WO2022116756A1 - 显示元件、显示面板、显示屏及终端 - Google Patents

显示元件、显示面板、显示屏及终端 Download PDF

Info

Publication number
WO2022116756A1
WO2022116756A1 PCT/CN2021/127161 CN2021127161W WO2022116756A1 WO 2022116756 A1 WO2022116756 A1 WO 2022116756A1 CN 2021127161 W CN2021127161 W CN 2021127161W WO 2022116756 A1 WO2022116756 A1 WO 2022116756A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
functional
area
functional part
Prior art date
Application number
PCT/CN2021/127161
Other languages
English (en)
French (fr)
Inventor
洪定洋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011403288.9A external-priority patent/CN112382211A/zh
Priority claimed from CN202022911501.9U external-priority patent/CN214336187U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022116756A1 publication Critical patent/WO2022116756A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display element, a display panel, a display screen and a terminal.
  • a photosensitive module such as a camera or a fingerprint recognition module
  • a photosensitive module such as a camera or a fingerprint recognition module
  • Embodiments of the present invention disclose a display element, a display panel, a display screen and a terminal, which can improve the imaging quality of a camera or improve the recognition accuracy of a fingerprint recognition module.
  • an embodiment of the present invention discloses a display element
  • the display element includes
  • the display function layer includes a first area for light transmission and a second area for setting drive lines;
  • a light control element for transmitting light transmitted through the first region and blocking light passing through the second region.
  • an embodiment of the present invention discloses a terminal, the terminal includes a photosensitive module and the display element according to the first aspect, the photosensitive module is disposed at the light control element away from the display function side of the layer.
  • FIG. 1 is a schematic diagram of a photosensitive module (taking a camera as an example) arranged in an effective display area of a display screen in the related art;
  • Fig. 2 is the diffraction effect graph of the grating produced by the mode of Fig. 1;
  • Fig. 3 is the imaging schematic diagram finally formed by the method of Fig. 1;
  • FIG. 4 is a schematic structural diagram of a display element disclosed in an embodiment of the present invention.
  • Fig. 5 is a sectional view along the A-A direction of Fig. 4;
  • FIG. 6 is a schematic structural diagram of a display function layer disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an arrangement in which the first functional component disclosed in the embodiment of the present invention is a birefringent material
  • FIG. 8 is a schematic structural diagram when the first functional component disclosed in the embodiment of the present invention is a three-dimensional nanostructure
  • FIG. 9 is a schematic diagram of still another arrangement in which the first functional component disclosed in the embodiment of the present invention is a birefringent material
  • FIG. 10 is a schematic structural diagram of a display element disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of the first functional component in FIG. 10 using birefringent material
  • FIG. 13 is another structural schematic diagram of the display element disclosed in the embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a terminal disclosed in an embodiment of the present invention.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “outer” and the like is based on the orientation or positional relationship shown in the accompanying drawings. These terms are primarily used to better describe the present invention and its embodiments, and are not intended to limit the fact that the indicated device, element or component must have a particular orientation, or be constructed and operated in a particular orientation.
  • the terms “installed”, “set up”, “provided with”, “connected” should be construed broadly. For example, it may be a fixed connection, a detachable connection, or a unitary structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • installed may be a fixed connection, a detachable connection, or a unitary structure
  • it may be a mechanical connection, or an electrical connection
  • it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • first means two or more.
  • a photosensitive module such as a camera, a fingerprint identification module
  • Figure 1 shows that the camera 1 is set in the effective display area of the display screen 2, in Figure 1, the camera 1 is set under the display screen 2, and the electronic photosensitive
  • the chip 3 is arranged on the imaging side of the camera 1 (below the camera 1 in FIG. 1 ), and incident light (such as natural light from outside, as shown by the dotted line in FIG. 1 ) enters the camera 1 from the display screen 2 .
  • FIG. 2 shows the arrangement of metal traces 2 a and pixel units 2 b of the circuit of the display screen 2
  • (b) of FIG. 2 shows the metal traces 2 a and the pixels of the circuit of the display screen 2 .
  • Figure 3 shows the image captured by the camera 1. It can be seen that the edge of the image after imaging is blurred. It can be understood that when the photosensitive module is a fingerprint identification module, it is also easy to cause the problem of low fingerprint identification accuracy due to the existence of the diffraction phenomenon.
  • an embodiment of the present application discloses a display element.
  • the display element can be used in a terminal.
  • the display element includes a display function layer and a light control element
  • the display function layer includes a first area and a second area for arranging driving lines
  • the light control element is arranged on one side of the display function layer, and the light control element is used for Light passing through the first region is transmitted and light passing through the second region is blocked.
  • the display functional layer further includes a pixel unit disposed in the first region, and the light control element is further used to block light passing through the pixel unit.
  • the display element further includes a first polarizing element for transmitting the first type of polarized light, and the first polarizing element and the light control element are disposed on opposite sides of the display functional layer.
  • the projection of the first polarizing element on the display functional layer covers the first area and the second area.
  • the light control element includes a first functional part and a second functional part, the first functional part is located between the second functional part and the display functional layer, and the first functional part is used to The light in the second region is converted into the second type of polarized light, and the second functional element is used to block the second type of polarized light and transmit the first type of polarized light;
  • the polarization direction of the first type of polarized light is different from the polarization direction of the second type of polarized light.
  • the first functional part includes a first functional part, the first functional part is arranged corresponding to the second area, and the first functional part is used to convert the light passing through the second area into the second type of polarized light. .
  • the first functional part includes a first functional part, and the first functional part is arranged corresponding to the second area and the peripheral area of the pixel unit along a direction perpendicular to the display plane of the display element, and the first The functional part is used for converting the light passing through the second region and the pixel unit into the second type of polarized light.
  • the first functional part further includes a second functional part, the second functional part is disposed corresponding to the first area, and the second functional part is used to transmit light passing through the first area.
  • the light control element includes a first functional part and a second functional part, the first functional part is located between the second functional part and the display functional layer, and the first functional part is used to The light is converted into the second type of polarized light, and the second functional component is used to block the first type of polarized light and transmit the second type of polarized light;
  • the polarization direction of the first type of polarized light is different from the polarization direction of the second type of polarized light.
  • the first functional part includes a first functional part, the first functional part is arranged corresponding to the first area, and the first functional part is used to convert the light passing through the first area into the second type of polarized light. .
  • the first functional part further includes a second functional part, and the second functional part is disposed corresponding to the second area and used to transmit light passing through the second area.
  • the first functional component is a phase conversion element.
  • the first functional element includes a birefringent material or a three-dimensional nanostructure.
  • the first functional member when the first functional member includes a birefringent material, the first functional member is coated on the outer periphery of the first region or the second region.
  • the second functional component is a second polarizing element.
  • the second polarizing element and the first polarizing element are both circular polarizers or linear polarizers.
  • the projection of the second functional element on the display functional layer covers the first area and the second area.
  • an embodiment of the present application further discloses a display panel, where the display panel includes the display element described in the first aspect above.
  • an embodiment of the present application further discloses a display screen, the display screen includes a display panel and the display element as described in the first aspect above, and the display element is disposed on the display panel.
  • an embodiment of the present application further discloses a terminal, the terminal includes a photosensitive module and the display panel according to the above second aspect, the photosensitive module is disposed on a non-display side of the display panel, or the terminal includes a photosensitive module In the group and the display screen according to the third aspect, the photosensitive module is arranged on the non-display side of the display screen.
  • the display element 100 includes a display function layer 10 and a light control element 20 disposed on one side of the display function layer 10 .
  • the display function layer 10 has a first area 101 for light transmission and a second area 102 located at the periphery of the first area 101 , and the second area 102 is used for setting the driving lines 11 .
  • the light control element 20 is used to transmit the light passing through the first area 101 and block the light passing through the second area 102 .
  • the light passing through the first region 101 of the display functional layer 10 and the light passing through the second region 102 of the display functional layer 10 may at least include light entering from the outside of the display functional layer 10, for example, from the display Natural light incident from the outside of the functional layer 10 .
  • the light may also include light generated by the display function layer 10 , for example, light emitted through the first region 101 of the display function layer 10 .
  • the light control element 20 is used to transmit the light passing through the first region 101 of the display functional layer 10 and block the light passing through the second region 102 of the display functional layer 10 .
  • different angle wavelets are generated due to the light passing through the second region 102 of the display functional layer 10 (eg, due to the blocking of the driving circuit 11 when passing through the second region 102 ), thereby reducing the diffraction phenomenon.
  • the camera can receive light for normal imaging, and at the same time, it can reduce the occurrence of diffraction phenomenon, reduce the image blur when the camera is shooting, and improve the imaging clarity of the camera.
  • the display element 100 may be a display panel, that is, the display panel may include the above-mentioned display function layer 10 and a light control element 20 , and the light control element 20 may be disposed near the photosensitive module of the display function layer 10 . side, so that the light emitted by the display function layer 10 can be processed.
  • the light control element 20 can be integrated with the display function layer 10.
  • the light control element 20 can be coated on the display function layer 10 near the photosensitive module by coating. side.
  • the display element 100 may also include the above-mentioned light control element 20 and a display panel having the display function layer 10, that is, the display panel includes the above-mentioned display function layer 10, and the light control element 20 may be combined with the display function layer 10.
  • the panel is arranged separately, and is arranged on the side of the display function layer 10 of the display panel close to the photosensitive module.
  • the light control element 20 can be formed in a sheet shape and attached to the side of the display functional layer 10 close to the photosensitive module through an adhesive.
  • the above-mentioned display panel may be an OLED (Organic Light-Emitting Diode, organic electroluminescence unit) display panel.
  • the above-mentioned display panel may also be an LCD (liquid crystal display, liquid crystal display) panel, and in this case, the display panel may further include a liquid crystal layer.
  • the display element 100 can also be applied to a display screen, that is, the display screen includes a display panel and the display element, and the display element 100 can be disposed on the display panel.
  • the display functional layer 10 may further include a plurality of driving lines 11 and a plurality of pixel units 12 , then there are multiple first regions 101 , and each first region 101 may also be used for One or more pixel units 12 are provided.
  • the plurality of driving lines 11 can be used to form the above-mentioned second region 102 , and each driving line 11 is used for receiving a control signal and driving each pixel unit 12 to display. Considering that when light passes through the display functional layer 10, multiple wavelets with different angles will be generated. Since the driving lines 11 are mostly metal wires, the diffraction of these wavelets generated in the second region 102 is more obvious.
  • the wavelet passing through the second region 102 may cause image blur when the camera shoots, which affects the image quality. Therefore, in the embodiment of the present application, by disposing the light control element 20 on the side of the display function layer 10 close to the camera, the light control element 20 is used to block the light passing through the second area 102 , so that the light passing through the second area 102 can be avoided. The diffracted wavelets enter the camera, improving the imaging clarity of the camera.
  • the display function layer 10 is mainly used to realize the display function
  • the drive lines 11 on it may include scan drive lines 110 and data drive lines 111
  • the pixel units 12 on it may include a number of switching elements and a pixel electrode.
  • the scan driving circuit 110 can be used to drive the switching element of the pixel unit 12 to be turned on, so as to control the turning on of the pixel electrode.
  • the data driving circuit 111 can control the voltage intensity of the pixel electrode through the switching element, thereby effectively controlling the luminous intensity of the pixel unit.
  • the pixel unit 12 can include a first switching element and a second switching element, and the data driving circuit 111 can be controlled by the data driving signal through the first switching element The degree of opening of the second switching element, thereby controlling the intensity of the voltage across the pixel electrode.
  • the greater the voltage of the data driving signal the greater the degree of turn-on of the second switching element, the greater the on-current, and the greater the luminous intensity of the pixel unit; while the smaller the voltage of the data-driving signal, the greater the on-current is also smaller, so that the luminous intensity of the pixel unit is smaller.
  • FIG. 6 shows a schematic structural diagram of the display function layer 10 disclosed in the embodiment of the present application.
  • the plurality of pixel units 12 can be arranged in a matrix, and the plurality of first regions 101 can also be arranged in a matrix, so that each first region 101 can be provided with one pixel unit 12 respectively.
  • a plurality of pixel units 12 can also be arranged in one first area 101 .
  • one pixel unit 12 is provided in each of the first regions 101 for exemplary illustration.
  • the first area 101 is used to transmit light
  • the pixel unit 12 is a non-transmissive unit. Therefore, when the light passes through the pixel unit 12, it will also be Therefore, the light control element 20 can also be used to block the light passing through the pixel unit 12, so that the light transmitted by the light control element 20 is the light passing through the first area 101 without the pixel unit 12.
  • the light passing through the pixel unit 12 and the second area 102 is blocked by the light control element 20, so that the wavelet diffracted by the pixel unit 12 and the second area 102 can be prevented from entering the camera, and the imaging of the camera can be improved. clarity.
  • the first area 101 is provided with the pixel unit 12, the first area 101 still has an area that can transmit light (for example, as shown in the blank area around the pixel unit 12 in FIG. 6), therefore, light can pass through The position of the first region 101 where the pixel unit 12 is not provided is transmitted through.
  • the light control element 20 is used to transmit light passing through the position of the first region 101 where the pixel unit 12 is not provided, and at the same time, the light control element 20 is also used to block the light passing through the pixel unit 12 and block the light passing through the pixel unit 12.
  • the light in the second area 102 can reduce or even avoid the diffraction phenomenon of the light passing through the pixel unit 12 and the light in the second area 102, so that the imaging effect of the camera can be effectively improved, and at the same time, the light passing through the display screen and reaching the camera can be ensured as far as possible. light transmittance.
  • the display element 100 further includes a first polarizing element 30, and the first polarizing element 30 and the light control element 20 are disposed on opposite sides of the display functional layer 10.
  • the first polarizing element 30 is disposed on the side of the driving line 11 away from the light control element 20 , that is, from top to bottom, the display element 100 includes the first polarizing element 30 , the display function layer 10 and the light control element 20 , in this embodiment, the driving circuit 11 and the pixel unit 12 are located in the same layer.
  • the first polarizing element 30 can be used to pass light rays parallel to its polarization direction and to block light rays perpendicular to its polarization direction.
  • the natural light incident on the display functional layer 10 often includes multiple types of light, and after passing through the first polarizing element 30, the multiple types of light can transmit one of the types of light and the first polarizing element. 30 of the polarization state (or polarization direction) of the same light.
