WO2022110086A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022110086A1
WO2022110086A1 PCT/CN2020/132539 CN2020132539W WO2022110086A1 WO 2022110086 A1 WO2022110086 A1 WO 2022110086A1 CN 2020132539 W CN2020132539 W CN 2020132539W WO 2022110086 A1 WO2022110086 A1 WO 2022110086A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
data
type
modulation
res
Prior art date
Application number
PCT/CN2020/132539
Other languages
English (en)
French (fr)
Inventor
苏立焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/132539 priority Critical patent/WO2022110086A1/zh
Priority to CN202080106253.0A priority patent/CN116326070A/zh
Publication of WO2022110086A1 publication Critical patent/WO2022110086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and in particular, to a communication method, an apparatus, and a computer-readable storage medium.
  • a terminal device Before a terminal device sends a physical uplink shared channel (PUSCH) to a network device, it first needs to modulate and encode the information carried on the PUSCH. Modulation and coding can be determined by modulation coding scheme (MCS). Currently, all resource elements (resource elements, REs) that transmit PUSCH have the same MCS. In the above manner, when the transmission power of the REs transmitting the PUSCH is different, the transmission rate of the PUSCH is reduced.
  • MCS modulation coding scheme
  • Embodiments of the present invention disclose a communication method, a device and a computer-readable storage medium, which are used to improve the transmission rate.
  • a first aspect discloses a communication method.
  • the communication method can be applied to a terminal device or a module (eg, a chip) in the terminal device.
  • the terminal device is used as an example for description below.
  • the communication method may include: receiving downlink control information (DCI) from a network device, where the DCI may include time-frequency resources and a first MCS, where the first MCS is data carried on REs of the first type in the above-mentioned time-frequency resources determine the second MCS, the second MCS is the MCS of the data carried on the second type of REs in the above-mentioned time-frequency resources; according to the first MCS and the second MCS, the first data is modulated and encoded to obtain modulation symbols; The frequency resource sends modulation symbols to the network device.
  • DCI downlink control information
  • the terminal device when the transmission power of the REs used to transmit the PUSCH on the transmission resources is different, after receiving the transmission resources from the network device and the MCS of the data carried on the REs of the first type, the terminal device can determine the second type of REs. MCS of data carried on REs, so that terminal equipment can use different MCSs to modulate and encode data carried on REs with different transmission powers, so as to solve the problem in the prior art that the data carried on REs with different transmission powers use the same MCS. Modulation and coding technical issues.
  • different MCSs can be used to modulate and encode the data carried according to the different transmission power of REs, which can ensure that the MCS used for data carried on REs with different transmission powers is the most suitable MCS, thereby improving the transmission rate.
  • the transmission power of the REs used to transmit PUSCH is different, which can be understood as the difference between the signal and the interference plus noise ratio (signal to interference plus noise ratio, SINR) of the REs used for The transmit power spectral density is different.
  • the first power is lower than the second power
  • the first power is the transmit power of data carried on each RE in the first type of REs
  • the second power is the data carried on each RE in the second type of REs
  • the terminal device determines the second MCS including: receiving configuration information from the network device; determining the difference between the second power and the first power according to the configuration information; determining the second MCS according to the difference and the first MCS .
  • the terminal device may determine, according to the configuration information, that the data carried on each RE in the REs of the second type is the same as that of the REs of the REs of the first type.
  • the difference between the transmit powers of the data carried on the REs (because the first power is smaller than the second power, therefore, the difference is a positive number), and then the second
  • the MCS corresponding to the class RE therefore, the most suitable MCS can be determined according to the difference of the transmission power of the data carried on the RE, so that the flexibility of the MCS can be improved.
  • the DCI may further include indication information, where the indication information may indicate the second MCS or the difference between the second power and the first power, where the first power is carried on each RE in the first type of REs
  • the second power is the transmission power of the data carried on each RE in the second type of REs; when the indication information indicates the above-mentioned difference, the terminal device determining the second MCS includes: according to the above-mentioned difference and the first The MCS determines the second MCS; when the indication information indicates the second MCS, the terminal device determining the second MCS includes: determining the second MCS according to the indication information.
  • the terminal device after receiving the MCS corresponding to different types of REs indicated by the network device, the terminal device can directly use the MCS to modulate and encode the data carried on the corresponding REs without determining the MCS, which can reduce the processing process of the terminal device. , thereby saving power consumption.
  • the terminal device can determine the MCS corresponding to the REs of the first type according to the indication of the network device, and the difference between the transmission power of the data carried on each RE in the REs of the second type and the data carried on the REs of the REs of the first type. difference value, and then the MCS corresponding to the second type of REs can be determined according to the difference value and the MCS corresponding to the first type of REs. Therefore, the most suitable MCS can be determined according to the difference in the transmit power of the data carried on the REs, so that the MCS can be improved. flexibility.
  • the terminal device performing modulation and coding on the first data according to the first MCS and the second MCS to obtain modulation symbols includes: calculating a transport block (transport block, TB) size; the first data is divided into multiple code blocks (code block, CB), the size of the first data is equal to the TB size, and the size of each CB in the multiple CBs is less than or equal to the first threshold; according to the first MCS and The second MCS modulates and encodes multiple CBs to obtain modulation symbols.
  • each CB since the size of each CB is not too large, and the coding is performed in units of CBs, the coding complexity can be reduced. In addition, it can be ensured that the MCS used for data carried on REs with different transmission powers is the most suitable MCS, so that the transmission rate can be increased.
  • the DCI may also include the number of transmission layers
  • the terminal device calculates the TB size according to the first MCS, the second MCS, and the time-frequency resources, including: according to the first MCS, the second MCS, the time-frequency resources, the transmission layer number, the first number, and the second number to calculate the TB size, where the first number is the number of REs of the first type in the time-frequency resource, and the second number is the number of REs of the second type in the time-frequency resource.
  • dividing the first data into multiple CBs by the terminal device includes: calculating the amount of data according to the second MCS, time-frequency resources, the number of transmission layers and the second quantity; dividing the first data according to the amount of data
  • multiple CBs include the first CB group and the second CB group, the CB size summation included in the first CB group is the difference between the TB size and the data amount, and the CB size summation included in the second CB group is the above-mentioned data
  • the terminal equipment modulates and encodes multiple CBs according to the first MCS and the second MCS, and obtaining the modulation symbols includes: using the first MCS to modulate and encode the first CB group, and using the second MCS to modulate and encode the second CB group , to get the modulation symbol.
  • CBs corresponding to different types of REs use different MCSs for modulation and coding, which can ensure that the MCSs used for data carried on different types of REs are the most suitable MCSs, thereby improving the transmission rate.
  • the first MCS may include a first modulation scheme and a coding rate
  • the second MCS may include a second modulation scheme and the foregoing coding rate
  • the terminal device performs multiple CBs according to the first MCS and the second MCS.
  • Modulation and coding to obtain modulation symbols include: using the above-mentioned coding rate to encode multiple CBs to obtain second data; calculating the amount of data according to the second MCS, time-frequency resources, the number of transmission layers and the second quantity; using the second modulation method The data corresponding to the data amount in the second data is modulated, and the remaining data in the second data is modulated by using the first modulation mode to obtain modulation symbols.
  • CBs corresponding to different types of REs are modulated using different modulation modes, which can ensure that the modulation modes used for data carried on different types of REs are the most suitable modulation modes, thereby improving the transmission rate.
  • a second aspect discloses a communication method.
  • the communication method can be applied to a network device or a module (eg, a chip) in the network device.
  • the communication method may include: sending DCI to the terminal device, where the DCI may include time-frequency resources and a first MCS, where the first MCS is the MCS of data carried on the first type of REs in the time-frequency resources, and the first MCS is used to The data carried on the class RE is modulated and encoded; the modulation symbols from the terminal equipment are received through time-frequency resources; the modulation symbols are demodulated and decoded according to the first MCS and the second MCS to obtain the first data, and the second MCS is the time-frequency resource The MCS of the data carried on the REs of the second type.
  • the network device may send the transmission resources and the MCS corresponding to the first type of REs to the terminal device. , so that the terminal equipment can use different MCS to modulate and encode the data carried by the different MCS according to the transmission power of the data carried on the RE, which can ensure that the MCS used for the data carried on different types of REs is the most suitable MCS, thereby improving the Transmission rate.
  • the first power is lower than the second power
  • the first power is the transmit power of data carried on each RE in the first type of REs
  • the second power is the data carried on each RE in the second type of REs
  • the communication method may further include: sending configuration information to the terminal device, where the configuration information is used to determine the second MCS.
  • the network device may send configuration information to the terminal device, so that the terminal device can determine the time-frequency position of the REs of the second type according to the configuration information, and the data carried thereon is the same as the data carried on each RE in the REs of the first type.
  • the difference between the transmission powers of the data of the REs, and then the MCS corresponding to the REs of the second type can be determined according to the difference and the MCSs corresponding to the REs of the first type. Therefore, the maximum transmission power of the data carried on the REs can be determined.
  • Appropriate MCS which can improve the flexibility of MCS.
  • the DCI further includes indication information, where the indication information indicates the second MCS or the difference between the second power and the first power, where the first power is data carried on each RE in the first type of REs
  • the second power is the transmission power of data carried on each RE in the second type of REs, and the indication information is used to determine the second MCS.
  • the network device may indicate the MCS corresponding to different types of REs to the terminal device, so that the terminal device can directly use the MCS to modulate and encode the data carried on the corresponding REs, without determining the MCS, which can reduce the complexity of the terminal device. processing, thereby saving power consumption.
  • the network device can indicate to the terminal device, so that the terminal device can determine the MCS corresponding to the REs of the first type, and the data carried on each RE in the REs of the second type and the data carried on each RE of the REs of the first type
  • the difference between the transmit powers of the REs, and then the MCS corresponding to the REs of the second type can be determined according to the difference and the MCSs corresponding to the REs of the first type. MCS, so that the flexibility of MCS can be improved.
  • the network device demodulates and decodes the modulation symbols according to the first MCS and the second MCS, and obtaining the first data includes: calculating the TB size according to the first MCS, the second MCS, and time-frequency resources; The first MCS and the second MCS demodulate and decode the modulation symbols to obtain multiple CBs, and the size of each CB in the multiple CBs is less than or equal to the first threshold; the multiple CBs are synthesized into TBs to obtain the first data. The size is equal to the TB size.
  • each CB since the size of each CB is not too large, and the unit is CB when encoding, correspondingly, the unit is also CB when decoding, so that the complexity of decoding can be reduced.
  • the MCS used for data carried on REs with different transmission powers is the most suitable MCS, so that the transmission rate can be increased.
  • the DCI further includes the number of transport layers
  • the network device calculating the TB size according to the first MCS, the second MCS, and the time-frequency resources includes: according to the first MCS, the second MCS, the time-frequency resources, and the number of transport layers , the first quantity, and the second quantity, to calculate the TB size, where the first quantity is the quantity of REs of the first type in the time-frequency resource, and the second quantity is the quantity of the REs of the second type in the time-frequency resource.
  • the network device demodulates and decodes the modulation symbols according to the first MCS and the second MCS, and obtaining multiple CBs includes: demodulating and decoding the first type of modulation symbols according to the first MCS to obtain the first CB group, the first type of modulation symbols are symbols carried on the first type of REs, and the sum of the CB sizes included in the first CB group is the difference between the TB size and the data amount, and the data amount is based on the second MCS, time-frequency resources, transmission layer The number and the second quantity are calculated; the second type of modulation symbol is demodulated and decoded according to the second MCS to obtain the second CB group, the second type of modulation symbol is the symbol carried on the second type of RE, and the CB included in the second CB group The sum of the sizes is the amount of data; the network device synthesizing multiple CBs into TBs to obtain the first data includes: synthesizing the first CB group and the second CB group into TBs to
  • data carried on different types of REs are modulated and encoded using different MCSs, which can ensure that the MCS used by data carried on different types of REs is the most suitable MCS, thereby increasing the transmission rate.
  • the first MCS includes a first modulation scheme and a coding rate
  • the second MCS includes a second modulation scheme and the foregoing coding rate
  • the network device demodulates and decodes the modulation symbols according to the first MCS and the second MCS
  • obtaining a plurality of CBs includes: demodulating the first type of modulation symbols according to the first modulation scheme, demodulating the second type of modulation symbols according to the second modulation scheme, and obtaining second data
  • the first type of modulation symbols are the first The symbol carried on the type RE
  • the second type of modulation symbol is the symbol carried on the second type of RE
  • the second data is decoded according to the coding rate to obtain a plurality of CBs.
  • data carried on different types of REs are modulated using different modulation modes, which can ensure that the modulation modes used by data carried on different types of REs are the most suitable modulation modes, thereby increasing the transmission rate.
  • the communication method may further include: measuring the uplink channel between the terminal device and the network device; and determining the first MCS according to the measurement result.
  • the network device may determine the MCS to be used for the data carried on the REs of the first type in the transmission resource according to the result of the uplink channel measurement, which can ensure that the modulation and coding methods used for the data carried on the REs of different types are the most suitable Modulation and coding, so that the transmission rate can be increased.
  • the communication method may further include: determining the second MCS according to the first MCS and the difference between the second power and the first power.
  • a third aspect discloses a communication apparatus.
  • the communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication apparatus may include:
  • a receiving unit configured to receive DCI from a network device, where the DCI includes a time-frequency resource and a first MCS, where the first MCS is the MCS of data carried on the first type of REs in the time-frequency resource;
  • a determining unit configured to determine a second MCS, where the second MCS is the MCS of the data carried on the second type of REs in the time-frequency resource;
  • a modulation and coding unit configured to perform modulation and coding on the first data according to the first MCS and the second MCS to obtain modulation symbols
  • a sending unit configured to send the modulation symbol to the network device through the time-frequency resource.
  • the first power is lower than the second power
  • the first power is the transmit power of data carried on each RE in the first type of REs
  • the second power is the second power the transmit power of the data carried on each RE in the class of REs
  • the determining unit is specifically used for:
  • a second MCS is determined based on the difference and the first MCS.
  • the DCI further includes indication information, where the indication information indicates a second MCS or a difference between a second power and a first power, where the first power is the first type of REs
  • the transmission power of data carried on each RE in the second type of REs, and the second power is the transmission power of data carried on each RE in the second type of REs;
  • the determining unit is specifically used for:
  • the indication information indicates the difference, determining a second MCS according to the difference and the first MCS;
  • the second MCS is determined according to the indication information.
