WO2022108107A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2022108107A1
WO2022108107A1 PCT/KR2021/013604 KR2021013604W WO2022108107A1 WO 2022108107 A1 WO2022108107 A1 WO 2022108107A1 KR 2021013604 W KR2021013604 W KR 2021013604W WO 2022108107 A1 WO2022108107 A1 WO 2022108107A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
switch
freewheeling
current
capacitor
Prior art date
Application number
PCT/KR2021/013604
Other languages
French (fr)
Korean (ko)
Inventor
양정우
이진형
김재은
김영수
Original Assignee
삼성전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자(주) filed Critical 삼성전자(주)
Publication of WO2022108107A1 publication Critical patent/WO2022108107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a display device, and more particularly, to a single power stage lossless resonant clamp flyback converter.
  • the boost PFC converter performs power factor improvement by rectifying the AC input voltage with a bridge diode and controlling the boost converter so that a sinusoidal current of the same frequency and the same phase as the AC input voltage flows to the input side.
  • the voltage boosted by the boost converter not only has 100Hz/120Hz voltage ripple by the input line frequency (50Hz/60Hz), but also needs to step down to the voltage required by the load, so the output voltage boosted by the boost converter through the LLC converter It reduces the voltage to the desired rated constant voltage through frequency control, and also plays the role of insulation through the transformer of the resonance tank.
  • the two-stage converter structure composed of a boost PFC-LLC converter requires the use of two types of converters, so there is a limit to reducing the size and number of parts.
  • a flyback converter is mainly used for a converter with a simple structure and a small number of elements.
  • the flyback converter when the switch is turned off, the energy stored in the leakage inductor generates voltage ringing due to resonance of the leakage inductor and the switch drain-source parasitic capacitor, and thus burns out due to exceeding the withstand voltage of the switch.
  • an RCD snubber is applied to the flyback converter, it is possible to prevent the increase of the drain-source voltage.
  • the flyback converter to which the RCD snubber is applied has problems of reduced efficiency and increased volume due to high loss.
  • the input capacitance of the bridge stage must be small for power factor improvement operation. Therefore, the output voltage ripple occurs due to the line frequency (100/120Hz) of the rectified voltage at the rear end of the bridge, and thus the ripple condition of the output voltage cannot be satisfied.
  • the display device includes a main board, a display unit, and a power circuit unit for supplying power to the main board and the display unit.
  • the power circuit unit is a rectifying unit for rectifying AC power into DC power, a first transformer having a primary winding connected to an output terminal of the rectifier and a secondary winding connected to an output terminal of the power circuit unit, respectively, and the primary winding being the first
  • a second transformer connected in series with the primary winding of the first transformer and having a secondary winding connected in parallel with the secondary winding of the first transformer, a first current flowing through the secondary winding of the first transformer and the second transformer
  • the sum of the second currents flowing in the secondary winding of a switch switchable so that the first freewheeling circuit and the second freewheeling circuit are selectively connected, the first freewheeling circuit is connected to allow the first current to flow in the second winding of the first transformer or a control unit connected to the second freewheeling circuit to repeatedly switch and control the switch so
  • an anode end of the first freewheeling diode is connected to one end of a primary winding of the first transformer, and an anode of a first capacitor is connected to a cathode end of the first freewheeling diode;
  • the anode end of the second freewheeling diode may be connected to the cathode of the first capacitor, and the other end of the primary winding of the first transformer may be connected to the cathode end of the second freewheeling diode.
  • one end of the switch is connected to one end of the primary winding of the second transformer, the other end of the switch is connected to an anode end of a third freewheeling diode, and a cathode of the third freewheeling diode
  • the negative electrode of the first capacitor may be connected to one end of the first capacitor, and the other end of the primary winding of the second transformer may be connected to the positive electrode of the first capacitor.
  • the power circuit unit may further include a third freewheeling circuit including the second transformer.
  • a cathode of a second capacitor is connected to one end of a primary winding of the second transformer, an anode of the first freewheeling diode is connected to an anode of the second capacitor, and the first freewheeling circuit is The other end of the primary winding of the second transformer may be connected to the cathode of the wheeling diode.
  • a voltage applied to both ends of the switch when the switch is turned off may be determined by a voltage applied to an output terminal of the rectifier, the first capacitor voltage, and the second capacitor voltage.
  • the first mode can be performed in which current is supplied to the primary side of , so that the current flows to the secondary side.
  • the power circuit unit may perform a second mode in which a current flows to a secondary side of the first transformer when the switch is turned off and a current flowing to the secondary side of the second transformer is reduced.
  • the power circuit unit may perform a third mode in which current flows to the secondary side of the first transformer when the switch is turned off, and the secondary side current flow of the second transformer is stopped.
  • the power circuit unit may perform a fourth mode in which a current flowing to the secondary side of the first transformer is reduced when the switch is turned off, and a current flow to the secondary side of the second transformer is stopped.
  • the display device can limit the voltage stress at both ends of the switch without applying a separate RCD snubber to the power circuit part, so loss improvement and size reduction are possible. It is possible to improve the output voltage ripple even if it is used. As a result, in the display device according to the present invention, the power efficiency of the power circuit unit can be improved and heat generation can be reduced.
  • FIG. 1 shows a display device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the display device of FIG. 1 .
  • FIG. 3 is a block diagram showing the configuration of a power circuit unit.
  • FIG. 4 is a circuit diagram of a power circuit unit.
  • 5 is a flowchart showing the operation of the power circuit unit.
  • FIG. 6 is a circuit diagram illustrating a first mode operation of the power circuit unit.
  • FIG. 7 is a circuit diagram illustrating a second mode operation of the power circuit unit.
  • FIG. 8 is a circuit diagram illustrating a third mode operation of the power circuit unit.
  • FIG. 9 is a circuit diagram illustrating a fourth mode operation of the power circuit unit.
  • FIG. 10 is a waveform diagram showing voltage and current waveforms of each component of the power circuit unit in the turn-on and turn-off sections of the switch.
  • FIG. 11 is a diagram illustrating main voltage and current waveforms for a minimum input voltage of a power circuit unit according to an embodiment of the present invention.
  • FIG. 12 is an enlarged view of section A of FIG. 11 .
  • FIG. 13 is a diagram showing main voltage and current waveforms for the maximum input voltage of the power circuit unit according to an embodiment of the present invention.
  • FIG. 14 is an enlarged view of section B of FIG. 13 .
  • expressions such as “have,” “may have,” “includes,” or “may include” refer to the presence of a corresponding characteristic (eg, a numerical value, function, operation, or component such as a part). and does not exclude the presence of additional features.
  • expressions such as “A or B,” “at least one of A or/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B” means (1) includes at least one A, (2) includes at least one B; Or (3) it may refer to all cases including both at least one A and at least one B.
  • a device configured to may mean that the device is “capable of” with other devices or parts.
  • a subprocessor configured (or configured to perform) A, B, and C may refer to a dedicated processor (eg, an embedded processor), or one or more software programs stored in a memory device, to perform the corresponding operations. By doing so, it may refer to a generic-purpose processor (eg, a CPU or an application processor) capable of performing corresponding operations.
  • the display apparatus may include, for example, at least one of a television, a desktop PC, a laptop PC, a netbook computer, a workstation, a server, a medical device, and a camera.
  • the display device is, for example, at least one of a Blu-ray player, a digital video disk (DVD) player, a set-top box, a home automation control panel, a security control panel, a media box, a game console, and an electronic picture frame. may contain one.
  • the display device may include a navigation device, a global navigation satellite system (GNSS), an event data recorder (EDR), a flight data recorder (FDR), an electronic device for a ship (eg, a navigation device for a ship, a gyro). compass, etc.), avionics, and security devices.
  • GNSS global navigation satellite system
  • EDR event data recorder
  • FDR flight data recorder
  • an electronic device for a ship eg, a navigation device for a ship, a gyro). compass, etc.
  • avionics e.g., avionics, and security devices.
  • FIG. 1 shows a display device 1 according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of the display device 1 of FIG.
  • the display device 1 may include a main board 11 , a display unit 12 , a power circuit unit 13 , and an audio output unit 14 .
  • the main board 11 may include an interface unit 111 , a processor 112 , an image processing unit 113 , and an audio processing unit 114 in a configuration provided to perform a function, that is, an operation of the display device 1 . have.
  • the display apparatus 1 according to an embodiment of the present invention is not limited to the above-described configuration, and various configurations provided as a power consuming load may be further included.
  • the interface unit 111 may include a wired interface unit and a wireless interface unit.
  • the wired interface unit may include a terrestrial/satellite broadcasting antenna connection tuner for receiving a broadcast signal, a cable broadcasting cable connection interface, and the like.
  • the wired interface unit may include HDMI, DP, DVI, Component, S-Video, and composite (RCA terminal) for connecting video devices.
  • the wired interface unit may include a USB interface for connecting a general-purpose electronic device.
  • the wired interface unit may include a connection interface of an optical cable device.
  • the wired interface unit may include an audio device connection interface such as a headset, an earphone, and an external audio output unit.
  • the wired interface unit may include a connection interface of a wired network device such as Ethernet.
  • the wireless interface unit may include a connection interface of a wireless network device such as Wi-Fi, Bluetooth, ZigBee, Z-wave, RFID, WiGig, WirelessHD, Ultra-Wide Band (UWB), Wireless USB, and Near Field Communication (NFC).
  • a wireless network device such as Wi-Fi, Bluetooth, ZigBee, Z-wave, RFID, WiGig, WirelessHD, Ultra-Wide Band (UWB), Wireless USB, and Near Field Communication (NFC).
  • the wireless interface unit may include an IR transceiver module for transmitting and/or receiving a remote control signal.
  • the wireless interface unit may include a mobile communication device connection interface such as 2G to 5G.
  • the interface unit 111 may include a dedicated communication module for performing dedicated communication with respect to each of the various source devices.
  • the interface unit 111 may include a common communication module for performing communication in common with various source devices, for example, a Wi-Fi module.
  • the interface unit 111 may include an input interface unit and an output interface unit.
  • the input interface unit and the output interface unit may be integrated into one module or implemented as separate modules.
  • the processor 112 includes each component of the display device 1 , for example, an interface 111 , an image processing unit 113 , an audio processing unit 114 , a display unit 12 , a power circuit unit 13 , and an audio output.
  • the unit 14 and the like can be controlled.
  • the processor 112 loads at least a part of the control program including instructions from the nonvolatile memory in which the control program is installed into the volatile memory, and at least one general-purpose processor that executes the instructions of the loaded control program.
  • Including, for example, may be implemented as a central processing unit (CPU), an application processor (AP), or a microprocessor.
  • the processor 112 may include a single core, a dual core, a triple core, a quad core, and multiple cores thereof. A plurality of processors 112 may be provided.
  • the processor 16 may include, for example, a main processor and a sub-processor operating in a sleep mode (eg, a mode in which only standby power is supplied).
  • the processor, ROM and RAM are interconnected through an internal bus.
  • the processor 112 may be implemented in a form included in a main SoC mounted on a PCB embedded in the display device 1 .
  • the main SoC may further include an image processing unit.
  • the control program may include program(s) implemented in the form of at least one of a BIOS, a device driver, an operating system, firmware, a platform, and an application program (application).
  • the application program may be installed or stored in advance when the display device 1 is manufactured, or may be installed based on the received data by receiving data of the application program from the outside when using it later. Data of the application program may be downloaded to the display device 1 from an external server such as an application market, for example.
  • an external server such as an application market, for example.
  • Such a control program, an external server, etc. is an example of a computer program product, but is not limited thereto.
  • the image processing unit 113 performs various image processing processes for generating image frames to be displayed on the display unit 115 with respect to the image signal received from the interface unit 111 .
  • the image processing process includes, for example, decoding corresponding to the image format of the image data for the received image signal, de-interlacing for converting the image data of the interlace method into a progressive method, Scaling for adjusting image data to a preset resolution, noise reduction for image quality improvement, detail enhancement, frame refresh rate conversion, and the like may be included.
  • the image processing unit 113 may transmit an image frame resulting from performing this process to the display unit 115 built in the display apparatus 1 .
  • the audio processing unit 114 may process the audio signal received through the interface unit 111 .
  • the audio processing unit 114 may convert, amplify, and mix the received digital audio signal into an analog audio signal.
  • the audio processing unit 114 may transmit the mixed analog audio signal to the audio output unit 116 .
  • the display unit 12 may display the image frame processed by the image processing unit 113 .
  • the implementation method of the display unit 12 is not limited, but liquid crystal, plasma, light-emitting diode, organic light-emitting diode, and surface conduction electron gun (surface) are not limited thereto.
  • -conduction electron-emitter carbon nano-tube, nano-crystal, etc. can be implemented in various display panels.
  • the display unit 12 may additionally include an additional configuration according to an implementation method.
  • the display unit 12 may include a timing controller for adjusting the time of the image frame generated by the image processing unit 113 and a panel for configuring a screen for displaying an image.
  • the display unit 12 may further include a panel driver that additionally drives the panel.
  • the power circuit unit 13 may provide power required by the display device 1 .
  • the power circuit unit 13 receives an alternating current (AC) voltage of, for example, 220V input from the outside through the power cord 2, a voltage desired by each component of the display device 1, for example, a direct current (DC) voltage of 12V. can be converted to .
  • AC alternating current
  • DC direct current
  • the audio output unit 14 may convert an audio signal into sound and output it through a speaker or to an external device connected through an external output terminal.
  • the audio output unit 14 may be built in the display device 1 .
  • the audio output unit 14 may be provided externally to be connected through the interface unit 111 , for example, Bluetooth.
  • FIG. 3 is a block diagram showing the configuration of the power circuit unit 13
  • FIG. 4 is a circuit diagram of the power circuit unit 13
  • FIG. 5 is a flowchart showing the operation of the power circuit unit 13
  • FIGS. 6 to 9 are each power supply It is a circuit diagram showing first to fourth mode operations of the circuit unit 13
  • FIG. 10 is a waveform diagram showing voltage and current waveforms of each component of the power circuit unit 13 in the turn-on and turn-off sections of the switch SW.
  • the power circuit unit 13 may include a rectifying unit 131 , a converting unit 132 , and a control unit 133 .
  • the rectifying unit 131 rectifies external alternating current (AC) power into DC power.
  • the rectifier 131 may be implemented as a Wheatstone bridge, for example, a full-bridge diode circuit as shown in FIG. 4 .
  • the rectifier 131 may full-wave or half-wave rectify a sinusoidal alternating current (AC) voltage.
  • the converting unit 132 may convert the DC power rectified by the rectifying unit 131 into driving power required by the load and output it.
  • the conversion unit 132 is an input capacitor (C in ), a first transformer (L1), a switch (SW), a second transformer (L2), first to third freewheeling diodes (D FW1 , D FW2 , D FW3 ) , first and second capacitors C1 and C2 , first and second rectifying diodes D R1 , D R2 , and an output capacitor V out .
  • the input capacitor C in may be connected to the output terminal of the bridge diode of the rectifier 131 .
