only send the configuration information to the UE once, and will not change it after sending, for example, after the random access of the UE succeeds, the configuration information will be sent to the UE, and will not be changed after sending. Alternatively, the network device may also update the configuration information.
  • the network device can send new configuration information to the UE, and the new configuration information is still used to configure SRS resources for the carrier of the UE, so that the configuration of SRS resources can be more compliant with Current network status to get better uplink transmission performance.
  • the configuration information is further used to configure the SRS port of the at least one SRS resource and the Associations between antenna ports supported by a frequency domain unit.
  • the association relationship may also be determined by a predefined rule, for example, the predefined rule may be included in the protocol, and the configuration information may not necessarily configure the association relationship.
  • the first condition includes the following: Item or items: the uplink channel quality of the terminal device is lower than the first threshold; the time when the configuration information is sent is the start time, and the first time period is reached from the start time to the current time; the The terminal device is switched to a new cell; the value of the first parameter of the terminal device changes; or, trigger information is received from the terminal device, where the trigger information is used to instruct to reconfigure SRS resources. All of these situations may lead to changes in channel conditions, so the configuration information can be updated in these situations to obtain better uplink transmission performance.
  • the first condition is not limited to this.
  • the method further includes: sending scheduling information to the terminal device, where the scheduling information is used to schedule uplink data on the first frequency domain unit, and the scheduling information further includes second information, The second information is used to indicate the SRS port of the SRS resource associated with the antenna port for sending the uplink data; the terminal device sends the uplink data to the network device through the antenna port associated with the SRS port of the SRS resource.
  • the SRS resource associated with the antenna port for sending the uplink data indicated by the second information is
  • the SRS port includes a first SRS port
  • the scheduling information further includes third information, where the third information is used to indicate a phase of an antenna port associated with the first SRS port.
  • a communication device is provided.
  • the communication device is, for example, a terminal device, or may be a chip or other components provided in the terminal device.
  • the communication device may include at least one antenna port and N radio frequency links, one of the N radio frequency links includes an amplifier and a filter, the N radio frequency links are associated with H frequency domain units, N is an integer greater than or equal to 2.
  • a first antenna port of the at least one antenna port is connected to a first switch, and the first switch can be switched between M radio frequency links in the N radio frequency links
  • the communication device further includes A first phase shifter connected to the first antenna port, the first phase shifter is used to adjust the phase of the first antenna port, and M is an integer greater than or equal to 2.
  • One or more antenna ports included in the terminal device can be connected to the switch, and the switch can be switched to the radio frequency link associated with more frequency domain units, so that more information about the carrier associated with the radio frequency link can be sent, that is to say
  • the antenna ports are switched between radio frequency links of different frequency domain units, so that one radio frequency link can be connected to more antenna ports, and the phase shifter is used to adjust the number of antenna ports connected to one radio frequency link.
  • the phase difference between the two can flexibly adjust the beamforming gain available for each carrier of the terminal device to improve the uplink transmission performance.
  • a second antenna port in the at least one antenna port is connected to a second switch, and the second switch can be used in the N radio frequency chains
  • the communication device further includes a second phase shifter connected to the second antenna port, and the second phase shifter is used to adjust the phase of the second antenna port
  • K is an integer greater than or equal to 2.
  • the frequency domain units associated with the M radio frequency links and the frequency domain units associated with the K radio frequency links may have an intersection, then for a frequency domain unit included in the intersection, the information of the frequency domain unit can either pass through the first
  • the transmission through the antenna port can also be transmitted through the second antenna port, thereby improving the transmission gain and transmission reliability of the information.
  • the communication apparatus may be the terminal device described in any one of the above-mentioned first to second aspects.
  • the communication device has the functions of the above-mentioned terminal device.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called the sending unit, and when the transceiver unit realizes the receiving function, it can be called the receiving unit.
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is the The collective name for functional modules.
  • the communication device and the communication device described in the third aspect may be different communication devices, or may also be the same communication device.
  • the transceiver unit included in the communication device may include at least one antenna port and N radio frequency links described in the third aspect, or include the first The N radio frequency links described in the third aspect, or, the transceiver unit included in the communication device may be implemented by the at least one antenna port and the N radio frequency links described in the third aspect, or, the transceiver included in the communication device may be implemented.
  • the unit may be implemented by the N radio frequency links described in the third aspect.
  • the sending unit is configured to send a first message to the network device, where the first message includes capability information of the terminal device, and the capability information is used to indicate the antennas supported by the P frequency domain units of the terminal device port, wherein the antenna port supported by the i-th frequency-domain unit in the P frequency-domain units includes the antenna port associated with the i-th frequency-domain unit, and includes N i in the P frequency-domain units Among the antenna ports associated with frequency domain units that can be switched to the antenna port of the i-th frequency-domain unit, the N i frequency-domain units do not include the i-th frequency-domain unit, and the P frequency-domain units At least two frequency domain units in are associated with respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P;
  • the receiving unit is configured to receive configuration information from the network device, where the configuration information is used to configure at least two SRS resources for the first frequency domain unit of the terminal device, the first frequency domain unit and the first frequency domain unit.
  • An uplink transmission configuration information is associated, and the SRS ports of at least two SRS resources of the first frequency domain unit are associated with the antenna ports supported by the first frequency domain unit.
  • the processing unit is configured to send a first message to the network device through the transceiver unit, where the first message includes capability information of the terminal device, and the capability information is used to indicate the P frequency domain units of the terminal device.
  • Supported antenna ports wherein the antenna ports supported by the i-th frequency-domain unit in the P frequency-domain units include the antenna ports associated with the i-th frequency-domain unit, and include the antenna ports in the P frequency-domain units.
  • the antenna ports associated with the N i frequency domain units can be switched to the antenna port of the i th frequency domain unit, the N i frequency domain units do not include the i th frequency domain unit, the P At least two frequency domain units in the frequency domain unit are associated with respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P;
  • the processing unit is further configured to receive configuration information from the network device through the transceiver unit, where the configuration information is used to configure at least two SRS resources for the first frequency domain unit of the terminal device, the first frequency domain unit of the terminal device.
  • a frequency domain unit is associated with the first uplink transmission configuration information, and SRS ports of at least two SRS resources of the first frequency domain unit are associated with antenna ports supported by the first frequency domain unit.
  • the communication device includes a storage unit and a processing unit, and the processing unit is configured to couple with the storage unit and execute programs or instructions in the storage unit to enable the communication device to perform the above The capabilities of the terminal device.
  • the communication apparatus may be the network device described in any one of the above-mentioned first to second aspects.
  • the communication device has the function of the above-mentioned network device.
  • the network equipment is, for example, a base station, or a baseband device in a base station.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • transceiver unit sometimes also called a transceiver module
  • the receiving unit is configured to receive a first message from a terminal device, where the first message includes capability information of the terminal device, and the capability information is used to indicate the P frequency domain units of the terminal device.
  • Supported antenna ports wherein the antenna ports supported by the i-th frequency-domain unit in the P frequency-domain units include the antenna ports associated with the i-th frequency-domain unit, and include the antenna ports in the P frequency-domain units.
  • the N i frequency domain units do not include the i th frequency domain unit, and the P At least two frequency domain units in the frequency domain unit are associated with respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P;
  • the sending unit is configured to send configuration information to the terminal device, where the configuration information is used to configure at least two SRS resources for a first frequency domain unit of the terminal device, the first frequency domain unit and the first frequency domain unit
  • the uplink transmission configuration information is associated, and the SRS ports of at least two SRS resources of the first frequency domain unit are associated with the antenna ports supported by the first frequency domain unit.
  • the processing unit is configured to receive, through the transceiver unit, a first message from a terminal device, where the first message includes capability information of the terminal device, and the capability information is used to indicate the P frequencies of the terminal device.
  • the antenna port supported by the domain unit, wherein the antenna port supported by the ith frequency domain unit in the P frequency domain units includes the antenna port associated with the ith frequency domain unit, and includes the P frequency domain units.
  • the antenna ports associated with the N i frequency domain units in the domain unit can be switched to the antenna port of the i th frequency domain unit, and the N i frequency domain units do not include the i th frequency domain unit, so At least two frequency domain units in the P frequency domain units are associated with respective uplink transmission configuration information, P is an integer greater than 1, and N i is an integer greater than or equal to 1 and less than P;
  • the processing unit is further configured to send configuration information to the terminal device through the transceiver unit, where the configuration information is used to configure at least two SRS resources for the first frequency domain unit of the terminal device, the first The frequency domain unit is associated with the first uplink transmission configuration information, and the SRS ports of at least two SRS resources of the first frequency domain unit are associated with the antenna ports supported by the first frequency domain unit.
  • the communication device includes a storage unit and a processing unit, and the processing unit is configured to couple with the storage unit and execute programs or instructions in the storage unit to enable the communication device to perform the above The functionality of the network device.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program or instruction, and when it is executed, the method performed by the terminal device or the network device in the above aspects is realized. .
  • a computer program product comprising instructions which, when run on a computer, cause the methods of the above aspects to be implemented.
  • FIG. 1 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 2 is another schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of content indicated by configuration information in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a simulation result of a solution according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • a terminal device is a device with a wireless transceiver function, which may be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device (such as a built-in wireless device in the above-mentioned device). , communication modules, modems, or systems on a chip, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (internet of things, IoT), virtual reality (virtual reality, VR) , Augmented reality (AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart city, drone, robot and other scenarios.
  • cellular communication device-to-device communication
  • vehicle-to-everything vehicle to everything, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • virtual reality virtual reality
  • AR Augmented reality
  • the terminal equipment may sometimes be referred to as user equipment (UE), a terminal, an access station, a UE station, a remote station, a wireless communication device, a user equipment, or the like.
  • UE user equipment
  • the terminal equipment may sometimes be referred to as user equipment (UE), a terminal, an access station, a UE station, a remote station, a wireless communication device, a user equipment, or the like.
  • UE user equipment
  • the network devices in the embodiments of the present application include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), the transmission reception point (TRP), the third generation partnership project (3rd Generation partnership project, 3GPP) subsequent evolution base station, wireless fidelity (wireless fidelity, WiFi) system access node, wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like. Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • a network device in a vehicle to everything (V2X) technology can be a road side unit (RSU).
  • the following description will be given by taking the access network device as a base station as an example.
  • the multiple network devices in the communication system may be base stations of the same type, or may be base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which are not limited in this application.
  • the core network equipment includes: an access and mobility management function (AMF), a session management function (SMF), or a user plane function (UPF) Wait.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the communication device for implementing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • the antenna port in the embodiment of the present application is a logical concept, for example, virtualized by the physical antenna deployed on the UE.
  • an antenna port may be virtualized by one or more physical antennas.
  • the number of nouns means “singular nouns or plural nouns", that is, “one or more”. "At least one” means one or more, and “plurality” means two or more. "And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship. For example, A/B, means: A or B.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority, or importance of multiple objects.
  • first antenna port and the second antenna port may be the same antenna port or different antenna ports, and this name does not indicate the position, priority or importance of the two antenna ports, etc. s difference.
  • Each operator has a spectrum of multiple contiguous or discontinuous frequency points, and the UE generally configures corresponding transmit antennas and/or receive antennas in each frequency band.
  • the CA technology can improve the utilization of spectrum resources by aggregating spectrum resources in the same frequency band or different frequency bands for coordinated transmission.
  • CA can be divided into in-band (Intra-Band) CA and out-band (Inter-Band) CA.
  • Intra-Band CA aggregates multiple carriers in the same frequency band.
  • these carriers in the same frequency band can share the same radio frequency link, so the uplink capacity can be improved compared with single-carrier transmission.
  • Inter-Band CA aggregates carriers of different frequency bands.
  • carriers of different frequency bands generally have separate radio frequency links.
  • each radio frequency link in the UE can only be connected to one antenna port at most, and the antenna port resources of the UE on multiple carriers cannot be fully utilized, resulting in limited uplink transmission performance.
  • the first antenna port included in the terminal device can be switched between radio frequency links associated with at least two frequency domain units. Switching between links enables one RF link to be connected to more antenna ports.
  • the phase shifter can be used to adjust the phase difference between multiple antenna ports connected to one RF link, so that each frequency domain unit of the terminal device can be flexibly adjusted.
  • the frequency domain unit described in the embodiments of the present application is, for example, a carrier or a subcarrier, or may also be other frequency domain units. In the following introduction process, the frequency domain unit is a carrier wave as an example. That is to say, the "carrier” described later can be replaced with "frequency domain unit".
  • the UE may include at least one antenna port and N radio frequency links, and the at least one antenna port described in the embodiments of the present application may be used for one or more of uplink information, downlink information, and sideline information.
  • the embodiment of the present application mainly takes the use of an antenna port for sending uplink information as an example.
  • At least one antenna port may include one, two or more antenna ports.
  • a radio frequency link may include a power amplifier (power amplifier, PA), and may also include a filter connected to the power amplifier, the filter is used for filtering other frequencies except the frequency corresponding to the radio frequency link, and in addition , a radio frequency link may also include other corresponding devices, which is not limited in this embodiment of the present application.
  • power amplifier will be simply referred to as “amplifier”.
  • a radio frequency link and an antenna port connected to the radio frequency link (or referred to as an antenna port corresponding to the radio frequency link) may also be called a transmission channel.
  • the at least one antenna port may include a first antenna port 101, and the first antenna port 101 may be connected to a first switch 102, and through the first switch 102, the first antenna port 101 can be used in M radio frequency chains in the N radio frequency chains
  • M and N are both integers greater than or equal to 2
  • M is less than or equal to N
  • N radio frequency links may be associated with H carriers, and H may be less than or equal to N, or H may be greater than N.
  • the first antenna port 101 can be connected to two, three or more radio frequency links through the first switch 102, then the network device can schedule the UE to connect the first antenna port 101 according to different conditions (such as uplink channel quality, etc.).
  • the uplink information of the carrier associated with the radio frequency link is sent to the corresponding radio frequency link, so that the number of antenna ports that can be supported by each carrier of the UE can be flexibly adjusted to improve the uplink transmission performance.
  • the first switch 102 can be implemented by a switching device, or can also be implemented by a functional module, for example, the functional module is called a switch module, a switch module, or a switch switch module, etc., as long as the first antenna port 101 can be enabled
  • the functional modules or devices that implement switching among the M radio frequency chains in the N radio frequency chains can all be used as the first switch 102 .
  • the first switch 102 is implemented by, for example, a single-pole multi-throw switch, which can connect two or more radio frequency links, and FIG. 1 takes this as an example.
  • FIG. 1 takes the first switch 102 connecting two radio frequency links as an example, and the two radio frequency links are respectively associated with the first carrier and the second carrier.
  • the at least two antenna ports may include one or more other antenna ports in addition to the first antenna port 101.
  • the UE further includes a second antenna port 103, and the second antenna port 103 may not be connected to the switch.
  • the two antenna ports 103 cannot be switched between radio frequency links, but are used to transmit information of a carrier associated with one radio frequency link connected to the second antenna port 103, which can simplify the internal structure of the UE and reduce the cost of the UE.
  • the second antenna port 103 can be connected to the second switch 104, and through the second switch 104, the second antenna port 103 can be switched between K radio frequency chains in the N radio frequency chains, where K is greater than or An integer equal to 2, and K is less than or equal to N.
  • one or more antenna ports included in the UE can be connected to the switch, and can be switched to more radio frequency links through the switch, so that more information about the carriers associated with the radio frequency links can be sent, and the flexibility is high, and the network
  • the device can schedule the terminal device to send information through the antenna port with better channel conditions to improve the uplink transmission performance.
  • the second switch 104 can be implemented by a switching device, or can also be implemented by a functional module, for example, the functional module is called a switch module, a switch module, or a switch switch module, etc., as long as the second antenna port 103 can be
  • the functional modules or devices that implement switching among the K radio frequency chains in the radio frequency chains can all be used as the second switch 104 .
  • all the switches connected to the antenna port included in the UE can be regarded as belonging to one functional module, that is, the functions of all the switches connected to the antenna port included in the UE can be completed through a functional module, such as the first switch 102 and the second switch 104 may belong to one functional module.
  • the switch connected to the antenna port included in the UE may be regarded as different functional modules, for example, the first switch 102 and the second switch 104 may be different functional modules.
  • the second switch 104 is also implemented by, for example, a single-pole multi-throw switch, which can connect two or more radio frequency links, as shown in FIG. 1 .
  • FIG. 1 takes the second switch 104 connecting two radio frequency links as an example.
  • the radio frequency links that different antenna ports can switch through switches may be completely different, or may be partially the same, or may be all the same.
  • the first antenna port 102 can be switched between M radio frequency links through the first switch 102
  • the second antenna port 103 can be switched between K radio frequency links through the second switch 104
  • the M radio frequency links and K radio frequency links may be the same radio frequency link, or the M radio frequency links and the K radio frequency links have an intersection, or the M radio frequency links and the K radio frequency links are different radio frequency links.
  • M may be equal to K, or may not be equal to K, that is, the number of radio frequency links that can be switched by different antenna ports may or may not be equal.
  • the M radio frequency chains are the radio frequency chains associated with the first carrier and the radio frequency chains associated with the second carrier
  • the K radio frequency chains can also be the radio frequency chains associated with the first carrier. channel and the radio frequency link associated with the second carrier; or, one of the K radio frequency links may be the radio frequency link associated with the first carrier or the radio frequency link associated with the second carrier, and among the K radio frequency links
  • the remaining radio frequency links are radio frequency links associated with other carriers; or, the K radio frequency links do not include the radio frequency links associated with the first carrier, nor the radio frequency links associated with the second carrier.
  • M radio frequency links as the same as K radio frequency links as an example.
  • M radio frequency links have intersections with N radio frequency links, that is to say, for one of the radio frequency links, it can be connected to different antenna ports through switches, then the information of the carrier associated with the radio frequency link can pass through Multiple antenna ports are used for transmission, thereby improving the transmission flexibility of the information of the carrier.
  • the at least two antenna ports may include only the first antenna port 101, or only the first antenna port 101 and the second antenna port 103, or the at least two antenna ports may include only the first antenna port 101 and the second antenna port 103 may also include other antenna ports. If other antenna ports are included, the included antenna ports may or may not be connected to the switch. The implementation is similar to that of the second antenna port 103. Please refer to the introduction above. .
  • FIG. 1 takes the at least two antenna ports including the first antenna port 101 and the second antenna port 103 as an example, and the first antenna port 101 and the second antenna port 103 are both connected to switches as an example.
  • an antenna port can be switched to a radio frequency link associated with different carriers through a switch, so that information on different carriers can be sent.
  • a phase shifter may be added to the UE, the switch is connected to the phase shifter, and the phase of the antenna port can be adjusted through the phase shifter, so that when the antenna port is connected to different radio frequency links , by adjusting the phase, the uplink beamforming gain can be improved.
  • a switch can be connected to a phase shifter, so that the phase of each antenna port can be adjusted; alternatively, some switches can be connected to the phase shifter, and the remaining switches are not connected to the phase shifter, so as to reduce the size of the UE , and also saves the cost of the UE.
  • the first switch 102 may be connected to the first phase shifter 105 , for example, the first phase shifter 105 may be connected between the first switch 102 and the first antenna port 101 , and the first phase shifter 105 may be used for Adjust the phase of the first antenna port 101 .
