WO2022116798A1 - 波束赋型的方法、装置、基站及计算机可读存储介质 - Google Patents

波束赋型的方法、装置、基站及计算机可读存储介质 Download PDF

Info

Publication number
WO2022116798A1
WO2022116798A1 PCT/CN2021/130431 CN2021130431W WO2022116798A1 WO 2022116798 A1 WO2022116798 A1 WO 2022116798A1 CN 2021130431 W CN2021130431 W CN 2021130431W WO 2022116798 A1 WO2022116798 A1 WO 2022116798A1
Authority
WO
WIPO (PCT)
Prior art keywords
doa
polarization
weight
information
antenna
Prior art date
Application number
PCT/CN2021/130431
Other languages
English (en)
French (fr)
Inventor
宫建斌
李数林
王志鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21899832.6A priority Critical patent/EP4254817A4/en
Publication of WO2022116798A1 publication Critical patent/WO2022116798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beamforming method, apparatus, base station, and computer-readable storage medium.
  • the base station calculates the relative angle according to its own location information and the location information of the terminal, constructs the shaping weight according to the angle information and the base station antenna information, and uses the shaping weight to transmit downlink data.
  • this method can only be used for a single stream, and cannot support multiple streams, and the shaping effect is not good, which affects the user experience.
  • the purpose of this application is to solve one of the technical problems existing in the related art at least to a certain extent, and to provide a beamforming method, apparatus, base station, and computer-readable storage medium.
  • an embodiment of the present application provides a beamforming method, including: acquiring location information and CSI (Channel state information) of a terminal; determining a DOA angle of an antenna according to the location information; and the DOA angle to obtain the first single-polarization DOA weight of the antenna; according to the CSI and the first single-polarization DOA weight, the dual-polarization DOA weight of the antenna is obtained.
  • CSI Channel state information
  • an embodiment of the present application provides an apparatus for beamforming, including: an acquisition module configured to acquire location information and channel state information CSI of a terminal; an angle determination module configured to determine an antenna according to the location information The DOA angle of the direction of arrival; the weight determination module is set to obtain the first monopolar DOA weight of the antenna according to the antenna information and the DOA angle; and is set to be based on the CSI and the first monopole. Convert the DOA weights to obtain the dual-polarized DOA weights of the antenna.
  • an embodiment of the present application provides a base station, including the apparatus for beamforming as described in the second aspect above; or including: a memory, a processor, and a computer program stored in the memory and executable on the processor, When the processor executes the computer program, the method for beamforming as described in the first aspect above is implemented.
  • an embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the beamforming method described in the first aspect above.
  • FIG. 1 is a flowchart of a method for beamforming provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for beamforming provided by another embodiment of the present application.
  • FIG. 3 is a flowchart of a method for beamforming provided by another embodiment of the present application.
  • FIG. 4 is a structural diagram of a beamforming apparatus provided by an embodiment of the present application.
  • Embodiments of the present application provide a beamforming method, device, base station, and computer-readable storage medium, which can at least to a certain extent solve the problem that DOA weights can only be used as a single stream, and can achieve better performance under multiple antennas.
  • the shaping effect improves the user experience.
  • FIG. 1 is a beamforming method provided by an embodiment of the present application, including but not limited to steps S110 to S140 .
  • Step S110 Acquire location information and channel state information CSI of the terminal.
  • the base station allows the terminal to report CSI and location information by configuring CSI measurement resources and reporting resources for the terminal, where the CSI reported by the terminal includes PMI (Precoding Matrix Indicator, precoding matrix indication) information and RI (Rank Indication, channel rank) information , and may also include CQI (Channel Quality Information, channel quality information) information, etc.
  • PMI Precoding Matrix Indicator, precoding matrix indication
  • RI Rank Indication, channel rank
  • CQI Channel Quality Information, channel quality information
  • Step S120 Determine the DOA angle of the direction of arrival of the antenna according to the position information.
  • the base station After acquiring the location information of the terminal, the base station calculates the relative angle between the terminal and itself in combination with its own location information, thereby determining the DOA angle of the antenna.
  • Step S130 Obtain the first single-polarized DOA weight of the antenna according to the antenna information and the DOA angle.
  • the base station obtains a single-polarized DOA weight according to the antenna information and the DOA angle of the antenna determined in step S120, which is recorded as the first single-polarized DOA weight.