  • the modulation and coding unit is specifically used for:
  • the first data is divided into a plurality of CBs, the size of the first data is equal to the size of the TB, and the size of each CB in the plurality of CBs is less than or equal to the first threshold;
  • the plurality of CBs are modulated and encoded according to the first MCS and the second MCS to obtain modulation symbols.
  • the DCI further includes the number of transmission layers, and the modulation and coding unit calculates the TB size according to the first MCS, the second MCS, and the time-frequency resource, including:
  • the TB size Calculate the TB size according to the first MCS, the second MCS, the time-frequency resources, the number of transmission layers, a first number, and a second number, where the first number is all the time-frequency resources in the time-frequency resources the number of REs of the first type, and the second number is the number of REs of the second type in the time-frequency resource.
  • the modulation and coding unit dividing the first data into multiple CBs includes:
  • the first data is divided into a plurality of CBs according to the data amount, the plurality of CBs include a first CB group and a second CB group, and the sum of the CB sizes included in the first CB group is the TB size and the The difference value of the amount of data, the sum of the CB sizes included in the second CB group is the amount of data;
  • the modulation and coding unit performs modulation and coding on the plurality of CBs according to the first MCS and the second MCS, and the obtained modulation symbols include:
  • the first CB group is modulated and encoded using the first MCS
  • the second CB group is modulated and encoded using the second MCS to obtain modulation symbols.
  • the first MCS includes a first modulation scheme and a coding rate
  • the second MCS includes a second modulation scheme and the coding rate
  • the modulation and coding unit is based on the first MCS and the coding rate.
  • the second MCS performs modulation and coding on the multiple CBs, and the obtained modulation symbols include:
  • the data corresponding to the data amount in the second data is modulated by using the second modulation mode, and the remaining data in the second data is modulated by using the first modulation mode to obtain modulation symbols.
  • a fourth aspect discloses a communication apparatus.
  • the communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication apparatus may include:
  • a sending unit configured to send DCI to a terminal device, where the DCI includes a time-frequency resource and a first MCS, where the first MCS is the MCS of the data carried on the first type of REs in the time-frequency resource, and the first MCS is The MCS is used to modulate and encode the data carried on the REs of the first type;
  • a receiving unit configured to receive modulation symbols from the terminal device through the time-frequency resource
  • a demodulation and decoding unit configured to demodulate and decode the modulation symbol according to the first MCS and the second MCS to obtain first data, and the second MCS is carried on the second type of REs in the time-frequency resource The MCS of the data.
  • the first power is lower than the second power
  • the first power is the transmit power of data carried on each RE in the first type of REs
  • the second power is the second power the transmit power of the data carried on each RE in the class of REs
  • the sending unit is further configured to send configuration information to the terminal device, where the configuration information is used to determine the second MCS.
  • the DCI further includes indication information, where the indication information indicates a second MCS or a difference between a second power and a first power, where the first power is the first type of REs
  • the transmission power of data carried on each RE in the second power is the transmission power of data carried on each RE in the second type of REs, and the indication information is used to determine the second MCS.
  • the demodulation and decoding unit demodulates and decodes the modulation symbol according to the first MCS and the second MCS, and obtains the first data including:
  • the modulation symbol is demodulated and decoded according to the first MCS and the second MCS to obtain multiple CBs, and the size of each CB in the multiple CBs is less than or equal to a first threshold;
  • the multiple CBs are combined into a TB to obtain first data, and the size of the first data is equal to the size of the TB.
  • the DCI further includes the number of transmission layers, and the demodulation and decoding unit calculates the TB size according to the first MCS, the second MCS and the time-frequency resource, including:
  • the first MCS the second MCS, the time-frequency resource, the number of transmission layers, the first quantity, and the second quantity, where the first quantity is the first quantity in the time-frequency resource.
  • the number of REs of one type, and the second number is the number of REs of the second type in the time-frequency resource.
  • the demodulation and decoding unit demodulates and decodes the modulation symbol according to the first MCS and the second MCS, and obtains multiple CBs including:
  • the demodulation and decoding unit synthesizes the multiple CBs into TBs to obtain the first data including:
  • the first data is obtained by combining the first CB group and the second CB group into a TB.
  • the first MCS includes a first modulation mode and a coding rate
  • the second MCS includes a second modulation mode and the encoding rate
  • the demodulation and decoding unit is based on the first MCS and the second MCS demodulates and decodes the modulation symbols to obtain a plurality of CBs including:
  • the first type of modulation symbols are demodulated according to the first modulation scheme, and the second type of modulation symbols are demodulated according to the second modulation scheme to obtain second data, and the first type of modulation symbols are the first type of modulation symbols.
  • a symbol carried on one type of RE, and the second type of modulation symbol is a symbol carried on the second type of RE;
  • the second data is decoded according to the coding rate to obtain a plurality of CBs.
  • the communication device may further include:
  • a measurement unit configured to measure the uplink channel between the terminal device and the network device
  • a first determining unit configured to determine the first MCS according to the measurement result.
  • the communication device may further include:
  • the second determining unit is configured to determine the second MCS according to the first MCS and the difference between the second power and the first power.
  • a fifth aspect discloses a communication apparatus, where the communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the first aspect or any embodiment of the first aspect.
  • a sixth aspect discloses a communication apparatus, which may be a network device or a module (eg, a chip) within the network device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor causes the processor to execute the communication method disclosed in the second aspect or any embodiment of the second aspect.
  • a seventh aspect discloses a communication system including the communication device of the fifth aspect and the communication device of the sixth aspect.
  • An eighth aspect discloses a computer-readable storage medium, where a computer program or computer instruction is stored thereon, and when the computer program or computer instruction is executed, the communication method disclosed in the above aspects is implemented.
  • a ninth aspect discloses a chip including a processor for executing a program stored in a memory, and when the program is executed, causes the chip to execute the above method.
  • the memory is located off-chip.
  • a tenth aspect discloses a computer program product comprising computer program code which, when executed, causes the above communication method to be performed.
  • FIG. 1 is a schematic diagram of an NR time-frequency resource disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a modulation and coding disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an uplink transmission resource disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another modulation and coding disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a time-frequency resource disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another time-frequency resource disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a modulation and coding mapping disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another modulation and coding mapping disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another communication apparatus disclosed in an embodiment of the present invention.
  • Embodiments of the present invention disclose a communication method, a device and a computer-readable storage medium, which are used to improve transmission efficiency. Each of them will be described in detail below.
  • a wireless communication system communication can be classified into different types of communication according to different types of transmitting nodes and receiving nodes.
  • the communication in which the network device sends information to the terminal device may be referred to as downlink (DL) communication
  • the communication in which the terminal device sends information to the network device may be referred to as uplink (uplink, UL) communication.
  • uplink data transmission can be based on orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access input (single carrier frequency division multiple access, SC-FDMA) and so on.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • FIG. 1 is a schematic diagram of an NR time-frequency resource disclosed in an embodiment of the present invention.
  • the time-frequency resources can be divided into symbols in the time domain dimension and subcarriers in the frequency domain dimension.
  • the minimum resource granularity in the time-frequency resource can be called RE, which represents a time-frequency lattice point composed of one symbol in the time domain and one subcarrier in the frequency domain.
  • RE represents a time-frequency lattice point composed of one symbol in the time domain and one subcarrier in the frequency domain.
  • the basic structure of a typical time-frequency resource in an NR system may be a subcarrier spacing of 30KHz, a symbol duration of about 36us, and a cyclic prefix duration of about 2 to 3us.
  • a slot can contain 14 symbols.
  • a time slot in the time domain and 12 REs in the frequency domain can form a physical resource block (PRB). That is, in general, each PRB may include 168 REs (14 (time domain)*12 (frequency domain)). Symbols in the time domain may also be referred to as time domain symbols, such as OFDM, SC-FDMA, and so on.
  • the length of the time slot may be 0.5ms.
  • uplink data transmission by terminal equipment is based on base station scheduling.
  • the large data packets in the upper layer of the terminal device will be divided into small data packets in units of transport blocks (TB) during the process of being handed down to the physical layer and waiting for the base station to schedule.
  • TB transport blocks
  • the specific scheduling process is that the base station sends DCI on a control channel, such as a physical downlink control channel (PDCCH), and the DCI can indicate the scheduling information corresponding to the TB in the PUSCH, including the frequency domain/frequency used by the scheduled TB. Control information such as time domain resources and MCS index.
  • the DCI used to schedule uplink data transmission is also called an uplink grant (UL grant).
  • UL grant uplink grant
  • the index of each MCS may correspond to a modulation mode and a coding rate.
  • the terminal device can determine the downlink data sent by the base station according to the index of the MCS, or schedule the modulation mode and coding rate of the uplink data to be transmitted by the terminal device.
  • the corresponding relationship between the index of the MCS, the modulation mode and the coding rate can be shown in Table 1:
  • FIG. 2 is a schematic diagram of modulation and coding disclosed in an embodiment of the present invention.
  • the upper layer of the terminal device can deliver one or two TBs to the physical layer according to the DCI instruction.
  • the size of the TB can be determined according to the MCS in the DCI, the number of transmission layers and resource allocation information, and the overhead on each PRB configured by higher layer signaling.
  • the MCS index is 7, that is, the DCI indicates quadrature phase shift keying (QPSK) + 0.5 code rate transmission, only layer 1 transmission is used, and the DCI schedules 100 PRBs for the uplink of the terminal device transmission.
  • the terminal equipment can know through high-level signaling that only 144 REs among the 168 REs on each PRB can send uplink data, and the remaining 24 REs can be called "overhead", which are usually used to send demodulation reference signals (DMRS). )Wait.
  • the network device or terminal device can decompose each TB into the minimum number of CBs according to the predefined maximum CB size (size), and satisfy the requirement that the data volume of each CB does not exceed the predefined maximum CB size, and the data volume of different CBs The difference is at most 8 bits (that is, approximately equal). Assuming that the predefined maximum CB size is 8144bit, the 14400bit TB can be divided into 2 CBs, each CB is about 7200bit.
  • the terminal equipment can use the same coding rate to encode each CB, and then use the same modulation method to modulate to obtain modulation symbols.
  • the terminal equipment can map these modulation symbols to uplink physical resources, such as REs, for uplink transmission.
  • the base station can determine the MCS according to the SINR of the transmission resource.
  • the terminal equipment can send the PUSCH in the uplink time slot.
  • the PUSCH is sent on all REs occupying scheduled PRBs.
  • the base station since the base station needs to measure interference or perform other operations, it may only schedule to send the PUSCH on some REs of each PRB.
  • FIG. 3 is a schematic diagram of an uplink transmission resource disclosed in an embodiment of the present invention.
  • the white boxes are REs that do not transmit PUSCH, and the remaining boxes are REs that can transmit PUSCH.
  • some REs are used to transmit DMRS, and the remaining REs are used to transmit uplink data, and the two parts together form PUSCH.
  • the transmit power spectral density of the third to sixth dark gray symbols is larger, which is three times that of the former, which can be called a power increase of 4.8dB.
  • the power boost here refers to the boost of the transmit power of a single RE. All REs transmitting PUSCH on these symbols may be referred to as power boosting REs. Power boost REs have greater power spectral density, resulting in higher SINR on these REs. Therefore, these REs should theoretically be assigned higher MCS to obtain larger transmission rates.
  • the NR system does not support allocating different MCSs on different REs for one PUSCH.
  • different MCSs can be used for PUSCHs on different transport layers.
  • LTE and NR systems can multiply the data transfer rate through multi-input multi-output (MIMO) technology.
  • MIMO multi-input multi-output
  • multiple antennas are used at the same time on the transmitter and receiver to establish multiple parallel transmission channels, so that the transmission efficiency of the system in unit time and frequency band is multiplied. Transmission efficiency can be understood as bandwidth utilization, in bits/s/Hz.
  • MIMO technology that supports transmission of multiple parallel channels is usually called space division multiplexing, and is mainly used to increase the data transmission rate.
  • Data can be divided into multiple layers (also called streams), which generally use the same time-frequency resources. sent at the same time.
  • the base station may indicate to the terminal equipment the number of TBs for uplink transmission in the DCI.
  • the MCS can be individually indicated for each TB in the DCI.
  • FIG. 4 is a schematic diagram of another modulation coding disclosed in an embodiment of the present invention. As shown in FIG. 4 , when the number of TBs is 2, after receiving the DCI, the terminal device can deliver two TBs from the upper layer for processing respectively.
  • Each TB may correspond to one MCS respectively, and different transport layers may correspond to different MCSs, or may correspond to the same MCS.
  • FIG. 5 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include network equipment and terminal equipment.
  • the network device and the terminal device can form the communication system 100 .
  • the network device 110 can send downlink data to the terminal devices 101 to 106 .
  • the terminal device 101 to the terminal device 106 may send uplink data to the network device 110 .
  • Terminal equipment 104-terminal equipment 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • the terminal device can be a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer , wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), in-vehicle devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), smart home equipment (for example, refrigerators, TVs, air conditioners,
  • industrial control for example, refrigerators, TVs, air conditioners
  • a network device is a device that provides wireless access for terminal devices, and is mainly responsible for functions such as radio resource management, quality of service (QoS) flow management, data compression, and encryption on the air interface side.
  • Network equipment may include various forms of base stations, such as: macro base stations, micro base stations (also known as small cells), relay stations, access points, and the like.
  • the network device may also include a wireless fidelity (WiFi) access point (AP).
  • WiMax worldwide interoperability for microwave access
  • the network device or terminal device in the network architecture shown in FIG. 5 is only for schematic illustration, and does not limit the network architecture.
  • a communication system may include more or less network devices or terminal devices.
  • the network device or terminal device shown in FIG. 5 may be hardware, software divided by functions, or a combination of the above two.
  • the network device and the terminal device can communicate directly or through other devices or network elements.
  • the above communication system may be a public land mobile network (PLMN), a device-to-device (D2D) network, a machine-to-machine (M2M) network, an internet of things (internet of things) , IoT) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT internet of things
  • the communication system shown in FIG. 5 may be a 5G system, an LTE system, or various future communication systems.
  • 6G or other communication networks etc.
  • FIG. 6 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention. As shown in FIG. 6, the communication method may include the following steps.
  • the network device sends the DCI to the terminal device.
  • the network device can send DCI to the terminal device.
  • the DCI may include time-frequency resources and the first MCS.
  • the time-frequency resource is a resource scheduled or authorized by the network device for the terminal device to transmit uplink data.
  • the first MCS is the MCS of the data carried on the REs of the first type in the time-frequency resource.
  • the DCI includes the first MCS, which may be understood as including the index corresponding to the first MCS, may also be understood as including the spectral efficiency corresponding to the first MCS, and may also be understood as including other information that can uniquely identify the first MCS.