  • the network device may also indicate the phase of the first phase shifter 105, so that after the UE connects the first antenna port 101 to the radio frequency link, the The phase of the first phase shifter 105 can be adjusted to improve the uplink transmission performance of the first antenna port 101 .
  • the UE may further include a second switch 104 connected to the second antenna port 103, then the second switch 104 may be connected to a phase shifter, or may not be connected to a phase shifter.
  • the second switch 104 connected to the phase shifter as an example, referring to FIG. 2 , for example, the second switch 104 is connected to the second phase shifter 106 , for example, the second phase shifter 106 can be connected to the second switch 104 and the second antenna port Between 103 , the second phase shifter 106 can be used to adjust the phase of the second antenna port 103 .
  • the network device may also indicate the phase of the second phase shifter 106, so that after the UE connects the second antenna port 103 to the radio frequency link, the The phase of the second phase shifter 106 can be adjusted to improve the uplink transmission performance of the second antenna port 103 .
  • the phase shifter is used to adjust the phase difference between multiple antenna ports connected by a radio frequency link, so that the beamforming gain that can be obtained by each carrier of the UE can be flexibly adjusted, so as to improve the uplink transmission performance.
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 3 includes access network equipment, core network equipment and UE.
  • the access network device for example, works in an evolved universal mobile communication system terrestrial radio access (evolved UMTS terrestrial radio access, E-UTRA) system, or works in an NR system, or works in a next-generation communication system or other communication systems middle.
  • the access network device is, for example, a base station.
  • the access network equipment corresponds to different equipment in different systems, for example, in a 4G system, it may correspond to an eNB, and in a 5G system, it corresponds to an access network equipment in 5G, such as a gNB.
  • FIG. 3 takes the access network device being a base station as an example.
  • the access network device may also be a device such as an RSU.
  • the UE in FIG. 3 takes a mobile phone as an example.
  • the UE in the embodiment of the present application is not limited to the mobile phone.
  • the various embodiments to be introduced later are taken as an example to be applied to the architecture shown in FIG. 3 .
  • the network device described in the following embodiments is, for example, an access network device in the network architecture shown in FIG. 3
  • the UE described in the following embodiments may be an access network device in the network architecture shown in FIG. 3 .
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of the present application, and the method may be implemented by the UE introduced in FIG. 1 or FIG. 2 .
  • the UE sends the first message to the network device, and correspondingly, the network device receives the first message from the UE.
  • the first message may include the capability information.
  • the first message is a radio resource control (radio resource control, RRC) message, and the RRC message may be sent to the network device after the UE succeeds in random access and before the UE sends uplink data to the network device.
  • RRC radio resource control
  • the RRC message is, for example, a UE capability information (UE capability information) message, or other RRC messages.
  • the UE may determine capability information of the UE, and send the capability information to the network device.
  • the capability information may indicate the antenna ports supported by each of the P carriers configured for the UE, the P carriers may include all the carriers configured for the UE, or include some carriers configured for the UE, and P is greater than 1 the integer.
  • the P carriers include at least two carriers, and at least two carriers in the P carriers may be associated with respective uplink transmission configuration information.
  • the P carriers include the first carrier, and the first carrier may be associated with the first uplink transmission configuration information. Information association.
  • At least two carriers are configured with uplink transmission channels, and the at least two carriers receive configuration information from the network device, such as configuration information A, and the configuration information A is used to configure the uplink transmission of the at least two frequency domain units.
  • Transmission configuration information by switching the antenna ports between the carriers configured with the uplink transmit channel, the number of antenna ports supported by each carrier can be flexibly adjusted, and further by adjusting the phase difference between different antenna ports connected through an RF link, the Beamforming gain to improve uplink transmission performance.
  • the antenna ports supported by a carrier described in the embodiments of the present application may include antenna ports associated with the carrier and antenna ports that can be switched to the carrier.
  • the antenna port associated with the carrier refers to the antenna port that can transmit the information of the carrier without switching the switch, or in other words, the information of the carrier can be transmitted without setting the switch between the amplifier and the antenna port the antenna port.
  • the antenna port that can be switched to the carrier refers to the antenna port that can transmit the information of the carrier after being switched by the switch.
  • the antenna ports supported by the i-th carrier in the P carriers include the antenna ports associated with the i-th carrier, and include the antenna ports associated with the N i carriers that can be switched to the i-th carrier, N
  • the i carriers belong to the P carriers, and the Ni carriers do not include the ith carrier, and Ni is an integer greater than or equal to 1 and less than P.
  • the UE supports two carriers, which are a first carrier and a second carrier respectively. Taking the capability information indicating the antenna ports supported by all carriers configured for the UE as an example, the UE may determine that the antenna ports supported by the first carrier include the first antenna port 101 and the second antenna port 103, and the antenna ports supported by the second carrier The ports include a first antenna port 101 and a second antenna port 103 .
  • the first antenna port 103 is an antenna port associated with the first carrier
  • the second antenna port 105 is an antenna port capable of transmitting information of the first carrier by switching.
  • the second antenna port 105 is an antenna port associated with the second carrier
  • the first antenna port 103 is an antenna port capable of transmitting information of the second carrier by switching.
  • the capability information indicates the antenna ports supported by each of the P carriers, which may be indicated in different manners, which are described below with examples.
  • the capability information includes information on the antenna ports supported by the i-th carrier among the P carriers.
  • the information of an antenna port is, for example, the serial number (or referred to as an index) of the antenna port, or may also be an identifier of the antenna port, or the like.
  • the UE may set an index for each antenna port included in the UE. For example, if the UE includes a first antenna port 101 and a second antenna port 103 , the UE may set an index for the first antenna port 101 and the second antenna port 103 . For example, the UE may set an index for the antenna ports in an ascending order of carrier frequencies, or the UE may set an index for the antenna ports in a descending order of carrier frequencies, or the UE may set an index at random.
  • the UE may indicate the corresponding antenna port through the index of the antenna port. For example, the UE may include the index of the antenna port supported by each of the P carriers in the capability information and send it to the network device, so that the network device can send the capability information to the network device according to the capability information.
  • the antenna ports supported by each carrier can be specified.
  • the capability information may include an index xi of the antenna port supported by the ith carrier among the P carriers, where xi is greater than or equal to 1 and less than or equal to N An integer of t , or xi is a non-negative integer less than Nt , which is the total number of antenna ports associated with the P carriers. i is an integer greater than or equal to 1 and less than or equal to P, and it can be understood that the ith carrier is any one of the P carriers. Taking FIG. 1 or FIG.
  • the index of the first antenna port 103 is 0, and the index of the second antenna port 105 is 1, then the indexes of the antenna ports supported by the first carrier included in the capability information are 0 and 1, However, the total number of antenna ports associated with the first carrier and the second carrier is 2, whether it is 0 or 1, both are less than 2.
  • FIG. 5 a specific example of the structure of the UE is provided below, please refer to FIG. 5 .
  • the structure of the UE shown in FIG. 5 is an example of the structure of the UE shown in FIG. 2 .
  • Figure 5 takes the UE supporting a 1.8GHz carrier, a 2.1GHz carrier, and a 2.6GHz carrier as an example.
  • the UE may support a larger or smaller number of carriers, and the frequencies of the carriers supported by the UE may also vary different.
  • the 1.8GHz carrier is associated with RF link 0, the 2.1GHz carrier is associated with RF link 1, the 2.6GHz carrier is associated with RF link 2 and RF link 3, RF link 0, RF link 1, and RF link 2 and the radio frequency link 3 are respectively connected to one antenna port, that is, the four radio frequency links are connected to four antenna ports, that is, FIG. 5 takes the UE supporting four antenna ports as an example.
  • RF link 0 refers to the RF link including amplifier
  • RF link 1 refers to the RF link including amplifier 1
  • RF link 2 refers to the RF link including amplifier 2
  • RF link 3 refers to the RF link including amplifier 3.
  • RF link 0 includes amplifier 0 and 1.8GHz filter
  • RF link 1 includes amplifier 1 and 2.1GHz filter
  • RF link 2 includes amplifier 2 and 2.6GHz filter 2
  • RF link 3 includes amplifier 3 and 2.6GHz filter 3.
  • the 1.8GHz filter refers to a filter that can filter other frequencies except 1.8GHz
  • the 2.1GHz filter refers to a filter that can filter other frequencies except 2.1GHz
  • the 2.6GHz filter refers to A filter capable of filtering out frequencies other than 2.6GHz.
  • the UE may number the four antenna ports.
  • the UE may number the antenna ports in ascending order of carrier frequencies, or the UE may number the antenna ports in descending order of carrier frequencies, or the UE may number the antenna ports randomly, etc. .
  • the UE can number the antenna port associated with the 1.8GHz carrier among the 4 antenna ports as 0 (may be called antenna port 0), which is the same as 2.1.
  • the antenna port number associated with the GHz carrier is 1 (may be referred to as antenna port 1), and the antenna ports associated with the 2.6 GHz carrier are numbered 2 and 3 (may be referred to as antenna port 2 and antenna port 3, respectively).
  • the switch is connected to the antenna port 0, the switch is connected to the antenna port 1, and the switch is not connected to the antenna port 2 and the antenna port 3 as an example.
  • the switch connected to the antenna port 0 is called switch 0
  • the switch connected to the antenna port 1 is called switch 1 .
  • the carrier of 1.8 GHz is associated with antenna port 0
  • the carrier of 2.1 GHz is associated with antenna port 1
  • the carrier of 2.6 GHz is associated with antenna port 2 and antenna port 3.
  • the antenna port 0 can also be switched to the radio frequency link associated with the 2.1GHz carrier (or, switched to the 2.1GHz carrier, the following are similar), or switched to 2.6 GHz
  • Antenna port 2 and antenna port 3 are both connected to the radio frequency link associated with the 2.6GHz carrier and cannot be switched. 5, switch 0 is connected to phase shifter 0, switch 1 is connected to phase shifter 1, phase shifter 0 can be used to adjust the phase of antenna port 0, and phase shifter 1 can be used to adjust the phase of antenna port 1. Since the antenna port 2 and the antenna port 3 are not connected to the switch, no phase shifter is provided.
  • the antenna port associated with the carrier includes antenna port 0, and the antenna port that can be switched to the carrier includes antenna port 1; for the 2.1GHz carrier, the carrier The associated antenna port includes antenna port 1, and the antenna port that can be switched to the carrier includes antenna port 0; for the 2.6GHz carrier, the antenna port associated with the carrier includes antenna port 2 and antenna port 3, and can be switched.
  • Antenna ports to the carrier include antenna port 0 and antenna port 1 .
  • the capability information determined by the UE may indicate that the antenna ports supported by the 1.8GHz carrier include antenna port 0 and antenna port 1, the antenna ports supported by the 2.1GHz carrier include antenna port 0 and antenna port 1, and the antenna ports supported by the 2.6GHz carrier include antenna port 0, antenna port 1, antenna port 2, and antenna port 3.
  • the antenna ports supported by a carrier may be included in the capability information in the form of a set, then the capability information may include: a set of antenna ports supported by a 1.8GHz carrier ⁇ antenna port 0, antenna port 1 ⁇ , a 2.1GHz carrier Supportable Antenna Port Sets ⁇ Antenna Port 0, Antenna Port 1 ⁇ , and Supportable Antenna Port Sets for 2.6 GHz Carriers ⁇ Antenna Port 0, Antenna Port 1, Antenna Port 2, Antenna Port 3 ⁇ .
  • the capability information is made clearer, which helps the network device to more clearly determine the capability information of the UE.
  • the first message is a UE capability information message.
  • the UE capability information message may include a bandwidth combination list information element (BandCombinationList information element) field.
  • the bandwidth combination list information element field is originally used to carry the bandwidth combination and the carrier aggregation supported by the UE. /or a multi-RAT dual connectivity (MR-DC) bandwidth combination supported by the UE.
  • the bandwidth combination list information element field may include a bandwidth parameter (BandParameters) field.
  • the capability information adopts the first implementation manner, and the embodiment of the present application may carry the capability information in the bandwidth parameter field.
  • the structure of carrying capability information through the bandwidth parameter field is as follows:
  • BandParameters-vxxxx represents the bandwidth parameter field included in the bandwidth combination list information element field
  • the antenna carrier switch represents the capability information provided by the embodiment of the present application.
  • the capability information provided in this embodiment of the present application may also have other names, and AntCarrierSwitch is just an example.
  • the capability information may indicate the total number of antenna ports of the UE, for example, the total number of antenna ports of the UE is N t .
  • the N t antenna ports are, for example, antenna ports associated with the P carriers configured for the UE. Taking FIG. 5 as an example, the 1.8GHz carrier is associated with antenna port 0, the 2.1GHz carrier is associated with antenna port 1, and the 2.6GHz carrier is associated with antenna port 2 and antenna port 3, then N t is 4, then the capability information indicates the UE.
  • the total number of antenna ports is 4.
  • the network device may not know exactly which carrier is associated with which antenna port.
  • this indication method is relatively simple and has a small amount of information, which is beneficial to reduce signaling overhead.
  • the capability information may indicate the number of antenna ports associated with the ith carrier in the P carriers, for example, the number is M i , where M i is an integer greater than or equal to 1, and M i is less than or equal to the total number of antenna ports associated with the P carriers .
  • the capability information may indicate the number of antenna ports associated with each of the P carriers, where the number of antenna ports associated with the i-th carrier is M i , or the capability information may indicate the number of antenna ports associated with some of the P carriers
  • the number of antenna ports associated with each carrier, wherein the number of antenna ports associated with the ith carrier is M i .
  • the number of antenna ports associated with different carriers among the P carriers may be the same or different.
  • the first message may further include first information, where the first information may indicate information that the M i antenna ports associated with the i-th carrier can be switched to the j-th carrier, j is not equal to i, and both i and j are greater than or An integer equal to 1 and less than or equal to P.
  • the first information may be included in the first message, but does not belong to the capability information, or the first information may also belong to the capability information.
  • the first information belongs to the capability information as an example.
  • the first information may indicate the handover information of each of the P carriers, where the first information indicates the handover information of the i-th carrier as an example. Through the indication of the capability information, the switching relationship between the antenna port and the carrier can be specified.
  • the number of antenna ports associated with the i-th carrier in the P carriers may be originally included in the capability information, that is, even if the UE structure provided in this embodiment of the present application is not adopted, the UE may also need to send a message to the network device.
  • capability information then the number of antenna ports associated with the carrier configured for the UE is originally included in the capability information.
  • the first information may be content expanded in the capability information in this embodiment of the present application. Equivalently, in this way, the existing information in the capability information can be used, and then corresponding information (for example, the first information) can be added to the capability information to indicate the P configured for the UE in the embodiment of the present application.
  • the antenna port supported by the carrier improves the utilization rate of the original information in the capability information.
  • the numbering rules of the antenna ports are specified by the protocol.
  • the protocol specifies that the antenna ports are indexed in ascending order of the carrier frequency, or the protocol specifies that the antenna ports are indexed in the descending order of the carrier frequency.
  • the numbering scheme is clear to the devices, so the network device can clear the relationship between the index and the antenna port.
  • the first information indicates the information that the M i antenna ports can be switched to the j-th carrier, and there may be different indication modes, which are described below with an example.
  • the first information can indicate the information of the M i antenna ports that can be switched to the j th carrier. quantity. For example, referring to FIG. 5, the 1.8GHz carrier associated antenna port is 0, the number of antenna ports that can be switched to the 2.1GHz carrier is 1, and the number of antenna ports that can be switched to the 2.6GHz carrier is 1. The 2.1GHz carrier associated antenna Port 1, the number of antenna ports that can switch to a 1.8GHz carrier is 1, and the number of antenna ports that can switch to a 2.6GHz carrier is 1.
  • the 2.6GHz carrier is associated with antenna port 0 and antenna port 1, and can be switched to 1.8
  • the number of antenna ports of the GHz carrier is 0, and the number of antenna ports that can be switched to the 2.1 GHz carrier is 0.
  • This indication mode only needs to indicate the number of antenna ports, the indication is relatively simple, and the signaling overhead is small.
  • the first information can indicate that the m th antenna port among the M i antenna ports can be switched to the j th carrier.
  • the first information may indicate that antenna port 0 can switch to a 2.1GHz carrier (or switch to a radio frequency link 1 associated with a 2.1GHz carrier), and may also indicate that antenna port 0 can be switched to a 2.1GHz carrier. It is possible to switch to the 2.6GHz carrier (or to switch to the 2.6GHz carrier associated RF link 2).
  • This indication method can make the network device clear the switching relationship between the antenna port and the jth carrier, so that the indication is clearer.
  • the first information may include a first set and a second set, the first set includes information of at least one carrier, the second set includes information of at least one carrier, and the number of carriers corresponding to the carrier information included in the first set may be Less than or equal to P, the number of carriers corresponding to the carrier information included in the second set may be less than or equal to P.
  • the antenna port associated with the information of the rth carrier included in the second set can be switched to the rth carrier included in the first set, i is an integer greater than or equal to 0, and r is less than or equal to P.
  • the 1.8GHz carrier is associated with one antenna port, and the antenna port is Antenna port 0, the 2.1 GHz carrier is associated with one antenna port, which is antenna port 1, and the 2.6 GHz carrier is associated with two antenna ports, which are antenna port 2 and antenna port 3.
  • the P carriers include a 1.8GHz carrier, a 2.1GHz carrier, and a 2.6GHz carrier
  • the number of antenna ports associated with the P carriers included in the capability information may include: the number of antenna ports associated with the 1.8GHz carrier is 1, 2.1 The number of antenna ports associated with a GHz carrier is 1, and the number of antenna ports associated with a 2.6 GHz carrier is 2.
  • the capability information also includes a first set and a second set, for example, the first set is ⁇ 1.8GHz, 2.1GHz, 2.6GHz, 2.6GHz ⁇ , and the second set is ⁇ 2.1GHz, 1.8GHz, 1.8GHz ,2.1GHz ⁇ , which indicates that the antenna port associated with the 2.1GHz carrier can be switched to the 1.8GHz carrier, the antenna port associated with the 1.8GHz carrier can be switched to the 2.1GHz carrier, and the antenna associated with the 1.8GHz carrier The port can be switched to the 2.6GHz carrier, and the antenna port associated with the 2.1GHz carrier can be switched to the 2.6GHz carrier.
  • some carriers may be associated with multiple radio frequency links.
  • the first set and the second set indicate that the antenna port associated with the 1.8GHz carrier can be switched to the 2.6GHz carrier.
  • the antenna port associated with the 2.1GHz carrier can also be switched to the 2.6GHz carrier, and the 2.6GHz carrier is associated with RF link 2 and RF link 3, so the network device may not know the antenna port associated with the 1.8GHz carrier. It is the radio frequency link associated with the switch to the 2.6GHz carrier, and it is also unclear which radio frequency link the antenna port associated with the 2.1GHz carrier is associated with the switch to the 2.6GHz carrier.
  • the first set and the second set indicate that the antenna port associated with the 2.6GHz carrier can be switched to the 1.8GHz carrier, then the network device may not know which antenna port associated with the 2.6GHz carrier can be switched. to 1.8GHz. Therefore, optionally, the first message may further include switching information, where the switching information may indicate switching between antenna ports associated with one or more carriers indicated in the second set and radio frequency links associated with carriers included in the first set relation.
