WO2022116319A1 - 量子点光转换片及其制作方法、量子点显示装置 - Google Patents

量子点光转换片及其制作方法、量子点显示装置 Download PDF

Info

Publication number
WO2022116319A1
WO2022116319A1 PCT/CN2020/139421 CN2020139421W WO2022116319A1 WO 2022116319 A1 WO2022116319 A1 WO 2022116319A1 CN 2020139421 W CN2020139421 W CN 2020139421W WO 2022116319 A1 WO2022116319 A1 WO 2022116319A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
layer
conductive
matrix
Prior art date
Application number
PCT/CN2020/139421
Other languages
English (en)
French (fr)
Inventor
赵金阳
陈黎暄
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2022116319A1 publication Critical patent/WO2022116319A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present application relates to the field of display technology, and in particular, to a quantum dot light conversion sheet, a method for making the quantum dot light conversion sheet, and a quantum dot display device.
  • Quantum dot display technology has been comprehensively upgraded in various dimensions such as color gamut coverage, color control accuracy, red, green and blue color purity. It is regarded as the commanding height of global display technology and is also regarded as a global influence. Show the technological revolution. Quantum dot display technology can revolutionaryly realize full color gamut display, the most realistic image color reproduction.
  • Quantum Dots are extremely tiny inorganic nanocrystals that are invisible to the naked eye. When stimulated by light or electricity, quantum dots will emit colored light. The color of the light is determined by the material and size of the quantum dots. Generally, quantum dots with small particles are more likely to absorb long-wave light, and quantum dots with large particles are easier to absorb. Absorbs shortwave light. After absorbing short-wave light, such as blue light, quantum dots will be excited to emit long-wavelength light color. This feature enables quantum dots to change the color of light emitted by the light source. Therefore, in display devices, quantum dots are often used as light conversion materials.
  • the quantum dots in the display device are generally patterned by inkjet printing technology or photolithography technology, but both of these two patterning technologies have obvious defects.
  • the inkjet printing technology has very high requirements for the quantum dot ink, and it is easy to block the nozzle during the actual spraying process, which seriously affects the continuity of production; and the exposure, development and other operations used in the lithography technology will seriously affect the quantum dots.
  • the stability of the dots leads to display quality problems in the quantum dot display device.
  • the existing quantum dot patterning methods have problems of high production cost, low production efficiency and poor patterning quality.
  • the application provides a quantum dot light conversion sheet, including:
  • a conductive layer disposed on the base substrate
  • the quantum dot layer is arranged on the conductive layer, and the quantum dot layer has the characteristic of emitting light when irradiated by light;
  • a passivation layer is disposed on the base substrate and covers the conductive layer and the quantum dot layer.
  • the conductive layer includes a first conductive matrix and a second conductive matrix
  • the quantum dot layer includes a negatively charged quantum dot layer and a positively charged quantum dot layer
  • the passivation layer includes a first passivation layer and a second passivation layer.
  • the negatively charged quantum dot layer is disposed on the first conductive matrix, and the first passivation layer covers the first conductive matrix and the negatively charged quantum dot layer ;
  • the positively charged quantum dot layer is disposed on the second conductive matrix, and the second passivation layer covers the second conductive matrix and the positively charged quantum dot layer.
  • the negatively charged quantum dot layer includes a red light quantum dot layer for converting blue light into red light; the positively charged quantum dot layer includes a green light quantum dot layer for converting blue light into red light. Blue light turns into green light.
  • the quantum dot light conversion sheet further includes a blank matrix, and the blank matrix is disposed between the second conductive matrix and the first conductive matrix.
  • the quantum dot layer includes a semiconductor nanocrystalline material.
  • the thickness of the quantum dot layer is between 10 nanometers and 10 micrometers.
  • the present application also provides a quantum dot display device, comprising:
  • a light-emitting module including a plurality of light-emitting units
  • the quantum dot light conversion sheet is arranged on the light-emitting surface of the light-emitting module, and the quantum dot light conversion sheet includes:
  • a base substrate disposed on the light-emitting surface of the light-emitting module
  • the vertical projection of the conductive layer on the light-emitting module corresponds to the light-emitting unit
  • the quantum dot layer has the characteristic of emitting light when irradiated by the light emitted by the light emitting unit;
  • a passivation layer disposed on the quantum dot layer.
  • the light-emitting unit includes a first light-emitting unit, a second light-emitting unit and a third light-emitting unit
  • the conductive layer includes a first conductive matrix and a second conductive matrix
  • the quantum dot layer A negative charge quantum dot layer and a positive charge quantum dot layer are included
  • the passivation layer includes a first passivation layer and a second passivation layer.
  • the vertical projection of the first conductive matrix on the light-emitting module corresponds to the first light-emitting unit, and the negatively charged quantum dot layer is disposed on the first conductive matrix , the first passivation layer covers the first conductive matrix and the negatively charged quantum dot layer;
  • the vertical projection of the second conductive matrix on the light-emitting module corresponds to the second light-emitting unit, the positive quantum dot layer is disposed on the second conductive matrix, and the second passivation layer covers the second conductive matrix and the positively charged quantum dot layer.
  • the quantum dot light conversion sheet further includes a blank matrix, the blank matrix is disposed between the second conductive matrix and the first conductive matrix, and the blank matrix is located between the second conductive matrix and the first conductive matrix.
  • the vertical projection on the light-emitting module corresponds to the third light-emitting unit.
  • the light emitting unit includes a blue light emitter.
  • the negatively charged quantum dot layer includes a red light quantum dot layer for converting the blue light emitted by the blue light emitter into red light; the positively charged quantum dot layer includes green light quantum dots The dot layer is used for converting the blue light emitted by the blue light emitter into green light; the blank matrix is used for directly transmitting the blue light emitted by the blue light emitter.
  • the present application also provides a method for manufacturing a quantum dot light conversion sheet, the quantum dot light conversion sheet is applied in a quantum dot display device, and the quantum dot display device includes a light emitting module having a plurality of light emitting units, and the quantum dot
  • the manufacturing method of the light conversion sheet includes the following steps:
  • a conductive layer with the same distribution characteristics as the light-emitting units is fabricated on a base substrate;
  • a passivation layer covering the quantum dot layer and the conductive layer is fabricated.
  • the light-emitting unit includes a first light-emitting unit, a second light-emitting unit and a third light-emitting unit;
  • the distribution characteristics of the light-emitting units on the light-emitting module , the step of fabricating a conductive layer with the same distribution characteristics as the light-emitting unit on a base substrate includes:
  • a second conductive matrix having the same distribution characteristics as the second light emitting unit is fabricated on the base substrate.
  • a conductive layer having the same distribution characteristics as the light-emitting units is fabricated on a substrate. steps, including:
  • a blank matrix having the same distribution characteristics as the third light-emitting unit is arranged on the base substrate.
  • the step of coating the quantum dot dispersion liquid containing quantum dots on the base substrate and covering the conductive layer includes:
  • the quantum dot dispersion liquid covers the first conductive matrix and the second conductive matrix
  • the electronegative quantum dots are deposited on the first conductive matrix under the action of an electric field.