  • the antenna information used for calculating the first single-polarized DOA weight value mainly includes the number and spacing of antenna elements.
  • Step S140 Obtain the dual-polarization DOA weight of the antenna according to the CSI and the first single-polarization DOA weight.
  • the base station extracts the polarization phase difference according to the PMI information reported by the terminal, and obtains the dual-polarization DOA weight of the antenna according to the polarization phase difference and the first single-polarization DOA weight.
  • the position information and CSI of the terminal are obtained, the DOA angle of the antenna is determined according to the position information, and the first single-polarization DOA weight is obtained by combining the antenna information and the DOA angle,
  • the dual-polarization DOA weight of the antenna is obtained according to the CSI and the first single-polarization DOA weight, and a multi-stream shaping weight including polarization information is generated, which can effectively solve DOA at least to a certain extent.
  • the weight can only be used as a single-stream problem, and a better shaping effect can be obtained under multiple antennas, which improves the user experience.
  • step 140 the dual-polarization DOA weight of the antenna is obtained according to the CSI and the first single-polarization DOA weight, including but not limited to steps S210 and S210 and Step S220.
  • Step 210 Extract the polarization phase difference according to the PMI information
  • Step 220 Obtain a dual-polarization DOA weight of the antenna according to the polarization phase difference and the first single-polarization DOA weight.
  • the CSI reported by the terminal includes PMI information and RI information, and the corresponding polarization phase difference is calculated by traversing the RI, as follows:
  • k is a parameter set according to the number of ports in the PMI information.
  • k generally takes the value of 1; when the number of ports configured by PMI is 8, k generally takes the value of 4.
  • the following description is given by taking a case where the number of ports configured by the PMI is 2 as an example.
  • step S210 the number of times of calculation is determined according to the RI information, and for each calculation, the corresponding polarization phase difference is obtained according to the PMI information, and the formula for each calculation of the polarization phase difference is:
  • ilayer is the current calculation times.
  • step 220 the dual-polarization DOA weight of the antenna is obtained according to the polarization phase difference and the first single-polarization DOA weight, including but not limited to steps S310 and S320.
  • Step S310 Calculate the second single-polarization DOA weight of the antenna according to the polarization phase difference and the first single-polarization DOA weight;
  • Step S320 Perform power normalization on the first single-polarization DOA weight and the second single-polarization DOA weight according to the PMI information and the RI information.
  • step S310 the method for generating the second unipolar DOA weight is as follows:
  • step S310 is to calculate the weight of another polarization direction, that is, the second single-polarization DOA weight.
  • step S320 according to the PMI information, the weight is normalized according to the number of layers, so as to ensure that the transmit power of the base station is full and not overpower.
  • the base station confirms the final transmission scheme and the corresponding shaping weight according to the RI, which are used for PDSCH data transmission on the physical downlink shared channel.
  • an embodiment of the second aspect of the present application provides an apparatus for beamforming, including an acquisition module 410 , an angle determination module 420 and a weight determination module 430 .
  • the obtaining module 410 is configured to obtain the location information and channel state information CSI of the terminal.
  • the base station allows the terminal to report CSI and location information by configuring CSI measurement resources and reporting resources for the terminal, where the CSI reported by the terminal includes PMI information and RI information, and may also include CQI information and the like.
  • the angle determination module 420 is configured to determine the DOA angle of the direction of arrival of the antenna according to the position information.
  • the base station After acquiring the location information of the terminal, the base station calculates the relative angle between the terminal and itself in combination with its own location information, thereby determining the DOA angle of the antenna.
  • the weight determination module 430 is configured to obtain the first single polarization DOA weight of the antenna according to the antenna information and the DOA angle; and is configured to obtain the antenna according to the CSI and the first single polarization DOA weight The dual-polarized DOA weights.
  • the base station obtains a single-polarized DOA weight according to the antenna information and the DOA angle of the antenna determined in step S120, which is recorded as the first single-polarized DOA weight; the base station extracts the polarization phase difference according to the PMI information reported by the terminal, and according to the The polarization phase difference and the first single-polarization DOA weight are used to obtain the dual-polarization DOA weight of the antenna.