  • the first set includes the information of the 2.6GHz carrier, and the 2.6GHz carrier is associated with the RF link 2 and the RF link 3, then the handover information can indicate the 1.8GHz carrier included in the second set.
  • Which of the two radio frequency chains to switch the antenna port to may also indicate to which of the two radio frequency chains the antenna port associated with the 2.1 GHz carrier included in the second set is switched to.
  • the switching information is ⁇ a,b ⁇ , a and b represent the radio frequency link 2 and the radio frequency link 3 respectively.
  • a is used to indicate the switching information of the antenna port associated with the 1.8GHz carrier, that is, , indicating which of the two antenna ports the 1.8GHz carrier-associated antenna port is switched to
  • b is used to indicate the switching information of the 2.1GHz carrier-associated antenna port, that is, indicating the 2.1GHz carrier-associated radio frequency link connection which of the two antenna ports to switch to.
  • the switching information is ⁇ 10, 01 ⁇ , indicating that the antenna port associated with the 1.8 GHz carrier is switched to antenna port 2, and the antenna port associated with the 2.1 GHz carrier is switched to antenna port 3.
  • the switching information can also be implemented in the form of a bitmap.
  • the first information includes 2 bits, the high-order bit of the two bits indicates the switching information of the antenna port associated with the 1.8GHz carrier, and the low-order bit indicates the 2.1GHz.
  • the switching information of the antenna port associated with the carrier if a bit takes a value of "0", it represents antenna port 2, and if a bit takes a value of "1", it represents antenna port 3.
  • the switching information is ⁇ 0, 1 ⁇ , indicating that the antenna port associated with the 1.8 GHz carrier is switched to antenna port 2, and the antenna port associated with the 2.1 GHz carrier is switched to antenna port 3.
  • the first message is a UE capability information message
  • the UE capability information message includes an uplink transmit switching bandwidth pair (ULTxSwitchingBandPair) field
  • the uplink transmit switching bandwidth pair field includes information about an antenna port associated with a carrier configured for the UE.
  • the capability information adopts the aforementioned third implementation manner.
  • the first set and the second set are added to the uplink transmission switching bandwidth pair field.
  • the handover information may also be included in the uplink transmission handover bandwidth pair field.
  • the structure of carrying capability information through the uplink transmission bandwidth pair field is as follows:
  • bandwidth index uplink 1 (bandIndexUL1) represents the first set
  • bandwidth index uplink 2 (bandIndexUL2) represents the second set
  • antenna index uplink (AntIndexUL) represents handover information
  • the capability information can also be included in other messages except the UE capability information message. Even if the capability information is included in the UE capability information message, the capability information can also be passed through Other fields are carried, for example, the capability information may be carried by a newly added field in the UE capability information message. In addition, in addition to indicating the antenna ports supported by the P carriers, the capability information may also indicate other capabilities of the UE, which are not limited in this embodiment of the present application.
  • the network device sends configuration information to the UE, and accordingly, the UE receives the configuration information from the network device.
  • the configuration information may configure sounding reference signal (sounding reference signal, SRS) resources for the carrier of the UE.
  • the configuration information may further configure an association relationship between the SRS port of the SRS resource and the antenna port of the UE.
  • the configuration information may configure SRS resources for each of the P carriers of the UE, the P carriers may be all or part of the carriers configured for the UE, and the configuration information may be for each of the configured carriers
  • the SRS port of the SRS resource is associated with the antenna port configuration of the UE.
  • the configuration information is that one carrier may be configured with one or more SRS resources, and one SRS resource may correspond to one or more SRS ports.
  • the first carrier is a carrier configured for the UE
  • the configuration information can configure at least two SRS resources for the first carrier, and can configure the SRS ports of the at least two SRS resources and the antenna ports supported by the first carrier. connection relation.
  • One SRS port of one SRS resource is associated with one antenna port, and it can be understood that the SRS corresponding to the SRS port is sent through the antenna port.
  • the number of SRS ports of the SRS resource may be a positive integer less than or equal to the number of antenna ports associated with the first carrier.
  • the SRS ports of different SRS resources configured for one carrier may be associated with different antenna ports.
  • SRS resource A and SRS resource B are configured for the first carrier, SRS resource A corresponds to SRS port a, and SRS resource B corresponds to SRS port b, then the antenna port associated with SRS port a and the antenna port associated with SRS port b may be different the antenna port.
  • the number of SRS ports of an SRS resource configured for a carrier may be less than or equal to the number of antenna ports associated with the carrier, so in order to measure the number of antenna ports supported by the UE (the number of antenna ports supported by the UE may be greater than or equal to the number of antenna ports supported by the carrier) The number of associated antenna ports), multiple SRS resources need to be configured for the carrier to measure the uplink channels corresponding to different antenna ports.
  • the configuration information configures the first SRS resource and the second SRS resource.
  • the time units occupied by the first SRS resources and the second SRS resources may be the same or different. If the time units occupied by the first SRS resources and the second SRS resources are different, the first SRS resources and the second SRS resources may be associated with different antennas port, for example, the configuration information configures the first SRS resource and the second SRS resource for the first carrier, or, if the time units occupied by the first SRS resource and the second SRS are different, the first SRS resource and the second SRS resource can also be Associated with the same antenna port, for example, the configuration information configures the first SRS resource for the first carrier and the second SRS resource for the second carrier.
  • the configuration information can configure the two SRS resources to associate with different antenna ports.
  • the configuration information configures the first SRS resource for the first carrier, and configures the second SRS resource for the second carrier. That is to say, for the same antenna port, information is only sent on one carrier at a time, and information cannot be sent on different carriers.
  • the network device configures SRS resource 30 and SRS resource 31 for the 2.6GHz carrier, and the two SRS ports configured with SRS resource 30 are respectively associated with antenna port 2 and antenna port 3 in FIG. 5 .
  • the two ports are respectively associated with the antenna port 0 and the antenna port 1 in FIG. 5; the SRS resource 20 and the SRS resource 21 are configured for the 2.1GHz carrier, and an SRS port configured with the SRS resource 20 is associated with the antenna port 1 in FIG.
  • SRS port of SRS resource 21 is associated with antenna port 0 in Figure 5; SRS resource 10 and SRS resource 11 are configured for the 1.8GHz carrier, and one SRS port configured with SRS resource 10 is associated with antenna port 0 in Figure 5, SRS One SRS port of resource 11 is associated with antenna port 1 in FIG. 5 .
  • the antenna ports corresponding to the same SRS port of different SRS resources of the carrier may be connected to the same radio frequency link.
  • the association relationship between the SRS ports of the multiple SRS resources shown in FIG. 6 and the UE antenna ports please refer to Table 1 again.
  • the network device can configure the SRS antenna port 0 of the SRS resource 30 to associate with the antenna port in FIG. 5 2.
  • Antenna port 0 of SRS resource 31 is associated with antenna port 0 in FIG. 5
  • SRS antenna port 1 of SRS resource 30 is associated with antenna port 3 in FIG. 5
  • SRS antenna port 1 of SRS resource 31 is associated with antenna port in FIG. 5 1.
  • the UE After receiving the configuration information, there is no need to make additional judgments, but to perform according to the configuration information.
  • the UE may determine the association between the SRS port of the SRS resource of the carrier configured for the UE and the antenna port of the UE in combination with the actual situation of the UE and the configuration information, that is, the configuration
  • the information is used as reference information for the UE, and the UE can determine whether to completely follow the configuration information according to the actual situation of the UE.
  • the embodiment of the present application takes the UE executing according to the configuration information as an example.
  • the network device may only send the configuration information to the UE once, and will not change it after sending, for example, after the random access of the UE succeeds, the configuration information will be sent to the UE, and will not be changed after sending.
  • the network device may also update the configuration information. For example, when the first condition is satisfied, the network device can send new configuration information to the UE, the new configuration information is still used to configure the SRS resource for the carrier of the UE, and the configuration information can also configure the SRS of the SRS resource The association between the port and the antenna port of the UE.
  • the original configuration information is referred to as the first configuration information
  • the new configuration information is referred to as the second configuration information.
  • the carrier configured by the second configuration information may be exactly the same as the carrier configured by the first configuration information.
  • both the first configuration information and the second configuration information configure a 1.8 GHz carrier and a 2.1 GHz carrier; or, the second configuration information
  • the configured carrier and the carrier configured by the first configuration information may have an intersection, but are not identical.
  • the first configuration information configures a 1.8GHz carrier and a 2.1GHz carrier
  • the second configuration information configures a 1.8GHz carrier and a 2.6GHz carrier.
  • the carrier, or the first configuration information configures a 1.8GHz carrier and a 2.1GHz carrier
  • the second configuration information configures a 1.8GHz carrier, a 2.1GHz carrier, and a 2.6GHz carrier
  • the second configuration information configures the carrier and the first carrier.
  • the carriers configured by one configuration information may be completely different, for example, the first configuration information configures a 1.8 GHz carrier and a 2.1 GHz carrier, and the second configuration information configures a 2.6 GHz carrier. Even if the second configuration information and the first configuration information are both configured on the same carrier, the SRS resources configured for the carrier in the first configuration information and the SRS resources configured for the carrier in the second configuration information may be identical, or there may be an intersection. But not exactly, or completely different.
  • the association between the SRS port of the SRS resource configured by the first configuration information and the antenna port of the UE is the same as the second configuration information
  • the association relationship between the configured SRS port of the SRS resource and the antenna port of the UE may be completely the same, or there may be an intersection but not the same, or completely different. That is to say, the first configuration information and the second configuration information may be completely identical, or may overlap but not be identical, or may be completely different.
  • the first condition may include one or more of the following: the cycle time is reached; the uplink channel quality of the UE is lower than the first threshold; the time at which the first configuration information is sent is the start time, from the start time to the current time The first duration is reached; the UE is switched to a new cell; the value of the first parameter of the UE changes; the amount of change in the value of the first parameter of the UE is greater than the first threshold; or, receiving trigger information from the UE, the trigger The information is used to indicate the reconfiguration of the SRS resource, or to indicate the association relationship between the SRS port of the reconfigured SRS resource and the antenna port of the UE.
  • the first condition includes that the uplink channel quality of the UE is lower than the first threshold, and includes that the time from when the first configuration information is sent to the current time reaches the first time period; for another example, the first condition includes that the UE switches to a new cell;
  • the first condition includes receiving the trigger information from the UE; for another example, the first condition includes that the uplink channel quality of the UE is lower than the first threshold and reaches the cycle time, from the time when the first configuration information is sent to the current time When the first duration is reached, the UE switches to a new cell; and, triggering information from the UE is received, and so on.
  • the first condition is that the cycle time is reached, which means that the network device can periodically send configuration information to the UE. In this way, the configuration information can be periodically updated to conform to the current channel conditions.
  • the uplink channel quality of the UE may refer to the quality of any uplink channel of the UE, or refers to the average quality of all or part of the uplink channels of the UE. If the uplink channel quality of the UE is lower than the first threshold, the transmission of uplink data scheduled by the network device according to the first configuration information may be affected, so the network device may reconfigure.
  • the uplink channel conditions may change during this period, and the transmission of uplink data scheduled by the network device according to the first configuration information may be affected.
  • the network device can thus update the configuration information to suit the current channel conditions.
  • the UE may switch to the new cell, the first configuration information sent by the original cell for the UE may no longer be applicable to the new cell, so the new cell may send the second configuration information to the UE.
  • the first parameter may include any one or more parameters of the UE, such as a power consumption parameter or a heating parameter. For example, if the UE is severely overheated, it may indicate that the relationship configured in the first configuration information is not applicable to the actual situation of the UE, and the network device may update the configuration information after learning that the UE is overheated seriously.
  • the UE can also decide by itself whether to update the configuration information. For example, the UE determines that the uplink channel condition is poor, or the value of the first parameter of the UE changes, or the change of the value of the first parameter of the UE is greater than the first threshold (for example, the UE is severely overheated), the UE may report to the network device The trigger information is sent to trigger the network device to update the configuration information, which enhances the initiative of the UE.
  • the first condition may also include other conditions, which are not limited in this embodiment of the present application.
  • the configuration information may configure the SRS resource for the carrier of the UE, and the configuration information may not necessarily configure the association between the SRS port of the SRS resource and the antenna port of the UE, and the association may be determined according to a predefined rule.
  • the network device may first determine which antenna ports are originally associated with the carrier, and which antenna ports are switched to the carrier through switches. Then the network device can infer the antenna ports that can be connected to the same radio link according to the predefined rules, and then the network device can determine the association between the SRS ports and the antenna ports of the SRS resources of the carrier according to the predefined rules. For example, for one SRS resource, the SRS port and antenna port of the SRS resource may be associated in ascending order of indexes, and the same SRS port number of different SRS resources may be associated with different antenna port numbers connected to the same radio link.
  • the network device needs to determine which antenna ports are originally associated with the carrier, and which antenna ports are switched to the carrier through switches, which can be done in different ways.
  • the UE can put the index of the antenna port associated with one carrier in the capability information. If the index of the antenna port that can be switched to the carrier through the switch is placed at the back, the network device can determine which antenna ports are originally associated with the carrier and which antenna ports are switched to the carrier through the switch.
  • the antenna ports supported by the 2.6GHz carrier include antenna port 0, antenna port 1, antenna port 2, and antenna port 3.
  • the capability information sent by the UE may include ⁇ Antenna Port 2, Antenna Port 3, Antenna Port 0, Antenna Port 1 ⁇ , where Antenna Port 2 and Antenna Port 3 are associated with a 2.6GHz carrier, and the Antenna Port 0 and antenna port 1 are switchable to 2.6GHz carrier.
  • the network device can determine that antenna port 0 is the antenna port associated with the 1.8GHz carrier, antenna port 1 is the antenna port associated with the 2.1GHz carrier, and antenna port 2 and antenna port 3 are the 2.6GHz carrier Associated Antenna Port.
  • the network device may also determine, among the antenna ports supported by the carrier, which antenna ports are associated with the carrier, and which antenna ports are switched to the carrier through switches.
  • the network device can infer the antenna ports that can be connected to the same RF link according to predefined rules. For example, a predefined rule specifies that the mapping is in ascending order of the antenna port index, then the network device can determine that the antenna port 0 switched by the switch can be connected to the radio frequency link connected to the antenna port 2 associated with the 2.6GHz carrier, and the switch switched by the switch Antenna port 1 can be connected to a 2.6 GHz carrier associated with the radio frequency link to which antenna port 3 is connected. Then, the network device may determine the association relationship between the SRS port and the antenna port of the SRS resource of the 2.6 GHz carrier according to a predefined rule.
  • a predefined rule stipulates that for one SRS resource, the SRS port and the antenna port are associated in ascending order of index, and the same SRS port number of different SRS resources can be associated with different antenna port numbers connected to the same radio link.
  • the network device configures SRS resource 30 and SRS resource 31 for a 2.6GHz carrier, the network device can determine that SRS antenna port 0 of SRS resource 30 is associated with antenna port 2 in FIG. 5 , and SRS antenna port 1 of SRS resource 30 is associated with Antenna port 3 in FIG. 5 , antenna port 0 of SRS resource 31 is associated with antenna port 0 in FIG. 5 , and SRS antenna port 1 of SRS resource 31 is associated with antenna port 1 in FIG. 5 .
  • the UE determines the antenna port associated with the first SRS resource according to the configuration information.
  • the UE can send the SRS resource to the network device according to the configuration information, or send the SRS corresponding to the SRS resource.
  • the UE may send the entire SRS configured by the configuration information to the network device, or the UE may send a part of the SRS configured by the configuration information to the network device.
  • the first SRS resource may be an SRS resource configured by the configuration information .
  • the UE may determine the antenna port associated with the first SRS resource according to Table 1 or FIG. 6 , or the UE may determine the antenna port associated with the first SRS resource according to a predefined rule. For example, according to Table 1, if the first SRS resource is SRS resource 30, the UE may determine that SRS port 0 of SRS resource 30 is associated with antenna port 2, and SRS port 1 of SRS resource 30 is associated with antenna port 3.
  • the UE sends the first SRS to the network device through the determined antenna port, and correspondingly, the network device receives the first SRS from the UE.
  • the first SRS is sent through the antenna port; or, if the UE determines multiple antenna ports, the multiple first SRSs are sent through the multiple antenna ports. For example, if the first SRS resource is SRS resource 30, the UE sends the first SRS corresponding to SRS port 0 through antenna port 2, and sends the first SRS corresponding to SRS port 1 through antenna port 3.
  • the network device After receiving the first SRS, the network device can determine, according to the configuration information, the antenna port of the UE corresponding to the first SRS resource, and can determine the carrier corresponding to the first SRS resource, so that the network device can measure the first SRS to determine the carrier corresponding to the first SRS resource. Perform channel estimation on the uplink channel corresponding to each antenna port on the For example, the first SRS resource is SRS resource 30, the UE sends the first SRS corresponding to SRS port 0 through antenna port 2, and sends the first SRS corresponding to SRS port 1 through antenna port 3.
  • the network device can perform channel estimation on the uplink channel corresponding to the antenna port 2 on the 2.6GHz carrier of the UE, and can also perform channel estimation on the uplink channel corresponding to the antenna port 3 on the 2.6GHz carrier of the UE. Perform channel estimation.
  • the network device sends scheduling information to the UE, and accordingly, the UE receives the scheduling information from the network device.
  • the scheduling information may schedule uplink data on the first carrier, where the first carrier is a carrier configured for the UE.
  • the network device After the network device performs channel estimation on the uplink channels corresponding to the antenna ports supported by each carrier of the UE, it can select a carrier with better channel quality and its supported antenna ports according to the channel estimation results, so as to schedule the UE on these uplink carriers and antenna ports.
  • Send upstream data is that the network device schedules a physical uplink shared channel (PUSCH), and the PUSCH carries the uplink data.
  • PUSCH physical uplink shared channel
  • the network device can determine a feasible antenna switching combination. For example, according to the UE capability shown in FIG. 5 , it is a feasible combination that antenna port 0 and antenna port 2 are connected to the same radio link, and it is an infeasible combination that antenna port 0 and antenna port 3 are connected to the same radio link.
  • both the network device and the UE follow the same antenna switching rule.
  • the rule includes: if the maximum number of transmission layers that a carrier can support is greater than 1, the antenna port of the carrier can be switched to the antenna port of the carrier.
  • the mapping method of the associated radio frequency links follows the one-to-one mapping method in ascending order of the antenna port numbers.
  • the antenna ports associated with the 2.6GHz carrier are numbered 2 and 3, and the antenna ports that can be switched to the 2.6GHz carrier are numbered 0 and 1, then both the network device and the UE can switch to antenna port 2 according to antenna port 0.
  • antenna port 1 can switch to the RF link connected to antenna port 3.
  • the scheduling information may include second information, and the second information may indicate an SRS port of an SRS resource associated with an antenna port used for transmitting the uplink data.
  • the network device wants to schedule the UE to send uplink data on the first carrier, the network device can select an appropriate antenna port for the UE according to the channel estimation result of the uplink channel corresponding to the antenna port on the first carrier, and use the scheduling information Indicates the SRS port of the SRS resource associated with the selected antenna port.