  • the input capacitor C in may smooth the rectified input voltage.
  • the first transformer L1 is a flyback type and has a primary winding L11 and a secondary winding L12 wound around an iron core, and the primary winding L11 and the secondary winding L12 have a preset turns ratio.
  • the turns ratio of the primary winding L11 and the secondary winding L12 may determine a step-up ratio or a step-down ratio of the input to output voltage.
  • the first transformer L1 may have a primary winding L11 connected to a voltage input terminal and a secondary winding L12 connected to an output terminal. That is, in the first transformer L1, one end of the input capacitor C in may be connected to one end of the primary winding L11 and the positive electrode of the second capacitor C2 may be connected to the other end of the primary winding L11. In this case, the negative electrode of the second capacitor C2 may be connected to the source terminal of the switch SW. Also, the negative electrode of the second capacitor C2 may be connected to the other end of the primary winding L21 of the second transformer L2.
  • one end of the secondary winding L12 is connected to the anode end of the first rectifying diode D R1 , and the other end of the secondary winding L12 is the secondary winding (L2) of the second transformer L2. L22) may be connected to one end.
  • the switch SW may be implemented as a field effect transistor (FET) device.
  • FET field effect transistor
  • the other end of the primary winding L11 of the first transformer L1 is connected to the source end via the second capacitor C2, the other end of the input capacitor C in is connected to the drain end, and the gate
  • the control unit 133 may be connected to the end.
  • the other end of one winding L21 of the second transformer L2 may be connected to the source end of the switch SW.
  • the switch SW may be switched on and off under the control of the controller 133 .
  • the first transformer L1 may transfer energy from the primary side to the secondary side by the induced electromotive force according to the switching operation of the switch SW. That is, the first transformer L1 stores energy on the primary side during the turn-on period of the switch SW, and the stored energy on the primary side during the turn-off period of the switch SW is transferred to the secondary side, and the first Current can flow.
  • the second transformer L2 is a forward type and has a primary winding L21 and a secondary winding L22 wound around an iron core, and the primary winding L21 and the secondary winding L22 may have a preset turns ratio. have.
  • the other end of the primary winding L11 of the first transformer L1 is connected to one end of the first winding L21, and the source end of the switch SW is connected to the other end of the primary winding L21.
  • one end of the secondary winding L22 is connected to the other end of the secondary winding L12 of the first transformer L1, and the other end of the secondary winding L22 is a second rectifying diode D R2 ) may be connected to the anode end.
  • the second transformer L2 may transfer energy from the primary side to the secondary side according to the turn-on or turn-off switching operation of the switch SW so that a second current may flow in the secondary side. That is, in the second transformer L2, the energy stored in the primary side during the turn-on period of the switch SW is transferred to the secondary side, and the second current flowing to the secondary side gradually increases, and then at the beginning of the turn-off period of the switch SW. The second current flowing to the secondary side may be gradually reduced.
  • the first and third freewheeling diodes D FW1 and D FW3 may be connected in series.
  • the first and third freewheeling diodes D FW1 and D FW3 connected in series may be connected in parallel to both ends of the input capacitor C in . That is, the first freewheeling diode DFW1 has an anode end connected to the other end of the input capacitor C in and a drain end of the switch SW, and the cathode end of the third freewheeling diode D FW3 is connected to the anode end of the and may be connected to the negative electrode of the first capacitor C1.
  • the third freewheeling diode (D FW3 ) has an anode terminal connected to the cathode of the first capacitor (C1) and to the cathode terminal of the first freewheeling diode (D FW1 ), and the cathode terminal is one end of the input capacitor (C in ) And it may be connected to one end of the primary winding (L11) of the first transformer (L1).
  • the second freewheeling diode D FW2 has an anode end connected to the other end of the primary winding L11 of the first transformer L1 and an anode end of the second capacitor C2, and a cathode end connected to the second transformer L2 It may be connected to one end of the primary winding L21 and to the positive electrode of the first capacitor C1.
  • the first capacitor C1 is a bulk capacitor, and the cathode is connected to the cathode end of the second freewheeling diode D FW2 and to one end of the primary winding L21 of the second transformer L2, and the anode has an anode It may be connected between the first and third freewheeling diodes D FW1 and D FW3 connected in series.
  • the first capacitor C1 may be discharged during the turn-on period of the switch SW so that the energy of the primary side of the second transformer L2 is transferred to the secondary side.
  • the first capacitor C1 may be charged during the turn-off period of the switch SW to contribute to clamping the voltage applied to the switch SW.
  • the second capacitor C2 is a resonant capacitor, and the positive electrode is connected to the other end of the primary winding L11 of the first transformer L1 and the anode terminal of the second freewheeling diode D FW2 , and the negative electrode is connected to the switch SW It may be connected to the source end of and to the other end of the primary winding L21 of the second transformer L2.
  • the second capacitor C2 may resonate with the leakage inductor LL1 of the first transformer L1 .
  • the second capacitor C2 is provided between the switch SW and the primary winding L11 of the first transformer L1, and may contribute to clamping the voltage applied to the switch SW during the turn-off section of the switch SW. .
  • the first rectifier diode D R1 may have an anode end connected to one end of the secondary winding L12 of the first transformer L1 and a cathode end connected to one end of the output capacitor C out .
  • the first rectifying diode D R1 may rectify the output of the first transformer L1 by intermitting the energy transferred to the secondary side of the first transformer L1 .
  • the second rectifier diode D R2 may have an anode end connected to the other end of the secondary winding L22 of the second transformer L2 and a cathode end connected to the other end of the output capacitor C out .
  • the second rectifier diode D R2 may rectify the output of the second transformer L2 by intermitting the energy transferred to the secondary side of the second transformer L2 .
  • Both ends of the output capacitor C out may be connected to the cathode terminal of the first rectifier diode D R1 and the cathode terminal of the second rectifier diode D R2 .
  • the output capacitor C out may generate the output voltage Vo by smoothing the DC voltage rectified by the first and second rectifying diodes D R1 and D R2 .
  • the controller 133 may be connected to the gate terminal of the switch SW to repeatedly turn on or off the switch SW.
  • the controller 133 may control the secondary-side output voltage of the first transformer L1 in a pulse width modulation (PWM) method.
  • PWM pulse width modulation
  • the control unit 133 may control the output voltage or the output current by receiving the feedback information of the secondary side of the first transformer (L1). Alternatively, the controller 133 may control the output voltage or the output current by providing an auxiliary winding in the first transformer L1 and indirectly acquiring information on the secondary side through this.
  • the control unit 133 may be implemented in a form included in a control integrated circuit (IC) or a system on a chip (SoC) mounted on a PCB embedded in the display device 1 .
  • IC control integrated circuit
  • SoC system on a chip
  • the converter 132 may include first to third freewheeling circuits 132a, 132b, and 132c.
  • the 'freewheeling circuit' refers to a circuit in which the accumulated currents of the first and second transformers L1 and L2 circulate.
  • the first freewheeling circuit 132a is configured to include the second transformer L2, and may be activated in a period in which the switch SW is turned on.
  • the other end of the primary winding L21 of the second transformer L2 is connected to the source terminal of the switch SW, and the drain terminal of the switch SW is connected to the first freewheeling diode D FW1 ) is connected to the anode terminal, the cathode terminal of the first freewheeling diode D FW1 is connected to the negative electrode of the first capacitor C1, and the positive electrode of the first capacitor C1 is connected to the second transformer L2. It may be formed by being connected to one end of the primary winding L21.
  • the first freewheeling circuit 132a may cause the energy accumulated in the primary side of the second transformer L2 to be transferred to the secondary side during the turn-on period of the switch SW so that the second current flows to the secondary side.
  • the second freewheeling circuit 132b is configured to include the second transformer L2, and may be activated in a period in which the switch SW is turned off.
  • the other end of the secondary winding L21 of the second transformer L2 is connected to the cathode of the second capacitor C2, and the anode of the second capacitor C2 is connected to the second freewheeling diode. It may be formed by being connected to the anode end of (D FW2 ), and the cathode end of the second freewheeling diode (D FW2 ) being connected to one end of the secondary winding L21 of the second transformer (L2).
  • the second freewheeling circuit 132b may allow energy accumulated in the primary side of the second transformer L2 to be transferred to the secondary side during the period in which the switch SW is turned off.
  • the third freewheeling circuit 132c is configured to include the first transformer L1, and may be activated in a section in which the switch SW is turned off.
  • the other end of the primary winding L11 of the first transformer L1 is connected to the anode end of the second freewheeling diode D FW2
  • the second freewheeling diode D FW2 is The anode of the first capacitor C1 is connected to the cathode terminal
  • the cathode of the first capacitor C1 is connected to the anode terminal of the third freewheeling diode D FW3
  • the third freewheeling diode D FW3 The cathode end may be formed by being connected to one end of the primary winding L11 of the first transformer L1.
  • the third freewheeling circuit 132c may transmit energy accumulated in the primary side of the first transformer L2 to the secondary side during the turn-off period of the switch SW so that the first current flows to the secondary side.
  • step S1 an AC voltage is applied to the input terminal of the bridge diode of the rectifier 131 .
  • step S2 the rectifier 131 full-wave rectifies the AC voltage into a DC voltage.
  • the input capacitor (C in ) smoothes the full-wave rectified DC voltage.
  • step S3 the converter 132 converts the full-wave rectified DC voltage under the control of the controller 133 to output the driving voltage Vo required by the load.
  • the conversion unit 132 operates by dividing the switch SW into a first control period t 0 -t 1 when the switch SW is turned on and a second control period t 1 -t 4 when the switch SW is turned off. As shown in FIG. 10 , it operates in the first mode S31 in the first control period t 0 -t 1 , and in the second mode t 1 -t 2 in the second control period t 1 -t 4 . ) (S32), a third mode (t 2 -t 3 ) (S33), and a fourth mode (t 3 -t 4 ) (S34).
  • step S31 in step S31 (first mode), during the period (t 0 -t 1 ) in which the switch (SW) is turned on, the current flowing in the primary winding (L11) of the first transformer (L1) (I Lm1 ) and the current (I Lm2 ) flowing in the primary winding L21 of the second transformer L2 gradually rises to accumulate energy in the primary side, and the first freewheeling circuit 132a is activated, The second and third freewheeling circuits 132b and 132c may be deactivated. At this time, as the first capacitor C1 of the activated first freewheeling circuit 132a is discharged, the energy stored in the primary side of the second transformer L2 is transferred to the second rectifier diode connected to the secondary side of the second transformer L2.
  • a current may flow to the secondary side of the second transformer L2 by satisfying the conduction condition of (D R2 ).
  • 120Hz output voltage ripple may be reduced by the forwarding operation of the second transformer L2 in the turn-on period of the switch SW.
  • the current I DF1 flowing in the first freewheeling diode D FW1 of the activated first freewheeling circuit 132a gradually rises, and the voltage V bulk of the first capacitor C1 is discharged, and the first The voltage V Cr of the second capacitor C2 is charged as much as the maximum voltage V bulk of the first capacitor C1, and the current I R2 flowing through the second rectifying diode D R2 is the first capacitor C1 ) can gradually rise according to the discharge.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 does not satisfy the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so the first transformer It is not transmitted to the secondary side of (L1). Accordingly, the current I R1 flowing through the first rectifying diode D R1 is zero.
  • step S32 (second mode)
  • the first freewheeling circuit 132a is deactivated
  • the second freewheeling circuit 132b and the third freewheeling circuit 132c may be activated.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 gradually decreases
  • the current I Lm2 flowing in the primary winding L21 of the second transformer L2 gradually decreases.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side.
  • the first capacitor C1 of the activated third freewheeling circuit 132c may be charged by the current accumulated in the leakage inductor L L1 and the magnetizing inductor L m1 .
  • the voltage V Cr of the second capacitor C2 is discharged, and the current I R2 flowing through the second rectifier diode D R2 may be gradually decreased according to the discharge of the second capacitor C2 .
  • the voltage (V ds ) applied to the switch (SW) is the input voltage (V in ), the voltage applied to the first transformer (L1) (of the first capacitor (C1)
  • V in the voltage applied to the first transformer (L1)
  • V Cr the voltage applied to the second capacitor C2
  • step S33 the third mode
  • the first freewheeling circuit 132a is deactivated.
  • the second freewheeling circuit 132b and the third freewheeling circuit 132c may maintain an activated state.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 gradually decreases
  • the current I Lm2 flowing in the primary winding L21 of the second transformer L2 gradually decreases. can decrease.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side. Accordingly, the current I R1 flowing through the first rectifying diode D R1 may continuously increase.
  • the first capacitor C1 of the activated third freewheeling circuit 132c may be continuously charged by the parasitic current accumulated in the leakage inductor L L1 and the magnetizing inductor L m1 .
  • the voltage V Cr of the second capacitor C2 is discharged, and when the current flowing through the leakage inductor L L2 and the magnetizing inductor L m2 of the second transformer L2 becomes the same, the second rectifier diode D Since the conduction condition of R2 ) cannot be satisfied, energy transfer from the primary side to the secondary side of the second transformer L2 is stopped, so that the secondary side current flow can be stopped.
  • step S34 (the fourth mode)
  • the first freewheeling circuit 132a and the third freewheeling circuit 132a The wheeling circuit 132c may maintain an inactive state
  • the second freewheeling circuit 132b may maintain an active state.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 is continuously decreased and the current I Lm2 flowing in the primary winding L21 of the second transformer L2 is continuously can decrease.
  • the current I DF2 flowing in the second freewheeling diode D FW2 of the activated second freewheeling circuit 132b constantly flows in a small amount, and the third freewheeling of the activated third freewheeling circuit 132c
  • the current I DF3 flowing through the diode D FW3 is zero.
  • the current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side.
  • the current I R1 flowing through the first rectifying diode D R1 may gradually decrease.
  • step S4 the output capacitor C out smoothes the DC voltage rectified by the first and second rectifying diodes D R1 and D R2 to output the voltage Vo.
  • FIG. 12 is an enlarged view of section A of FIG. 11
  • FIG. 14 is an enlarged section B of FIG. 13 . This is the diagram shown.
  • the output voltage (V out ) is 12.56 ⁇ 13.40V
  • ripple The voltage (V ripple ) is ⁇ 0.42V.
  • the ripple voltage by the 120Hz input voltage by the forwarding operation of the second transformer L2 is 5% of the output voltage as the stability standard It was confirmed that it was sufficiently lower than that.
  • the power circuit unit 13 in the power circuit unit 13 according to an embodiment of the present invention, when the switch SW is turned off, the voltage V ds applied to the switch SW is the input voltage V ac ) , the voltage (V bulk ) of the first capacitor (C1), and the maximum voltage (V Cr_max ) of the second capacitor (C2) was confirmed to be clamped.