  • the first type of REs may be REs with the smallest transmission power of the data carried, or REs with the largest transmission power of the data carried.
  • the RE with the smallest transmission power of the data carried can be understood as the RE with the largest number of REs that can be used to transmit the PUSCH on the same symbol, such as the REs corresponding to symbols 6-11 in FIG. 3 .
  • the RE with the largest transmission power of the data carried can be understood as the RE with the smallest number of REs that can be used to transmit the PUSCH on the same symbol, as shown in FIG. 3 , the REs corresponding to symbols 1-5 have filled REs.
  • DCI may be carried on a physical downlink control channel (physical downlink control channel, PUCCH).
  • the terminal device can receive the DCI from the network device.
  • the network device may configure, for the terminal device, REs that each resource set in the resource set can be used to send the PUSCH for the terminal device through higher layer signaling.
  • the resource set may be an RB or an RB group.
  • An RB group includes two or more RBs.
  • the network device may configure different PUSCHs for different time slots. Take time division duplex (TDD) as an example for description. It is assumed that the network device configures the terminal device with an uplink and downlink configuration period of 5ms. 5ms can contain 10 time slots. These time slots are respectively DDSUUUUUU. D represents a downlink time slot. S represents a special time slot, which can be determined as an uplink time slot or a downlink time slot as needed. U stands for uplink time slot. The uplink and downlink ratio of the above configuration is 7:3. Please refer to FIG. 7. FIG. 7 is a schematic diagram of a time-frequency resource disclosed in an embodiment of the present invention.
  • TDD time division duplex
  • the terminal equipment can use the non-white REs in the above time-frequency resources to transmit PUSCH, the first two symbols are used to transmit DMRS, and the remaining symbols are used to transmit PUSCH. for transmitting upstream data.
  • the terminal equipment can use the non-white REs in the following time-frequency resources to transmit PUSCH.
  • the terminal device determines the second MCS.
  • the terminal device After the terminal device receives the DCI from the network device, it can determine the second MCS.
  • the second MCS is the MCS of the data carried on the REs of the second type in the time-frequency resource.
  • the REs of the first type and the REs of the second type are on different time domain symbols.
  • the REs of the first type and the REs of the second type are REs other than REs used for transmitting DMRS (ie reference signals) among REs available for transmitting PUSCH in the time-frequency resources.
  • REs for transmitting PUSCH described below do not include REs for transmitting DMRS.
  • the time-frequency resources include two types of REs that can be used to transmit PUSCH
  • the first type of REs are REs with the smallest transmission power of the data carried
  • the second type of REs are the REs with the largest transmission power of the data carried
  • the REs of the first type are REs with the highest transmission power of the borne data
  • the REs of the second type are the REs with the lowest transmission power of the borne data.
  • the network device may send configuration information to the terminal device.
  • the network device may send configuration information to the terminal device through high-layer signaling, or may send configuration information to the terminal device through other messages, signaling, and the like.
  • the configuration information may indicate a difference between the second power and the first power.
  • the first power is the transmission power of data carried on each RE in the first type of REs
  • the second power is the transmission power of data carried on each RE in the second type of REs.
  • the first power may be smaller than the second power, or may be larger than the second power.
  • the above-mentioned difference is for the case where the first power is less than the second power, that is, the above-mentioned difference is greater than 0, that is, the first type of REs are REs with the smallest transmission power of the data carried.
  • the first power is greater than the second power
  • the above difference is the difference between the first power and the second power.
  • the terminal device may first determine the difference between the second power and the first power according to the configuration information, and then may determine the second MCS according to the difference and the first MCS.
  • the second MCS may be determined according to a predefined correspondence between the power boost and the MCS boost, the difference, and the first MCS.
  • the configuration information may explicitly indicate the above difference. For example, 2 bits can be used to explicitly indicate the difference, 01 can indicate that the second power is 1dB higher than the first power, 10 can indicate that the second power is 2dB higher than the first power, and 11 can indicate that the second power is higher than the first power A power increase of 3dB.
  • the configuration information can also implicitly indicate the above difference.
  • the configuration information may be the position of the RE used for data transmission in the time-frequency resource. After receiving the configuration information, the terminal device may determine the difference between the second power and the first power according to the position of the RE. In addition, the first number and the second number may also be determined according to the position of the RE. The first quantity is the quantity of REs of the first type in the time-frequency resource, and the second quantity is the quantity of the REs of the second type in the time-frequency resource.
  • the configuration information can also be an index of the difference.
  • 2 bits can be used to indicate the difference, 00 can indicate that the second power is 1dB higher than the first power, 01 can indicate that the second power is 2dB higher than the first power, and 10 can indicate that the second power is higher than the first power 3dB, 11 can indicate that the second power is 4dB higher than the first power.
  • the configuration information may also be resource positions, and the configuration information may indicate that the second power is increased by different values relative to the first power through different transmission positions.
  • the configuration information may also implicitly indicate the above-mentioned difference in other ways, which is not limited here.
  • the REs corresponding to symbols 5-14 in the time-frequency resources are the first type of REs
  • the filled REs in the REs corresponding to symbols 3-4 in the time-frequency resources are the second type of REs.
  • Class RE the second power is 3dB higher than the first power. Assuming that the power is increased by 1dB, the index or order corresponding to the MCS can be increased by 1.
  • the modulation mode is 16 quadrature amplitude modulation (QAM) and the coding rate is 0.6
  • the index corresponding to the second type of MCS is 18, that is, the modulation mode is 64QAM
  • the encoding rate is 0.5.
  • the DCI may also include indication information.
  • the indication information may indicate the second MCS, or may indicate the difference between the second power and the first power.
  • the terminal device may determine the second MCS according to the difference indicated by the indication information and the first MCS.
  • the terminal device may determine the second MCS according to the indication information.
  • the indication information can be indicated explicitly or implicitly. For a detailed description, refer to the above-mentioned related content.
  • FIG. 8 is a schematic diagram of another time-frequency resource disclosed in an embodiment of the present invention.
  • REs corresponding to symbols 7-14 in the time-frequency resource are REs of the first type
  • REs filled in REs corresponding to symbols 3-6 in the time-frequency resource are REs of the second type.
  • the transmit power of the data carried on each RE in the REs of the second type is increased by 6dB compared to the transmit power of the REs carried on each RE in the REs of the first type.
  • the corresponding relationship between power boost and modulation mode can be shown in Table 2:
  • the modulation mode is 16QAM and the coding rate is 0.6, according to Table 2 and the difference value is 6dB, it can be determined that the index corresponding to the second type of MCS is 18, that is, the modulation mode is 64QAM and the coding rate is 18. Still 0.6.
  • the terminal device modulates and encodes the first data according to the first MCS and the second MCS to obtain a modulation symbol.
  • the terminal device After the terminal device receives the DCI from the network device and determines the second MCS, it can modulate and encode the first data according to the first MCS and the second MCS to obtain modulation symbols.
  • the terminal device may encode the data first, and then modulate the encoded data.
  • the terminal device may first calculate the TB size according to the first MCS, the second MCS and the time-frequency resources.
  • the DCI may also include the number of transmission layers and the number of PRBs, and the terminal device may calculate the TB size according to the first MCS, the second MCS, time-frequency resources, the number of transmission layers, the first number, and the second number.
  • the terminal device may calculate the TB size according to the first MCS, the second MCS, time-frequency resources, the number of transmission layers, the first number, and the second number.
  • the number of transmission layers is one.
  • the formula for calculating the TB size can be as follows:
  • M1 represents the first modulation order
  • C1 represents the first coding rate
  • L represents the number of transmission layers
  • R represents the number of PRBs
  • Q1 represents the first number
  • M2 represents the second modulation order
  • C2 represents the second coding rate
  • Q2 represents the second quantity.
  • the first modulation order is the modulation order corresponding to the first MCS
  • the second modulation order is the modulation order corresponding to the second MCS.
  • the calculation formula of the TB size can also be various modifications of the above formula.
  • the terminal device may divide the first data into multiple CBs, and perform modulation coding on the multiple CBs according to the first MCS and the second MCS to obtain modulation symbols.
  • the size of the first data is equal to the TB size.
  • the first data is TB-sized data in the data to be sent.
  • the size of each of the plurality of CBs is less than or equal to the first threshold.
  • the first threshold is the predefined maximum CB size, ie the size of the maximum CB allowed.
  • the terminal device may first calculate the amount of data according to the second MCS, time-frequency resources, the number of transmission layers and the second quantity, and then may divide the first data into multiple CBs according to the amount of data.
  • the multiple CBs may include a first CB group and a second CB group, the sum of the CB sizes included in the first CB group is the difference between the TB size and the data amount, and the sum of the CB sizes included in the second CB group is the above-mentioned data amount.
  • the terminal device may use the first MCS to perform modulation and coding on the first CB group, and use the second MCS to perform modulation and coding on the second CB group to obtain modulation symbols.
  • the modulation modes and coding rates included in the first MCS and the second MCS are different.
  • the terminal device can first judge whether the above-mentioned data amount is greater than or equal to the second threshold, and when judging that the above-mentioned data amount is greater than or equal to the second threshold, it indicates that the sum of the CB sizes included in the second CB group is large enough, and the CBs carried on the second type of REs are large enough.
  • the data and the data carried on the REs of the first type may be modulated and encoded using different MCSs.
  • it indicates that the sum of the CB sizes included in the second CB group is small, and the data carried on the REs of the second type and the data carried on the REs of the first type can only use the same MCS.
  • a threshold can be set so as to avoid the decrease of coding gain due to the increase of MCS.
  • the first modulation order is 4
  • the second modulation order is 6
  • the first coding rate is 0.6
  • the second coding rate is 0.5
  • L is 1.
  • the TB size may be 26640 bits (ie, 4*0.6*1*100*96+6*0.5*1*100*12).
  • the amount of data can be 3600bit (6*0.5*1*100*12).
  • the first threshold is 8000 bits
  • the second threshold is 1000 bits. Since 3600 is greater than 1000, the data carried on the REs of the second type can be modulated and encoded using the second MCS.
  • the first data can be divided into one 3600bit and three 7680bit CBs, that is, the first CB group includes three 7680bit CBs, the second The CB group includes a 3600bit CB.
  • MCS15 ie, the MCS corresponding to index 15
  • MCS18 ie, the MCS corresponding to index 18
  • FIG. 9 is a schematic diagram of a modulation and coding mapping disclosed in an embodiment of the present invention.
  • a terminal device may divide a TB into a first CB group (including n CBs) and a second CB group (including m CBs). Afterwards, the terminal device can use the first MCS to modulate and encode the n CBs included in the first CB group, that is, firstly use the coding rate 1 to encode the n CBs, and then use the modulation scheme 1 to modulate the encoded n CBs, The first modulation symbol is obtained.
  • the terminal device can use the second MCS to perform modulation and coding on the m CBs included in the second CB group, that is, firstly use the coding rate 2 to code the m CBs, and then use the modulation mode 2 to modulate the coded m CBs, A second modulation symbol is obtained. Afterwards, the terminal device may map the first modulation symbols to the REs of the first type, and may map the second modulation symbols to the REs of the second type.
  • the first MCS may include a first modulation mode and a coding rate
  • the second MCS may include a second modulation mode and the encoding rate, that is, the modulation modes included in the first MCS and the second MCS are different, but include the encoding rate is the same.
  • the terminal device can use the coding rate to encode multiple CBs to obtain second data, and can calculate the amount of data according to the second MCS, time-frequency resources, the number of transmission layers, and the second quantity, and then can use the second modulation method for the second data.
  • the data corresponding to the data amount in the data is modulated, and the remaining data in the second data is modulated by using the first modulation mode to obtain modulation symbols.
  • the modulation mode included in the first MCS is 16QAM and the modulation mode included in the second MCS is 64QAM
  • the first modulation order is 4 and the second modulation order is 6.
  • the coding rates included in the first MCS and the second MCS are both 0.6.
  • L is 1.
  • R is 100
  • the first quantity is 96
  • the second quantity is 12
  • the TB size can be 27260 bits (ie, 4*0.6*1*100*96+6*0.6*1*100*12).
  • the amount of data can be 4320bit (6*0.6*1*100*12).
  • the first threshold is 8000 bits.
  • the first data can be divided into four 6840-bit CBs.
  • the terminal device can first use the coding rate of 0.6 to encode four CBs of 6840 bits to obtain four CBs of 11400 (6840/0.6) bits.
  • the terminal device can divide a 11400bit CB into 7200((4320/6840)*11400)bit and 4200(11400-7200)bit, and then the terminal device can use 64QAM to modulate the above 7200bit, and use 16QAM to modulate four 11400bit CBs. The remaining bits in the CB are modulated to obtain modulation symbols.
  • FIG. 10 is a schematic diagram of another modulation and coding mapping disclosed in an embodiment of the present invention.
  • the terminal device can divide one TB into n CBs.
  • the terminal device may first encode the n CBs using encoding rate 1. Afterwards, the terminal device can use the second modulation mode to modulate the data corresponding to the data amount in the encoded data to obtain the second modulation symbol, and use the first modulation mode to modulate the remaining data in the encoded data to obtain the first modulation symbol .
  • the terminal device may then map the first modulation symbols to REs of the first type, and may map the second modulation symbols to REs of the second type.
  • the terminal device sends the modulation symbol to the network device through the time-frequency resource.
  • the network device can receive modulation symbols from the terminal device through time-frequency resources.
  • the network device demodulates and decodes the modulation symbols according to the first MCS and the second MCS to obtain first data.
  • the network device may demodulate and decode the modulation symbol according to the first MCS and the second MCS to obtain the first data.
  • the network device can first calculate the TB size according to the first MCS, the second MCS and the time-frequency resources, and then can demodulate and decode the modulation symbols according to the first MCS and the second MCS to obtain multiple CBs, and finally combine the multiple CBs into TB gets the first data.
  • the related description refer to the related description in step 603 .
  • the network device may calculate the TB size according to the first MCS, the second MCS, the time-frequency resource, the number of transport layers, the first quantity, and the second quantity. For a detailed description, refer to the related description in step 603 .
  • the network device may first perform demodulation and decoding on the first type of modulation symbols according to the first MCS to obtain the first CB group.
  • the first type of modulation symbol is a symbol carried on the first type of RE
  • the sum of the CB sizes included in the first CB group is the difference between the TB size and the data volume. Number and second quantity calculation.
  • the network device can demodulate and decode the second type of modulation symbols according to the second MCS to obtain the second CB group
  • the second type of modulation symbols are symbols carried on the second type of REs
  • the sum of the CB sizes included in the second CB group is data. quantity.