  • the network device can select a suitable carrier for the UE according to the channel estimation result of the uplink channel corresponding to the antenna port on each carrier configured for the UE, and select the carrier on the appropriate antenna port, and indicate the SRS port of the SRS resource associated with the selected antenna port through the scheduling information.
  • the scheduling information may be sent on the first carrier.
  • the second information included in the scheduling information may be implemented by using a bitmap. For example, according to the UE capability shown in FIG. 5 , if the network device schedules to send uplink data on the 1.8GHz carrier through antenna port 0, the second information may be ⁇ 1,0 ⁇ , because each 1.8GHz SRS resource corresponds to one SRS port, so it can be considered that these two bits represent two SRS resources corresponding to the 1.8GHz carrier, for example, the bit on the left represents SRS resource 10, the bit on the right represents SRS resource 11, and the bit on the left takes the value of "1" , indicating that the SRS port 0 of the SRS resource 10 is scheduled, and the bit on the right is "0", indicating that the SRS port 0 of the SRS resource 11 is not scheduled.
  • the second information can be ⁇ 1,1 ⁇ .
  • these two bits represent 2.1GHz respectively.
  • the two SRS resources corresponding to the carrier of for example, the bit on the left represents the SRS port 0 of the SRS resource 20 , and the bit on the right represents the SRS port 0 of the SRS resource 21 .
  • the second information may be ⁇ 1,1,1,1 ⁇ , which is The four bits respectively represent a total of 4 SRS ports of the 2 SRS resources corresponding to the 2.6 GHz carrier.
  • the scheduling information may further include third information, and the third information may be Indicates the phase of the scheduled antenna port.
  • the second information indicates the SRS port of the SRS resource associated with the first antenna port
  • the third information may indicate the phase of the first antenna port after being connected to the radio frequency link associated with the first carrier. If the second information indicates a plurality of SRS ports, the third information may indicate the phase of the antenna ports associated with the plurality of SRS ports after being connected to the radio frequency link associated with the first carrier.
  • the third information may include bits, where Indicates that x is rounded up, and Q PS represents the number of quantization bits of the phase shifter.
  • the phase shifter should theoretically be able to indicate any phase between 0 and 360°, but the actual phase shifter product may not be able to achieve the accuracy, so the phase shifter may only be able to take some phase between 0 and 360° phase.
  • the phase that can be achieved by the phase shifter can be indicated by Q PS bits, so Q PS is called the number of quantization bits of the phase shifter.
  • the phases that the phase shifter can take include 60°, 90°, 180°, and 270°, then Q PS can be equal to 2, and these 4 phases can be indicated by 2 bits.
  • the network device schedules to send uplink data through SRS port 0 of SRS resource 10 on the 1.8GHz carrier, and the antenna port associated with SRS port 0 of SRS resource 10 on the 1.8GHz carrier 0 is the antenna port associated with the 1.8 GHz carrier, so there is no need to change the phase, and the scheduling information may not include the third information.
  • SRS port 0 of SRS resource 30 is associated with The antenna port 2 of the SRS resource 30 and the antenna port 3 associated with the SRS port 3 of the SRS resource 30 are both the antenna ports associated with the 2.6GHz carrier, and the phase need not be changed, while the antenna port 0, the SRS port 0 of the SRS resource 31 is associated with the antenna port 0, And the antenna port 1 associated with the SRS port 1 of the SRS resource 31 can only be switched to the 2.1GHz carrier through a switch, so the scheduling information can include third information, and the third information can instruct the antenna port 0 to switch to the 2.1GHz carrier.
  • the phase after the carrier, and the phase after the carrier instructs Antenna Port 1 to switch to 2.1GHz.
  • the UE sends uplink data to the network device on the first carrier, and correspondingly, the network device receives the uplink data from the UE.
  • the UE may send uplink data to the network device on the first carrier according to the antenna port associated with the SRS port indicated by the scheduling information.
  • the UE connects the antenna ports associated with the SRS ports of these SRS resources to the radio frequency link associated with the first carrier, and uses these antenna ports to send the uplink data.
  • the UE may further adjust the phase of the corresponding antenna port according to the third information.
  • S43 to S46 are all optional steps, so they are represented by dotted lines in FIG. 4 .
  • Figure 7 can be obtained based on the simulation parameters in Table 2.
  • Figure 7 compares the uplink capacity performance of different mechanisms, these mechanisms include: 1. 1.8GHz carrier 1Tx transmission; 2. 2.1GHz carrier 1Tx transmission; 3. 4.9GHz carrier 2Tx transmission; 4. Three carriers only frequency domain pooling ( CA) 1Tx+1Tx+2Tx concurrent; 5.
  • CA frequency domain pooling
  • 1Tx refers to using one uplink transmission channel to send
  • 2Tx refers to using two uplink transmission channels to send.
  • Table 3 can be obtained, which is the gain of the corresponding mechanism.
  • the fourth scheme that is, only the frequency-domain pooling scheme, has limited performance gain compared to the first three single-carrier transmission schemes, with only a 12% performance gain.
  • the solution provided by the embodiment of the present application can further improve the uplink capacity through the pooling of frequency domain resources and antenna resources, and the throughput rate can reach 1.24 times that of CA.
  • the embodiments of the present application design a new radio frequency link architecture for the UE. By adding switches and phase shifters, the antenna port can be switched between multiple carriers to obtain the beamforming gain of the analog-digital hybrid precoding structure. . Moreover, the embodiments of the present application design new UE capabilities according to the new radio frequency link architecture, and establish an association relationship between the SRS ports of the multiple SRS resources of the carrier configured for the UE and the antenna ports of the UE, allowing network devices to pass The uplink channel information is obtained by measuring the SRS, so that the network device can select a better antenna port switching scheme for the UE. The UE antenna port resources are pooled, allowing each antenna port of the UE to switch to different carriers according to the instantaneous channel conditions, flexibly adjust the beamforming gain available for each carrier, and improve the uplink transmission performance.
  • FIG. 8 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 800 may be the terminal device described in the embodiment shown in FIG. 4 , and is configured to implement the method executed by the terminal device in the foregoing method embodiment.
  • the communication apparatus 800 may be the network device described in the embodiment shown in FIG. 4 , and is configured to implement the method corresponding to the network device in the foregoing method embodiments.
  • Communication device 800 includes one or more processors 801 .
  • the processor 801 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 801 may be a general-purpose processor or a special-purpose processor or the like. For example, including: baseband processors, central processing units, application processors, modem processors, graphics processors, image signal processors, digital signal processors, video codec processors, controllers, memories, and/or Neural network processors, etc.
  • the baseband processor may be used to process communication protocols and communication data.
  • the central processing unit may be used to control the communication device 800, execute software programs and/or process data.
  • the different processors can be stand-alone devices, or they can be integrated in one or more processors, for example, on one or more application specific integrated circuits.
  • the communication apparatus 800 includes one or more memories 802 for storing instructions 804, and the instructions 804 can be executed on the processor, so that the communication apparatus 800 executes the methods described in the above method embodiments.
  • the memory 802 may also store data.
  • the processor and the memory can be provided separately or integrated together.
  • the communication apparatus 800 may include instructions 803 (sometimes also referred to as codes or programs), and the instructions 803 may be executed on the processor, so that the communication apparatus 800 executes the methods described in the above embodiments .
  • Data may be stored in the processor 801 .
  • the communication apparatus 800 may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 800 through the antenna 806 .
  • the communication apparatus 800 and the UE shown in FIG. 1 or FIG. 2 may be the same apparatus, or may be different apparatuses. If the communication device 800 and the UE shown in FIG. 1 or 2 are the same device, the transceiver 805 includes, for example, N radio frequency links shown in FIG. 1 or FIG. 2 , and the antenna 806 is, for example, implemented as shown in FIG. 1 or 2 . at least one antenna port shown.
  • the communication device 800 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication apparatus 800 may include more or less components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 801 and the transceiver 805 described in the embodiments of the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency identification (RFID), a mixed-signal IC, and an application specific integrated circuit (application specific integrated circuit). integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • IC integrated circuit
  • ASIC radio frequency identification
  • PCB printed circuit board
  • electronic equipment etc.
  • it may be an independent device (eg, an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (eg, a module that can be embedded in other devices). The description of the terminal device and the network device will not be repeated here.
  • An embodiment of the present application provides a terminal device (for convenience of description, referred to as UE), which can be used in the foregoing embodiments.
  • the terminal device includes corresponding means, units and/or circuits for implementing the UE functions described in the embodiment shown in FIG. 4 .
  • a terminal device includes a transceiver module, which is used to support the terminal device to implement a transceiver function, and a processing module, which is used to support the terminal device to process signals.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 900 is applicable to the architecture shown in FIG. 3 .
  • FIG. 9 only shows the main components of the terminal device 900 .
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device 900, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data .
  • FIG. 9 only shows one memory and a processor.
  • terminal device 900 may include multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device 900.