  • the power circuit unit 13 of the present invention can prevent damage to the switch SW without applying a separate RCD snubber circuit, as well as prevent power efficiency from being reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A display device is disclosed. The display device comprises a main board, a display unit, and a power circuit unit for supplying power to the main board and the display unit. The power circuit unit comprises: a rectifying unit for rectifying alternating current power to direct current power; a first transformer in which a primary winding is connected to an output terminal of the rectifying unit and a secondary winding is connected to an output terminal of the power circuit unit, respectively; a second transformer in which a primary winding is connected in series with the primary winding of the first transformer and a secondary winding is connected in parallel with the secondary winding of the first transformer; a first freewheeling circuit which is provided to include the first transformer and enables a sum of a first current flowing through the secondary winding of the first transformer and a second current flowing through the secondary winding of the second transformer to be output to the output terminal of the power circuit unit; a second freewheeling circuit provided to include the second transformer; a switch which can be switched such that the first freewheeling circuit and the second freewheeling circuit are selectively connected; and a control unit for repeatedly switching the switch such that the first freewheeling circuit is connected and the first current flows through the secondary winding of the first transformer, or such that the second freewheeling circuit is connected and the second current flows through the secondary winding of the second transformer.

Description

디스플레이장치display device
관련된 출원에 대한 상호-참조, 본 출원은 2020년 11월 18일자로 대한민국 특허청에 제출된 대한민국 특허 출원번호 제10-2020-0154407호에 기초한 우선권을 주장하며, 그 개시 내용은 전체가 참조로 본 발명에 포함된다.Cross-reference to related applications, this application claims priority based on Korean Patent Application No. 10-2020-0154407 filed with the Korean Intellectual Property Office on November 18, 2020, the disclosure of which is hereby incorporated by reference in its entirety included in the invention.
본 발명은 디스플레이장치, 더욱 상세하게는 단일 전력단 무손실 공진형 클램프 플라이백 컨버터에 관한 것이다.The present invention relates to a display device, and more particularly, to a single power stage lossless resonant clamp flyback converter.
일반적으로 AC 상용전원을 입력으로 하는 75W 이상의 모든 전원회로는 역률 및 고조파 규제 회피를 위해 반드시 PFC 컨버터가 필수적으로 요구된다. PFC 컨버터는 출력전압을 정격전압으로 강압시켜주는 DC-DC 컨버터가 주로 사용된다.In general, all power circuits of 75W or more that use AC commercial power as input must have a PFC converter to avoid power factor and harmonic regulation. The DC-DC converter that steps down the output voltage to the rated voltage is mainly used for the PFC converter.
최근, 부스트(Boost) PFC 컨버터와 승압된 전압을 정격전압으로 강압시켜주는 LLC 컨버터가 결합된 부스트 PFC와 LLC 컨버터로 구성된 2-단 컨버터가 널리 이용되고 있다. 부스트 PFC 컨버터는 AC 입력 전압을 브리지(Bridge) 다이오드로 정류한 후 AC 입력 전압과 동일한 주파수와 동일한 위상의 정현파 전류가 입력 측에 흐를 수 있도록 부스트 컨버터를 제어함으로써 역률 개선을 수행한다. 부스트 컨버터에 의해 승압된 전압은 입력 라인주파수(50Hz/60Hz)에 의해 100Hz/120Hz 전압 리플을 가질 뿐만 아니라 부하에서 요구하는 전압으로 강압이 필요하므로 LLC 컨버터를 통해 부스트 컨버터에 의해 승압된 출력전압을 주파수 제어를 통해 원하는 정격 정전압으로 강압시켜주고, 공진 탱크의 트랜스포머를 통해 절연의 역할도 함께 수행한다. 하지만, 부스트 PFC-LLC 컨버터로 구성된 2-단 컨버터 구조는 두 종류의 컨버터를 사용해야 하므로 사이즈 및 부품 수 저감에 한계가 존재한다Recently, a two-stage converter composed of a boost PFC and LLC converter in which a boost PFC converter and an LLC converter for step-down the boosted voltage to a rated voltage are combined has been widely used. The boost PFC converter performs power factor improvement by rectifying the AC input voltage with a bridge diode and controlling the boost converter so that a sinusoidal current of the same frequency and the same phase as the AC input voltage flows to the input side. The voltage boosted by the boost converter not only has 100Hz/120Hz voltage ripple by the input line frequency (50Hz/60Hz), but also needs to step down to the voltage required by the load, so the output voltage boosted by the boost converter through the LLC converter It reduces the voltage to the desired rated constant voltage through frequency control, and also plays the role of insulation through the transformer of the resonance tank. However, the two-stage converter structure composed of a boost PFC-LLC converter requires the use of two types of converters, so there is a limit to reducing the size and number of parts.
한편, 구조가 간단하고 소자수가 적은 컨버터는 플라이백 컨버터가 주로 사용되고 있다. 플라이백 컨버터는 스위치 턴 오프 시 누설인덕터에 저장된 에너지가 누설인덕터와 스위치 드레인-소스 기생 커패시터의 공진에 의한 전압 링잉(Ringing)을 발생시켜 스위치의 내압 초과에 의한 소손이 발생한다. 이를 방지하기 위해, RCD 스누버(Snubber)를 플라이백 컨버터에 적용하면 드레인-소스 전압의 상승을 방지할 수 있다. 그러나, RCD 스누버를 적용한 플라이백 컨버터는 높은 손실로 인한 효율 감소 및 부피 증가의 문제가 있다. 특히, 플라이백 컨버터를 PFC 기능을 수행하는 용도로 사용하게 되는 경우, 역률 개선 동작을 위해 브리지 단의 입력 커패시턴스를 작게 사용해야 한다. 따라서, 브리지 뒷단의 정류된 전압의 라인 주파수 (100/120Hz)에 의한 출력전압 리플이 발생하여 출력전압의 리플 조건을 만족할 수 없다.On the other hand, a flyback converter is mainly used for a converter with a simple structure and a small number of elements. In the flyback converter, when the switch is turned off, the energy stored in the leakage inductor generates voltage ringing due to resonance of the leakage inductor and the switch drain-source parasitic capacitor, and thus burns out due to exceeding the withstand voltage of the switch. To prevent this, if an RCD snubber is applied to the flyback converter, it is possible to prevent the increase of the drain-source voltage. However, the flyback converter to which the RCD snubber is applied has problems of reduced efficiency and increased volume due to high loss. In particular, when the flyback converter is used to perform the PFC function, the input capacitance of the bridge stage must be small for power factor improvement operation. Therefore, the output voltage ripple occurs due to the line frequency (100/120Hz) of the rectified voltage at the rear end of the bridge, and thus the ripple condition of the output voltage cannot be satisfied.
본 발명의 목적은 종래의 문제를 해결하기 위한 것으로, 전압출력 리플이 개선되고 전력효율이 우수한 단일 전력단 무손실 공진형 클램프 플라이백 컨버터를 가진 디스플레이장치를 제공하는 데에 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a display device having a single power stage lossless resonance type clamp flyback converter having improved voltage output ripple and excellent power efficiency.
상술한 목적을 달성하기 위한 디스플레이장치가 제공된다. 디스플레이장치는, 메인보드, 디스플레이부 및 상기 메인보드와 상기 디스플레이부에 전원을 공급하는 전원회로부를 포함한다. 상기 전원회로부는 상기 전원회로부는 교류전원을 직류전원으로 정류하는 정류부, 1차권선이 상기 정류부의 출력단에 2차권선이 상기 전원회로부의 출력단에 각각 연결되는 제1변압기, 1차권선이 상기 제1변압기의 1차권선에 직렬로 연결되고 2차권선이 상기 제1변압기의 2차권선과 병렬로 연결되는 제2변압기, 상기 제1변압기의 2차권선에 흐르는 제1전류와 상기 제2변압기의 2차권선에 흐르는 제2전류의 합이 상기 전원회로부의 출력단으로 출력되며, 상기 제1변압기를 포함하도록 마련되는 제1프리휠링회로, 상기 제2변압기를 포함하도록 마련되는 제2프리휠링회로, 상기 제1프리휠링회로 및 상기 제2프리휠링회로가 선택적으로 연결되도록 스위칭될 수 있는 스위치, 상기 제1프리휠링회로가 연결되어 상기 제1변압기의 제2권선에 상기 제1전류가 흐르도록 하거나, 또는 상기 제2프리휠링회로가 연결되어 상기 2변압기의 제2권선에 상기 제2전류가 흐르도록 상기 스위치를 반복적으로 스위칭 제어하는 제어부를 포함한다.A display device for achieving the above object is provided. The display device includes a main board, a display unit, and a power circuit unit for supplying power to the main board and the display unit. In the power circuit unit, the power circuit unit is a rectifying unit for rectifying AC power into DC power, a first transformer having a primary winding connected to an output terminal of the rectifier and a secondary winding connected to an output terminal of the power circuit unit, respectively, and the primary winding being the first A second transformer connected in series with the primary winding of the first transformer and having a secondary winding connected in parallel with the secondary winding of the first transformer, a first current flowing through the secondary winding of the first transformer and the second transformer The sum of the second currents flowing in the secondary winding of , a switch switchable so that the first freewheeling circuit and the second freewheeling circuit are selectively connected, the first freewheeling circuit is connected to allow the first current to flow in the second winding of the first transformer or a control unit connected to the second freewheeling circuit to repeatedly switch and control the switch so that the second current flows in the second winding of the two transformers.
상기 제1프리휠링회로는 상기 제1변압기의 1차권선 일단에 상기 제1프리휠링다이오드의 애노드단이 연결되고, 상기 제1프리휠링다이오드의 캐소드단에 제1캐패시터의 양극이 연결되고, 상기 제1캐패시터의 음극에 제2프리휠링다이오드의 애노드단이 연결되고, 상기 제2프리휠링다이오드의 캐소드단에 상기 제1변압기의 1차권선 타단이 연결될 수 있다.In the first freewheeling circuit, an anode end of the first freewheeling diode is connected to one end of a primary winding of the first transformer, and an anode of a first capacitor is connected to a cathode end of the first freewheeling diode; The anode end of the second freewheeling diode may be connected to the cathode of the first capacitor, and the other end of the primary winding of the first transformer may be connected to the cathode end of the second freewheeling diode.
상기 제2프리휠링회로는 상기 제2변압기의 1차권선 일단에 상기 스위치의 일단이 연결되고, 상기 스위치의 타단에 제3프리휠링다이오드의 애노드단에 연결되고, 상기 제3프리휠링다이오드의 캐소드단에 상기 제1캐패시터의 음극이 연결되고, 상기 제1캐패시터의 양극에 상기 제2변압기의 1차권선 타단이 연결될 수 있다.In the second freewheeling circuit, one end of the switch is connected to one end of the primary winding of the second transformer, the other end of the switch is connected to an anode end of a third freewheeling diode, and a cathode of the third freewheeling diode The negative electrode of the first capacitor may be connected to one end of the first capacitor, and the other end of the primary winding of the second transformer may be connected to the positive electrode of the first capacitor.
상기 스위치의 턴온 시에 상기 제1캐패시터의 방전에 따라 상기 제2변압기의 2차측에 전류가 흐를 수 있다.When the switch is turned on, a current may flow to the secondary side of the second transformer according to the discharge of the first capacitor.
상기 전원회로부는 상기 제2변압기를 포함하는 제3프리휠링회로를 더 포함할 수 있다.The power circuit unit may further include a third freewheeling circuit including the second transformer.
상기 제3프리휠링회로는 상기 제2변압기의 1차권선 일단에 제2캐패시터의 음극이 연결되고, 상기 제2캐패시터의 양극에 상기 제1프리휠링다이오드의 애노드단이 연결되고, 상기 제1프리휠링다이오드의 캐소드단에 상기 제2변압기의 1차권선 타단이 연결될 수 있다.In the third freewheeling circuit, a cathode of a second capacitor is connected to one end of a primary winding of the second transformer, an anode of the first freewheeling diode is connected to an anode of the second capacitor, and the first freewheeling circuit is The other end of the primary winding of the second transformer may be connected to the cathode of the wheeling diode.
상기 스위치의 턴오프 시에 상기 스위치의 양단에 걸리는 전압은 상기 정류부의 출력단에 걸리는 전압, 상기 제1캐패시터 전압 및 상기 제2캐패시터 전압에 의해 결정될 수 있다.A voltage applied to both ends of the switch when the switch is turned off may be determined by a voltage applied to an output terminal of the rectifier, the first capacitor voltage, and the second capacitor voltage.
상기 전원회로부는 상기 스위치의 턴온 시에 상기 정류부의 출력단에서 전류가 공급되어 상기 제1변압기의 1차측에 에너지가 충전되도록 하고, 상기 제1변압기의 1차측에 에너지가 충전되는 동안 상기 제2변압기의 1차측에 전류가 공급되어 2차측에 전류가 흐르도록 하는 제1모드를 수행할 수 있다. When the switch is turned on, a current is supplied from the output terminal of the rectifier to charge energy to the primary side of the first transformer, and while the energy is charged to the primary side of the first transformer, the second transformer The first mode can be performed in which current is supplied to the primary side of , so that the current flows to the secondary side.
상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 전류가 흐르도록 하고, 상기 제2변압기의 2차측에 흐르는 전류가 감소하는 제2모드를 수행할 수 있다.The power circuit unit may perform a second mode in which a current flows to a secondary side of the first transformer when the switch is turned off and a current flowing to the secondary side of the second transformer is reduced.
상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 전류가 흐르도록 하고, 상기 제2변압기의 2차측 전류 흐름이 중단되는 제3모드를 수행할 수 있다.The power circuit unit may perform a third mode in which current flows to the secondary side of the first transformer when the switch is turned off, and the secondary side current flow of the second transformer is stopped.
상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 흐르는 전류가 감소되고, 상기 제2변압기의 2차측 전류 흐름이 중단되는 제4모드를 수행할 수 있다.The power circuit unit may perform a fourth mode in which a current flowing to the secondary side of the first transformer is reduced when the switch is turned off, and a current flow to the secondary side of the second transformer is stopped.
본 발명에 의한 디스플레이장치는 전원회로부에 별도의 RCD 스너버를 적용하지 않고 스위치의 양단전압 스트레스를 제한할 수 있으므로 손실개선 및 사이즈 저감이 가능하며, 프워드 변압기의 포워드 동작을 통해 낮은 입력 캐패시터를 사용하더라도 출력전압 리플 개선이 가능하다. 결과적으로, 본 발명에 의한 디스플레이장치는 전원회로부의 전력효율이 좋아지고 발열이 저감될 수 있다.The display device according to the present invention can limit the voltage stress at both ends of the switch without applying a separate RCD snubber to the power circuit part, so loss improvement and size reduction are possible. It is possible to improve the output voltage ripple even if it is used. As a result, in the display device according to the present invention, the power efficiency of the power circuit unit can be improved and heat generation can be reduced.
도 1은 본 발명 일 실시예에 따른 디스플레이장치를 도시한다.1 shows a display device according to an embodiment of the present invention.
도 2는 도 1의 디스플레이장치의 구성을 나타내는 블록도이다.FIG. 2 is a block diagram showing the configuration of the display device of FIG. 1 .