  • the network device may combine the first CB group and the second CB group into a TB to obtain the first data.
  • the related description in step 603 refer to the related description in step 603 .
  • the first MCS may include a first modulation scheme and a coding rate
  • the second MCS may include a second modulation scheme and a coding rate
  • the network device may demodulate the first type of modulation symbols according to the first modulation scheme
  • the second data can be obtained by demodulating the second type of modulation symbols according to the second modulation mode.
  • the network device can decode the second data according to the above-mentioned coding rate to obtain multiple CBs.
  • the network device may first measure the uplink channel between the terminal device and the network device, that is, measure the uplink channel between the terminal device and the terminal device. Afterwards, the network device may determine the first MCS according to the result of the uplink channel measurement.
  • the network device may determine the second MCS according to the first MCS and the difference between the second power and the first power. For a detailed description, refer to the related description in step 603 .
  • network devices in steps 604 and 605 may be replaced by terminal devices.
  • the functions performed by the terminal device in the above communication method may also be performed by a module (eg, a chip) in the terminal device, and the function performed by the network device may also be performed by a module (eg, a chip) in the network device. .
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • the communication device may include:
  • a receiving unit 1101 configured to receive DCI from a network device, where the DCI includes time-frequency resources and a first MCS, where the first MCS is the MCS of data carried on the first type of REs in the above-mentioned time-frequency resources;
  • a determining unit 1102 configured to determine a second MCS, where the second MCS is the MCS of the data carried on the second type of REs in the above-mentioned time-frequency resources;
  • a modulation and coding unit 1103, configured to perform modulation and coding on the first data according to the first MCS and the second MCS to obtain modulation symbols;
  • the sending unit 1104 is configured to send modulation symbols to the network device through the above time-frequency resources.
  • the first power is lower than the second power, the first power is the transmission power of data carried on each RE in the first type of REs, and the second power is the data carried on each RE in the second type of REs data transmission power;
  • the determining unit 1102 is specifically used for:
  • a second MCS is determined based on the difference and the first MCS.
  • the DCI further includes indication information, where the indication information indicates the second MCS or a difference between the second power and the first power, where the first power is a percentage of the data carried on each RE in the first type of REs transmit power, where the second power is the transmit power of data carried on each RE in the second type of REs;
  • the determining unit 1102 is specifically used for:
  • the second MCS is determined according to the indication information.
  • the modulation and coding unit 1103 is specifically used for:
  • the first data is divided into multiple CBs, the size of the first data is equal to the TB size, and the size of each CB in the multiple CBs is less than or equal to the first threshold;
  • Modulation and coding are performed on the plurality of CBs according to the first MCS and the second MCS to obtain modulation symbols.
  • the DCI further includes the number of transmission layers, and the modulation and coding unit 1103 calculates the TB size according to the first MCS, the second MCS and the time-frequency resources, including:
  • the first MCS the second MCS, the time-frequency resources, the number of transmission layers, the first quantity, and the second quantity, where the first quantity is the quantity of the first type of REs in the time-frequency resource, and the second quantity is the time-frequency The number of REs of the second type in the resource.
  • the modulation and coding unit 1103 divides the first data into multiple CBs including:
  • the first data is divided into multiple CBs according to the amount of data, the multiple CBs include a first CB group and a second CB group, the sum of the CB sizes included in the first CB group is the difference between the TB size and the data amount, and the second CB group The sum of the included CB sizes is the amount of data;
  • the modulation and coding unit 1103 modulates and codes multiple CBs according to the first MCS and the second MCS, and obtains the modulation symbols including:
  • the first CB group is modulated and encoded using the first MCS
  • the second CB group is modulated and encoded using the second MCS to obtain modulation symbols.
  • the first MCS includes a first modulation scheme and a coding rate
  • the second MCS includes a second modulation scheme and a coding rate
  • the modulation and coding unit performs modulation and coding on the plurality of CBs according to the first MCS and the second MCS,
  • the obtained modulation symbols include:
  • the second modulation mode is used to modulate the data corresponding to the data amount in the second data
  • the first modulation mode is used to modulate the remaining data in the second data to obtain modulation symbols.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include:
  • a sending unit 1201 is configured to send DCI to a terminal device, where the DCI includes a time-frequency resource and a first MCS, where the first MCS is the MCS of data carried on the first type of REs in the time-frequency resource, and the first MCS is used for the first type of RE.
  • the data carried on the RE is modulated and encoded;
  • a receiving unit 1202 configured to receive modulation symbols from the terminal device through time-frequency resources
  • the demodulation and decoding unit 1203 is configured to demodulate and decode the modulation symbols according to the first MCS and the second MCS to obtain the first data, and the second MCS is the MCS of the data carried on the second type of REs in the time-frequency resource.
  • the first power is lower than the second power, the first power is the transmit power of data carried on each RE in the first type of REs, and the second power is the data carried on each RE in the second type of REs data transmission power;
  • the sending unit 1201 is further configured to send configuration information to the terminal device, where the configuration information is used to determine the second MCS.
  • the DCI further includes indication information, where the indication information indicates the second MCS or a difference between the second power and the first power, where the first power is a percentage of the data carried on each RE in the first type of REs Transmission power, where the second power is the transmission power of data carried on each RE in the second type of REs, and the indication information is used to determine the second MCS.
  • the demodulation and decoding unit 1203 demodulates and decodes the modulation symbols according to the first MCS and the second MCS, and obtains the first data including:
  • the modulation symbols are demodulated and decoded according to the first MCS and the second MCS to obtain multiple CBs, and the size of each CB in the multiple CBs is less than or equal to the first threshold;
  • Combining multiple CBs into a TB obtains first data, and the size of the first data is equal to the size of the TB.
  • the DCI further includes the number of transmission layers, and the demodulation and decoding unit 1203 calculates the TB size according to the first MCS, the second MCS, and the time-frequency resources, including:
  • the first MCS the second MCS, the time-frequency resources, the number of transmission layers, the first quantity, and the second quantity, where the first quantity is the quantity of the first type of REs in the time-frequency resource, and the second quantity is the time-frequency The number of REs of the second type in the resource.
  • the demodulation and decoding unit 1203 demodulates and decodes the modulation symbols according to the first MCS and the second MCS, and obtains multiple CBs including:
  • the first type of modulation symbols are demodulated and decoded according to the first MCS to obtain the first CB group, the first type of modulation symbols are symbols carried on the first type of REs, and the sum of the CB sizes included in the first CB group is the TB size and the data
  • the amount of data is calculated according to the second MCS, the time-frequency resource, the number of transmission layers and the second amount;
  • the second type of modulation symbol is demodulated and decoded according to the second MCS to obtain the second CB group, the second type of modulation symbol is the symbol carried on the second type of RE, and the sum of the CB sizes included in the second CB group is the data amount;
  • the demodulation and decoding unit 1203 synthesizes multiple CBs into TBs to obtain the first data including:
  • the first data is obtained by combining the first CB group and the second CB group into a TB.
  • the first MCS includes a first modulation scheme and a coding rate
  • the second MCS includes a second modulation scheme and the coding rate
  • the demodulation and decoding unit 1203 decodes the modulation symbols according to the first MCS and the second MCS Tuning and decoding to obtain multiple CBs including:
  • the first type of modulation symbols are demodulated according to the first modulation scheme
  • the second type of modulation symbols are demodulated according to the second modulation scheme to obtain second data
  • the first type of modulation symbols are symbols carried on the first type of REs
  • the second type of modulation symbol is the symbol carried on the second type of RE;
  • the second data is decoded according to the encoding rate to obtain a plurality of CBs.
  • the communication device may further include:
  • a measuring unit 1204 configured to measure the uplink channel between the terminal device and the network device;
  • the determining unit 1205 is configured to determine the first MCS according to the measurement result.
  • the determining unit 1205 is further configured to:
  • the second MCS is determined according to the first MCS and the difference between the second power and the first power.
  • FIG. 13 is a schematic structural diagram of another communication apparatus disclosed in an embodiment of the present invention.
  • the communication device may include a processor 1301 , a memory 1302 , an input interface 1303 , an output interface 1304 and a connection line 1305 .
  • the memory 1302 may exist independently, and may be connected to the processor 1301 through a connection line 1305 .
  • the memory 1302 may also be integrated with the processor 1301. Among them, the bus 1305 is used to realize the connection between these components.
  • the communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the processor 1301 is used to control the receiving unit 1101 and the transmitting unit 1104 performs the operations performed in the foregoing embodiments
  • the processor 1301 is further configured to perform the operations performed by the determining unit 1102 and the modulation and coding unit 1103 in the foregoing embodiments
  • the input interface 1303 is configured to perform the operations performed by the receiving unit 1101 in the foregoing embodiments
  • the output interface 1304 is used to perform the operations performed by the sending unit 1104 in the above embodiments.
  • the foregoing terminal device or modules in the terminal device may also be used to execute various methods performed by the terminal device in the foregoing method embodiment of FIG. 6 , which will not be described again.
  • the communication apparatus may be a network device or a module (eg, a chip) within the network device.
  • the processor 1301 is used to control the sending unit 1201 and the receiving unit 1202 performs the operations performed in the above-mentioned embodiments, the processor 1301 is further configured to perform the operations performed by the demodulation and decoding unit 1203, the measurement unit 1204, and the determination unit 1205 in the above-mentioned embodiments, and the input interface 1303 is used to perform the receiving in the above-mentioned embodiments.
  • the operation performed by the unit 1202, and the output interface 1304 is used to perform the operation performed by the sending unit 1201 in the foregoing embodiment.
  • the foregoing network device or modules in the network device may also be used to execute various methods performed by the network device in the foregoing method embodiment of FIG. 6 , which will not be described again.
  • FIG. 14 is a schematic structural diagram of another communication apparatus disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 1401 , a logic circuit 1402 and an output interface 1403 .
  • the input interface 1401 and the output interface 1403 are connected through the logic circuit 1402 .
  • the input interface 1401 is used for receiving information from other communication devices, and the output interface 1403 is used for outputting, scheduling or sending information to other communication devices.
  • the logic circuit 1402 is configured to perform operations other than the operations of the input interface 1401 and the output interface 1403, for example, to implement the functions implemented by the processor 1301 in the above-mentioned embodiment.
  • the communication device may be a network device or a module of the network device, a first terminal device or a module of the first terminal device, or a second terminal device or a module of the second terminal device.
  • the more detailed description about the input interface 1401 , the logic circuit 1402 and the output interface 1403 can be obtained directly by referring to the relevant description of the network device or the terminal device in the above method embodiments, which will not be repeated here.
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which an instruction is stored, and when the instruction is executed, the method in the foregoing method embodiment is performed.
  • the embodiment of the present invention also discloses a computer program product including an instruction, when the instruction is executed, the method in the foregoing method embodiment is performed.
  • An embodiment of the present invention further discloses a communication system, where the communication system includes a network device and a terminal device.
  • the communication system includes a network device and a terminal device.