  • the software program is executed, and the data of the software program is processed.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • the terminal device 900 may include multiple baseband processors to adapt to different network standards, the terminal device 900 may include multiple central processors to enhance its processing capability, and various components of the terminal device 900 may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 910 of the terminal device 900
  • the processor having a processing function can be regarded as the processing unit 920 of the terminal device 900
  • the terminal device 900 includes a transceiver unit 910 and a processing unit 920 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the terminal device 900 and the UE shown in FIG. 1 or FIG. 2 may be the same device, or may be different devices. If the terminal device 900 and the UE shown in FIG. 1 or FIG. 2 are the same device, the transceiver unit 910 includes, for example, at least one radio frequency link and N antenna ports shown in FIG. 1 or FIG. 2 .
  • the embodiment of the present application also provides a network device, and the network device can be used in each of the foregoing embodiments.
  • the network device includes means, units and/or circuits for implementing the functions of the network device described in the embodiment shown in FIG. 4 .
  • the network device includes a transceiver module to support the network device to implement a transceiver function, and a processing module to support the network device to process signals.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be applicable to the architecture shown in FIG. 3 , for example, the access network device in the architecture.
  • the network equipment includes: a baseband device 1001 , a radio frequency device 1002 , and an antenna 1003 .
  • the radio frequency apparatus 1002 receives the information sent by the terminal equipment through the antenna 1003, and sends the information sent by the terminal equipment to the baseband apparatus 1001 for processing.
  • the baseband apparatus 1001 processes the information of the terminal equipment and sends it to the radio frequency apparatus 1002
  • the radio frequency apparatus 1002 processes the information of the terminal equipment and sends it to the terminal equipment through the antenna 1003 .
  • the baseband device 1001 includes one or more processing units 10011 , storage units 10012 and interfaces 10013 .
  • the processing unit 10011 is configured to support the network device to perform the functions of the network device in the foregoing method embodiments.
  • the storage unit 10012 is used to store software programs and/or data.
  • the interface 10013 is used for exchanging information with the radio frequency device 1002, and the interface includes an interface circuit for inputting and outputting information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form chips.
  • the storage unit 10012 and the processing unit 10011 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 10012 and the processing unit 10011 may be located on a different chip, that is, an off-chip storage element.
  • the storage unit 10012 may be a memory, or may be a collective term for multiple memories or storage elements.
  • the network device may implement some or all of the steps in the foregoing method embodiments in the form of one or more processing unit schedulers. For example, the corresponding functions of the network device in the embodiment shown in FIG. 4 are implemented.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access standards of different standards.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), Erasable programmable read only memory (erasable PROM, EPROM), electrically erasable programmable read only memory (electrically erasable programmable read only memory, EEPROM), compact disc read-only memory (compact disc read-only memory, CD- ROM), universal serial bus flash disk, removable hard disk, or other optical disk storage, magnetic disk storage medium, or other magnetic storage device, or capable of carrying or storing desired data in the form of instructions or data structures program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • compact disc read-only memory compact disc read-only memory
  • CD- ROM compact disc read-only memory
  • universal serial bus flash disk removable hard disk,
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。向网络设备发送终端设备的能力信息,以指示终端设备的P个频域单元所支持的天线端口,其中第i个频域单元支持的天线端口包括第i个频域单元关联的天线端口,以及包括P个频域单元中的N i个频域单元关联的天线端口中能够切换至第i个频域单元的天线端口。接收来自网络设备的配置信息,配置信息用于为终端设备的第一频域单元配置至少两个SRS资源,第一频域单元与第一上行传输配置信息相关联,第一频域单元的至少两个SRS资源与第一频域单元支持的天线端口相关联。本实施例提供的方法可以应用于通信***,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年12月02日提交中国国家知识产权局、申请号为202011398679.6、申请名称为“一种提供辅助信息的方法及UE”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2020年12月30日提交中国国家知识产权局、申请号为202011613147.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着移动互联网、物联网等业务的多元化发展,移动通信对海量数据的上传要求不断提高,比如超高清视频、智能监控、虚拟现实(virtual reality,VR)视频直播等业务对上行链路(uplink,UL)容量提出了较高的要求。目前主流的第五代(5th generation,5G)移动通信***的低于6G(Sub-6G)商用频段主要为2.6GHz、3.5GHz、4.9GHz等中高频段并且一般采用时分双工(time division duplex,TDD)制式,存在路损相对较大、上行占空比较低等问题,导致上行容量不足。
现有的上行增强方案主要包括通过载波聚合(carrier aggregation,CA)、补充上行(supplementary uplink,SUL)等技术实现多个频点的协作传输,可在一定程度上提升频谱资源利用率或提升上行覆盖。但为了满足多元化业务发展的需求,还需要进一步提升上行容量。
发明内容
本申请实施例提供一种通信方法及装置,用于提升上行性能。
第一方面,提供一种通信方法,该方法可由终端设备执行,或由芯片***执行,该芯片***能够实现终端设备的功能。该方法包括:向网络设备发送第一消息,所述第一消息包括终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;接收来自所述网络设备的配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
在本申请实施例中,终端设备所包括的一个或多个天线端口能够与开关连接,通过开 关能够切换到更多频域单元关联的射频链路,从而能够发送更多射频链路所关联的载波的信息,也就是说,本申请实施例通过天线端口在不同频域单元的射频链路间的切换,使得一个射频链路可以连接更多的天线端口,那么单一频域单元就能够支持更多的天线端口,灵活性较高,以提升上行传输性能。
结合第一方面,在第一方面的第一种可选的实施方式中,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:所述能力信息用于指示所述P个频域单元中的第i个频域单元支持的天线端口索引x i,x i是大于等于1小于等于N t的整数,或x i是小于N t的非负整数,N t是所述P个频域单元所关联的天线端口总数;或,所述能力信息用于指示所述终端设备的天线端口总数N t,所述P个频域单元关联所述N t个天线端口。能力信息可以指示P个频域单元所支持的天线端口的索引,这种方式使得能力信息的指示更为明确,有助于网络设备更清晰地获知UE的能力。或者,能力信息可指示天线端口总数,无需区分各个频域单元分别支持哪些天线端口,这种方式有助于减小信令开销。
结合第一方面,在第一方面的第二种可选的实施方式中,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:所述能力信息用于指示所述P个频域单元中的第i个频域单元关联的天线端口数量M i;以及,所述第一消息还包括第一信息,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,i不等于j,i和j为大于等于1小于等于P的整数。这种方式相当于借助于已有的信息,并在已有的信息的基础上添加新的信息,以实现对于P个频域单元所支持的天线端口的指示。例如P个频域单元关联的天线端口数量是已有的信息,那么第一消息还可以添加第一信息,通过已有的信息和第一信息就能指示P个频域单元所支持的天线端口。利用了已有的信息来指示本申请实施例的特征,提高了已有信息的利用率。
结合第一方面的第二种可选的实施方式,在第一方面的第三种可选的实施方式中,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,包括:所述第一信息用于指示所述M i个天线端口中可切换至所述第j个频域单元的天线端口个数;或,所述第一信息用于指示所述M i个天线端口中的第m个天线端口可切换至所述第j个频域单元,m=1,2,…,M i,或m=0,1,…,M i-1。第一信息也有不同的指示方式,可以指示M i个天线端口中可切换至第j个频域单元的天线端口个数,这种方式较为简单,有助于减小信令开销。或者,第一信息也可以指示究竟哪个天线端口能切换至第j个频域单元,使得指示更为明确。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第三种可选的实施方式中的任一种可选的实施方式,在第一方面的第四种可选的实施方式中,所述配置信息还用于配置所述至少两个SRS资源的不同的SRS端口与所述第一频域单元支持的不同的天线端口之间的关联关系,其中,一个SRS端口与一个天线端口具有关联关系,用于指示所述终端设备通过所述一个天线端口发送所述一个SRS端口的SRS。SRS端口与天线端口关联,可以理解为,是通过该天线端口发送该SRS端口的SRS。通过配置天线端口与SRS端口之间的关联关系,终端设备就能够明确一个SRS端口对应的SRS应通过哪个天线端口发送,而网络设备在接收了一个SRS端口对应的SRS后,也能明确是通过终端设备的哪个天线发送的,从而网络设备可以对该天线对应的上行信道进行信道估计,以更为准确地调度终端设备。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第四种可选的实施 方式中的任一种可选的实施方式,在第一方面的第五种可选的实施方式中,所述配置信息还用于为所述终端设备的第二频域单元配置第二SRS资源,若所述第二SRS资源和第一SRS资源占用相同的时间单元,则所述第二SRS资源和所述第一SRS资源不关联相同的天线端口,所述第一SRS资源是所述至少两个SRS资源中的一个。可理解为,一个天线端口在一个时刻只用于发送一个载波上的信息,从而便于网络设备的调度,避免出现混乱。
结合第一方面或第一方面的第一种可选的实施方式至第一方面的第五种可选的实施方式中的任一种可选的实施方式,在第一方面的第六种可选的实施方式中,所述方法还包括:接收来自网络设备的调度信息,所述调度信息用于调度所述第一频域单元上的上行数据,所述调度信息还包括第二信息,所述第二信息用于指示发送所述上行数据的天线端口关联的SRS资源的SRS端口;通过所述SRS资源的SRS端口关联的天线端口向所述网络设备发送上行数据。网络设备在调度终端设备发送上行数据时,可指示用于发送上行数据的天线端口,从而终端设备可通过网络设备指示的天线端口发送上行数据。这些天线端口例如是网络设备根据对终端设备的天线对应的上行信道进行的信道估计所确定的,因此能够提升上行传输质量。
结合第一方面的第六种可选的实施方式,在第一方面的第七种可选的实施方式中,所述第二信息所指示的发送所述上行数据的天线端口关联的SRS资源的SRS端口包括第一SRS端口,所述调度信息还包括第三信息,所述第三信息用于指示所述第一SRS端口关联的天线端口的相位。在本申请实施例中,天线端口能够通过开关切换到不同载波关联的射频链路,从而能够发送不同载波上的信息。而考虑到如果切换到不同载波关联的射频链路后,天线端口的相位始终保持不变,那么天线端口在发送有些载波上的信息时,可能会出现发送性能较差的情况。因此,本申请实施例还可以调整天线端口的相位,例如通过移相器调整一个射频链路连接的多个天线端口之间的相位差,可以灵活调整终端设备各个载波可获得的波束成形增益,以提升上行传输性能。
第二方面,提供另一种通信方法,该方法可由网络设备执行,或由芯片***执行,该芯片***能够实现网络设备的功能。示例性地,所述网络设备为接入网设备,例如基站。该方法包括:接收来自终端设备的第一消息,所述第一消息包括所述终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;向所述终端设备发送配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
结合第二方面,在第二方面的第一种可选的实施方式中,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:所述能力信息用于指示所述P个频域单元中的第i个频域单元支持的天线端口索引x i,x i是大于等于1小于等于N t的整数,或x i是小于N t的非负整数,N t是所述P个频域单元所关联的天线端口总数;或,所述能力信息用于指示所述终端设备的天线端口总数N t,所述P个频域单元关联所述N t个天线端口。
结合第二方面,在第二方面的第二种可选的实施方式中,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:所述能力信息用于指示所述P个频域单元中的第i个频域单元关联的天线端口数量M i;以及,所述第一消息还包括第一信息,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,i不等于j,i和j为大于等于1小于等于P的整数。
结合第二方面的第二种可选的实施方式,在第二方面的第三种可选的实施方式中,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,包括:所述第一信息用于指示所述M i个天线端口中可切换至所述第j个频域单元的天线端口个数;或,所述第一信息用于指示所述M i个天线端口中的第m个天线端口可切换至所述第j个频域单元,m=1,2,…,M i,或m=0,1,…,M i-1。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第三种可选的实施方式中的任一种可选的实施方式,在第二方面的第四种可选的实施方式中,所述配置信息还用于配置所述至少两个SRS资源的不同的SRS端口与所述第一频域单元支持的不同的天线端口之间的关联关系,其中,一个SRS端口与一个天线端口具有关联关系,用于指示所述终端设备通过所述一个天线端口发送所述一个SRS端口的SRS。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第四种可选的实施方式中的任一种可选的实施方式,在第二方面的第五种可选的实施方式中,所述配置信息还用于为所述终端设备的第二频域单元配置第二SRS资源,若所述第二SRS资源和第一SRS资源占用相同的时间单元,则所述第二SRS资源和所述第一SRS资源不关联相同的天线端口,所述第一SRS资源是所述至少两个SRS资源中的一个。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第五种可选的实施方式中的任一种可选的实施方式,在第二方面的第六种可选的实施方式中,所述方法还包括:在满足第一条件的情况下,向所述终端设备发送新的配置信息,所述新的配置信息用于为所述第一频域单元配置至少一个SRS资源。网络设备可以只向UE发送一次配置信息,在发送后不再更改,例如在UE随机接入成功后向该UE发送配置信息,发送后不再更改。或者,网络设备也可以更新配置信息。例如,在满足第一条件的情况下,网络设备可以向UE发送新的配置信息,新的配置信息还是用于为该UE的载波配置SRS资源,这样可以使得对于SRS资源的配置能够更为符合当前的网络状态,以得到更好的上行发送性能。
结合第二方面的第六种可选的实施方式,在第二方面的第七种可选的实施方式中,所述配置信息还用于配置所述至少一个SRS资源的SRS端口与所述第一频域单元所支持的天线端口之间的关联关系。或者,该关联关系也可以通过预定义的规则确定,例如该预定义的规则可包括在协议中,则该配置信息可以不必配置该关联关系。
结合第二方面的第六种可选的实施方式或第二方面的第七种可选的实施方式,在第二方面的第八种可选的实施方式中,所述第一条件包括如下一项或多项:所述终端设备的上行信道质量低于第一阈值;以发送所述配置信息的时间为起始时间,从所述起始时间到当前时间之间达到第一时长;所述终端设备切换到了新小区;所述终端设备的第一参数的取值发生变化;或,接收到来自所述终端设备的触发信息,所述触发信息用于指示重新配置SRS资源。这几种情况,都可能导致信道条件发生变化,因此在这几种情况下可以更新配置信息,以得到更好的上行发送性能。当然第一条件不限于此。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第八种可选的实施 方式中的任一种可选的实施方式,在第二方面的第九种可选的实施方式中,所述方法还包括:向所述终端设备发送调度信息,所述调度信息用于调度所述第一频域单元上的上行数据,所述调度信息还包括第二信息,所述第二信息用于指示发送所述上行数据的天线端口关联的SRS资源的SRS端口;所述终端设备通过所述SRS资源的SRS端口关联的天线端口向所述网络设备发送上行数据。
结合第二方面的第九种可选的实施方式,在第二方面的第十种可选的实施方式中,所述第二信息所指示的发送所述上行数据的天线端口关联的SRS资源的SRS端口包括第一SRS端口,所述调度信息还包括第三信息,所述第三信息用于指示所述第一SRS端口关联的天线端口的相位。
关于第二方面或第二方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供一种通信装置,该通信装置例如为终端设备,或者可以是设置在终端设备中的芯片等部件。该通信装置可包括至少一个天线端口和N个射频链路,所述N个射频链路中的一个射频链路包括放大器和滤波器,所述N个射频链路关联H个频域单元,N为大于或等于2的整数。其中,所述至少一个天线端口中的第一天线端口连接第一开关,所述第一开关能够在所述N个射频链路中的M个射频链路之间切换,所述通信装置还包括与所述第一天线端口连接的第一移相器,所述第一移相器用于调整所述第一天线端口的相位,M为大于或等于2的整数。终端设备所包括的一个或多个天线端口能够与开关连接,通过开关能够切换到更多频域单元关联的射频链路,从而能够发送更多射频链路所关联的载波的信息,也就是说,本申请实施例通过天线端口在不同频域单元的射频链路间的切换,使得一个射频链路可以连接更多的天线端口,通过移相器调整一个射频链路连接的多个天线端口之间的相位差,可以灵活调整终端设备各个载波可获得的波束成形增益,以提升上行传输性能。
结合第三方面,在第三方面的第一种可选的实施方式中,所述至少一个天线端口中的第二天线端口连接第二开关,所述第二开关能够在所述N个射频链路中的K个射频链路之间切换,所述通信装置还包括与所述第二天线端口连接的第二移相器,所述第二移相器用于调整所述第二天线端口的相位,K为大于或等于2的整数。例如,M个射频链路关联的频域单元与K个射频链路关联的频域单元可以有交集,那么对于交集包括的一个频域单元来说,该频域单元的信息既可以通过第一天线端口发送,也可以通过第二天线端口发送,由此提高了信息的发送增益以及发送可靠性。
第四方面,提供另一种通信装置。所述通信装置可以是上述第一至第二方面中的任意一方面所述的终端设备。所述通信装置具备上述终端设备的功能。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元,在收发单元实现接收功能时,可称为接收单元。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
可选的,该通信装置与第三方面所述的通信装置可以是不同的通信装置,或者也可以是同一个通信装置。如果该通信装置与第三方面所述的通信装置为同一个通信装置,那么 该通信装置所包括的收发单元可包括第三方面所述的至少一个天线端口和N个射频链路,或包括第三方面所述的N个射频链路,或者,该通信装置所包括的收发单元可通过第三方面所述的至少一个天线端口和N个射频链路实现,或者,该通信装置所包括的收发单元可通过第三方面所述的N个射频链路实现。