  • the step of removing the liquid component in the quantum dot dispersion to obtain a quantum dot layer cured on the conductive layer includes:
  • the step of making a passivation layer covering the quantum dot layer and the conductive layer includes:
  • a first passivation layer covering the negatively charged quantum dot layer and the first conductive matrix is fabricated.
  • the step of coating the quantum dot dispersion liquid containing quantum dots on the base substrate and covering the conductive layer includes:
  • the quantum dot dispersion covers the second conductive matrix
  • the positively charged quantum dots are deposited on the second conductive matrix under the action of an electric field.
  • the step of removing the liquid component in the quantum dot dispersion to obtain a quantum dot layer cured on the conductive layer includes:
  • the step of making a passivation layer covering the quantum dot layer and the conductive layer includes:
  • a second passivation layer covering the positively charged quantum dot layer and the second conductive matrix is fabricated.
  • the quantum dot light conversion sheet and the manufacturing method thereof, and the quantum dot display device provided by the present application are provided with a conductive layer, and the quantum dots are induced to undergo patterned deposition by the electric field action generated by the conduction of the conductive layer, which simplifies the quantum dots compared with the prior art.
  • the dot layer patterning process improves the production efficiency and improves the stability of the quantum dots in the quantum dot layer.
  • FIG. 1 is a schematic structural diagram of a quantum dot light conversion sheet provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a quantum dot display device provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for manufacturing a quantum dot light conversion sheet provided by an embodiment of the present application
  • Fig. 4 is the structural schematic diagram after the conductive layer is fabricated on the base substrate
  • FIG. 5 is a schematic structural diagram after the negatively charged quantum dot layer is fabricated on the first conductive matrix
  • FIG. 6 is a schematic structural diagram after the first passivation layer is fabricated
  • FIG. 7 is a schematic structural diagram after the positively charged quantum dot layer is fabricated on the second conductive matrix
  • FIG. 8 is a schematic structural diagram of a quantum dot light conversion sheet manufactured by using the manufacturing method of a quantum dot light conversion sheet provided by an embodiment of the present application.
  • An embodiment of the present application provides a quantum dot light conversion sheet, which includes a conductive layer disposed between a base substrate and a quantum layer, and the configuration of the conductive layer causes the quantum dot layer to form a patterned distribution based on the conductive layer, While simplifying the manufacturing process, the performance of the quantum dots in the quantum dot layer is guaranteed to be stable.
  • FIG. 1 it is a schematic structural diagram of a quantum dot light conversion sheet 10 provided by an embodiment of the present application.
  • the quantum dot light conversion sheet 10 includes a base substrate 11, a conductive layer 12 disposed on the base substrate 11, a quantum dot layer 13 disposed on the conductive layer 12, and a layer covering the conductive layer 12 and the conductive layer 12.
  • the passivation layer 14 of the quantum dot layer 13 is shown in FIG. 1 .
  • the base substrate 11 is a transparent substrate, such as a flexible substrate such as polyimide, or a rigid substrate such as glass;
  • the conductive layer 12 can be a transparent metal conductive layer, or a transparent non-metallic substrate Conductive layer;
  • the quantum dot layer 13 is a quantum dot material aggregation layer, and the quantum dot layer 13 has the characteristic of emitting light when irradiated by light, for example, emitting red light or green light when irradiated by blue light;
  • the electrical insulating layer can be made of inorganic or organic insulating materials such as silicon nitride, silicon oxide, silicon oxynitride, and organosiloxane polymers.
  • the conductive layer 12 disposed on the base substrate 11 can be connected to an external power source to generate an electric field, and the electric field can promote the quantum dot layer 13
  • the conductive layer 12 is a reference distribution, and under the condition that the conductive layer 12 has a specific pattern, the quantum dot layer 13 also forms a patterned distribution; compared with the prior art, the patterning process of the quantum dot layer is simplified, and the The quantum dots in the quantum dot layer are protected from ultraviolet light, high temperature and chemical corrosion, which is beneficial to ensure the stability of the performance of the quantum dot layer.
  • the thickness of the quantum dot layer 13 is between 10 nanometers and 10 micrometers, and the quantum dot layer 13 is made of a semiconductor nanocrystalline material, and the semiconductor nanocrystalline material can be a III-V group compound or Group II-VI compounds or perovskite or CuInZnS and other multi-component materials.
  • the conductive layer 12 includes a first conductive matrix 121 and a second conductive matrix 122
  • the quantum dot layer 13 includes a negatively charged quantum dot layer 131 and a positively charged quantum dot layer 132
  • the passivation layer 14 includes The first passivation layer 141 and the second passivation layer 142 .
  • the electronegative quantum dot layer 131 is disposed on the first conductive matrix 121
  • the first passivation layer 141 covers the first conductive matrix 121 and the electronegative quantum dot layer 131 .
  • the positively charged quantum dot layer 132 is disposed on the second conductive matrix 122
  • the second passivation layer 142 covers the second conductive matrix 122 and the positively charged quantum dot layer 132 .
  • the quantum dot light conversion sheet usually has multiple light color conversion capabilities, so the negatively charged quantum dot layer 131 and the positively charged quantum dot layer 132 are provided in this embodiment; optionally,
  • the negatively charged quantum dot layer 131 can be a red light quantum dot layer, which has the ability to convert blue light into red light;
  • the positively charged quantum dot layer 132 can be a green light quantum dot layer, which has the ability to convert blue light into green light .
  • the negatively charged quantum dot layer 131 is made of a quantum dot material that is negatively charged or polarized under the action of an electric field;
  • the positively charged quantum dot layer 132 is made of a positively charged or It is made of quantum dot materials that are polarized under the action of an electric field to generate positive electricity.
  • the quantum dot layer 13 when the quantum dot layer 13 is fabricated, the first conductive matrix 121 is connected to positive electricity, the second conductive matrix 122 is connected to negative electricity, and the first conductive matrix 121 is connected to the second conductive matrix 121.
  • An electric field is generated between the conductive matrices 122, so that the negatively charged quantum dot layer 131 is formed on the first conductive matrix 121, and the positively charged quantum dot layer 132 is formed on the second conductive matrix 122, thereby
  • the negatively charged quantum dot layer 131 and the positively charged quantum dot layer 132 are respectively patterned and distributed.
  • the patterning process of the quantum dot layer 13 does not need to use ink jet printing and photolithography technology, so the quantum dot light conversion sheet 10 has high production efficiency and quality.
  • a blank matrix 15 is further provided between the second conductive matrix 122 and the first conductive matrix 121, and no conductive material is provided in the blank matrix 15, so no quantum dot layer is formed in this area.
  • the blank matrix 15 can be used as a light-transmitting area.
  • the quantum dot light conversion sheet 10 is used in a display device with blue light as a backlight
  • the negatively charged quantum dot layer 131 converts the blue light into red light.
  • the positively charged quantum dot layer 132 converts blue light into green light
  • the blue light in the blank matrix 15 normally passes through, thereby realizing red, green and blue light emission of the display device.
  • the quantum dot light conversion sheet provided by the embodiment of the present application can easily realize the patterning of the quantum dot layer through the conductive layer disposed on the base substrate. Stability of quantum dot performance in the dot layer.
  • the embodiment of the present application further provides a quantum dot display device.