  • the communication method shown in FIG. 6 For a specific description, reference may be made to the communication method shown in FIG. 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法、装置及计算机可读存储介质,包括:接收来自网络设备的DCI,所述DCI包括时频资源和第一MCS,所述第一MCS为所述时频资源中第一类RE上承载的数据的MCS;确定第二MCS,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS;根据所述第一MCS和所述第二MCS对第一数据进行调制编码,得到调制符号;通过所述时频资源向所述网络设备发送所述调制符号。本发明实施例,可以提高传输效率。

Description

一种通信方法、装置及计算机可读存储介质 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法、装置及计算机可读存储介质。
背景技术
终端设备向网络设备发送物理上行共享信道(physical uplink share channel,PUSCH)前,先需要对PUSCH上承载的信息进行调制和编码。调制和编码可以通过调制编码方式(modulation coding scheme,MCS)确定。目前,所有传输PUSCH的资源单元(resource element,RE)对应的MCS相同。上述方式中,当传输PUSCH的RE的发送功率不同时,降低了PUSCH的传输速率。
发明内容
本发明实施例公开了一种通信方法、装置及计算机可读存储介质,用于提高传输速率。
第一方面公开一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以终端设备为例进行说明。该通信方法可以包括:接收来自网络设备的下行控制信息(downlink control information,DCI),DCI可以包括时频资源和第一MCS,第一MCS为上述时频资源中第一类RE上承载的数据的MCS;确定第二MCS,第二MCS为上述时频资源中第二类RE上承载的数据的MCS;根据第一MCS和第二MCS对第一数据进行调制编码得到调制符号;通过上述时频资源向网络设备发送调制符号。
本发明实施例中,当传输资源上用于传输PUSCH的RE的发送功率不同时,终端设备接收到来自网络设备的传输资源和第一类RE上承载的数据的MCS之后,可以确定第二类RE上承载的数据的MCS,以便终端设备可以对不同发送功率的RE上承载的数据采用不同的MCS进行调制编码,从而可以解决现有技术中不同发送功率的RE上承载的数据使用同一MCS进行调制编码的技术问题。可见,可以根据RE的发送功率的不同确定使用不同的MCS对承载的数据进行调制编码,可以保证不同发送功率的RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。用于传输PUSCH的RE的发送功率不同,可以理解为用于传输PUSCH的RE的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)不同,也可以理解为用于传输PUSCH的RE的发送功率谱密度不同。
作为一种可能的实施方式,第一功率小于第二功率,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率,终端设备确定第二MCS包括:接收来自网络设备的配置信息;根据配置信息确定第二功率与第一功率之间的差值;根据差值和第一MCS确定第二MCS。
本发明实施例中,终端设备接收到网络设备指示的第一类RE对应的MCS以及配置信息之后,可以根据配置信息确定第二类RE中每个RE上承载的数据与第一类RE中每个RE上承载的数据的发送功率之间的差值(由于第一功率小于第二功率,因此,差值为正数),进 而可以根据该差值和第一类RE对应的MCS确定第二类RE对应的MCS,因此,可以根据RE上承载的数据的发送功率的不同确定最合适的MCS,从而可以提高MCS的灵活性。
作为一种可能的实施方式,DCI还可以包括指示信息,指示信息可以指示第二MCS或第二功率与第一功率之间的差值,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率;当指示信息指示上述差值时,终端设备确定第二MCS包括:根据上述差值和第一MCS确定第二MCS;当指示信息指示第二MCS时,终端设备确定第二MCS包括:根据指示信息确定第二MCS。
本发明实施例中,终端设备接收到网络设备指示的不同类RE对应的MCS之后,可以直接使用MCS对对应的RE上承载的数据进行调制编码,不需要确定MCS,可以减少终端设备的处理过程,从而可以节约功耗。终端设备可以根据网络设备的指示确定出第一类RE对应的MCS,以及第二类RE中每个RE上承载的数据与第一类RE中每个RE上承载的数据的发送功率之间的差值,进而可以根据该差值和第一类RE对应的MCS确定第二类RE对应的MCS,因此,可以根据RE上承载的数据的发送功率的不同确定最合适的MCS,从而可以提高MCS的灵活性。
作为一种可能的实施方式,终端设备根据第一MCS和第二MCS对第一数据进行调制编码得到调制符号包括:根据第一MCS、第二MCS和上述时频资源计算传输块(transport block,TB)大小;将第一数据划分为多个编码块(code block,CB),第一数据的大小等于TB大小,多个CB中每个CB大小小于或等于第一阈值;根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号。
本发明实施例中,由于每个CB大小不会太大,而编码的时候是以CB为单位的,因此,可以降低编码的复杂度。此外,可以保证不同发送功率的RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。
作为一种可能的实施方式,DCI还可以包括传输层数,终端设备根据第一MCS、第二MCS和时频资源计算TB大小包括:根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量,计算TB大小,第一数量为时频资源中第一类RE的数量,第二数量为时频资源中第二类RE的数量。
作为一种可能的实施方式,终端设备将第一数据划分为多个CB包括:根据第二MCS、时频资源、传输层数和第二数量,计算数据量;根据数据量将第一数据划分为多个CB,多个CB包括第一CB组和第二CB组,第一CB组包括的CB大小总和为TB大小与数据量的差值,第二CB组包括的CB大小总和为上述数据量;终端设备根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号包括:使用第一MCS对第一CB组进行调制编码,使用第二MCS对第二CB组进行调制编码,得到调制符号。
本发明实施例中,不同类RE对应的CB使用不同MCS进行调制编码,可以保证不同类RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。
作为一种可能的实施方式,第一MCS可以包括第一调制方式和编码速率,第二MCS可以包括第二调制方式和上述编码速率,终端设备根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号包括:使用上述编码速率对多个CB进行编码,得到第二数据;根据第二MCS、时频资源、传输层数和第二数量,计算数据量;使用第二调制方式对 第二数据中数据量对应的数据进行调制,使用第一调制方式对第二数据中剩余数据进行调制,得到调制符号。
本发明实施例中,不同类RE对应的CB使用不同调制方式进行调制,可以保证不同类RE上承载的数据使用的调制方式是最合适的调制方式,从而可以提高传输速率。
第二方面公开一种通信方法,该通信方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以网络设备为例进行说明。该通信方法可以包括:向终端设备发送DCI,DCI可以包括时频资源和第一MCS,第一MCS为时频资源中第一类RE上承载的数据的MCS,第一MCS用于对第一类RE上承载的数据进行调制编码;通过时频资源接收来自终端设备的调制符号;根据第一MCS和第二MCS对调制符号进行解调解码,得到第一数据,第二MCS为时频资源中第二类RE上承载的数据的MCS。
本发明实施例中,当网络设备为终端设备调度的传输资源上用于传输PUSCH的RE上承载的数据的发送功率不同时,网络设备可以向终端设备发送传输资源和第一类RE对应的MCS,以便终端设备可以根据RE上承载的数据的发送功率的不同使用不同的MCS对承载的数据进行调制编码,可以保证不同类的RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。
作为一种可能的实施方式,第一功率小于第二功率,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率;该通信方法还可以包括:向终端设备发送配置信息,配置信息用于确定第二MCS。
本发明实施例中,网络设备可以向终端设备发送配置信息,以便终端设备可以根据配置信息确定第二类RE的时频位置,及其上承载的数据与第一类RE中每个RE上承载的数据的发送功率之间的差值,进而可以根据该差值和第一类RE对应的MCS确定第二类RE对应的MCS,因此,可以根据RE上承载的数据的发送功率的不同确定最合适的MCS,从而可以提高MCS的灵活性。
作为一种可能的实施方式,DCI还包括指示信息,指示信息指示第二MCS或第二功率与第一功率之间的差值,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率,指示信息用于确定第二MCS。
本发明实施例中,网络设备可以向终端设备指示不同类RE对应的MCS之后,以便终端设备可以直接使用MCS对对应的RE上承载的数据进行调制编码,不需要确定MCS,可以减少终端设备的处理过程,从而可以节约功耗。网络设备可以向终端设备指示,以便终端设备可以根据该指示确定第一类RE对应的MCS,以及第二类RE中每个RE上承载的数据与第一类RE中每个RE上承载的数据的发送功率之间的差值,进而可以根据该差值和第一类RE对应的MCS确定第二类RE对应的MCS,因此,可以根据RE上承载的数据的发送功率的不同确定最合适的MCS,从而可以提高MCS的灵活性。
作为一种可能的实施方式,网络设备根据第一MCS和第二MCS对调制符号进行解调解码,得到第一数据包括:根据第一MCS、第二MCS和时频资源计算TB大小;根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB,多个CB中每个CB大小小于或等于第一阈值;将多个CB合成为TB得到第一数据,第一数据的大小等于TB大小。
本发明实施例中,由于每个CB大小不会太大,而编码的时候是以CB为单位的,相应地,解码的时候也是以CB为单位的,从而可以降低解码的复杂度。此外,可以保证不同发送功率的RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。
作为一种可能的实施方式,DCI还包括传输层数,网络设备根据第一MCS、第二MCS和时频资源计算TB大小包括:根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量,计算TB大小,第一数量为时频资源中第一类RE的数量,第二数量为时频资源中第二类RE的数量。
作为一种可能的实施方式,网络设备根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB包括:根据第一MCS对第一类调制符号进行解调解码,得到第一CB组,第一类调制符号为第一类RE上承载的符号,第一CB组包括的CB大小总和为TB大小与数据量的差值,数据量根据第二MCS、时频资源、传输层数和第二数量计算;根据第二MCS对第二类调制符号进行解调解码,得到第二CB组,第二类调制符号为第二类RE上承载的符号,第二CB组包括的CB大小总和为数据量;网络设备将多个CB合成为TB得到第一数据包括:将第一CB组和第二CB组组合为TB得到第一数据。
本发明实施例中,不同类RE上承载的数据使用不同MCS进行调制编码,可以保证不同类RE上承载的数据使用的MCS是最合适的MCS,从而可以提高传输速率。
作为一种可能的实施方式,第一MCS包括第一调制方式和编码速率,第二MCS包括第二调制方式和上述编码速率,网络设备根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB包括:根据第一调制方式对第一类调制符号进行解调,根据第二调制方式对第二类调制符号进行解调,得到第二数据,第一类调制符号为第一类RE上承载的符号,第二类调制符号为第二类RE上承载的符号;根据编码速率对第二数据进行解码,得到多个CB。
本发明实施例中,不同类RE上承载的数据使用不同调制方式进行调制,可以保证不同类RE上承载的数据使用的调制方式是最合适的调制方式,从而可以提高传输速率。
作为一种可能的实施方式,该通信方法还可以包括:对终端设备与网络设备之间的上行信道进行测量;根据测量的结果确定第一MCS。
本发明实施例中,网络设备可以根据上行信道测量的结果确定传输资源中第一类RE上承载的数据要使用的MCS,可以保证不同类RE上承载的数据使用的调制编码方式是最合适的调制编码方式,从而可以提高传输速率。
作为一种可能的实施方式,该通信方法还可以包括:根据第一MCS以及第二功率与第一功率之间的差值确定第二MCS。
第三方面公开一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片),该通信装置可以包括:
接收单元,用于接收来自网络设备的DCI,所述DCI包括时频资源和第一MCS,所述第一MCS为所述时频资源中第一类RE上承载的数据的MCS;
确定单元,用于确定第二MCS,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS;
调制编码单元,用于根据所述第一MCS和所述第二MCS对第一数据进行调制编码,得到调制符号;
发送单元,用于通过所述时频资源向所述网络设备发送所述调制符号。
作为一种可能的实施方式,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
所述确定单元具体用于:
接收来自所述网络设备的配置信息;
根据所述配置信息确定所述第二功率与所述第一功率之间的差值;
根据所述差值和所述第一MCS确定第二MCS。
作为一种可能的实施方式,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
所述确定单元具体用于:
当所述指示信息指示所述差值时,根据所述差值和所述第一MCS确定第二MCS;
当所述指示信息指示所述第二MCS时,根据所述指示信息确定第二MCS。
作为一种可能的实施方式,所述调制编码单元具体用于:
根据所述第一MCS、所述第二MCS和所述时频资源计算TB大小;
将第一数据划分为多个CB,所述第一数据的大小等于所述TB大小,所述多个CB中每个CB大小小于或等于第一阈值;
根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号。
作为一种可能的实施方式,所述DCI还包括传输层数,所述调制编码单元根据所述第一MCS、所述第二MCS和所述时频资源计算TB大小包括:
根据所述第一MCS、所述第二MCS、所述时频资源、所述传输层数、第一数量和第二数量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
作为一种可能的实施方式,所述调制编码单元将第一数据划分为多个CB包括:
根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
根据所述数据量将第一数据划分为多个CB,所述多个CB包括第一CB组和第二CB组,所述第一CB组包括的CB大小总和为所述TB大小与所述数据量的差值,所述第二CB组包括的CB大小总和为所述数据量;
所述调制编码单元根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
使用所述第一MCS对所述第一CB组进行调制编码,使用所述第二MCS对所述第二CB组进行调制编码,得到调制符号。
作为一种可能的实施方式,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述调制编码单元根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
使用所述编码速率对所述多个CB进行编码,得到第二数据;
根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
使用所述第二调制方式对所述第二数据中所述数据量对应的数据进行调制,使用所述第一调制方式对所述第二数据中剩余数据进行调制,得到调制符号。
第四方面公开一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片),该通信装置可以包括:
发送单元,用于向终端设备发送DCI,所述DCI包括时频资源和第一MCS,所述第一MCS为所述时频资源中第一类RE上承载的数据的MCS,所述第一MCS用于对所述第一类RE上承载的数据进行调制编码;
接收单元,用于通过所述时频资源接收来自所述终端设备的调制符号;
解调解码单元,用于根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS。
作为一种可能的实施方式,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
所述发送单元,还用于向所述终端设备发送配置信息,所述配置信息用于确定所述第二MCS。
作为一种可能的实施方式,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率,所述指示信息用于确定所述第二MCS。
作为一种可能的实施方式,所述解调解码单元根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据包括:
根据所述第一MCS、第二MCS和所述时频资源计算TB大小;
根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB,所述多个CB中每个CB大小小于或等于第一阈值;
将所述多个CB合成为TB得到第一数据,所述第一数据的大小等于所述TB大小。
作为一种可能的实施方式,所述DCI还包括传输层数,所述解调解码单元根据所述第一MCS、第二MCS和所述时频资源计算TB大小包括:
根据所述第一MCS、第二MCS、所述时频资源、所述传输层数、第一数量和第二数量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
作为一种可能的实施方式,所述解调解码单元根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
根据所述第一MCS对第一类调制符号进行解调解码,得到第一CB组,所述第一类调制符号为所述第一类RE上承载的符号,所述第一CB组包括的CB大小总和为所述TB大小与数据量的差值,所述数据量根据所述第二MCS、所述时频资源、所述传输层数和所述 第二数量计算;
根据所述第二MCS对第二类调制符号进行解调解码,得到第二CB组,所述第二类调制符号为所述第二类RE上承载的符号,所述第二CB组包括的CB大小总和为所述数据量;