例如,所述发送单元,用于向网络设备发送第一消息,所述第一消息包括终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
所述接收单元,用于接收来自所述网络设备的配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
或者:
所述处理单元,用于通过所述收发单元向网络设备发送第一消息,所述第一消息包括终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
所述处理单元,还用于通过所述收发单元接收来自所述网络设备的配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
再一种可选的实现方式中,所述通信装置包括存储单元和处理单元,所述处理单元用于与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述终端设备的功能。
第五方面,提供再一种通信装置。所述通信装置可以为上述第一至第二方面中的任意一方面所述的网络设备。所述通信装置具备上述网络设备的功能。所述网络设备例如为基站,或为基站中的基带装置。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元的实现方式可参考第四方面的介绍。
例如,所述接收单元,用于接收来自终端设备的第一消息,所述第一消息包括所述终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元, 所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
所述发送单元,用于向所述终端设备发送配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
或者:
所述处理单元,用于通过所述收发单元接收来自终端设备的第一消息,所述第一消息包括所述终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
所述处理单元,还用于通过所述收发单元向所述终端设备发送配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
再一种可选的实现方式中,所述通信装置包括存储单元和处理单元,所述处理单元用于与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述网络设备的功能。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中终端设备或网络设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
附图说明
图1为本申请实施例提供的UE的一种结构示意图;
图2为本申请实施例提供的UE的另一种结构示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5为本申请实施例提供的UE的又一种结构示意图;
图6为本申请实施例中配置信息所指示的内容的一种示意图;
图7为本申请实施例的方案的仿真结果示意图;
图8为本申请实施例提供的通信装置的一种示意性框图;
图9为本申请实施例提供的终端设备的一种示意性框图;
图10为本申请实施例提供的网络设备的一种示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片***等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信***中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,WiFi)***中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。所述通信***中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的***中实现核心网功能的设备名称可以不同,本申请并不对此进行限定。以5G***为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中的天线端口,是逻辑概念,例如是通过UE上部署的物理天线虚拟出 来的。例如,一个天线端口可由一个或多个物理天线虚拟得到。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一天线端口和第二天线端口,可以是同一个天线端口,也可以是不同的天线端口,且,这种名称也并不是表示这两个天线端口的位置、优先级或者重要程度等的不同。
每个运营商具有多个连续或不连续频点的频谱,UE一般会在每个频段配置相应的发射天线和/或接收天线。CA技术通过将相同频段或者不同频段的频谱资源聚合起来进行协同传输,可以提升频谱资源利用率。CA可分为带内(Intra-Band)CA和带外(Inter-Band)CA。其中,Intra-Band CA是聚合同一频段内的多个载波,在UE内,同一频段内的这些载波可以共用相同的射频链路,因此相对于单载波传输可提升上行容量。Inter-Band CA是聚合不同频段的载波,在UE内,不同频段的载波一般有单独的射频链路。目前UE内的每个射频链路最多仅能连接一个天线端口,无法充分利用UE在多个载波的天线端口资源,导致上行传输性能受限。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,终端设备所包括的第一天线端口能够在至少两个频域单元关联的射频链路间切换,也就是说,本申请实施例通过天线端口在不同频域单元的射频链路间的切换,使得一个射频链路可以连接更多的天线端口,通过移相器调整一个射频链路连接的多个天线端口之间的相位差,可以灵活调整终端设备各个频域单元可获得的波束成形增益,以提升上行传输性能。本申请实施例所述的频域单元,例如为载波、子载波,或者也可以是其他的频域单元。在后文的介绍过程中,以频域单元是载波为例。也就是说,后文所述的“载波”,均可以替换为“频域单元”。
下面首先结合附图介绍本申请实施例提供的一种UE。
在本申请实施例中,该UE可包括至少一个天线端口和N个射频链路,本申请实施例所述的至少一个天线端口,可用于上行信息、下行信息或侧行信息中的一种或多种信息的发送,本申请实施例主要以天线端口用于上行信息的发送为例。至少一个天线端口,可包括一个、两个或更多个天线端口。其中,一个射频链路可以包括功率放大器(power amplifier,PA),还可以包括与该功率放大器连接的滤波器,该滤波器用于对除了该射频链路对应的频率外的其他频率进行过滤,另外,一个射频链路还可以包括其他相应的器件,本申请实施例不做限制。在下文中,将“功率放大器”简称为“放大器”。一个射频链路和与该射频链路连接的天线端口(或者称为该射频链路对应的天线端口),也可以称为一个发射通道。
请参考图1,为该UE的一种结构示意图。至少一个天线端口可包括第一天线端口101,第一天线端口101可以与第一开关102连接,通过第一开关102,使得第一天线端口101 能够在N个射频链路中的M个射频链路之间实现切换,M和N均为大于或等于2的整数,且M小于或等于N。另外,N个射频链路可以关联H个载波,H可以小于或等于N,或者H也可以大于N。即,第一天线端口101通过第一开关102能够连接两个、三个或更多个射频链路,那么网络设备可根据不同情况(例如上行信道质量等)调度UE将第一天线端口101连接到相应的射频链路发送该射频链路关联的载波的上行信息,从而可以灵活调整该UE的各个载波可支持的天线端口数量,以提升上行传输性能。
可以理解的是,第一开关102可以通过开关器件实现,或者也可以通过功能模块实现,例如将该功能模块称为开关模块、切换模块、或开关切换模块等,只要能够使得第一天线端口101在N个射频链路中的M个射频链路之间实现切换的功能模块或器件,都可以作为第一开关102。作为第一开关102的一种实现方式,第一开关102例如通过一个单刀多掷开关实现,该单刀多掷开关能够连接两个或更多个射频链路,图1以此为例。另外,图1以第一开关102连接两个射频链路为例,这两个射频链路分别关联第一载波和第二载波。
另外,至少两个天线端口除了包括第一天线端口101外还可以包括其他的一个或多个天线端口,例如UE还包括第二天线端口103,第二天线端口103可以不与开关连接,则第二天线端口103无法在射频链路间切换,而是用于传输第二天线端口103所连接的一个射频链路所关联的载波的信息,这样能够简化UE的内部结构,也降低UE的成本。或者,第二天线端口103可以与第二开关104连接,通过第二开关104,使得第二天线端口103能够在N个射频链路中的K个射频链路之间实现切换,K为大于或等于2的整数,且K小于或等于N。即,UE所包括的一个或多个天线端口能够与开关连接,通过开关能够切换到更多的射频链路,从而能够发送更多射频链路所关联的载波的信息,灵活性较高,网络设备可以调度终端设备通过信道条件较好的天线端口来发送信息,以提高上行发送性能。
同理,第二开关104可以通过开关器件实现,或者也可以通过功能模块实现,例如将该功能模块称为开关模块、切换模块、或开关切换模块等,只要能够使得第二天线端口103在N个射频链路中的K个射频链路之间实现切换的功能模块或器件,都可以作为第二开关104。其中,该UE包括的所有的与天线端口连接的开关,可以视为属于一个功能模块,即,可通过一个功能模块完成该UE包括的所有的与天线端口连接的开关的功能,例如第一开关102和第二开关104可以属于一个功能模块。或者,该UE包括的与天线端口连接的开关,可以视为是不同的功能模块,例如第一开关102和第二开关104可以是不同的功能模块。
作为第二开关104的一种实现方式,第二开关104例如也通过一个单刀多掷开关实现,该单刀多掷开关能够连接两个或更多个射频链路,图1以此为例。另外,图1以第二开关104连接两个射频链路为例。不同的天线端口通过开关能够切换的射频链路,可能完全不同,或者可能部分相同,或者也可能全部相同。例如,第一天线端口102通过第一开关102能在M个射频链路间切换,第二天线端口103通过第二开关104能在K个射频链路间切换,M个射频链路与K个射频链路可以是相同的射频链路,或者,M个射频链路与K个射频链路有交集,或者,M个射频链路与K个射频链路是不同的射频链路。并且,M可能等于K,也可能不等于K,即,不同的天线端口能够切换的射频链路数量可能相等,也可能不相等。以M=K=2为例,例如M个射频链路为第一载波关联的射频链路以及第二载波关联的射频链路,那么K个射频链路也可以是第一载波关联的射频链路以及第二载波关联的射频链路;或者,K个射频链路中可以有一个射频链路是第一载波关联的射频链路或 第二载波关联的射频链路,K个射频链路中剩余的射频链路是其他载波关联的射频链路;或者,K个射频链路中不包括与第一载波关联的射频链路,也不包括与第二载波关联的射频链路。图1以K=2,且这两个射频链路分别关联第一载波和第二载波为例,即,图1以M个射频链路与K个射频链路相同为例。例如M个射频链路与N个射频链路有交集,也就是说对于其中一个射频链路来说,能够通过开关连接到不同的天线端口,那么该射频链路关联的载波的信息就可以通过多个天线端口发送,从而提高了该载波的信息的发送灵活性。
当然,至少两个天线端口可能仅包括第一天线端口101,或仅包括第一天线端口101和第二天线端口103,或者,至少两个天线端口除了包括第一天线端口101和第二天线端口103外还可能包括其他的天线端口,如果包括其他天线端口,则所包括的天线端口可能与开关连接,也可能不与开关连接,实现方式与第二天线端口103是类似的,可参考前文介绍。至于UE究竟包括多少个天线端口、这些天线端口能否在射频链路间切换、以及这些天线端口究竟能在哪些射频链路间切换等,可以根据相应因素来设置,这些因素例如包括UE对于性能的需求,还可以包括UE的成本或UE的体积等,本申请实施例不做限制。图1以至少两个天线端口包括第一天线端口101和第二天线端口103为例,且以第一天线端口101和第二天线端口103都连接开关为例。
根据前文介绍可知,在本申请实施例中,天线端口能够通过开关切换到不同载波关联的射频链路,从而能够发送不同载波上的信息。而考虑到如果切换到不同载波关联的射频链路后,天线端口的相位始终保持不变,那么天线端口在发送有些载波上的信息时,可能会出现发送性能较差的情况。因此,可选的,本申请实施例可以在UE中增加移相器,将开关与移相器连接,通过移相器可调整天线端口的相位,使得天线端口在连接到不同的射频链路时,通过调整相位,能够提高上行波束成形增益。例如,可以实现一个开关连接一个移相器,使得各个天线端口的相位都能得到调整;或者,也可以有部分开关连接移相器,剩余部分开关不连接移相器,以减小UE的体积,也节省UE的成本。
例如可参考图2,第一开关102可以连接第一移相器105,例如第一移相器105可连接在第一开关102与第一天线端口101之间,第一移相器105可用于调整第一天线端口101的相位。例如网络设备如果指示了第一开关102需连接的射频链路,那么网络设备还可指示第一移相器105的相位,从而UE在将第一天线端口101连接到该射频链路后,还可以调整第一移相器105的相位,以提高第一天线端口101的上行发送性能。
以图1为例,UE还可以包括与第二天线端口103连接的第二开关104,那么第二开关104可以连接移相器,或者也可以不连接移相器。以第二开关104连接移相器为例,可继续参考图2,例如第二开关104连接第二移相器106,例如第二移相器106可连接在第二开关104与第二天线端口103之间,第二移相器106可用于调整第二天线端口103的相位。例如网络设备如果指示了第二开关104需连接的射频链路,那么网络设备还可指示第二移相器106的相位,从而UE在将第二天线端口103连接到该射频链路后,还可以调整第二移相器106的相位,以提高第二天线端口103的上行发送性能。本申请实施例通过移相器调整一个射频链路连接的多个天线端口之间的相位差,可以灵活调整该UE各个载波可获得的波束成形增益,以提升上行传输性能。
另外请参考图3,为本申请实施例的一种应用场景的示意。图3包括接入网设备、核心网设备和UE。该接入网设备例如工作在演进的通用移动通信***陆地无线接入(evolved  UMTS terrestrial radio access,E-UTRA)***中,或者工作在NR***中,或者工作在下一代通信***或其他通信***中。该接入网设备例如为基站。其中,接入网设备在不同的***对应不同的设备,例如在4G***中可以对应eNB,在5G***中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信***中,因此图3中的接入网设备也可以对应未来的移动通信***中的网络设备。图3以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。另外,图3中的UE以手机为例,实际上根据前文对于UE的介绍可知,本申请实施例的UE不限于手机。
为了便于介绍,后文将要介绍的各个实施例以应用在图3所示的架构为例。例如,后文的各个实施例所述的网络设备例如为图3所示的网络架构中的接入网设备,后文的各个实施例所述的UE可以是图3所示的网络架构中的UE。
如上介绍了本申请实施例提供的UE和本申请实施例的应用场景,下面结合附图介绍本申请实施例提供的方法。请参考图4,为本申请实施例提供的一种通信方法的流程,该方法可由图1或图2所介绍的UE实现。
S41、UE向网络设备发送第一消息,相应的,网络设备接收来自UE的第一消息。第一消息可包括该能力信息。例如,第一消息为无线资源控制(radio resource control,RRC)消息,该RRC消息可以是UE在随机接入成功后、且在UE向网络设备发送上行数据前,发送给网络设备的。可选的,该RRC消息例如为UE能力信息(UE capability information)消息,或者也可以是其他RRC消息。
UE可以确定该UE的能力信息,并将该能力信息发送给网络设备。该能力信息可指示为该UE配置的P个载波中的各个载波所支持的天线端口,P个载波可以包括为该UE配置的全部载波,或者包括为该UE配置的部分载波,P为大于1的整数。例如P个载波中包括至少两个载波,P个载波中的至少两个载波可以与各自的上行传输配置信息相关联,例如P个载波包括第一载波,第一载波可与第一上行传输配置信息关联。可理解为,至少两个载波配置了上行发射通道,所述至少两个载波从网络设备接收配置信息,例如称为配置信息A,配置信息A用于配置所述至少两个频域单元的上行传输配置信息,通过在配置了上行发射通道的载波间切换天线端口,可灵活调整各载波支持的天线端口数量,进一步通过调整通过一个射频链路连接的不同天线端口之间的相位差,可以获得波束成形增益,提升上行传输性能。本申请实施例所述的一个载波支持的天线端口,可以包括与该载波关联的天线端口,以及包括能够切换到该载波的天线端口。与该载波关联的天线端口,是指无需通过开关切换就能发送该载波的信息的天线端口,或者说,是在没有设置放大器与天线端口之间的开关的情况下就能发送该载波的信息的天线端口。而能够切换到该载波的天线端口,是指通过开关切换后能够发送该载波的信息的天线端口。例如P个载波中的第i个载波支持的天线端口,包括第i个载波关联的天线端口,以及包括N i个载波关联的天线端口中能够切换至所述第i个载波的天线端口,N i个载波属于P个载波,且N i个载波不包含第i个载波,N i为大于或等于1且小于P的整数。
以图1或图2为例,该UE支持两个载波,这两个载波分别为第一载波和第二载波。以该能力信息指示为该UE配置的全部载波所支持的天线端口为例,UE可确定,第一载波支持的天线端口包括第一天线端口101和第二天线端口103,第二载波支持的天线端口包括第一天线端口101和第二天线端口103。其中,对于第一载波来说,第一天线端口103 是第一载波关联的天线端口,第二天线端口105是通过切换能够发送第一载波的信息的天线端口。对于第二载波来说,第二天线端口105是第二载波关联的天线端口,第一天线端口103是通过切换能够发送第二载波的信息的天线端口。
该能力信息指示P个载波中的各个载波所支持的天线端口,可以有不同的指示方式,下面举例介绍。
1、能力信息对于天线端口的第一种指示方式。
该能力信息包括P个载波中的第i个载波所支持的天线端口的信息。一个天线端口的信息例如为该天线端口的编号(或者称为索引),或者也可以是该天线端口的标识等。
UE可为该UE包括的各个天线端口设置索引,例如该UE包括第一天线端口101和第二天线端口103,则UE可为第一天线端口101和第二天线端口103设置索引。例如UE可按照载波的频率升序的顺序为天线端口设置索引,或者UE也可按照载波的频率降序的顺序为天线端口设置索引,或者UE也可以随机设置索引等。UE可通过天线端口的索引指示相应的天线端口,例如UE可以将P个载波中的每个载波所支持的天线端口的索引包括在该能力信息中发送给网络设备,从而网络设备根据该能力信息就能明确各个载波所支持的天线端口。
例如对于P个载波中的第i个载波来说,该能力信息可包括P个载波中的第i个载波所支持的天线端口的索引x i,x i是大于或等于1且小于或等于N t的整数,或x i是小于N t的非负整数,N t是P个载波所关联的天线端口总数。i为大于或等于1且小于或等于P的整数,可理解为,第i个载波是P个载波中的任一个。以图1或图2为例,例如第一天线端口103的索引为0,第二天线端口105的索引为1,则该能力信息包括的第一载波支持的天线端口的索引为0和1,而第一载波和第二载波关联的天线端口总数为2,无论是0还是1,都小于2。
为了更方便理解,下面提供UE的结构的一种具体示例,请参考图5。其中,图5所示的UE的结构是对图2所示的UE的结构的一种示例。图5以该UE支持1.8GHz的载波、2.1GHz的载波和2.6GHz的载波为例,在实际应用中,UE可能支持更多或更少数量的载波,以及UE支持的载波的频率也可能有所不同。其中,1.8GHz的载波关联射频链路0,2.1GHz的载波关联射频链路1,2.6GHz的载波关联射频链路2和射频链路3,射频链路0、射频链路1、射频链路2和射频链路3分别连接一个天线端口,即,这4个射频链路连接4个天线端口,也就是说,图5以UE支持4个天线端口为例。其中,射频链路0是指包括了放大器0的射频链路,射频链路1是指包括了放大器1的射频链路,射频链路2是指包括了放大器2的射频链路,射频链路3是指包括了放大器3的射频链路。射频链路0包括放大器0和1.8GHz滤波器,射频链路1包括放大器1和2.1GHz滤波器,射频链路2包括放大器2和2.6GHz滤波器2,射频链路3包括放大器3和2.6GHz滤波器3。其中,1.8GHz滤波器是指能够将除了1.8GHz外的其他频率滤除的滤波器,2.1GHz滤波器是指能够将除了2.1GHz外的其他频率滤除的滤波器,2.6GHz滤波器是指能够将除了2.6GHz外的其他频率滤除的滤波器。
UE可对这4个天线端口进行编号,例如,UE可按照载波的频率升序的顺序对天线端口编号,或者UE也可按照载波的频率降序的顺序对天线端口编号,或者UE也可以随机编号等。以UE按照载波的频率升序的顺序对天线端口编号为例,例如UE可将这4个天线端口中与1.8GHz的载波关联的天线端口编号为0(可称为天线端口0),将与2.1GHz的 载波关联的天线端口编号为1(可称为天线端口1),将与2.6GHz的载波关联的天线端口分别编号为2和3(可分别称为天线端口2和天线端口3)。另外,图5以天线端口0连接有开关、天线端口1连接有开关、天线端口2和天线端口3均未连接开关为例。例如将天线端口0连接的开关称为开关0,将天线端口1连接的开关称为开关1。例如图5中,1.8GHz的载波关联天线端口0,2.1GHz的载波关联天线端口1,2.6GHz的载波关联天线端口2和天线端口3。除此之外,通过开关0的切换,天线端口0还可切换至2.1GHz的载波关联的射频链路(或者说,切换至2.1GHz的载波,后文都是类似的)、或切换至2.6GHz的载波关联的射频链路;通过开关1的切换,天线端口1可切换至1.8GHz的载波关联的射频链路、或切换至2.6GHz的载波关联的射频链路。天线端口2和天线端口3均连接2.6GHz的载波关联的射频链路,无法切换。另外在图5中,开关0连接了移相器0,开关1连接了移相器1,移相器0可用于调整天线端口0的相位,移相器1可用于调整天线端口1的相位。天线端口2和天线端口3由于没有连接开关,因此未设置移相器。
例如对于图5中的1.8GHz的载波来说,该载波所关联的天线端口包括天线端口0,而能够切换到该载波的天线端口包括天线端口1;对于2.1GHz的载波来说,该载波所关联的天线端口包括天线端口1,而能够切换到该载波的天线端口包括天线端口0;对于2.6GHz的载波来说,该载波所关联的天线端口包括天线端口2和天线端口3,而能够切换到该载波的天线端口包括天线端口0和天线端口1。可理解为,图5中用虚线所示的天线端口与射频链路之间的连接关系,表明是需要通过开关切换实现的连接关系,而用实线所示的天线端口与射频链路之间的连接关系,表明是在未设置开关时就能实现的连接关系。
继续以图5为例,如果该能力信息指示为该UE配置的全部载波中的各载波所支持的天线端口,则UE所确定的能力信息可指示:1.8GHz载波支持的天线端口包括天线端口0和天线端口1,2.1GHz载波支持的天线端口包括天线端口0和天线端口1,2.6GHz载波支持的天线端口包括天线端口0、天线端口1、天线端口2、以及天线端口3。例如一个载波所支持的天线端口可以按照集合的形式包括在能力信息中,那么该能力信息可以包括:1.8GHz的载波可支持的天线端口集合{天线端口0,天线端口1},2.1GHz的载波可支持的天线端口集合{天线端口0,天线端口1},以及2.6GHz的载波可支持的天线端口集合{天线端口0,天线端口1,天线端口2,天线端口3}。
采用这种实现方式,使得能力信息更为明确,有助于网络设备更清晰地确定UE的能力信息。
例如第一消息为UE能力信息消息,该UE能力信息消息可包括带宽组合列表信息元素(BandCombinationList information element)字段,带宽组合列表信息元素字段原本用于承载该UE所支持的载波聚合的带宽组合和/或该UE所支持的多无线接入技术双连接(multi-RAT dual connectivity,MR-DC)带宽组合。带宽组合列表信息元素字段可以包括带宽参数(BandParameters)字段,例如能力信息采用第一种实现方式,本申请实施例可将能力信息承载在带宽参数字段中。例如通过带宽参数字段承载能力信息的结构如下:
Figure PCTCN2021134417-appb-000001
其中,BandParameters-vxxxx表示带宽组合列表信息元素字段所包括的带宽参数字段, 天线载波切换(AntCarrierSwitch)表示本申请实施例提供的能力信息。当然本申请实施例提供的能力信息还可以有其他名称,AntCarrierSwitch只是示例。
2、能力信息对于天线端口的第二种指示方式。
该能力信息可指示UE的天线端口总数,例如该UE的天线端口总数为N t。N t个天线端口,例如是为UE配置的P个载波所关联的天线端口。以图5为例,1.8GHz的载波关联天线端口0,2.1GHz的载波关联天线端口1,2.6GHz的载波关联天线端口2和天线端口3,那么N t为4,则该能力信息指示该UE的天线端口总数为4。
如果能力信息采用这种方式指示,则网络设备可能无法明确究竟哪个载波关联哪些天线端口。但这种指示方式较为简单,信息量也较小,有利于减小信令开销。
3、能力信息的第三种实现方式。
能力信息可指示P个载波中的第i个载波关联的天线端口数量,例如该数量为M i,M i为大于或等于1的整数,且M i小于或等于P个载波关联的天线端口总数。例如该能力信息可指示P个载波中的每个载波所关联的天线端口数量,其中第i个载波关联的天线端口数量为M i,或者该能力信息可指示P个载波中的部分载波中的每个载波所关联的天线端口数量,其中第i个载波关联的天线端口数量为M i。P个载波中的不同载波所关联的天线端口数量可能相同,也可能不同。
另外,第一消息还可以包括第一信息,第一信息可指示第i个载波关联的M i个天线端口可切换至第j个载波的信息,j不等于i,i和j均是大于或等于1且小于或等于P的整数。第一信息可包括在第一消息中,但不属于能力信息,或者,第一信息也可属于能力信息,这里以第一信息属于能力信息为例。例如第一信息可指示P个载波中的每个载波的切换信息,这里以第一信息指示第i个载波的切换信息为例。通过能力信息的这种指示,就可以指明天线端口与载波之间的切换关系。且P个载波中的第i个载波关联的天线端口的数量可以是原本就包括在能力信息中的,即,即使没有采用本申请实施例提供的UE的结构,UE也可能需要向网络设备发送能力信息,那么为该UE配置的载波关联的天线端口的数量是原本就包括在能力信息中的。而第一信息,可以是本申请实施例在能力信息中扩展的内容。相当于,通过这种方式,可以利用能力信息中已有的信息,再通过在能力信息中增加相应的信息(例如第一信息),就能指示本申请实施例中为该UE配置的P个载波所支持的天线端口,提高了对能力信息中原有的信息的利用率。例如,天线端口的编号规则是通过协议规定的,例如协议规定按照载波的频率升序的顺序为天线端口设置索引,或协议规定按照载波的频率降序的顺序为天线端口设置索引等,则UE和网络设备都能明确编号规则,因此网络设备能够明确索引与天线端口之间的关系。