  • the quantum dot display device includes a light emitting module 20 and a quantum dot light conversion sheet 10 disposed on the light emitting surface of the light emitting module 20 , the quantum dot light conversion sheet 10 is used to change the color of the light emitted by the light emitting module 20, so as to realize the full-color display of the quantum dot display device.
  • the light emitting module 20 includes a plurality of light emitting units 21, and the light emitting units 21 may be blue light emitters, such as blue light organic light emitting diodes. It should be noted that, one light-emitting unit 21 corresponds to one pixel unit of the quantum dot display device, and the combined light emission of a plurality of the light-emitting units 21 can realize the screen display of the quantum dot display device.
  • the quantum dot light conversion sheet 10 includes a base substrate 11, a conductive layer 12 disposed on the base substrate 11, a quantum dot layer 13 disposed on the conductive layer 12, and a layer covering the conductive layer 12 and the conductive layer 12.
  • the passivation layer 14 of the quantum dot layer 13 .
  • the vertical projection of the conductive layer 12 on the light emitting module 20 corresponds to the light emitting unit 21 , that is, the distribution position of the conductive layer 12 on the quantum dot light conversion sheet 10 and the light emitting unit 21
  • the distribution positions on the light-emitting modules 20 are the same, and there is a vertical correspondence between the two.
  • the base substrate 11 is a transparent substrate;
  • the quantum dot layer 13 is a quantum dot material aggregation layer, and the quantum dot layer 13 has the characteristic of emitting light when irradiated by light;
  • the passivation layer 14 is an electrical insulating layer.
  • the conductive layer 12 has a patterned form consistent with the distribution form of the light-emitting units 21
  • the conductive layer 12 can be connected to an external power source to generate an electric field, and the electric field can be
  • the quantum dot layer 13 is promoted to be distributed on the basis of the conductive layer 12 , so that the quantum dot layer 13 also has a patterned shape consistent with the distribution shape of the light emitting unit 21 , and the light emitted by the light emitting unit 21 .
  • the light excites the quantum dot layer 13 to emit light, thereby realizing the color change of the light.
  • this embodiment can simplify the patterning process of the quantum dot layer, and protect the quantum dots in the quantum dot layer from ultraviolet light, high temperature and chemical corrosion, which is beneficial to ensure the stability of the performance of the quantum dot layer. sex.
  • the light-emitting unit 21 includes a first light-emitting unit 211, a second light-emitting unit 212 and a third light-emitting unit 213, the conductive layer 12 includes a first conductive matrix 121 and a second conductive matrix 122, the quantum dots The layer 13 includes a negatively charged quantum dot layer 131 and a positively charged quantum dot layer 132 , and the passivation layer 14 includes a first passivation layer 141 and a second passivation layer 142 .
  • the vertical projection of the first conductive matrix 121 on the light emitting module 20 corresponds to the first light emitting unit 211 , the negatively charged quantum dot layer 131 is disposed on the first conductive matrix 121 , and the first The passivation layer 141 covers the first conductive matrix 121 and the negatively charged quantum dot layer 131 .
  • the vertical projection of the second conductive matrix 122 on the light emitting module 20 corresponds to the second light emitting unit 212 , and the positively charged quantum dot layer 132 is disposed on the second conductive matrix 122 .
  • the second passivation layer 142 covers the second conductive matrix 122 and the positive quantum dot layer 132 .
  • the quantum dot light conversion sheet usually has multiple light color conversion capabilities, so the negatively charged quantum dot layer 131 and the positively charged quantum dot layer 132 are provided in this embodiment; optionally,
  • the negatively charged quantum dot layer 131 can be a red light quantum dot layer, which has the ability to convert blue light into red light;
  • the positively charged quantum dot layer 132 can be a green light quantum dot layer, which has the ability to convert blue light into green light .
  • the negatively charged quantum dot layer 131 is made of a quantum dot material that is negatively charged or polarized under the action of an electric field;
  • the positively charged quantum dot layer 132 is made of a positively charged or It is made of quantum dot materials that are polarized under the action of an electric field to generate positive electricity.
  • the first conductive matrix 121 is connected to positive electricity
  • the second conductive matrix 122 is connected to negative electricity
  • the first conductive matrix 121 is connected to the second conductive matrix 121.
  • An electric field is generated between the conductive matrices 122, so that the negatively charged quantum dot layer 131 is formed on the first conductive matrix 121, and the positively charged quantum dot layer 132 is formed on the second conductive matrix 122, thereby
  • the negatively charged quantum dot layer 131 forms a patterned distribution corresponding to the first light emitting unit 211
  • the positively charged quantum dot layer 132 forms a patterned distribution corresponding to the second light emitting unit 212 .
  • the patterning process of the quantum dot layer 13 does not need to use ink jet printing and photolithography, so the quantum dot display device has high production efficiency and quality.
  • a blank matrix 15 is provided between the first conductive matrix 121 and the second conductive matrix 122, and the blank matrix 15 is located in the light emitting module 20.
  • the vertical projection on corresponds to the third light-emitting unit 213 , that is, the light emitted by the third light-emitting unit 213 will vertically pass through the blank matrix 15 .
  • no conductive material is provided in the blank matrix 15 , so no quantum dot layer is formed in this area, and the light emitted by the third light-emitting unit 213 will not occur when passing through the blank matrix 15 Light color change.
  • the first light-emitting unit 211, the second light-emitting unit 212 and the third light-emitting unit 213 are all blue light emitters; the light emitted by the first light-emitting unit 211 passes through the negatively charged quantum dot layer After 131 , it is converted into red light; the light emitted by the second light-emitting unit 212 is converted into green light after passing through the positively charged quantum dot layer 132 ; the light emitted by the third light-emitting unit 213 passes through the blank matrix 15 It still appears as blue light. Further, the red, green and blue light display of the quantum dot display device is realized.
  • the quantum dot display device provided by the embodiments of the present application can easily realize the patterned distribution of the quantum dot layer, and while simplifying the manufacturing process, the performance of the quantum dots in the quantum dot layer is guaranteed to be stable.
  • the embodiment of the present application also provides a method for manufacturing a quantum dot light conversion sheet, as shown in FIG. 2 and FIG. 3 , the quantum dot light conversion sheet is applied to the quantum dot display device described in the above embodiment, and the quantum dot light conversion sheet
  • the display device includes a light-emitting module 20 having a plurality of light-emitting units 21 .
  • the manufacturing method of the quantum dot light conversion sheet comprises the following steps:
  • Step S1 referring to FIG. 2 and FIG. 4 , according to the distribution characteristics of the light-emitting units 21 on the light-emitting module 20 , a conductive material with the same distribution characteristics as the light-emitting units 21 is fabricated on a base substrate 11 .
  • Layer 12 It should be noted that, the distribution characteristics of the formed conductive layer 12 must satisfy: after the final quantum dot light conversion sheet is assembled with the light emitting module 20, the conductive layer 12 will emit light in the The position of the vertical projection on the module 20 corresponds to the position of the light-emitting unit 21 .
  • the light-emitting unit 21 includes a first light-emitting unit 211 , a second light-emitting unit 212 and a third light-emitting unit 213 ;
  • the method for fabricating the conductive layer 12 includes: fabricating the first light-emitting unit 211 on the base substrate 11 and the first light-emitting unit 212 .