  • the first polarizing element 30 is the first type of polarizing element
  • the first polarizing element 30 can be used to transmit the first type of polarized light.
  • the first polarizing element 30 is a second-type polarizing element
  • the first polarizing element 30 can be used to transmit the second-type polarized light.
  • the above-mentioned second type of polarized light is a light whose polarization direction is different from that of the first type of polarized light, and both the first type of polarized light and the second type of polarized light can be circularly polarized light, Linearly or elliptically polarized light.
  • the projection of the first polarizing element 30 on the display functional layer 10 covers the first area 101 and the second area 102 , so that the first polarizing element 30 can affect the first type of polarized light before entering the display functional layer 10
  • the transmission is performed so that the first type of polarized light transmitted through the first polarizing element 30 can enter the first area 101 and the second area 102 of the display functional layer 10 .
  • the first polarizing element 30 when the external natural light passes through the first polarizing element 30, it will transmit light with the same polarization state (eg, the first type of polarized light), and the first type of polarized light can pass through the display functional layer 10, such as these first type of polarized light
  • the first area 101 , the pixel unit 12 and the second area 102 of the display function layer 10 the light passing through the first area 101 where the pixel unit 12 is not provided can be transmitted to the light control element 20 , and the light passing through the pixel unit 12 , the second area 102 can be transmitted to the light control element 20 .
  • the light rays of the two regions 102 form wavelets with different angles, so that the light rays can be blocked by the light control element 20 .
  • the light control element 20 may include a first functional element 21 and a second functional element 22, and the first functional element 21 is located between the second functional element 22 and the display functional layer 10, that is, the first polarizing element 30,
  • the second functional elements 22 are respectively located on both sides of the display functional layer 10 .
  • the display element 100 is, from top to bottom, the first polarizing element 30 , the display functional layer 10 , the first functional element 21 and the second functional element 22 in order. .
  • the first functional element 21 can be a phase conversion element.
  • the first functional element 21 can use a birefringent material (eg, a liquid crystal material) or a three-dimensional nanostructure, such as a metasurface (a metasurface with a three-dimensional nanostructure).
  • the first functional part 21 can be used to convert the light passing through the second area 102
  • the second functional part 22 is used to transmit the light passing through the first area 101 and block the light passing through the second area 102 (the light is the light whose polarization direction has been converted by the first functional element 21 ).
  • FIG. 7 is a schematic diagram of an arrangement in which the first functional member 21 of the present embodiment is a birefringent material.
  • the first functional part 21 when the first functional part 21 adopts a phase conversion element of birefringent material, the first functional part 21 can be arranged corresponding to the second region 102 along the direction perpendicular to the display plane of the display element 100 . , so as to cover the second area 102 , so that the light passing through the second area 102 can be converted.
  • the first polarizing element 30 for transmitting the first type of polarized light as an example, the first functional element 21 is used for converting the light passing through the second region 102 into the second type of polarized light. In this way, other regions where the first functional element 21 is not provided, for example, the first type of polarized light passing through the first region 101 can be transmitted to the second functional element 22 .
  • the first functional element 21 can also be used to convert the light passing through the pixel unit 12 into the second type of polarized light, so that , when the first functional element 21 is arranged, not only is it arranged on the outer circumference of the second region 102 , but also can be arranged on the outer circumference of the pixel unit 12 .
  • the first functional element 21 is disposed corresponding to both the second area 102 and the peripheral area of the pixel unit 12 along the direction perpendicular to the display plane of the display element 100 , so that the light passing through the pixel unit 12 and the light passing through the second area 102 The light can be converted into the second type of polarized light by the first functional element 21 .
  • the first functional part 21 can be coated on the outer periphery of the second region by coating, so as to completely cover the driving circuit.
  • the first functional part 21 can be coated on the outer peripheral area of the pixel unit 12 by means of coating (for example, directly coated on the outer edge of the pixel unit 12 ) to ensure that the first functional part 21 can completely cover the pixel unit 12
  • the outer edge of the pixel unit 12 can prevent the light passing through the edge of the pixel unit 12 from being directly transmitted through the position of the first region 101 where the pixel unit 12 is not provided.
  • the first functional part 21 adopts a phase conversion element of birefringent material, so that the light passing through the pixel unit 12 and the light passing through the second region 102 can be phase-converted, so that the light passing through the pixel unit 12 and the light passing through the The phase of the light in the second area 102 is different from that of the light passing through the position where the pixel unit 12 is not provided in the first area 101 , so that the second functional element 22 can respectively transmit and block the light.
  • FIG. 8 is a schematic structural diagram when the first functional component 21 disclosed in the embodiment of the present application is a nanostructure.
  • the first functional part 21 may include a first functional part 211 and a first functional part 211 and a second Two functional parts 212, the first functional part 211 can be provided corresponding to the first area 101, and the second functional part 212 can be provided corresponding to the second area 102, in this way, the first functional part 211 can be used to transmit the light passing through the first area 101, The two-function part 212 can be used to convert the light passing through the second region 102 and the pixel unit 12 .
  • the first functional part 211 can cover at least the first region 101 , that is, the first functional part 211 can adopt a nano-antenna with 0 phase.
  • the second functional part 212 can cover at least the second area 102 and the peripheral area of the pixel unit 12.
  • the second functional part 212 can be set according to the phase to be converted,
  • the second functional portion 212 may employ a V-shaped nano-antenna having 1 ⁇ /4, or the second functional portion 212 may employ an L-shaped nano-antenna having 1 ⁇ /2, or the like.
  • the first functional part 211 with 0 phase is only set at the position corresponding to the first area 101 where the pixel unit 12 is not set, and the first functional part 211 with 1 ⁇ corresponding to the area where the second area 102 and the pixel unit 12 are located is set
  • the second functional part 212 of /4 is taken as an example.
  • the arrangement shown in the figure is only for the convenience of description and understanding, and does not limit the scope of this embodiment.
  • the arrangement of the first functional part 211 and the second functional part 212 can be adjusted, such as the first functional part 211 It can also be inclined to the right, the V-shaped opening of the second functional part 212 can be oriented to the left, and so on.
  • the arrangement quantity of the first functional part 211 and the second functional part 212 can be set according to the corresponding area size, and the figure is only an example, and the actual set quantity thereof is not limited. It can be understood that FIG. 8 only shows the general structure of the first functional part 211 and the second functional part 212 of the first functional part 21 , and does not show the arrangement of the corresponding first area 101 and the second area 102 . , for the setting manner of the first functional part 211 and the second functional part 212 corresponding to the first area 101 and the second area 102 , please refer to the foregoing related description.
  • the first functional member 21 can also be used to convert the light passing through the first area 101
  • the second functional member 22 is used to transmit the light converted by the first area 101 and block the light passing through the first area 101 .
  • Light of the second region 102 In this way, other areas where the first functional member 21 is not provided, for example, light passing through the second area 102 can be transmitted to the second functional member 22 and blocked by the second functional member 22 .
  • the first polarizing element 30 is also used to transmit the first type of polarized light, and the first functional component 21 adopts a phase conversion element of a birefringent material as an example for description. Then, during the setting, the first functional element 21 can be arranged corresponding to the first area 101 , so that the light passing through the first area 101 can be phase-converted.
  • FIG. 9 is a schematic diagram of another arrangement in which the first functional component disclosed in this embodiment is a birefringent material.
  • the first area 101 is also used for setting the pixel unit 12
  • the first functional part 21 can be coated inside the first area 101 but should have a distance to the outer edge of the pixel unit 12 (as shown in FIG.
  • the light passing through the first area 101 without the pixel unit 12 is converted into the second type of polarized light, and the polarization direction of the light passing through the second area 102 and the light passing through the outer edge of the pixel unit 12 are the first The polarization directions of the polarized light are different, so that the second functional element 22 can transmit the light passing through the first area 101 without the pixel unit 12 , while blocking the light passing through the second area 102 and the light passing through the outer edge of the pixel unit 12 .
  • the first polarizing element 30 is used to transmit the first type of polarized light.
  • the first functional part 21 adopts a three-dimensional nanostructure, such as a metasurface (a metasurface having a three-dimensional nanostructure)
  • the first functional part 211 can be used to perform phase conversion on the light passing through the first region 101, so that it is One type of polarized light is converted into a second type of polarized light
  • the second functional part 212 can be used to transmit the first type of polarized light through the second region 102 and through the pixel unit 12 .
  • the first functional part 211 can at least cover the position of the first area 101 where the pixel unit 12 is not provided, that is, the first functional part 211 can be a V-shaped nanometer with 1 ⁇ /4. Antenna, alternatively, L-shaped nano-antenna with 1 ⁇ /2 or the like may be used.
  • the first functional part 211 can cover at least the second area 102 and the area where the pixel unit 12 is located, and the second functional part 212 can use a nano-antenna with 0 phase.
  • the first functional part 211 with a phase of 1 ⁇ /4 is only set at the position corresponding to the first area 101 where the pixel unit 12 is not set, and the first functional part 211 corresponding to the second area 102 and the area where the pixel unit 12 is located is set Take the second functional part 212 having 0 phase as an example.
  • the arrangement shown in the figure is only for the convenience of description and understanding, and does not limit the scope of this embodiment.
  • the arrangement of the first functional part 211 and the second functional part 212 can be adjusted, such as the second functional part 212 It can also be inclined to the right, the V-shaped opening of the first functional part 211 can be oriented to the left, and the like.
  • the arrangement quantity of the first functional part 211 and the second functional part 212 can be set according to the corresponding area size, and the figure is only an example, and the actual set quantity thereof is not limited. It can be understood that FIG. 8 only shows the general structure of the first functional part 211 and the second functional part 212 of the first functional part 21 , and does not show the arrangement of the corresponding first area 101 and the second area 102 . , for the setting manner of the first functional part 211 and the second functional part 212 corresponding to the first area 101 and the second area 102 , please refer to the foregoing related description.
  • the projection of the second functional element 22 on the display functional layer 10 can cover the first area 101 and the second area 102, so that the light passing through the first area 101 can be transmitted, while the light passing through the second area can be transmitted. 102. Block the light passing through the pixel unit 12.
  • the second functional element 22 can be a second polarizing element, which can be the same as or different from the first polarizing element 30 , for example, the first polarizing element 30 and the second polarizing element can both be circular polarizers or Linear polarizer, in this case, the first polarizing element and the second polarizing element can be used to transmit the same type of polarized light, for example, both can be used to transmit the first type of polarized light, or both can be used to transmit the second type of polarized light.
  • the first polarizing element 30 and the second polarizing element may also be different.
  • the first polarizing element 30 may be one of a linear polarizer or a circular polarizer
  • the second polarizing element may be Another kind of circular polarizer or linear polarizer, in this case, the first polarizing element and the second polarizing element can be used to transmit different types of polarized light, for example, the first polarizing element can be used to transmit the first type of polarized light, while the second polarized light The element can be used to transmit the second type of polarized light.
  • the first polarizing element 30 the display functional layer 10 , the first functional part 21 and the second functional part 22 transmit the light passing through the first area 101 and block the light passing through the second area 102 and the pixel unit 12 mode, which will be described below with reference to the accompanying drawings.
  • the following description mainly takes the first functional part 21 using a three-dimensional nanostructure, such as a metasurface (a metasurface having a three-dimensional nanostructure) as an example for description, that is, the first functional part 21 may include a first functional part 211 . and the second functional part 212 , the first functional part 211 can be provided corresponding to the first area 101 , and the second functional part 212 can be provided corresponding to the second area 102 .
  • a metasurface a metasurface having a three-dimensional nanostructure
  • first polarizing element 30 , the display functional layer 10 , the first functional part 21 and the second functional part 22 are arranged in sequence along the direction from the display screen to the photosensitive module.
  • FIG. 10 is a schematic structural diagram of the display element 100 disclosed in the embodiment of the present application.
  • the first polarizing element 30 and the second functional component 22 are polarizers for transmitting the same type of polarized light, for example, both the first polarizing element 30 and the second functional component 22 can be used for transmitting the first polarized light Or the second type of polarized light.
  • the natural light may include a first type of polarized light and a second type of polarized light, and the second type of polarized light is light whose polarization direction is different from that of the first type of polarized light.
  • the first polarizing element 30 is used to transmit the first type of polarized light, and can block the passage of the second type of polarized light, so that only the first type of polarized light passes through the first polarizing element 30 , and the first type of polarized light passing through the first polarizing element 30 After the polarized light passes through the first area 101 of the display functional layer 10 (as shown in the blank area defined between two adjacent second areas 102 in FIG.
  • the first light and the second light are wavelets with different angles formed by the first type of polarized light passing through the first region 101 and the second region 102 respectively.
  • the first light beam and the second light beam are not limited to be a single light beam, and may also be a collection of multiple light beams propagating in multiple directions.
  • the first functional part 211 of the first functional part 21 can directly transmit light, and the first functional part 211 is disposed corresponding to the first area 101 (mainly refers to the position where the pixel unit 12 is not disposed in the first area 101 ); Therefore, most or all of the first light L10 passing through the first region 101 can be transmitted to the first functional portion 211. Since the first functional portion 211 can directly transmit light, the light passing through the first functional portion 211 is still the first light. A light L10 , that is, the light passing through the first functional portion 211 is still the first type of polarized light.
  • the second functional part 212 of the first functional part 21 can convert the polarization direction of light, and the second functional part 212 is disposed corresponding to the second area 102 and the pixel unit 12 ; Most or all of the two light rays can be transmitted to the second functional part 212 , so the second light rays passing through the second functional part 212 are converted into a third light beam L30 , that is, the third light rays passing through the second functional part 212 L30 is the second type of polarized light different from the first type of polarized light.
  • both the first light beam L10 and the third light beam L30 are transmitted to the second functional member 22 (ie, the second polarizing element), because the polarization directions of the light rays that can pass through the second functional member 22 and the first polarizing element 30 are the same, That is, only the first type of polarized light can pass through, so only the first light beam L10 can pass through the second functional member 22, that is, the third light beam L30,
  • the third light L30 reflected or refracted by the pixel unit 12 is mostly or completely blocked by the second functional component 22 , thereby greatly reducing the influence of diffraction caused by the driving circuit 11 and the pixel unit 12 .
  • the photosensitive module is a camera, the imaging effect of the camera can be effectively improved, and the light transmittance of the light passing through the display screen to the camera can be ensured as much as possible.
  • the above-mentioned first functional part 211 may not be provided at the position corresponding to the first region 101 , and the above-mentioned first functional part 211 may only be provided in the second region 102 and the peripheral region corresponding to the pixel unit 12 .