  • the location information and CSI of the terminal are acquired through the acquisition module 410, the angle determination module 420 determines the DOA angle of the antenna according to the location information, and the weight determination module 430 combines the antenna information and the DOA
  • the first single-polarized DOA weight is obtained from the angle
  • the dual-polarized DOA weight of the antenna is obtained according to the CSI and the first single-polarized DOA weight, and a shaping weight that includes polarization information and can support multiple streams is generated. It can effectively solve the problem that the DOA weight can only be used as a single stream to a certain extent, and can obtain a better shaping effect under multiple antennas and improve the user experience.
  • the CSI obtained by the obtaining module 410 includes the precoding matrix index PMI information, and the weight determining module 430 obtains the dual-polarization of the antenna according to the CSI and the first single-polarized DOA weight.
  • Polarized DOA weights including:
  • the dual-polarization DOA weight of the antenna is obtained.
  • the CSI reported by the terminal includes PMI information and RI information, and the corresponding polarization phase difference is calculated by traversing the RI, as follows:
  • k is a parameter set according to the number of ports in the PMI information.
  • k generally takes the value of 1; when the number of ports configured by PMI is 8, k generally takes the value of 4.
  • the following description is given by taking a case where the number of ports configured by the PMI is 2 as an example.
  • the number of calculations is determined according to the RI information.
  • the corresponding polarization phase difference is obtained according to the PMI information.
  • the formula for each calculation of the polarization phase difference is:
  • ilayer is the current calculation times.
  • the dual-polarization DOA weight of the antenna is obtained, including:
  • Power normalization is performed on the first single-polarization DOA weight and the second single-polarization DOA weight according to the PMI information and the RI information.
  • the generation method of the second unipolar DOA weight is as follows:
  • step S310 is to calculate the weight of another polarization direction, that is, the second single-polarization DOA weight.
  • the power of the weight is normalized according to the number of layers, so as to ensure that the transmit power of the base station is full and does not exceed the power.
  • the base station confirms the final transmission scheme and the corresponding shaping weight according to the RI, which are used for PDSCH data transmission on the physical downlink shared channel.
  • a third aspect embodiment of the present application provides a base station, including the beamforming apparatus described in the second aspect embodiment; or includes:
  • the base station determines the DOA angle of the antenna according to the position information by acquiring the position information and CSI of the terminal, and obtains the first single-polarized DOA weight by combining the antenna information and the DOA angle, and according to the CSI and the first single-polarized DOA weight to obtain the dual-polarized DOA weight of the antenna, generating a multi-stream shaping weight containing polarization information, which can effectively solve the problem of DOA weights at least to a certain extent. For single-stream problems, better shaping effects can be obtained under multiple antennas, improving user experience.
  • the embodiment of the fifth aspect of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the beamforming method described in the first aspect, for example , the above-described method steps S110 to S140 in FIG. 1 , method steps S210 to S220 in FIG. 2 and method steps S310 to S320 in FIG. 3 are performed.
  • the position information and CSI of the terminal are obtained, the DOA angle of the antenna is determined according to the position information, and the first single-polarization DOA weight is obtained by combining the antenna information and the DOA angle,
  • the dual-polarization DOA weight of the antenna is obtained according to the CSI and the first single-polarization DOA weight, and a multi-stream shaping weight including polarization information is generated, which can effectively solve DOA at least to a certain extent.
  • the weight can only be used as a single-stream problem, and a better shaping effect can be obtained under multiple antennas, which improves the user experience.
