WO2022111614A1 - 形状记忆合金马达、马达模组、摄像头模组、电子设备 - Google Patents

形状记忆合金马达、马达模组、摄像头模组、电子设备 Download PDF

Info

Publication number
WO2022111614A1
WO2022111614A1 PCT/CN2021/133362 CN2021133362W WO2022111614A1 WO 2022111614 A1 WO2022111614 A1 WO 2022111614A1 CN 2021133362 W CN2021133362 W CN 2021133362W WO 2022111614 A1 WO2022111614 A1 WO 2022111614A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic isolation
sma
isolation member
motor
Prior art date
Application number
PCT/CN2021/133362
Other languages
English (en)
French (fr)
Inventor
黄东
李得亮
王刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/254,681 priority Critical patent/US20230421873A1/en
Priority to EP21897114.1A priority patent/EP4239983A4/en
Publication of WO2022111614A1 publication Critical patent/WO2022111614A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys

Definitions

  • the present application relates to the field of electronic equipment, and more particularly, to a shape memory alloy motor, a motor module, a camera module, and an electronic device.
  • a camera module capable of realizing various image shooting scenarios usually has complicated wiring and a large number of electrical connecting lines.
  • the electrical connecting line is connected to a low-frequency current, the electrical connecting line can generate an induced magnetic field. This induced magnetic field will affect the normal operation of the magnetically sensitive electronic devices (such as the image sensor, the power supply of the image sensor, etc.) in the camera module.
  • the present application provides a shape memory alloy motor, a motor module, a camera module, and an electronic device, which can reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • a camera module including:
  • a lens array at least partially within the camera housing
  • circuit board the circuit board is provided with an image sensor
  • the SMA motor is accommodated in the camera housing, the SMA motor includes an SMA wire, one end of the SMA wire is connected with the lens array, and the other end is fixed relative to the camera housing;
  • the SMA motor drive module is disposed on the circuit board and used to provide AC power for the SMA motor, the SMA motor drive module includes a first electrical connection port and a second electrical connection port, the first electrical connection port and the second electrical connection port are respectively electrically connected to both ends of the SMA wire;
  • a first magnetic isolation member the first magnetic isolation member is arranged in parallel with respect to the image sensor, the first magnetic isolation member includes a first through hole, and the light incident on the camera module passes through the first magnetic isolation member.
  • a through hole is then projected onto the image sensor, and the shape of the first through hole corresponds to the shape of the image sensor.
  • the first magnetic isolation member between the image sensor and the SMA motor, it is beneficial to reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the interference magnetic field generated by the SMA motor can be relatively small at the first magnetic isolation member, which is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module. Degree.
  • the camera module further includes:
  • a second magnetic isolation member is arranged parallel to the image sensor, the second magnetic isolation member is located between the first magnetic isolation member and the SMA motor, the second magnetic isolation member
  • the magnetic member includes a second through hole through which the lens array passes.
  • the second magnetic isolation member since the second magnetic isolation member may be closer to the lens array, the first magnetic isolation member may be closer to the image sensor, the separation distance between the second magnetic isolation member and the first magnetic isolation member may be relatively large, and the SMA The interference magnetic field generated by the motor may be relatively small at the first magnetic isolation member, which is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the second magnetic isolation member includes:
  • the second magnetic isolation plate is arranged in parallel with respect to the image sensor, and the second through hole is located on the second magnetic isolation plate;
  • the second magnetic isolation edge is vertically arranged on the second magnetic isolation plate, and is located on the side of the second magnetic isolation plate away from the image sensor, the first Two magnetic separation edges surround the outer circumference of the second through hole.
  • the magnetic isolation area of the second magnetic isolation member is increased, and the magnetic isolation can also be achieved in the direction perpendicular to the second magnetic isolation plate. Therefore, it is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the inner wall of the second magnetic separation edge communicates with the hole wall of the second through hole.
  • the at least one second magnetic isolation edge includes a target second magnetic isolation edge, and the target second magnetic isolation edge is located at the pin of the image sensor. the same side of the camera module.
  • setting the magnetic isolation edge at the position of the magnetically sensitive electronic device is conducive to improving the magnetic isolation effect of the second magnetic isolation member, and is conducive to further reducing the degree of magnetic interference received by the magnetically sensitive electronic device in the camera module .
  • the at least one second magnetic isolation edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation plate satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1 mm.
  • the structure of the second magnetic isolation member by providing the structure of the second magnetic isolation member, it is beneficial to improve the magnetic isolation effect of the second magnetic isolation member, and is beneficial to further reduce the degree of magnetic interference received by the magnetically sensitive electronic device in the camera module.
  • the camera module satisfies at least one of the following:
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5;
  • the separation distance between the second magnetic isolation member and the first magnetic isolation member is greater than or equal to 0.1 mm.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the structure and performance of the second magnetic shielding member by setting the structure and performance of the second magnetic shielding member, it is beneficial to improve the magnetic shielding effect of the second magnetic shielding member, and is beneficial to further reduce the magnetic interference caused by the magnetically sensitive electronic device in the camera module. degree.
  • the first magnetic isolation member includes:
  • the first magnetic isolation plate is arranged in parallel with respect to the image sensor, and the first through hole is located on the first magnetic isolation plate;
  • At least one first magnetic isolation edge is located on the side of the first magnetic isolation plate away from the image sensor, and the first magnetic isolation edge is perpendicular to the first magnetic isolation plate It is arranged that the first magnetic isolation rib surrounds the outer circumference of the first through hole.
  • the magnetic isolation area of the first magnetic isolation member is increased, and the magnetic isolation can also be achieved in the direction perpendicular to the first magnetic isolation plate. Therefore, it is beneficial to further reduce the degree of magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the inner wall of the first magnetic shielding edge communicates with the hole wall of the first through hole.
  • the camera module satisfies at least one of the following:
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5;
  • the separation distance between the first magnetic isolation member and the image sensor is greater than or equal to 0.1 mm;
  • the distance between the first magnetic isolation member and the circuit board is greater than or equal to 0.1 mm;
  • the outer contour of the projection area of the first through hole on the circuit board is the first outer contour
  • the outer contour of the projection area of the image sensor on the circuit board is the second outer contour
  • the second outer contour is located within the first outer contour
  • the maximum separation distance between the second outer contour and the first outer contour is less than or equal to 1.5 mm.
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5.
  • the structure and performance of the first magnetic shielding member by setting the structure and performance of the first magnetic shielding member, it is beneficial to improve the magnetic shielding effect of the first magnetic shielding member, and is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic device in the camera module.
  • the camera module further includes:
  • a bracket the bracket is located between the image sensor and the SMA motor, and the first magnetic isolation member is located in the bracket or attached to the surface of the bracket.
  • the present application by flexibly setting the position of the first magnetic isolation member relative to the bracket, on the one hand, it is beneficial to improve the integration degree of the camera module, and on the other hand, it is beneficial to ensure the connection between the first magnetic isolation member and the image sensor. There is a certain separation distance between them, thereby reducing the influence of the interference magnetic field generated by the first magnetic isolation member on the image sensor.
  • a camera module including:
  • a lens array at least partially within the camera housing
  • circuit board the circuit board is provided with an image sensor
  • the SMA motor is accommodated in the camera housing, the SMA motor includes an SMA wire, one end of the SMA wire is connected with the lens array, and the other end is fixed relative to the camera housing;
  • the SMA motor drive module is disposed on the circuit board and used to provide AC power for the SMA motor, the SMA motor drive module includes a first electrical connection port and a second electrical connection port, the first electrical connection port and the second electrical connection port are respectively electrically connected to both ends of the SMA wire;
  • a second magnetic isolation member includes a second magnetic isolation plate and at least one second magnetic isolation edge, the second magnetic isolation plate is arranged parallel to the image sensor, and the second magnetic isolation plate is parallel to the image sensor.
  • the board includes a second through hole, the light incident to the camera module is projected onto the image sensor after passing through the second through hole, and the second magnetic barrier is vertically arranged on the second barrier.
  • the second magnetic isolation edge surrounds the outer periphery of the second through hole, and the second magnetic isolation edge is located on a side of the second magnetic isolation plate away from the image sensor.
  • the second magnetic isolation member between the image sensor and the SMA motor, it is beneficial to significantly reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the magnetic shielding ribs on the second magnetic shielding member, the magnetic shielding area of the second magnetic shielding member is increased, and the magnetic shielding effect can also be achieved in the direction perpendicular to the second magnetic shielding plate. Therefore, It is beneficial to reduce the magnetic interference received by the magnetically sensitive electronic devices in the camera module.
  • the lens array passes through the second through hole.
  • the second magnetic isolation member can be closer to the lens array, the second magnetic isolation member can be relatively far away from the image sensor, which is beneficial to ensure that there is a certain distance between the second magnetic isolation member and the image sensor, thereby reducing the The influence of the interference magnetic field generated by the small second magnetic isolation member on the image sensor.
  • the inner wall of the second magnetic isolation bar communicates with the hole wall of the second through hole.
  • the at least one second magnetic isolation edge includes a target second magnetic isolation edge, and the target second magnetic isolation edge is located at the pin of the image sensor. the same side of the camera module.
  • setting the magnetic isolation edge at the position of the magnetically sensitive electronic device is beneficial to improve the magnetic isolation effect of the second magnetic isolation member, and is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic device in the camera module.
  • the at least one second magnetic isolation edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation plate satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1 mm.
  • the structure of the second magnetic isolation member by providing the structure of the second magnetic isolation member, it is beneficial to improve the magnetic isolation effect of the second magnetic isolation member, and is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic device in the camera module.
  • the camera module satisfies at least one of the following:
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5;
  • the distance between the second magnetic isolation member and the circuit board is greater than or equal to 0.1 mm;
  • the separation distance between the second magnetic isolation member and the image sensor is greater than or equal to 0.1 mm.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the structure and performance of the second magnetic isolation member by setting the structure and performance of the second magnetic isolation member, it is beneficial to improve the magnetic isolation effect of the second magnetic isolation member, and is beneficial to further reduce the magnetic interference received by the magnetically sensitive electronic device in the camera module.
  • a motor module is provided.
  • the motor module is applied to an electronic device, and the electronic device includes a circuit board.
  • the circuit board is provided with an image sensor and a drive module of the motor module.
  • the drive module provides AC power for the motor module, the drive module includes a first electrical connection port and a second electrical connection port, and the motor module includes:
  • the lens array is accommodated in the lens barrel;
  • a shape memory alloy SMA motor the SMA motor is accommodated in the lens barrel, the SMA motor includes an SMA wire, one end of the SMA wire is connected with the lens array, and the other end is fixed relative to the lens barrel, so Two ends of the SMA wire are respectively electrically connected to the first electrical connection port and the second electrical connection port;
  • the first magnetic isolation member is accommodated in the lens barrel, and is vertically disposed relative to the optical axis of the lens array, the first magnetic isolation member includes a first through hole, incident on the After the light from the motor module passes through the SMA motor, it continues to pass through the first through hole, and the shape of the first through hole corresponds to the shape of the image sensor.
  • the motor module further includes:
  • a second magnetic isolation member the second magnetic isolation member is accommodated in the lens barrel and is perpendicular to the optical axis of the lens array, the second magnetic isolation member is located between the first magnetic isolation member and the lens array. Between the SMA motors, the second magnetic isolation member includes a second through hole, and the lens array passes through the second through hole.
  • the second magnetic isolation member includes:
  • the second magnetic shielding plate is vertically arranged relative to the optical axis of the lens array, and the second through hole is located on the second magnetic shielding plate;
  • the second magnetic isolation edge is vertically arranged on the second magnetic isolation plate, and is located on the side of the second magnetic isolation plate away from the first magnetic isolation member,
  • the second magnetic separation edge surrounds the outer circumference of the second through hole.
  • the inner wall of the second magnetic separation edge communicates with the hole wall of the second through hole.
  • the at least one second magnetic isolation edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation plate satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1 mm.
  • the motor module satisfies at least one of the following:
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5;
  • the separation distance between the second magnetic isolation member and the first magnetic isolation member is greater than or equal to 0.1 mm.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the first magnetic isolation member includes:
  • the first magnetic shielding plate is vertically arranged relative to the optical axis of the lens array, and the first through hole is located on the first magnetic shielding plate;
  • the first magnetic isolation edge is located on the side of the first magnetic isolation plate close to the second magnetic isolation member, the first magnetic isolation edge is opposite to the first magnetic isolation edge
  • the magnetic plate is vertically arranged, and the first magnetic separation edge surrounds the outer circumference of the first through hole.
  • the inner wall of the first magnetic shielding edge communicates with the hole wall of the first through hole.
  • the motor module satisfies at least one of the following:
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5.
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5.
  • the motor module further includes:
  • a bracket wherein the first magnetic isolation member is located in the bracket or attached to the surface of the bracket.
  • a motor module is provided.
  • the motor module is applied to an electronic device.
  • the electronic device includes a circuit board.
  • An image sensor and a drive module of the motor module are arranged on the circuit board.
  • the drive module provides AC power for the motor module, the drive module includes a first electrical connection port and a second electrical connection port, and the motor module includes:
  • the lens array is accommodated in the lens barrel;
  • a shape memory alloy SMA motor the SMA motor is accommodated in the lens barrel, the SMA motor includes an SMA wire, one end of the SMA wire is connected with the lens array, and the other end is fixed relative to the lens barrel, so the Two ends of the SMA wire are respectively electrically connected to the first electrical connection port and the second electrical connection port;
  • a second magnetic isolation member the second magnetic isolation member is accommodated in the lens barrel, the second magnetic isolation member includes a second magnetic isolation plate and at least one second magnetic isolation edge, and the second magnetic isolation plate perpendicular to the optical axis of the lens array, the second magnetic isolation plate includes a second through hole, and the light incident to the motor module is incident to the second through hole after passing through the SMA motor , the second magnetic separation edge is vertically arranged on the second magnetic separation plate, and the second magnetic separation edge is located on the side of the second magnetic separation plate close to the SMA motor.
  • the lens array passes through the second through hole.
  • the second magnetic isolation member includes:
  • the second magnetic shielding plate is vertically arranged relative to the optical axis of the lens array, and the second through hole is located on the second magnetic shielding plate;
  • the second magnetic isolation edge is vertically arranged on the second magnetic isolation plate, and is located on the side of the second magnetic isolation plate close to the SMA motor, the first Two magnetic separation edges surround the outer circumference of the second through hole.
  • the inner wall of the second magnetic separation edge communicates with the hole wall of the second through hole.
  • the at least one second magnetic shielding edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation member satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1mm
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • a shape memory alloy SMA motor is provided, the SMA motor is applied to a photographing device, the photographing device includes a lens array, an image sensor and the SMA motor drive module, the SMA motor drive module is used for The SMA motor provides AC power, the SMA motor drive module includes a first electrical connection port and a second electrical connection port, and the SMA motor includes:
  • one end of the SMA wire is used to connect with the lens array, and the other end is fixed relative to the photographing device, and the two ends of the SMA wire are respectively connected to the first electrical connection port and the second electrical connection port.
  • the connection port is electrically connected;
  • a first magnetic isolation member the first magnetic isolation member is perpendicular to the optical axis of the photographing device, the first magnetic isolation member includes a first through hole, and the light incident to the photographing device passes through the first through hole.
  • the first through hole is incident on the image sensor, and the shape of the first through hole corresponds to the shape of the image sensor.
  • the SMA motor further includes:
  • the second magnetic isolation member is perpendicular to the optical axis of the photographing device, the second magnetic isolation member is located between the first magnetic isolation member and the SMA wire, the The second magnetic isolation member includes a second through hole for passing through the lens array.
  • the second magnetic isolation member includes:
  • the second magnetic shielding plate is vertically arranged relative to the optical axis of the photographing device, and the second through hole is located on the second magnetic shielding plate;
  • the second magnetic isolation edge is vertically arranged on the second magnetic isolation plate, and is located on the side of the second magnetic isolation plate away from the first magnetic isolation member,
  • the second magnetic separation edge surrounds the outer circumference of the second through hole.
  • the inner wall of the second magnetic separation edge communicates with the hole wall of the second through hole.
  • the at least one second magnetic shielding edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation plate satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1 mm.
  • the SMA motor satisfies at least one of the following:
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5;
  • the separation distance between the second magnetic isolation member and the first magnetic isolation member is greater than or equal to 0.1 mm.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the first magnetic isolation member includes:
  • the first magnetic shielding plate is vertically arranged relative to the optical axis of the photographing device, and the first through hole is located on the first magnetic shielding plate;
  • the first magnetic isolation edge is located on the side of the first magnetic isolation plate close to the second magnetic isolation member, the first magnetic isolation edge is opposite to the first magnetic isolation edge
  • the magnetic plate is vertically arranged, and the first magnetic separation edge surrounds the outer circumference of the first through hole.
  • the inner wall of the first magnetic shielding edge communicates with the hole wall of the first through hole.
  • the SMA motor satisfies at least one of the following:
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5.
  • the relative magnetic permeability of the first magnetic isolation member is greater than 5.
  • the SMA motor further includes:
  • a bracket wherein the first magnetic isolation member is located in the bracket or attached to the surface of the bracket.
  • a sixth aspect provides a shape memory alloy SMA motor, the SMA motor is applied to a photographing device, the photographing device includes a lens array, an image sensor and the SMA motor driving module, the SMA motor driving module is used for The SMA motor provides AC power, the SMA motor drive module includes a first electrical connection port and a second electrical connection port, and the SMA motor includes:
  • one end of the SMA wire is used to connect with the lens array, and the other end is fixed relative to the photographing device, and the two ends of the SMA wire are respectively connected to the first electrical connection port and the second electrical connection port.
  • the connection port is electrically connected;
  • the second magnetic isolation member includes a second magnetic isolation plate and at least one second magnetic isolation edge, the second magnetic isolation plate is perpendicular to the optical axis of the photographing device, the first
  • the second magnetic isolation plate includes a second through hole, the second through hole is used to pass through the lens array, and the light incident to the photographing device enters the image sensor after passing through the second through hole,
  • the second magnetic separation edge is vertically disposed on the second magnetic separation plate, and the second magnetic separation edge is located on a side of the second magnetic separation plate close to the SMA motor.
  • the second through hole is used to pass through the lens array.
  • the second magnetic isolation member includes:
  • the second magnetic shielding plate is vertically arranged relative to the optical axis of the photographing device, and the second through hole is located on the second magnetic shielding plate;
  • the second magnetic isolation edge is vertically arranged on the second magnetic isolation plate, and is located on the side of the second magnetic isolation plate close to the SMA motor, the first Two magnetic separation edges surround the outer circumference of the second through hole.
  • the inner wall of the second magnetic separation edge communicates with the hole wall of the second through hole.
  • the at least one second magnetic shielding edge satisfies:
  • the at least one second magnetic isolation edge is symmetrically arranged relative to the second through hole
  • the at least one second magnetic shielding edge is equally spaced on the outer periphery of the second through hole.
  • the second magnetic isolation member satisfies at least one of the following:
  • the thickness of the second magnetic isolation plate is greater than or equal to 0.1mm;
  • the height of the second magnetic separation edge is greater than or equal to 0.1mm
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • the relative magnetic permeability of the second magnetic isolation member is greater than 5.
  • an electronic device including the camera module according to any possible implementation manner of the first aspect to the second aspect.
  • an electronic device including the motor module according to any possible implementation manner of the third aspect to the fourth aspect.
  • an electronic device including the SMA motor described in any possible implementation manner of the fifth aspect to the sixth aspect.
  • FIG. 1 is a schematic structural diagram of an electronic device.
  • FIG. 2 is a schematic structural diagram of a camera module.
  • Figure 3 is an exploded view of a camera module.
  • FIG. 4 is a schematic structural diagram of an SMA motor.
  • FIG. 5 is an exploded view of a camera module provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second magnetic isolation member provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first magnetic isolation member provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the magnetic isolation principle of a soft magnetic material.
  • FIG. 9 is a schematic diagram of the magnetic isolation principle of a soft magnetic material.
  • FIG. 10 is a schematic diagram of the magnetic isolation principle of a soft magnetic material.
  • FIG. 11 is a schematic three-dimensional structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG. 13 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a second viewing angle.
  • FIG. 14 is a schematic three-dimensional structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a second viewing angle.