도 3은 전원회로부의 구성을 나타내는 블록도이다.3 is a block diagram showing the configuration of a power circuit unit.
도 4는 전원회로부의 회로도이다.4 is a circuit diagram of a power circuit unit.
도 5는 전원회로부의 동작을 나타내는 순서도이다.5 is a flowchart showing the operation of the power circuit unit.
도 6은 전원회로부의 제1모드 동작을 나타내는 회로도이다.6 is a circuit diagram illustrating a first mode operation of the power circuit unit.
도 7은 전원회로부의 제2모드 동작을 나타내는 회로도이다.7 is a circuit diagram illustrating a second mode operation of the power circuit unit.
도 8은 전원회로부의 제3모드 동작을 나타내는 회로도이다.8 is a circuit diagram illustrating a third mode operation of the power circuit unit.
도 9는 전원회로부의 제4모드 동작을 나타내는 회로도이다.9 is a circuit diagram illustrating a fourth mode operation of the power circuit unit.
도 10은 스위치의 턴온 및 턴오프 구간에서 전원회로부의 각 부품의 전압과 전류 파형을 나타내는 파형도이다.10 is a waveform diagram showing voltage and current waveforms of each component of the power circuit unit in the turn-on and turn-off sections of the switch.
도 11은 본 발명의 실시예에 따른 전원회로부의 최소 입력전압에 대한 주요 전압 및 전류 파형을 나타내는 도이다.11 is a diagram illustrating main voltage and current waveforms for a minimum input voltage of a power circuit unit according to an embodiment of the present invention.
도 12는 도 11의 A구간을 확대하여 나타낸 도이다.12 is an enlarged view of section A of FIG. 11 .
도 13은 본 발명의 실시예에 따른 전원회로부의 최대 입력전압에 대한 주요 전압 및 전류 파형을 나타내는 도이다.13 is a diagram showing main voltage and current waveforms for the maximum input voltage of the power circuit unit according to an embodiment of the present invention.
도 14는 도 13의 B구간을 확대하여 나타낸 도이다.14 is an enlarged view of section B of FIG. 13 .
이하에서는 첨부 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 도면에서 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 구성요소를 지칭하며, 도면에서 각 구성요소의 크기는 설명의 명료성과 편의를 위해 과장되어 있을 수 있다. 다만, 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 이하의 실시예에 설명된 구성 또는 작용으로만 한정되지는 않는다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numbers or symbols refer to components that perform substantially the same functions, and the size of each component in the drawings may be exaggerated for clarity and convenience of description. However, the technical spirit of the present invention and its core configuration and operation are not limited to the configuration or operation described in the following embodiments. In describing the present invention, if it is determined that a detailed description of a known technology or configuration related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 문서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.In this document, expressions such as "have," "may have," "includes," or "may include" refer to the presence of a corresponding characteristic (eg, a numerical value, function, operation, or component such as a part). and does not exclude the presence of additional features.
본 문서에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.In this document, expressions such as "A or B," "at least one of A or/and B," or "one or more of A or/and B" may include all possible combinations of the items listed together. . For example, "A or B," "at least one of A and B," or "at least one of A or B" means (1) includes at least one A, (2) includes at least one B; Or (3) it may refer to all cases including both at least one A and at least one B.
본 발명의 실시예에서, 제1, 제2 등과 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. In an embodiment of the present invention, terms including an ordinal number such as first, second, etc. are used only for the purpose of distinguishing one element from another element, and the expression of the singular is plural, unless the context clearly dictates otherwise. includes the expression of
또한, 본 발명의 실시예에서 '상부', '하부', '좌측', '우측', '내측', '외측', '내면', '외면', '전방', '후방' 등의 용어는 도면을 기준으로 정의한 것이며, 이에 의해 각 구성요소의 형상이나 위치가 제한되는 것은 아니다. In addition, in the embodiment of the present invention, terms such as 'upper', 'lower', 'left', 'right', 'inner', 'outer', 'inner surface', 'outer surface', 'front', 'rear', etc. is defined based on the drawings, and the shape or position of each component is not limited thereby.
본 문서에서 사용된 표현 "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, "~에 적합한(suitable for)," "~하는 능력을 가지는(having the capacity to)," "~하도록 설계된(designed to)," "~하도록 변경된(adapted to)," "~하도록 만들어진(made to)," 또는 "~를 할 수 있는(capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성된(또는 설정된)"은 하드웨어적으로 "특별히 설계된(specifically designed to)" 것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 서브 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다. The expression "configured to (or configured to)" as used in this document, depending on the context, for example, "suitable for," "having the capacity to ," "designed to," "adapted to," "made to," or "capable of." The term “configured (or configured to)” may not necessarily mean only “specifically designed to” in hardware. Instead, in some circumstances, the expression “a device configured to” may mean that the device is “capable of” with other devices or parts. For example, the phrase “a subprocessor configured (or configured to perform) A, B, and C” may refer to a dedicated processor (eg, an embedded processor), or one or more software programs stored in a memory device, to perform the corresponding operations. By doing so, it may refer to a generic-purpose processor (eg, a CPU or an application processor) capable of performing corresponding operations.
본 문서의 다양한 실시예들에 따른 디스플레이장치는 예를 들면, 텔레비전, 데스크탑 PC, 랩탑 PC, 넷북 컴퓨터, 워크스테이션, 서버, 의료기기, 카메라 중 적어도 하나를 포함할 수 있다. 어떤 실시예들에서, 디스플레이장치는, 예를 들면, 블루 레이 플레이어, DVD(digital video disk) 플레이어, 셋탑박스, 홈 오토매이션 컨트롤 패널, 보안 컨트롤 패널, 미디어 박스, 게임 콘솔, 전자 액자 중 적어도 하나를 포함할 수 있다. The display apparatus according to various embodiments of the present document may include, for example, at least one of a television, a desktop PC, a laptop PC, a netbook computer, a workstation, a server, a medical device, and a camera. In some embodiments, the display device is, for example, at least one of a Blu-ray player, a digital video disk (DVD) player, a set-top box, a home automation control panel, a security control panel, a media box, a game console, and an electronic picture frame. may contain one.
다른 실시예에서, 디스플레이장치는, 네비게이션 장치, 위성 항법 시스템(GNSS(global navigation satellite system)), EDR(event data recorder), FDR(flight data recorder), 선박용 전자 장비(예: 선박용 항법 장치, 자이로 콤파스 등), 항공 전자기기(avionics), 보안 기기 중 적어도 하나를 포함할 수 있다.In another embodiment, the display device may include a navigation device, a global navigation satellite system (GNSS), an event data recorder (EDR), a flight data recorder (FDR), an electronic device for a ship (eg, a navigation device for a ship, a gyro). compass, etc.), avionics, and security devices.
도 1은 본 발명 일 실시예에 따른 디스플레이장치(1)를 도시하며, 도 2는 도 1의 디스플레이장치(1)의 구성을 나타내는 블록도이다.1 shows a display device 1 according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of the display device 1 of FIG.
도 1 및 2를 참조하면, 디스플레이장치(1)는 메인보드(11), 디스플레이부(12), 전원회로부(13) 및 오디오출력부(14)를 포함할 수 있다.1 and 2 , the display device 1 may include a main board 11 , a display unit 12 , a power circuit unit 13 , and an audio output unit 14 .
메인보드(11)는 디스플레이장치(1)의 기능, 즉 동작을 수행하기 위해 마련되는 구성으로 인터페이스부(111), 프로세서(112), 영상처리부(113) 및 오디오처리부(114)를 포함할 수 있다. 본 발명의 실시예에 따른 디스플레이장치(1)는 상술한 구성으로 한정되지 않고 전력을 소모하는 부하로서 마련되는 다양한 구성들이 더 포함될 수 있다.The main board 11 may include an interface unit 111 , a processor 112 , an image processing unit 113 , and an audio processing unit 114 in a configuration provided to perform a function, that is, an operation of the display device 1 . have. The display apparatus 1 according to an embodiment of the present invention is not limited to the above-described configuration, and various configurations provided as a power consuming load may be further included.
인터페이스부(111)는 유선인터페이스부와 무선인터페이스부를 포함할 수 있다. The interface unit 111 may include a wired interface unit and a wireless interface unit.
유선인터페이스부는 방송신호를 수신하기 위한 지상파/위성방송 안테나 연결 튜너, 케이블 방송 케이블 연결 인터페이스 등을 포함할 수 있다.The wired interface unit may include a terrestrial/satellite broadcasting antenna connection tuner for receiving a broadcast signal, a cable broadcasting cable connection interface, and the like.
유선인터페이스부는 영상기기 연결을 위한 HDMI, DP, DVI, Component, S-Video, 컴포지트(RCA 단자) 등을 포함할 수 있다.The wired interface unit may include HDMI, DP, DVI, Component, S-Video, and composite (RCA terminal) for connecting video devices.
유선인터페이스부는 범용 전자기기 연결을 위한 USB 인터페이스 등을 포함할 수 있다.The wired interface unit may include a USB interface for connecting a general-purpose electronic device.
유선인터페이스부는 광케이블 기기의 연결 인터페이스를 포함할 수 있다.The wired interface unit may include a connection interface of an optical cable device.
유선인터페이스부는 헤드셋, 이어폰, 외부 오디오출력부 등의 오디오기기 연결 인터페이스를 포함할 수 있다.The wired interface unit may include an audio device connection interface such as a headset, an earphone, and an external audio output unit.
유선인터페이스부는 이더넷 등 유선 네트워크 기기의 연결 인터페이스를 포함할 수 있다.The wired interface unit may include a connection interface of a wired network device such as Ethernet.
무선인터페이스부는 와이파이, 블루투스, ZigBee, Z-wave, RFID, WiGig, WirelessHD, UWB(Ultra-Wide Band), Wireless USB, NFC(Near Field Communication) 등 무선 네트워크 기기의 연결 인터페이스를 포함할 수 있다.The wireless interface unit may include a connection interface of a wireless network device such as Wi-Fi, Bluetooth, ZigBee, Z-wave, RFID, WiGig, WirelessHD, Ultra-Wide Band (UWB), Wireless USB, and Near Field Communication (NFC).
무선인터페이스부는 리모컨신호 송신 및/또는 수신을 위한 IR 송수신 모듈을 포함할 수 있다. The wireless interface unit may include an IR transceiver module for transmitting and/or receiving a remote control signal.
무선인터페이스부는 2G ~ 5G 등 이동통신기기 연결 인터페이스를 포함할 수 있다.The wireless interface unit may include a mobile communication device connection interface such as 2G to 5G.
인터페이스부(111)는 다양한 소스장치 각각에 대해 전용으로 통신을 수행하는 전용통신모듈을 포함할 수 있다.The interface unit 111 may include a dedicated communication module for performing dedicated communication with respect to each of the various source devices.
인터페이스부(111)는 다양한 소스장치들과 공통으로 통신을 수행하는 공용통신모듈, 예를 들면 와이파이모듈 등을 포함할 수 있다.The interface unit 111 may include a common communication module for performing communication in common with various source devices, for example, a Wi-Fi module.
인터페이스부(111)는 입력인터페이스부와 출력인터페이스부를 포함할 수도 있다. 이때, 입력인터페이스부와 출력인터페이스부는 하나의 모듈로 통합되거나 별도의 모듈로 구현될 수도 있다.The interface unit 111 may include an input interface unit and an output interface unit. In this case, the input interface unit and the output interface unit may be integrated into one module or implemented as separate modules.
프로세서(112)는 디스플레이장치(1)의 각 구성 부품, 예를 들면 인터페이스(111), 영상처리부(113), 오디오처리부(114), 디스플레이부(12), 전원회로부(13), 및 오디오출력부(14) 등을 제어할 수 있다.The processor 112 includes each component of the display device 1 , for example, an interface 111 , an image processing unit 113 , an audio processing unit 114 , a display unit 12 , a power circuit unit 13 , and an audio output. The unit 14 and the like can be controlled.
프로세서(112)는 제어프로그램이 설치된 비휘발성의 메모리로부터 명령어들(instructions)을 포함하는 제어프로그램의 적어도 일부를 휘발성의 메모리로 로드하고, 로드된 제어프로그램의 명령어를 실행하는 적어도 하나의 범용 프로세서를 포함하며, 예를 들면 CPU(Central Processing Unit), AP(application processor), 또는 마이크로프로세서(microprocessor)로 구현될 수 있다. The processor 112 loads at least a part of the control program including instructions from the nonvolatile memory in which the control program is installed into the volatile memory, and at least one general-purpose processor that executes the instructions of the loaded control program. Including, for example, may be implemented as a central processing unit (CPU), an application processor (AP), or a microprocessor.
프로세서(112)는 싱글 코어, 듀얼 코어, 트리플 코어, 쿼드 코어 및 그 배수의 코어를 포함할 수 있다. 프로세서(112)는 복수 개 마련될 수 있다. 프로세서(16)는 예를 들어, 메인 프로세서(main processor) 및 슬립 모드(sleep mode, 예를 들어, 대기 전원만 공급되는 모드)에서 동작하는 서브 프로세서(sub processor)를 포함할 수 있다. 또한, 프로세서, 롬 및 램은 내부 버스(bus)를 통해 상호 연결된다.The processor 112 may include a single core, a dual core, a triple core, a quad core, and multiple cores thereof. A plurality of processors 112 may be provided. The processor 16 may include, for example, a main processor and a sub-processor operating in a sleep mode (eg, a mode in which only standby power is supplied). In addition, the processor, ROM and RAM are interconnected through an internal bus.
프로세서(112)는 디스플레이장치(1)에 내장되는 PCB 상에 실장되는 메인 SoC(Main SoC)에 포함되는 형태로서 구현 가능하다. 다른 실시예에서 메인 SoC는 영상처리부를 더 포함할 수 있다.The processor 112 may be implemented in a form included in a main SoC mounted on a PCB embedded in the display device 1 . In another embodiment, the main SoC may further include an image processing unit.
제어프로그램은, BIOS, 디바이스드라이버, 운영체계, 펌웨어, 플랫폼 및 응용프로그램(어플리케이션) 중 적어도 하나의 형태로 구현되는 프로그램(들)을 포함할 수 있다. 응용프로그램은, 디스플레이장치(1)의 제조 시에 미리 설치 또는 저장되거나, 혹은 추후 사용 시에 외부로부터 응용프로그램의 데이터를 수신하여 수신된 데이터에 기초하여 설치될 수 있다. 응용 프로그램의 데이터는, 예컨대, 어플리케이션 마켓과 같은 외부 서버로부터 디스플레이장치(1)로 다운로드될 수도 있다. 이와 같은 제어프로그램, 외부 서버 등은, 컴퓨터프로그램제품의 일례이나, 이에 한정되는 것은 아니다.The control program may include program(s) implemented in the form of at least one of a BIOS, a device driver, an operating system, firmware, a platform, and an application program (application). The application program may be installed or stored in advance when the display device 1 is manufactured, or may be installed based on the received data by receiving data of the application program from the outside when using it later. Data of the application program may be downloaded to the display device 1 from an external server such as an application market, for example. Such a control program, an external server, etc. is an example of a computer program product, but is not limited thereto.