  • the second functional part 212 of can also refer to FIG. 11 for details. At this time, in FIG.
  • the first functional part 21 when disposing the first functional part 21 , the first functional part 21 can be coated on the display functional layer 10 , and then the first functional part 21 corresponding to the position of the first region 101 of the display functional layer 10 is placed The functional part 211 is removed, and only the second functional part 212 corresponding to the second region 102 and the peripheral region of the pixel unit 12 remains.
  • the short and thick horizontal line represents the second functional part 212 , which is disposed corresponding to the second region 102 of the display functional layer 10 and the peripheral region of the pixel unit 12 .
  • the blank area between the two adjacent short and thick horizontal lines indicates that the first functional part 211 is removed. In other words, the solution shown in FIG. way of the first functional piece 21 .
  • FIG. 12 is another schematic structural diagram of the display element 100 disclosed in the embodiment of the present application.
  • the first polarizing element 30 and the second functional part 22 are polarizers for transmitting different polarized light, for example, the first polarizing element 30 is used for transmitting the first type of polarized light, and the second functional part 22 is used for transmitting the first type of polarized light.
  • a second type of polarized light is transmitted.
  • the natural light may include a first type of polarized light and a second type of polarized light, and the second type of polarized light is light whose polarization direction is different from that of the first type of polarized light.
  • the first polarizing element 30 is used to transmit the first type of polarized light, and can block the passage of the second type of polarized light, so that only the first type of polarized light passes through the first polarizing element 30 , and the first type of polarized light passing through the first polarizing element 30
  • wavelets of different angles are generated, wherein the light passing through the first area 101 is the first light, and the device (such as a pixel unit) passing through the first area 101 12)
  • the material or other components or the refracted light is the second light, and the light passing through the second region 102 or reflected or refracted by the driving circuit 11 is also the second light (the light passing through the first region 101 is not shown in FIG.
  • first light and the second light are wavelets with different angles formed by the first type of polarized light passing through the first region 101 and the second region 102 respectively.
  • first light beam and the second light beam are not limited to be a single light beam, and may also be a collection of multiple light beams propagating in multiple directions.
  • the first functional part 211 of the first functional element 21 can convert the polarization direction of light, and the first functional part 211 corresponds to the first area 101 (mainly refers to the position where the pixel unit 12 is not disposed in the first area 101 ) ) setting; thus, most or all of the first light rays passing through the first region 101 can be polarized directionally converted by the first functional portion 211, so that the light rays passing through the first functional portion 211 are converted from the first light rays to the third light rays
  • the light L30 that is, the light passing through the first functional part 211, is converted into the second type of polarized light after being converted in the polarization direction.
  • the second functional part 212 of the first functional part 21 can directly transmit light and the second functional part 212 is disposed corresponding to the second area 102 and the pixel unit 12 ; thus, the second light L20 passing through the second area 102 and the pixel unit 12 Most or all of the light can be transmitted to the second functional part 212, and the light passing through the second functional part 212 is still the second light L20, that is, the light passing through the second functional part 212 is the second light that is different from the second type of polarized light. A type of polarized light.
  • both the third light L30 and the second light L20 are transmitted to the second functional element 22 (ie, the second polarizing element), because the polarization directions of the light that can pass through the second functional element 22 and the first polarizing element are different, that is,
  • the second functional member 22 is used to transmit the second type of polarized light and can block the first type of polarized light from passing through, so only the third light L30 can pass through the second functional member 22, that is, through the second region 102 or
  • the light reflected or refracted by the driving circuit 11 and the light reflected or refracted by the pixel unit 12 are mostly or completely blocked by the second functional element 22 , thereby greatly reducing the diffraction caused by the driving circuit 11 and the pixel unit 12 influences.
  • the photosensitive module is a camera, the imaging effect of the camera can be effectively improved, and the light transmittance of the light passing through the display screen to the camera can be ensured as much as possible.
  • FIG. 13 is another structural schematic diagram of the display element 100 disclosed in the embodiment of the present application.
  • the first polarizing element 30 and the second functional member 22 are polarizers for transmitting different polarized lights.
  • the natural light may include a first type of polarized light and a second type of polarized light, and the second type of polarized light is light whose polarization direction is different from that of the first type of polarized light.
  • the first polarizing element 30 is used to transmit the second type of polarized light, and can block the first type of polarized light from passing through, so that only the second type of polarized light passes through the first polarizing element 30 , and the second type of polarized light passing through the first polarizing element 30
  • wavelets of different angles are generated, wherein the light passing through the first area 101 is the first light, and the device (such as a pixel unit) passing through the first area 101 12)
  • the material or other components or the refracted light is the second light, and the light passing through the second region 102 or reflected or refracted by the driving circuit 11 is also the second light (the light passing through the first region 101 is not shown in FIG.
  • first light and the second light are both wavelets with different angles formed by the second type of polarized light passing through the first region 101 and the second region 102 respectively.
  • first light beam and the second light beam are not limited to be a single light beam, and may also be a collection of multiple light beams propagating in multiple directions.
  • the first functional part 211 of the first functional element 21 can convert the polarization direction of light, and the first functional part 211 corresponds to the first area 101 (mainly refers to the position where the pixel unit 12 is not disposed in the first area 101 ) ) setting; thus, most or all of the first light rays passing through the first region 101 can undergo polarization direction conversion through the first functional portion 211 , so that the first light rays are converted into polarization directions by the first functional portion 211 .
  • the third light L30 that is, the light passing through the first functional part 211, is converted into a first type of polarized light after being phase-converted.
  • the second functional part 212 of the first functional part 21 can directly transmit light, and the second functional part 212 is disposed corresponding to the second area 102 and the pixel unit 12; thus, the second light passing through the second area 102 and the pixel unit 12 can Most or all of the light is transmitted to the second functional part 212 . Since the second functional part 212 can directly transmit light, the light passing through the second functional part 212 is still the second light L20 , that is, the light passing through the second functional part 212 is a second type of polarized light different from the first type of polarized light. Then, both the third light L30 and the second light L20 propagate to the second functional element 22 (ie, the second polarizing element).
  • the second functional member 22 is used to transmit the first type of polarized light and can block the second type of polarized light from passing through, so only the third light L30 can pass through the second functional member 22, that is, through the second region 102 or
  • the light reflected or refracted by the driving circuit 11 and the light reflected or refracted by the pixel unit 12 are mostly or completely blocked by the second functional element 22 , that is, the second light L20 is blocked by the second functional element 22 , thereby greatly reducing the The influence of diffraction caused by the driving circuit 11 and the pixel unit 12 is reduced.
  • the photosensitive module is a camera, the imaging effect of the camera can be effectively improved, and the light transmittance of the light passing through the display screen to the camera can be ensured as much as possible.
  • FIG. 14 is another structural schematic diagram of the display element 100 disclosed in the embodiment of the present application.
  • the first polarizing element 30 and the second functional component 22 are polarizers for transmitting the same polarized light.
  • the natural light may include a first type of polarized light and a second type of polarized light, and the second type of polarized light is light whose polarization direction is different from that of the first type of polarized light.
  • the first polarizing element 30 is used to transmit the second type of polarized light, and can block the first type of polarized light from passing through, so that only the second type of polarized light passes through the first polarizing element 30 , and the second type of polarized light passing through the first polarizing element 30
  • wavelets of different angles are generated, wherein the light passing through the first area 101 is the first light, and the device (such as a pixel unit) passing through the first area 101 12)
  • the material or other components or the refracted light is the second light, and the light passing through the second region 102 or reflected or refracted by the driving circuit 11 is also the second light (the light passing through the first region 101 is not shown in FIG.
  • first light and the second light are both wavelets with different angles formed by the second type of polarized light passing through the first region 101 and the second region 102 respectively.
  • first light beam and the second light beam are not limited to be a single light beam, and may also be a collection of multiple light beams propagating in multiple directions.
  • the first functional part 211 of the first functional part 21 can directly transmit light, and the first functional part 211 is disposed corresponding to the first area 101 (mainly refers to the position where the pixel unit 12 is not disposed in the first area 101 ); Therefore, most or all of the first light rays L10 passing through the first region 101 can be transmitted to the first functional portion 211. Since the first functional portion 211 can directly transmit light, the light passing through the first functional portion 211 is still the first light ray L10. A light L10 , that is, the light passing through the first functional portion 211 is still the second type of polarized light.
  • the second functional part 212 of the first functional element 21 can convert the polarization angle of light, and the second functional part 212 is disposed corresponding to the second area 102 and the pixel unit 12 ; Most or all of the two light rays can travel to the second functional part 212. Since the second functional part 212 can convert the polarization direction of the light rays, the second light rays passing through the second functional part 212 are converted into the third light rays L30, That is, the light converted by the second functional part 212 is the first type of polarized light which is different from the second type of polarized light.
  • both the first light L10 and the third light L30 propagate to the second functional element 22 (ie, the second polarizing element), because the polarization direction of the light that can pass through the second functional element 22 is the same as that of the first polarizing element, that is,
  • the second functional member 22 is used to transmit the first type of polarized light, so only the first light L10 can pass through the second functional member 22 , that is, through the second region 102 or the third light beam reflected or refracted by the driving line 11 .
  • the light L30 and the third light L30 reflected or refracted by the pixel unit 12 are mostly or completely blocked by the second functional element 22 , thereby greatly reducing the influence of diffraction caused by the driving circuit and the pixel unit 12 .
  • the photosensitive module is a camera, the imaging effect of the camera can be effectively improved, and the light transmittance of the light passing through the display screen to the camera can be guaranteed as much as possible.
  • the schematic diagrams of the first functional part 211 and the second functional part 212 of the first functional part 21 are only for the convenience of explaining the first functional part 211 and the second functional part 212 respectively correspond to the positions of the first area 101 and the second area 102, and are only used to illustrate the functions that can be achieved, such as for converting the phase of light or transmitting light, and do not limit the scope of this embodiment. .
  • the first functional part 211 uses three short vertical lines to indicate that the first functional part 211 can directly transmit light without converting the phase of the light, while the second functional part 212 uses short thick horizontal lines to represent the first functional part 211
  • the two-function part 212 can convert the phase of the light instead of directly transmitting the light.
  • the first functional part 211 is marked with a short and thick horizontal line to indicate that it can convert the phase of light instead of directly transmitting the light
  • the second functional part 212 is marked with three short vertical lines to indicate that it can convert the phase of light. Can transmit light directly without converting the phase of the light.
  • FIGS. 13 and 14 the conditions of the first functional unit 211 and the second functional unit 212 are the same as those in FIGS. 10 and 12 , respectively, and will not be repeated here.
  • the above identifiers of the first functional part 211 and the second functional part 212 are only for the convenience of description and understanding of this embodiment, and do not limit the scope of this embodiment.
  • a short and thick horizontal line may be used to indicate that the second functional portion 212 can convert the polarization direction of light instead of directly transmitting the light.
  • the blank area between them represents the first functional part 211 , and the blankness of the first functional part 211 means that it can directly transmit light without converting the polarization direction of the light.
  • a short and thick horizontal line is used to indicate that the first functional part 211 can convert the polarization direction of light instead of directly transmitting light
  • a blank area between two adjacent short and thick horizontal lines is used to indicate the second The functional part 212, the second functional part 212 being blank means that it can directly transmit light without converting the polarization direction of the light.
  • the first type of polarized light and the second type of polarized light are represented by straight lines or arcs, which do not mean that they correspond to linearly polarized light or circularly polarized light, but are just for convenience. The distinction does not limit the scope of the first type of polarized light and the second type of polarized light in this embodiment.
  • the light passing through the second area 102 and the pixel unit 12 can be effectively blocked by the arrangement of the light control element 20 (ie, the first functional part 21 and the second functional part 22 ). , so that while ensuring that the camera can receive light, it can also reduce the occurrence of diffraction, which is beneficial to improve the imaging clarity of the camera when the photosensitive module is a camera, and improve the image shooting quality.
  • a second aspect of the embodiments of the present application discloses a terminal 1000 .
  • the terminal 1000 includes a photosensitive module (taking the camera 1001 as an example) and the above-mentioned display panel or display screen.
  • the photosensitive module can be Set on the display panel or the non-display side of the display. Since the display panel or the display screen includes the display element 100 described in the above embodiments, the camera 1001 can be arranged on the side of the light control element 20 away from the display function layer 10 , that is, the camera 1001 can face the light The control element 20 is provided.
  • the photosensitive module can also be a fingerprint identification module.
  • the terminal 1000 may include, but is not limited to, terminals such as mobile phones, tablet computers, and smart watches.
  • the camera 1001 can be an off-screen camera 1001 , that is, a camera installed in the effective display area of the display screen of the mobile phone, thereby reducing the volume occupied by the camera 1001 on the mobile phone screen and increasing the screen ratio.
  • the setting of the display element 100 described in the above embodiments can reduce the diffraction effect caused by the light generated by the driving circuit 11 of the display element 100 and the pixel unit 12, thereby improving the imaging of the camera 1001. sharpness and image quality.
  • the above-mentioned terminal 1000 also includes other structures or components necessary for the terminal 1000, such as a casing and a touch control device disposed in the casing. Necessary structures or components such as modules, batteries, audio modules, etc.
  • the camera 1001 since the camera 1001 only corresponds to a partial area of the display element 100 , in order to improve the diffraction effect caused by the light passing through the pixel unit 12 and the driving circuit 11 , the camera 1001 is generally set in a partial area of the display element 100 corresponding to the camera 1001 .
  • the light control element 20 or the light control element 20 and the first polarizing element 30 suffice. However, it can be understood that in other modified embodiments, the light control element 20 or the light control element 20 or the light Control element 20 and first polarizing element 30 .
  • the first polarizing element 30 and the second functional element 22 can be shared with the polarizing elements respectively provided on the upper and lower surfaces of the liquid crystal display panel for realizing the display function. It is only necessary to further set the first functional part 21 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示元件(100),包括显示功能层(10)和光控制元件(20),显示功能层(10)包括用于透光的第一区域(101)和用于设置驱动线路(11)的第二区域(102),光控制元件(20)设于显示功能层(10)的一侧,光控制元件(20)用于透射经第一区域(101)的光线并阻挡经第二区域(102)的光线。采用实施例的方案,利用光控制元件(20)可用于透射经显示功能层(10)的第一区域(101)的光线并阻挡经显示功能层(10)的第二区域(102)的光线。这样,利用光控制元件(20)可阻挡经第二区域(102)的光线,从而可减少因光线经过显示功能层(10)的第二区域(102)(即驱动线路所在区域)导致的衍射现象的发生。另外,还公开了一种具有显示元件(100)的显示面板、显示屏以及具有显示面板或显示屏的终端。