  • FIG. 16 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 19 is a schematic three-dimensional structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG. 21 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a second viewing angle.
  • FIG. 22 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 23 is a schematic three-dimensional structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG. 25 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a second viewing angle.
  • FIG. 26 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 27 is a schematic three-dimensional structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided by an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a first magnetic isolation member provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG. 30 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a second viewing angle.
  • FIG. 31 is a schematic diagram of a magnetic field distribution provided by an embodiment of the present application.
  • FIG. 32 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG 33 is a schematic structural diagram of a first magnetic isolation member, a second magnetic isolation member, and a circuit board provided in an embodiment of the present application from a first viewing angle.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may be an electronic device having a camera or photographing function, such as a mobile phone, a tablet computer, a TV (or a smart screen), a laptop computer, a video camera, a video recorder, a camera, and the like.
  • a camera or photographing function such as a mobile phone, a tablet computer, a TV (or a smart screen), a laptop computer, a video camera, a video recorder, a camera, and the like.
  • a mobile phone such as a mobile phone, a tablet computer, a TV (or a smart screen), a laptop computer, a video camera, a video recorder, a camera, and the like.
  • a camera or photographing function such as a mobile phone, a tablet computer, a TV (or a smart screen), a laptop computer, a video camera, a video recorder, a camera, and the like.
  • the embodiments of the present application are
  • the electronic device 100 may include a display screen 10 and a housing.
  • the case may include a bezel and a back cover 20 .
  • the frame may surround the outer circumference of the display screen 10 , and the frame may surround the outer circumference of the back cover 20 .
  • a certain interval may exist between the display screen 10 and the back cover 20 .
  • the display screen 10 may be arranged in parallel with respect to the back cover 20 .
  • a front camera module (camera compact module, CCM) 110 may be provided on the display screen 10 of the electronic device 100 . As shown in the left figure in FIG. 1 , the front camera module 110 may be installed on the upper left of the display screen 10 . The front camera module 110 can be used for taking selfies, for example.
  • a rear camera module 120 may be provided on the back cover 20 of the electronic device 100 . As shown in the right figure in FIG. 1 , the rear camera module 120 may be installed on the upper left of the back cover 20 . For example, the rear camera module 120 can be used to capture the scene around the electronic device 100 .
  • the installation positions of the front camera module 110 and the rear camera module 120 shown in FIG. 1 are only schematic, and the application does not limit the installation positions of the camera modules.
  • the front camera module 110 and the rear camera module 120 may also be installed at other positions on the electronic device 100 .
  • the front camera module 110 may be installed in the upper middle or upper right of the display screen 10 .
  • the rear camera module 120 may be installed on the upper middle or upper right of the back cover 20 .
  • the front camera module 110 or the rear camera module 120 may be disposed on a movable part in the electronic device 100 . By moving the movable part, the movable part can be hidden within the electronic device 100 or can be protruded out of the electronic device 100 .
  • the installation numbers of the front camera module 110 and the rear camera module 120 shown in FIG. 1 are only schematic, and the application does not limit the installation number of the camera modules.
  • the electronic device 100 may include a larger or smaller number of camera modules.
  • FIG. 2 is a schematic structural diagram of a camera module 200 provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of the camera module 200 shown in FIG. 2 .
  • the camera module 200 may be, for example, the front camera module 110 or the rear camera module 120 shown in FIG. 1 . 2 and 3, the camera module 200 may include a camera housing 201, a motor module 202 (in some cases, the motor module may also be referred to as a lens), a circuit board 203, an image sensor 207, and a bracket 206 .
  • the motor module 202 may include a lens array 2022, a voice coil motor (VCM) 204, a shape memory alloy (SMA) motor 205, and a voice coil motor for housing the lens array 2022. 204.
  • the lens barrel of the SMA motor 205 (not shown in FIG. 2).
  • the camera housing 201 can accommodate the voice coil motor 204 , the SMA motor 205 , the bracket 206 , the image sensor 207 and the like in the camera module 200 . Both the lens array 2022 and the circuit board 203 may be partially located in the camera housing 201 .
  • the camera housing 201 may also include a through hole 2011 for disposing the lens array 2022.
  • the circuit board 203 may include a drive module (not shown in FIG. 2 ), which may supply power to various electronic devices (such as the voice coil motor 204 , the SMA motor 205 , the image sensor 207 , etc.) within the camera module 200 .
  • the module may include, for example, an SMA motor drive module (the SMA motor drive module is used as an example for description below).
  • the circuit board 203 can also transmit signals from the electronic devices in the camera module 200 to the outside of the camera module 200 .
  • An image sensor 207 may be provided on the circuit board 203 . The center of the image sensor 207 may be aligned with the optical axis of the lens array 2022 .
  • the lens array 2022 can pass through the through hole 2011 on the camera housing 201 and extend out of the camera housing 201 .
  • the lens array 2022 can project light from the periphery of the camera housing 201 to the image sensor 207 .
  • the lens array 2022 can also be moved or rotated in the through hole 2011 to realize functions such as auto focus (auto focus), optical image stabilization (OIS) and the like.
  • Auto-focusing can refer to that, using the lens imaging principle and light reflection principle, the light reflected by the object can be imaged on the image sensor 207 after passing through the lens array 2022; moving one or more of the lens array 2022 according to the object distance of the object The lens can form a clear image on the image sensor 207 .
  • Autofocus can be simply regarded as the movement of the lens array 2022 or the lens in the direction of the optical axis.
  • Optical anti-shake may refer to that, by adjusting the placement angle and placement position of the lens array 2022, the phenomenon of instrument jitter occurring in the process of capturing optical signals can be reduced, thereby improving imaging quality.
  • One possible method is to detect the displacement or angle to be compensated by, for example, a gyroscope, and then drive the lens array 2022 to translate or rotate by a motor, so that the image blur caused by the shaking of the imaging instrument during exposure can be compensated.
  • Optical image stabilization can be simply regarded as translation or rotation of the lens array 2022 on a plane perpendicular to the optical axis.
  • the voice coil motor 204 may be used to perform an autofocus function. As shown in FIG. 3 , the voice coil motor 204 may include a magnet 2041 and a coil 2042 disposed around the lens array 2022 .
  • the magnet 2041 can be fixed inside the camera housing 201 and fixed relative to the camera housing 201 , and the coil 2042 can be fixed on the lens array 2022 .
  • the circuit board 203 can power the coil 2042 .
  • the energized coil 2042 can generate a magnetic field 1, and the magnetic field 1 interacts with the magnetic field 2 generated by the magnet 2041 to generate an attractive or repulsive force. Therefore, the coil 2042 can drive the lens array 2022 to move under the action of the attractive force or the repulsive force, so as to realize the function of automatic focusing.
  • the voice coil motor 204 can implement an optical anti-shake function in addition to the auto-focus function.
  • users usually hope that the camera can realize various image capturing scenarios, such as capturing distant images, using large apertures to capture close-up scenarios, and so on.
  • image capturing scenarios such as capturing distant images, using large apertures to capture close-up scenarios, and so on.
  • By adjusting the number and/or shape of the lenses in the lens array 2022 it is beneficial to realize a certain image capturing scene. Therefore, with the pursuit of various image capturing scenarios, the load or size of the lens array 2022 tends to increase gradually.
  • the insufficient driving force of the voice coil motor 204 will not be conducive to capturing high-quality images, for example, the image may be blurred; if the voice coil motor 204 is enhanced For driving force, the volume of the voice coil motor 204 needs to be increased, which is not conducive to the miniaturization of the camera module 200 .
  • the camera module 200 shown in FIG. 3 further includes an SMA motor 205 for realizing the auto-focusing function. That is, the SMA motor 205 can be used to make up for the driving force gap of the voice coil motor 204 .
  • the SMA motor 205 may be disposed perpendicular to the optical axis of the lens array 2022 . The structure and working principle of the SMA motor 205 will be described below with reference to FIG. 4 .
  • the SMA motor 205 may include through holes 2012 corresponding to the lens array 2022 in FIG. 3 . That is, the lens array 2022 can pass through the through hole 2012 on the SMA motor 205 .
  • the SMA motor 205 may, for example, be fixed on the side of the lens array 2022 close to the image sensor 207 .
  • the SMA motor 205 may further include a mover end 20541 and a mover end 20542 connected to the lens array 2022 , and a stator end 20551 and a stator end 20552 fixed relative to the camera housing 201 .
  • the SMA motor 205 may also include SMA wires 20511 , SMA wires 20512 , SMA wires 20513 , and SMA wires 20514 that are disconnected from each other.
  • SMA wire 20511 is connected between mover end 20541 and stator end 20551
  • SMA wire 20512 is connected between mover end 20541 and stator end 20552
  • SMA wire 20513 is connected between mover end 20542 and stator end 20552
  • SMA wire 20514 is connected between the mover end 20542 and the stator end 20551.
  • the SMA motor 205 may further include a reed 2050, and the reed 2050 may be connected to the mover end 20541 and the mover end 20542.
  • the reed 2050 may further include a reed arm 2052, a reed arm 2053. The end of the reed arm 2052 is close to the mover end 20541 , and the open end of the reed arm 2052 extends toward the mover end 20542 .
  • the reed arm 2052 may include a reed arm segment 20521 disposed adjacent to the SMA wire 20511 and in parallel with respect to the SMA wire 20511.
  • the reed arm 2052 may also include a reed arm segment 20522 disposed parallel to the SMA wire 20514 adjacent to the SMA wire 20514. Similarly, the end of the reed arm 2053 is close to the mover end 20542 , and the open end of the reed arm 2052 extends toward the mover end 20541 .
  • the reed arm 2053 may include a reed arm segment 20531 disposed parallel to the SMA wire 20513 adjacent to the SMA wire 20513 .
  • the reed arm 2053 may also include a reed arm segment 20532 disposed parallel to the SMA wire 20512 adjacent to the SMA wire 20512.
  • the SMA motor drive module may include a first electrical connection port 1 and a second electrical connection port 1 corresponding to the SMA wire 20511, and may also include a first electrical connection port 2 and a second electrical connection port 2 corresponding to the SMA wire 20512, and may also include The first electrical connection port 3 and the second electrical connection port 3 corresponding to the SMA wire 20513 may further include the first electrical connection port 4 and the second electrical connection port 4 corresponding to the SMA wire 20514 .
  • Both ends of the SMA wire 20511 can be electrically connected to the first electrical connection port 1 and the second electrical connection port 1 respectively, so that the SMA motor driving module can supply power to the SMA wire 20511; and the SMA wire 20511, the SMA motor driving module and the electrical connection
  • the three electrical connection wires 1 between the SMA wire 20511 and the SMA motor drive module can form an electrical connection loop.
  • Both ends of the SMA wire 20512 can be electrically connected to the first electrical connection port 2 and the second electrical connection port 2 respectively, so that the SMA motor driving module can supply power to the SMA wire 20512; and the SMA wire 20512, the SMA motor driving module and the electrical connection
  • the three electrical connection wires 2 between the SMA wire 20512 and the SMA motor drive module can form an electrical connection loop.
  • Both ends of the SMA wire 20513 can be electrically connected to the first electrical connection port 3 and the second electrical connection port 3 respectively, so that the SMA motor drive module can supply power to the SMA wire 20513; and the SMA wire 20513, the SMA motor drive module and the electrical connection
  • the three electrical connection wires 3 between the SMA wire 20513 and the SMA motor drive module can form an electrical connection loop.
  • Both ends of the SMA wire 20514 can be electrically connected to the first electrical connection port 4 and the second electrical connection port 4 respectively, so that the SMA motor driving module can supply power to the SMA wire 20514; and the SMA wire 20514, the SMA motor driving module and the electrical connection
  • the three electrical connection wires 4 between the SMA wire 20514 and the SMA motor drive module can form an electrical connection loop.
  • the SMA wire 20511 When the SMA wire 20511 is energized, the SMA wire 20511 shrinks due to heat, and the mover end 20541 tends to move toward the stator end 20551 (as shown by arrow 1). After that, the reed arm section 20521 of the reed arm 2052 is squeezed, which can resist the SMA wire 20511 to continue to shrink. The interaction force between the SMA wire 20511 and the reed arm segment 20521 can cause the lens array 2022 to be relatively precisely paralleled or rotated to a specified position. After the SMA wire 20511 is powered off, the SMA wire 20511 cools down and stretches, and returns to its original state under the action of the reed arm section 20521 .
  • the SMA wire 20512 When the SMA wire 20512 is energized, the SMA wire 20512 shrinks due to heat, and the mover end 20541 tends to move toward the stator end 20552 (as shown by arrow 2). After that, the reed arm segment 20532 of the reed arm 2053 is squeezed, which can resist the SMA wire 20512 to continue to contract. The interaction force between the SMA wire 20512 and the reed arm segment 20532 can cause the lens array 2022 to be relatively precisely paralleled or rotated to a desired position. After the SMA wire 20512 is powered off, the SMA wire 20512 cools down and extends, and returns to its original state under the action of the reed arm section 20532 .
  • the SMA wire 20513 When the SMA wire 20513 is energized, the SMA wire 20513 shrinks due to heat, and the mover end 20542 tends to move toward the stator end 20552 (as shown by arrow 3). Afterwards, the reed arm segment 20531 of the reed arm 2053 is squeezed, which can resist the SMA wire 20513 to continue to contract. The interaction force between the SMA wire 20513 and the reed arm segment 20531 can cause the lens array 2022 to be relatively precisely paralleled or rotated to a specified position. After the SMA wire 20513 is powered off, the SMA wire 20513 cools down and stretches, and returns to its original state under the action of the reed arm section 20531 .
  • the SMA wire 20514 When the SMA wire 20514 is energized, the SMA wire 20514 shrinks due to heat, and the mover end 20542 tends to move toward the stator end 20551 (as shown by arrow 4). Afterwards, the reed arm segment 20522 of the reed arm 2052 is squeezed, which can resist the SMA wire 20514 to continue to contract. The interaction force between the SMA wire 20514 and the reed arm segment 20522 can cause the lens array 2022 to be relatively precisely paralleled or rotated to a desired position. After the SMA wire 20514 is powered off, the SMA wire 20514 cools down and extends, and returns to its original state under the action of the reed arm section 20522 .
  • the chip (or processor) that controls the SMA motor 205 may individually control the SMA wires 20511 , SMA wires 20512 , SMA wires 20513 , and SMA wires 20514 .
  • the chip controlling the SMA motor 205 can calculate the to-be-moved position of the lens array 2022, and determine that the SMA wire 20511, the SMA wire 20512, the SMA wire 20513, and the SMA wire 20514 correspond to shrinkage 1, shrinkage 2, shrinkage 3, Shrinkage 4.
  • the chip can control the circuit board 203 to output the current of the current intensity 1 to the SMA wire 20511 according to the current intensity 1 corresponding to the contraction amount 1 of the SMA wire 20511, and stop the SMA wire 20512, SMA wire 20513, The driving of the SMA wire 20514; in the period 2, the chip can control the circuit board 203 to output the current of the current strength 2 to the SMA wire 20512 according to the current intensity 2 corresponding to the contraction amount 2 of the SMA wire 20512, and stop the SMA wire 20511, The driving of the SMA wire 20513 and the SMA wire 20514; in the period 3, the chip can control the circuit board 203 to output the current of the current strength 3 to the SMA wire 20513 according to the current strength 3 corresponding to the contraction amount 3 of the SMA wire 20513, and stop the Driving of the SMA wire 20512, SMA wire 20511, and SMA wire 20514; in the period 4, the chip can control the circuit board 203 to output
  • the SMA motor 205 with thermal shrinkage and cold expansion can be deformed, thereby driving the lens array 2022 to translate and rotate relative to the camera housing 201, so as to realize the optical anti-shake function.
  • the circuit board 203 can supply power to the voice coil motor 204 to drive the voice coil motor 204 for autofocus; the circuit board 203 can also supply power to the SMA motor 205 to drive the SMA The motor 205 performs optical image stabilization. It should be understood that, in other examples, the voice coil motor 204 and the SMA motor 205 in the camera module 200 may jointly or jointly implement the optical anti-shake function.
  • the SMA motor 205 can be disposed on the bracket 206 in the camera module 200 .
  • the bracket 206 can be fastened to the circuit board 203 , for example. That is, the bracket 206 may be located between the image sensor 207 and the SMA motor 205 . This is beneficial to avoid the SMA motor 205 being too close to the image sensor 207 and reduce the magnetic field influence of the SMA motor 205 on the image sensor 207 .
  • the bracket 206 may include a through hole 2013 corresponding to the image sensor 207 , and the projection area of the bracket 206 on the circuit board 203 may include the projection area of the image sensor 207 on the circuit board 203 .
  • light from the lens array 2022 can pass through the through holes 2013 on the bracket 206 to reach the image sensor 207 .
  • the bracket 206 may also include through holes 2014 .
  • the through hole 2014 and the pin (or the signal input port) of the SMA motor 205 are located on the same side of the camera module 200 .
  • the driving or feeding of the SMA motor 205 from the circuit board 203 can be accomplished by electrical connection wires from the circuit board 203 , passing through the through holes 2014 and connecting to the pins of the SMA motor 205 .
  • the circuit board 203 can provide a low-frequency AC signal (such as a pulse width modulation (PWM) signal) for the SMA motor 205, so as to reduce the power consumption of the SMA motor 205, reduce the resonance abnormal noise of the SMA motor 205, and help avoid the SMA motor 205 Overheating.
  • This low-frequency AC signal is coupled with the power supply loop of the SMA motor, so that the SMA motor 205 may generate an interfering magnetic field, which affects the normal operation of the magnetically sensitive devices (such as the image sensor 207, the power supply of the image sensor 207, etc.) in the camera module 200.
  • PWM pulse width modulation
  • the bracket 206 may be a soft magnetic material with high magnetic permeability, such as low carbon steel, iron-silicon alloy, iron-aluminum alloy, iron-silicon-aluminum alloy, nickel-iron alloy, iron-cobalt alloy, Soft ferrite, amorphous soft magnetic alloy, ultra-microcrystalline soft magnetic alloy, etc.
  • this can only limit the disturbance of the magnetic field generated by the SMA motor 205 (eg, only reduce the intensity of the disturbance magnetic field by 10-20%). If the SMA motor 205 is powered by a high-frequency alternating current, the magnetic isolation effect that can be achieved by the bracket 206 using the soft magnetic material will be more limited.
  • bracket 206 since the distance between the bracket 206 and the image sensor 207 is very close, the bracket 206 may be affected by the SMA motor 205 to induce a new magnetic field, and the strength of the new magnetic field may be relatively large. This is even more disadvantageous in reducing magnetic field interference to the image sensor 207 .
  • FIG. 5 is a camera module 200 provided by an embodiment of the present application.
  • the camera module 200 shown in FIG. 5 may include a camera housing 201 , a lens array 2022 , a circuit board 203 , a voice coil motor 204 , an SMA motor 205 , a bracket 206 , and an image sensor 207 .
  • the camera module 200 shown in FIG. 5 may further include a first magnetic isolation member 620 and a second magnetic isolation member 610 disposed between the SMA motor 205 and the bracket 206 .
  • the first magnetic isolation member 620 may be relatively closer to the image sensor 207 ; compared with the first magnetic isolation member 620 , the second magnetic isolation member 610 may be relatively closer to the lens array 2022 .
  • the first magnetic isolation member 620 may be located between the second magnetic isolation member 610 and the bracket 206 .
  • bracket 206 may be located between the first magnetic isolation member 620 and the second magnetic isolation member 610 .
  • first magnetic isolation member 620 may be located in the bracket 206
  • second magnetic isolation member 610 may be located on the side of the bracket 206 close to the SMA motor 205 .
  • FIG. 6 shows a schematic structural diagram of a first magnetic isolation member 620 provided by an embodiment of the present application.
  • the first magnetic isolation member 620 may include a first magnetic isolation plate 621 arranged in parallel with respect to the image sensor 207 .
  • the first magnetic shielding plate 621 can also be understood as being vertically disposed relative to the optical axis of the lens array 2022 .
  • the outer contour of the first magnetic isolation plate 621 may be, for example, a rectangle, a circle, a polygon, etc., which may not be limited in this application.
  • the first magnetic isolation plate 621 may include a first through hole 6211 . 5 and 6 , after the light incident to the camera module 200 passes through the second magnetic shielding member 610 , it can pass through the first through hole 6211 ; the light emitted from the first through hole 6211 can be projected on the image sensor 207 superior.
  • the shape of the hole wall of the first through hole 6211 may correspond to the shape of the image sensor 207 .
  • the third projection area of the hole wall of the first through hole 6211 on the circuit board 203 corresponds to the fourth projection area of the image sensor 207 on the circuit board 203 (the fourth projection area may be located in the third projection area and the area difference between the third projection area and the fourth projection area may be smaller than the preset area, that is, the maximum distance between the outer contour of the fourth projection area and the outer contour of the third projection area may be smaller than the preset distance).
  • the image sensor 207 can not be blocked by the first magnetic shielding plate 621 to detect the light from the lens array 2022, and it is beneficial to ensure the magnetic shielding effect of the first magnetic shielding member 620 on the image sensor 207 (if the first through hole 6211 The shape of the hole wall is too different from the shape of the image sensor 207, which may reduce the magnetic isolation effect of the first magnetic isolation member 620 on the image sensor 207).
  • the first through hole 6211 may be, for example, a square hole.
  • FIG. 7 shows a schematic structural diagram of a second magnetic isolation member 610 provided by an embodiment of the present application.
  • the second magnetic isolation member 610 may include a second magnetic isolation plate 611 arranged in parallel with respect to the image sensor 207 .
  • the second magnetic shielding plate 611 can also be understood as being vertically disposed relative to the optical axis of the lens array 2022 .
  • the outer contour of the second magnetic isolation plate 611 may be, for example, a rectangle, a circle, a polygon, etc., which may not be limited in this application.
  • the second magnetic isolation plate 611 may include a second through hole 6111 . 5 and 7 , after the light incident on the camera module 200 passes through the SMA motor 205 , it can pass through the second through hole 6111 ; the light emitted from the second through hole 6111 can be projected on the image sensor 207 .
  • the shape of the hole wall of the second through hole 6111 may correspond to the shape of the lens array 2022 .
  • the first projection area of the hole wall of the second through hole 6111 on the circuit board 203 corresponds to the second projection area of the lens array 2022 on the circuit board 203 (the second projection area may be located in the first projection area and the area difference between the first projection area and the second projection area may be smaller than the preset area, that is, the maximum distance between the outer contour of the second projection area and the outer contour of the first projection area may be smaller than the preset distance).
  • the lens array 2022 can be assembled in the second through hole 6111 , and it is beneficial to improve the magnetic isolation effect of the second magnetic isolation member 610 on the image sensor 207 (if the shape of the hole wall of the second through hole 6111 is the same as the shape of the lens array 2022 ) If the difference is too large, the magnetic isolation effect of the second magnetic isolation member 610 on the image sensor 207 may be reduced).
  • the second through hole 6111 may be, for example, a circular hole.
  • the second magnetic isolation member 610 may further include second magnetic isolation ribs 612 disposed on the second magnetic isolation plate 611 , and the second magnetic isolation ribs 612 may be vertically disposed relative to the second magnetic isolation plate 611 .
  • the second magnetic barrier ribs 612 can also be understood as being arranged perpendicular to the image sensor 207 , or arranged parallel to the optical axis of the lens array 2022 .
  • the second magnetic barrier rib 612 may surround the outer periphery of the second through hole 6111 and be located on the side of the second magnetic barrier plate 611 away from the image sensor 207 . In the examples shown in FIGS.
  • the second magnetic barrier ribs 612 may be annular, and the inner walls of the second magnetic barrier ribs 612 (the side of the second magnetic barrier ribs 612 closest to the optical axis of the lens array 2022 ) The wall) 6121 may be communicated to the hole wall of the second through hole 6111.
  • a stepped surface may be provided between the inner wall 6121 of the second magnetic isolation bar 612 and the hole wall of the second through hole 6111 , and the stepped surface may be disposed parallel to the second magnetic isolation plate 611 , for example.