  • a first conductive matrix 121 having the same distribution characteristics of a light-emitting unit 211 and a second conductive matrix 122 having the same distribution characteristics as the second light-emitting units 212 .
  • a blank area is reserved between the second conductive matrix 122 and the first conductive matrix 121 to form a blank matrix 15, and the blank matrix 15 is located on the base substrate.
  • the distribution characteristics are the same as those of the third light-emitting unit 213 .
  • Step S2 referring to FIG. 5 to FIG. 8 , coating the quantum dot dispersion liquid containing quantum dots on the base substrate 11 and covering the conductive layer 12 .
  • Step S3 electrify the conductive layer 12 , and the quantum dots in the quantum dot dispersion liquid are deposited on the conductive layer 12 under the action of an electric field.
  • Step S4 removing the liquid component in the quantum dot dispersion to obtain the quantum dot layer 13 cured on the conductive layer 12 .
  • Step S5 forming a passivation layer 14 covering the quantum dot layer 13 and the conductive layer 12 .
  • the steps S2 to S5 specifically include the following operation steps: coating the quantum dot dispersion liquid containing negatively charged quantum dots on the base substrate 11 and covering the first conductive matrix 121 and the second conductive matrix 122; the first conductive matrix 121 is positively charged, the second conductive matrix 122 is negatively charged, and the negatively charged quantum dots are deposited on the first conductive matrix 121 under the action of an electric field remove the liquid components in the quantum dot dispersion to obtain a negatively charged quantum dot layer 131 cured on the first conductive matrix 121; fabricate and cover the negatively charged quantum dot layer 131 and the first conductive matrix
  • the negatively charged quantum dots are quantum dots that are negatively charged by themselves or are polarized under the action of an electric field to generate negative electricity
  • the positively charged quantum dots are those that are positively charged themselves or are polarized under the action of an electric field. to produce positively charged quantum dots.
  • the method for removing liquid components in the quantum dot dispersion includes heating or drying the quantum dot dispersion under vacuum conditions, wherein the heating and drying temperatures are between 50°C and 300°C; After the first conductive matrix 121 and the second conductive matrix 122 are energized, the electric field strength between them is between 1V/ ⁇ m and 200V/ ⁇ m; the thickness of the quantum dot layer 13 is 10 nanometers To 10 microns, the quantum dots in the quantum dot layer 13 can be semiconductor nanocrystals, and the semiconductor nanocrystals can be III-V group compounds or II-VI group compounds or perovskite or CuInZnS and other multivariate crystals Material; the method of making the passivation layer 14 is chemical vapor deposition method, and the passivation layer 14 can be made of inorganic or organic insulating materials such as silicon nitride, silicon oxide, silicon oxynitride, organosiloxane polymer, etc. to make.
  • the method for fabricating a quantum dot light conversion sheet provided by the embodiments of the present application, by arranging a conductive layer on the base substrate, and using the electric field generated by the conduction of the conductive layer to induce the patterned deposition of quantum dots, compared with the existing
  • the technology simplifies the patterning process of the quantum dot layer, improves the production efficiency, and improves the stability of the quantum dots in the quantum dot layer.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

本申请提供一种量子点光转换片及其制作方法、量子点显示装置,所述量子点光转换片包括衬底基板、导电层、量子点层和钝化层,通过在衬底基板上设置所述导电层,利用所述导电层通电产生的电场作用诱导量子点进行图案化沉积,形成所述量子点层;本申请简化了量子点层图案化工艺,提高了生产效率,改善了量子点层中的量子点的稳定性。