영상처리부(113)는 인터페이스부(111)에서 수신한 영상신호에 대해 디스플레이부(115)에 표시하기 위한 영상프레임을 생성하는 다양한 영상처리 프로세스를 수행한다. 영상처리부(113)가 수행하는 영상처리 프로세스의 종류는 다양하다. 영상처리 프로세스는 예를 들면 수신한 영상신호에 대한 영상데이터의 영상 포맷에 대응하는 디코딩(decoding), 인터레이스(interlace) 방식의 영상데이터를 프로그레시브(progressive) 방식으로 변환하는 디인터레이싱(de-interlacing), 영상데이터를 기 설정된 해상도로 조정하는 스케일링(scaling), 영상 화질 개선을 위한 노이즈 감소(noise reduction), 디테일 강화(detail enhancement), 프레임 리프레시 레이트(frame refresh rate) 변환 등을 포함할 수 있다.The image processing unit 113 performs various image processing processes for generating image frames to be displayed on the display unit 115 with respect to the image signal received from the interface unit 111 . There are various types of image processing processes performed by the image processing unit 113 . The image processing process includes, for example, decoding corresponding to the image format of the image data for the received image signal, de-interlacing for converting the image data of the interlace method into a progressive method, Scaling for adjusting image data to a preset resolution, noise reduction for image quality improvement, detail enhancement, frame refresh rate conversion, and the like may be included.
영상처리부(113)는 이러한 프로세스를 수행한 결과의 영상프레임을 디스플레이장치(1)에 내장된 디스플레이부(115)에 전송할 수 있다.The image processing unit 113 may transmit an image frame resulting from performing this process to the display unit 115 built in the display apparatus 1 .
오디오처리부(114)는 인터페이스부(111)를 통해 수신된 오디오신호를 처리할 수 있다. 오디오처리부(114)는 수신한 디지털 오디오신호에서 아날로그 오디오 신호로의 변환, 증폭, 믹싱 등을 수행할 수 있다. 오디오처리부(114)는 믹싱 된 아날로그 오디오 신호를 오디오출력부(116)로 전달할 수 있다. The audio processing unit 114 may process the audio signal received through the interface unit 111 . The audio processing unit 114 may convert, amplify, and mix the received digital audio signal into an analog audio signal. The audio processing unit 114 may transmit the mixed analog audio signal to the audio output unit 116 .
디스플레이부(12)는 영상처리부(113)에서 처리된 영상프레임을 표시할 수 있다. The display unit 12 may display the image frame processed by the image processing unit 113 .
디스플레이부(12)의 구현 방식은 한정되지 않는 바, 액정(liquid crystal), 플라즈마(plasma), 발광 다이오드(light-emitting diode), 유기발광 다이오드(organic light-emitting diode), 면전도 전자총(surface-conduction electron-emitter), 탄소 나노 튜브(carbon nano-tube), 나노 크리스탈(nano-crystal) 등의 다양한 디스플레이 패널로 구현될 수 있다. The implementation method of the display unit 12 is not limited, but liquid crystal, plasma, light-emitting diode, organic light-emitting diode, and surface conduction electron gun (surface) are not limited thereto. -conduction electron-emitter), carbon nano-tube, nano-crystal, etc. can be implemented in various display panels.
디스플레이부(12)는 구현 방식에 따라서 부가적인 구성을 추가적으로 포함할 수 있다. 예를 들면, 디스플레이부(12)는 영상처리부(113)에서 생성한 영상프레임의 시간을 조절하는 타이밍 컨트롤러와 영상을 표시하는 화면을 구성하는 패널을 포함할 수 있다. 디스플레이부(12)는 추가적으로 패널을 구동시키는 패널구동부를 더 포함할 수 있다.The display unit 12 may additionally include an additional configuration according to an implementation method. For example, the display unit 12 may include a timing controller for adjusting the time of the image frame generated by the image processing unit 113 and a panel for configuring a screen for displaying an image. The display unit 12 may further include a panel driver that additionally drives the panel.
전원회로부(13)는 디스플레이장치(1)가 필요로 하는 전원을 제공할 수 있다. 전원회로부(13)는 외부에서 전원코드(2)를 통해 입력되는 예를 들면 220V의 교류(AC) 전압을 디스플레이장치(1)의 각 부품들이 원하는 전압, 예를 들면 12V의 직류(DC) 전압으로 변환하여 출력할 수 있다.The power circuit unit 13 may provide power required by the display device 1 . The power circuit unit 13 receives an alternating current (AC) voltage of, for example, 220V input from the outside through the power cord 2, a voltage desired by each component of the display device 1, for example, a direct current (DC) voltage of 12V. can be converted to .
오디오출력부(14)는 오디오 신호를 사운드로 변환하여 스피커를 통해 출력시키거나, 외부 출력단자를 통해 연결된 외부기기로 출력할 수 있다. 오디오출력부(14)는 디스플레이장치(1)에 내장될 수 있다. 오디오출력부(14)는 외부에 마련되어 인터페이스부(111), 예를 들면 블루투스를 통해 연결될 수 있다.The audio output unit 14 may convert an audio signal into sound and output it through a speaker or to an external device connected through an external output terminal. The audio output unit 14 may be built in the display device 1 . The audio output unit 14 may be provided externally to be connected through the interface unit 111 , for example, Bluetooth.
도 3은 전원회로부(13)의 구성을 나타내는 블록도이고, 도 4는 전원회로부(13)의 회로도이고, 도 5는 전원회로부(13)의 동작 나타내는 순서도이고, 도 6 내지 도 9는 각각 전원회로부(13)의 제1 내지 제4모드 동작을 나타내는 회로도이고, 도 10은 스위치(SW)의 턴온 및 턴오프 구간에서 전원회로부(13)의 각 부품의 전압과 전류 파형을 나타내는 파형도이다.3 is a block diagram showing the configuration of the power circuit unit 13, FIG. 4 is a circuit diagram of the power circuit unit 13, FIG. 5 is a flowchart showing the operation of the power circuit unit 13, and FIGS. 6 to 9 are each power supply It is a circuit diagram showing first to fourth mode operations of the circuit unit 13, and FIG. 10 is a waveform diagram showing voltage and current waveforms of each component of the power circuit unit 13 in the turn-on and turn-off sections of the switch SW.
도 3 및 4를 참조하면, 전원회로부(13)는 정류부(131), 변환부(132) 및 제어부(133)를 포함할 수 있다.3 and 4 , the power circuit unit 13 may include a rectifying unit 131 , a converting unit 132 , and a control unit 133 .
정류부(131)는 외부 교류(AC) 전원을 DC 전원으로 정류한다. 구체적으로, 정류부(131)는 휘트스톤 브리지(Wheatstone Bridge), 예를 들면 도 4에 나타낸 바와 같은 풀 브리지 다이오드 회로로 구현될 수 있다. 정류부(131)는 사인파형의 교류(AC) 전압을 전파 또는 반파 정류할 수 있다.The rectifying unit 131 rectifies external alternating current (AC) power into DC power. Specifically, the rectifier 131 may be implemented as a Wheatstone bridge, for example, a full-bridge diode circuit as shown in FIG. 4 . The rectifier 131 may full-wave or half-wave rectify a sinusoidal alternating current (AC) voltage.
변환부(132)는 정류부(131)에서 정류된 DC전원을 부하가 필요로 하는 구동전원으로 변환하여 출력할 수 있다.The converting unit 132 may convert the DC power rectified by the rectifying unit 131 into driving power required by the load and output it.
변환부(132)는 입력캐패시터(Cin), 제1변압기(L1), 스위치(SW), 제2변압기(L2), 제1 내지 제3프리휠링다이오드(DFW1, DFW2, DFW3), 제1 및 제2캐패시터(C1, C2), 제1 및 제2정류다이오드(DR1, DR2), 및 출력캐패시터(Vout)를 포함할 수 있다.The conversion unit 132 is an input capacitor (C in ), a first transformer (L1), a switch (SW), a second transformer (L2), first to third freewheeling diodes (D FW1 , D FW2 , D FW3 ) , first and second capacitors C1 and C2 , first and second rectifying diodes D R1 , D R2 , and an output capacitor V out .
입력캐패시터(Cin)는 정류부(131)의 브리지 다이오드 출력단에 연결될 수 있다. 입력캐패시터(Cin)는 정류된 입력전압을 평활할 수 있다.The input capacitor C in may be connected to the output terminal of the bridge diode of the rectifier 131 . The input capacitor C in may smooth the rectified input voltage.
제1변압기(L1)는 플라이 백 타입으로 철심에 감겨진 1차권선(L11)과 2차권선(L12)을 가지며, 1차 권선(L11)과 2차 권선(L12)은 기설정된 권선비를 가질 수 있다. 1차 권선(L11)과 2차 권선(L12)의 권선비는 입력 대비 출력 전압의 승압비 또는 감압비를 결정할 수 있다.The first transformer L1 is a flyback type and has a primary winding L11 and a secondary winding L12 wound around an iron core, and the primary winding L11 and the secondary winding L12 have a preset turns ratio. can The turns ratio of the primary winding L11 and the secondary winding L12 may determine a step-up ratio or a step-down ratio of the input to output voltage.
제1변압기(L1)는 1차권선(L11)이 전압 입력단에 연결되고 2차권선(L12)이 출력단에 연결될 수 있다. 즉, 제1변압기(L1)는 1차권선(L11) 일단에 입력캐패시터(Cin)의 일단이 연결되고 1차권선(L11) 타단에 제2캐패시터(C2)의 양극이 연결될 수 있다. 이때, 제2캐패시터(C2)의 음극은 스위치(SW)의 소스단에 연결될 수 있다. 또한, 제2캐패시터(C2)의 음극은 제2변압기(L2)의 1차권선(L21) 타단에도 연결될 수 있다.The first transformer L1 may have a primary winding L11 connected to a voltage input terminal and a secondary winding L12 connected to an output terminal. That is, in the first transformer L1, one end of the input capacitor C in may be connected to one end of the primary winding L11 and the positive electrode of the second capacitor C2 may be connected to the other end of the primary winding L11. In this case, the negative electrode of the second capacitor C2 may be connected to the source terminal of the switch SW. Also, the negative electrode of the second capacitor C2 may be connected to the other end of the primary winding L21 of the second transformer L2.
제1변압기(L1)는 2차권선(L12)의 일단이 제1정류다이오드(DR1)의 애노드단에 연결되고 2차권선(L12)의 타단이 제2변압기(L2)의 2차권선(L22)의 일단에 연결될 수 있다.In the first transformer L1, one end of the secondary winding L12 is connected to the anode end of the first rectifying diode D R1 , and the other end of the secondary winding L12 is the secondary winding (L2) of the second transformer L2. L22) may be connected to one end.
스위치(SW)는 FET(Field Effect Transistor)소자로 구현될 수 있다. 스위치(SW)는 소스단에 제2캐패시터(C2)를 경유하여 제1변압기(L1)의 1차권선(L11) 타단이 연결되고 드레인단에 입력캐패시터(Cin)의 타단이 연결되고, 게이트단에 제어부(133)가 연결될 수 있다. 또한, 스위치(SW)는 소스단에 제2변압기(L2)의 1권선(L21) 타단이 연결될 수 있다. 스위치(SW)는 제어부(133)의 제어에 의해 턴온(Turn ON)과 턴오프(Turn OFF) 스위칭될 수 있다. 제1변압기(L1)는 스위치(SW)의 스위칭 동작에 따른 유도 기전력에 의해 1차측에서 2차측으로 에너지를 전달할 수 있다. 즉, 제1변압기(L1)는 스위치(SW)의 턴온구간에 1차측에 에너지를 저장하고, 스위치(SW)의 턴오프구간에 1차측의 저장된 에너지가 2차측으로 전달되어 2차측에 제1전류가 흐를 수 있다.The switch SW may be implemented as a field effect transistor (FET) device. In the switch SW, the other end of the primary winding L11 of the first transformer L1 is connected to the source end via the second capacitor C2, the other end of the input capacitor C in is connected to the drain end, and the gate The control unit 133 may be connected to the end. In addition, the other end of one winding L21 of the second transformer L2 may be connected to the source end of the switch SW. The switch SW may be switched on and off under the control of the controller 133 . The first transformer L1 may transfer energy from the primary side to the secondary side by the induced electromotive force according to the switching operation of the switch SW. That is, the first transformer L1 stores energy on the primary side during the turn-on period of the switch SW, and the stored energy on the primary side during the turn-off period of the switch SW is transferred to the secondary side, and the first Current can flow.
제2변압기(L2)는 포워드 타입으로 철심에 감겨진 1차권선(L21)과 2차권선(L22)을 가지며, 1차 권선(L21)과 2차 권선(L22)은 기설정된 권선비를 가질 수 있다. 제2변압기(L2)는 1권선(L21)의 일단에 제1변압기(L1)의 1차권선(L11) 타단이 연결되고, 1차권선(L21)의 타단에 스위치(SW)의 소스단이 연결될 수 있다. 제2변압기(L2)는 2차권선(L22)의 일단이 제1변압기(L1)의 2차권선(L12)의 타단에 연결되고, 2차권선(L22)의 타단이 제2정류다이오드(DR2)의 애노드단에 연결될 수 있다.The second transformer L2 is a forward type and has a primary winding L21 and a secondary winding L22 wound around an iron core, and the primary winding L21 and the secondary winding L22 may have a preset turns ratio. have. In the second transformer L2, the other end of the primary winding L11 of the first transformer L1 is connected to one end of the first winding L21, and the source end of the switch SW is connected to the other end of the primary winding L21. can be connected In the second transformer L2, one end of the secondary winding L22 is connected to the other end of the secondary winding L12 of the first transformer L1, and the other end of the secondary winding L22 is a second rectifying diode D R2 ) may be connected to the anode end.
제2변압기(L2)는 스위치(SW)의 턴온 또는 턴오프 스위칭 동작에 따라 1차측에서 2차측으로 에너지를 전달하여 2차측에 제2전류가 흐를 수 있다. 즉, 제2변압기(L2)는 스위치(SW)의 턴온구간에 1차측에 저장된 에너지가 2차측으로 전달되어 2차측에 흐르는 제2전류가 점차 커지다가, 스위치(SW)의 턴오프 구간의 초기에 2차측에 흐르는 제2전류가 점차적으로 감소될 수 있다. The second transformer L2 may transfer energy from the primary side to the secondary side according to the turn-on or turn-off switching operation of the switch SW so that a second current may flow in the secondary side. That is, in the second transformer L2, the energy stored in the primary side during the turn-on period of the switch SW is transferred to the secondary side, and the second current flowing to the secondary side gradually increases, and then at the beginning of the turn-off period of the switch SW. The second current flowing to the secondary side may be gradually reduced.