  • Both the first magnetic isolation member 620 and the second magnetic isolation member 610 may use soft magnetic materials.
  • the relative permeability of the first magnetic isolation member 620 (the relative permeability may refer to the ratio of the magnetic permeability of the special medium to the vacuum permeability, where the The magnetization degree) may be greater than the first preset relative permeability, and the value of the first preset relative permeability may be, for example, 5, 10, or 100.
  • the relative magnetic permeability of the first magnetic isolation member 620 is 70.
  • the relative permeability of soft magnetic materials may be different.
  • the relative magnetic permeability of the first magnetic isolation member 620 may be greater than 5 within 0-1 MHz.
  • the relative permeability of the second magnetic isolation member 610 may be greater than the second preset relative permeability, and the value of the second preset relative permeability may be, for example, 5, 10, or 100.
  • the relative magnetic permeability of the second magnetic isolation member 610 is 70.
  • the relative magnetic permeability of the second magnetic isolation member 610 may be greater than 5 within 0-1 MHz.
  • FIG. 8 shows the principle of the direction deflection of the magnetic field as it passes from material 1 into material 2 .
  • the magnetic field B 1 in material 1 can reach the interface between material 1 and material 2 along direction 1 at an angle ⁇ 1 with the normal perpendicular to the interface.
  • the magnetic field B 2 entering the material 2 can continue to propagate along the direction 2 from the interface between the material 1 and the material 2, and the angle between the direction 2 and the normal perpendicular to the interface is ⁇ 2 .
  • the relative permeability of material 1 is ⁇ 1
  • the relative permeability of material 1 is ⁇ 2 . In the case of ⁇ 2 > ⁇ 1 , ⁇ 2 > ⁇ 1 .
  • ⁇ 2 is much larger than ⁇ 1 , ⁇ 2 approaches 90°, and the direction of B 2 is approximately tangent to the interface.
  • the direction deflection can occur after the interfering magnetic field enters the soft magnetic material medium from other media. Therefore, the magnetic field component propagating along the normal is relatively small.
  • the changing magnetic field will produce eddy current effects when passing through the soft magnetic material, and part of the energy disturbing the magnetic field can be converted into heat energy and dissipated.
  • the magnitude of the magnetic field energy that can be converted into thermal energy is usually related to the electrical conductivity of the soft magnetic material.
  • the direction of the magnetic domain of the soft magnetic material can be changed.
  • the constantly changing magnetic domains can interact, causing the material to heat up.
  • the ability to change the magnetic domain orientation is usually related to parameters such as residual magnetic flux and coercive force of soft magnetic materials.
  • the soft magnetic material can weaken the intensity of the interfering magnetic field, that is, B in in FIG. 9 can be larger than B out .
  • arranging a soft magnetic material between the disturbed loop and the disturbed loop is beneficial to reduce the intensity of the magnetic field entering the disturbed loop.
  • the interference magnetic field from the SMA motor continues to propagate to the image sensor 207 after passing through the second magnetic isolation member 610 and the first magnetic isolation member 620 .
  • the magnetic field component is very small; in addition, the SMA motor can generate a changing magnetic field, and the changing magnetic field will generate an eddy current effect when passing through the second magnetic isolation member 610 or the first magnetic isolation member 620, and the changing magnetic field can make the The direction of the magnetic domain of the second magnetic isolation member 610 or the first magnetic isolation member 620 is changed, so that part of the energy of the interfering magnetic field can be converted into heat energy and dissipated. Therefore, both the first magnetic isolation member 620 and the second magnetic isolation member 610 use soft magnetic materials, which is beneficial to reduce the magnetic field interference received by the image sensor 207 or the power supply of the image sensor 207 .
  • FIG. 11 to 13 show the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 provided by the present application (it should be understood that, compared with the circuit board 203 shown in FIGS. 2 to 5 , FIG. 11 A positional relationship between the shape of the circuit board 203 on which the image sensor 207 is provided is simply expressed to FIG. 13 .
  • 11 shows a three-dimensional schematic diagram of the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board 203;
  • FIG. 12 shows the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board.
  • 203 is a schematic diagram of the structure under the first viewing angle, and the first viewing angle can be the viewing angle shown by the arrow 901 in FIG.
  • FIG. 11 A schematic structural diagram of the two magnetic isolation members 610 and the circuit board 203 at a second viewing angle, the second viewing angle may be the viewing viewing angle indicated by the arrow 902 in FIG. 11 (ie, the viewing viewing angle parallel to the optical axis).
  • the height h 1 of the second magnetic barrier ribs 612 may be greater than or equal to 0.1 mm.
  • the height h 1 of the second magnetic barrier ribs 612 may be 0.2 mm.
  • the thickness h 2 of the second magnetic isolation plate 611 may be greater than or equal to 0.1 mm.
  • the thickness h 2 of the second magnetic shielding plate 611 may be 0.15 mm.
  • the thickness h 2 of the second magnetic isolation plate 611 may be greater than or equal to 0.2 mm.
  • the total thickness (eg h 1 +h 2 ) of the second magnetic isolation member can be determined according to the position of the SMA motor 205 relative to the lens array 2022 .
  • the distance between the end of the lens array 2022 close to the image sensor and the SMA motor 205 is s 1 , h 1 +h 2 ⁇ s 1 .
  • the second magnetic shield should not affect the autofocus and optical image stabilization of the lens array 2022 .
  • the thickness h 3 of the first magnetic isolation plate 621 may be greater than or equal to 0.1 mm.
  • the thickness h 3 of the first magnetic shielding plate 621 may be 0.15 mm.
  • the thickness h 3 of the first magnetic isolation plate 621 may be greater than or equal to 0.2 mm.
  • the thickness h3 of the first magnetic shielding plate 621 may be relatively small, for example, the thickness h3 of the first magnetic shielding plate 621 It can be 0.005 to 0.05mm. For another example, the thickness h 3 of the first magnetic shielding plate 621 may be 0.01 mm.
  • the distance between the first magnetic isolation plate 621 and the circuit board 203 may be greater than or equal to 0.1 mm.
  • the separation distance between the first magnetic shielding plate 621 and the circuit board 203 may be 0.8 mm.
  • the separation distance d 1 between the first magnetic shielding plate 621 and the image sensor 207 may be greater than or equal to 0.1 mm.
  • the separation distance d 1 between the first magnetic shielding plate 621 and the image sensor 207 may be 0.8 mm.
  • the separation distance d 2 (eg, the minimum separation distance, the average separation distance) between the second magnetic separation plate 611 and the first magnetic separation plate 621 may be greater than or equal to 0.1 mm.
  • the separation distance d 2 between the second magnetic shielding plate 611 and the first magnetic shielding plate 621 may be 0.15 mm.
  • the second magnetic isolation plate 611 and the first magnetic isolation plate 621 may be respectively attached to both sides of the bracket 206 as shown in FIG. 5 , between the second magnetic isolation plate 611 and the first magnetic isolation plate 621 .
  • the separation distance may be equal to the thickness of the bracket 206 .
  • the projection area of the first through hole 6211 of the first magnetic isolation member 620 on the circuit board 203 (ie, the third projection area above) is the same as that of the image sensor 207 on the circuit board 203
  • the projection area of (ie, the fourth projection area above) can be approximately completely coincident. That is, the maximum distance between the first outer contour of the third projection area and the second outer contour of the fourth projection area may be approximately equal to zero.
  • the photosensitive area of the image sensor 207 may be a partial area of the image sensor 207, and even if the third projection area and the fourth projection area are completely coincident, the first magnetic shielding member 620 may not block it The photosensitive area of the image sensor 207 .
  • the first magnetic isolation member 620 may have a relatively large magnetic isolation area (that is, it is more beneficial to block the magnetic field interference of the SMA motor to the pins of the image sensor 207 ), which is beneficial to reduce the image sensor 207 or the magnetic field of the image sensor 207 . Magnetic field disturbances to the power supply.
  • the outer contour of the projection area of the second through hole 6111 of the second magnetic shielding plate 611 on the circuit board 203 ie, the first projection area above
  • the maximum distance between the outer contour of the projection area of the lens array 2022 on the circuit board 203 ie, the second projection area above
  • FIG. 14 and 15 show another positional relationship between the first magnetic isolation member 620 , the second magnetic isolation member 610 and the circuit board 203 provided in the present application, and the circuit board 203 is provided with the image sensor 207 .
  • 14 shows a three-dimensional schematic diagram of the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board 203;
  • FIG. 15 shows the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board.
  • 203 is a schematic diagram of the structure under the first viewing angle, and the first viewing angle may be the viewing viewing angle indicated by the arrow 1501 in FIG. 14 (ie, the viewing viewing angle perpendicular to the optical axis).
  • the schematic structural diagram of the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 from the second viewing angle may refer to the embodiment shown in FIG. 12 , wherein the second viewing angle may be along the arrow 1501 in FIG. 14 .
  • the viewing angle ie, the viewing angle parallel to the optical axis.
  • the projection area of the first through hole 6211 of the first magnetic isolation member 620 on the circuit board 203 (ie, the third projection area above)
  • the projection area of the image sensor 207 on the circuit board 203 (ie, the fourth projection area above) may not completely coincide, and the fourth projection area may be located within the third projection area.
  • the projection area of the pins 2071 of the image sensor 207 on the circuit board 203 may be located within the third projection area. That is to say, the maximum value of the distance d 3 between the first outer contour of the third projection area and the second outer contour of the fourth projection area may be greater than zero.
  • the maximum distance between the first outer contour of the third projection area and the second outer contour of the fourth projection area may be less than or equal to 1.5 mm.
  • the average distance between the first outer contour of the third projection area and the second outer contour of the fourth projection area may be 0.2 mm.
  • FIG. 16 shows two magnetic field distribution diagrams, namely magnetic field distribution diagram-1 and magnetic field distribution diagram-2.
  • Magnetic field distribution diagram-1 corresponds to the camera module 200 shown in FIG. 2 .
  • the magnetic field distribution map-2 corresponds to the camera module 200 shown in FIG. 5 , and the magnetic field distribution map-2 may include the first magnetic isolation member 620 and the second magnetic isolation member 610 as shown in FIG. 5 .
  • the disturbed plane in FIG. 16 may refer to the plane where the image sensor 207 shown in FIG. 2 or FIG. 5 is located. It can be seen from Figure 16 that in the magnetic field distribution map-1, the magnetic field intensity near the disturbed plane is relatively large; in the magnetic field distribution map-2, the magnetic field intensity near the disturbed plane is relatively small.
  • the magnetic field distribution diagram of the local observation area-1 as shown in FIG. 17 can be obtained.
  • the magnetic field distribution diagram of the local observation area-2 as shown in FIG. 17 can be obtained.
  • the magnetic field distribution map of the local observation area-1 may correspond to the camera module 200 shown in FIG. 2 .
  • the magnetic field distribution map of the local observation area-2 may correspond to the camera module 200 shown in FIG. 5 .
  • the first magnetic isolation member 620 and the second magnetic isolation member 610 shown in FIG. 5 are arranged in the magnetic field distribution diagram of the partial observation area-1.
  • the magnetic field distribution diagram of the local observation area-1 since the material of the bracket 206 can be a non-magnetic material, the bracket 206 cannot play a magnetic isolation effect, and the magnetic field change basically does not occur when the interfering magnetic field passes through the bracket 206, and the bracket 206 The phenomenon of eddy current effect and magnetic domain direction change basically does not occur in 206 .
  • the first magnetic isolation member 620 and the second magnetic isolation member 610 are both soft magnetic materials, so the magnetic field changes when the interfering magnetic field passes through the second magnetic isolation member 610 , the magnetic field changes again when the interfering magnetic field passes through the first magnetic isolation member 620 ; in addition, eddy current effects and changes in the direction of magnetic domains may occur in both the first magnetic isolation member 620 and the second magnetic isolation member 610 .
  • FIG. 18 shows the magnetic field distribution diagram of the disturbed plane-1 and the magnetic field distribution diagram of the disturbed plane-2.
  • the magnetic field distribution diagram of the disturbed plane-1 corresponds to the camera module 200 shown in FIG. 2 .
  • the magnetic field distribution diagram of the disturbed plane-2 corresponds to the camera module 200 shown in FIG. 5 . It can be seen that the image sensor 207 in FIG. 2 can be subjected to a relatively large interfering magnetic field, while the image sensor 207 in FIG. 5 can be subjected to a relatively small interfering magnetic field.
  • Table 1 compares the various examples provided in this application in terms of magnetic flux. It can be seen that, compared with the camera module 200 shown in FIG. 2 , in the camera module 200 shown in FIG. 5 , the magnetic field received by the magnetically sensitive components (including the image sensor 207 , the power supply on the circuit board 203 , etc.) The level of interference can be reduced by about 44-46%. Compared with the camera module using only a single-layer soft magnetic material member, in the camera module 200 shown in FIG. 5 , the magnetic field interference degree to the magnetically sensitive components can be reduced by about 28-42%.
  • FIGS. 19 to 21 show another second magnetic isolation member 610 provided by the embodiment of the present application, and a positional relationship among the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 .
  • 19 shows a schematic three-dimensional structure of the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 ;
  • FIG. 20 shows the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 is a schematic view of the structure under the first viewing angle, the first viewing angle may be the viewing angle shown by the arrow 1901 in FIG. 19 (ie, the viewing angle parallel to the optical axis);
  • FIG. 19 shows a schematic three-dimensional structure of the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 ;
  • FIG. 20 shows the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 is a schematic view of the structure under the first viewing
  • the second viewing angle may be the viewing viewing angle indicated by the arrow 1902 in FIG. 19 (ie, the viewing viewing angle perpendicular to the optical axis).
  • the second magnetic isolation member 610 shown in FIG. 19 can be applied to the camera module 200 shown in FIG. 2 or FIG. 5 .
  • the second magnetic isolation member 610 shown in FIGS. 19 to 21 may include two second magnetic isolation edges 612 , each of which surrounds the second magnetic isolation edge 612 .
  • the outer circumference of the through hole 6111 is perpendicular to the second magnetic isolation plate 611 .
  • the shape of each second magnetic separation edge 612 may be 1/N 1 annular shape, N 1 >2.
  • N 1 may be, for example, 4, that is, the shape of each second magnetic shielding edge 612 is a 1/4 annular shape.
  • the inner wall (ie, the side wall closest to the optical axis of the lens array 2022 as shown in FIG. 5 ) 6121 of each second magnetic barrier rib 612 may communicate with the hole wall of the second through hole 6111 .
  • the two second magnetic barrier ribs 612 can be arranged relative to the image sensor 207 .
  • the center planes of the sensors 207 are arranged symmetrically. That is to say, the position of the second magnetic isolation edge 612 on the second magnetic isolation plate 611 can be as close as possible to the pin 2071 of the image sensor 207 (for example, the second magnetic isolation edge 612 can be located with the pin 2071 in the position shown in FIG. 5 . the same side of the camera module 200 ) to improve the magnetic isolation effect as much as possible.
  • the second magnetic barrier ribs 612 may also be asymmetrically arranged on the second magnetic barrier plate 611 .
  • FIG. 22 shows magnetic field distribution diagrams corresponding to the embodiments shown in FIGS. 19 to 21 .
  • Table 2 compares the various examples provided in this application in terms of magnetic flux. It can be seen that, compared with the embodiment shown in FIG. 2 , in the embodiment shown in FIGS. 19 to 21 , the magnetic field interference level of the magnetic sensitive components (including the image sensor 207 , the power supply on the circuit board 203 , etc.) can be reduced by about 44-46%. Compared with the embodiment using only the single-layer soft magnetic material member, in the embodiment shown in FIGS. 19 to 21 , the magnetic field interference degree to which the magnetic sensitive component is subjected can be reduced by about 28-42%. It can be seen from the magnetic field distribution diagram shown in FIG.
  • FIGS. 23 to 25 show yet another second magnetic isolation member 610 provided by the embodiments of the present application, and a positional relationship among the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 .
  • 23 shows a schematic three-dimensional structure of the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board 203;
  • FIG. 24 shows the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board.
  • 203 is a schematic diagram of the structure under the first viewing angle, the first viewing angle may be the viewing angle shown by the arrow 2301 in FIG. 23 (ie, the viewing angle parallel to the optical axis); FIG.
  • a schematic structural diagram of the two magnetic isolation members 610 and the circuit board 203 under a second viewing angle may be the viewing viewing angle indicated by the arrow 2302 in FIG. 23 (ie, the viewing viewing angle perpendicular to the optical axis).
  • the second magnetic isolation member 610 shown in FIG. 23 can be applied to the camera module 200 shown in FIG. 2 or FIG. 5 .
  • the second magnetic isolation member 610 shown in FIGS. 23 to 25 may include a larger number of second magnetic isolation ribs 612 .
  • the second magnetic isolation member 610 may include four second magnetic isolation ribs 612 , and the shape of each of the second magnetic isolation ribs 612 may be 1/8 to 1/6 annular shape.
  • the four second magnetic isolation bars 612 may surround the outer periphery of the second through holes 6111 at equal intervals.
  • the four second magnetic separation bars 612 may be symmetrically arranged with respect to the optical axis of the lens array 2022 as shown in FIG. 5 .
  • the interference magnetic field intensity region (or magnetic sensitive component) is not symmetrically distributed, the magnetic isolation effect may be better because the second magnetic isolation edge 612 is closer to the interference magnetic field intensity region (or magnetic sensitive component), so the second magnetic isolation edge 612 may be better.
  • the plurality of second magnetic isolation ribs 612 on the magnetic isolation member 610 may also be distributed asymmetrically.
  • the strong regions of the interfering magnetic field (or the magnetically sensitive components) are not distributed at equal intervals, the plurality of second magnetic isolation bars 612 on the second magnetic isolation member 610 may also be distributed at unequal intervals.
  • FIG. 26 shows magnetic field distribution diagrams corresponding to the embodiments shown in FIGS. 23 to 25 .
  • Table 3 compares the various examples provided in this application in terms of magnetic flux. It can be seen that, compared with the embodiment shown in FIG. 2, in the embodiment shown in FIG. 23 to FIG. 25, the magnetic field interference level of the magnetic sensitive components (including the image sensor 207, the power supply on the circuit board 203, etc.) can be reduced by about 44-46%. Compared with the embodiment using only a single-layer soft magnetic material member, in the embodiment shown in FIGS. 23 to 25 , the magnetic field interference degree to which the magnetic sensitive component is subjected can be reduced by about 28-42%. It can be seen that the embodiments shown in FIGS.
  • the comb-tooth-shaped second magnetic isolation ribs are arranged on the second magnetic isolation plate, which is beneficial to reduce the overall weight of the second magnetic isolation member and improve the magnetic isolation effect of the second magnetic isolation member. There is basically no impact; and it is also beneficial to flexibly avoid other devices in the camera module.
  • n second magnetic barrier ribs 612 are provided on the second magnetic barrier plate 611 (n is an integer greater than 1), due to the second magnetic barrier The rib 612 should be as close to the second through hole 6111 as possible, therefore, the shape of each second magnetic isolation rib 612 may be a small segment of a complete circle.
  • the shape of each of the second magnetic isolation edges 612 may be 1/N circular rings. , N>n.
  • the n second magnetic barrier ribs 612 may be arranged to form a comb-shaped magnetic barrier barrier assembly.
  • FIGS. 27 to 30 show another first magnetic isolation member 620 provided by the embodiments of the present application, and a positional relationship among the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 .
  • 27 shows a schematic three-dimensional structure of the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 ;
  • FIG. 28 shows a schematic structural diagram of the first magnetic isolation member 620 ;
  • FIG. 29 shows A schematic structural diagram of the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board 203 at a first viewing angle.
  • the first viewing angle may be the viewing angle indicated by the arrow 2701 in FIG.
  • FIG. 30 shows a schematic structural diagram of the first magnetic isolation member 620, the second magnetic isolation member 610, and the circuit board 203 under a second viewing angle, and the second viewing angle can be along the viewing angle indicated by the arrow 2702 in FIG. 27. (ie viewing angle perpendicular to the optical axis).
  • the first magnetic isolation member 620 shown in FIG. 27 can be applied to the camera module 200 shown in FIG. 2 or FIG. 5 .
  • the first magnetic isolation member 620 shown in FIGS. 27 to 30 may include first magnetic isolation ribs 622 .
  • the first magnetic separation edge 622 may be perpendicular to the first magnetic separation plate 621 .
  • the first magnetic isolation rib 622 may surround the outer periphery of the first through hole 6211 and be located on a side of the first magnetic isolation plate 621 away from the image sensor 207 .
  • the first magnetic barrier rib 622 may be in the shape of a box.
  • the height h 4 of the first magnetic barrier rib 622 may be greater than or equal to or greater than or equal to 0.01 mm.
  • the height h 4 of the first magnetic barrier ribs 622 may be 0.1 mm. Referring to FIGS. 5 and 27 , the height h 4 of the first magnetic barrier ribs 622 may be smaller than the distance between the first magnetic barrier plate 621 and the lens array 2022 .
  • the inner wall of the first magnetic barrier rib 622 ie, the side wall of the first magnetic barrier rib 622 closest to the optical axis of the lens array 2022 shown in FIG. 5
  • the inner wall of the first magnetic barrier rib 622 can be communicated with the first through hole 6211 pore wall.
  • a stepped surface is disposed between the inner wall 6221 of the first magnetic isolation edge 622 and the hole wall of the first through hole 6211 , and the stepped surface may be disposed in parallel with the first magnetic isolation plate 621 .
  • FIG. 31 shows magnetic field distribution diagrams corresponding to the embodiments shown in FIGS. 27 to 30 .
  • Table 4 compares the various examples provided in this application in terms of magnetic flux. It can be seen that, compared with the embodiment shown in FIG. 2 , in the embodiment shown in FIGS. 27 to 30 , the magnetic field interference level of the magnetic sensitive components (including the image sensor 207 , the power supply on the circuit board 203 , etc.) can be reduced by about 48-50%. Compared with the embodiment using only the single-layer soft magnetic material member, in the embodiment shown in FIGS. 27 to 30 , the magnetic field disturbance degree to the magnetic sensitive component can be reduced by about 30-47%.
  • the first magnetic isolation member 620 may include a plurality of first magnetic isolation edges 622, and each first magnetic isolation edge 622 may be vertically disposed on the first magnetic isolation plate 621 on. Each of the first magnetic isolation ribs 622 may surround the outer circumference of the first through hole 6211 . In one example, the inner wall 6221 of each of the first magnetic barrier ribs 622 may communicate with the hole wall of the first through hole 6211 . In one example, when the first through hole 6211 is a square hole, any one of the first magnetic barrier ribs 622 may be in the shape of a long strip or a corner. In one example, the plurality of first magnetic barrier ribs 622 may be distributed symmetrically or equally spaced. In an example, when the number of the first magnetic barrier ribs 622 is relatively large, the n first magnetic barrier ribs 622 may be arranged to form a comb-shaped magnetic barrier barrier assembly.
  • the interference magnetic field intensity region (or magnetic sensitive component) is not symmetrically distributed, since the closer the first magnetic isolation edge 622 is to the interference magnetic field intensity region (or magnetic sensitive component), the magnetic isolation effect may be better.
  • the plurality of first magnetic isolation ribs 622 on the magnetic isolation member 620 may also be distributed asymmetrically. Similarly, if the strong regions of the interfering magnetic field (or magnetic sensitive components) are not distributed at equal intervals, the plurality of first magnetic isolation edges 622 on the first magnetic isolation member 620 may also be distributed at unequal intervals.
  • FIG. 32 shows a positional relationship between the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 provided in the embodiment of the present application.
  • the second magnetic isolation member 610 may refer to the embodiment shown in FIG. 19
  • the first magnetic isolation member 620 may refer to the embodiment shown in FIG. 27 , which will not be repeated here.
  • FIG. 33 shows a positional relationship between the first magnetic isolation member 620 , the second magnetic isolation member 610 , and the circuit board 203 provided in the embodiment of the present application.
  • the second magnetic isolation member 610 may refer to the embodiment shown in FIG. 23
  • the first magnetic isolation member 620 may refer to the embodiment shown in FIG. 27 , which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