  • the embodiments of the present application include: a beamforming method, an apparatus, a base station, and a computer-readable storage medium, by acquiring the location information and CSI of the terminal, determining the DOA angle of the antenna according to the location information, and combining the antenna information and the DOA
  • the first single-polarized DOA weight is obtained from the angle
  • the dual-polarized DOA weight of the antenna is obtained according to the CSI and the first single-polarized DOA weight
  • a shaping weight that includes polarization information and can support multiple streams is generated. It can effectively solve the problem that the DOA weight can only be used as a single stream to a certain extent, and can obtain a better shaping effect under multiple antennas and improve the user experience.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk DVD or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may be used for Any other medium that stores the desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束赋型的方法、装置、基站及计算机可读存储介质,通过获取终端的位置信息和CSI(S110),根据所述位置信息确定天线的DOA角度(S120),并结合天线信息和所述DOA角度得到第一单极化DOA权值(S130),根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值(S140),生成了包含极化信息的且可支持多流的赋型权值。

Description

波束赋型的方法、装置、基站及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202011399803.0、申请日为2020年12月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考
技术领域
本申请涉及通信技术领域,尤其涉及一种波束赋型的方法、装置、基站及计算机可读存储介质。
背景技术
在移动通信***中,由于地空距离远,传输衰减大,SRS(Sounding reference symbol,探测参考信号)信道估计的误差大,导致赋型权值计算不准确,利用BF(Beam forming,波束赋形)赋型效果不理想,最终影响到用户体验。地空通信***中,基站侧通常采用大规模天线,有效的赋型方式可提升用户体验。常规的波束赋型方法是基站根据自己的位置信息和终端的位置信息计算相对角度,根据角度信息以及基站天线信息,构造赋型权值,利用赋型权值进行下行数据发送。但是这种方法只能作单流,无法支持多流,赋型效果不好,影响用户体验。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于至少在一定程度上解决相关技术中存在的技术问题之一,提供一种波束赋型的方法、装置、基站及计算机可读存储介质。
第一方面,本申请实施例提供一种波束赋型的方法,包括:获取终端的位置信息和CSI(Channel state information,信道状态信息);根据所述位置信息确定天线的DOA角度;根据天线信息和所述DOA角度得到天线的第一单极化DOA权值;根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
第二方面,本申请实施例提供一种波束赋型的装置,包括:获取模块,被设置为获取终端的位置信息和信道状态信息CSI;角度确定模块,被设置为根据所述位置信息确定天线的波达方向DOA角度;权值确定模块,被设置为根据天线信息和所述DOA角度得到天线的第一单极化DOA权值;以及被设置为根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
第三方面,本申请实施例提供一种基站,包括如上第二方面所述的波束赋型的装置;或者包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面所述的波束赋型的方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上第一方面所述的波束赋型的方法。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请的一个实施例提供的波束赋型的方法的流程图;
图2是本申请的另一个实施例提供的波束赋型的方法的流程图;
图3是本申请的又一个实施例提供的波束赋型的方法的流程图;
图4是本申请的实施例提供的波束赋型的装置的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种波束赋型的方法、装置、基站及计算机可读存储介质,能够至少在一定程度上解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请的一个实施例提供的一种波束赋型的方法,包括但不限于步骤S110至步骤S140。
步骤S110:获取终端的位置信息和信道状态信息CSI。
基站通过给终端配置CSI测量资源和上报资源,让终端上报CSI和位置信息,其中,终端上报的CSI包括PMI(Precoding Matrix Indicator,预编码矩阵指示)信息和RI(Rank Indication,信道的秩)信息,还可以包括CQI(Channel Quality Information,信道质量信息)信息等。
步骤S120:根据所述位置信息确定天线的波达方向DOA角度。
基站在获取到终端的位置信息后,结合自身的位置信息计算终端和自身的相对角度,从而确定天线的DOA角度。
步骤S130:根据天线信息和所述DOA角度得到天线的第一单极化DOA权值。
基站根据天线信息和步骤S120中确定的天线的DOA角度,得到单极化的DOA权值,记为第一单极化DOA权值。其中,需要说明的是,计算第一单极化DOA权值所用到的天线信息主要包括天线阵子的数量和间距。
步骤S140:根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