Description

显示元件、显示面板、显示屏及终端 技术领域
本发明涉及显示技术领域,尤其涉及一种显示元件、显示面板、显示屏及终端。
背景技术
为了提高终端(例如手机、智能手表、平板电脑等)的屏占比,市面上出现了将感光模组(例如摄像头或者指纹识别模块)设置在终端的显示屏的有效显示区的设计。但是,这种方式中,光线经过显示屏时,容易受到显示屏内部器件的干扰而造成光线衍射现象,进而影响摄像头的成像质量或影响指纹识别模块的识别精度。
发明内容
本发明实施例公开了一种显示元件、显示面板、显示屏及终端,能够提高摄像头的成像质量或提高指纹识别模块的识别精度。
为了实现上述目的,第一方面,本发明实施例公开了一种显示元件,
所述显示元件包括
显示功能层,所述显示功能层包括用于透光的第一区域和用于设置驱动线路的第二区域;以及
光控制元件,所述光控制元件用于透射经所述第一区域透射的光线并阻挡经所述第二区域的光线。
第二方面,本发明实施例公开了一种终端,所述终端包括感光模组以及如上述第一方面所述的显示元件,所述感光模组设置于所述光控制元件远离所述显示功能层的一侧。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中将感光模组(以摄像头为例)设置在显示屏有效显示区的示意图;
图2是采用图1的方式产生的光栅衍射效应图;
图3是采用图1的方式最终形成的成像示意图;
图4是本发明实施例公开的显示元件的结构示意图;
图5是沿图4的A-A方向的剖视图;
图6是本发明实施例公开的显示功能层的结构示意图;
图7是本发明实施例公开的第一功能件为双折射材料的一种设置示意图;
图8是本发明实施例公开的第一功能件为三维纳米结构时的结构示意图;
图9是本发明实施例公开的第一功能件为双折射材料的再一种设置示意图;
图10是本发明实施例公开的显示元件的一种结构原理图;
图11是图10中的第一功能件采用双折射材料的一种结构原理图;
图12是本发明实施例公开的显示元件的另一种结构原理图;
图13是本发明实施例公开的显示元件的又一种结构原理图;
图14是本发明实施例公开的显示元件的再一种结构原理图;
图15是本发明实施例公开的终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“上”、“下”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造及操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类及构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性及数量。除非另有说明,“多个”的含义为两个或两个以上。
发明人经研究发现,一种相关技术中,当将感光模组(例如摄像头、指纹识别模块)设置在显示屏的有效显示区时,从显示屏进入的光线在经过显示屏时容易发生衍射现象。例如,如图1所示,以感光模组为摄像头为例,图1示出了将摄像头1设置在显示屏2的有效显示区,图1中,摄像头1设置在显示屏2下方,电子感光芯片3设置在摄像头1的成像侧(如图1中的摄像头1的下方),入射光(例如从外部射入的自然光,如图1中的虚线所示)从显示屏2射入至摄像头1。由于显示屏2电路的金属走线2a以及像素单元2b的设置,摄像头1容易受到金属走线2a以及像素单元2b的干扰,影响拍摄成像效果。例如,如图2所示,图2中(a)表示显示屏2电路的金属走线2a以及像素单元2b的排布,图2中(b)表示显示屏2电路的金属走线2a以及像素单元2b对摄像头1造成的多方向的衍射现象,例如,图2(b)中,示出了多个线束经过显示屏2后产生的多角度光线L0到摄像头3时,发生光线衍射的情况,从而导致入射光经过显示屏2时,容易由于衍射造成成像模糊的问题(如图3所示),图3中示出了采用摄像头1拍摄后的图像,图像中框出了模糊的位置,由此可见,成像后的图像出现边缘模糊的情况。可以理解的是,当该感光模组为指纹识别模组时,同样容易由于衍射现象的存在而导致指纹识别精度不高的问题。
为改善上述衍射现象造成摄像头成像模糊或指纹识别精度不高的问题,第一方面,本 申请实施例公开了一种显示元件。该显示元件可应用于终端中。具体地,该显示元件包括显示功能层以及光控制元件,显示功能层包括第一区域和用于设置驱动线路的第二区域,光控制元件设于显示功能层的一侧,光控制元件用于透射经第一区域的光线并阻挡经第二区域的光线。
一种可选地实施方式中,显示功能层还包括设置于第一区域的像素单元,光控制元件还用于阻挡经像素单元的光线。
一种可选地实施方式中,显示元件还包括用于透射第一类偏振光的第一偏振元件,第一偏振元件与光控制元件设置在显示功能层相背的两侧。
一种可选地实施方式中,第一偏振元件在显示功能层上的投影覆盖第一区域和第二区域。
一种可选地实施方式中,光控制元件包括第一功能件和第二功能件,第一功能件位于第二功能件与显示功能层之间,第一功能件用于将经所述第二区域的光线转换为第二类偏振光,第二功能件用于阻挡第二类偏振光并透射第一类偏振光;
其中,第一类偏振光的偏振化方向不同于第二类偏振光的偏振化方向。
一种可选地实施方式中,第一功能件包括第一功能部,第一功能部与第二区域对应设置,第一功能部用于将经第二区域的光线转换成第二类偏振光。
一种可选地实施方式中,第一功能件包括第一功能部,第一功能部沿垂直于所述显示元件的显示平面的方向与第二区域及像素单元的外周区域对应设置,第一功能部用于将经第二区域及像素单元的光线转换成第二类偏振光。
一种可选地实施方式中,第一功能件还包括第二功能部,第二功能部与第一区域对应设置,第二功能部用于透射经第一区域的光线。
一种可选地实施方式中,光控制元件包括第一功能件和第二功能件,第一功能件位于第二功能件与显示功能层之间,第一功能件用于将经第一区域的光线转换为第二类偏振光,第二功能件用于阻挡第一类偏振光并透射第二类偏振光;
其中,所述第一类偏振光的偏振化方向不同于所述第二类偏振光的偏振化方向。
一种可选地实施方式中,第一功能件包括第一功能部,第一功能部与第一区域对应设置,第一功能部用于将经第一区域的光线转换成第二类偏振光。
一种可选地实施方式中,第一功能件还包括第二功能部,第二功能部与第二区域对应设置,并用于透射经第二区域的光线。
一种可选地实施方式中,第一功能件为相位转换元件。
一种可选地实施方式中,第一功能件包括双折射材料或三维纳米结构。
一种可选地实施方式中,第一功能件包括双折射材料时,第一功能件涂覆于第一区域或第二区域的外周。
一种可选地实施方式中,第二功能件为第二偏振元件。
一种可选地实施方式中,第二偏振元件、第一偏振元件均为圆偏振片或线偏振片。
一种可选地实施方式中,第二功能件在显示功能层上的投影覆盖第一区域和第二区域。
第二方面,本申请实施例还公开了一种显示面板,所述显示面板包括如上述第一方面 所述的显示元件。
第三方面,本申请实施例还公开了一种显示屏,显示屏包括显示面板以及如上述第一方面所述的显示元件,显示元件设置于显示面板。
第四方面,本申请实施例还公开了一种终端,该终端包括感光模组以及如上述第二方面的显示面板,感光模组设置于显示面板的非显示侧,或者,该终端包括感光模组以及如上述第三方面所述的显示屏,感光模组设置于显示屏的非显示侧。
以下将结合附图,对本申请实施例提供的鼻托组件以及头戴式设备作进一步的详细说明。
参见图4至图6所示,该显示元件100包括显示功能层10和设置在显示功能层10的一侧的光控制元件20。显示功能层10具有用于透光的第一区域101和位于该第一区域101的***的第二区域102,第二区域102用于设置驱动线路11。光控制元件20用于透射经第一区域101的光线并阻挡经第二区域102的光线。
可以理解的是,该经显示功能层10的第一区域101的光线和经显示功能层10的第二区域102的光线可至少包括自显示功能层10的外部射入的光线,例如,从显示功能层10外部射入的自然光。当然,该光线还可包括由显示功能层10产生的光线,例如,通过显示功能层10的第一区域101发出的光线。
与相关技术相比,本申请实施例公开的显示元件100中,利用光控制元件20透射经显示功能层10的第一区域101的光线,并阻挡经显示功能层10的第二区域102的光线,这样,可减少因光线经过显示功能层10的第二区域102(例如经过第二区域102时由于该驱动线路11的阻挡)而产生不同角度子波,进而导致衍射现象发生的情况。这样,既使得摄像头可接收到光线进行正常成像,同时也能够减少衍射现象的发生,减少摄像头拍摄时的成像模糊情况,提高摄像头的成像清晰度。
在一些实施例中,显示元件100可为显示面板,即,该显示面板可包括上述的显示功能层10以及光控制元件20,该光控制元件20可设置在显示功能层10的靠近感光模组的一侧,从而可对经显示功能层10射过来的光线进行处理。换言之,当显示元件100为显示面板时,光控制元件20可与显示功能层10集成为一体,例如可通过涂覆方式,将光控制元件20涂覆在显示功能层10的靠近感光模组的一侧。
在另一些实施例中,显示元件100也可包括上述的光控制元件20以及具有该显示功能层10的显示面板,即,显示面板包括上述的显示功能层10,而光控制元件20可与显示面板分体设置,并设置在显示面板的显示功能层10的靠近感光模组的一侧。举例来说,光控制元件20可形成为片状,通过粘接剂贴附在显示功能层10的靠近感光模组的一侧。
可以理解的是,上述的显示面板可以为OLED(Organic Light-Emitting Diode,有机电致发光单元)显示面板。当然,上述的显示面板也可以为LCD(liquid crystal display,液晶显示)面板,此时,该显示面板还可包括液晶层。
当然,该显示元件100也可应用于显示屏中,即,显示屏包括显示面板以及该显示元件,该显示元件100可设置于显示面板。
如图6所示,一些实施例中,该显示功能层10还可包括多条驱动线路11和多个像素单元12,则该第一区域101为多个,每一个第一区域101还可用于设置一个或多个像素 单元12。该多条驱动线路11可用于形成上述的第二区域102,每一条驱动线路11均用于接收控制信号并驱动每一个像素单元12进行显示。考虑到光线通过显示功能层10时,会产生多个不同角度的子波,由于驱动线路11多为金属线,因此,这些在第二区域102产生的子波发生的衍射情况更明显,如果这些经过第二区域102的子波进入摄像头的话,可能会导致摄像头拍摄时出现成像模糊,影响成像质量的情况。因此,本申请实施例通过将光控制元件20设置在显示功能层10的靠近摄像头的一侧,利用光控制元件20阻挡经该第二区域102过来的光线,从而可避免这些经第二区域102发生衍射的子波进入摄像头,提高摄像头的成像清晰度。
进一步地,显示功能层10主要用于实现显示功能,其上的驱动线路11可包括扫描驱动线路110和数据驱动线路111,其上的像素单元12可包括若干开关元件和与开关元件电连接的像素电极。其中,扫描驱动线路110可用于驱动像素单元12的开关元件的开启,进而使得控制像素电极的开启。而数据驱动线路111则可经由开关元件控制像素电极的电压强度,从而有效控制像素单元的发光强度。具体来说,为了实现数据驱动线路111可控制通过像素电极的电压强度,该像素单元12可包括第一开关元件和第二开关元件,数据驱动线路111可通过数据驱动信号经由第一开关元件控制第二开关元件的开启程度,从而控制通过像素电极的电压强度。例如,数据驱动信号的电压越大,第二开关元件的开启程度越大,导通电流也越大,从而像素单元的发光强度越大;而当数据驱动信号的电压越小,则导通电流也越小,从而像素单元的发光强度越小。