本申请提供了摄像头模组(200)、马达模组(202)、SMA马达(205)、电子设备(100)。摄像头模组(200)包括:SMA马达(205)、透镜阵列(2022)、多个隔磁件、图像传感器(207)。SMA马达(205)用于移动透镜阵列(2022);隔磁件位于SMA马达(205)与图像传感器(207)之间。本申请提供的方案有利于减小摄像头模组(200)内磁敏感电子器件所受到的磁干扰的程度。

Description

形状记忆合金马达、马达模组、摄像头模组、电子设备
本申请要求于2020年11月28日提交中国专利局、申请号为202011365693.6、申请名称为“形状记忆合金马达、马达模组、摄像头模组、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,并且更具体地,涉及一种形状记忆合金马达、马达模组、摄像头模组、电子设备。
背景技术
用户通常希望手机摄像头可以实现多种图像拍摄场景,如拍摄远景图像、在近景场景下采用大光圈拍摄等。能够实现多种图像拍摄场景的摄像头模组,通常具有走线复杂、数量较多的电连接线。在电连接线接通低频电流的情况下,电连接线可以产生感应磁场。这种感应磁场会影响摄像头模组内的磁敏感电子器件(如图像传感器、图像传感器的供电电源等)的正常工作。
发明内容
本申请提供一种形状记忆合金马达、马达模组、摄像头模组、电子设备,可以减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
第一方面,提供了一种摄像头模组,包括:
摄像头外壳;
透镜阵列,所述透镜阵列至少部分位于所述摄像头外壳内;
电路板,所述电路板上设置有图像传感器;
形状记忆合金SMA马达,所述SMA马达收容在所述摄像头外壳内,所述SMA马达包括SMA线,所述SMA线的一端与所述透镜阵列相连,另一端相对于所述摄像头外壳固定;
SMA马达驱动模块,所述SMA马达驱动模块设置在所述电路板上,且用于为所述SMA马达提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述第一电连接端口、所述第二电连接端口分别与所述SMA线的两端电连接;
第一隔磁件,所述第一隔磁件相对于所述图像传感器平行设置,所述第一隔磁件包括第一通孔,入射至所述摄像头模组的光在穿过所述第一通孔后投影至所述图像传感器上,所述第一通孔的形状与所述图像传感器的形状对应。
在本申请中,通过在图像传感器和SMA马达之间设置第一隔磁件,有利于减小摄像头模组内的磁敏感电子器件所受到的磁干扰。并且,由于第一隔磁件可以更靠近图像传感器,SMA马达产生的干扰磁场在第一隔磁件处可以相对较小,有利于进一步减小摄像头 模组内磁敏感电子器件所受到的磁干扰的程度。
结合第一方面,在第一方面的某些实现方式中,所述摄像头模组还包括:
第二隔磁件,所述第二隔磁件相对于所述图像传感器平行设置,所述第二隔磁件位于所述第一隔磁件与所述SMA马达之间,所述第二隔磁件包括第二通孔,所述透镜阵列穿过所述第二通孔。
在本申请中,通过在图像传感器和SMA马达之间设置多个隔磁件,有利于显著减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
在本申请中,由于第二隔磁件可以更靠近透镜阵列,第一隔磁件可以更靠近图像传感器,第二隔磁件与第一隔磁件之间的间隔距离可以相对较大,SMA马达产生的干扰磁场在第一隔磁件处可以相对较小,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第一方面,在第一方面的某些实现方式中,所述第二隔磁件包括:
第二隔磁板,所述第二隔磁板相对于所述图像传感器平行设置,所述第二通孔位于所述第二隔磁板上;
至少一个第二隔磁棱,所述第二隔磁棱垂直地设置在所述第二隔磁板上,且位于所述第二隔磁板的远离所述图像传感器的一侧,所述第二隔磁棱环绕在所述第二通孔的外周。
在本申请中,通过在第二隔磁件上设置隔磁棱,增大了第二隔磁件的隔磁区域,且在相对于第二隔磁板垂直的方向上也可以起到隔磁效果,因此有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第一方面,在第一方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第一方面,在第一方面的某些实现方式中,所述至少一个第二隔磁棱包括目标第二隔磁棱,所述目标第二隔磁棱与所述图像传感器的引脚位于所述摄像头模组的同侧。
在本申请中,针对磁敏感电子器件的位置设置隔磁棱,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内磁敏感电子器件所受到的磁干扰的程度。
结合第一方面,在第一方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
在本申请中,通过灵活设置第二隔磁棱的分布,有利于灵活调整第二隔磁件的隔磁效果。
结合第一方面,在第一方面的某些实现方式中,所述第二隔磁板满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm。
在本申请中,通过设置第二隔磁件的结构,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内磁敏感电子器件所受到的磁干扰的程度。
结合第一方面,在第一方面的某些实现方式中,所述摄像头模组满足以下至少一项:
所述第二隔磁件的相对磁导率大于5;
所述第二隔磁件与所述第一隔磁件之间的间隔距离大于或等于0.1mm。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
在本申请中,通过设置第二隔磁件的结构和性能,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰的程度。
结合第一方面,在第一方面的某些实现方式中,所述第一隔磁件包括:
第一隔磁板,所述第一隔磁板相对于所述图像传感器平行设置,所述第一通孔位于所述第一隔磁板上;
至少一个第一隔磁棱,所述第一隔磁棱位于所述第一隔磁板的远离所述图像传感器的一侧,所述第一隔磁棱相对于所述第一隔磁板垂直设置,所述第一隔磁棱环绕在所述第一通孔的外周。
在本申请中,通过在第一隔磁件上设置隔磁棱,增大了第一隔磁件的隔磁区域,且在相对于第一隔磁板垂直的方向上也可以起到隔磁效果,因此有利于进一步减小摄像头模组内磁敏感电子器件所受到的磁干扰的程度。
结合第一方面,在第一方面的某些实现方式中,所述第一隔磁棱的内壁连通至所述第一通孔的孔壁。
结合第一方面,在第一方面的某些实现方式中,所述摄像头模组满足以下至少一项:
所述第一隔磁件的相对磁导率大于5;
所述第一隔磁件与所述图像传感器之间的间隔距离大于或等于0.1mm;
所述第一隔磁件与所述电路板之间的间隔距离大于或等于0.1mm;
所述第一通孔在所述电路板上的投影区域的外轮廓为第一外轮廓,所述图像传感器在所述电路板上的投影区域的外轮廓为第二外轮廓,所述第二外轮廓位于所述第一外轮廓内,且所述第二外轮廓与所述第一外轮廓的最大间隔距离小于或等于1.5mm。
可选的,在0~1MHz内,第一隔磁件的相对磁导率大于5。
在本申请中,通过设置第一隔磁件的结构和性能,有利于提升第一隔磁件的隔磁效果,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第一方面,在第一方面的某些实现方式中,所述摄像头模组还包括:
支架,所述支架位于所述图像传感器与所述SMA马达之间,所述第一隔磁件位于所述支架内或贴覆在所述支架的表面。
在本申请中,通过灵活设置第一隔磁件相对于支架的设置位置,一方面,有利于提高摄像头模组的集成度,另一方面,有利于确保第一隔磁件与图像传感器器之间存在一定的间隔距离,进而减小第一隔磁件产生的干扰磁场对图像传感器的影响。
第二方面,提供了一种摄像头模组,包括:
摄像头外壳;
透镜阵列,所述透镜阵列至少部分位于所述摄像头外壳内;
电路板,所述电路板上设置有图像传感器;
形状记忆合金SMA马达,所述SMA马达收容在所述摄像头外壳内,所述SMA马达包括SMA线,所述SMA线的一端与所述透镜阵列相连,另一端相对于所述摄像头外壳固定;
SMA马达驱动模块,所述SMA马达驱动模块设置在所述电路板上,且用于为所述SMA马达提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述第一电连接端口、所述第二电连接端口分别与所述SMA线的两端电连接;
第二隔磁件,所述第二隔磁件包括第二隔磁板和至少一个第二隔磁棱,所述第二隔磁板相对于所述图像传感器平行设置,所述第二隔磁板包括第二通孔,入射至所述摄像头模组的光在穿过所述第二通孔后投影至所述图像传感器上,所述第二隔磁棱垂直地设置在所述第二隔磁板上,所述第二隔磁棱环绕在所述第二通孔的外周,所述第二隔磁棱位于所述第二隔磁板的远离所述图像传感器的一侧。
在本申请中,通过在图像传感器和SMA马达之间设置第二隔磁件,有利于显著减小摄像头模组内的磁敏感电子器件所受到的磁干扰。并且,通过在第二隔磁件上设置隔磁棱,增大了第二隔磁件的隔磁区域,且在相对于第二隔磁板垂直的方向上也可以起到隔磁效果,因此有利于减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第二方面,在第二方面的某些实现方式中,所述透镜阵列穿过所述第二通孔。
在本申请中,由于第二隔磁件可以更靠近透镜阵列,第二隔磁件可以相对远离图像传感器,有利于确保第二隔磁件与图像传感器器之间存在一定的间隔距离,进而减小第二隔磁件产生的干扰磁场对图像传感器的影响。
结合第二方面,在第二方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第二方面,在第二方面的某些实现方式中,所述至少一个第二隔磁棱包括目标第二隔磁棱,所述目标第二隔磁棱与所述图像传感器的引脚位于所述摄像头模组的同侧。
在本申请中,针对磁敏感电子器件的位置设置隔磁棱,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第二方面,在第二方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
在本申请中,通过灵活设置第二隔磁棱的分布,有利于灵活调整第二隔磁件的隔磁效果。
结合第二方面,在第二方面的某些实现方式中,所述第二隔磁板满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm。
在本申请中,通过设置第二隔磁件的结构,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
结合第二方面,在第二方面的某些实现方式中,所述摄像头模组满足以下至少一项:
所述第二隔磁件的相对磁导率大于5;
所述第二隔磁件与所述电路板之间的间隔距离大于或等于0.1mm;
所述第二隔磁件与所述图像传感器之间的间隔距离大于或等于0.1mm。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
在本申请中,通过设置第二隔磁件的结构和性能,有利于提升第二隔磁件的隔磁效果,有利于进一步减小摄像头模组内的磁敏感电子器件所受到的磁干扰。
第三方面,提供了一种马达模组,所述马达模组应用于电子设备,所述电子设备包括电路板,所述电路板上设置有图像传感器、所述马达模组的驱动模块,所述驱动模块为所述马达模组提供交流电源,所述驱动模块包括第一电连接端口、第二电连接端口,所述马 达模组包括:
镜筒;
透镜阵列,所述透镜阵列收容在所述镜筒内;
形状记忆合金SMA马达,所述SMA马达收容在所述镜筒内,所述SMA马达包括SMA线,所述SMA线的一端与所述透镜阵列相连,另一端相对于所述镜筒固定,所述SMA线的两端分别与所述第一电连接端口、所述第二电连接端口电连接;
第一隔磁件,所述第一隔磁件收容在所述镜筒内,且相对于所述透镜阵列的光轴垂直设置,所述第一隔磁件包括第一通孔,入射至所述马达模组的光在穿过所述SMA马达后,继续穿过所述第一通孔,所述第一通孔的形状与所述图像传感器的形状对应。
结合第三方面,在第三方面的某些实现方式中,所述马达模组还包括:
第二隔磁件,所述第二隔磁件收容在所述镜筒内,且相对于所述透镜阵列的光轴垂直设置,所述第二隔磁件位于所述第一隔磁件与所述SMA马达之间,所述第二隔磁件包括第二通孔,所述透镜阵列穿过所述第二通孔。
结合第三方面,在第三方面的某些实现方式中,所述第二隔磁件包括:
第二隔磁板,所述第二隔磁板相对于所述透镜阵列的光轴垂直设置,所述第二通孔位于所述第二隔磁板上;
至少一个第二隔磁棱,所述第二隔磁棱垂直地设置在所述第二隔磁板上,且位于所述第二隔磁板的远离所述第一隔磁件的一侧,所述第二隔磁棱环绕在所述第二通孔的外周。
结合第三方面,在第三方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第三方面,在第三方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
结合第三方面,在第三方面的某些实现方式中,所述第二隔磁板满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm。
结合第三方面,在第三方面的某些实现方式中,所述马达模组满足以下至少一项:
所述第二隔磁件的相对磁导率大于5;
所述第二隔磁件与所述第一隔磁件之间的间隔距离大于或等于0.1mm。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
结合第三方面,在第三方面的某些实现方式中,所述第一隔磁件包括:
第一隔磁板,所述第一隔磁板相对于所述透镜阵列的光轴垂直设置,所述第一通孔位于所述第一隔磁板上;
至少一个第一隔磁棱,所述第一隔磁棱位于所述第一隔磁板的靠近所述第二隔磁件的一侧,所述第一隔磁棱相对于所述第一隔磁板垂直设置,所述第一隔磁棱环绕在所述第一通孔的外周。
结合第三方面,在第三方面的某些实现方式中,所述第一隔磁棱的内壁连通至所述第一通孔的孔壁。
结合第三方面,在第三方面的某些实现方式中,所述马达模组满足以下至少一项:
所述第一隔磁件的相对磁导率大于5。
可选的,在0~1MHz内,第一隔磁件的相对磁导率大于5。
结合第三方面,在第三方面的某些实现方式中,所述马达模组还包括:
支架,所述第一隔磁件位于所述支架内或贴覆在所述支架的表面。
第四方面,提供了一种马达模组,所述马达模组应用于电子设备,所述电子设备包括电路板,所述电路板上设置有图像传感器、所述马达模组的驱动模块,所述驱动模块为所述马达模组提供交流电源,所述驱动模块包括第一电连接端口、第二电连接端口,所述马达模组包括:
镜筒;
透镜阵列,所述透镜阵列收容在所述镜筒内;
形状记忆合金SMA马达,所述SMA马达收容在所述镜筒内,所述SMA马达包括SMA线,所述SMA线的一端与所述透镜阵列相连,另一端相对于所述镜筒固定,所述SMA线的两端分别与所述第一电连接端口、所述第二电连接端口电连接;
第二隔磁件,所述第二隔磁件收容在所述镜筒内,所述第二隔磁件包括第二隔磁板和至少一个第二隔磁棱,所述第二隔磁板相对于所述透镜阵列的光轴垂直设置,所述第二隔磁板包括第二通孔,入射至所述马达模组的光在穿过所述SMA马达后入射至所述第二通孔,所述第二隔磁棱垂直地设置在所述第二隔磁板上,所述第二隔磁棱位于所述第二隔磁板的靠近所述SMA马达的一侧。
结合第四方面,在第四方面的某些实现方式中,所述透镜阵列穿过所述第二通孔。
结合第四方面,在第四方面的某些实现方式中,所述第二隔磁件包括:
第二隔磁板,所述第二隔磁板相对于所述透镜阵列的光轴垂直设置,所述第二通孔位于所述第二隔磁板上;
至少一个第二隔磁棱,所述第二隔磁棱垂直地设置在所述第二隔磁板上,且位于所述第二隔磁板的靠近所述SMA马达的一侧,所述第二隔磁棱环绕在所述第二通孔的外周。
结合第四方面,在第四方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第四方面,在第四方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
结合第四方面,在第四方面的某些实现方式中,所述第二隔磁件满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm;
所述第二隔磁件的相对磁导率大于5。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
第五方面,提供了一种形状记忆合金SMA马达,所述SMA马达应用于拍摄装置,所述拍摄装置包括透镜阵列、图像传感器和所述SMA马达驱动模块,所述SMA马达驱动模块用于为所述SMA马达提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述SMA马达包括:
SMA线,所述SMA线的一端用于与所述透镜阵列相连,另一端相对于所述拍摄装置 固定,所述SMA线的两端分别与所述第一电连接端口、所述第二电连接端口电连接;
第一隔磁件,所述第一隔磁件相对于所述拍摄装置的光轴垂直设置,所述第一隔磁件包括第一通孔,入射至所述拍摄装置的光在穿过所述第一通孔后入射至图像传感器,所述第一通孔的形状与所述图像传感器的形状对应。
结合第五方面,在第五方面的某些实现方式中,所述SMA马达还包括:
第二隔磁件,所述第二隔磁件相对于所述拍摄装置的光轴垂直设置,所述第二隔磁件位于所述第一隔磁件与所述SMA线之间,所述第二隔磁件包括第二通孔,所述第二通孔用于穿过所述透镜阵列。
结合第五方面,在第五方面的某些实现方式中,所述第二隔磁件包括:
第二隔磁板,所述第二隔磁板相对于所述拍摄装置的光轴垂直设置,所述第二通孔位于所述第二隔磁板上;
至少一个第二隔磁棱,所述第二隔磁棱垂直地设置在所述第二隔磁板上,且位于所述第二隔磁板的远离所述第一隔磁件的一侧,所述第二隔磁棱环绕在所述第二通孔的外周。
结合第五方面,在第五方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第五方面,在第五方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
结合第五方面,在第五方面的某些实现方式中,所述第二隔磁板满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm。