Description

量子点光转换片及其制作方法、量子点显示装置
本申请要求于2020年12月04日提交中国专利局、申请号为202011412520.5、发明名称为“量子点光转换片及其制作方法、量子点显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种量子点光转换片、量子点光转换片制作方法及量子点显示装置。
背景技术
随着科技的发展,量子点显示技术在色域覆盖率、色彩控制精准性、红绿蓝色彩纯净度等各个维度已经全面升级,被视为全球显示技术的制高点,也被视为影响全球的显示技术革命。量子点显示技术可以革命性的实现全色域显示,最真实的还原图像色彩。
量子点(Quantum Dots,简称QD)是肉眼看不到的,极其微小的无机纳米晶体。每当受到光或电的刺激,量子点便会发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,一般小颗粒的量子点较易吸收长波光,大颗粒的量子点较易吸收短波光。量子点在吸收短波光之后,如吸收蓝光之后会受激发而发射长波段光色,这一特性使得量子点能够改变光源发出的光线颜色。因此,在显示装置中,量子点多被用作光转变材料。
在量子点显示装置中,如何高效地实现量子点的图案化一直是本领域的技术难题。目前普遍采用喷墨打印技术或光刻技术对显示装置中的量子点进行图案化操作,但这两种图案化技术都具有明显的缺陷。其中,喷墨打印技术对量子点墨水的要求非常高,实际喷涂过程中很容易出现堵塞喷嘴的现象,严重影响生产的连续性;而光刻技术用到的曝光、显影等操作会严重影响量子点的稳定性,进而导致量子点显示装置出现显示品质问题。
技术问题
现有的量子点图案化方法存在生产成本高、生产效率低和图案化质量差的问题。
技术解决方案
为了解决上述技术问题,本申请提供的技术方案如下:
本申请提供一种量子点光转换片,包括:
衬底基板;
导电层,设置于所述衬底基板上;
量子点层,设置于所述导电层上,所述量子点层具有受光线照射而发光的特性;
钝化层,设置于所述衬底基板上,并覆盖所述导电层和所述量子点层。
在本申请的量子点光转换片中,所述导电层包括第一导电矩阵和第二导电矩阵,所述量子点层包括负电性量子点层和正电性量子点层,所述钝化层包括第一钝化层和第二钝化层。
在本申请的量子点光转换片中,所述负电性量子点层设置于所述第一导电矩阵上,所述第一钝化层覆盖所述第一导电矩阵和所述负电性量子点层;
所述正电性量子点层设置于所述第二导电矩阵上,所述第二钝化层覆盖所述第二导电矩阵和所述正电性量子点层。
在本申请的量子点光转换片中,所述负电性量子点层包括红光量子点层,用于将蓝光转变为红光;所述正电性量子点层包括绿光量子点层,用于将蓝光转变为绿光。
在本申请的量子点光转换片中,所述量子点光转换片还包括空白矩阵,所述空白矩阵设置于所述第二导电矩阵与所述第一导电矩阵之间。
在本申请的量子点光转换片中,所述量子点层包括半导体纳米晶材料。
在本申请的量子点光转换片中,所述量子点层的厚度为10纳米至10微米之间。
本申请还提供一种量子点显示装置,包括:
发光模组,包括多个发光单元;以及
量子点光转换片,设置于所述发光模组的出光面上,所述量子点光转换片包括:
设置于所述发光模组出光面上的衬底基板;
设置于所述衬底基板上的导电层,所述导电层在所述发光模组上的垂直投影对应所述发光单元;
设置于所述导电层上的量子点层,所述量子点层具有受所述发光单元发出的光线照射而发光的特性;以及
设置于所述量子点层上的钝化层。
在本申请的量子点显示装置中,所述发光单元包括第一发光单元、第二发光单元和第三发光单元,所述导电层包括第一导电矩阵和第二导电矩阵,所述量子点层包括负电性量子点层和正电性量子点层,所述钝化层包括第一钝化层和第二钝化层。
在本申请的量子点显示装置中,所述第一导电矩阵在所述发光模组上的垂直投影对应所述第一发光单元,所述负电性量子点层设置于所述第一导电矩阵上,所述第一钝化层覆盖所述第一导电矩阵和所述负电性量子点层;
所述第二导电矩阵在所述发光模组上的垂直投影对应所述第二发光单元,所述正电性量子点层设置于所述第二导电矩阵上,所述第二钝化层覆盖所述第二导电矩阵和所述正电性量子点层。
在本申请的量子点显示装置中,所述量子点光转换片还包括空白矩阵,所述空白矩阵设置于所述第二导电矩阵与所述第一导电矩阵之间,且所述空白矩阵在所述发光模组上的垂直投影对应所述第三发光单元。在本申请的量子点显示装置中,所述发光单元包括蓝光发光器。
在本申请的量子点显示装置中,所述负电性量子点层包括红光量子点层,用于将所述蓝光发光器发射的蓝光转变为红光;所述正电性量子点层包括绿光量子点层,用于将所述蓝光发光器发射的蓝光转变为绿光;所述空白矩阵用于直接透射所述蓝光发光器发射的蓝光。
本申请还提供一种量子点光转换片制作方法,所述量子点光转换片应用于量子点显示装置中,所述量子点显示装置包括具有多个发光单元的发光模组,所述量子点光转换片制作方法包括以下步骤:
根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层;
将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层;
对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上;
去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层;
制作覆盖所述量子点层和所述导电层的钝化层。
在本申请的量子点光转换片制作方法中,所述发光单元包括第一发光单元、第二发光单元和第三发光单元;所述根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层的步骤,包括:
在所述衬底基板上制作与所述第一发光单元的分布特征相同的第一导电矩阵;
在所述衬底基板上制作与所述第二发光单元的分布特征相同的第二导电矩阵。
在本申请的量子点光转换片制作方法中,所述根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层的步骤,还包括:
在所述衬底基板上设置与所述第三发光单元的分布特征相同的空白矩阵。
在本申请的量子点光转换片制作方法中,所述将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层的步骤,包括:
将包含负电性量子点的量子点分散液涂布于所述衬底基板上;
所述量子点分散液覆盖所述第一导电矩阵和所述第二导电矩阵;
所述对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上的步骤,包括:
对所述第一导电矩阵通正电;
对所述第二导电矩阵通负电;
所述负电性量子点在电场作用下沉积于所述第一导电矩阵上。
在本申请的量子点光转换片制作方法中,所述去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层的步骤,包括:
去除所述量子点分散液中的液体成分,得到固化于所述第一导电矩阵上的负电性量子点层;
所述制作覆盖所述量子点层和所述导电层的钝化层的步骤,包括:
制作覆盖所述负电性量子点层和所述第一导电矩阵的第一钝化层。
在本申请的量子点光转换片制作方法中,所述将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层的步骤,包括:
将包含正电性量子点的量子点分散液涂布于所述衬底基板上;
所述量子点分散液覆盖所述第二导电矩阵;
所述对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上的步骤,包括:
对所述第一导电矩阵通正电;
对所述第二导电矩阵通负电;
所述正电性量子点在电场作用下沉积于所述第二导电矩阵上。
在本申请的量子点光转换片制作方法中,所述去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层的步骤,包括:
去除所述量子点分散液中的液体成分,得到固化于所述第二导电矩阵上的正电性量子点层;
所述制作覆盖所述量子点层和所述导电层的钝化层的步骤,包括:
制作覆盖所述正电性量子点层和所述第二导电矩阵的第二钝化层。
有益效果
本申请提供的量子点光转换片及其制作方法、量子点显示装置,通过设置导电层,利用导电层通电产生的电场作用诱导量子点进行图案化沉积,相较于现有技术,简化了量子点层图案化工艺,提高了生产效率,改善了量子点层中的量子点的稳定性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的量子点光转换片的结构示意图;
图2是本申请实施例提供的量子点显示装置的结构示意图;
图3是本申请实施例提供的量子点光转换片的制作方法流程图;
图4是在衬底基板上制作完成导电层后的结构示意图;
图5是在第一导电矩阵上制作完成负电性量子点层后的结构示意图;
图6是制作完成第一钝化层后的结构示意图;
图7是在第二导电矩阵上制作完成正电性量子点层后的结构示意图;