所述解调解码单元将所述多个CB合成为TB得到第一数据包括:
将所述第一CB组和所述第二CB组组合为TB得到第一数据。
作为一种可能的实施方式,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述解调解码单元根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
根据所述第一调制方式对第一类调制符号进行解调,根据所述第二调制方式对第二类调制符号进行解调,得到第二数据,所述第一类调制符号为所述第一类RE上承载的符号,所述第二类调制符号为所述第二类RE上承载的符号;
根据所述编码速率对所述第二数据进行解码,得到多个CB。
作为一种可能的实施方式,该通信装置还可以包括:
测量单元,用于对所述终端设备与网络设备之间的上行信道进行测量;
第一确定单元,用于根据测量的结果确定所述第一MCS。
作为一种可能的实施方式,该通信装置还可以包括:
所述第二确定单元,用于根据所述第一MCS以及所述第二功率与所述第一功率之间的差值确定所述第二MCS。
第五方面公开一种通信装置,该通信装置可以为终端设备或者终端设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第六方面公开一种通信装置,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第七方面公开一种通信***,该通信***包括第五方面的通信装置和第六方面的通信装置。
第八方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的通信方法。
第九方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
图1是本发明实施例公开的一种NR时频资源的示意图;
图2是本发明实施例公开的一种调制编码的示意图;
图3是本发明实施例公开的一种上行传输资源的示意图;
图4是本发明实施例公开的另一种调制编码的示意图;
图5是本发明实施例公开的一种网络架构示意图;
图6是本发明实施例公开的一种通信方法的流程示意图;
图7是本发明实施例公开的一种时频资源的示意图;
图8是本发明实施例公开的另一种时频资源的示意图;
图9是本发明实施例公开的一种调制编码映射的示意图;
图10是本发明实施例公开的另一种调制编码映射的示意图;
图11是本发明实施例公开的一种通信装置的结构示意图;
图12是本发明实施例公开的另一种通信装置的结构示意图;
图13是本发明实施例公开的又一种通信装置的结构示意图;
图14是本发明实施例公开的又一种通信装置的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法、装置及计算机可读存储介质,用于提高传输效率。以下分别进行详细说明。
为了更好地理解本发明实施例,下面先对本发明实施例的应用场景进行描述。在无线通信***中,按照发送节点和接收节点种类的不同,可以将通信分为不同类型的通信。通常,可以将网络设备向终端设备发送信息的通信称为下行(downlink,DL)通信,可以将终端设备向网络设备发送信息的通信称为上行(uplink,UL)通信。在第五代无线通信***,即新无线(new radio,NR)***中,上行数据传输可以基于正交频分多址接入(orthogonal frequency division multiple access,OFDMA)、单载波频分多址接入(singlecarrier frequency division multiple access,SC-FDMA)等进行。请参阅图1,图1是本发明实施例公开的一种NR时频资源的示意图。如图1所示,时频资源可以被划分为时间域维度上的符号(symbol)和频率域维度上的子载波(carrier)。时频资源中的最小资源粒度可以称为RE,表示时间域上的一个符号和频率域上的一个子载波组成的时频格点。NR***中典型的时频资源的基本结构可以是30KHz的子载波间隔、大约36us的符号时长以及2~3us左右的循环前缀时长。一个时隙(slot)可以包含14个符号。时域上的一个时隙,以及频域上的12个RE可以组成一个物理资源块(physical resource block,PRB)。即一般来说,每个PRB可以包括168个RE(14(时域)*12(频域))。时间域上的符号也可以称为时域符号,如OFDM、SC-FDMA等。时隙的长度可以为0.5ms。
在长期演进(long term evolution,LTE)和部分NR***中,终端设备进行上行数据传输是基于基站调度的。为了便于调度,终端设备上层的大数据包在向下递交到至物理层的 过程中,会被划分成以传输块(transport block,TB)为单位的小数据包等待基站调度。每次基站调度部分或全部带宽服务终端设备,每次调度的时间粒度一般是一个时隙。具体的调度流程是基站在控制信道,如物理下行控制信道(physical downlink control channel,PDCCH),上发送DCI,该DCI可以指示PUSCH中TB对应的调度信息,包括被调度TB所使用的频域/时域资源和MCS索引等控制信息。用于调度上行数据传输的DCI也称为上行授权(UL grant)。
每个MCS的索引可以对应一个调制方式和一个编码速率。终端设备可以根据MCS的索引确定基站发送的下行数据,或调度终端设备将要传输的上行数据的调制方式和编码速率。MCS的索引与调制方式和编码速率的对应关系可以如表1所示:
Figure PCTCN2020132539-appb-000001
Figure PCTCN2020132539-appb-000002
表1
请参阅图2,图2是本发明实施例公开的一种调制编码的示意图。如图2所示,在传输开始时,终端设备的高层可以根据DCI指示,向物理层下发一个或两个TB。TB的大小可以根据DCI中的MCS、传输层数和资源分配信息,以及高层信令配置的每个PRB上的开销确定。
例如,MCS索引为7,即DCI指示了正交相移键控(quadrature phase shift keying,QPSK)+0.5码率传输,仅使用1层传输,并且DCI调度了100个PRB用于终端设备的上行传输。终端设备通过高层信令可知,每个PRB上168个RE中只有144个RE可以发送上行数据,其余24个RE可以称为“开销”,通常用作发送解调参考信号(demodulation reference signal,DMRS)等。TB大小约为2*0.5*1*100*144=14400bit。
网络设备或终端设备可以根据预定义的最大CB大小(size),将每个TB分解成数量最少的CB,且满足每个CB的数据量不超过预定义的最大CB大小,不同CB的数据量相差至多8bit(即近似等分)。假设预定义的最大CB大小为8144bit,可以将14400bit的TB分为2个CB,每个CB大约7200bit。
根据DCI中MCS的指示,终端设备可以对每个CB使用相同编码速率进行编码,之后使用相同调制方式进行调制得到调制符号。终端设备可以将这些调制符号映射到上行物理资源上,例如RE上,进行上行传输。
一般来说,基站可以根据传输资源的SINR确定MCS。MCS越高,即MCS索引越大,对应的SINR越高。
终端设备可以在上行时隙发送PUSCH。一般情况下,会在占用调度PRB的所有RE上发送PUSCH。但在某些特殊情况下,由于基站需要测量干扰或进行其他操作,可能只会调度在每个PRB的部分RE上发送PUSCH。请参阅图3,图3是本发明实施例公开的一种上行传输资源的示意图。如图3所示,白色格子为不发送PUSCH的RE,剩余格子为可以发送PUSCH的RE。可以发送PUSCH的RE中部分RE用于传输DMRS,剩余部分RE用于传输上行数据,这两部分共同组成PUSCH。
由于终端设备硬件的原因,终端设备在不同的符号上必须保持相同的发送功率。因此,相比于上图中后面的浅灰色符号,第3~6个深灰色符号的发送功率谱密度更大,是前者的3倍,可以称之为功率提升4.8dB。此处的功率提升是指单个RE发送功率的提升。这些符号上所有传输PUSCH的RE可以称为功率提升(power boosting)RE。功率提升RE具有更大的功率频谱密度,使得这些RE上的SINR更高。因此,理论上应该为这些RE分配更高的MCS以获得更大的传输速率。但由于现有调制编码架构的局限,NR***并不支持为一个PUSCH在不同RE上分配不同的MCS。
为了解决上述问题,可以使不同传输层上的PUSCH使用不同的MCS。
LTE和NR***可以通过多输入多输出(multi input multi output,MIMO)技术成倍地提升数据传输速率。在MIMO***中,发射机和接收机上同时使用多根天线来建立多个并行传输信道,使得在单位时间和频段上***的传输效率成倍地增加。传输效率可以理解为带宽利用率,单位bits/s/Hz。支持多个并行信道传输的MIMO技术通常被称为空分复用,主要用于提高数据传输速率,数据可以被分为多个层(也称为流),这些层一般使用相同的时频资源同时发送。
基站可以在DCI中向终端设备指示上行传输的TB数。当TB数大于1时,DCI中可以为每个TB单独指示MCS。请参阅图4,图4是本发明实施例公开的另一种调制编码的示意图。如图4所示,当TB数为2时,终端设备接收到DCI之后,可以从高层下发两个TB分别处理。每个TB可以分别对应一个MCS,不同的传输层可以对应不同的MCS,也可以对应相同的MCS。
然而,上述方式中,由于只能在不同的传输层使用不同的MCS,即不同资源配置不同MCS的能力限制在空域维度,以致MCS的增益较小。
为了更好地理解本发明实施例公开的一种通信方法、装置及计算机可读存储介质,下面先对本发明实施例使用的网络架构进行描述。请参阅图5,图5是本发明实施例公开的一种网络架构示意图。如图5所示,该网络架构可以包括网络设备和终端设备。如图5所示,网络设备和终端设备可以组成通信***100。在该通信***100中,网络设备110可以向终端设备101~终端设备106发送下行数据。终端设备101~终端设备106可以向网络设备110发送上行数据。
终端设备104-终端设备106也可以组成一个通信***。在该通信***中,终端设备105可以发送下行数据给终端设备104或终端设备106。
终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)或其他可以接入网络的设备。
网络设备是为终端设备提供无线接入的设备,主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)流管理、数据压缩和加密等功能。网络设备可以包括各种 形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。网络设备还可以包括无线上网(wireless fidelity,WiFi)接入节点(access point,AP)。网络设备还可以包括全球微波互联接入(worldwide interoperability for microwave access,WiMax)基站(base station,BS)。
需要说明的是,图5所示网络架构中的网络设备或终端设备只是进行示意性说明,并不对网络架构进行限定。例如,通信***可以包括更多或更少的网络设备或终端设备。
需要说明的是,图5所示的网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以直接进行通信,也可以通过其他设备或网元进行通信。
上述通信***可以是公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。
需要说明的是,图5所示的通信***可以为5G***,也可以为LTE***,还可以为未来的各种通信***。例如6G或者其他通信网络等。
基于上述网络架构,请参阅图6,图6是本发明实施例公开的一种通信方法的流程示意图。如图6所示,该通信方法可以包括以下步骤。
601、网络设备向终端设备发送DCI。
在终端设备需要向网络设备发送数据的情况下,网络设备可以向终端设备发送DCI。DCI可以包括时频资源和第一MCS。时频资源为网络设备为终端设备调度或授权的用于传输上行数据的资源。第一MCS为时频资源中第一类RE上承载的数据的MCS。DCI包括第一MCS,可以理解为包括第一MCS对应的索引,也可以理解为包括第一MCS对应的频谱效率,还可以理解为包括其它可以唯一标识第一MCS的信息。第一类RE可以为承载的数据的发送功率最小的RE,也可以为承载的数据的发送功率最大的RE。承载的数据的发送功率最小的RE,可以理解为同一符号上可以用于发送PUSCH的RE数量最大的RE,如图3中符号6-11对应的RE。承载的数据的发送功率最大的RE,可以理解为同一符号上可以用于发送PUSCH的RE数量最小的RE,如图3中符号1-5对应的RE中有填充的RE。DCI可以承载在物理下行控制信道(physical downlink control channel,PUCCH)上。
相应地,终端设备可以接收来自网络设备的DCI。
网络设备可以通过高层信令为终端设备配置资源集合中每个资源集合可用于发送PUSCH的RE。资源集合可以为RB,也可以为RB组。RB组包括两个或两个以上RB。
网络设备可以为不同时隙配置不同的PUSCH。以时分双工(time division duplex,TDD)为例进行说明。假设网络设备为终端设备配置了5ms的上下行配置周期。5ms可以包含10个时隙。这些时隙分别为DDSUUUUUUU。D代表下行时隙。S代表特殊时隙,可以根据需要确定上行时隙,也可以根据需要确定为下行时隙。U代表上行时隙。上述配置的上下行配比为7:3。请参阅图7,图7是本发明实施例公开的一种时频资源的示意图。如图7所示,在每个上下行周期内的第一个上行时隙内,终端设备可以使用上面的时频资源中非白色RE传输PUSCH,前两个符号用于传输DMRS,其余符号用于传输上行数据。终端设备在其余上 行时隙内,可以使用下面的时频资源中非白色RE传输PUSCH。
602、终端设备确定第二MCS。
终端设备接收到来自网络设备的DCI之后,可以确定第二MCS。第二MCS为时频资源中第二类RE上承载的数据的MCS。
应理解,第一类RE和第二类RE处于不同时域符号上。
应理解,第一类RE和第二类RE为时频资源中可用于传输PUSCH的RE中除用于传输DMRS(即参考信号)的RE之外的RE。下面描述的用于传输PUSCH的RE不包括用于传输DMRS的RE。
在时频资源包括两类可用于传输PUSCH的RE的情况下,当第一类RE为承载的数据的发送功率最小的RE时,第二类RE为承载的数据的发送功率最大的RE;当第一类RE为承载的数据的发送功率最大的RE时,第二类RE为承载的数据的发送功率最小的RE。
在一种情况下,网络设备可以向终端设备发送配置信息。网络设备可以通过高层信令向终端设备发送配置信息,也可以通过其它消息、信令等向终端设备发送配置信息。配置信息可以指示第二功率与第一功率之间的差值。第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率。第一功率可以小于第二功率,也可以大于第二功率。
应理解,上述差值是针对第一功率小于第二功率的情况,即上述差值大于0,也即第一类RE为承载的数据的发送功率最小的RE。当第一功率大于第二功率时,上述差值为第一功率与第二功率之间的差值。
应理解,下面是以第一功率小于第二功率为例进行说明的。
终端设备接收到配置信息之后,可以先根据配置信息确定第二功率与第一功率之间的差值,之后可以根据该差值和第一MCS确定第二MCS。例如,可以根据预定义的功率提升与MCS提升之间的对应关系、该差值和第一MCS确定第二MCS。
配置信息可以显式地指示上述差值。例如,可以使用2个比特显式地指示差值,01可以表示第二功率相对第一功率提升了1dB,10可以表示第二功率相对第一功率提升了2dB,11可以表示第二功率相对第一功率提升了3dB。
配置信息也可以隐式地指示上述差值。配置信息可以为时频资源中用于传输数据的RE的位置,终端设备接收到配置信息之后,可以根据RE的位置确定第二功率与第一功率之间的差值。此外,还可以根据RE的位置确定第一数量和第二数量。第一数量为时频资源中第一类RE的数量,第二数量为时频资源中第二类RE的数量。配置信息也可以为差值的索引。例如,可以使用2个比特指示差值,00可以表示第二功率相对第一功率提升了1dB,01可以表示第二功率相对第一功率提升了2dB,10可以表示第二功率相对第一功率提升了3dB,11可以表示第二功率相对第一功率提升了4dB。配置信息还可以为资源位置,配置信息可以通过不同的传输位置来指示第二功率相对第一功率提升了不同的值。配置信息还可以通过其它方式隐式地指示上述差值,在此不加限定。
举例说明,如图7上面的时频资源所示,时频资源中符号5-14对应的RE为第一类RE,时频资源中符号3-4对应的RE中被填充的RE为第二类RE,第二功率相对第一功率提升了3dB。假设功率每提升1dB,MCS对应的索引或阶数可以提升1。当第一MCS对应的索 引为15,即调制方式为16正交振幅调制(quadrature amplitude modulation,QAM)、编码速率为0.6时,可以确定第二类MCS对应的索引为18,即调制方式为64QAM、编码速率为0.5。
在另一种情况下,DCI还可以包括指示信息。该指示信息可以指示第二MCS,也可以指示第二功率与第一功率之间的差值。当指示信息指示第二功率与第一功率之间的差值时,终端设备可以根据指示信息指示的差值和第一MCS确定第二MCS。当指示信息指示第二MCS时,终端设备可以根据指示信息确定第二MCS。指示信息可以显式地指示,也可以隐式地指示。详细描述可以参考上述相关内容。
举例说明,请参阅图8,图8是本发明实施例公开的另一种时频资源的示意图。如图8所示,时频资源中符号7-14对应的RE为第一类RE,时频资源中符号3-6对应的RE中被填充的RE为第二类RE。第二类RE中每个RE上承载的数据的发送功率相对第一类RE中每个RE上承载的发送功率提升了6dB。功率提升与调制方式之间的对应关系可以如表2所示:
原调制方式/提升所需最低dB/提升的调制方式 16QAM 64QAM 256QAM
正交相移键控(quadrature phase shift keying,QPSK) 7dB 13dB 19.3dB
16QAM - 6dB 12.3dB
64QAM - - 6dB
表2
当第一MCS对应的索引为15,即调制方式为16QAM、编码速率为0.6时,根据表2和差值为6dB可以确定第二类MCS对应的索引为18,即调制方式为64QAM,编码速率还是0.6。
603、终端设备根据第一MCS和第二MCS对第一数据进行调制编码,得到调制符号。
终端设备接收到来自网络设备的DCI,以及确定出第二MCS之后,可以根据第一MCS和第二MCS对第一数据进行调制编码得到调制符号。终端设备可以先对数据进行编码,之后再对编码后的数据进行调制。
由于数据传输的时候,是以TB为单位进行传输的。因此,终端设备可以先根据第一MCS、第二MCS和时频资源计算TB大小。DCI还可以包括传输层数和PRB的数量,终端设备可以根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量计算TB大小。在本发明中,为了提高MCS的增益,可以仅使用1层传输,即传输层数为1。TB大小的计算公式可以如下:
M1*C1*L*R*Q1+M2*C2*L*R*Q2
其中,M1表示第一调制阶数,C1表示第一编码速率,L表示传输层数,R表示PRB的数量,Q1表示第一数量,M2表示第二调制阶数,C2表示第二编码速率,Q2表示第二数量。第一调制阶数为第一MCS对应的调制阶数,第二调制阶数为第二MCS对应的调制阶数。TB大小的计算公式也可以为上述公式的各种变形。