제 1 및 제3프리휠링다이오드(DFW1, DFW3)는 직렬로 연결될 수 있다. 직렬 연결된 제 1 및 제3프리휠링다이오드(DFW1, DFW3)는 입력캐패시터(Cin)의 양단에 병렬로 연결될 수 있다. 즉, 제1 프리휠링다이오드(DFW1)는 애노드단이 입력캐패시터(Cin)의 타단에 그리고 스위치(SW)의 드레인단에 연결되고, 캐소드단이 제3프리휠링다이오드(DFW3)의 애노드단에 그리고 제1캐패시터(C1)의 음극에 연결될 수 있다. 제3프리휠링다이오드(DFW3)는 애노드단이 제1캐패시터(C1)의 음극에 그리고 제1프리휠링다이오드(DFW1)의 캐소드단에 연결되고, 캐소드단이 입력캐패시터(Cin)의 일단에 그리고 제1변압기(L1)의 1차권선(L11) 일단에 연결될 수 있다. The first and third freewheeling diodes D FW1 and D FW3 may be connected in series. The first and third freewheeling diodes D FW1 and D FW3 connected in series may be connected in parallel to both ends of the input capacitor C in . That is, the first freewheeling diode DFW1 has an anode end connected to the other end of the input capacitor C in and a drain end of the switch SW, and the cathode end of the third freewheeling diode D FW3 is connected to the anode end of the and may be connected to the negative electrode of the first capacitor C1. The third freewheeling diode (D FW3 ) has an anode terminal connected to the cathode of the first capacitor (C1) and to the cathode terminal of the first freewheeling diode (D FW1 ), and the cathode terminal is one end of the input capacitor (C in ) And it may be connected to one end of the primary winding (L11) of the first transformer (L1).
제2프리휠링다이오드(DFW2)는 애노드단이 제1변압기(L1)의 1차권선(L11) 타단에 그리고 제2캐패시터(C2)의 양극에 연결되고, 캐소드단이 제2변압기(L2)의 1차권선(L21) 일단에 그리고 제1캐패시터(C1)의 양극에 연결될 수 있다. The second freewheeling diode D FW2 has an anode end connected to the other end of the primary winding L11 of the first transformer L1 and an anode end of the second capacitor C2, and a cathode end connected to the second transformer L2 It may be connected to one end of the primary winding L21 and to the positive electrode of the first capacitor C1.
제1캐패시터(C1)는 벌크(Bulk) 캐패시터로서 음극이 제2프리휠링다이오드(DFW2)의 캐소드단에 그리고 제2변압기(L2)의 1차권선(L21)의 일단에 연결되고, 양극이 직렬로 연결된 제 1 및 제3프리휠링다이오드(DFW1, DFW3) 사이에 연결될 수 있다. 제1캐패시터(C1)는 스위치(SW)의 턴온 구간에 방전되어 제2변압기(L2)의 1차측 에너지가 2차측으로 전달되도록 할 수 있다. 제1캐패시터(C1)는 스위치(SW)의 턴오프 구간에 충전되어 스위치(SW)에 걸리는 전압의 클램핑에 기여할 수 있다.The first capacitor C1 is a bulk capacitor, and the cathode is connected to the cathode end of the second freewheeling diode D FW2 and to one end of the primary winding L21 of the second transformer L2, and the anode has an anode It may be connected between the first and third freewheeling diodes D FW1 and D FW3 connected in series. The first capacitor C1 may be discharged during the turn-on period of the switch SW so that the energy of the primary side of the second transformer L2 is transferred to the secondary side. The first capacitor C1 may be charged during the turn-off period of the switch SW to contribute to clamping the voltage applied to the switch SW.
제2캐패시터(C2)는 공진 캐패시터로서 양극이 제1변압기(L1)의 1차권선(L11) 타단에 그리고 제2프리휠링다이오드(DFW2)의 애노드단에 연결되고, 음극이 스위치(SW)의 소스단에 그리고 제2변압기(L2)의 1차권선(L21) 타단에 연결될 수 있다. 제2캐패시터(C2)는 제1변압기(L1)의 누설인덕터(LL1)와 공진할 수 있다. 제2캐패시터(C2)는 제1변압기(L1)의 1차권선(L11)과 스위치(SW) 사이에 마련되어 스위치(SW)의 턴오프 구간에 스위치(SW)에 걸리는 전압의 클램핑에 기여할 수 있다.The second capacitor C2 is a resonant capacitor, and the positive electrode is connected to the other end of the primary winding L11 of the first transformer L1 and the anode terminal of the second freewheeling diode D FW2 , and the negative electrode is connected to the switch SW It may be connected to the source end of and to the other end of the primary winding L21 of the second transformer L2. The second capacitor C2 may resonate with the leakage inductor LL1 of the first transformer L1 . The second capacitor C2 is provided between the switch SW and the primary winding L11 of the first transformer L1, and may contribute to clamping the voltage applied to the switch SW during the turn-off section of the switch SW. .
제1정류다이오드(DR1)는 애노드단이 제1변압기(L1)의 2차권선(L12) 일단에 연결되고 캐소드단이 출력캐패시터(Cout)의 일단에 연결될 수 있다. 제1정류다이오드(DR1)는 제1변압기(L1)의 2차측으로 전달되는 에너지를 단속하여 제1변압기(L1)의 출력을 정류할 수 있다.The first rectifier diode D R1 may have an anode end connected to one end of the secondary winding L12 of the first transformer L1 and a cathode end connected to one end of the output capacitor C out . The first rectifying diode D R1 may rectify the output of the first transformer L1 by intermitting the energy transferred to the secondary side of the first transformer L1 .
제2정류다이오드(DR2)는 애노드단이 제2변압기(L2)의 2차권선(L22) 타단에 연결되고 캐소드단이 출력캐패시터(Cout)의 타단에 연결될 수 있다. 제2정류다이오드(DR2)는 제2변압기(L2)의 2차측으로 전달되는 에너지를 단속하여 제2변압기(L2)의 출력을 정류할 수 있다.The second rectifier diode D R2 may have an anode end connected to the other end of the secondary winding L22 of the second transformer L2 and a cathode end connected to the other end of the output capacitor C out . The second rectifier diode D R2 may rectify the output of the second transformer L2 by intermitting the energy transferred to the secondary side of the second transformer L2 .
출력캐패시터(Cout)는 양단이 제1정류다이오드(DR1)의 캐소드단과 제2정류다이오드(DR2)의 캐소드단에 연결될 수 있다. 출력캐패시터(Cout)는 제1 및 제2정류다이오드(DR1, DR2)에 의해 정류된 DC전압을 평활하여 출력전압(Vo)을 생성할 수 있다.Both ends of the output capacitor C out may be connected to the cathode terminal of the first rectifier diode D R1 and the cathode terminal of the second rectifier diode D R2 . The output capacitor C out may generate the output voltage Vo by smoothing the DC voltage rectified by the first and second rectifying diodes D R1 and D R2 .
제어부(133)는 스위치(SW)의 게이트단에 연결되어 스위치(SW)를 반복적으로 턴온 또는 턴오프시킬 수 있다. 제어부(133)는 제1변압기(L1)의 2차측 출력전압을 펄스폭변조(PWM)방식으로 제어할 수 있다.The controller 133 may be connected to the gate terminal of the switch SW to repeatedly turn on or off the switch SW. The controller 133 may control the secondary-side output voltage of the first transformer L1 in a pulse width modulation (PWM) method.
제어부(133)는 제1변압기(L1)의 2차측의 정보를 피드백 받아 출력전압이나 출력전류를 제어할 수 있다. 또는, 제어부(133)는 제1변압기(L1)에 보조권선을 마련하고 이를 통해 2차측의 정보를 간접적으로 획득하여 출력전압이나 출력전류를 제어할 수도 있다.The control unit 133 may control the output voltage or the output current by receiving the feedback information of the secondary side of the first transformer (L1). Alternatively, the controller 133 may control the output voltage or the output current by providing an auxiliary winding in the first transformer L1 and indirectly acquiring information on the secondary side through this.
제어부(133)는 디스플레이장치(1)에 내장되는 PCB 상에 실장되는 제어IC(Control Integrated Circuit) 또는 SoC(System On a Chip)에 포함되는 형태로서 구현 가능하다.The control unit 133 may be implemented in a form included in a control integrated circuit (IC) or a system on a chip (SoC) mounted on a PCB embedded in the display device 1 .
도 4를 참조하면, 변환부(132)는 제1 내지 제3프리휠링회로(132a, 132b, 132c)를 포함할 수 있다. 여기서, '프리휠링회로'는 제1 및 제2변압기(L1, L2)의 축적된 전류가 순환하는 회로를 칭한다.Referring to FIG. 4 , the converter 132 may include first to third freewheeling circuits 132a, 132b, and 132c. Here, the 'freewheeling circuit' refers to a circuit in which the accumulated currents of the first and second transformers L1 and L2 circulate.
제1프리휠링회로(132a)는 제2변압기(L2)를 포함하여 구성되며, 스위치(SW)가 턴온 되는 구간에서 활성화될 수 있다. 제1프리휠링회로(132a)는 제2변압기(L2)의 1차권선(L21) 타단이 스위치(SW)의 소스단에 연결되고, 스위치(SW)의 드레인단이 제1프리휠링다이오드(DFW1)의 애노드단에 연결되고, 제1프리휠링다이오드(DFW1)의 캐소드단이 제1캐패시터(C1)의 음극에 연결되고, 제1캐패시터(C1)의 양극이 제2변압기(L2)의 1차권선(L21) 일단에 연결되어 형성될 수 있다.The first freewheeling circuit 132a is configured to include the second transformer L2, and may be activated in a period in which the switch SW is turned on. In the first freewheeling circuit 132a, the other end of the primary winding L21 of the second transformer L2 is connected to the source terminal of the switch SW, and the drain terminal of the switch SW is connected to the first freewheeling diode D FW1 ) is connected to the anode terminal, the cathode terminal of the first freewheeling diode D FW1 is connected to the negative electrode of the first capacitor C1, and the positive electrode of the first capacitor C1 is connected to the second transformer L2. It may be formed by being connected to one end of the primary winding L21.
제1프리휠링회로(132a)는 스위치(SW)의 턴온구간에 제2변압기(L2)의 1차측에 축적된 에너지가 2차측으로 전달되도록 하여 2차측에 제2전류가 흐르도록 할 수 있다.The first freewheeling circuit 132a may cause the energy accumulated in the primary side of the second transformer L2 to be transferred to the secondary side during the turn-on period of the switch SW so that the second current flows to the secondary side.
제2프리휠링회로(132b)는 제2변압기(L2)를 포함하여 구성되며, 스위치(SW)가 턴오프 되는 구간에서 활성화될 수 있다. 제2프리휠링회로(132b)는 제2변압기(L2)의 2차권선(L21) 타단이 제2캐패시터(C2)의 음극이 연결되고, 제2캐패시터(C2)의 양극이 제2프리휠링다이오드(DFW2)의 애노드단에 연결되고, 제2프리휠링다이오드(DFW2)의 캐소드단이 제2변압기(L2)의 2차권선(L21) 일단에 연결되어 형성될 수 있다. 제2프리휠링회로(132b)는 스위치(SW)가 턴오프 되는 구간에 제2변압기(L2)의 1차측에 축적된 에너지가 2차측으로 전달되도록 할 수 있다.The second freewheeling circuit 132b is configured to include the second transformer L2, and may be activated in a period in which the switch SW is turned off. In the second freewheeling circuit 132b, the other end of the secondary winding L21 of the second transformer L2 is connected to the cathode of the second capacitor C2, and the anode of the second capacitor C2 is connected to the second freewheeling diode. It may be formed by being connected to the anode end of (D FW2 ), and the cathode end of the second freewheeling diode (D FW2 ) being connected to one end of the secondary winding L21 of the second transformer (L2). The second freewheeling circuit 132b may allow energy accumulated in the primary side of the second transformer L2 to be transferred to the secondary side during the period in which the switch SW is turned off.
제3프리휠링회로(132c)는 제1변압기(L1)를 포함하여 구성되며, 스위치(SW)가 턴오프 되는 구간에서 활성화될 수 있다. 제3프리휠링회로(132c)는 제1변압기(L1)의 1차권선(L11) 타단이 제2프리휠링다이오드(DFW2)의 애노드단이 연결되고, 제2프리휠링다이오드(DFW2)의 캐소드단에 제1캐패시터(C1)의 양극이 연결되고, 제1캐패시터(C1)의 음극이 제3프리휠링다이오드(DFW3)의 애노드단에 연결되고, 제3프리휠링다이오드(DFW3)의 캐소드단이 제1변압기(L1)의 1차권선(L11) 일단에 연결되어 형성될 수 있다. 제3프리휠링회로(132c)는 스위치(SW)의 턴오프구간에 제1변압기(L2)의 1차측에 축적된 에너지가 2차측으로 전달되어 2차측에 제1전류가 흐르도록 할 수 있다.The third freewheeling circuit 132c is configured to include the first transformer L1, and may be activated in a section in which the switch SW is turned off. In the third freewheeling circuit 132c, the other end of the primary winding L11 of the first transformer L1 is connected to the anode end of the second freewheeling diode D FW2 , and the second freewheeling diode D FW2 is The anode of the first capacitor C1 is connected to the cathode terminal, the cathode of the first capacitor C1 is connected to the anode terminal of the third freewheeling diode D FW3 , and the third freewheeling diode D FW3 The cathode end may be formed by being connected to one end of the primary winding L11 of the first transformer L1. The third freewheeling circuit 132c may transmit energy accumulated in the primary side of the first transformer L2 to the secondary side during the turn-off period of the switch SW so that the first current flows to the secondary side.
이하, 도 5 내지 도 10을 참조하여 본 발명의 실시예에 따른 전원회로부(13)의 동작을 설명한다.Hereinafter, an operation of the power circuit unit 13 according to an embodiment of the present invention will be described with reference to FIGS. 5 to 10 .
단계 S1에서, AC전압이 정류부(131)의 브리지 다이오드 입력단에 인가된다.In step S1 , an AC voltage is applied to the input terminal of the bridge diode of the rectifier 131 .
단계 S2에서, 정류부(131)는 AC전압을 DC전압으로 전파 정류한다. 입력캐패시터(Cin)는 전파 정류된 DC전압을 평활화한다.In step S2, the rectifier 131 full-wave rectifies the AC voltage into a DC voltage. The input capacitor (C in ) smoothes the full-wave rectified DC voltage.
단계 S3에서, 변환부(132)는 제어부(133)의 제어 하에 전파 정류된 DC전압을 변환하여 부하가 필요로 하는 구동전압(Vo)을 출력한다. 변환부(132)는 스위치(SW)의 턴온 시의 제1제어구간(t0-t1)과 턴오프 시의 제2제어구간(t1-t4)으로 나뉘어 동작한다. 도 10에 나타낸 바와 같이, 제1제어구간(t0-t1)에는 제1모드(S31)로 동작되고, 제2제어구간(t1-t4)에는 제2모드(t1-t2)(S32), 제3모드(t2-t3)(S33) 및 제4모드(t3-t4)(S34)로 동작될 수 있다.In step S3 , the converter 132 converts the full-wave rectified DC voltage under the control of the controller 133 to output the driving voltage Vo required by the load. The conversion unit 132 operates by dividing the switch SW into a first control period t 0 -t 1 when the switch SW is turned on and a second control period t 1 -t 4 when the switch SW is turned off. As shown in FIG. 10 , it operates in the first mode S31 in the first control period t 0 -t 1 , and in the second mode t 1 -t 2 in the second control period t 1 -t 4 . ) (S32), a third mode (t 2 -t 3 ) (S33), and a fourth mode (t 3 -t 4 ) (S34).