第一信息指示M i个天线端口可切换至第j个载波的信息,可以有不同的指示方式,下面举例介绍。
作为第一信息指示M i个天线端口可切换至第j个载波的信息的一种可选的实施方式,第一信息可指示M i个天线端口中可切换至第j个载波的天线端口的数量。例如参考图5,1.8GHz的载波关联天线端口0,能够切换至2.1GHz的载波的天线端口的数量为1,能够切换至2.6GHz的载波的天线端口的数量为1。2.1GHz的载波关联天线端口1,能够切换至1.8GHz的载波的天线端口的数量为1,能够切换至2.6GHz的载波的天线端口的数量为1。2.6GHz的载波关联天线端口0和天线端口1,能够切换至1.8GHz的载波的天线端口的数量为0,能够切换至2.1GHz的载波的天线端口的数量为0。这种指示方式只需指示天线 端口的数量,指示较为简单,且信令开销较小。
作为第一信息指示M i个天线端口可切换至第j个载波的信息的另一种可选的实施方式,第一信息可指示M i个天线端口中的第m个天线端口可切换至第j个载波,其中,m=1,2,…,M i,或m=0,1,…,M i-1。例如参考图5,对于1.8GHz的载波,第一信息可指示天线端口0能够切换到2.1GHz的载波(或者说,切换到2.1GHz的载波关联的射频链路1),还可指示天线端口0能够切换到2.6GHz的载波(或者说,切换到2.6GHz的载波关联的射频链路2)。这种指示方式,可以使得网络设备明确天线端口与第j个载波之间的切换关系,使得指示更为清楚。
例如,第一信息可以包括第一集合和第二集合,第一集合包括至少一个载波的信息,第二集合包括至少一个载波的信息,第一集合包括的载波的信息所对应的载波的数量可小于或等于P,第二集合包括的载波的信息所对应的载波的数量可小于或等于P。第二集合所包括的第r个载波的信息所关联的天线端口能够切换到第一集合所包括的第r个载波,i为大于或等于0的整数,且r小于或等于P。
例如参考图5,假设在天线端口切换之前,或者说在没有为天线端口设置开关之前,根据载波的频率升序的顺序的预定义规则编号,1.8GHz的载波关联1个天线端口,该天线端口为天线端口0,2.1GHz的载波关联1个天线端口,该天线端口为天线端口1,2.6GHz的载波关联2个天线端口,这两个天线端口为天线端口2和天线端口3。例如P个载波包括1.8GHz的载波、2.1GHz的载波以及2.6GHz的载波,那么该能力信息包括的P个载波关联的天线端口数量可包括:1.8GHz的载波关联的天线端口数量为1,2.1GHz的载波关联的天线端口数量为1,2.6GHz的载波关联的天线端口数量为2。除此之外,该能力信息还包括第一集合和第二集合,例如第一集合为{1.8GHz,2.1GHz,2.6GHz,2.6GHz},第二集合为{2.1GHz,1.8GHz,1.8GHz,2.1GHz},这表明,2.1GHz的载波所关联的天线端口能够切换到1.8GHz的载波,1.8GHz的载波所关联的天线端口能够切换到2.1GHz的载波,1.8GHz的载波所关联的天线端口能够切换到2.6GHz的载波,2.1GHz的载波所关联的天线端口能够切换到2.6GHz的载波。
根据图1、图2或图5可知,可能有些载波会关联多个射频链路,例如通过第一集合和第二集合指示了1.8GHz的载波所关联的天线端口能够切换到2.6GHz的载波,2.1GHz的载波所关联的天线端口也能够切换到2.6GHz的载波,而2.6GHz的载波关联射频链路2和射频链路3,那么网络设备可能不明确究竟1.8GHz的载波所关联的天线端口是切换到2.6GHz的载波所关联的哪个射频链路,也不明确2.1GHz的载波所关联的天线端口是切换到2.6GHz的载波所关联的哪个射频链路。又例如,通过第一集合和第二集合指示了2.6GHz的载波所关联的天线端口能够切换到1.8GHz的载波,那么网络设备可能不明确究竟是2.6GHz的载波所关联的哪个天线端口能切换到1.8GHz。因此可选的,第一消息还可以包括切换信息,切换信息可指示第二集合所指示的一个或多个载波关联的天线端口与第一集合所包括的载波关联的射频链路之间的切换关系。
继续以图5为例,例如第一集合包括2.6GHz的载波的信息,2.6GHz的载波关联射频链路2和射频链路3,那么切换信息可以指示第二集合所包括的1.8GHz的载波关联的天线端口切换到这两个射频链路中的哪个,也可以指示第二集合所包括的2.1GHz的载波关联的天线端口切换到这两个射频链路中的哪个。例如切换信息为{a,b},a和b分别表示射频链路2和射频链路3,按照载波的频率升序的顺序,a用于指示1.8GHz的载波关联的 天线端口的切换信息,即,指示1.8GHz的载波关联的天线端口切换到这两个天线端口中的哪个,b用于指示2.1GHz的载波关联的天线端口的切换信息,即,指示2.1GHz的载波关联的射频链路连接的天线端口切换到这两个天线端口中的哪个。例如切换信息为{10,01},表示1.8GHz的载波关联的天线端口切换到天线端口2,2.1GHz的载波关联的天线端口切换到天线端口3。或者切换信息也可以采用位图(bitmap)的形式实现,例如第一信息包括2个比特,这两个比特中的高位比特指示1.8GHz的载波关联的天线端口的切换信息,低位比特指示2.1GHz的载波关联的天线端口的切换信息,如果一个比特取值为“0”,代表天线端口2,如果一个比特取值为“1”,代表天线端口3。例如切换信息为{0,1},表示1.8GHz的载波关联的天线端口切换到天线端口2,2.1GHz的载波关联的天线端口切换到天线端口3。
又例如,第一消息为UE能力信息消息,该UE能力信息消息包括上行发射切换带宽对(ULTxSwitchingBandPair)字段,上行发射切换带宽对字段包括为该UE配置的载波关联的天线端口的信息。例如能力信息采用前述的第三种实现方式,本申请实施例在上行发射切换带宽对字段中添加第一集合和第二集合。可选的,如果能力信息还包括切换信息,那么切换信息也可以包括在上行发射切换带宽对字段中。例如,通过上行发射带宽对字段承载能力信息的结构如下:
Figure PCTCN2021134417-appb-000002
其中,带宽索引上行1(bandIndexUL1)表示第一集合,带宽索引上行2(bandIndexUL2)表示第二集合,天线索引上行(AntIndexUL)表示切换信息。
当然,无论该能力信息采用如上哪种实现方式,该能力信息都还可以包括在除UE能力信息消息外的其他消息中,即使该能力信息包括在UE能力信息消息中,该能力信息也可以通过其他字段承载,例如该能力信息可以通过在UE能力信息消息中新增的字段承载。另外,该能力信息除了可指示P个载波支持的天线端口外,还可以指示该UE的其他能力,本申请实施例对此不做限制。
S42、网络设备向UE发送配置信息,相应的,UE接收来自网络设备的配置信息。
该配置信息可以为该UE的载波配置探测参考信号(sounding reference signal,SRS)资源。可选的,该配置信息还可以配置该SRS资源的SRS端口与该UE的天线端口之间的关联关系。例如,该配置信息可以为该UE的P个载波中的每个载波配置SRS资源,这P个载波可以是为该UE配置的全部载波或部分载波,并且该配置信息可以为所配置的每个SRS资源的SRS端口与该UE的天线端口配置关联关系。该配置信息为一个载波可配置一个或多个SRS资源,一个SRS资源可对应一个或多个SRS端口。例如第一载波是为UE配置的一个载波,该配置信息可以为第一载波配置至少两个SRS资源,且可以配置这至少两个SRS资源的SRS端口与第一载波支持的天线端口之间的关联关系。一个SRS资源的一个SRS端口关联一个天线端口,可以理解为,该SRS端口对应的SRS通过该天线端口发送。对于第一载波的至少两个SRS资源中的一个SRS资源来说,该SRS资源的SRS端口数可以是小于或等于第一载波所关联的天线端口的数量的正整数。
另外,为一个载波配置的不同的SRS资源的SRS端口,可以与不同的天线端口相关联。例如为第一载波配置了SRS资源A和SRS资源B,SRS资源A对应SRS端口a,SRS资源B对应SRS端口b,那么SRS端口a关联的天线端口与SRS端口b关联的天线端口可以是不同的天线端口。这是因为,为一个载波配置的一个SRS资源的SRS端口数可能小于或等于该载波关联的天线端口数量,因此为了测量UE支持的天线端口数(UE支持的天线端口数量可能大于或等于该载波关联的天线端口数),需为该载波配置多个SRS资源,用于测量不同的天线端口对应的上行信道。
例如,该配置信息配置了第一SRS资源和第二SRS资源。第一SRS资源和第二SRS资源占用的时间单元可以相同也可以不同,如果第一SRS资源和第二SRS资源占用的时间单元不同,那么第一SRS资源和第二SRS资源可以关联不同的天线端口,例如该配置信息为第一载波配置第一SRS资源和第二SRS资源,或者,如果第一SRS资源和第二SRS占用的时间单元不同,那么第一SRS资源和第二SRS资源也可以关联同一个天线端口,例如该配置信息为第一载波配置第一SRS资源,为第二载波第二SRS资源。而如果第一SRS资源和第二SRS占用的时间单元相同,那么第一SRS资源和第二SRS资源不关联同一个天线端口,此时该配置信息可配置这两个SRS资源关联不同的天线端口,例如该配置信息为第一载波配置第一SRS资源,为第二载波配置第二SRS资源。也就是说,对于同一个天线端口来说,在一个时刻只在一个载波上发送信息,而不能在不同的载波上发送信息。
例如,根据图5所示的UE,该配置信息的一种配置情况可参考图6。在图6中,网络设备为2.6GHz的载波配置了SRS资源30和SRS资源31,并配置SRS资源30的两个SRS端口分别关联图5中的天线端口2和天线端口3,SRS资源31的两个端口分别关联图5中的天线端口0和天线端口1;为2.1GHz的载波配置了SRS资源20和SRS资源21,并配置SRS资源20的一个SRS端口关联图5中的天线端口1,SRS资源21的一个SRS端口关联图5中的天线端口0;为1.8GHz的载波配置了SRS资源10和SRS资源11,并配置SRS资源10的一个SRS端口关联图5中的天线端口0,SRS资源11的一个SRS端口关联图5中的天线端口1。
在一种可能的实现方式中,如果为一个载波配置了多个SRS资源,那么该载波的不同的SRS资源的相同的SRS端口所对应的天线端口可以连接到同一个射频链路。例如,图6所示的多个SRS资源的SRS端口与UE天线端口的关联关系可再参考表1。
表1
Figure PCTCN2021134417-appb-000003
根据表1和图5可知,由于2.6GHz的载波关联2个射频链路,且配置了两个2端口的SRS资源,即SRS资源30和SRS资源31,图5中的天线端口0和天线端口2可以连接至同一个射频链路,图5中的天线端口1和天线端口3可以连接至同一个射频链路,则网络设备可配置SRS资源30的SRS天线端口0关联图5中的天线端口2,SRS资源31的天线端口0关联图5中的天线端口0,SRS资源30的SRS天线端口1关联图5中的天线端口3,SRS资源31的SRS天线端口1关联图5中的天线端口1。
对于UE来说,在接收配置信息后,可以不必再进行额外判断,而是按照配置信息执行。或者,UE在接收配置信息后,可结合UE的实际情况以及该配置信息,确定为该UE配置的载波的SRS资源的SRS端口与该UE的天线端口之间的关联关系,也就是说,配置信息对于UE来说是作为参考信息,UE可结合UE的实际情况,确定是否要完全按照配置信息执行。本申请实施例以UE按照配置信息执行为例。
网络设备可以只向UE发送一次配置信息,在发送后不再更改,例如在UE随机接入成功后向该UE发送配置信息,发送后不再更改。或者,网络设备也可以更新配置信息。例如,在满足第一条件的情况下,网络设备可以向UE发送新的配置信息,新的配置信息还是用于为该UE的载波配置SRS资源,且该配置信息还可以配置该SRS资源的SRS端口与该UE的天线端口之间的关联关系。为了便于区分,将原配置信息称为第一配置信息,将新的配置信息称为第二配置信息。第二配置信息所配置的载波与第一配置信息所配置的载波可以完全相同,例如第一配置信息和第二配置信息都配置1.8GHz的载波和2.1GHz的载波;或者,第二配置信息所配置的载波与第一配置信息所配置的载波可以有交集,但不完全相同,例如第一配置信息配置1.8GHz的载波和2.1GHz的载波,第二配置信息配置1.8GHz的载波和2.6GHz的载波,或者第一配置信息配置1.8GHz的载波和2.1GHz的载波,第二配置信息配置1.8GHz的载波、2.1GHz的载波和2.6GHz的载波;或者,第二配置信息所配置的载波与第一配置信息所配置的载波可以完全不同,例如第一配置信息配置1.8GHz的载波和2.1GHz的载波,第二配置信息配置2.6GHz的载波。即使第二配置信息和第一配置信息都配置同一个载波,但第一配置信息为该载波配置的SRS资源和第二配置信息为该载波配置的SRS资源,同样的可以完全相同,或者有交集但不完全相同,或者完全不同。即使第二配置信息和第一配置信息为同一个载波配置的SRS资源相同,但第一配置信息配置的该SRS资源的SRS端口与该UE的天线端口之间的关联关系,与第二配置信息配置的该SRS资源的SRS端口与该UE的天线端口之间的关联关系,可以完全相同,或者有交集但不完全相同,或者完全不同。也就是说,第一配置信息和第二配置信息可以完全相同,或者有交集但不完全相同,或者也可以完全不同。
第一条件可包括如下一项或多项:达到周期时间;UE的上行信道质量低于第一阈值;以发送第一配置信息的时间为起始时间,从该起始时间到当前时间之间达到第一时长;UE切换到了新小区;UE的第一参数的取值发生变化;UE的第一参数的取值的变化量大于第一阈值;或,接收到来自UE的触发信息,该触发信息用于指示重新配置SRS资源,或指示重新配置SRS资源的SRS端口与该UE的天线端口之间的关联关系。例如,第一条件包括UE的上行信道质量低于第一阈值,以及包括从发送第一配置信息的时间到当前时间之间达到第一时长;又例如,第一条件包括UE切换到了新小区;又例如,第一条件包括接收到来自UE的触发信息;再例如,第一条件包括UE的上行信道质量低于第一阈值,达到周期时间,从发送第一配置信息的时间到当前时间之间达到第一时长,UE切换到了新 小区;以及,接收到来自UE的触发信息,等等。
第一条件为达到周期时间,是指网络设备可周期性向UE发送配置信息。这种方式可以使得配置信息得以周期性更新,以符合当前的信道条件。
UE的上行信道质量,可以是指UE的任一个上行信道的质量,或者是指UE全部或部分上行信道的平均质量。如果UE的上行信道质量低于第一阈值,那么网络设备按照第一配置信息所调度的上行数据的传输可能会受到影响,因此网络设备可以重新配置。
如果第一配置信息已发给UE较长时间,那么在这段时间内上行信道条件等可能有所变化,网络设备按照第一配置信息所调度的上行数据的传输可能会受到影响。因此网络设备可以更新配置信息,以适用当前的信道条件。
如果UE切换到了新小区,那么原小区为该UE发送的第一配置信息可能不再适用于新小区,因此新小区可以向UE发送第二配置信息。
第一参数可以包括UE的任意一个或多个参数,例如功耗参数或发热参数等。例如UE发热严重,那么可能表明第一配置信息所配置的关系不适用于UE的实际情况,那么网络设备在获知UE发热严重的情况后,可以更新配置信息。
UE也可以自行决策是否需要更新配置信息。例如UE确定上行信道条件较差,或者UE的第一参数的取值发生变化,或者UE的第一参数的取值的变化量大于第一阈值(例如UE发热严重),则UE可以向网络设备发送触发信息,以触发网络设备更新配置信息,这样增强了UE的主动性。
除了如上条件外,第一条件还可以包括其他条件,本申请实施例不做限制。
或者,该配置信息可以为该UE的载波配置SRS资源,而配置信息可不必配置该SRS资源的SRS端口与该UE的天线端口之间的关联关系,该关联关系可根据预定义的规则确定。
例如对于一个载波,网络设备可以先确定哪些天线端口是该载波原本关联的,哪些天线端口是通过开关切换到该载波的。然后网络设备可以按照预定义的规则推断能够连接到同一个射频链路的天线端口,之后,网络设备可以根据预定义的规则确定该载波的SRS资源的SRS端口与天线端口之间的关联关系。例如对于一个SRS资源,可按照索引升序关联该SRS资源的SRS端口与天线端口,且不同的SRS资源的相同的SRS端口号可以与连接到同一个射频链路的不同天线端口号相关联。
对于一个载波,网络设备要确定哪些天线端口是该载波原本关联的,哪些天线端口是通过开关切换到该载波的,可以有不同的方式。
例如一种方式为,如果UE所发送的能力信息对于P个载波所支持的天线端口采用前文介绍的第一种指示方式,那么UE在能力信息中可将一个载波关联的天线端口的索引放在前,而将通过开关能够切换到该载波的天线端口的索引放在后,则网络设备能够明确哪些天线端口是该载波原本关联的,哪些天线端口是通过开关切换到该载波的。例如,2.6GHz的载波支持的天线端口包括天线端口0、天线端口1、天线端口2、天线端口3,如果UE所发送的能力信息对于P个载波所支持的天线端口采用前文介绍的第一种指示方式,则UE所发送的能力信息可包括{天线端口2,天线端口3,天线端口0,天线端口1},其中,天线端口2和天线端口3是2.6GHz的载波所关联的,天线端口0和天线端口1是通过开关能够切换到2.6GHz的载波的。
例如另一种方式为,如果UE所发送的能力信息对于P个载波所支持的天线端口采用 前文介绍的第三种指示方式,则对于P个载波中的一个载波,网络设备可以按照预定义的规则推断,该载波所支持的天线端口中,哪些天线端口是该载波原本关联的,哪些天线端口是通过开关切换到该载波的。例如P=3,这三个载波分别为1.8GHz的载波、2.1GHz的载波、2.6GHz的载波,这三个载波关联的天线端口数量分别为1、1、2。如果按照载波频率升序预定义规则编号,则网络设备可以确定天线端口0是1.8GHz载波关联的天线端口,天线端口1是2.1GHz载波关联的天线端口,天线端口2和天线端口3是2.6GHz载波关联的天线端口。
当然网络设备还可以通过其他方式确定载波所支持的天线端口中,哪些天线端口是该载波关联的,哪些天线端口是通过开关切换到该载波的。
例如对于2.6GHz的载波来说,网络设备可以按照预定义的规则推断能够连接到同一个射频链路的天线端口。例如,预定义的规则规定按照天线端口的索引升序映射,那么网络设备可以确定,通过开关切换的天线端口0可以连接到2.6GHz的载波关联的天线端口2连接的射频链路,通过开关切换的天线端口1可以连接到2.6GHz的载波关联的天线端口3连接的射频链路。然后网络设备可以根据预定义的规则确定2.6GHz的载波的SRS资源的SRS端口与天线端口之间的关联关系。例如预定义的规则规定,对于一个SRS资源,按照索引升序关联SRS端口与天线端口,且不同的SRS资源的相同的SRS端口号可以与连接到同一个射频链路的不同的天线端口号关联。例如网络设备为2.6GHz的载波配置了SRS资源30和SRS资源31,则网络设备可以确定,SRS资源30的SRS天线端口0关联图5中的天线端口2,SRS资源30的SRS天线端口1关联图5中的天线端口3,SRS资源31的天线端口0关联图5中的天线端口0,SRS资源31的SRS天线端口1关联图5中的天线端口1。
S43、该UE根据配置信息确定第一SRS资源关联的天线端口。
在UE接收该配置信息后,UE就可以根据该配置信息向网络设备发送SRS资源,或者说发送SRS资源对应的SRS。例如UE可向网络设备发送该配置信息所配置的全部SRS,或者UE可向网络设备发送该配置信息所配置的部分SRS。下面以UE要向网络设备发送第一SRS资源对应的SRS(例如下文将第一SRS资源对应的SRS称为第一SRS)为例,第一SRS资源可以是该配置信息所配置的一个SRS资源。
例如,该UE可根据表1或图6确定第一SRS资源关联的天线端口,或者该UE可根据预定义的规则确定第一SRS资源关联的天线端口。例如根据表1,如果第一SRS资源为SRS资源30,则UE可确定SRS资源30的SRS端口0关联天线端口2,SRS资源30的SRS端口1关联天线端口3。
S44、UE通过所确定的天线端口向网络设备发送第一SRS,相应的,网络设备接收来自UE的第一SRS。
如果UE确定了一个天线端口,则通过该天线端口发送第一SRS;或者,如果UE确定了多个天线端口,则通过这多个天线端口发送多个第一SRS。例如,第一SRS资源为SRS资源30,则UE通过天线端口2发送对应SRS端口0的第一SRS,通过天线端口3发送对应SRS端口1的第一SRS。
网络设备接收第一SRS后,根据该配置信息可确定第一SRS资源对应的该UE的天线端口,以及可确定第一SRS资源对应的载波,从而网络设备可以通过测量第一SRS,对该载波上的各天线端口对应的上行信道进行信道估计。例如,第一SRS资源为SRS资源30, UE通过天线端口2发送对应SRS端口0的第一SRS,通过天线端口3发送对应SRS端口1的第一SRS。那么网络设备接收第一SRS后,可以对该UE的2.6GHz的载波上的天线端口2对应的上行信道进行信道估计,也可以对该UE的2.6GHz的载波上的天线端口3对应的上行信道进行信道估计。
S45、网络设备向UE发送调度信息,相应的,UE接收来自网络设备的调度信息。调度信息可以调度第一载波上的上行数据,第一载波是为UE配置的一个载波。网络设备对该UE各载波支持的天线端口对应的上行信道进行信道估计后,可以根据信道估计结果选择信道质量较好的载波及其支持的天线端口,从而调度UE在这些上行载波和天线端口上发送上行数据。其中,网络设备调度上行数据,一种方式为,网络设备调度物理上行共享信道(physical uplink shared channel,PUSCH),PUSCH承载上行数据。
网络设备在调度上行数据时,可判断可行的天线切换组合。例如根据图5所示的UE能力,天线端口0和天线端口2连接到同一个射频链路为可行的组合,天线端口0和天线端口3连接到同一个射频链路为不可行的组合。在一种可能的实现方式中,网络设备和UE都遵循相同的天线切换规则,例如该规则包括:如果一个载波可支持的最大传输层数大于1,可切换至该载波的天线端口与该载波关联的射频链路的映射方式遵循按照天线端口编号升序一一映射的方式。例如,图5中2.6GHz载波关联的天线端口的编号为2和3,可切换至2.6GHz载波的天线端口编号为0、1,则网络设备和UE均遵循天线端口0能切换到天线端口2连接的射频链路上,天线端口1能切换到天线端口3连接的射频链路上。
例如该调度信息可包括第二信息,第二信息可指示用于发送该上行数据的天线端口关联的SRS资源的SRS端口。例如网络设备要调度UE在第一载波上发送上行数据,那么网络设备可以根据对于第一载波上的天线端口对应的上行信道的信道估计结果,为UE选择合适的天线端口,并通过该调度信息指示所选择的天线端口关联的SRS资源的SRS端口。
或者,网络设备要调度该UE的上行数据,那么网络设备可以根据对于为该UE配置的各个载波上的天线端口对应的上行信道的信道估计结果,为该UE选择合适的载波,以及选择该载波上合适的天线端口,并通过该调度信息指示所选择的天线端口关联的SRS资源的SRS端口。
网络设备如果调度第一载波上的上行数据,可以在第一载波上发送该调度信息。作为一种可选的实现方式,该调度信息所包括的第二信息可以通过bitmap实现。例如,根据图5所示的UE能力,网络设备如果调度在1.8GHz的载波上通过天线端口0发送上行数据,则第二信息可以为{1,0},由于1.8GHz的SRS资源均对应一个SRS端口,因此可认为这两个比特分别表示1.8GHz的载波对应的2个SRS资源,例如左边的比特表示SRS资源10,右边的比特表示SRS资源11,其中左边的比特取值为“1”,表明调度的是SRS资源10的SRS端口0,而右边的比特取值为“0”,表明未调度SRS资源11的SRS端口0。又例如,网络设备如果调度在2.1GHz的载波上通过天线端口0和天线端口1发送上行数据,则第二信息可以为{1,1},同理,可认为这两个比特分别表示2.1GHz的载波对应的2个SRS资源,例如左边的比特表示SRS资源20的SRS端口0,右边的比特表示SRS资源21的SRS端口0。再例如,网络设备如果调度在2.6GHz的载波上通过天线端口0、天线端口1、天线端口2和天线端口3发送上行数据,则第二信息可以为{1,1,1,1},这四个比特分别表示2.6GHz的载波对应的2个SRS资源的共4个SRS端口。
如果天线端口还连接了移相器,例如图2所示的UE,第一开关102还连接了第一移 相器105,那么可选的,调度信息还可以包括第三信息,第三信息可指示所调度的天线端口的相位。例如第二信息指示了第一天线端口关联的SRS资源的SRS端口,那么第三信息可以指示第一天线端口在连接到第一载波关联的射频链路后的相位。如果第二信息指示了多个SRS端口,那么第三信息可以指示这多个SRS端口关联的天线端口在连接到第一载波关联的射频链路后的相位。例如,第三信息可包括
Figure PCTCN2021134417-appb-000004
个比特,其中
Figure PCTCN2021134417-appb-000005
表示对x向上取整,Q PS表示移相器的量化比特数。例如,移相器理论上应该是能够指示0~360°之间的任意相位,但实际的移相器产品可能精度无法达到,因此移相器可能只能够取0~360°之间的某些相位。那么通过Q PS个比特就能指示移相器所能够达到的相位,因此Q PS称为移相器的量化比特数。例如移相器能够取的相位包括60°、90°、180°、270°,那么Q PS可等于2,通过2个比特就能指示这4个相位。
例如,根据图5所示的UE能力,网络设备如果调度在1.8GHz的载波上通过SRS资源10的SRS端口0发送上行数据,而1.8GHz载波上的SRS资源10的SRS端口0关联的天线端口0就是1.8GHz的载波关联的天线端口,因此无需改变相位,则该调度信息可不包括第三信息。又例如,网络设备如果调度在2.6GHz的载波上通过SRS资源30的SRS端口0、SRS端口1、以及SRS资源31的SRS端口2和SRS端口3发送上行数据,SRS资源30的SRS端口0关联的天线端口2、以及SRS资源30的SRS端口3关联的天线端口3,都是2.6GHz的载波关联的天线端口,可无需改变相位,而SRS资源31的SRS端口0所关联的天线端口0、以及SRS资源31的SRS端口1所关联的天线端口1,都是通过开关才能切换到2.1GHz的载波,因此该调度信息可包括第三信息,第三信息可指示天线端口0切换到2.1GHz的载波后的相位,以及指示天线端口1切换到2.1GHz的载波后的相位。
S46、UE在第一载波上向网络设备发送上行数据,相应的,网络设备接收来自UE的上行数据。例如,UE可根据调度信息所指示的SRS端口所关联的天线端口在第一载波上向网络设备发送上行数据。
调度信息指示了哪些SRS资源的SRS端口,UE就将这些SRS资源的SRS端口关联的天线端口连接到第一载波所关联的射频链路上,并使用这些天线端口发送该上行数据。另外,如果第二调度信息还包括第三信息,那么UE还可以根据第三信息调整相应天线端口的相位。