进一步地,如图6所示,图6示出了本申请实施例公开的显示功能层10的结构示意图。由图中可以看出,该多个像素单元12可以成矩阵排列,则多个第一区域101同样也可以成矩阵排列,从而每一个第一区域101分别可设置一个像素单元12。可以理解的是,也可在一个第一区域101中设置多个像素单元12。本实施例主要以每一个第一区域101分别设置一个像素单元12进行示例性说明。
一些实施例中,考虑到像素单元12设置在第一区域101中,第一区域101用于透光,而像素单元12为非透光单元,因此,光线在经过像素单元12时,也会由于像素单元12的遮挡而发生衍射现象,因此,该光控制元件20还可用于阻挡经像素单元12的光线,这样,光控制元件20透射的光线为经第一区域101的未设置像素单元12的位置透射的光线,而经像素单元12和第二区域102的光线都被光控制元件20阻挡了,从而可避免经像素单元12和第二区域102发生衍射的子波进入摄像头,提高摄像头的成像清晰度。
可以理解的是,虽然第一区域101设置了像素单元12,但第一区域101依然具有可以透光的区域(例如图6中的像素单元12周边的空白区域所示),因此,光线可以通过第一区域101的未设置像素单元12的位置透射过去。
换言之,本申请实施例的方案,通过光控制元件20用于透射经第一区域101的未设置像素单元12的位置的光线,同时还利用光控制元件20阻挡经像素单元12的光线以及阻挡经第二区域102的光线,这样,可以减少甚至避免经像素单元12以及第二区域102的光线发生的衍射现象,从而能够有效提高摄像头的成像效果,同时尽可能保障光线透过显示屏到达摄像头的光透过率。
一些实施例中,显示元件100还包括第一偏振元件30,第一偏振元件30与光控制元 件20设置在显示功能层10相背的两侧。具体地,第一偏振元件30设置在驱动线路11的背离光控制元件20的一侧,即,从上到下,该显示元件100包括第一偏振元件30、显示功能层10以及光控制元件20,在本实施例中,驱动线路11和像素单元12位于同一层。第一偏振元件30可用于通过与其偏振化方向平行的光线以及用于阻挡垂直于其偏振化方向的光线。例如,以入射至显示功能层10的外部自然光为例,从外部射入的自然光往往可包括多类光线,该多类光线通过第一偏振元件30后,可透射其中一类与第一偏振元件30的偏振态(或者是偏振化方向)相同的光线。例如,以第一偏振元件30为第一类偏振元件,则该第一偏振元件30可用于透射第一类偏振光。而如果第一偏振元件30为第二类偏振元件,则该第一偏振元件30则可用于透射第二类偏振光。可以理解的是,上述提及的第二类偏振光为偏振化方向不同于第一类偏振光的偏振化方向的光线,第一类偏振光和第二类偏振光均可为圆偏振光、线偏振光或椭圆偏振光。
进一步地,第一偏振元件30在显示功能层10上的投影覆盖第一区域101和第二区域102,这样,第一偏振元件30可对在射入显示功能层10之前的第一类偏振光进行透射,从而经第一偏振元件30透射的第一类偏振光可进入显示功能层10的第一区域101和第二区域102。
总之,当外部自然光经第一偏振元件30后,会透射与其偏振态相同的光线(例如第一类偏振光),该第一类偏振光可经显示功能层10,例如这些第一类偏振光可经显示功能层10的第一区域101、像素单元12以及第二区域102,经第一区域101未设置像素单元12的位置的光线可透射至光控制元件20,而经像素单元12、第二区域102的光线则形成具有不同角度的子波,从而这些光线可通过光控制元件20进行阻挡。
关于光控制元件20如何阻挡经像素单元12、第二区域102的光线,以下将结合附图进行说明。
如图5所示,光控制元件20可包括第一功能件21和第二功能件22,第一功能件21位于第二功能件22和显示功能层10之间,即第一偏振元件30、第二功能件22分别位于显示功能层10的两侧,换言之,该显示元件100由上至下依次为:第一偏振元件30、显示功能层10、第一功能件21以及第二功能件22。
考虑到第一功能件21用于对光线进行偏振化方向转换,因此,该第一功能件21可为相位转换元件。可选地,当第一功能件21为相位转换元件时,其可采用双折射材料(例如液晶材料)或者是三维纳米结构,例如metasurface(具有三维纳米结构的超颖表面)。
在一些可选地实施例中,该第一功能件21可用于对经第二区域102的光线进行转换,第二功能件22则用于透射经第一区域101的光线并阻挡经第二区域102的光线(该光线为已经由第一功能件21转换过偏振化方向的光线)。
如图7所示,图7是本实施例的第一功能件21为双折射材料的一种设置示意图。一种可选地实施方式中,当第一功能件21采用双折射材料的相位转换元件时,第一功能件21可沿垂直于显示元件100的显示平面的方向与该第二区域102对应设置,以覆盖第二区域102,从而能够对经第二区域102的光线进行转换。以第一偏振元件30用于透射第一类偏振光为例,则,第一功能件21用于将经第二区域102的光线转换成第二类偏振光。这样,未设置第一功能件21的其他区域,例如经第一区域101的第一类偏振光可透射至 第二功能件22。
进一步地,考虑到由于第一区域101还用于设置像素单元12,因此,该第一功能件21还可用于对经像素单元12的光线进行转换,使其转换成第二类偏振光,这样,第一功能件21在设置时,不仅设置在第二区域102的外周,还可设置在像素单元12的外周。换言之,第一功能件21沿垂直于显示元件100的显示平面的方向与第二区域102和像素单元12的外周区域都对应设置,从而,经像素单元12的光线、以及经第二区域102的光线都可以被第一功能件21转换成第二类偏振光。
在实际设置中,第一功能件21可采用涂覆的方式涂覆在第二区域的外周,以完全覆盖驱动线路。同样地,第一功能件21可采用涂覆的方式涂覆在像素单元12的外周区域(例如直接涂覆在像素单元12的外边缘),确保第一功能件21能够完全覆盖该像素单元12的外边缘,从而可以避免经像素单元12的边缘的光线直接经第一区域101的未设置像素单元12的位置透射。
可以理解的,第一功能件21采用双折射材料的相位转换元件,从而能够对经像素单元12的光线以及经第二区域102的光线进行相位转换,从而使得经像素单元12的光线、经第二区域102的光线与经第一区域101的未设置像素单元12的位置的光线的相位不同,从而能够利用第二功能件22对这些光线分别进行透射和阻挡。
如图8所示,图8是本申请实施例公开的第一功能件21为纳米结构时的结构示意图。另一种可选地实施方式中,当第一功能件21采用三维纳米结构,例如metasurface(具有三维纳米结构的超颖表面)时,该第一功能件21可包括第一功能部211和第二功能部212,第一功能部211可对应第一区域101设置,第二功能部212可对应第二区域102设置,这样,第一功能部211可用于透射经第一区域101的光线,第二功能部212可用于对经第二区域102以及经该像素单元12的光线进行转换。具体设置中,对应第一区域101的位置,第一功能部211可至少覆盖该第一区域101,即第一功能部211可采用0相位的纳米天线。而对应第二区域102、像素单元12的外周区域,第二功能部212可至少覆盖该第二区域102、像素单元12的外周区域,该第二功能部212可根据想要转换的相位设置,例如,第二功能部212可采用具有1π/4的V形纳米天线,或者,第二功能部212可采用具有1π/2的L形纳米天线等。
如图8所示,图中仅以对应第一区域101的未设置像素单元12的位置设置具有0相位的第一功能部211和对应第二区域102、像素单元12的所在区域设置的具有1π/4的第二功能部212为例。当然,图中所示的排列方式仅为便于说明和理解,不限定本实施例的范围,例如,第一功能部211、第二功能部212的摆放方式可以调整,如第一功能部211还可朝向右倾斜,第二功能部212的V形开口可朝向左侧等。此外,该第一功能部211、第二功能部212的排列数量可根据对应的区域大小设置,图中仅作为示例,不限定其实际的设置数量。可以理解的是,图8中只示出第一功能件21的第一功能部211、第二功能部212的大致结构,并未示出其对应第一区域101、第二区域102的设置方式,对于第一功能部211、第二功能部212对应第一区域101、第二区域102的设置方式,可参见前述相关说明。
另一些可选地实施例中,该第一功能件21还可用于对经第一区域101的光线进行转 换,第二功能件22用于透射经第一区域101转换后的光线并阻挡经第二区域102的光线。这样,未设置第一功能件21的其他区域,例如经第二区域102的光线可透射至第二功能件22,并通过第二功能件22实现阻挡。
一种可选地实施方式中,同样以第一偏振元件30用于透射第一类偏振光,同时第一功能件21采用双折射材料的相位转换元件为例进行说明。则在设置时,第一功能件21可对应第一区域101设置,从而可对经第一区域101的光线进行相位转换。
请参见图9所示,图9是本实施例公开的第一功能件为双折射材料的再一种设置示意图。进一步地,考虑到由于第一区域101还用于设置像素单元12,因此,在对应第一区域101设置第一功能件21时,应考虑避开第一区域101中的像素单元12设置,例如,在设置时,第一功能件21可涂覆在第一区域101内部但至像素单元12的外边缘应具有间距(如图9所示),即,第一功能件21未覆盖至像素单元12的外边缘,从而经像素单元12的光线可以通过第一区域101的未涂覆该第一功能件21的位置透射至第二功能件22,同样地,经第二区域102的光线可透射至第二功能件22。这样,使得经第一区域101的未设置像素单元12的光线被转换成第二类偏振光,其偏振化方向与经第二区域102的光线以及经像素单元12的外边缘的光线为第一类偏振光的偏振化方向不同,从而第二功能件22能够透射经第一区域101的未设置像素单元12的光线,同时阻挡经第二区域102的光线以及经像素单元12的外边缘的光线。
再次参见图8,另一种可选地实施方式中,同样以第一偏振元件30用于透射第一类偏振光为例。则,当第一功能件21采用三维纳米结构,例如metasurface(具有三维纳米结构的超颖表面)时,第一功能部211可用于对经第一区域101的光线进行相位转换,使其由第一类偏振光转换成第二类偏振光,第二功能部212可用于透射经第二区域102以及经该像素单元12的第一类偏振光。具体设置中,对应第一区域101的位置,第一功能部211可至少覆盖该第一区域101的未设置像素单元12的位置,即第一功能部211可采用具有1π/4的V形纳米天线,或者,可采用具有1π/2的L形纳米天线等。而对应第二区域102、像素单元12的区域,第一功能部211可至少覆盖该第二区域102、像素单元12的所在区域,该第二功能部212可采用具有0相位的纳米天线。
如图8所示,图中仅以对应第一区域101的未设置像素单元12的位置设置具有1π/4相位的第一功能部211和对应第二区域102、像素单元12的所在区域设置的具有0相位的第二功能部212为例。当然,图中所示的排列方式仅为了便于说明和理解,不限定本实施例的范围,例如,第一功能部211、第二功能部212的摆放方式可以调整,如第二功能部212还可朝向右倾斜,第一功能部211的V形开口可朝向左侧等。此外,该第一功能部211、第二功能部212的排列数量可根据对应的区域大小设置,图中仅作为示例,不限定其实际的设置数量。可以理解的是,图8中只示出第一功能件21的第一功能部211、第二功能部212的大致结构,并未示出其对应第一区域101、第二区域102的设置方式,对于第一功能部211、第二功能部212对应第一区域101、第二区域102的设置方式,可参见前述相关说明。