图8是使用本申请实施例提供的量子点光转换片的制作方法制作而成的量子点光转换片的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请实施例提供一种量子点光转换片,包括设置于衬底基板与量子层之间的导电层,通过该导电层的设置,促使量子点层形成以导电层为基准的图案化分布,在简化制程工艺的同时,保证了量子点层中的量子点性能的稳定。
如图1所示,是本申请实施例提供的量子点光转换片10的结构示意图。所述量子点光转换片10包括衬底基板11、设置于所述衬底基板11上的导电层12、设置于所述导电层12上的量子点层13、以及覆盖所述导电层12和所述量子点层13的钝化层14。其中,所述衬底基板11为透明基板,例如可以是聚酰亚胺等柔性基板,也可以是玻璃等硬质基板;所述导电层12可以是透明金属导电层,也可以是透明非金属导电层;所述量子点层13是量子点材料聚集层,所述量子点层13具有受光线照射而发光的特性,例如在受到蓝光照射时发出红光或绿光;所述钝化层14为电性绝缘层,其可以由氮化硅、氧化硅、氮氧化硅、有机硅氧烷聚合物等无机或有机绝缘材料制作而成。需要说明的是,在本实施例中,设置于所述衬底基板11上的所述导电层12,可以连接外部电源而使其产生电场,该电场可促使所述量子点层13以所述导电层12为基准分布,在所述导电层12具有特定图案的条件下,所述量子点层13也形成图案化分布;相较于现有技术,简化了量子点层的图案化工艺,并使量子点层中的量子点免受紫外光照、高温和化学腐蚀的作用,有利于保证量子点层性能的稳定性。
可选地,所述量子点层13的厚度为10纳米至10微米之间,所述量子点层13由半导体纳米晶材料制作而成,所述半导体纳米晶材料可以是III-V族化合物或II-VI族化合物或钙钛矿类或CuInZnS等多元材料。
可选地,所述导电层12包括第一导电矩阵121和第二导电矩阵122,所述量子点层13包括负电性量子点层131和正电性量子点层132,所述钝化层14包括第一钝化层141和第二钝化层142。所述负电性量子点层131设置于所述第一导电矩阵121上,所述第一钝化层141覆盖所述第一导电矩阵121和所述负电性量子点层131。所述正电性量子点层132设置于所述第二导电矩阵122上,所述第二钝化层142覆盖所述第二导电矩阵122和所述正电性量子点层132。需要说明的是,量子点光转换片通常具有多种光色转化能力,因而在本实施例中设置了所述负电性量子点层131和所述正电性量子点层132;可选地,所述负电性量子点层131可以是红光量子点层,具有将蓝光转变为红光的能力;所述正电性量子点层132可以是绿光量子点层,具有将蓝光转变为绿光的能力。所述负电性量子点层131是由本身具有负电性或在电场作用下极化而产生负电性的量子点材料制作而成;所述正电性量子点层132是由本身具有正电性或在电场作用下极化而产生正电性的量子点材料制作而成。
应当理解的是,在制作所述量子点层13时,所述第一导电矩阵121接通正电,所述第二导电矩阵122接通负电,所述第一导电矩阵121与所述第二导电矩阵122之间产生电场作用,促使所述负电性量子点层131形成于所述第一导电矩阵121上,所述正电性量子点层132形成于所述第二导电矩阵122上,从而使所述负电性量子点层131和所述正电性量子点层132分别实现图案化分布。本实施例中,所述量子点层13的图案化制程中,不需要使用喷墨打印和光刻技术,因而该量子点光转换片10具有较高的生产效率和品质。
可选地,所述第二导电矩阵122与所述第一导电矩阵121之间还设置有空白矩阵15,在所述空白矩阵15中不设置导电材料,因而在该区域中不形成量子点层。需要说明的是,所述空白矩阵15可作为透光区,当该量子点光转换片10应用于以蓝光为背光的显示装置中时,所述负电性量子点层131将蓝光转变为红光,所述正电性量子点层132将蓝光转变为绿光,所述空白矩阵15内蓝光正常穿过,从而实现显示装置的红、绿、蓝三色光出光。
综上所述,本申请实施例提供的量子点光转换片,通过设置于衬底基板上的导电层,可容易地实现量子点层的图案化,在简化其制程工艺的同时,保证了量子点层中的量子点性能的稳定。
本申请实施例还提供一种量子点显示装置,如图2所示,所述量子点显示装置包括发光模组20和设置于所述发光模组20的出光面上的量子点光转换片10,所述量子点光转换片10用于转变所述发光模组20发出光线的颜色,以实现所述量子点显示装置的全彩显示。
发光模组20包括多个发光单元21,所述发光单元21可以是蓝光发光器,例如可以是蓝光有机发光二极管。需要说明的是,一个所述发光单元21对应所述量子点显示装置的一个像素单元,多个所述发光单元21的组合发光可实现所述量子点显示装置的画面显示。
所述量子点光转换片10包括衬底基板11、设置于所述衬底基板11上的导电层12、设置于所述导电层12上的量子点层13、以及覆盖所述导电层12和所述量子点层13的钝化层14。其中,所述导电层12在所述发光模组20上的垂直投影对应所述发光单元21,即所述导电层12在所述量子点光转换片10上分布位置与所述发光单元21在所述发光模组20上的分布位置一致,二者之间存在垂直对应关系。所述衬底基板11为透明基板;所述量子点层13是量子点材料聚集层,所述量子点层13具有受光线照射而发光的特性;所述钝化层14为电性绝缘层。需要说明的是,在本实施例中,所述导电层12具有与所述发光单元21的分布形态一致的图案化形态,所述导电层12可以连接外部电源而使其产生电场,该电场可促使所述量子点层13以所述导电层12为基准分布,从而使所述量子点层13同样具有与所述发光单元21的分布形态一致的图案化形态,由所述发光单元21发出的光激发所述量子点层13发光,从而实现光线的色彩转变。相较于现有技术,本实施例可简化量子点层的图案化工艺,并使量子点层中的量子点免受紫外光照、高温和化学腐蚀的作用,有利于保证量子点层性能的稳定性。
可选地,所述发光单元21包括第一发光单元211、第二发光单元212和第三发光单元213,所述导电层12包括第一导电矩阵121和第二导电矩阵122,所述量子点层13包括负电性量子点层131和正电性量子点层132,所述钝化层14包括第一钝化层141和第二钝化层142。所述第一导电矩阵121在所述发光模组20上的垂直投影对应所述第一发光单元211,所述负电性量子点层131设置于所述第一导电矩阵121上,所述第一钝化层141覆盖所述第一导电矩阵121和所述负电性量子点层131。所述第二导电矩阵122在所述发光模组20上的垂直投影对应所述第二发光单元212,所述正电性量子点层132设置于所述第二导电矩阵122上,所述第二钝化层142覆盖所述第二导电矩阵122和所述正电性量子点层132。
需要说明的是,量子点光转换片通常具有多种光色转化能力,因而在本实施例中设置了所述负电性量子点层131和所述正电性量子点层132;可选地,所述负电性量子点层131可以是红光量子点层,具有将蓝光转变为红光的能力;所述正电性量子点层132可以是绿光量子点层,具有将蓝光转变为绿光的能力。所述负电性量子点层131是由本身具有负电性或在电场作用下极化而产生负电性的量子点材料制作而成;所述正电性量子点层132是由本身具有正电性或在电场作用下极化而产生正电性的量子点材料制作而成。
应当理解的是,在制作所述量子点层13时,所述第一导电矩阵121接通正电,所述第二导电矩阵122接通负电,所述第一导电矩阵121与所述第二导电矩阵122之间产生电场作用,促使所述负电性量子点层131形成于所述第一导电矩阵121上,所述正电性量子点层132形成于所述第二导电矩阵122上,从而使所述负电性量子点层131形成对应所述第一发光单元211的图案化分布,使所述正电性量子点层132形成对应所述第二发光单元212的图案化分布。本实施例中,所述量子点层13的图案化制程中,不需要使用喷墨打印和光刻技术,因而该量子点显示装置具有较高的生产效率和品质。
可选地,在所述量子点光转换片10上,所述第一导电矩阵121与所述第二导电矩阵122之间设置有空白矩阵15,所述空白矩阵15在所述发光模组20上的垂直投影对应所述第三发光单元213,即所述第三发光单元213发出的光线会垂直穿过所述空白矩阵15。需要说明的是,在所述空白矩阵15中不设置导电材料,因而在该区域中不形成量子点层,所述第三发光单元213发出的光穿过所述空白矩阵15时,不会发生光色转变。
进一步地,所述第一发光单元211、所述第二发光单元212和所述第三发光单元213均为蓝光发光器;所述第一发光单元211发出的光线经所述负电性量子点层131后转变为红光;所述第二发光单元212发出的光线经所述正电性量子点层132后转变为绿光;所述第三发光单元213发出的光线穿过所述空白矩阵15后仍表现为蓝光。进而实现所述量子点显示装置的红、绿、蓝三色光显示。
综上所述,本申请实施例提供的量子点显示装置,可容易地实现量子点层的图案化分布,在简化其制程工艺的同时,保证了量子点层中的量子点性能的稳定。
本申请实施例还提供一种量子点光转换片制作方法,如图2和图3所示,所述量子点光转换片应用于上述实施例所述的量子点显示装置中,所述量子点显示装置包括具有多个发光单元21的发光模组20。所述量子点光转换片制作方法包括以下步骤:
步骤S1、参考图2和图4所示,根据所述发光单元21在所述发光模组20上的分布特征,在一衬底基板11上制作与所述发光单元21的分布特征相同的导电层12。需要说明的是,制作形成的所述导电层12的分布特征需满足:将最终制成的所述量子点光转换片与所述发光模组20组装后,所述导电层12在所述发光模组20上的垂直投影的位置与所述发光单元21的位置相对应。
具体地,所述发光单元21包括第一发光单元211、第二发光单元212和第三发光单元213;制作所述导电层12的方法包括:在所述衬底基板11上制作与所述第一发光单元211的分布特征相同的第一导电矩阵121,以及与所述第二发光单元212的分布特征相同的第二导电矩阵122。
进一步地,制作所述导电层12时,在所述第二导电矩阵122与所述第一导电矩阵121之间保留空白区域形成空白矩阵15,所述空白矩阵15在所述衬底基板上的分布特征与所述第三发光单元213的分布特征相同。
步骤S2、参考图5至图8所示,将包含量子点的量子点分散液涂布于所述衬底基板11上,并覆盖所述导电层12。
步骤S3、对所述导电层12通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层12上。
步骤S4、去除所述量子点分散液中的液体成分,得到固化于所述导电层12上的量子点层13。
步骤S5、制作覆盖所述量子点层13和所述导电层12的钝化层14。
可选地,所述步骤S2至所述步骤S5具体包括以下操作步骤:将包含负电性量子点的量子点分散液涂布于所述衬底基板11上,并覆盖所述第一导电矩阵121和所述第二导电矩阵122;对所述第一导电矩阵121通正电,所述第二导电矩阵122通负电,所述负电性量子点在电场作用下沉积于所述第一导电矩阵121上;去除所述量子点分散液中的液体成分,得到固化于所述第一导电矩阵121上的负电性量子点层131;制作覆盖所述负电性量子点层131和所述第一导电矩阵121的第一钝化层141;将包含正电性量子点的量子点分散液涂布于所述衬底基板11上,并覆盖所述第二导电矩阵122;对所述第一导电矩阵121通正电,所述第二导电矩阵122通负电,所述正电性量子点在电场作用下沉积于所述第二导电矩阵122上;去除所述量子点分散液中的液体成分,得到固化于所述第二导电矩阵122上的正电性量子点层132;制作覆盖所述正电性量子点层132和所述第二导电矩阵122的第二钝化层142,进而完成所述量子点光转换片的制作。
需要说明的是,所述负电性量子点是本身具有负电性或在电场作用下极化而产生负电性的量子点,所述正电性量子点是本身具有正电性或在电场作用下极化而产生正电性的量子点。
可选地,去除所述量子点分散液中的液体成分的方法包括对所述量子点分散液加热或在真空条件下烘干,其中加热和烘干的温度在50℃至300℃之间;在所述第一导电矩阵121和所述第二导电矩阵122上通电后,二者之间产生的电场强度在1V/μm至200V/μm之间;所述量子点层13的厚度为10纳米至10微米之间,所述量子点层13中的量子点可以是半导体纳米晶,所述半导体纳米晶可以是III-V族化合物或II-VI族化合物或钙钛矿类或CuInZnS等多元晶体材料;制作所述钝化层14的方法是化学气相沉积法,所述钝化层14可以由氮化硅、氧化硅、氮氧化硅、有机硅氧烷聚合物等无机或有机绝缘材料制作而成。
综上所述,本申请实施例提供的量子点光转换片制作方法,通过在衬底基板上设置导电层,利用导电层通电产生的电场作用诱导量子点进行图案化沉积,相较于现有技术,简化了量子点层图案化工艺,提高了生产效率,改善量子点层中的量子点的稳定性。
需要说明的是,虽然本申请以具体实施例揭露如上,但上述实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种量子点光转换片,其包括:
    衬底基板;
    导电层,设置于所述衬底基板上;
    量子点层,设置于所述导电层上,所述量子点层具有受光线照射而发光的特性;
    钝化层,设置于所述衬底基板上,并覆盖所述导电层和所述量子点层。
  2. 根据权利要求1所述的量子点光转换片,其中,所述导电层包括第一导电矩阵和第二导电矩阵,所述量子点层包括负电性量子点层和正电性量子点层,所述钝化层包括第一钝化层和第二钝化层。
  3. 根据权利要求2所述的量子点光转换片,其中,所述负电性量子点层设置于所述第一导电矩阵上,所述第一钝化层覆盖所述第一导电矩阵和所述负电性量子点层;
    所述正电性量子点层设置于所述第二导电矩阵上,所述第二钝化层覆盖所述第二导电矩阵和所述正电性量子点层。
  4. 根据权利要求2所述的量子点光转换片,其中,所述负电性量子点层包括红光量子点层,用于将蓝光转变为红光;所述正电性量子点层包括绿光量子点层,用于将蓝光转变为绿光。
  5. 根据权利要求2所述的量子点光转换片,其中,所述量子点光转换片还包括空白矩阵,所述空白矩阵设置于所述第二导电矩阵与所述第一导电矩阵之间。
  6. 根据权利要求1所述的量子点光转换片,其中,所述量子点层包括半导体纳米晶材料。
  7. 根据权利要求1所述的量子点光转换片,其中,所述量子点层的厚度为10纳米至10微米之间。
  8. 一种量子点显示装置,其包括:
    发光模组,包括多个发光单元;以及
    量子点光转换片,设置于所述发光模组的出光面上,所述量子点光转换片包括:
    设置于所述发光模组出光面上的衬底基板;
    设置于所述衬底基板上的导电层,所述导电层在所述发光模组上的垂直投影对应所述发光单元;
    设置于所述导电层上的量子点层,所述量子点层具有受所述发光单元发出的光线照射而发光的特性;以及
    设置于所述量子点层上的钝化层。
  9. 根据权利要求8所述的量子点显示装置,其中,所述发光单元包括第一发光单元、第二发光单元和第三发光单元,所述导电层包括第一导电矩阵和第二导电矩阵,所述量子点层包括负电性量子点层和正电性量子点层,所述钝化层包括第一钝化层和第二钝化层。
  10. 根据权利要求9所述的量子点显示装置,其中,所述第一导电矩阵在所述发光模组上的垂直投影对应所述第一发光单元,所述负电性量子点层设置于所述第一导电矩阵上,所述第一钝化层覆盖所述第一导电矩阵和所述负电性量子点层;
    所述第二导电矩阵在所述发光模组上的垂直投影对应所述第二发光单元,所述正电性量子点层设置于所述第二导电矩阵上,所述第二钝化层覆盖所述第二导电矩阵和所述正电性量子点层。
  11. 根据权利要求9所述的量子点显示装置,其中,所述量子点光转换片还包括空白矩阵,所述空白矩阵设置于所述第二导电矩阵与所述第一导电矩阵之间,且所述空白矩阵在所述发光模组上的垂直投影对应所述第三发光单元。
  12. 根据权利要求11所述的量子点显示装置,其中,所述发光单元包括蓝光发光器。
  13. 根据权利要求12所述的量子点显示装置,其中,所述负电性量子点层包括红光量子点层,用于将所述蓝光发光器发射的蓝光转变为红光;所述正电性量子点层包括绿光量子点层,用于将所述蓝光发光器发射的蓝光转变为绿光;所述空白矩阵用于直接透射所述蓝光发光器发射的蓝光。
  14. 一种量子点光转换片制作方法,所述量子点光转换片应用于量子点显示装置中,所述量子点显示装置包括具有多个发光单元的发光模组,所述量子点光转换片制作方法包括以下步骤:
    根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层;
    将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层;
    对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上;
    去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层;
    制作覆盖所述量子点层和所述导电层的钝化层。
  15. 根据权利要求14所述的量子点光转换片制作方法,其中,所述发光单元包括第一发光单元、第二发光单元和第三发光单元;所述根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层的步骤,包括:
    在所述衬底基板上制作与所述第一发光单元的分布特征相同的第一导电矩阵;
    在所述衬底基板上制作与所述第二发光单元的分布特征相同的第二导电矩阵。
  16. 根据权利要求15所述的量子点光转换片制作方法,其中,所述根据所述发光单元在所述发光模组上的分布特征,在一衬底基板上制作与所述发光单元的分布特征相同的导电层的步骤,还包括:
    在所述衬底基板上设置与所述第三发光单元的分布特征相同的空白矩阵。
  17. 根据权利要求15所述的量子点光转换片制作方法,其中,所述将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层的步骤,包括:
    将包含负电性量子点的量子点分散液涂布于所述衬底基板上;
    所述量子点分散液覆盖所述第一导电矩阵和所述第二导电矩阵;
    所述对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上的步骤,包括:
    对所述第一导电矩阵通正电;