基站根据终端上报的PMI信息提取极化相位差,根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
本实施例提供的波束赋型的方法,通过获取终端的位置信息和CSI,根据所述位置信息 确定天线的DOA角度,并结合天线信息和所述DOA角度得到第一单极化DOA权值,根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值,生成了包含极化信息的且可支持多流的赋型权值,能够至少在一定程度上有效解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
参照图2,在上述波束赋型的方法中,步骤140中的根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括但不限于步骤S210和步骤S220。
步骤210:根据所述PMI信息提取极化相位差;
步骤220:根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
具体地,对于步骤S210,终端上报的CSI包括PMI信息和RI信息,遍历RI计算对应的极化相位差,具体如下:
For ilayer=1:RI
Figure PCTCN2021130431-appb-000001
End
其中,
Figure PCTCN2021130431-appb-000002
为极化相位差,W pmi为终端上报的所述PMI信息对应的PMI权值,k为根据所述PMI信息的端口数量设定的参数。当PMI配置的端口数量为2时,k一般取值为1;当PMI配置的端口数量为8时,k一般取值为4。为了阐述方便,下文均以PMI配置的端口数量为2的情况为例进行说明。
步骤S210中,根据所述RI信息确定计算次数,针对每一次计算,根据所述PMI信息得到对应的极化相位差,每一次计算极化相位差的公式即为:
Figure PCTCN2021130431-appb-000003
其中,ilayer为当前计算次数。
参照图3,步骤220中的根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括但不限于步骤S310和步骤S320。
步骤S310:根据所述极化相位差和所述第一单极化DOA权值计算天线的第二单极化DOA权值;
步骤S320:根据所述PMI信息和所述RI信息将所述第一单极化DOA权值和所述第二单极化DOA权值进行功率归一。
具体地,步骤S310中,第二单极化DOA权值的生成方式,具体如下:
For ilayer=1:RI
Figure PCTCN2021130431-appb-000004
End
其中,
Figure PCTCN2021130431-appb-000005
为第二单极化DOA权值,W DOA为第一单极化DOA权值。步骤S310的主要目的是计算另一极化方向的权值,即第二单极化DOA权值。
另外,步骤S320通过根据PMI信息,权值按照层数进行功率归一,保证基站的发射功率满且不超功率。
最后,基站根据RI确认最终的传输方案和对应的赋型权值,用于物理下行共享信道PDSCH 数据发送。
参照图4,本申请的第二方面实施例提供一种波束赋型的装置,包括获取模块410、角度确定模块420和权值确定模块430。
获取模块410被设置为获取终端的位置信息和信道状态信息CSI。
基站通过给终端配置CSI测量资源和上报资源,让终端上报CSI和位置信息,其中,终端上报的CSI包括PMI信息和RI信息,还可以包括CQI信息等。
角度确定模块420被设置为根据所述位置信息确定天线的波达方向DOA角度。
基站在获取到终端的位置信息后,结合自身的位置信息计算终端和自身的相对角度,从而确定天线的DOA角度。
权值确定模块430被设置为根据天线信息和所述DOA角度得到天线的第一单极化DOA权值;以及被设置为根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
基站根据天线信息和步骤S120中确定的天线的DOA角度,得到单极化的DOA权值,记为第一单极化DOA权值;基站根据终端上报的PMI信息提取极化相位差,根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
本实施例提供的波束赋型的装置,通过获取模块410获取终端的位置信息和CSI,角度确定模块420根据所述位置信息确定天线的DOA角度,权值确定模块430结合天线信息和所述DOA角度得到第一单极化DOA权值,根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值,生成了包含极化信息的且可支持多流的赋型权值,能够至少在一定程度上有效解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
上述波束赋型的装置中,获取模块410获取到的CSI包括预编码矩阵索引PMI信息,权值确定模块430中的根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括:
根据所述PMI信息提取极化相位差;
根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
具体地,终端上报的CSI包括PMI信息和RI信息,遍历RI计算对应的极化相位差,具体如下:
For ilayer=1:RI
Figure PCTCN2021130431-appb-000006
End
其中,
Figure PCTCN2021130431-appb-000007
为极化相位差,W pmi为终端上报的所述PMI信息对应的PMI权值,k为根据所述PMI信息的端口数量设定的参数。当PMI配置的端口数量为2时,k一般取值为1;当PMI配置的端口数量为8时,k一般取值为4。为了阐述方便,下文均以PMI配置的端口数量为2的情况为例进行说明。
上述计算过程中,根据所述RI信息确定计算次数,针对每一次计算,根据所述PMI信息得到对应的极化相位差,每一次计算极化相位差的公式即为:
Figure PCTCN2021130431-appb-000008
其中,ilayer为当前计算次数。
另外,上述波束赋型的装置中,根据所述极化相位差和所述第一单极化DOA权值,得到 天线的双极化DOA权值,包括:
根据所述极化相位差和所述第一单极化DOA权值计算天线的第二单极化DOA权值;
根据所述PMI信息和所述RI信息将所述第一单极化DOA权值和所述第二单极化DOA权值进行功率归一。
具体地,第二单极化DOA权值的生成方式,具体如下:
For ilayer=1:RI
Figure PCTCN2021130431-appb-000009
End
其中,
Figure PCTCN2021130431-appb-000010
为第二单极化DOA权值,W DOA为第一单极化DOA权值。步骤S310的主要目的是计算另一极化方向的权值,即第二单极化DOA权值。
另外,通过根据PMI信息,权值按照层数进行功率归一,保证基站的发射功率满且不超功率。
最后,基站根据RI确认最终的传输方案和对应的赋型权值,用于物理下行共享信道PDSCH数据发送。
本申请的第三方面实施例提供一种基站,包括如上第二方面实施例所述的波束赋型的装置;或者包括:
存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面所述的波束赋型的方法,例如,执行以上描述的图1中的方法步骤S110至S140、图2中的方法步骤S210至S220和图3中的方法步骤S310至S320。