一些实施例中,第二功能件22在显示功能层10上的投影可覆盖该第一区域101和第二区域102,从而可对经第一区域101的光线进行透射,同时对经第二区域102、经像 素单元12的光线进行阻挡。具体地,该第二功能件22可为第二偏振元件,第二偏振元件与第一偏振元件30可相同或不同,例如,第一偏振元件30、第二偏振元件可同为圆偏振片或线偏振片,此时,第一偏振元件和第二偏振元件可用于透射同一类偏振光,例如均可用于透射第一类偏振光,或者均可用于透射第二类偏振光。当然,在其他实施例中,第一偏振元件30和第二偏振元件也可不同,例如,第一偏振元件30可为线偏振片或圆偏振片中的一种,而第二偏振元件可为圆偏振片或线偏振片的另一种,此时,第一偏振元件和第二偏振元件可用于透射不同类偏振光,例如第一偏振元件可用于透射第一类偏振光,而第二偏振元件可用于透射第二类偏振光。
关于第一偏振元件30、显示功能层10、第一功能件21、第二功能件22如何对经第一区域101的光线进行透射、对经第二区域102、像素单元12的光线进行阻挡的方式,以下将结合附图进行说明。
可以理解的是,以下的说明主要以第一功能件21采用三维纳米结构,例如metasurface(具有三维纳米结构的超颖表面)为例进行说明,即第一功能件21可包括第一功能部211和第二功能部212,第一功能部211可对应第一区域101设置,第二功能部212可对应第二区域102设置。
此外,第一偏振元件30、显示功能层10、第一功能件21以及第二功能件22沿着显示屏往感光模组的方向依次设置。
一种可选地实施例中,如图10所示,图10是本申请实施例公开的显示元件100的一种结构原理图。在本实施例中,第一偏振元件30和第二功能件22为用于透射同一种偏振光的偏振片,例如第一偏振元件30和第二功能件22均可用于透射第一类偏振光或者是第二类偏振光。具体地,自然光可以包括第一类偏振光和第二类偏振光,第二类偏振光是偏振化方向不同于第一类偏振光的光。第一偏振元件30用于透射第一类偏振光,并能够阻挡第二类偏振光通过,从而使得只有第一类偏振光通过第一偏振元件30,经过该第一偏振元件30的第一类偏振光通过显示功能层10的第一区域101(如图10中的相邻两个第二区域102之间限定的空白区域所示)和第二区域102后产生不同角度子波,其中,透过第一区域101的光线为第一光线,经过第一区域101的器件(例如像素单元12)、材料或其他构件或折射的光线为第二光线,透过第二区域102或经过驱动线路反射或折射的光线同样为第二光线(图10中未示出经第一区域101的光线和经第二区域102的光线)。可以理解地,第一光线和第二光线均为第一类偏振光分别经过第一区域101和第二区域102后形成的具有不同角度的子波。此处不限制该第一光线和第二光线为单一光束,也可以是沿多个方向传播的多个光束的集合。
在本实施例中,第一功能件21的第一功能部211能够直接透射光线且第一功能部211对应于第一区域101(主要指第一区域101未设置像素单元12的位置)设置;从而,经第一区域101的第一光线L10能够大部分地或全部地传输至第一功能部211,由于第一功能部211能够直接透射光线,故经过第一功能部211的光线依然为第一光线L10,即经过第一功能部211的光线依然为第一类偏振光。而第一功能件21的第二功能部212能够转换光线的偏振化方向且第二功能部212对应于第二区域102以及像素单元12设置;从而,经过第二区域102、像素单元12的第二光线能够大部分地或全部地传输至第二功能部212, 故经过第二功能部212的第二光线被转换偏振化方向成第三光线L30,即经过第二功能部212的第三光线L30为不同于第一类偏振光的第二类偏振光。然后该第一光线L10和第三光线L30均传输至第二功能件22(即第二偏振元件),由于能够透过第二功能件22与第一偏振元件30的光线的偏振化方向相同,即,只有第一类偏振光能够通过,故仅有第一光线L10能够透过第二功能件22,也即,透过第二区域102或经过驱动线路11反射或折射的第三光线L30、经像素单元12反射或折射的第三光线L30绝大部分地或完全地被第二功能件22阻挡,从而大幅减小了驱动线路11、像素单元12带来的衍射影响。当感光模组为摄像头时,能够有效提高摄像头的成像效果,并且尽可能地保障了光线透过显示屏到达摄像头的光透过率。
可以理解的是,当第一功能件21采用双折射材料时,则对应第一区域101的位置可不设置上述第一功能部211,只在第二区域102以及对应像素单元12的外周区域设置上述的第二功能部212,具体也可参见图11所示。此时,在图11中,在设置第一功能件21时,可将第一功能件21涂覆在显示功能层10上,然后再将对应显示功能层10的第一区域101位置的第一功能部211去除,只保留对应第二区域102和像素单元12的外周区域的第二功能部212。图11中,短粗横线表示该第二功能部212,其对应显示功能层10的第二区域102和像素单元12的外周区域设置。而相邻的两条短粗横线之间的空白区域则表示去除该第一功能部211,换言之,图11示出的方案为仅在对应第二区域102、像素单元12的外周区域设置该第一功能件21的方式。
另一种可选地实施例中,如图12所示,图12是本申请实施例公开的显示元件100的另一种结构原理图。图12中,第一偏振元件30和第二功能件22为用于透射不同偏振光的偏振片,比如第一偏振元件30用于透射第一类偏振光,而第二功能件22则用于透射第二类偏振光。具体地,自然光可以包括第一类偏振光和第二类偏振光,第二类偏振光是偏振化方向不同于第一类偏振光的光。第一偏振元件30用于透射第一类偏振光,并能够阻挡第二类偏振光通过,从而使得只有第一类偏振光通过第一偏振元件30,经过该第一偏振元件30的第一类偏振光通过显示功能层10的第一区域101和第二区域102后产生不同角度子波,其中,透过第一区域101的光线为第一光线,经过第一区域101的器件(例如像素单元12)、材料或其他构件或折射的光线为第二光线,透过第二区域102或经过驱动线路11反射或折射的光线同样为第二光线(图12中未示出经第一区域101的光线和经第二区域102的光线)。可以理解地,第一光线和第二光线均为第一类偏振光分别经过第一区域101和第二区域102后形成的具有不同角度的子波。此处不限制该第一光线和第二光线为单一光束,也可以是沿多个方向传播的多个光束的集合。
在本实施例中,第一功能件21的第一功能部211能够转换光线的偏振化方向且第一功能部211对应于第一区域101(主要指第一区域101未设置像素单元12的位置)设置;从而,经第一区域101的第一光线能够大部分地或全部地被第一功能部211进行偏振化方向转换,使得经第一功能部211的光线由第一光线转换成第三光线L30,即经过第一功能部211的光线经过偏振化方向转换后形成为第二类偏振光。而第一功能件21的第二功能部212能够直接透射光线且第二功能部212对应于第二区域102以及像素单元12设置;从而,经过第二区域102、像素单元12的第二光线L20能够大部分地或全部地传输至第 二功能部212,并且经过第二功能部212的光线依然为第二光线L20,即经过第二功能部212的光线为不同于第二类偏振光的第一类偏振光。然后该第三光线L30和第二光线L20均传输至第二功能件22(即第二偏振元件),由于能够透过第二功能件22与第一偏振元件的光线的偏振化方向不同,即第二功能件22用于透射第二类偏振光,并能够阻挡第一类偏振光通过,故仅有第三光线L30能够透过第二功能件22,也即,透过第二区域102或经过驱动线路11反射或折射的光线、经像素单元12反射或折射的光线绝大部分地或完全地被第二功能件22阻挡,从而大幅减小了驱动线路11、像素单元12带来的衍射影响。当感光模组为摄像头时,能够有效提高摄像头的成像效果,并且尽可能地保障了光线透过显示屏到达摄像头的光透过率。
又一种可选地实施例中,如图13所示,图13是本申请实施例公开的显示元件100的又一种结构原理图。图13中,第一偏振元件30和第二功能件22为用于透射不同偏振光的偏振片。具体地,自然光可以包括第一类偏振光和第二类偏振光,第二类偏振光是偏振化方向不同于第一类偏振光的光。第一偏振元件30用于透射第二类偏振光,并能够阻挡第一类偏振光通过,从而使得只有第二类偏振光通过第一偏振元件30,经过该第一偏振元件30的第二类偏振光通过显示功能层10的第一区域101和第二区域102后产生不同角度子波,其中,透过第一区域101的光线为第一光线,经过第一区域101的器件(例如像素单元12)、材料或其他构件或折射的光线为第二光线,透过第二区域102或经过驱动线路11反射或折射的光线同样为第二光线(图13中未示出经第一区域101的光线和经第二区域102的光线)。可以理解地,第一光线和第二光线均为第二类偏振光分别经过第一区域101和第二区域102后形成的具有不同角度的子波。此处不限制该第一光线和第二光线为单一光束,也可以是沿多个方向传播的多个光束的集合。
在本实施例中,第一功能件21的第一功能部211能够转换光线的偏振化方向且第一功能部211对应于第一区域101(主要指第一区域101未设置像素单元12的位置)设置;从而,经第一区域101的第一光线能够大部分地或全部地经第一功能部211进行偏振化方向转换,从而利用第一功能部211将第一光线进行偏振化方向转换成第三光线L30,即经过第一功能部211的光线经过相位转换后形成为第一类偏振光。而第一功能件21的第二功能部212能够直接透射光线且第二功能部212对应于第二区域102以及像素单元12设置;从而,经过第二区域102、像素单元12的第二光线能够大部分地或全部地传播至第二功能部212,由于第二功能部212能够直接透射光线,故经过第二功能部212的光线依然为第二光线L20,即经过第二功能部212的光线为不同于第一类偏振光的第二类偏振光。然后该第三光线L30和第二光线L20均传播至第二功能件22(即第二偏振元件),由于能够透过第二功能件22与第一偏振元件的光线的偏振化方向不同,即第二功能件22用于透射第一类偏振光,并能够阻挡第二类偏振光通过,故仅有第三光线L30能够透过第二功能件22,也即,透过第二区域102或经过驱动线路11反射或折射的光线、经像素单元12反射或折射的光线绝大部分地或完全地被第二功能件22阻挡,即,第二光线L20被第二功能件22阻挡,从而大幅减小了驱动线路11、像素单元12带来的衍射影响。当感光模组为摄像头时,能够有效提高摄像头的成像效果,并且尽可能地保障了光线透过显示屏到达摄像头的光透过率。
在一种可选地实施例中,如图14所示,图14是本申请实施例公开的显示元件100的再一种结构原理图。图14中,在本实施例中,第一偏振元件30和第二功能件22为用于透射同一种偏振光的偏振片。具体地,自然光可以包括第一类偏振光和第二类偏振光,第二类偏振光是偏振化方向不同于第一类偏振光的光。第一偏振元件30用于透射第二类偏振光,并能够阻挡第一类偏振光通过,从而使得只有第二类偏振光通过第一偏振元件30,经过该第一偏振元件30的第二类偏振光通过显示功能层10的第一区域101和第二区域102后产生不同角度子波,其中,透过第一区域101的光线为第一光线,经过第一区域101的器件(例如像素单元12)、材料或其他构件或折射的光线为第二光线,透过第二区域102或经过驱动线路11反射或折射的光线同样为第二光线(图14中未示出经第一区域101的光线和经第二区域102的光线)。可以理解地,第一光线和第二光线均为第二类偏振光分别经过第一区域101和第二区域102后形成的具有不同角度的子波。此处不限制该第一光线和第二光线为单一光束,也可以是沿多个方向传播的多个光束的集合。