其中,S43~S46均为可选的步骤,因此在图4中用虚线表示。
为了更好地理解本申请实施例所带来的效果,下面介绍本申请实施例的仿真结果。
例如,基于表2的仿真参数可得到图7。图7对比了不同机制的上行容量性能,这些机制包括:1、1.8GHz载波1Tx发射;2、2.1GHz载波1Tx发射;3、4.9GHz载波2Tx发射;4、三个载波仅频域池化(CA)1Tx+1Tx+2Tx并发;5、本申请实施例提供的天线端口资源池化的方案。其中,1Tx是指使用一个上行发射通道发送,2Tx是指使用两个上行发射通道发送。
表2
Figure PCTCN2021134417-appb-000006
Figure PCTCN2021134417-appb-000007
根据图7可以得出表3,为相应机制的增益。
表3
Figure PCTCN2021134417-appb-000008
从表3可以看出,第4种方案,即仅频域池化的方案,相对于前三种单载波发送方案来说性能增益受限,仅有12%的性能增益。而本申请实施例所提供的方案,通过频域资源和天线资源的池化,可进一步提升上行容量,吞吐率可达到CA的1.24倍。
综上,本申请实施例为UE设计了新的射频链路架构,通过增加开关和移相器,可实现天线端口在多个载波之间进行切换,获得模数混合预编码结构的波束成形增益。而且本申请实施例根据新的射频链路架构,设计了新的UE能力,建立了为UE配置的载波的多个SRS资源的SRS端口与UE的天线端口之间的关联关系,允许网络设备通过测量SRS 获得上行信道信息,从而网络设备可以为UE选择较优的天线端口切换方案。对UE天线端口资源进行了资源池化,允许UE的各天线端口根据瞬时信道条件切换至不同载波,灵活调整各载波可获得的波束成形增益,提升上行传输性能。
图8给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置800可以是图4所示的实施例所述的终端设备,用于实现上述方法实施例中终端设备所执行的方法。或者,所述通信装置800可以是图4所示的实施例所述的网络设备,用于实现上述方法实施例中对应于网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置800包括一个或多个处理器801。处理器801也可以称为处理单元,可以实现一定的控制功能。所述处理器801可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置800进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置800中包括一个或多个存储器802,用于存储指令804,所述指令804可在所述处理器上被运行,使得通信装置800执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置800可以包括指令803(有时也可以称为代码或程序),所述指令803可以在所述处理器上被运行,使得所述通信装置800执行上述实施例中描述的方法。处理器801中可以存储数据。
可选的,通信装置800还可以包括收发器805以及天线806。所述收发器805可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线806实现通信装置800的收发功能。可选的,通信装置800与图1或图2所示的UE可以是同一个装置,或者也可以是不同的装置。如果通信装置800与图1或图2所示的UE是同一个装置,那么收发器805例如包括图1或图2所示的N个射频链路,天线806例如实现为图1或图2所示的至少一个天线端口。
可选的,通信装置800还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置800可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请实施例中描述的处理器801和收发器805可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前 述各个实施例中。所述终端设备包括用以实现图4所示的实施例中所述的UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图9给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备900可适用于图3所示的架构中。为了便于说明,图9仅示出了终端设备900的主要部件。如图9所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备900是手机为例,当终端设备900开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备900时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在一些实施例中,终端设备900可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备900进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备900可以包括多个基带处理器以适应不同的网络制式,终端设备900可以包括多个中央处理器以增强其处理能力,终端设备900的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元910,将具有处理功能的处理器视为终端设备900的处理单元920。如图9所示,终端设备900包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,终端设备900与图1或图2所示的UE可以是同一个装置,或者也可以是不同的装置。如果终端设备900与图1或图2所示的UE是同一个装置,那么收发单元910例如包括图1或图2所示的至少一个射频链路和N个天线端口。
本申请实施例还提供了一种网络设备,该网络设备可用于前述各个实施例中。所述网 络设备包括用以实现图4所示的实施例中所述的网络设备的功能的手段(means)、单元和/或电路。例如,网络设备包括收发模块,用以支持网络设备实现收发功能,和,处理模块,用以支持网络设备对信号进行处理。
图10给出了本申请实施例提供的一种网络设备的结构示意图。如图10所示,网络设备可适用于图3所示的架构中,例如为该架构中的接入网设备。该网络设备包括:基带装置1001,射频装置1002、天线1003。在上行方向上,射频装置1002通过天线1003接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1001进行处理。在下行方向上,基带装置1001对终端设备的信息进行处理,并发送给射频装置1002,射频装置1002对终端设备的信息进行处理后经过天线1003发送给终端设备。
基带装置1001包括一个或多个处理单元10011,存储单元10012和接口10013。其中处理单元10011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元10012用于存储软件程序和/或数据。接口10013用于与射频装置1002交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元10012与处理单元10011可以位于同一个芯片中,即片内存储元件。或者存储单元10012也可以与处理单元10011处于不同芯片上,即片外存储元件。所述存储单元10012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图4所示的实施例中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除 可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    向网络设备发送第一消息,所述第一消息包括终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
    接收来自所述网络设备的配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
  2. 根据权利要求1所述的方法,其特征在于,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:
    所述能力信息用于指示所述P个频域单元中的第i个频域单元支持的天线端口索引x i,x i是大于等于1小于等于N t的整数,或x i是小于N t的非负整数,N t是所述P个频域单元所关联的天线端口总数;或,
    所述能力信息用于指示所述终端设备的天线端口总数N t,所述P个频域单元关联所述N t个天线端口。
  3. 根据权利要求1所述的方法,其特征在于,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:
    所述能力信息用于指示所述P个频域单元中的第i个频域单元关联的天线端口数量M i;以及,所述第一消息还包括第一信息,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,i不等于j,i和j为大于等于1小于等于P的整数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,包括:
    所述第一信息用于指示所述M i个天线端口中可切换至所述第j个频域单元的天线端口个数;或,
    所述第一信息用于指示所述M i个天线端口中的第m个天线端口可切换至所述第j个频域单元,m=1,2,…,M i,或m=0,1,…,M i-1。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,
    所述配置信息还用于配置所述至少两个SRS资源的不同的SRS端口与所述第一频域单元支持的不同的天线端口之间的关联关系,其中,一个SRS端口与一个天线端口具有关联关系,用于指示所述终端设备通过所述一个天线端口发送所述一个SRS端口的SRS。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,
    所述配置信息还用于为所述终端设备的第二频域单元配置第二SRS资源,若所述第二SRS资源和第一SRS资源占用相同的时间单元,则所述第二SRS资源和所述第一SRS资源不关联相同的天线端口,所述第一SRS资源是所述至少两个SRS资源中的一个。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的调度信息,所述调度信息用于调度所述第一频域单元上的上行数 据,所述调度信息还包括第二信息,所述第二信息用于指示发送所述上行数据的天线端口关联的SRS资源的SRS端口;
    通过所述SRS资源的SRS端口关联的天线端口向所述网络设备发送上行数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第二信息所指示的发送所述上行数据的天线端口关联的SRS资源的SRS端口包括第一SRS端口,所述调度信息还包括第三信息,所述第三信息用于指示所述第一SRS端口关联的天线端口的相位。
  9. 一种通信方法,其特征在于,包括:
    接收来自终端设备的第一消息,所述第一消息包括所述终端设备的能力信息,所述能力信息用于指示所述终端设备的P个频域单元所支持的天线端口,其中,所述P个频域单元中的第i个频域单元支持的天线端口包括所述第i个频域单元关联的天线端口,以及包括所述P个频域单元中的N i个频域单元关联的天线端口中能够切换至所述第i个频域单元的天线端口,所述N i个频域单元不包含所述第i个频域单元,所述P个频域单元中的至少两个频域单元与各自的上行传输配置信息相关联,P为大于1的整数,N i为大于等于1小于P的整数;
    向所述终端设备发送配置信息,所述配置信息用于为所述终端设备的第一频域单元配置至少两个SRS资源,所述第一频域单元与第一上行传输配置信息相关联,所述第一频域单元的至少两个SRS资源的SRS端口与所述第一频域单元支持的天线端口相关联。
  10. 根据权利要求9所述的方法,其特征在于,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:
    所述能力信息用于指示所述P个频域单元中的第i个频域单元支持的天线端口索引x i,x i是大于等于1小于等于N t的整数,或x i是小于N t的非负整数,N t是所述P个频域单元所关联的天线端口总数;或,
    所述能力信息用于指示所述终端设备的天线端口总数N t,所述P个频域单元关联所述N t个天线端口。
  11. 根据权利要求9所述的方法,其特征在于,所述能力信息用于指示终端设备的P个频域单元所支持的天线端口,包括:
    所述能力信息用于指示所述P个频域单元中的第i个频域单元关联的天线端口数量M i;以及,所述第一消息还包括第一信息,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,i不等于j,i和j为大于等于1小于等于P的整数。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息用于指示所述M i个天线端口可切换至第j个频域单元的信息,包括:
    所述第一信息用于指示所述M i个天线端口中可切换至所述第j个频域单元的天线端口个数;或,
    所述第一信息用于指示所述M i个天线端口中的第m个天线端口可切换至所述第j个频域单元,m=1,2,…,M i,或m=0,1,…,M i-1。
  13. 根据权利要求9~12任一项所述的方法,其特征在于,所述方法还包括:
    所述配置信息还用于配置所述至少两个SRS资源的不同的SRS端口与所述第一频域单元支持的不同的天线端口之间的关联关系,其中,一个SRS端口与一个天线端口具有关联关系,用于指示所述终端设备通过所述一个天线端口发送所述一个SRS端口的SRS。
  14. 根据权利要求9~13任一项所述的方法,其特征在于,
    所述配置信息还用于为所述终端设备的第二频域单元配置第二SRS资源,若所述第二SRS资源和第一SRS资源占用相同的时间单元,则所述第二SRS资源和所述第一SRS资源不关联相同的天线端口,所述第一SRS资源是所述至少两个SRS资源中的一个。
  15. 根据权利要求9~14任一项所述的方法,其特征在于,所述方法还包括:
    在满足第一条件的情况下,向所述终端设备发送新的配置信息,所述新的配置信息用于为所述第一频域单元配置至少一个SRS资源。
  16. 根据权利要求15所述的方法,其特征在于,所述配置信息还用于配置所述至少一个SRS资源的SRS端口与所述第一频域单元所支持的天线端口之间的关联关系。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一条件包括如下一项或多项:
    所述终端设备的上行信道质量低于第一阈值;
    以发送所述配置信息的时间为起始时间,从所述起始时间到当前时间之间达到第一时长;
    所述终端设备切换到了新小区;
    所述终端设备的第一参数的取值发生变化;或,
    接收到来自所述终端设备的触发信息,所述触发信息用于指示重新配置SRS资源。
  18. 根据权利要求9~17任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送调度信息,所述调度信息用于调度所述第一频域单元上的上行数据,所述调度信息还包括第二信息,所述第二信息用于指示发送所述上行数据的天线端口关联的SRS资源的SRS端口;
    所述终端设备通过所述SRS资源的SRS端口关联的天线端口向所述网络设备发送上行数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第二信息所指示的发送所述上行数据的天线端口关联的SRS资源的SRS端口包括第一SRS端口,所述调度信息还包括第三信息,所述第三信息用于指示所述第一SRS端口关联的天线端口的相位。
  20. 一种通信装置,其特征在于,包括至少一个天线端口和N个射频链路,所述N个射频链路中的一个射频链路包括放大器和滤波器,所述N个射频链路关联H个频域单元,N为大于或等于2的整数;其中,
    所述至少一个天线端口中的第一天线端口连接第一开关,所述第一开关能够在所述N个射频链路中的M个射频链路之间切换,所述通信装置还包括与所述第一天线端口连接的第一移相器,所述第一移相器用于调整所述第一天线端口的相位,M为大于或等于2的整数。
  21. 根据权利要求20所述的通信装置,其特征在于,所述至少一个天线端口中的第二天线端口连接第二开关,所述第二开关能够在所述N个射频链路中的K个射频链路之间切换,所述通信装置还包括与所述第二天线端口连接的第二移相器,所述第二移相器用于调整所述第二天线端口的相位,K为大于或等于2的整数。
  22. 一种通信装置,其特征在于,包括收发单元和处理单元,所述收发单元和所述处理单元耦合,能够执行如权利要求1~8任一项所述的方法,或执行如权利要求9~19任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机 程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~8中任意一项所述的方法,或者使得所述计算机执行如权利要求9~19中任意一项所述的方法。
PCT/CN2021/134417 2020-12-02 2021-11-30 一种通信方法及装置 WO2022116966A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/039,886 US20240007173A1 (en) 2020-12-02 2021-11-30 Communication Method and Apparatus
EP21899997.7A EP4240085A4 (en) 2020-12-02 2021-11-30 COMMUNICATION METHOD AND APPARATUS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011398679.6 2020-12-02
CN202011398679 2020-12-02
CN202011613147.X 2020-12-30
CN202011613147.XA CN114585088A (zh) 2020-12-02 2020-12-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022116966A1 true WO2022116966A1 (zh) 2022-06-09

Family

ID=81769755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134417 WO2022116966A1 (zh) 2020-12-02 2021-11-30 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20240007173A1 (zh)
EP (1) EP4240085A4 (zh)
CN (1) CN114585088A (zh)
WO (1) WO2022116966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011527A1 (zh) * 2022-07-14 2024-01-18 北京小米移动软件有限公司 信息上报、上报指示方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180159563A1 (en) * 2016-12-06 2018-06-07 Qorvo Us, Inc. Multi-band radio frequency circuit
KR20200026648A (ko) * 2018-09-03 2020-03-11 삼성전자주식회사 무선통신 시스템에서 단말 안테나 설정 방법 및 장치
CN111052838A (zh) * 2017-08-24 2020-04-21 高通股份有限公司 用于发送用于具有非对称发送/接收的用户设备的探测参考信号的方法
CN111757477A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报能力的方法及用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255830B1 (en) * 2015-04-05 2020-06-03 Ofinno, LLC Sounding reference signal in a wireless network
JP6651650B2 (ja) * 2016-04-01 2020-02-19 華為技術有限公司Huawei Technologies Co.,Ltd. Srs切り替え、送信及び拡張のためのシステム及び方法
CN113225170A (zh) * 2017-09-30 2021-08-06 中兴通讯股份有限公司 一种无线通信方法及装置
CN110649949B (zh) * 2018-06-27 2021-07-09 华为技术有限公司 一种通信方法及装置
WO2020006059A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Reference signal and uplink control channel association design
CN110880958B (zh) * 2018-09-06 2021-10-15 华为技术有限公司 一种射频参数的上报方法及装置
CN111757474A (zh) * 2019-03-28 2020-10-09 中兴通讯股份有限公司 上行传输的发送,调度方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180159563A1 (en) * 2016-12-06 2018-06-07 Qorvo Us, Inc. Multi-band radio frequency circuit
CN111052838A (zh) * 2017-08-24 2020-04-21 高通股份有限公司 用于发送用于具有非对称发送/接收的用户设备的探测参考信号的方法
KR20200026648A (ko) * 2018-09-03 2020-03-11 삼성전자주식회사 무선통신 시스템에서 단말 안테나 설정 방법 및 장치
CN111757477A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种上报能力的方法及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240085A4 *
SONY: "Summary of SRS", 3GPP DRAFT; R1-1801178-SUMMARY OF SRS V0.6, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 29 January 2018 (2018-01-29), XP051385409 *

Also Published As

Publication number Publication date
US20240007173A1 (en) 2024-01-04
EP4240085A4 (en) 2024-05-01
CN114585088A (zh) 2022-06-03
EP4240085A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
CN114246016B (zh) 关于承载类型配置的协商
CN110650473B (zh) 一种能力上报的方法及装置
JP2022543534A (ja) コードブックサブセットの決定方法及び装置、ユーザデバイス
US11653311B2 (en) Full power uplink transmission enhancement
WO2022001226A1 (zh) 探测参考信号srs传输方法及通信装置
CN116868651A (zh) 用于物理上行链路控制信道增强的重复指示
CN113938875A (zh) 一种能力上报的方法及装置
WO2022048344A1 (zh) 一种通信方法及设备
WO2022116966A1 (zh) 一种通信方法及装置
WO2022116967A1 (zh) 一种通信方法及装置
WO2022253150A1 (zh) 数据传输方法及装置
CN116367279A (zh) 一种通信方法及通信装置
CN115088288A (zh) 动态测量间隙操作
CN114095978B (zh) 一种配置终端设备的方法及设备
WO2023208101A1 (zh) 一种小区波束指示方法及其相关设备
CN117580183B (zh) 网络优先级的协商方法和相关设备
WO2024065570A1 (en) Determining network-controlled repeater behavior over flexible symbols
US20230361828A1 (en) Methods and Apparatus for Device Type and Channel State Information Feedback over Initial Access Message in Wireless Communication
WO2023193610A1 (zh) 一种通信方法及通信装置
WO2023280047A1 (zh) 一种通信方法及设备
WO2023164797A1 (en) Uplink beam indication with unified tci framework
CN118339908A (zh) 发送功率的确定方法及装置、终端设备、网络设备
CN116456502A (zh) 随机接入的方法和通信装置
CN116848863A (zh) 通信方法、设备及存储介质
CN118265161A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039886

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021899997

Country of ref document: EP

Effective date: 20230602

NENP Non-entry into the national phase

Ref country code: DE