    对所述第二导电矩阵通负电;
    所述负电性量子点在电场作用下沉积于所述第一导电矩阵上。
  18. 根据权利要求17所述的量子点光转换片制作方法,其中,所述去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层的步骤,包括:
    去除所述量子点分散液中的液体成分,得到固化于所述第一导电矩阵上的负电性量子点层;
    所述制作覆盖所述量子点层和所述导电层的钝化层的步骤,包括:
    制作覆盖所述负电性量子点层和所述第一导电矩阵的第一钝化层。
  19. 根据权利要求18所述的量子点光转换片制作方法,其中,所述将包含量子点的量子点分散液涂布于所述衬底基板上,并覆盖所述导电层的步骤,包括:
    将包含正电性量子点的量子点分散液涂布于所述衬底基板上;
    所述量子点分散液覆盖所述第二导电矩阵;
    所述对所述导电层通电,所述量子点分散液中的量子点在电场作用下沉积于所述导电层上的步骤,包括:
    对所述第一导电矩阵通正电;
    对所述第二导电矩阵通负电;
    所述正电性量子点在电场作用下沉积于所述第二导电矩阵上。
  20. 根据权利要求19所述的量子点光转换片制作方法,其中,所述去除所述量子点分散液中的液体成分,得到固化于所述导电层上的量子点层的步骤,包括:
    去除所述量子点分散液中的液体成分,得到固化于所述第二导电矩阵上的正电性量子点层;
    所述制作覆盖所述量子点层和所述导电层的钝化层的步骤,包括:
    制作覆盖所述正电性量子点层和所述第二导电矩阵的第二钝化层。
PCT/CN2020/139421 2020-12-04 2020-12-25 量子点光转换片及其制作方法、量子点显示装置 WO2022116319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011412520.5A CN112542501A (zh) 2020-12-04 2020-12-04 量子点光转换片及其制作方法、量子点显示装置
CN202011412520.5 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022116319A1 true WO2022116319A1 (zh) 2022-06-09

Family

ID=75016132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139421 WO2022116319A1 (zh) 2020-12-04 2020-12-25 量子点光转换片及其制作方法、量子点显示装置

Country Status (2)

Country Link
CN (1) CN112542501A (zh)
WO (1) WO2022116319A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN105388660A (zh) * 2015-12-17 2016-03-09 深圳市华星光电技术有限公司 Coa型阵列基板的制备方法
CN108008565A (zh) * 2017-12-04 2018-05-08 福州大学 一种基于自组装的量子点滤色膜的制备方法
CN111427111A (zh) * 2020-03-30 2020-07-17 Tcl华星光电技术有限公司 量子点图案化方法、装置及***
CN111607234A (zh) * 2020-06-15 2020-09-01 Tcl华星光电技术有限公司 一种量子点组合物及其制备方法、量子点图案化方法以及图案化量子点固态膜
CN112820190A (zh) * 2019-11-18 2021-05-18 Tcl华星光电技术有限公司 量子点基板制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353554A (zh) * 2015-12-04 2016-02-24 深圳市华星光电技术有限公司 彩膜基板的制作方法及液晶显示装置
CN106611826B (zh) * 2016-12-27 2018-11-09 深圳市华星光电技术有限公司 量子点彩膜显示面板及其制作方法
CN110148675A (zh) * 2019-05-09 2019-08-20 苏州星烁纳米科技有限公司 量子点发光单元、量子点发光器件及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227189A (zh) * 2013-04-09 2013-07-31 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN105388660A (zh) * 2015-12-17 2016-03-09 深圳市华星光电技术有限公司 Coa型阵列基板的制备方法
CN108008565A (zh) * 2017-12-04 2018-05-08 福州大学 一种基于自组装的量子点滤色膜的制备方法
CN112820190A (zh) * 2019-11-18 2021-05-18 Tcl华星光电技术有限公司 量子点基板制作方法
CN111427111A (zh) * 2020-03-30 2020-07-17 Tcl华星光电技术有限公司 量子点图案化方法、装置及***
CN111607234A (zh) * 2020-06-15 2020-09-01 Tcl华星光电技术有限公司 一种量子点组合物及其制备方法、量子点图案化方法以及图案化量子点固态膜

Also Published As

Publication number Publication date
CN112542501A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
US10061154B2 (en) Method for manufacturing quantum dots display panel
US11362148B2 (en) Quantum dot display panel and manufacturing method thereof
CN104269494B (zh) 有机电致发光器件及其制备方法、显示装置
WO2017012326A1 (zh) 有机电致发光显示面板及制备方法、显示装置
CN111607234A (zh) 一种量子点组合物及其制备方法、量子点图案化方法以及图案化量子点固态膜
US9897912B2 (en) Color filter film manufacturing method and color filter film
WO2017059629A1 (zh) 量子点彩膜的制备方法
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
WO2017084149A1 (zh) 彩色滤光基板的制作方法
US20180157105A1 (en) Liquid crystal display panel and method for manufacturing the same
US20180197894A1 (en) Pixel structure, manufacturing method and display panel
CN112885823B (zh) 显示面板及其制备方法、显示装置
WO2023071911A1 (zh) 波长转换矩阵及其制作方法
WO2019218849A1 (zh) 显示基板及其制造方法、显示面板
KR101965157B1 (ko) 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법
TW201202826A (en) Electrophoretic display device and fabrication method thereof
WO2017059627A1 (zh) 量子点层图形化的方法及量子点彩膜的制备方法
CN112863377B (zh) 一种量子点彩色滤光片的制作方法及显示面板
CN105700222B (zh) 量子点彩膜基板及其制作方法、显示装置
US20210391514A1 (en) Light-emitting device and image display apparatus
CN113488456A (zh) 显示装置及其制作方法
CN113990999A (zh) 微显示器及其制作方法
CN113097242A (zh) 一种高分辨率微显示器结构及其制备方法
WO2022116319A1 (zh) 量子点光转换片及其制作方法、量子点显示装置
US10943956B2 (en) Display panel and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964164

Country of ref document: EP

Kind code of ref document: A1