在本实施例中,第一功能件21的第一功能部211能够直接透射光线且第一功能部211对应于第一区域101(主要指第一区域101未设置像素单元12的位置)设置;从而,经第一区域101的第一光线L10能够大部分地或全部地传播至第一功能部211,由于第一功能部211能够直接透射光线,故经过第一功能部211的光线依然为第一光线L10,即经过第一功能部211的光线依然为第二类偏振光。而第一功能件21的第二功能部212能够转换光线的偏振化角度且第二功能部212对应于第二区域102以及像素单元12设置;从而,经过第二区域102、像素单元12的第二光线能够大部分地或全部地传播至第二功能部212,由于第二功能部212能够转换光线的偏振化方向,故经过第二功能部212的第二光线被转换成第三光线L30,即经过第二功能部212转换后的光线为不同于第二类偏振光的第一类偏振光。然后该第一光线L10和第三光线L30均传播至第二功能件22(即第二偏振元件),由于能够透过第二功能件22与第一偏振元件的光线的偏振化方向相同,即第二功能件22用于透射第一类偏振光,故仅有第一光线L10能够透过第二功能件22,也即,透过第二区域102或经过驱动线路11反射或折射的第三光线L30、经像素单元12反射或折射的第三光线L30绝大部分地或完全地被第二功能件22阻挡,从而大幅减小了驱动线路、像素单元12带来的衍射影响。当感光模组为摄像头时,能够有效提高摄像头的成像效果,并且尽可能地保障了光线透过显示屏到达摄像头的光透过率。
值得说明的是,上述图10、图12、图13和图14中,对于第一功能件21的第一功能部211和第二功能部212的示意图,只是为了便于说明该第一功能部211和第二功能部212分别对应第一区域101、第二区域102的位置设置,同时只是为了说明其能够实现的功能,例如用于转换光线的相位或者是透射光线,不限定本实施例的范围。
例如,在图10中,第一功能部211采用三条短竖线标识表示第一功能部211能够直接透射光线,并不对光线的相位进行转换,而第二功能部212采用短粗横线表示第二功能部212能够对光线的相位进行转换而不是直接透射光线。
同理,在图12中,第一功能部211采用短粗横线标识可表示其能够对光线的相位进行转换而不是直接透射光线,而第二功能部212采用三条短竖线标识可表示其能够直接透射光线而不对光线的相位进行转换。
同理,在图13和图14中,第一功能部211、第二功能部212的情况分别与图10和图12的一样,此处不再赘述。
换言之,上述对第一功能部211、第二功能部212的标识只是为了便于说明和理解本实施例做的描述,并不限定本实施例的范围。例如,也可采用如上述图11的方式,采用短粗横线表示第二功能部212能够对光线的偏振化方向进行转换而不是直接透射光线,同时采用相邻的两条短粗横线之间为空白区域表示第一功能部211,该第一功能部211为空白可表示其可直接透射光线,而不对光线的偏振化方向进行转换。或者,反过来,采用短粗横线表示第一功能部211能够对光线的偏振化方向进行转换而不是直接透射光线,同时采用相邻的两条短粗横线之间为空白区域表示第二功能部212,该第二功能部212为空白表示其可直接透射光线,而不对光线的偏振化方向进行转换。
另外,在图10至图14中,关于第一类偏振光、第二类偏振光采用直线、或者是弧线表示,并不代表其对应为线偏振光或者是圆偏振光,只是为了便于进行区分,不限定本实施例的第一类偏振光、第二类偏振光的范围。
由此可知,采用本申请实施例的显示元件100,通过光控制元件20(即第一功能件21和第二功能件22)的设置,能够有效阻挡经第二区域102、像素单元12的光线,从而在确保摄像头能够接收到光线的同时,还可减少衍射情况的发生,进而有利于提高当感光模组为摄像头时,摄像头的成像清晰度,提高图像拍摄质量。
请参阅图15,本申请实施例第二方面公开了一种终端1000,该终端1000包括感光模组(以摄像头1001为例)以及如上述所述的显示面板或显示屏,该感光模组可以设置于显示面板或显示屏的非显示侧。由于该显示面板或显示屏均包括了上述实施例所述的显示元件100,因此,该该摄像头1001可设置在光控制元件20远离显示功能层10的一侧,即,摄像头1001可朝向该光控制元件20设置。当然,在其他实施例中,感光模组也可为指纹识别模块。
可以理解的是,该终端1000可包括但不局限于手机、平板电脑、智能手表等终端。以手机为例,该摄像头1001可为屏下摄像头1001,即,安装在手机的显示屏的有效显示区的摄像头,从而减少摄像头1001对手机屏幕的占用体积,提高屏占比。另外,采用屏下摄像头1001的设计,通过上述实施例所述的显示元件100的设置,能够减少显示元件100的驱动线路11以及像素单元12产生的光导致的衍射效应,从而提高摄像头1001的成像清晰度和成像质量。
值得说明的是,上述终端1000除了前面所述的显示元件100、摄像头1001之外,还包括终端1000所必备的其他结构或部件,例如还可包括壳体、设置在壳体中的触控模组、电池、音频模组等必备的结构或部件。
此外,可以理解,由于摄像头1001只对应显示元件100的部分区域,因此,为改善因经像素单元12、驱动线路11的光线导致的衍射效应,一般在摄像头1001对应的显示元件100的部分区域设置光控制元件20、或光控制元件20和第一偏振元件30即可,然而,可以理解,在其他变更实施例中,也可以在显示元件100的全部区域均设置有光控制元件20、或光控制元件20和第一偏振元件30。另外,当显示元件100为液晶显示面板时,在一些实施例中,第一偏振元件30及第二功能件22可以与液晶显示面板为实现显示功能 从而在上下表面分别设置的偏振元件共用,只需要进一步设置第一功能件21即可。
以上对本发明实施例公开的显示元件、显示面板、显示屏及终端进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的显示元件、显示面板、显示屏及终端及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种显示元件,其特征在于,所述显示元件包括
    显示功能层,所述显示功能层包括第一区域和用于设置驱动线路的第二区域;以及
    光控制元件,所述光控制元件设于所述显示功能层的一侧,所述光控制元件用于透射经所述第一区域的光线并阻挡经所述第二区域的光线。
  2. 如权利要求1所述的显示元件,其特征在于,所述显示功能层还包括设置于所述第一区域的像素单元,所述光控制元件还用于阻挡经所述像素单元的光线。
  3. 如权利要求2所述的显示元件,其特征在于,所述显示元件还包括用于透射第一类偏振光的第一偏振元件,所述第一偏振元件与所述光控制元件设置在所述显示功能层相背的两侧。
  4. 如权利要求3所述的显示元件,其特征在于,所述第一偏振元件在所述显示功能层上的投影覆盖所述第一区域和所述第二区域。
  5. 如权利要求3所述的显示元件,其特征在于,所述光控制元件包括第一功能件和第二功能件,所述第一功能件位于所述第二功能件与所述显示功能层之间,所述第一功能件用于将经所述第二区域的光线转换为第二类偏振光,所述第二功能件用于阻挡所述第二类偏振光并透射所述第一类偏振光;
    其中,所述第一类偏振光的偏振化方向不同于所述第二类偏振光的偏振化方向。
  6. 如权利要求5所述的显示元件,其特征在于,所述第一功能件包括第一功能部,所述第一功能部与所述第二区域对应设置,所述第一功能部用于将经所述第二区域的光线转换成所述第二类偏振光。
  7. 如权利要求5所述的显示元件,其特征在于,所述第一功能件包括第一功能部,所述第一功能部沿垂直于所述显示元件的显示平面的方向与所述第二区域及所述像素单元的外周区域对应设置,所述第一功能部用于将经所述第二区域及所述像素单元的光线转换成所述第二类偏振光。
  8. 如权利要求6或7所述的显示元件,其特征在于,所述第一功能件还包括第二功能部,所述第二功能部与所述第一区域对应设置,所述第二功能部用于透射经所述第一区域的光线。
  9. 如权利要求3所述的显示元件,其特征在于,所述光控制元件包括第一功能件和第二功能件,所述第一功能件位于所述第二功能件与所述显示功能层之间,所述第一功能件用于将经所述第一区域的光线转换为第二类偏振光,所述第二功能件用于阻挡所述第一类偏振光并透射所述第二类偏振光;
    其中,所述第一类偏振光的偏振化方向不同于所述第二类偏振光的偏振化方向。
  10. 如权利要求9所述的显示元件,其特征在于,所述第一功能件包括第一功能部,所述第一功能部与所述第一区域对应设置,所述第一功能部用于将经所述第一区域的光线转换成所述第二类偏振光。
  11. 如权利要求10所述的显示元件,其特征在于,所述第一功能件还包括第二功能部,所述第二功能部与所述第二区域对应设置,并用于透射经所述第二区域的光线。
  12. 如权利要求5-7任一项或9-11任一项所述的显示元件,其特征在于,所述第一功能件为相位转换元件。
  13. 如权利要求12所述的显示元件,其特征在于,所述第一功能件包括双折射材料或三维 纳米结构。
  14. 如权利要求13所述的显示元件,其特征在于,所述第一功能件包括双折射材料时,所述第一功能件涂覆于所述第一区域或所述第二区域的外周。
  15. 如权利要求5-7任一项或9-11任一项所述的显示元件,其特征在于,所述第二功能件为第二偏振元件。
  16. 如权利要求15所述的显示元件,其特征在于,所述第二偏振元件、所述第一偏振元件均为圆偏振片或线偏振片。
  17. 如权利要求5-7任一项或9-11任一项所述的显示元件,其特征在于,所述第二功能件在所述显示功能层上的投影覆盖所述第一区域和所述第二区域。
  18. 一种显示面板,其特征在于,所述显示面板包括如权利要求1-17任一项所述的显示元件。
  19. 一种显示屏,其特征在于,所述显示屏包括显示面板以及如权利要求1-17任一项所述的显示元件,所述显示元件设置于所述显示面板。
  20. 一种终端,其特征在于,所述终端包括感光模组以及如权利要求18所述的显示面板,所述感光模组设置于所述显示面板的非显示侧,或者,所述终端包括感光模组以及如权利要求19所述的显示屏,所述感光模组设置于所述显示屏的非显示侧。
PCT/CN2021/127161 2020-12-04 2021-10-28 显示元件、显示面板、显示屏及终端 WO2022116756A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011403288.9 2020-12-04
CN202011403288.9A CN112382211A (zh) 2020-12-04 2020-12-04 显示元件及具有该显示元件的终端
CN202022911501.9 2020-12-04
CN202022911501.9U CN214336187U (zh) 2020-12-04 2020-12-04 显示元件及具有该显示元件的终端