本实施例提供的基站,通过获取终端的位置信息和CSI,根据所述位置信息确定天线的DOA角度,并结合天线信息和所述DOA角度得到第一单极化DOA权值,根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值,生成了包含极化信息的且可支持多流的赋型权值,能够至少在一定程度上有效解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
另外,本申请的第五方面实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上第一方面所述的波束赋型的方法,例如,执行以上描述的图1中的方法步骤S110至S140、图2中的方法步骤S210至S220和图3中的方法步骤S310至S320。
本实施例提供的计算机可读存储介质,通过获取终端的位置信息和CSI,根据所述位置信息确定天线的DOA角度,并结合天线信息和所述DOA角度得到第一单极化DOA权值,根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值,生成了包含极化信息的且可支持多流的赋型权值,能够至少在一定程度上有效解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
本申请实施例包括:波束赋型的方法、装置、基站和计算机可读存储介质,通过获取终端的位置信息和CSI,根据所述位置信息确定天线的DOA角度,并结合天线信息和所述DOA角度得到第一单极化DOA权值,根据所述CSI和第一单极化DOA权值得到天线的双极化DOA权值,生成了包含极化信息的且可支持多流的赋型权值,能够至少在一定程度上有效解决DOA权值只能作单流的问题,在多天线下可以获得更优的赋型效果,提升用户体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质或非暂时性介质和通信介质或暂时性介质。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘DVD或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施例进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种波束赋型的方法,包括:
    获取终端的位置信息和信道状态信息CSI;
    根据所述位置信息确定天线的波达方向DOA角度;
    根据天线信息和所述DOA角度得到天线的第一单极化DOA权值;
    根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
  2. 根据权利要求1所述的波束赋型的方法,其中,所述CSI包括预编码矩阵索引PMI信息,所述根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括:
    根据所述PMI信息提取极化相位差;
    根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
  3. 根据权利要求2所述的波束赋型的方法,其中,所述CSI还包括信道的秩RI信息,所述根据所述PMI信息提取极化相位差,包括:
    根据所述RI信息确定计算次数,针对每一次计算,根据所述PMI信息得到对应的极化相位差。
  4. 根据权利要求3所述的波束赋型的方法,其中,所述根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括:
    根据所述极化相位差和所述第一单极化DOA权值计算天线的第二单极化DOA权值;
    根据所述PMI信息和所述RI信息将所述第一单极化DOA权值和所述第二单极化DOA权值进行功率归一。
  5. 一种波束赋型的装置,包括:
    获取模块,被设置为获取终端的位置信息和信道状态信息CSI;
    角度确定模块,被设置为根据所述位置信息确定天线的波达方向DOA角度;
    权值确定模块,被设置为根据天线信息和所述DOA角度得到天线的第一单极化DOA权值;以及被设置为根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值。
  6. 根据权利要求5所述的波束赋型的装置,其中,所述CSI包括预编码矩阵索引PMI信息,所述根据所述CSI和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括:
    根据所述PMI信息提取极化相位差;
    根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值。
  7. 根据权利要求6所述的波束赋型的装置,其中,所述CSI还包括信道的秩RI信息,所述根据所述PMI信息提取极化相位差,包括:
    根据所述RI信息确定计算次数,针对每一次计算,根据所述PMI信息得到对应的极化相位差。
  8. 根据权利要求7所述的波束赋型的装置,其中,所述根据所述极化相位差和所述第一单极化DOA权值,得到天线的双极化DOA权值,包括:
    根据所述极化相位差和所述第一单极化DOA权值计算天线的第二单极化DOA权值;
    根据所述PMI信息和所述RI信息将所述第一单极化DOA权值和所述第二单极化DOA权值进行功率归一。
  9. 一种基站,包括如权利要求5至8任一项所述的波束赋型的装置;
    或者包括:
    存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至4中任意一项所述的波束赋型的方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至4任意一项所述的波束赋型的方法。
PCT/CN2021/130431 2020-12-04 2021-11-12 波束赋型的方法、装置、基站及计算机可读存储介质 WO2022116798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21899832.6A EP4254817A4 (en) 2020-12-04 2021-11-12 BEAM FORMING METHOD AND APPARATUS, BASE STATION AND COMPUTER-READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011399803.0A CN113541756B (zh) 2020-12-04 2020-12-04 波束赋型的方法、装置、基站及计算机可读存储介质
CN202011399803.0 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022116798A1 true WO2022116798A1 (zh) 2022-06-09

Family

ID=78094304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130431 WO2022116798A1 (zh) 2020-12-04 2021-11-12 波束赋型的方法、装置、基站及计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4254817A4 (zh)