之后终端设备可以将第一数据划分为多个CB,以及根据第一MCS和第二MCS对多 个CB进行调制编码得到调制符号。第一数据的大小等于TB大小。第一数据为待发送数据中TB大小的数据。多个CB中每个CB大小小于或等于第一阈值。第一阈值为预定义的最大CB大小,即允许的最大CB的大小。
在一种情况下,终端设备可以先根据第二MCS、时频资源、传输层数和第二数量计算数据量,之后可以根据该数据量将第一数据划分为多个CB。多个CB可以包括第一CB组和第二CB组,第一CB组包括的CB大小总和为TB大小与数据量的差值,第二CB组包括的CB大小总和为上述数据量。之后终端设备可以使用第一MCS对第一CB组进行调制编码,使用第二MCS对第二CB组进行调制编码得到调制符号。第一MCS和第二MCS包括的调制方式和编码速率均不同。
终端设备可以先判断上述数据量是否大于或等于第二阈值,当判断出上述数据量大于或等于第二阈值时,表明第二CB组包括的CB大小总和足够大,第二类RE上承载的数据与第一类RE上承载的数据可以使用不同的MCS进行调制编码。当判断出上述数据量小于第二阈值时,表明第二CB组包括的CB大小总和较小,第二类RE上承载的数据与第一类RE上承载的数据只能使用相同的MCS。由于只有当第二CB组包括的CB大小总和足够大时,第二类RE上承载的数据使用第二MCS进行调制编码才能获取到较大的编码增益。因此,可以设置一个阈值,以便可以避免由于MCS的提升造成编码增益下降。
举例说明,假设第一MCS对应的索引为15,第二MCS对应的索引为18,则第一调制阶数为4,第二调制阶数为6,第一编码速率为0.6,第二编码速率为0.5。L为1。当R为100、第一数量为96、第二数量为12时,TB大小可以为26640比特(bit)(即4*0.6*1*100*96+6*0.5*1*100*12)。数据量可以为3600bit(6*0.5*1*100*12)。假设第一阈值为8000bit,第二阈值为1000bit。由于3600大于1000,因此,第二类RE上承载的数据可以使用第二MCS进行调制编码。终端设备接收到高层下发的26640bit的数据包,即第一数据之后,可以将第一数据划分为1个3600bit和3个7680bit的CB,即第一CB组包括3个7680bit的CB,第二CB组包括1个3600bit的CB。之后可以使用MCS15(即索引15对应的MCS)对3个7680bit的CB进行调制编码,可以使用MCS18(即索引18对应的MCS)对1个3600bit的CB进行调制编码,得到调制符号。
请参阅图9,图9是本发明实施例公开的一种调制编码映射的示意图。如图9所示,终端设备可以将一个TB划分为第一CB组(包括n个CB)和第二CB组(包括m个CB)。之后终端设备可以使用第一MCS对第一CB组包括的n个CB进行调制编码,即先使用编码速率1对n个CB进行编码,之后使用调制方式1对编码后的n个CB进行调制,得到第一调制符号。同样终端设备可以使用第二MCS对第二CB组包括的m个CB进行调制编码,即先使用编码速率2对m个CB进行编码,之后使用调制方式2对编码后的m个CB进行调制,得到第二调制符号。之后终端设备可以将第一调制符号映射到第一类RE上,可将第二调制符号映射到第二类RE上。
在另一种情况下,第一MCS可以包括第一调制方式和编码速率,第二MCS可以包括第二调制方式和该编码速率,即第一MCS和第二MCS包括的调制方式不同,但包括的编码速率相同。终端设备可以使用该编码速率对多个CB进行编码得到第二数据,以及可以根据第二MCS、时频资源、传输层数和第二数量计算数据量,之后可以使用第二调制方式 对第二数据中数据量对应的数据进行调制,使用第一调制方式对第二数据中剩余数据进行调制,得到调制符号。
举例说明,假设第一MCS包括的调制方式为16QAM,第二MCS包括的调制方式为64QAM,则第一调制阶数为4,第二调制阶数为6。第一MCS和第二MCS包括的编码速率均为0.6。L为1。当R为100、第一数量为96、第二数量为12时,TB大小可以为27260bit(即4*0.6*1*100*96+6*0.6*1*100*12)。数据量可以为4320bit(6*0.6*1*100*12)。假设第一阈值为8000bit。终端设备接收到高层下发的27260bit的数据包,即第一数据之后,可以将第一数据划分为4个6840bit的CB。之后终端设备可以先使用0.6的编码速率对4个6840bit的CB进行编码,得到4个11400(6840/0.6)bit的CB。之后终端设备可以将一个11400bit的CB分为7200((4320/6840)*11400)bit和4200(11400-7200)bit,之后终端设备可以使用64QAM对上述7200bit进行调制,使用16QAM对4个11400bit的CB中剩余bit进行调制,得到调制符号。
请参阅图10,图10是本发明实施例公开的另一种调制编码映射的示意图。如图10所示,终端设备可以将一个TB划分为n个CB。终端设备可以先使用编码速率1对n个CB进行编码。之后终端设备可以使用第二调制方式对编码后的数据中数据量对应的数据进行调制,得到第二调制符号,使用第一调制方式对编码后的数据中剩余数据进行调制,得到第一调制符号。之后终端设备可以将第一调制符号映射到第一类RE上,以及可以将第二调制符号映射到第二类RE上。
604、终端设备通过时频资源向网络设备发送调制符号。
相应地,网络设备可以通过时频资源接收来自终端设备的调制符号。
605、网络设备根据第一MCS和第二MCS对调制符号进行解调解码,得到第一数据。
网络设备通过时频资源接收到来自终端设备的调制符号之后,可以根据第一MCS和第二MCS对调制符号进行解调解码得到第一数据。
网络设备可以先根据第一MCS、第二MCS和时频资源计算TB大小,之后可以根据第一MCS和第二MCS对调制符号进行解调解码得到多个CB,最后可以将多个CB合成为TB得到第一数据。详细描述可以参考步骤603中的相关描述。
网络设备可以根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量,计算TB大小。详细描述可以参考步骤603中的相关描述。
在一种情况下,网络设备可以先根据第一MCS对第一类调制符号进行解调解码得到第一CB组。第一类调制符号为第一类RE上承载的符号,第一CB组包括的CB大小总和为TB大小与数据量的差值,数据量由网络设备根据第二MCS、时频资源、传输层数和第二数量计算。之后网络设备可以根据第二MCS对第二类调制符号进行解调解码得到第二CB组,第二类调制符号为第二类RE上承载的符号,第二CB组包括的CB大小总和为数据量。最后网络设备可以将第一CB组和第二CB组组合为TB得到第一数据。详细描述可以参考步骤603中的相关描述。
在另一种情况下,第一MCS可以包括第一调制方式和编码速率,第二MCS可以包括第二调制方式和编码速率,网络设备可以根据第一调制方式对第一类调制符号进行解调,可以根据第二调制方式对第二类调制符号进行解调得到第二数据。之后网络设备可以根据 上述编码速率对第二数据进行解码得到多个CB。详细描述可以参考步骤603中的相关描述。
网络设备可以先对终端设备与网络设备之间的上行信道进行测量,即测量与终端设备之间的上行信道。之后网络设备可以根据上行信道测量的结果确定第一MCS。
网络设备可以根据第一MCS以及第二功率与第一功率之间的差值确定第二MCS。详细描述可以参考步骤603中的相关描述。
应理解,步骤604和步骤605中的网络设备可以替换为终端设备。
应理解,上述通信方法中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。
应理解,上述通信方法针对时频资源包括三类或三类以上RE也是适用的。
基于上述网络架构,请参阅图11,图11是本发明实施例公开的一种通信装置的结构示意图。如图11所示,该通信装置可以包括:
接收单元1101,用于接收来自网络设备的DCI,DCI包括时频资源和第一MCS,第一MCS为上述时频资源中第一类RE上承载的数据的MCS;
确定单元1102,用于确定第二MCS,第二MCS为上述时频资源中第二类RE上承载的数据的MCS;
调制编码单元1103,用于根据第一MCS和第二MCS对第一数据进行调制编码,得到调制符号;
发送单元1104,用于通过上述时频资源向网络设备发送调制符号。
在一种实施例中,第一功率小于第二功率,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率;
确定单元1102具体用于:
接收来自网络设备的配置信息;
根据配置信息确定第二功率与第一功率之间的差值;
根据该差值和第一MCS确定第二MCS。
在一种实施例中,DCI还包括指示信息,指示信息指示第二MCS或第二功率与第一功率之间的差值,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率;
确定单元1102具体用于:
当指示信息指示该差值时,根据该差值和第一MCS确定第二MCS;
当指示信息指示第二MCS时,根据指示信息确定第二MCS。
在一种实施例中,调制编码单元1103具体用于:
根据第一MCS、第二MCS和时频资源计算TB大小;
将第一数据划分为多个CB,第一数据的大小等于TB大小,多个CB中每个CB大小小于或等于第一阈值;
根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号。
在一种实施例中,DCI还包括传输层数,调制编码单元1103根据第一MCS、第二MCS 和时频资源计算TB大小包括:
根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量,计算TB大小,第一数量为时频资源中第一类RE的数量,第二数量为时频资源中第二类RE的数量。
在一种实施例中,调制编码单元1103将第一数据划分为多个CB包括:
根据第二MCS、时频资源、传输层数和第二数量,计算数据量;
根据数据量将第一数据划分为多个CB,多个CB包括第一CB组和第二CB组,第一CB组包括的CB大小总和为TB大小与数据量的差值,第二CB组包括的CB大小总和为数据量;
调制编码单元1103根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号包括:
使用第一MCS对第一CB组进行调制编码,使用第二MCS对第二CB组进行调制编码,得到调制符号。
在一种实施例中,第一MCS包括第一调制方式和编码速率,第二MCS包括第二调制方式和编码速率,调制编码单元根据第一MCS和第二MCS对多个CB进行调制编码,得到调制符号包括:
使用编码速率对多个CB进行编码,得到第二数据;
根据第二MCS、时频资源、传输层数和第二数量,计算数据量;
使用第二调制方式对第二数据中数据量对应的数据进行调制,使用第一调制方式对第二数据中剩余数据进行调制,得到调制符号。
有关上述接收单元1101、确定单元1102、调制编码单元1103和发送单元1104更详细的描述可以直接参考上述图6所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图12,图12是本发明实施例公开的另一种通信装置的结构示意图。如图12所示,该通信装置可以包括:
发送单元1201,用于向终端设备发送DCI,DCI包括时频资源和第一MCS,第一MCS为时频资源中第一类RE上承载的数据的MCS,第一MCS用于对第一类RE上承载的数据进行调制编码;
接收单元1202,用于通过时频资源接收来自所述终端设备的调制符号;
解调解码单元1203,用于根据第一MCS和第二MCS对调制符号进行解调解码,得到第一数据,第二MCS为时频资源中第二类RE上承载的数据的MCS。
在一种实施例中,第一功率小于第二功率,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率;
发送单元1201,还用于向终端设备发送配置信息,配置信息用于确定第二MCS。
在一种实施例中,DCI还包括指示信息,指示信息指示第二MCS或第二功率与第一功率之间的差值,第一功率为第一类RE中每个RE上承载的数据的发送功率,第二功率为第二类RE中每个RE上承载的数据的发送功率,指示信息用于确定第二MCS。
在一种实施例中,解调解码单元1203根据第一MCS和第二MCS对调制符号进行解 调解码,得到第一数据包括:
根据第一MCS、第二MCS和时频资源计算TB大小;
根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB,多个CB中每个CB大小小于或等于第一阈值;
将多个CB合成为TB得到第一数据,第一数据的大小等于TB大小。
在一种实施例中,DCI还包括传输层数,解调解码单元1203根据第一MCS、第二MCS和时频资源计算TB大小包括:
根据第一MCS、第二MCS、时频资源、传输层数、第一数量和第二数量,计算TB大小,第一数量为时频资源中第一类RE的数量,第二数量为时频资源中第二类RE的数量。
在一种实施例中,解调解码单元1203根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB包括:
根据第一MCS对第一类调制符号进行解调解码,得到第一CB组,第一类调制符号为第一类RE上承载的符号,第一CB组包括的CB大小总和为TB大小与数据量的差值,数据量根据第二MCS、时频资源、传输层数和第二数量计算;
根据第二MCS对第二类调制符号进行解调解码,得到第二CB组,第二类调制符号为第二类RE上承载的符号,第二CB组包括的CB大小总和为数据量;
解调解码单元1203将多个CB合成为TB得到第一数据包括:
将第一CB组和第二CB组组合为TB得到第一数据。
在一种实施例中,第一MCS包括第一调制方式和编码速率,第二MCS包括第二调制方式和该编码速率,解调解码单元1203根据第一MCS和第二MCS对调制符号进行解调解码,得到多个CB包括:
根据第一调制方式对第一类调制符号进行解调,根据第二调制方式对第二类调制符号进行解调,得到第二数据,第一类调制符号为第一类RE上承载的符号,第二类调制符号为第二类RE上承载的符号;
根据该编码速率对第二数据进行解码,得到多个CB。
在一种实施例中,该通信装置还可以包括:
测量单元1204,用于对终端设备与网络设备之间的上行信道进行测量;
确定单元1205,用于根据测量的结果确定第一MCS。
在一种实施例中,确定单元1205还用于:
根据第一MCS以及第二功率与第一功率之间的差值确定第二MCS。
有关上述发送单元1201、接收单元1202、解调解码单元1203、测量单元1204和确定单元1205更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图13,图13是本发明实施例公开的又一种通信装置的结构示意图。如图13所示,该通信装置可以包括处理器1301、存储器1302、输入接口1303、输出接口1304和连接线1305。存储器1302可以是独立存在的,可以通过连接线1305与处理器1301相连接。存储器1302也可以和处理器1301集成在一起。其中,总线1305用于实现这些 组件之间的连接。
在一个实施例中,该通信装置可以为终端设备或者终端设备内的模块(例如,芯片),存储器1302中存储的计算机程序指令被执行时,该处理器1301用于控制接收单元1101和发送单元1104执行上述实施例中执行的操作,该处理器1301还用于执行确定单元1102和调制编码单元1103上述实施例中执行的操作,输入接口1303用于执行上述实施例中接收单元1101执行的操作,输出接口1304用于执行上述实施例中发送单元1104执行的操作。上述终端设备或者终端设备内的模块还可以用于执行上述图6方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为网络设备或者网络设备内的模块(例如,芯片),存储器1302中存储的计算机程序指令被执行时,该处理器1301用于控制发送单元1201和接收单元1202执行上述实施例中执行的操作,该处理器1301还用于执行解调解码单元1203、测量单元1204和确定单元1205上述实施例中执行的操作,输入接口1303用于执行上述实施例中接收单元1202执行的操作,输出接口1304用于执行上述实施例中发送单元1201执行的操作。上述网络设备或者网络设备内的模块还可以用于执行上述图6方法实施例中网络设备执行的各种方法,不再赘述。
基于上述网络架构,请参阅图14,图14是本发明实施例公开的又一种通信装置的结构示意图。如图14所示,该通信装置可以包括输入接口1401、逻辑电路1402和输出接口1403。输入接口1401与输出接口1403通过逻辑电路1402相连接。其中,输入接口1401用于接收来自其它通信装置的信息,输出接口1403用于向其它通信装置输出、调度或者发送信息。逻辑电路1402用于执行除输入接口1401与输出接口1403的操作之外的操作,例如实现上述实施例中处理器1301实现的功能。其中,该通信装置可以为网络设备或者网络设备的模块,也可以为第一终端设备或者第一终端设备的模块,还可以为第二终端设备或者第二终端设备的模块。其中,有关输入接口1401、逻辑电路1402和输出接口1403更详细的描述可以直接参考上述方法实施例中网络设备或端设备的相关描述直接得到,这里不加赘述。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种通信***,该通信***包括网络设备和终端设备,具体描述可以参考图6所示的通信方法。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的下行控制信息DCI,所述DCI包括时频资源和第一调制编码方式MCS,所述第一MCS为所述时频资源中第一类资源单元RE上承载的数据的MCS;
    确定第二MCS,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS;
    根据所述第一MCS和所述第二MCS对第一数据进行调制编码,得到调制符号;
    通过所述时频资源向所述网络设备发送所述调制符号。
  2. 根据权利要求1所述的方法,其特征在于,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    所述确定第二MCS包括:
    接收来自所述网络设备的配置信息;
    根据所述配置信息确定所述第二功率与所述第一功率之间的差值;
    根据所述差值和所述第一MCS确定第二MCS。
  3. 根据权利要求1所述的方法,其特征在于,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    当所述指示信息指示所述差值时,所述确定第二MCS包括:
    根据所述差值和所述第一MCS确定第二MCS;
    当所述指示信息指示所述第二MCS时,所述确定第二MCS包括:
    根据所述指示信息确定第二MCS。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述第一MCS和所述第二MCS对第一数据进行调制编码,得到调制符号包括:
    根据所述第一MCS、所述第二MCS和所述时频资源计算传输块TB大小;
    将第一数据划分为多个编码块CB,所述第一数据的大小等于所述TB大小,所述多个CB中每个CB大小小于或等于第一阈值;
    根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号。
  5. 根据权利要求4所述的方法,其特征在于,所述DCI还包括传输层数,所述根据所述第一MCS、所述第二MCS和所述时频资源计算TB大小包括:
    根据所述第一MCS、所述第二MCS、所述时频资源、所述传输层数、第一数量和第二数量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