Publications (1)

Publication Number Publication Date
WO2022116756A1 true WO2022116756A1 (zh) 2022-06-09

Family

ID=81853812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127161 WO2022116756A1 (zh) 2020-12-04 2021-10-28 显示元件、显示面板、显示屏及终端

Country Status (1)

Country Link
WO (1) WO2022116756A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287462A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp 電気光学装置および電子機器
CN208622778U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110133877A (zh) * 2019-06-28 2019-08-16 上海天马微电子有限公司 一种显示面板及显示装置
CN110850628A (zh) * 2019-10-24 2020-02-28 武汉华星光电技术有限公司 一种液晶显示面板和液晶显示装置
CN111292628A (zh) * 2020-02-14 2020-06-16 维沃移动通信有限公司 一种显示屏幕及电子设备
CN111290153A (zh) * 2020-04-14 2020-06-16 昆山国显光电有限公司 显示屏及显示装置
CN111308767A (zh) * 2019-11-27 2020-06-19 武汉华星光电技术有限公司 液晶显示模组
CN112382211A (zh) * 2020-12-04 2021-02-19 Oppo广东移动通信有限公司 显示元件及具有该显示元件的终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287462A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp 電気光学装置および電子機器
CN208622778U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110133877A (zh) * 2019-06-28 2019-08-16 上海天马微电子有限公司 一种显示面板及显示装置
CN110850628A (zh) * 2019-10-24 2020-02-28 武汉华星光电技术有限公司 一种液晶显示面板和液晶显示装置
CN111308767A (zh) * 2019-11-27 2020-06-19 武汉华星光电技术有限公司 液晶显示模组
CN111292628A (zh) * 2020-02-14 2020-06-16 维沃移动通信有限公司 一种显示屏幕及电子设备
CN111290153A (zh) * 2020-04-14 2020-06-16 昆山国显光电有限公司 显示屏及显示装置
CN112382211A (zh) * 2020-12-04 2021-02-19 Oppo广东移动通信有限公司 显示元件及具有该显示元件的终端

Similar Documents

Publication Publication Date Title
TWI719738B (zh) 顯示面板及顯示裝置
CN112382211A (zh) 显示元件及具有该显示元件的终端
US11348977B2 (en) Display panel and electronic device
CN113391478B (zh) 一种显示面板及显示装置
CN111599270B (zh) 显示模组及电子设备
US11209691B2 (en) Electro-optical device and electronic apparatus
US20230176413A1 (en) Display apparatus
EP3869580A1 (en) Display device
JP5016850B2 (ja) 液晶表示装置及び液晶プロジェクター装置
CN111564110B (zh) 一种显示面板和显示装置
WO2022116756A1 (zh) 显示元件、显示面板、显示屏及终端
US11360343B2 (en) Liquid crystal display module
CN214336187U (zh) 显示元件及具有该显示元件的终端
US20210311357A1 (en) Display device and electronic device
JP6044700B2 (ja) 電気光学装置、及び電子機器
US20230199094A1 (en) Display panel and electronic device
KR20180077940A (ko) 보더리스타입 표시장치
JP5849605B2 (ja) 電気光学装置、及び電子機器
CN112838112A (zh) 显示面板及显示装置
WO2022000801A1 (zh) 显示装置
CN110806781A (zh) 电子设备
US20230140596A1 (en) Display panel and display device
CN218938707U (zh) 一种宽窄视角可切换的显示面板和显示装置
US10948762B2 (en) Liquid crystal apparatus and electronic apparatus
CN210155493U (zh) 一种3d打印用像素结构及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899790

Country of ref document: EP

Kind code of ref document: A1