结合第五方面,在第五方面的某些实现方式中,所述SMA马达满足以下至少一项:
所述第二隔磁件的相对磁导率大于5;
所述第二隔磁件与所述第一隔磁件之间的间隔距离大于或等于0.1mm。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
结合第五方面,在第五方面的某些实现方式中,所述第一隔磁件包括:
第一隔磁板,所述第一隔磁板相对于所述拍摄装置的光轴垂直设置,所述第一通孔位于所述第一隔磁板上;
至少一个第一隔磁棱,所述第一隔磁棱位于所述第一隔磁板的靠近所述第二隔磁件的一侧,所述第一隔磁棱相对于所述第一隔磁板垂直设置,所述第一隔磁棱环绕在所述第一通孔的外周。
结合第五方面,在第五方面的某些实现方式中,所述第一隔磁棱的内壁连通至所述第一通孔的孔壁。
结合第五方面,在第五方面的某些实现方式中,所述SMA马达满足以下至少一项:
所述第一隔磁件的相对磁导率大于5。
可选的,在0~1MHz内,第一隔磁件的相对磁导率大于5。
结合第五方面,在第五方面的某些实现方式中,所述SMA马达还包括:
支架,所述第一隔磁件位于所述支架内或贴覆在所述支架的表面。
第六方面,提供了一种形状记忆合金SMA马达,所述SMA马达应用于拍摄装置, 所述拍摄装置包括透镜阵列、图像传感器和所述SMA马达驱动模块,所述SMA马达驱动模块用于为所述SMA马达提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述SMA马达包括:
SMA线,所述SMA线的一端用于与所述透镜阵列相连,另一端相对于所述拍摄装置固定,所述SMA线的两端分别与所述第一电连接端口、所述第二电连接端口电连接;
第二隔磁件,所述第二隔磁件包括第二隔磁板和至少一个第二隔磁棱,所述第二隔磁板相对于所述拍摄装置的光轴垂直设置,所述第二隔磁板包括第二通孔,所述第二通孔用于穿过所述透镜阵列,入射至所述拍摄装置的光在穿过所述第二通孔后入射至所述图像传感器,所述第二隔磁棱垂直地设置在所述第二隔磁板上,所述第二隔磁棱位于所述第二隔磁板的靠近所述SMA马达的一侧。
结合第六方面,在第六方面的某些实现方式中,所述第二通孔用于穿过所述透镜阵列。
结合第六方面,在第六方面的某些实现方式中,所述第二隔磁件包括:
第二隔磁板,所述第二隔磁板相对于所述拍摄装置的光轴垂直设置,所述第二通孔位于所述第二隔磁板上;
至少一个第二隔磁棱,所述第二隔磁棱垂直地设置在所述第二隔磁板上,且位于所述第二隔磁板的靠近所述SMA马达的一侧,所述第二隔磁棱环绕在所述第二通孔的外周。
结合第六方面,在第六方面的某些实现方式中,所述第二隔磁棱的内壁连通至所述第二通孔的孔壁。
结合第六方面,在第六方面的某些实现方式中,所述至少一个第二隔磁棱满足:
所述至少一个第二隔磁棱相对于所述第二通孔对称设置;
所述至少一个第二隔磁棱等间距分布在所述第二通孔的外周。
结合第六方面,在第六方面的某些实现方式中,所述第二隔磁件满足以下至少一项:
所述第二隔磁板的厚度大于或等于0.1mm;
所述第二隔磁棱的高度大于或等于0.1mm;
所述第二隔磁件的相对磁导率大于5。
可选的,在0~1MHz内,第二隔磁件的相对磁导率大于5。
第七方面,提供了一种电子设备,包括如上述第一方面至第二方面的任一种可能的实现方式所述的摄像头模组。
第八方面,提供了一种电子设备,包括如上述第三方面至第四方面的任一种可能的实现方式所述的马达模组。
第九方面,提供了一种电子设备,包括如上述第五方面至第六方面的任一种可能的实现方式所述的SMA马达。
附图说明
图1是一种电子设备的结构性示意图。
图2是一种摄像头模组的结构性示意图。
图3是一种摄像头模组的***图。
图4是一种SMA马达的结构性示意图。
图5是本申请实施例提供的一种摄像头模组的***图。
图6是本申请实施例提供的一种第二隔磁件的结构性示意图。
图7是本申请实施例提供的一种第一隔磁件的结构性示意图。
图8是一种软磁材料的隔磁原理的示意图。
图9是一种软磁材料的隔磁原理的示意图。
图10是一种软磁材料的隔磁原理的示意图。
图11是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板的立体结构示意图。
图12是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
图13是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第二视角下的结构性示意图。
图14是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板的立体结构示意图。
图15是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第二视角下的结构性示意图。
图16是本申请实施例提供的一种磁场分布示意图。
图17是本申请实施例提供的一种磁场分布示意图。
图18是本申请实施例提供的一种磁场分布示意图。
图19是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板的立体结构示意图。
图20是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
图21是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第二视角下的结构性示意图。
图22是本申请实施例提供的一种磁场分布示意图。
图23是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板的立体结构示意图。
图24是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
图25是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第二视角下的结构性示意图。
图26是本申请实施例提供的一种磁场分布示意图。
图27是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板的立体结构示意图。
图28是本申请实施例提供的一种第一隔磁件的结构性示意图。
图29是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
图30是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第二视角下的结构性示意图。
图31是本申请实施例提供的一种磁场分布示意图。
图32是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
图33是本申请实施例提供的一种第一隔磁件、第二隔磁件、电路板在第一视角下的结构性示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种电子设备100的结构示意图。电子设备100可以为具有摄像或拍照功能的电子设备,例如手机、平板电脑、电视(或智慧屏)、手提电脑、摄像机、录像机、照相机等。为方便理解,本申请实施例以电子设备100是手机为例进行说明。
电子设备100可以包括显示屏10和壳体。壳体可以包括边框和后盖20。边框可以环绕在显示屏10的外周,且边框可以环绕在后盖20的外周。显示屏10与后盖20之间可以存在一定间隔。显示屏10可以相对于后盖20平行设置。
在电子设备100的显示屏10上可以设置前置摄像头模组(camera compact module,CCM)110。如图1中的左图所示,前置摄像头模组110可以被安装在显示屏10的左上部。前置摄像头模组110例如可以用于自拍。
在电子设备100的后盖20上可以设置后置摄像头模组120。如图1中的右图所示,后置摄像头模组120可以被安装在后盖20的左上部。后置摄像头模组120例如可以用于拍摄电子设备100周围的景象。
应理解,图1示出的前置摄像头模组110和后置摄像头模组120的安装位置仅仅是示意性的,本申请对摄像头模组的安装位置可以不作限定。在一些其他的实施例中,前置摄像头模组110和后置摄像头模组120也可以被安装在电子设备100上的其他位置。例如前置摄像头模组110可以被安装在显示屏10的中上部或右上部。又如,后置摄像头模组120可以被安装在后盖20的中上部或右上部。又如,前置摄像头模组110或后置摄像头模组120可以被设置在电子设备100内的可移动部件上。通过移动该可移动部件,该可移动部件可以被隐藏在电子设备100内,或者可以伸出电子设备100外。
应理解,图1示出的前置摄像头模组110和后置摄像头模组120的安装个数仅仅是示意性的,本申请对摄像头模组的安装个数可以不作限定。电子设备100可以包括数量更多或更少的摄像头模组。
图2是本申请实施例提供的一种摄像头模组200的结构性示意图。图3是图2所示的摄像头模组200的***图。摄像头模组200例如可以是图1所示的前置摄像头模组110或后置摄像头模组120。结合图2、图3可知,摄像头模组200可以包括摄像头外壳201、马达模组202(在某些情况下,马达模组还可以被称为镜头)、电路板203、图像传感器207、支架206。在一个示例中,马达模组202可以包括透镜阵列2022、音圈马达(voice coil motor,VCM)204、形状记忆合金(shape memory alloys,SMA)马达205以及用于收容透镜阵列2022、音圈马达204、SMA马达205的镜筒(图2未示出)。
摄像头外壳201可以收容摄像头模组200内的音圈马达204、SMA马达205、支架206、图像传感器207等。透镜阵列2022、电路板203均可以部分位于摄像头外壳201内。摄 像头外壳201还可以包括用于设置透镜阵列2022的通孔2011。
电路板203可以包括驱动模块(图2未示出),该驱动模块可以为摄像头模组200内的各种电子器件(如音圈马达204、SMA马达205、图像传感器207等)供电,该驱动模块例如可以包括SMA马达驱动模块(以下以SMA马达驱动模块为例进行说明)。并且,电路板203还可以将来自摄像头模组200内的电子器件的信号传输至摄像头模组200外。电路板203上可以设置有图像传感器207。图像传感器207的中心可以与透镜阵列2022的光轴对齐。
透镜阵列2022可以穿过摄像头外壳201上的通孔2011并伸出摄像头外壳201。透镜阵列2022可以将摄像头外壳201的外周的光线投影至图像传感器207。另外,透镜阵列2022还可以在该通孔2011内移动或旋转,以实现例如自动对焦(auto focus)、光学防抖(optical image stabilization,OIS)等功能。
自动对焦可以指,利用透镜成像原理和光反射原理,被摄物体反射的光在经过透镜阵列2022后可以在图像传感器207上成像;根据被摄物体的物距移动透镜阵列2022中的一个或多个透镜,可以在图像传感器207上形成清晰的图像。自动对焦可以简单看成是透镜阵列2022或透镜在光轴方向上的移动。
光学防抖可以指,通过调整透镜阵列2022的摆放角度、摆放位置等,可以减少在捕捉光学信号过程中出现的仪器抖动现象,进而可以提高成像质量。一种可能的方法是,通过例如陀螺仪检测待补偿的位移或角度,然后通过马达驱动透镜阵列2022进行平移或旋转,从而可以补偿曝光期间因成像仪器设备抖动引起的图像模糊。光学防抖可以简单看成是透镜阵列2022在垂直于光轴的平面上的平移或旋转。
音圈马达204可以用于执行自动对焦功能。如图3所示,音圈马达204可以包括设置在透镜阵列2022周围的磁石2041、线圈2042。磁石2041可以被固定在摄像头外壳201内且相对于摄像头外壳201固定不动,线圈2042可以被固定在透镜阵列2022上。电路板203可以为线圈2042供电。通电后的线圈2042可以产生磁场1,磁场1与磁石2041所产生的磁场2相互作用,可以产生吸引力或排斥力。因此,线圈2042可以在吸引力或排斥力的作用下带动透镜阵列2022移动,以实现自动对焦的功能。
在一些示例中,音圈马达204除了可以实现自动对焦功能,还可以实现光学防抖功能。然而,用户通常希望摄像头可以实现多种图像拍摄场景,如拍摄远景图像、在近景场景下采用大光圈拍摄等。通过调整透镜阵列2022内镜片的数量和/或形状,有利于实现某一种图像拍摄场景。因此,随着对多种图像拍摄场景的追求,透镜阵列2022的载重或尺寸有逐渐增大的趋势。在仅使用音圈马达204以实现自动对焦、光学防抖的情况下,音圈马达204的驱动力不足将不利于拍摄高质量图像,例如图像可能会模糊不清;如果增强音圈马达204的驱动力,需要增大音圈马达204的体积,这不利于摄像头模组200的小型化。
图3所示的摄像头模组200还包括用于实现自动对焦功能的SMA马达205。也就是说,SMA马达205可以用于补足音圈马达204的驱动力缺口。SMA马达205可以相对于透镜阵列2022的光轴垂直设置。下面结合图4,介绍SMA马达205的结构和工作原理。
SMA马达205可以包括与图3中的透镜阵列2022对应的通孔2012。也就是说,透镜阵列2022可以穿过SMA马达205上的通孔2012。SMA马达205例如可以被固定在透镜阵列2022的靠近图像传感器207的一侧。
SMA马达205还可以包括与透镜阵列2022相连的动子端20541、动子端20542,以及相对于摄像头外壳201固定的定子端20551、定子端20552。
SMA马达205还可以包括相互断开的SMA线20511、SMA线20512、SMA线20513、SMA线20514。SMA线20511连接在动子端20541与定子端20551之间,SMA线20512连接在动子端20541与定子端20552之间,SMA线20513连接在动子端20542与定子端20552之间,SMA线20514连接在动子端20542与定子端20551之间。
SMA马达205还可以包括簧片2050,簧片2050可以与动子端20541、动子端20542相连。簧片2050还可以包括簧片臂2052、簧片臂2053。簧片臂2052的末端靠近动子端20541,簧片臂2052的开放端伸向动子端20542。簧片臂2052可以包括靠近SMA线20511且相对于SMA线20511平行设置的簧片臂段20521。簧片臂2052还可以包括靠近SMA线20514且相对于SMA线20514平行设置的簧片臂段20522。类似地,簧片臂2053的末端靠近动子端20542,簧片臂2052的开放端伸向动子端20541。簧片臂2053可以包括靠近SMA线20513且相对于SMA线20513平行设置的簧片臂段20531。簧片臂2053还可以包括靠近SMA线20512且相对于SMA线20512平行设置的簧片臂段20532。
SMA马达驱动模块可以包括对应SMA线20511的第一电连接端口1、第二电连接端口1,还可以包括对应SMA线20512的第一电连接端口2、第二电连接端口2,还可以包括对应SMA线20513的第一电连接端口3、第二电连接端口3,还可以包括对应SMA线20514的第一电连接端口4、第二电连接端口4。
SMA线20511的两端可以分别与第一电连接端口1、第二电连接端口1电连接,使得SMA马达驱动模块可以为SMA线20511供电;并且,SMA线20511、SMA马达驱动模块以及电连接在SMA线20511、SMA马达驱动模块之间的电连接线1三者可以形成电连接环路。
SMA线20512的两端可以分别与第一电连接端口2、第二电连接端口2电连接,使得SMA马达驱动模块可以为SMA线20512供电;并且,SMA线20512、SMA马达驱动模块以及电连接在SMA线20512、SMA马达驱动模块之间的电连接线2三者可以形成电连接环路。
SMA线20513的两端可以分别与第一电连接端口3、第二电连接端口3电连接,使得SMA马达驱动模块可以为SMA线20513供电;并且,SMA线20513、SMA马达驱动模块以及电连接在SMA线20513、SMA马达驱动模块之间的电连接线3三者可以形成电连接环路。
SMA线20514的两端可以分别与第一电连接端口4、第二电连接端口4电连接,使得SMA马达驱动模块可以为SMA线20514供电;并且,SMA线20514、SMA马达驱动模块以及电连接在SMA线20514、SMA马达驱动模块之间的电连接线4三者可以形成电连接环路。
当SMA线20511通电时,SMA线20511受热收缩,动子端20541有向定子端20551移动的趋势(如箭头1所示)。之后,簧片臂2052的簧片臂段20521受到挤压,可以抵抗SMA线20511继续收缩。SMA线20511与簧片臂段20521之间的相互作用力可以促使透镜阵列2022相对精准地平行或旋转至指定位置。在SMA线20511断电后,SMA线20511降温伸长,在簧片臂段20521的作用下恢复为原状。
当SMA线20512通电时,SMA线20512受热收缩,动子端20541有向定子端20552移动的趋势(如箭头2所示)。之后,簧片臂2053的簧片臂段20532受到挤压,可以抵抗SMA线20512继续收缩。SMA线20512与簧片臂段20532之间的相互作用力可以促使透镜阵列2022相对精准地平行或旋转至指定位置。在SMA线20512断电后,SMA线20512降温伸长,在簧片臂段20532的作用下恢复为原状。
当SMA线20513通电时,SMA线20513受热收缩,动子端20542有向定子端20552移动的趋势(如箭头3所示)。之后,簧片臂2053的簧片臂段20531受到挤压,可以抵抗SMA线20513继续收缩。SMA线20513与簧片臂段20531之间的相互作用力可以促使透镜阵列2022相对精准地平行或旋转至指定位置。在SMA线20513断电后,SMA线20513降温伸长,在簧片臂段20531的作用下恢复为原状。
当SMA线20514通电时,SMA线20514受热收缩,动子端20542有向定子端20551移动的趋势(如箭头4所示)。之后,簧片臂2052的簧片臂段20522受到挤压,可以抵抗SMA线20514继续收缩。SMA线20514与簧片臂段20522之间的相互作用力可以促使透镜阵列2022相对精准地平行或旋转至指定位置。在SMA线20514断电后,SMA线20514降温伸长,在簧片臂段20522的作用下恢复为原状。
在一个示例中,控制SMA马达205的芯片(或处理器)可以单独控制SMA线20511、SMA线20512、SMA线20513、SMA线20514。