도 6 및 10을 참조하면, 단계 S31(제1모드)에서, 스위치(SW)가 턴온된 구간(t0-t1) 동안, 제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)와 제2변압기(L2)의 1차권선(L21)에 흐르는 전류(ILm2)는 점차적으로 상승하여 1차측에 에너지가 축적되고, 제1프리휠링회로(132a)가 활성화되고, 제2 및 제3프리휠링회로(132b, 132c)가 비활성화될 수 있다. 이때, 활성화된 제1프리휠링회로(132a)의 제1캐패시터(C1)가 방전함으로써 제2변압기(L2)의 1차측에 저장된 에너지가 제2변압기(L2)의 2차측에 연결된 제2정류다이오드(DR2)의 도통 조건을 만족시켜 제2변압기(L2)의 2차측으로 전류가 흐를 수 있다. 이와 같이, 전원회로부(13)는 스위치(SW)의 턴온 구간에 제2변압기(L2)의 포워딩 동작에 의해 예를 들면 120Hz 출력전압 리플이 감소될 수 있다. 6 and 10, in step S31 (first mode), during the period (t 0 -t 1 ) in which the switch (SW) is turned on, the current flowing in the primary winding (L11) of the first transformer (L1) (I Lm1 ) and the current (I Lm2 ) flowing in the primary winding L21 of the second transformer L2 gradually rises to accumulate energy in the primary side, and the first freewheeling circuit 132a is activated, The second and third freewheeling circuits 132b and 132c may be deactivated. At this time, as the first capacitor C1 of the activated first freewheeling circuit 132a is discharged, the energy stored in the primary side of the second transformer L2 is transferred to the second rectifier diode connected to the secondary side of the second transformer L2. A current may flow to the secondary side of the second transformer L2 by satisfying the conduction condition of (D R2 ). In this way, in the power circuit unit 13 , for example, 120Hz output voltage ripple may be reduced by the forwarding operation of the second transformer L2 in the turn-on period of the switch SW.
활성화된 제1프리휠링회로(132a)의 제1프리휠링다이오드(DFW1)에 흐르는 전류(IDF1)는 점차적으로 상승하고, 제1캐패시터(C1)의 전압(Vbulk)은 방전하고, 제2캐패시터(C2)의 전압(VCr)은 제1캐패시터(C1)의 최대전압(Vbulk)만큼 충전되고, 제2정류다이오드(DR2)에 흐르는 전류(IR2)는 제1캐패시터(C1)의 방전에 따라 점차적으로 상승할 수 있다.The current I DF1 flowing in the first freewheeling diode D FW1 of the activated first freewheeling circuit 132a gradually rises, and the voltage V bulk of the first capacitor C1 is discharged, and the first The voltage V Cr of the second capacitor C2 is charged as much as the maximum voltage V bulk of the first capacitor C1, and the current I R2 flowing through the second rectifying diode D R2 is the first capacitor C1 ) can gradually rise according to the discharge.
제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 제1변압기(L1)의 2차측에 연결된 제1정류다이오드(DR1)의 도통 조건을 만족시키지 못해 제1변압기(L1)의 2차측으로 전달되지 못한다. 따라서, 제1정류다이오드(DR1)에 흐르는 전류(IR1)는 0이다.The current I Lm1 flowing in the primary winding L11 of the first transformer L1 does not satisfy the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so the first transformer It is not transmitted to the secondary side of (L1). Accordingly, the current I R1 flowing through the first rectifying diode D R1 is zero.
도 7 및 도 10을 참조하면, 단계 S32(제2모드)에서, 스위치(SW)가 턴오프된 제1구간(t1-t2) 동안, 제1프리휠링회로(132a)가 비활성화되고, 제2프리휠링회로(132b)와 제3 프리휠링회로(132c)가 활성화될 수 있다. 이때, 제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 점차적으로 감소하고 제2변압기(L2)의 1차권선(L21)에 흐르는 전류(ILm2)는 점차적으로 상승할 수 있다.7 and 10, in step S32 (second mode), during the first period (t 1 -t 2 ) in which the switch SW is turned off, the first freewheeling circuit 132a is deactivated, The second freewheeling circuit 132b and the third freewheeling circuit 132c may be activated. At this time, the current I Lm1 flowing in the primary winding L11 of the first transformer L1 gradually decreases, and the current I Lm2 flowing in the primary winding L21 of the second transformer L2 gradually decreases. can rise
활성화된 제2프리휠링회로(132b)의 제2프리휠링다이오드(DFW2)에 흐르는 전류(IDF2) 및 제3프리휠링회로(132c)의 제3프리휠링다이오드(DFW3)에 흐르는 전류(IDF3)는 점차적으로 감소할 수 있다.Current I DF2 flowing in the second freewheeling diode D FW2 of the activated second freewheeling circuit 132b and the current flowing in the third freewheeling diode D FW3 of the third freewheeling circuit 132c ( I DF3 ) may decrease gradually.
제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 제1변압기(L1)의 2차측에 연결된 제1정류다이오드(DR1)의 도통 조건을 만족시켜 제1변압기(L1)의 1차측에 저장된 에너지가 제1변압기(L1)의 2차측으로 전달되어 2차측에 전류가 흐를 수 있다. The current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side.
활성화된 제3프리휠링회로(132c)의 제1캐패시터(C1)는 누설인덕터(LL1)와 자화인덕터(Lm1)에 축적된 전류에 의해 충전될 수 있다. The first capacitor C1 of the activated third freewheeling circuit 132c may be charged by the current accumulated in the leakage inductor L L1 and the magnetizing inductor L m1 .
제2캐패시터(C2)의 전압(VCr)은 방전되고, 제2정류다이오드(DR2)에 흐르는 전류(IR2)는 제2캐패시터(C2)의 방전에 따라 점차적으로 감소될 수 있다.The voltage V Cr of the second capacitor C2 is discharged, and the current I R2 flowing through the second rectifier diode D R2 may be gradually decreased according to the discharge of the second capacitor C2 .
결과적으로, 제2모드(t1-t2)에서 스위치(SW)에 걸리는 전압(Vds)은 입력전압(Vin), 제1변압기(L1)에 걸리는 전압(제1캐패시터(C1)의 전압(Vbulk)) 및 제2캐패시터(C2)의 전압(VCr)에 의해 클램핑됨으로써 과도전류에 의한 스위치(SW)의 손상을 방지할 수 있다.As a result, in the second mode (t 1 -t 2 ), the voltage (V ds ) applied to the switch (SW) is the input voltage (V in ), the voltage applied to the first transformer (L1) (of the first capacitor (C1) By clamping by the voltage (V bulk ) and the voltage (V Cr ) of the second capacitor C2 , damage to the switch SW due to excessive current can be prevented.
도 8 및 도 10을 참조하면, 단계 S33(제3모드)에서, 스위치(SW)가 턴오프된 제2구간(t2-t3) 동안, 제1프리휠링회로(132a)가 비활성화 상태를, 제2프리휠링회로(132b)와 제3 프리휠링회로(132c)가 활성화 상태를 유지할 수 있다. 이때, 제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 점차적으로 감소하고 제2변압기(L2)의 1차권선(L21)에 흐르는 전류(ILm2)는 점차적으로 감소할 수 있다.8 and 10 , in step S33 (the third mode), during the second period t 2 -t 3 in which the switch SW is turned off, the first freewheeling circuit 132a is deactivated. , the second freewheeling circuit 132b and the third freewheeling circuit 132c may maintain an activated state. At this time, the current I Lm1 flowing in the primary winding L11 of the first transformer L1 gradually decreases, and the current I Lm2 flowing in the primary winding L21 of the second transformer L2 gradually decreases. can decrease.
활성화된 제2프리휠링회로(132b)의 제2프리휠링다이오드(DFW2)에 흐르는 전류(IDF2) 및 제3프리휠링회로(132c)의 제3프리휠링다이오드(DFW3)에 흐르는 전류(IDF3)는 지속적으로 감소할 수 있다.Current I DF2 flowing in the second freewheeling diode D FW2 of the activated second freewheeling circuit 132b and the current flowing in the third freewheeling diode D FW3 of the third freewheeling circuit 132c ( I DF3 ) may decrease continuously.
제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 제1변압기(L1)의 2차측에 연결된 제1정류다이오드(DR1)의 도통 조건을 만족시켜 제1변압기(L1)의 1차측에 저장된 에너지가 제1변압기(L1)의 2차측으로 전달되어 2차측에 전류가 흐를 수 있다. 따라서, 제1정류다이오드(DR1)에 흐르는 전류(IR1)는 지속적으로 상승할 수 있다.The current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side. Accordingly, the current I R1 flowing through the first rectifying diode D R1 may continuously increase.
활성화된 제3프리휠링회로(132c)의 제1캐패시터(C1)는 누설인덕터(LL1)와 자화인덕터(Lm1)에 축적된 기생전류에 의해 지속적으로 충전될 수 있다. The first capacitor C1 of the activated third freewheeling circuit 132c may be continuously charged by the parasitic current accumulated in the leakage inductor L L1 and the magnetizing inductor L m1 .
제2캐패시터(C2)의 전압(VCr)은 방전되고, 제2변압기(L2)의 누설인덕터(LL2)와 자화인덕터(Lm2)에 흐르는 전류가 동일한 상태가 되면 제2정류다이오드(DR2)의 도통 조건을 만족할 수 없어 제2변압기(L2)의 1차측에서 2차측으로 에너지 전달이 중단되어 2차측 전류흐름은 중단될 수 있다.The voltage V Cr of the second capacitor C2 is discharged, and when the current flowing through the leakage inductor L L2 and the magnetizing inductor L m2 of the second transformer L2 becomes the same, the second rectifier diode D Since the conduction condition of R2 ) cannot be satisfied, energy transfer from the primary side to the secondary side of the second transformer L2 is stopped, so that the secondary side current flow can be stopped.
도 9 및 도 10을 참조하면, 단계 S34(제4모드)에서, 스위치(SW)가 턴오프된 제3구간(t3-t4) 동안, 제1프리휠링회로(132a)와 제3프리휠링회로(132c)가 비활성화 상태를, 제2 프리휠링회로(132b)가 활성화 상태를 유지할 수 있다. 이때, 제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 지속적으로 감소하고 제2변압기(L2)의 1차권선(L21)에 흐르는 전류(ILm2)는 지속적으로 감소할 수 있다.9 and 10 , in step S34 (the fourth mode), during the third period t 3 -t 4 in which the switch SW is turned off, the first freewheeling circuit 132a and the third freewheeling circuit 132a The wheeling circuit 132c may maintain an inactive state, and the second freewheeling circuit 132b may maintain an active state. At this time, the current I Lm1 flowing in the primary winding L11 of the first transformer L1 is continuously decreased and the current I Lm2 flowing in the primary winding L21 of the second transformer L2 is continuously can decrease.
활성화된 제2프리휠링회로(132b)의 제2프리휠링다이오드(DFW2)에 흐르는 전류(IDF2)는 미량으로 일정하게 흐르며, 바활성화된 제3프리휠링회로(132c)의 제3프리휠링다이오드(DFW3)에 흐르는 전류(IDF3)는 0이다.The current I DF2 flowing in the second freewheeling diode D FW2 of the activated second freewheeling circuit 132b constantly flows in a small amount, and the third freewheeling of the activated third freewheeling circuit 132c The current I DF3 flowing through the diode D FW3 is zero.
제1변압기(L1)의 1차권선(L11)에 흐르는 전류(ILm1)는 제1변압기(L1)의 2차측에 연결된 제1정류다이오드(DR1)의 도통 조건을 만족시켜 제1변압기(L1)의 1차측에 저장된 에너지가 제1변압기(L1)의 2차측으로 전달되어 2차측에 전류가 흐를 수 있다. 이때, 제1정류다이오드(DR1)에 흐르는 전류(IR1)는 점차적으로 감소할 수 있다.The current I Lm1 flowing in the primary winding L11 of the first transformer L1 satisfies the conduction condition of the first rectifier diode D R1 connected to the secondary side of the first transformer L1, so that the first transformer ( Energy stored in the primary side of L1) is transferred to the secondary side of the first transformer L1, so that a current can flow in the secondary side. In this case, the current I R1 flowing through the first rectifying diode D R1 may gradually decrease.
단계 S4에서, 출력캐패시터(Cout)는 제1 및 제2정류다이오드(DR1, DR2)에서 정류된 DC전압을 평활하여 전압(Vo)을 출력한다. In step S4, the output capacitor C out smoothes the DC voltage rectified by the first and second rectifying diodes D R1 and D R2 to output the voltage Vo.
도 11은 본 발명의 실시예에 따른 전원회로부(13)의 최소 입력전압(Vac = 90 Vrms)에 대한 주요 전압 및 전류 파형을 나타내는 도이고, 도 12는 도 11의 A구간을 확대하여 나타낸 도이고, 도 13은 본 발명의 실시예에 따른 전원회로부(13)의 최대 입력전압(Vac = 264Vrms)에 대한 주요 전압 및 전류 파형을 나타내는 도이고, 도 14는 도 13의 B구간을 확대하여 나타낸 도이다.11 is a diagram illustrating main voltage and current waveforms for the minimum input voltage (V ac = 90 Vrms) of the power circuit unit 13 according to an embodiment of the present invention, and FIG. 12 is an enlarged view of section A of FIG. 11 . 13 is a diagram showing main voltage and current waveforms for the maximum input voltage (V ac = 264Vrms) of the power circuit unit 13 according to an embodiment of the present invention, and FIG. 14 is an enlarged section B of FIG. 13 . This is the diagram shown.
도 11을 참조하면, 입력전압(Vac)은 120Hz의 상용 입력 전압(90 ~ 264 Vrms)중 최소입력전압(Vac = 90 Vrms)이고, 출력전압(Vout)은 12.62~13.20V이고, 리플전압(Vripple)은 ±0.29V이다. 11, the input voltage (V ac ) is the minimum input voltage (V ac = 90 Vrms) among the commercial input voltages (90 ~ 264 Vrms) of 120Hz, the output voltage (V out ) is 12.62 ~ 13.20V, The ripple voltage (V ripple ) is ±0.29V.