CN (1) CN113541756B (zh)
WO (1) WO2022116798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541756B (zh) * 2020-12-04 2022-04-12 中兴通讯股份有限公司 波束赋型的方法、装置、基站及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106034307A (zh) * 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种到达角波束赋形权值估计方法和装置
WO2020075094A1 (en) * 2018-10-10 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid fd-mimo: combining codebook-based and reciprocity-based beamforming
CN113541756A (zh) * 2020-12-04 2021-10-22 中兴通讯股份有限公司 波束赋型的方法、装置、基站及计算机可读存储介质
CN113556162A (zh) * 2020-08-18 2021-10-26 中兴通讯股份有限公司 波束赋形方法、网络设备、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
US9973249B2 (en) * 2014-12-23 2018-05-15 Samsung Electronics Co., Ltd. Channel state information feedback schemes for FD-MIMO
JP6874127B2 (ja) * 2016-09-22 2021-05-19 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 到来方向推定装置、および到来方向推定方法
EP3648364B1 (en) * 2017-07-14 2023-03-08 Huawei Technologies Co., Ltd. Beamforming method and device
CN110149129B (zh) * 2018-02-11 2022-02-01 中兴通讯股份有限公司 确定波束赋型权值的方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106034307A (zh) * 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种到达角波束赋形权值估计方法和装置
WO2020075094A1 (en) * 2018-10-10 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid fd-mimo: combining codebook-based and reciprocity-based beamforming
CN113556162A (zh) * 2020-08-18 2021-10-26 中兴通讯股份有限公司 波束赋形方法、网络设备、终端及存储介质
CN113541756A (zh) * 2020-12-04 2021-10-22 中兴通讯股份有限公司 波束赋型的方法、装置、基站及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254817A4 *

Also Published As

Publication number Publication date
CN113541756A (zh) 2021-10-22
EP4254817A4 (en) 2024-05-29
CN113541756B (zh) 2022-04-12
EP4254817A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US11251843B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
US11101853B2 (en) Method for determining precoding matrix indicator, user equipment, and base station
US10998949B2 (en) Multi-beam codebooks with further optimized overhead
US9379792B2 (en) Method for feeding back channel state information, method for transmitting channel state information reference signal, UE and base station
US9654264B2 (en) Beam forming using a dual polarized antenna arrangement
EP3520231B1 (en) Advanced csi reporting for hybrid class a/b operation
WO2015184927A1 (zh) 一种下行导频信号的处理方法及***
TWI622276B (zh) Channel state information acquisition method, channel state information feedback method and device
US9780852B2 (en) Transmission control apparatus and program
WO2019010714A1 (zh) 一种波束成形方法及设备
CN107294880B (zh) 用于确定信道信息的方法和设备
WO2022116798A1 (zh) 波束赋型的方法、装置、基站及计算机可读存储介质
US20180309486A1 (en) Precoding matrix determining method and apparatus
WO2018027531A1 (en) Method and apparatus for implementing framework for enhanced channel feedback
WO2022183324A1 (zh) 用于确定无线传输装置发送信息方式的方法、装置及设备
WO2017168254A1 (en) Method and apparatus of sharing csi-rs resource
WO2023124818A1 (zh) 一种数据处理方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202327042761

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021899832

Country of ref document: EP

Effective date: 20230630