例如,控制SMA马达205的芯片可以计算出透镜阵列2022的待移动位置,并确定SMA线20511、SMA线20512、SMA线20513、SMA线20514分别对应收缩量1、收缩量2、收缩量3、收缩量4。之后,在时段1内,芯片可以根据SMA线20511的收缩量1所对应的电流强度1,控制电路板203向SMA线20511输出电流强度1的电流,并停止对SMA线20512、SMA线20513、SMA线20514的驱动;在时段2内,芯片可以根据SMA线20512的收缩量2所对应的电流强度2,控制电路板203向SMA线20512输出电流强度2的电流,并停止对SMA线20511、SMA线20513、SMA线20514的驱动;在时段3内,芯片可以根据SMA线20513的收缩量3所对应的电流强度3,控制电路板203向SMA线20513输出电流强度3的电流,并停止对SMA线20512、SMA线20511、SMA线20514的驱动;在时段4内,芯片可以根据SMA线20514的收缩量4所对应的电流强度4,控制电路板203向SMA线20514输出电流强度4的电流,并停止对SMA线20512、SMA线20513、SMA线20511的驱动。
综上所述,通过对SMA马达205进行通电,使得具有热缩冷胀特征的SMA马达205可以发生变形,进而可以带动透镜阵列2022相对于摄像头外壳201平移、旋转,以实现光学防抖功能。
在一个示例中,在摄像头模组200准备拍摄图像之前,电路板203可以为音圈马达204供电,以驱动音圈马达204进行自动对焦;电路板203还可以为SMA马达205供电,以驱动SMA马达205进行光学防抖。应理解,在其他示例中,摄像头模组200内的音圈马达204和SMA马达205可以共同或联动地实现光学防抖功能。
结合图3可知,SMA马达205可以被设置在摄像头模组200内的支架206上。该支架206例如可以被固定在电路板203上。也就是说,该支架206可以位于图像传感器207和SMA马达205之间。这有利于避免SMA马达205过于靠近图像传感器207,减小SMA 马达205对图像传感器207的磁场影响。
该支架206可以包括与图像传感器207对应的通孔2013,该支架206在电路板203上的投影区域可以包含图像传感器207在电路板203上的投影区域。由此,来自透镜阵列2022的光线可以穿过支架206上的通孔2013到达图像传感器207。
该支架206还可以包括通孔2014。该通孔2014与SMA马达205的引脚(或信号输入端口)位于摄像头模组200的同侧。通过来自电路板203、穿过该通孔2014并连接至SMA马达205的引脚的电连接线,可以实现电路板203向SMA马达205的驱动或馈电。
电路板203可以为SMA马达205提供低频交流信号(如脉冲宽度调制(pulse width modulation,PWM)信号),以降低SMA马达205的功耗,减少SMA马达205的共振异响,有利于避免SMA马达205过热。这种低频交流信号外加SMA马达的供电环路,使得SMA马达205可能产生干扰磁场,影响摄像头模组200内磁敏感器件(如图像传感器207、图像传感器207的供电电源等)的正常工作。
在一个示例中,支架206可以采用具有高磁导率的软磁材料,如低碳钢、铁硅系合金、铁铝系合金、铁硅铝系合金、镍铁系合金、铁钴系合金、软磁铁氧体、非晶态软磁合金、超微晶软磁合金等。但这仅能有限地缓解SMA马达205产生的磁场干扰情况(例如仅降低了10~20%的干扰磁场强度)。如果SMA马达205使用高频交流供电,则采用软磁材料的支架206所能够实现的隔磁效果将更加有限。另外,由于支架206与图像传感器207的距离很近,支架206可能会受SMA马达205影响而感应出新的磁场,该新的磁场的强度可能相对较大。这更不利于减少图像传感器207受到的磁场干扰。
图5是本申请实施例提供的一种摄像头模组200。
与图2所示的摄像头模组200类似,图5所示的摄像头模组200可以包括摄像头外壳201、透镜阵列2022、电路板203、音圈马达204、SMA马达205、支架206、图像传感器207。除此以外,图5所示的摄像头模组200还可以包括设置在SMA马达205与支架206之间的第一隔磁件620、第二隔磁件610。与第二隔磁件610相比,第一隔磁件620可以相对更靠近图像传感器207;与第一隔磁件620相比,第二隔磁件610可以相对更靠近透镜阵列2022。
例如,在图5所示的示例中,第一隔磁件620可以位于第二隔磁件610与支架206之间。
又如,支架206可以位于第一隔磁件620与第二隔磁件610之间。
又如,第一隔磁件620可以位于支架206内,第二隔磁件610可以位于支架206的靠近SMA马达205的一侧。
图6示出了本申请实施例提供的一种第一隔磁件620的结构性示意图。
结合图5、图6,第一隔磁件620可以包括相对于图像传感器207平行设置的第一隔磁板621。第一隔磁板621还可以理解为相对于透镜阵列2022的光轴垂直设置。第一隔磁板621的外轮廓例如可以是长方形、圆形、多边形等,本申请对此可以不作限定。
结合图5、图6,第一隔磁板621可以包括第一通孔6211。结合图5、图6,在入射至摄像头模组200的光穿过第二隔磁件610之后,可以穿过第一通孔6211;自第一通孔6211射出的光可以投影在图像传感器207上。第一通孔6211的孔壁形状可以与图像传感器207的形状对应。也就是说,第一通孔6211的孔壁在电路板203上的第三投影区域, 与图像传感器207在电路板203上的第四投影区域相对应(第四投影区域可以位于第三投影区域内,且第三投影区域与第四投影区域的面积差可以小于预设面积,即第四投影区域的外轮廓与第三投影区域的外轮廓之间的最大间距可以小于预设间距)。从而图像传感器207可以不受第一隔磁板621的遮挡,以检测来自透镜阵列2022的光,并且有利于确保第一隔磁件620对图像传感器207的隔磁效果(如果第一通孔6211的孔壁形状与图像传感器207的形状相差过大,可能会降低第一隔磁件620对图像传感器207的隔磁效果)。第一通孔6211例如可以是方孔。
图7示出了本申请实施例提供的一种第二隔磁件610的结构性示意图。
结合图5、图7,第二隔磁件610可以包括相对于图像传感器207平行设置的第二隔磁板611。第二隔磁板611还可以理解为相对于透镜阵列2022的光轴垂直设置。第二隔磁板611的外轮廓例如可以是长方形、圆形、多边形等,本申请对此可以不作限定。
结合图5、图7,第二隔磁板611可以包括第二通孔6111。结合图5、图7,在入射至摄像头模组200的光穿过SMA马达205之后,可以穿过第二通孔6111;自第二通孔6111射出的光可以投影在图像传感器207上。第二通孔6111的孔壁形状可以与透镜阵列2022的形状对应。也就是说,第二通孔6111的孔壁在电路板203上的第一投影区域,与透镜阵列2022在电路板203上的第二投影区域相对应(第二投影区域可以位于第一投影区域内,且第一投影区域与第二投影区域的面积差可以小于预设面积,即第二投影区域的外轮廓与第一投影区域的外轮廓之间的最大间距可以小于预设间距)。从而透镜阵列2022可以被装配在第二通孔6111内,并且有利于提高第二隔磁件610对图像传感器207的隔磁效果(如果第二通孔6111的孔壁形状与透镜阵列2022的形状相差过大,可能会降低第二隔磁件610对图像传感器207的隔磁效果)。第二通孔6111例如可以是圆孔。
第二隔磁件610还可以包括设置在第二隔磁板611上的第二隔磁棱612,该第二隔磁棱612可以相对于第二隔磁板611垂直设置。结合图5、图7,第二隔磁棱612还可以理解为相对于图像传感器207垂直设置,或相对于透镜阵列2022的光轴平行设置。第二隔磁棱612可以环绕在第二通孔6111的外周,且位于第二隔磁板611的远离图像传感器207的一侧。在图5、图7所示的示例中,第二隔磁棱612可以呈环状,且第二隔磁棱612的内壁(第二隔磁棱612的最靠近透镜阵列2022的光轴的侧壁)6121可以连通至第二通孔6111的孔壁。在其他示例中,第二隔磁棱612的内壁6121与第二通孔6111的孔壁之间可以设置有台阶面,该台阶面例如可以相对于第二隔磁板611平行设置。
第一隔磁件620、第二隔磁件610均可以采用软磁材料。
可选的,第一隔磁件620的相对磁导率(相对磁导率可以指特殊介质的磁导率和真空磁导率的比值,其中,磁导率可以反映材料对受外加磁场作用下的磁化程度)可以大于第一预设相对磁导率,第一预设相对磁导率的取值例如可以是5、10、100。例如,第一隔磁件620的相对磁导率为70。
另外,在不同频段下,软磁材料的相对磁导率可能不同。可选的,第一隔磁件620在0~1MHz内相对磁导率可以大于5。
类似并可选的,第二隔磁件610的相对磁导率可以大于第二预设相对磁导率,第二预设相对磁导率的取值例如可以是5、10、100。例如,第二隔磁件610的相对磁导率为70。类似并可选的,第二隔磁件610在0~1MHz内相对磁导率可以大于5。
下面结合图8至图10,阐述软磁材料的隔磁原理。
图8示出了磁场在从材料1进入材料2时的方向偏转原理。材料1中的磁场B 1可以沿方向1到达材料1与材料2之间的分界面,该方向1与垂直于分界面的法线之间的夹角为θ 1。进入材料2的磁场B 2可以自材料1与材料2之间的分界面沿方向2继续传播,方向2与垂直于分界面的法线之间的夹角为θ 2。材料1的相对磁导率为μ 1,材料1的相对磁导率为μ 2。在μ 21的情况下,θ 21。在μ 2远大于μ 1的情况下,θ 2趋近于90°,则B 2的方向与分界面近似相切。
根据材料分界面偏转角度和相对磁导率的关系,干扰磁场由其他介质进入软磁材料介质后,可以发生方向偏转。因此,沿法线传播的磁场分量相对较小。
另外,变化的磁场在穿过软磁材料时会产生涡流效应,干扰磁场的部分能量可以转变为热能而被耗散。可转变为热能的磁场能量的大小通常与软磁材料的电导率有关。
并且,在变化的磁场的作用下,软磁材料的磁畴方向可以发生变化。不停变化的磁畴可以相互作用,进而引起材料发热。磁畴方向的变化能力通常与软磁材料的剩余磁通量和矫顽力等参数相关。
综上所述,如图9所示,软磁材料可以削弱经过的干扰磁场强度,即图9中的B in可以大于B out。如图10所示,在干扰环路与受扰环路之间设置软磁材料,有利于减少进入受扰环路的磁场强度。
由于第一隔磁件620、第二隔磁件610均使用软磁材料,来自SMA马达的干扰磁场在经过第二隔磁件610、第一隔磁件620后,继续向图像传感器207传播的磁场分量很小;另外,SMA马达可以产生变化的磁场,该变化的磁场在穿过第二隔磁件610或第一隔磁件620时会产生涡流效应,并且,该变化的磁场可以使第二隔磁件610或第一隔磁件620的磁畴方向发生变化,进而使得干扰磁场的部分能量可以转变为热能而被耗散。因此,第一隔磁件620、第二隔磁件610均使用软磁材料,有利于减少图像传感器207或图像传感器207的供电电源所受到的磁场干扰。
图11至图13示出了本申请提供的第一隔磁件620、第二隔磁件610、电路板203(应理解,与图2至图5所示的电路板203相比,图11至图13简化地表达了电路板203的形状)之间的一种位置关系,该电路板203上设置有图像传感器207。其中,图11示出了第一隔磁件620、第二隔磁件610、电路板203的立体结构示意图;图12示出了第一隔磁件620、第二隔磁件610、电路板203在第一视角下的结构示意图,第一视角可以是沿图11中箭头901所示的观察视角(即垂直于光轴的观察视角);图13示出了第一隔磁件620、第二隔磁件610、电路板203在第二视角下的结构示意图,第二视角可以是沿图11中箭头902所示的观察视角(即平行于光轴的观察视角)。
可选的,第二隔磁棱612的高度h 1可以大于或等于0.1mm。
例如,第二隔磁棱612的高度h 1可以为0.2mm。
可选的,第二隔磁板611的厚度h 2可以大于或等于0.1mm。
例如,第二隔磁板611的厚度h 2可以为0.15mm。
可选的,第二隔磁板611的厚度h 2可以大于或等于0.2mm。
结合图5和图12可知,第二隔磁件的总厚度(如h 1+h 2)可以根据SMA马达205相对于透镜阵列2022的位置确定。例如,透镜阵列2022的靠近图像传感器的一端与SMA 马达205的间距为s 1,h 1+h 2<s 1。另外,第二隔磁件应当不影响透镜阵列2022的自动聚焦和光学防抖。
可选的,第一隔磁板621的厚度h 3可以大于或等于0.1mm。
例如,第一隔磁板621的厚度h 3可以为0.15mm。
可选的,第一隔磁板621的厚度h 3可以大于或等于0.2mm。
需要说明的是,如果第一隔磁板621是通过电镀的方式形成在支架206上,则第一隔磁板621的厚度h 3可以相对较小,例如第一隔磁板621的厚度h 3可以为0.005~0.05mm。又如,第一隔磁板621的厚度h 3可以为0.01mm。
可选的,第一隔磁板621与电路板203之间的间隔距离可以大于或等于0.1mm。
例如,第一隔磁板621与电路板203之间的间隔距离可以为0.8mm。
可选的,第一隔磁板621与图像传感器207之间的间隔距离d 1可以大于或等于0.1mm。
例如,第一隔磁板621与图像传感器207之间的间隔距离d 1可以为0.8mm。
可选的,第二隔磁板611与第一隔磁板621之间的间隔距离d 2(如最小间隔距离、平均间隔距离)可以大于或等于0.1mm。
例如,第二隔磁板611与第一隔磁板621之间的间隔距离d 2可以为0.15mm。
在一个示例中,第二隔磁板611、第一隔磁板621可以分别贴覆在如图5所示的支架206的两侧,第二隔磁板611与第一隔磁板621之间的间隔距离可以等于支架206的厚度。
另外,结合图11至图13可知,第一隔磁件620的第一通孔6211在电路板203上的投影区域(即上文中的第三投影区域),与图像传感器207在电路板203上的投影区域(即上文中的第四投影区域)可以近似完全重合。也就是说,该第三投影区域的第一外轮廓与该第四投影区域的第二外轮廓之间的最大间距可以约等于零。
在一种可能的场景中,图像传感器207的感光区域可以是图像传感器207的部分区域,则即使该第三投影区域与该第四投影区域完全重合,第一隔磁件620可能也不会遮挡图像传感器207的感光区域。不仅如此,第一隔磁件620可以具有相对较大的隔磁面积(即更有利于遮挡SMA马达对图像传感器207的引脚的磁场干扰),有利于减小图像传感器207或图像传感器207的供电电源所受到的磁场干扰。
类似地,在保证透镜阵列2022的光学防抖功能的情况下,第二隔磁板611的第二通孔6111在电路板203上的投影区域(即上文中的第一投影区域)的外轮廓,与透镜阵列2022在电路板203上的投影区域(即上文中的第二投影区域)的外轮廓之间的最大间距可以相对较小,以尽可能获得大的隔磁面积。
图14、图15示出了本申请提供的第一隔磁件620、第二隔磁件610、电路板203之间的另一种位置关系,该电路板203上设置有图像传感器207。其中,图14示出了第一隔磁件620、第二隔磁件610、电路板203的立体结构示意图;图15示出了第一隔磁件620、第二隔磁件610、电路板203在第一视角下的结构示意图,第一视角可以是沿图14中箭头1501所示的观察视角(即垂直于光轴的观察视角)。第一隔磁件620、第二隔磁件610、电路板203在第二视角下的结构示意图可以参照图12所示的实施例,其中第二视角可以是沿图14中箭头1501所示的观察视角(即平行于光轴的观察视角)。
与图11、图13所示的示例不同,在图14、图15中,第一隔磁件620的第一通孔6211在电路板203上的投影区域(即上文中的第三投影区域),与图像传感器207在电路板 203上的投影区域(即上文中的第四投影区域)可以不完全重合,且该第四投影区域可以位于该第三投影区域内。如图15所示,图像传感器207的引脚2071在电路板203上的投影区域可以位于该第三投影区域以内。也就是说,该第三投影区域的第一外轮廓与该第四投影区域的第二外轮廓之间的间距d 3的最大值可以大于零。这有利于避免第一隔磁件620遮挡入射至图像传感器207的光。然而,为了提高第一隔磁件620的隔磁效果,可选的,该第三投影区域的第一外轮廓与该第四投影区域的第二外轮廓之间的最大间距可以小于或等于1.5mm。例如,该第三投影区域的第一外轮廓与该第四投影区域的第二外轮廓之间的平均间距可以为0.2mm。
图16示出了两种磁场分布图,分别为磁场分布图-1、磁场分布图-2。磁场分布图-1对应图2所示的摄像头模组200。磁场分布图-2对应图5所示的摄像头模组200,磁场分布图-2可以包含如图5所示的第一隔磁件620、第二隔磁件610。图16中的受扰平面可以指图2或图5所示的图像传感器207所在的平面。从图16可以看出,在磁场分布图-1中,位于受扰平面附近的磁场强度相对较大;在磁场分布图-2中,位于受扰平面附近的磁场强度相对较小。
局部观察图16中的局部观察区域-1,可以得到如图17所示的局部观察区域-1的磁场分布图。局部观察图16中的局部观察区域-2,可以得到如图17所示的局部观察区域-2的磁场分布图。局部观察区域-1的磁场分布图可以对应图2所示的摄像头模组200。局部观察区域-2的磁场分布图可以对应图5所示的摄像头模组200。如图17所示,在局部观察区域-1的磁场分布图中布置有如图5所示的第一隔磁件620、第二隔磁件610。
结合图2、局部观察区域-1的磁场分布图,由于支架206的材料可以为无磁材料,因此支架206无法起到隔磁效果,干扰磁场穿过支架206时基本不会发生磁场变化,支架206内也基本不会发生涡流效应、磁畴方向变更等现象。
结合图5、局部观察区域-2的磁场分布图,第一隔磁件620、第二隔磁件610均为软磁材料,因此干扰磁场在穿过第二隔磁件610时发生了磁场变化,干扰磁场在穿过第一隔磁件620时再次发生磁场变化;另外,第一隔磁件620、第二隔磁件610内均可以发生涡流效应、磁畴方向变更等现象。
图18示出了受扰平面-1的磁场分布图、受扰平面-2的磁场分布图。受扰平面-1的磁场分布图对应图2所示的摄像头模组200。受扰平面-2的磁场分布图对应图5所示的摄像头模组200。可以看出,图2中的图像传感器207可以受到强度相对较大的干扰磁场,而图5中的图像传感器207可以受到强度相对较小的干扰磁场。
表1在磁通量上对本申请提供的多个实施例进行比较。可以看出,与图2所示的摄像头模组200相比,在图5所示的摄像头模组200中,磁敏感部件(包括图像传感器207、电路板203上的供电电源等)受到的磁场干扰程度可以被降低约44~46%。与仅使用单层软磁材料构件的摄像头模组相比,在图5所示的摄像头模组200中,磁敏感部件受到的磁场干扰程度可以被降低约28~42%。
表1磁通量对比
Figure PCTCN2021133362-appb-000001
Figure PCTCN2021133362-appb-000002