도 12를 참조하면, 스위치(SW)가 턴오프 될 때에 스위치(SW)에 걸리는 전압(Vds)은 입력전압(Vac), 제1캐패시터(C1)의 전압(Vbulk), 및 제2캐패시터(C2)의 최대전압(VCr_max) 합으로 결정되므로, Vds = 127V(Vac)+104V(Vbulk)+194V(VCr_max)=425V이다.12 , when the switch SW is turned off, the voltage V ds applied to the switch SW is the input voltage V ac , the voltage V bulk of the first capacitor C1 , and the second Since it is determined by the sum of the maximum voltage (V Cr_max ) of the capacitor C2, V ds = 127V(V ac )+104V(V bulk )+194V(V Cr_max )=425V.
도 13을 참조하면, 입력전압(Vac)은 120Hz의 상용 입력 전압(90 ~ 264 Vrms)중 최대입력전압(Vac = 264 Vrms)이고, 출력전압(Vout)은 12.56~13.40V이고, 리플전압(Vripple)은 ±0.42V이다. 13, the input voltage (Vac) is the maximum input voltage (V ac = 264 Vrms) of the commercial input voltage (90 ~ 264 Vrms) of 120Hz, the output voltage (V out ) is 12.56 ~ 13.40V, ripple The voltage (V ripple ) is ±0.42V.
도 14를 참조하면, 스위치(SW)가 턴오프 될 때에 스위치(SW)에 걸리는 전압(Vds)은 입력전압(Vac), 제1캐패시터(C1)의 전압(Vbulk), 및 제2캐패시터(C2)의 최대전압(VCr_max) 합으로 결정되므로, Vds = 373V(Vac)+126V(Vbulk)+46V(VCr_max)=545V이다.Referring to FIG. 14 , when the switch SW is turned off, the voltage V ds applied to the switch SW is the input voltage V ac , the voltage V bulk of the first capacitor C1 , and the second Since it is determined by the sum of the maximum voltage (V Cr_max ) of the capacitor C2, V ds = 373V(V ac )+126V(V bulk )+46V(V Cr_max )=545V.
도 11 및 도 13에 나타낸 바와 같이, 본 발명의 실시예에 따른 전원회로부(13)는 제2변압기(L2)의 포워딩 동작에 의해 120Hz 입력전압에 의한 리플전압이 안정성 기준인 출력전압의 5% 보다 충분히 낮음을 확인하였다. 11 and 13, in the power circuit unit 13 according to the embodiment of the present invention, the ripple voltage by the 120Hz input voltage by the forwarding operation of the second transformer L2 is 5% of the output voltage as the stability standard It was confirmed that it was sufficiently lower than that.
도 12 및 도 14에 나타낸 바와 같이, 본 발명의 실시예에 따른 전원회로부(13)는 스위치(SW)의 턴오프 시에 스위치(SW)에 걸리는 전압(Vds)이 입력전압(Vac), 제1캐패시터(C1)의 전압(Vbulk), 및 제2캐패시터(C2)의 최대전압(VCr_max) 합으로 클램핑 됨을 확인하였다. 이와 같이, 본 발명의 전원회로부(13)는 별도의 RCD 스너버 회로를 적용하지 않고도 스위치(SW)의 손상을 방지할 수 있을 뿐만 아니라 전력효율이 저감되는 것을 방지할 수 있다.12 and 14 , in the power circuit unit 13 according to an embodiment of the present invention, when the switch SW is turned off, the voltage V ds applied to the switch SW is the input voltage V ac ) , the voltage (V bulk ) of the first capacitor (C1), and the maximum voltage (V Cr_max ) of the second capacitor (C2) was confirmed to be clamped. In this way, the power circuit unit 13 of the present invention can prevent damage to the switch SW without applying a separate RCD snubber circuit, as well as prevent power efficiency from being reduced.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시 예들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and it is common in the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Various modifications may be made by those having the knowledge of, of course, and these modified embodiments should not be individually understood from the technical spirit or perspective of the present invention.

Claims (11)

  1. 디스플레이장치에 있어서,In the display device,
    메인보드; motherboard;
    디스플레이부; 및display unit; and
    상기 메인보드와 상기 디스플레이부에 전원을 공급하는 전원회로부를 포함하며,and a power circuit unit for supplying power to the main board and the display unit,
    상기 전원회로부는,The power circuit unit,
    교류전원을 직류전원으로 정류하는 정류부;a rectifier for rectifying AC power into DC power;
    1차권선이 상기 정류부의 출력단에 2차권선이 상기 전원회로부의 출력단에 각각 연결되는 제1변압기;a first transformer having a primary winding connected to an output terminal of the rectifying unit and a secondary winding connected to an output terminal of the power circuit unit, respectively;
    1차권선이 상기 제1변압기의 1차권선에 직렬로 연결되고, 2차권선이 상기 제1변압기의 2차권선과 병렬로 연결되는 제2변압기, 상기 제1변압기의 2차권선에 흐르는 제1전류와 상기 제2변압기의 2차권선에 흐르는 제2전류의 합이 상기 전원회로부의 출력단으로 출력되며;a second transformer in which a primary winding is connected in series with the primary winding of the first transformer, and a secondary winding is connected in parallel with the secondary winding of the first transformer, a second winding flowing through the secondary winding of the first transformer the sum of the first current and the second current flowing in the secondary winding of the second transformer is output to the output terminal of the power circuit unit;
    상기 제1변압기를 포함하도록 마련되는 제1프리휠링회로;a first freewheeling circuit provided to include the first transformer;
    상기 제2변압기를 포함하도록 마련되는 제2프리휠링회로;a second freewheeling circuit provided to include the second transformer;
    상기 제1프리휠링회로 및 상기 제2프리휠링회로가 선택적으로 연결되도록 스위칭될 수 있는 스위치; 및a switch switchable to selectively connect the first freewheeling circuit and the second freewheeling circuit; and
    상기 제1프리휠링회로가 연결되어 상기 제1변압기의 제2권선에 상기 제1전류가 흐르도록 하거나, 또는 상기 제2프리휠링회로가 연결되어 상기 2변압기의 제2권선에 상기 제2전류가 흐르도록 상기 스위치를 반복적으로 스위칭 제어하는 제어부를 포함하는 디스플레이장치.The first freewheeling circuit is connected to allow the first current to flow through the second winding of the first transformer, or the second freewheeling circuit is connected to allow the second current to flow through the second winding of the second transformer A display device comprising a control unit for repeatedly switching the switch to flow.
  2. 제1항에 있어서,According to claim 1,
    상기 제1프리휠링회로는,The first freewheeling circuit comprises:
    상기 제1변압기의 1차권선 일단에 상기 제1프리휠링다이오드의 애노드단이 연결되고,The anode end of the first freewheeling diode is connected to one end of the primary winding of the first transformer,
    상기 제1프리휠링다이오드의 캐소드단에 제1캐패시터의 양극이 연결되고,The anode of the first capacitor is connected to the cathode of the first freewheeling diode,
    상기 제1캐패시터의 음극에 제2프리휠링다이오드의 애노드단이 연결되고,The anode terminal of the second freewheeling diode is connected to the cathode of the first capacitor,
    상기 제2프리휠링다이오드의 캐소드단에 상기 제1변압기의 1차권선 타단이 연결되는 디스플레이장치.A display device in which the other end of the primary winding of the first transformer is connected to the cathode of the second freewheeling diode.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제2프리휠링회로는,The second freewheeling circuit comprises:
    상기 제2변압기의 1차권선 일단에 상기 스위치의 일단이 연결되고, One end of the switch is connected to one end of the primary winding of the second transformer,
    상기 스위치의 타단에 제3프리휠링다이오드의 애노드단에 연결되고,The other end of the switch is connected to the anode end of the third freewheeling diode,
    상기 제3프리휠링다이오드의 캐소드단에 상기 제1캐패시터의 음극이 연결되고,The cathode of the first capacitor is connected to the cathode of the third freewheeling diode,
    상기 제1캐패시터의 양극에 상기 제2변압기의 1차권선 타단이 연결되는 디스플레이장치.A display device in which the other end of the primary winding of the second transformer is connected to the anode of the first capacitor.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 스위치의 턴온 시에 상기 제1캐패시터의 방전에 따라 상기 제2변압기의 2차측에 제2전류가 흐르는 디스플레이장치.A display device in which a second current flows to the secondary side of the second transformer according to the discharge of the first capacitor when the switch is turned on.
  5. 제1항에 있어서,According to claim 1,
    상기 전원회로부는 상기 제2변압기를 포함하는 제3프리휠링회로를 더 포함하는 디스플레이장치.The power circuit unit further includes a third freewheeling circuit including the second transformer.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제3프리휠링회로는,The third freewheeling circuit comprises:
    상기 제2변압기의 1차권선 일단에 제2캐패시터의 음극이 연결되고,The negative electrode of the second capacitor is connected to one end of the primary winding of the second transformer,
    상기 제2캐패시터의 양극에 상기 제1프리휠링다이오드의 애노드단이 연결되고,The anode terminal of the first freewheeling diode is connected to the anode of the second capacitor,
    상기 제1프리휠링다이오드의 캐소드단에 상기 제2변압기의 1차권선 타단이 연결되는 디스플레이장치.A display device in which the other end of the primary winding of the second transformer is connected to the cathode of the first freewheeling diode.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 스위치의 턴오프 시에 상기 스위치의 양단에 걸리는 전압은 상기 정류부의 출력단에 걸리는 전압, 상기 제1캐패시터 전압 및 상기 제2캐패시터 전압에 의해 결정되는 디스플레이장치.A voltage applied to both ends of the switch when the switch is turned off is determined by a voltage applied to an output terminal of the rectifier, the first capacitor voltage, and the second capacitor voltage.
  8. 제1항에 있어서,According to claim 1,
    상기 전원회로부는,The power circuit unit,
    상기 스위치의 턴온 시에 상기 정류부의 출력단에서 전류가 공급되어 상기 제1변압기의 1차측에 에너지가 충전되도록 하고, 상기 제1변압기의 1차측에 에너지가 충전되는 동안 상기 제2변압기의 1차측에 전류가 공급되어 2차측에 제2전류가 흐르도록 하는 제1모드를 수행하는 디스플레이장치.When the switch is turned on, a current is supplied from the output terminal of the rectifier so that energy is charged to the primary side of the first transformer, and while energy is charged to the primary side of the first transformer, the primary side of the second transformer A display device performing a first mode in which current is supplied and a second current flows to a secondary side.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 제1전류가 흐르도록 하고, 상기 제2변압기의 2차측에 흐르는 제2전류가 감소하는 제2모드를 수행하는 디스플레이장치.The power circuit unit causes a first current to flow to the secondary side of the first transformer when the switch is turned off and performs a second mode in which the second current flowing to the secondary side of the second transformer is reduced .
  10. 제9항에 있어서,10. The method of claim 9,
    상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 제1전류가 흐르도록 하고, 상기 제2변압기의 2차측 제2전류 흐름이 중단되는 제3모드를 수행하는 디스플레이장치.The power circuit unit causes a first current to flow to the secondary side of the first transformer when the switch is turned off and performs a third mode in which the secondary current flow of the second transformer is stopped.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 전원회로부는 상기 스위치의 턴오프 시에 상기 제1변압기의 2차측에 흐르는 제1전류가 감소되고, 상기 제2변압기의 2차측의 제2전류 흐름이 중단되는 제4모드를 수행하는 디스플레이장치.The power circuit unit performs a fourth mode in which the first current flowing to the secondary side of the first transformer is reduced when the switch is turned off and the flow of the second current to the secondary side of the second transformer is stopped. .
PCT/KR2021/013604 2020-11-18 2021-10-05 Display device WO2022108107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200154407A KR20220067780A (en) 2020-11-18 2020-11-18 Display device
KR10-2020-0154407 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022108107A1 true WO2022108107A1 (en) 2022-05-27

Family

ID=81709121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013604 WO2022108107A1 (en) 2020-11-18 2021-10-05 Display device

Country Status (2)

Country Link
KR (1) KR20220067780A (en)
WO (1) WO2022108107A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240041674A (en) * 2022-09-23 2024-04-01 삼성전자주식회사 Electronic apparatus for providing multi-output and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168244A (en) * 1994-12-12 1996-06-25 Nemic Lambda Kk Switching power unit
JP2004282896A (en) * 2003-03-14 2004-10-07 Sanken Electric Co Ltd Dc converter
CN1545192A (en) * 2003-11-21 2004-11-10 华南理工大学 A single-stage power factor correcting circuit
KR20050032399A (en) * 2003-10-01 2005-04-07 삼성전자주식회사 Power supply system of display apparatus and control method thereof
US20180294733A1 (en) * 2017-03-14 2018-10-11 Shenzhen China Star Optoelectronics Technology Co., Ltd Dual-output flyback voltage conversion circuit and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168244A (en) * 1994-12-12 1996-06-25 Nemic Lambda Kk Switching power unit
JP2004282896A (en) * 2003-03-14 2004-10-07 Sanken Electric Co Ltd Dc converter
KR20050032399A (en) * 2003-10-01 2005-04-07 삼성전자주식회사 Power supply system of display apparatus and control method thereof
CN1545192A (en) * 2003-11-21 2004-11-10 华南理工大学 A single-stage power factor correcting circuit
US20180294733A1 (en) * 2017-03-14 2018-10-11 Shenzhen China Star Optoelectronics Technology Co., Ltd Dual-output flyback voltage conversion circuit and display device

Also Published As

Publication number Publication date
KR20220067780A (en) 2022-05-25

Similar Documents

Publication Publication Date Title
EP3726833B1 (en) Television power supply driving device and television
US8242712B2 (en) Power supply apparatus
US8288961B2 (en) LED backlight driving module
US9224327B2 (en) Power supply device, display apparatus having the same, and power supply method
US8625310B2 (en) Method of supplying power, power supply apparatus for performing the method and display apparatus having the apparatus
EP3198704A1 (en) Wireless power transmitter and wireless power receiver
CN103763830B (en) Light-emitting component driving system, driving control circuit and driving method
US9030049B2 (en) Alternating current (AC) to direct current (DC) converter device
WO2015119382A1 (en) Standby power saving circuit
CN113436571B (en) Display device and power supply circuit
WO2016076517A1 (en) Power conversion unit
WO2022108107A1 (en) Display device
KR20230148301A (en) External power supply for display
WO2018143582A1 (en) Display device and method for controlling display device
WO2020013635A1 (en) Electronic device
CN105307305B (en) A kind of LED power control device and television set
WO2018203597A1 (en) Power conversion apparatus and method, and electronic apparatus using same apparatus
WO2019212147A1 (en) Adaptor, power supply system and power supply method thereof
WO2013180500A1 (en) Display device comprising led backlight, and power supply apparatus and power supply method therefor
WO2020181830A1 (en) Display apparatus and power supply control method
WO2023109168A1 (en) Display device and display control method
KR100523378B1 (en) Power supply unit for plasma display panel
CN215897587U (en) Display device
WO2011021836A2 (en) Light-emitting diode driving circuit capable of controlling the current of a constant light-emitting diode
WO2021167440A1 (en) Display device and method for controlling display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894879

Country of ref document: EP

Kind code of ref document: A1