  6. 根据权利要求5所述的方法,其特征在于,所述将第一数据划分为多个CB包括:
    根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
    根据所述数据量将第一数据划分为多个CB,所述多个CB包括第一CB组和第二CB组,所述第一CB组包括的CB大小总和为所述TB大小与所述数据量的差值,所述第二 CB组包括的CB大小总和为所述数据量;
    所述根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
    使用所述第一MCS对所述第一CB组进行调制编码,使用所述第二MCS对所述第二CB组进行调制编码,得到调制符号。
  7. 根据权利要求5所述的方法,其特征在于,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
    使用所述编码速率对所述多个CB进行编码,得到第二数据;
    根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
    使用所述第二调制方式对所述第二数据中所述数据量对应的数据进行调制,使用所述第一调制方式对所述第二数据中剩余数据进行调制,得到调制符号。
  8. 一种通信方法,其特征在于,包括:
    向终端设备发送下行控制信息DCI,所述DCI包括时频资源和第一调制编码方式MCS,所述第一MCS为所述时频资源中第一类资源单元RE上承载的数据的MCS,所述第一MCS用于对所述第一类RE上承载的数据进行调制编码;
    通过所述时频资源接收来自所述终端设备的调制符号;
    根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS。
  9. 根据权利要求8所述的方法,其特征在于,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    所述方法还包括:
    向所述终端设备发送配置信息,所述配置信息用于确定所述第二MCS。
  10. 根据权利要求8所述的方法,其特征在于,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率,所述指示信息用于确定所述第二MCS。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据包括:
    根据所述第一MCS、第二MCS和所述时频资源计算传输块TB大小;
    根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个编码块CB,所述多个CB中每个CB大小小于或等于第一阈值;
    将所述多个CB合成为TB得到第一数据,所述第一数据的大小等于所述TB大小。
  12. 根据权利要求11所述的方法,其特征在于,所述DCI还包括传输层数,所述根据所述第一MCS、第二MCS和所述时频资源计算TB大小包括:
    根据所述第一MCS、第二MCS、所述时频资源、所述传输层数、第一数量和第二数 量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
    根据所述第一MCS对第一类调制符号进行解调解码,得到第一CB组,所述第一类调制符号为所述第一类RE上承载的符号,所述第一CB组包括的CB大小总和为所述TB大小与数据量的差值,所述数据量根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量计算;
    根据所述第二MCS对第二类调制符号进行解调解码,得到第二CB组,所述第二类调制符号为所述第二类RE上承载的符号,所述第二CB组包括的CB大小总和为所述数据量;
    所述将所述多个CB合成为TB得到第一数据包括:
    将所述第一CB组和所述第二CB组组合为TB得到第一数据。
  14. 根据权利要求12所述的方法,其特征在于,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
    根据所述第一调制方式对第一类调制符号进行解调,根据所述第二调制方式对第二类调制符号进行解调,得到第二数据,所述第一类调制符号为所述第一类RE上承载的符号,所述第二类调制符号为所述第二类RE上承载的符号;
    根据所述编码速率对所述第二数据进行解码,得到多个CB。
  15. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的下行控制信息DCI,所述DCI包括时频资源和第一调制编码方式MCS,所述第一MCS为所述时频资源中第一类资源单元RE上承载的数据的MCS;
    确定单元,用于确定第二MCS,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS;
    调制编码单元,用于根据所述第一MCS和所述第二MCS对第一数据进行调制编码,得到调制符号;
    发送单元,用于通过所述时频资源向所述网络设备发送所述调制符号。
  16. 根据权利要求15所述的装置,其特征在于,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    所述确定单元具体用于:
    接收来自所述网络设备的配置信息;
    根据所述配置信息确定所述第二功率与所述第一功率之间的差值;
    根据所述差值和所述第一MCS确定第二MCS。
  17. 根据权利要求15所述的方法,其特征在于,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE 中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    所述确定单元具体用于:
    当所述指示信息指示所述差值时,根据所述差值和所述第一MCS确定第二MCS;
    当所述指示信息指示所述第二MCS时,根据所述指示信息确定第二MCS。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述调制编码单元具体用于:
    根据所述第一MCS、所述第二MCS和所述时频资源计算传输块TB大小;
    将第一数据划分为多个编码块CB,所述第一数据的大小等于所述TB大小,所述多个CB中每个CB大小小于或等于第一阈值;
    根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号。
  19. 根据权利要求18所述的装置,其特征在于,所述DCI还包括传输层数,所述调制编码单元根据所述第一MCS、所述第二MCS和所述时频资源计算TB大小包括:
    根据所述第一MCS、所述第二MCS、所述时频资源、所述传输层数、第一数量和第二数量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
  20. 根据权利要求19所述的装置,其特征在于,所述调制编码单元将第一数据划分为多个CB包括:
    根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
    根据所述数据量将第一数据划分为多个CB,所述多个CB包括第一CB组和第二CB组,所述第一CB组包括的CB大小总和为所述TB大小与所述数据量的差值,所述第二CB组包括的CB大小总和为所述数据量;
    所述调制编码单元根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
    使用所述第一MCS对所述第一CB组进行调制编码,使用所述第二MCS对所述第二CB组进行调制编码,得到调制符号。
  21. 根据权利要求19所述的装置,其特征在于,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述调制编码单元根据所述第一MCS和所述第二MCS对所述多个CB进行调制编码,得到调制符号包括:
    使用所述编码速率对所述多个CB进行编码,得到第二数据;
    根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量,计算数据量;
    使用所述第二调制方式对所述第二数据中所述数据量对应的数据进行调制,使用所述第一调制方式对所述第二数据中剩余数据进行调制,得到调制符号。
  22. 一种通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送下行控制信息DCI,所述DCI包括时频资源和第一调制编码方式MCS,所述第一MCS为所述时频资源中第一类资源单元RE上承载的数据的MCS,所述第一MCS用于对所述第一类RE上承载的数据进行调制编码;
    接收单元,用于通过所述时频资源接收来自所述终端设备的调制符号;
    解调解码单元,用于根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据,所述第二MCS为所述时频资源中第二类RE上承载的数据的MCS。
  23. 根据权利要求22所述的装置,其特征在于,第一功率小于第二功率,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率;
    所述发送单元,还用于向所述终端设备发送配置信息,所述配置信息用于确定所述第二MCS。
  24. 根据权利要求22所述的装置,其特征在于,所述DCI还包括指示信息,所述指示信息指示第二MCS或第二功率与第一功率之间的差值,所述第一功率为所述第一类RE中每个RE上承载的数据的发送功率,所述第二功率为所述第二类RE中每个RE上承载的数据的发送功率,所述指示信息用于确定所述第二MCS。
  25. 根据权利要求22-24任一项所述的装置,其特征在于,所述解调解码单元根据所述第一MCS和第二MCS对所述调制符号进行解调解码,得到第一数据包括:
    根据所述第一MCS、第二MCS和所述时频资源计算传输块TB大小;
    根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个编码块CB,所述多个CB中每个CB大小小于或等于第一阈值;
    将所述多个CB合成为TB得到第一数据,所述第一数据的大小等于所述TB大小。
  26. 根据权利要求25所述的装置,其特征在于,所述DCI还包括传输层数,所述解调解码单元根据所述第一MCS、第二MCS和所述时频资源计算TB大小包括:
    根据所述第一MCS、第二MCS、所述时频资源、所述传输层数、第一数量和第二数量,计算TB大小,所述第一数量为所述时频资源中所述第一类RE的数量,所述第二数量为所述时频资源中所述第二类RE的数量。
  27. 根据权利要求26所述的装置,其特征在于,所述解调解码单元根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
    根据所述第一MCS对第一类调制符号进行解调解码,得到第一CB组,所述第一类调制符号为所述第一类RE上承载的符号,所述第一CB组包括的CB大小总和为所述TB大小与数据量的差值,所述数据量根据所述第二MCS、所述时频资源、所述传输层数和所述第二数量计算;
    根据所述第二MCS对第二类调制符号进行解调解码,得到第二CB组,所述第二类调制符号为所述第二类RE上承载的符号,所述第二CB组包括的CB大小总和为所述数据量;
    所述解调解码单元将所述多个CB合成为TB得到第一数据包括:
    将所述第一CB组和所述第二CB组组合为TB得到第一数据。
  28. 根据权利要求26所述的装置,其特征在于,所述第一MCS包括第一调制方式和编码速率,所述第二MCS包括第二调制方式和所述编码速率,所述解调解码单元根据所述第一MCS和所述第二MCS对所述调制符号进行解调解码,得到多个CB包括:
    根据所述第一调制方式对第一类调制符号进行解调,根据所述第二调制方式对第二类调制符号进行解调,得到第二数据,所述第一类调制符号为所述第一类RE上承载的符号, 所述第二类调制符号为所述第二类RE上承载的符号;
    根据所述编码速率对所述第二数据进行解码,得到多个CB。
  29. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-14任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-14任一项所述的方法。
PCT/CN2020/132539 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质 WO2022110086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/132539 WO2022110086A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质
CN202080106253.0A CN116326070A (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132539 WO2022110086A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022110086A1 true WO2022110086A1 (zh) 2022-06-02

Family

ID=81753847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132539 WO2022110086A1 (zh) 2020-11-28 2020-11-28 一种通信方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116326070A (zh)
WO (1) WO2022110086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065196A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019883A1 (en) * 2015-07-14 2017-01-19 Motorola Mobility Llc Method and apparatus for reducing latency of lte uplink transmissions
US20180019794A1 (en) * 2016-07-14 2018-01-18 Sharp Laboratories Of America, Inc. Systems and methods for downlink control information for multiple-user superposition transmission
CN110024315A (zh) * 2016-11-04 2019-07-16 瑞典爱立信有限公司 取决于调度参数的pt-rs配置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019883A1 (en) * 2015-07-14 2017-01-19 Motorola Mobility Llc Method and apparatus for reducing latency of lte uplink transmissions
US20180019794A1 (en) * 2016-07-14 2018-01-18 Sharp Laboratories Of America, Inc. Systems and methods for downlink control information for multiple-user superposition transmission
CN110024315A (zh) * 2016-11-04 2019-07-16 瑞典爱立信有限公司 取决于调度参数的pt-rs配置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on CQI and MCS", 3GPP DRAFT; R1-1718435 DISCUSSION ON CQI AND MCS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341617 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065196A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 数据传输方法及装置

Also Published As

Publication number Publication date
CN116326070A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN114513286B (zh) 确定传输块大小的方法及装置
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
CN109257820B (zh) 通信方法和设备
US11516751B2 (en) Adjustments of power spectral densities associated with a reference signal sequence in a wireless communication network
WO2018202163A1 (zh) 一种资源指示方法及装置
WO2018228579A1 (zh) 确定传输块大小的方法及装置
CN111435859B (zh) 发送、接收方法及装置
CN105703882A (zh) 一种控制信息、信道或信号的传输方法及相应的发送端
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN111436108B (zh) 一种功率控制的方法以及功率控制的装置
CN115380588A (zh) 信息传输方法及装置
WO2019157897A1 (zh) 一种上行数据的发送方法、接收方法和装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022140907A1 (zh) 一种数据发送方法及装置
US20220304042A1 (en) Enhanced Configured Grants
CN115567890A (zh) 通信方法和通信装置
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
CN113852577B (zh) 无线通信方法和通信装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
US11943051B2 (en) Rate matching and channel interleaving for probabilistic shaping
WO2022056879A1 (zh) 通信方法及装置
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020220765A1 (zh) 一种v2x通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962976

Country of ref document: EP

Kind code of ref document: A1