图19至图21示出了本申请实施例提供的另一种第二隔磁件610,以及该第一隔磁件620、第二隔磁件610、电路板203之间的一种位置关系。其中,图19示出了第一隔磁件620、第二隔磁件610、电路板203的立体结构示意图;图20示出了第一隔磁件620、第二隔磁件610、电路板203在第一视角下的结构示意图,第一视角可以是沿图19中箭头1901所示的观察视角(即平行于光轴的观察视角);图21示出了第一隔磁件620、第二隔磁件610、电路板203在第二视角下的结构示意图,第二视角可以是沿图19中箭头1902所示的观察视角(即垂直于光轴的观察视角)。图19所示的第二隔磁件610可以应用在如图2或图5所示的摄像头模组200中。
与图14、图15所示的实施例不同,图19至图21所示的第二隔磁件610可以包括2个第二隔磁棱612,每个第二隔磁棱612环绕在第二通孔6111的外周,且相对于第二隔磁板611垂直设置。每个第二隔磁棱612的形状可以呈1/N 1个圆环状,N 1>2。如图19所示,N 1例如可以为4,即每个第二隔磁棱612的形状为1/4圆环状。每个第二隔磁棱612的内壁(即最靠近如图5所示的透镜阵列2022的光轴的侧壁)6121可以连通至第二通孔6111的孔壁。
另外,如图19至图21所示,由于图像传感器207的引脚(或端口)2071可以相对于图像传感器207的中心面对称设置,因此该2个第二隔磁棱612可以相对于图像传感器207的中心面对称设置。也就是说,第二隔磁棱612在第二隔磁板611上的位置可以尽可能靠近图像传感器207的引脚2071(例如第二隔磁棱612可以与引脚2071位于图5所示的摄像头模组200的同侧),以尽可能提升隔磁效果。换句话说,在某些特殊的场景下,如果图像传感器207的引脚2071不是对称设置的,第二隔磁棱612也可以不对称地设置在第二隔磁板611上。
图22示出了对应图19至图21所示实施例的磁场分布图。表2在磁通量上对本申请提供的多个实施例进行比较。可以看出,与图2所示实施例相比,在图19至图21所示的实施例中,磁敏感部件(包括图像传感器207、电路板203上的供电电源等)受到的磁场干扰程度可以被降低约44~46%。与仅使用单层软磁材料构件的实施例相比,在图19至图21所示的实施例中,磁敏感部件受到的磁场干扰程度可以被降低约28~42%。从图22所示的磁场分布图可知,在第二隔磁板的部分位置设置第二隔磁棱,有利于减少第二隔磁件整体的重量,对第二隔磁件的隔磁效果基本没有影响;并且还有利于灵活地避让摄像头模组内的其他器件。
表2磁通量对比
Figure PCTCN2021133362-appb-000003
图23至图25示出了本申请实施例提供的又一种第二隔磁件610,以及该第一隔磁件620、第二隔磁件610、电路板203之间的一种位置关系。其中,图23示出了第一隔磁件 620、第二隔磁件610、电路板203的立体结构示意图;图24示出了第一隔磁件620、第二隔磁件610、电路板203在第一视角下的结构示意图,第一视角可以是沿图23中箭头2301所示的观察视角(即平行于光轴的观察视角);图25示出了第一隔磁件620、第二隔磁件610、电路板203在第二视角下的结构示意图,第二视角可以是沿图23中箭头2302所示的观察视角(即垂直于光轴的观察视角)。图23所示的第二隔磁件610可以应用在如图2或图5所示的摄像头模组200中。
与图19至图21所示的实施例不同,图23至图25所示的第二隔磁件610可以包括数量更多的第二隔磁棱612。如图23所示,第二隔磁件610可以包括4个第二隔磁棱612,每个第二隔磁棱612的形状可以呈1/8~1/6个圆环状。该4个第二隔磁棱612可以等间距地环绕在第二通孔6111的外周。该4个第二隔磁棱612可以相对于如图5所示的透镜阵列2022的光轴对称设置。
应理解,如果干扰磁场强区(或磁敏感部件)不是对称分布的,由于第二隔磁棱612越靠近干扰磁场强区(或磁敏感部件),隔磁效果可能就越好,因此第二隔磁件610上的多个第二隔磁棱612也可以不对称分布。类似地,如果干扰磁场强区(或磁敏感部件)不是等间距分布的,则第二隔磁件610上的多个第二隔磁棱612也可以不等间距分布。
图26示出了对应图23至图25所示实施例的磁场分布图。表3在磁通量上本申请提供的多个实施例进行比较。可以看出,与图2所示实施例相比,在图23至图25所示的实施例中,磁敏感部件(包括图像传感器207、电路板203上的供电电源等)受到的磁场干扰程度可以被降低约44~46%。与仅使用单层软磁材料构件的实施例相比,在图23至图25所示的实施例中,磁敏感部件受到的磁场干扰程度可以被降低约28~42%。可以看出,图23至图25所示的实施例可以有利于降低减小图像传感器207受到干扰磁场。从图26所示的磁场分布图可知,在第二隔磁板设置梳齿状的第二隔磁棱,有利于减少第二隔磁件整体的重量,对第二隔磁件的隔磁效果基本没有影响;并且还有利于灵活地避让摄像头模组内的其他器件。
表3磁通量对比
Figure PCTCN2021133362-appb-000004
应理解,本申请实施例可以不限定第二隔磁棱612的具体数量。
例如,结合图19、图23所示的实施例可知,在第二隔磁板611上设置有n个第二隔磁棱612的情况下(n为大于1的整数),由于第二隔磁棱612应尽可能靠近第二通孔6111,因此,每个第二隔磁棱612的形状可以是完整圆环的一小段。又由于n个第二隔磁棱612互不相连,因此在n个第二隔磁棱612形状完全相同的情况下,每个第二隔磁棱612的形状可以是1/N个圆环状,N>n。
并且,在第二隔磁棱612的数量相对较多的情况下,该n个第二隔磁棱612可以排列形成梳状隔磁棱组件。
图27至图30示出了本申请实施例提供的另一种第一隔磁件620,以及该第一隔磁件 620、第二隔磁件610、电路板203之间的一种位置关系。其中,图27示出了第一隔磁件620、第二隔磁件610、电路板203的立体结构示意图;图28示出了第一隔磁件620的结构性示意图;图29示出了第一隔磁件620、第二隔磁件610、电路板203在第一视角下的结构示意图,第一视角可以是沿图27中箭头2701所示的观察视角(即平行于光轴的观察视角);图30示出了第一隔磁件620、第二隔磁件610、电路板203在第二视角下的结构示意图,第二视角可以是沿图27中箭头2702所示的观察视角(即垂直于光轴的观察视角)。图27所示的第一隔磁件620可以应用在如图2或图5所示的摄像头模组200中。
与图14、图15所示的实施例不同,图27至图30所示的第一隔磁件620可以包括第一隔磁棱622。该第一隔磁棱622可以相对于第一隔磁板621垂直设置。第一隔磁棱622可以环绕在第一通孔6211的外周,且位于第一隔磁板621的远离图像传感器207的一侧。第一隔磁棱622可以呈方框状。可选的,第一隔磁棱622的高度h 4可以大于或等于可以大于或等于0.01mm。例如,第一隔磁棱622的高度h 4可以为0.1mm。结合图5、图27,第一隔磁棱622的高度h 4可以小于第一隔磁板621与透镜阵列2022之间的间距。
如图28所示,第一隔磁棱622的内壁(即第一隔磁棱622的最靠近如图5所示的透镜阵列2022的光轴的侧壁)6221可以连通至第一通孔6211的孔壁。在其他示例中,第一隔磁棱622的内壁6221与第一通孔6211的孔壁之间路设置有台阶面,该台阶面可以相对第一隔磁板621平行设置。
图31示出了对应图27至图30所示实施例的磁场分布图。表4在磁通量上本申请提供的多个实施例进行比较。可以看出,与图2所示实施例相比,在图27至图30所示的实施例中,磁敏感部件(包括图像传感器207、电路板203上的供电电源等)受到的磁场干扰程度可以被降低约48~50%。与仅使用单层软磁材料构件的实施例相比,在图27至图30所示的实施例中,磁敏感部件受到的磁场干扰程度可以被降低约30~47%。
表4磁通量对比
Figure PCTCN2021133362-appb-000005
结合图19、图23、图27所示的实施例可知,第一隔磁件620可以包括多个第一隔磁棱622,每个第一隔磁棱622可以垂直设置在第一隔磁板621上。每个第一隔磁棱622可以环绕在第一通孔6211的外周。在一个示例中,每个第一隔磁棱622的内壁6221可以连通至第一通孔6211的孔壁。在一个示例中,在第一通孔6211为方形孔的情况下,任一第一隔磁棱622可以呈长条形或拐角形。在一个示例中,多个第一隔磁棱622可以呈对称分布或等间距分布。在一个示例中,在第一隔磁棱622的数量相对较多的情况下,该n个第一隔磁棱622可以排列形成梳状隔磁棱组件。
应理解,如果干扰磁场强区(或磁敏感部件)不是对称分布的,由于第一隔磁棱622越靠近干扰磁场强区(或磁敏感部件),隔磁效果可能就越好,因此第一隔磁件620上的多个第一隔磁棱622也可以不对称分布。类似地,如果干扰磁场强区(或磁敏感部件)不是等间距分布的,则第一隔磁件620上的多个第一隔磁棱622也可以不等间距分布。
图32示出了本申请实施例提供的第一隔磁件620、第二隔磁件610、电路板203之间的一种位置关系。其中,第二隔磁件610可以参照如图19所示的实施例,第一隔磁件620可以参照如图27所示的实施例,在此就不再赘述。
图33示出了本申请实施例提供的第一隔磁件620、第二隔磁件610、电路板203之间的一种位置关系。其中,第二隔磁件610可以参照如图23所示的实施例,第一隔磁件620可以参照如图27所示的实施例,在此就不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种形状记忆合金SMA马达(205),其特征在于,所述SMA马达(205)应用于拍摄装置,所述拍摄装置包括透镜阵列(2022)、图像传感器(207)和SMA马达驱动模块,所述SMA马达驱动模块用于为所述SMA马达(205)提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述SMA马达(205)包括:
    SMA线,所述SMA线的一端用于与所述透镜阵列(2022)相连,另一端相对于所述拍摄装置固定,所述SMA线的两端用于分别与所述第一电连接端口、所述第二电连接端口电连接;
    第一隔磁件(620),所述第一隔磁件(620)相对于所述拍摄装置的光轴垂直设置,所述第一隔磁件(620)包括第一通孔(6211),入射至所述拍摄装置的光在穿过所述第一通孔(6211)后入射至图像传感器(207),所述第一通孔(6211)的形状与所述图像传感器(207)的形状对应。
  2. 根据权利要求1所述的SMA马达(205),其特征在于,所述SMA马达(205)还包括:
    第二隔磁件(610),所述第二隔磁件(610)相对于所述拍摄装置的光轴垂直设置,所述第二隔磁件(610)位于所述SMA线与所述第一隔磁件(620)之间,所述第二隔磁件(610)包括第二通孔(6111),所述第二通孔(6111)用于穿过所述透镜阵列(2022)。
  3. 根据权利要求2所述的SMA马达(205),其特征在于,所述第二隔磁件(610)包括:
    第二隔磁板(611),所述第二隔磁板(611)相对于所述拍摄装置的光轴垂直设置,所述第二通孔(6111)位于所述第二隔磁板(611)上;
    至少一个第二隔磁棱(612),所述第二隔磁棱(612)垂直地设置在所述第二隔磁板(611)上,且位于所述第二隔磁板(611)的远离所述第一隔磁件(620)的一侧,所述第二隔磁棱(612)环绕在所述第二通孔(6111)的外周。
  4. 根据权利要求3所述的SMA马达(205),其特征在于,所述第二隔磁棱(612)的内壁连通至所述第二通孔(6111)的孔壁。
  5. 根据权利要求3或4所述的SMA马达(205),其特征在于,所述至少一个第二隔磁棱(612)包括目标第二隔磁棱(612),所述目标第二隔磁棱(612)与所述图像传感器(207)的引脚位于所述SMA马达(205)的同侧。
  6. 根据权利要求3至5中任一项所述的SMA马达(205),其特征在于,所述至少一个第二隔磁棱(612)满足:
    所述至少一个第二隔磁棱(612)相对于所述第二通孔(6111)对称设置;
    所述至少一个第二隔磁棱(612)等间距分布在所述第二通孔(6111)的外周。
  7. 根据权利要求3至6中任一项所述的SMA马达(205),其特征在于,所述第二隔磁板(611)满足以下至少一项:
    所述第二隔磁板(611)的厚度大于或等于0.1mm;
    所述第二隔磁棱(612)的高度大于或等于0.1mm。
  8. 根据权利要求2至7中任一项所述的SMA马达(205),其特征在于,所述SMA马达(205)满足以下至少一项:
    所述第二隔磁件(610)的相对磁导率大于5;
    所述第二隔磁件(610)与所述第一隔磁件(620)之间的间隔距离大于或等于0.1mm。
  9. 根据权利要求1至8中任一项所述的SMA马达(205),其特征在于,所述第一隔磁件(620)包括:
    第一隔磁板(621),所述第一隔磁板(621)相对于所述拍摄装置的光轴垂直设置,所述第一通孔(6211)位于所述第一隔磁板(621)上;
    至少一个第一隔磁棱(622),所述第一隔磁棱(622)位于所述第一隔磁板(621)的靠近所述SMA线的一侧,所述第一隔磁棱(622)相对于所述第一隔磁板(621)垂直设置,所述第一隔磁棱(622)环绕在所述第一通孔(6211)的外周。
  10. 根据权利要求9所述的SMA马达(205),其特征在于,所述第一隔磁棱(622)的内壁连通至所述第一通孔(6211)的孔壁。
  11. 根据权利要求1至10中任一项所述的SMA马达(205),其特征在于,所述SMA马达(205)满足以下至少一项:
    所述第一隔磁件(620)的相对磁导率大于5;
    所述第一隔磁件(620)与所述图像传感器(207)之间的间隔距离大于或等于0.1mm;
    所述第一隔磁件(620)与所述拍摄装置的电路板(203)之间的间隔距离大于或等于0.1mm,所述电路板(203)上设置有所述图像传感器(207);
    所述第一通孔(6211)在所述电路板(203)上的投影区域的外轮廓为第一外轮廓,所述图像传感器(207)在所述电路板(203)上的投影区域的外轮廓为第二外轮廓,所述第二外轮廓位于所述第一外轮廓内,且所述第二外轮廓与所述第一外轮廓的最大间隔距离小于或等于1.5mm。
  12. 根据权利要求1至11中任一项所述的SMA马达(205),其特征在于,所述SMA马达(205)还包括:
    支架(206),所述支架(206)用于设置在所述图像传感器(207)与所述SMA马达(205)之间,所述第一隔磁件(620)位于所述支架(206)内或贴覆在所述支架(206)的表面。
  13. 一种形状记忆合金SMA马达(205),其特征在于,所述SMA马达(205)应用于拍摄装置,所述拍摄装置包括透镜阵列(2022)、图像传感器(207)和SMA马达驱动模块,所述SMA马达驱动模块用于为所述SMA马达(205)提供交流电源,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述SMA马达(205)包括:
    SMA线,所述SMA线的一端用于与所述透镜阵列(2022)相连,另一端相对于所述拍摄装置固定,所述SMA线的两端用于分别与所述第一电连接端口、所述第二电连接端口电连接;
    第二隔磁件(610),所述第二隔磁件(610)包括第二隔磁板(611)和至少一个第二隔磁棱(612),所述第二隔磁板(611)相对于所述拍摄装置的光轴垂直设置,所述第二隔磁板(611)包括第二通孔(6111),所述第二通孔(6111)用于穿过所述透镜阵列(2022),入射至所述拍摄装置的光在穿过所述第二通孔(6111)后入射至所述图像传感 器(207),所述第二隔磁棱(612)垂直地设置在所述第二隔磁板(611)上,所述第二隔磁棱(612)位于所述第二隔磁板(611)的靠近所述SMA线的一侧。
  14. 根据权利要求13所述的SMA马达(205),其特征在于,所述至少一个第二隔磁棱(612)包括目标第二隔磁棱(612),所述目标第二隔磁棱(612)与所述图像传感器(207)的引脚位于所述SMA马达(205)的同侧。
  15. 一种马达模组(202),其特征在于,所述马达模组(202)应用于电子设备,所述电子设备包括电路板(203),所述电路板(203)上设置有图像传感器(207)、SMA马达驱动模块,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口,所述马达模组(202)包括:
    镜筒;
    透镜阵列(2022),所述透镜阵列(2022)收容在所述镜筒内;
    如权利要求1至14中任一项所述的SMA马达(205),所述SMA马达(205)收容在所述镜筒内。
  16. 一种摄像头模组(200),其特征在于,包括:
    摄像头外壳(201);
    透镜阵列(2022),所述透镜阵列(2022)至少部分位于所述摄像头外壳(201)内;
    电路板(203),所述电路板(203)上设置有图像传感器(207)、SMA马达驱动模块,所述SMA马达驱动模块包括第一电连接端口、第二电连接端口;
    如权利要求1至14中任一项所述的SMA马达(205)。
  17. 一种电子设备(100),其特征在于,包括如权利要求1至14中任一项所述的SMA马达(205)。
PCT/CN2021/133362 2020-11-28 2021-11-26 形状记忆合金马达、马达模组、摄像头模组、电子设备 WO2022111614A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/254,681 US20230421873A1 (en) 2020-11-28 2021-11-26 Shape Memory Alloy Motor, Motor Module, Camera Compact Module, and Electronic Device
EP21897114.1A EP4239983A4 (en) 2020-11-28 2021-11-26 SHAPE MEMORY ALLOY MOTOR, MOTOR MODULE, CAMERA MODULE, ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011365693.6 2020-11-28
CN202011365693.6A CN114584636B (zh) 2020-11-28 2020-11-28 形状记忆合金马达、马达模组、摄像头模组、电子设备

Publications (1)

Publication Number Publication Date
WO2022111614A1 true WO2022111614A1 (zh) 2022-06-02

Family

ID=81753770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133362 WO2022111614A1 (zh) 2020-11-28 2021-11-26 形状记忆合金马达、马达模组、摄像头模组、电子设备

Country Status (4)

Country Link
US (1) US20230421873A1 (zh)
EP (1) EP4239983A4 (zh)
CN (1) CN114584636B (zh)
WO (1) WO2022111614A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208207475U (zh) * 2018-03-09 2018-12-07 欧菲影像技术(广州)有限公司 移动终端的摄像模组及其摄像头
CN109151288A (zh) * 2018-10-30 2019-01-04 维沃移动通信(杭州)有限公司 补光模组及终端设备
CN109302556A (zh) * 2018-11-30 2019-02-01 上海信迈电子科技有限公司 防抖结构、防抖***及具有其的摄像装置
WO2020079425A2 (en) * 2018-10-16 2020-04-23 Cambridge Mechatronics Limited Electromagnetic screening of an image sensor from an actuator in a camera
CN111385446A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 摄像头组件及用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115183A (zh) * 2018-11-16 2021-07-13 华为技术有限公司 一种移动终端
JP2020086465A (ja) * 2018-11-30 2020-06-04 新思考電機有限公司 駆動装置、カメラ装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208207475U (zh) * 2018-03-09 2018-12-07 欧菲影像技术(广州)有限公司 移动终端的摄像模组及其摄像头
WO2020079425A2 (en) * 2018-10-16 2020-04-23 Cambridge Mechatronics Limited Electromagnetic screening of an image sensor from an actuator in a camera
CN109151288A (zh) * 2018-10-30 2019-01-04 维沃移动通信(杭州)有限公司 补光模组及终端设备
CN109302556A (zh) * 2018-11-30 2019-02-01 上海信迈电子科技有限公司 防抖结构、防抖***及具有其的摄像装置
CN111385446A (zh) * 2018-12-27 2020-07-07 华为技术有限公司 摄像头组件及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239983A4

Also Published As

Publication number Publication date
CN114584636B (zh) 2023-11-03
EP4239983A4 (en) 2024-06-26
US20230421873A1 (en) 2023-12-28
CN114584636A (zh) 2022-06-03
EP4239983A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US11867535B2 (en) Optical-path folding-element with an extended two degree of freedom rotation range
CN109975973B (zh) 驱动液体镜头的音圈马达及具有音圈马达的镜头组件
CN104834158B (zh) 双摄像头模组
CN203745778U (zh) 成像装置
US8849106B1 (en) Shake correction device
JP5694439B2 (ja) カメラモジュール
US11372195B2 (en) Lens module
US11588970B2 (en) Driving mechanism
TW201907198A (zh) 光學機構
CN212723615U (zh) 相机模块
KR20130118817A (ko) 촬상 장치
WO2021072821A1 (zh) 镜头模组
CN211531165U (zh) 一种自动对焦摄像头模组
US20140293073A1 (en) Image-shake correction apparatus and imaging apparatus incorporating the same
EP3573324B1 (en) Camera assembly and electronic apparatus
CN210803880U (zh) 抖动补偿装置、照相装置以及电子设备
KR20220035970A (ko) 광학 이미지 안정화 장치 및 제어 방법
US11796832B1 (en) Anti-vibration device and camera device
WO2023184853A1 (zh) 光学变焦马达、摄像装置及移动终端
WO2022111614A1 (zh) 形状记忆合金马达、马达模组、摄像头模组、电子设备
CN211481353U (zh) 一种自动对焦摄像头模组
JPH10254008A (ja) アクチュエータおよび光軸角可変装置におけるレンズ駆動装置
CN109975943B (zh) 低磁干扰透镜驱动装置和双摄像头马达
WO2022122008A1 (zh) 驱动装置和摄像模组
WO2022134192A1 (zh) 照相机用透镜驱动装置、照相机及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897114

Country of ref document: EP

Effective date: 20230628