WO2022107495A1 - Crane device - Google Patents

Crane device Download PDF

Info

Publication number
WO2022107495A1
WO2022107495A1 PCT/JP2021/037564 JP2021037564W WO2022107495A1 WO 2022107495 A1 WO2022107495 A1 WO 2022107495A1 JP 2021037564 W JP2021037564 W JP 2021037564W WO 2022107495 A1 WO2022107495 A1 WO 2022107495A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
boom
undulation
angle
predetermined
Prior art date
Application number
PCT/JP2021/037564
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 辛島
啓 光井
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Publication of WO2022107495A1 publication Critical patent/WO2022107495A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear

Definitions

  • the present invention relates to a crane device provided with a pulley on which a suspended load wire is hung.
  • a crane device mounted on a vehicle has a boom, a hook engaged with a suspended load, a winch having a suspended load wire (hereinafter referred to as "wire"), and a winch-based suspension performance (suspendable). It is equipped with a pulley device that increases the maximum weight of luggage).
  • the pulley device has a fixed pulley mechanism and a moving pulley mechanism, and a wire unwound from the winch is hung between the two.
  • the hook is fixed to the moving pulley mechanism.
  • the fixed pulley mechanism and the moving pulley mechanism each include a plurality of sheaves, and wires are hung around these sheaves in a predetermined order.
  • the fixed pulley mechanism is provided at the tip of the boom. The greater the number of times the wire is hung between the fixed pulley mechanism and the moving pulley mechanism (the number of wires hung), the better the suspension performance.
  • the operator manually inputs the number of wires to the crane device, for example.
  • the crane device sets a limit on the range of boom length and undulation angle and the weight of the suspended load based on the input number of wires. Therefore, the operation of inputting the number of wires by the operator is important in the crane operation.
  • This crane device includes a boom undulation angle detector that detects the undulation angle of the boom, a boom length detector that detects the length of the boom, a boom load detector that detects the load applied to the boom, and tension applied to the wire. It is equipped with a tensile force detector for detecting force and a calculation device. The arithmetic unit calculates the load of the suspended load based on the detected undulation angle, length, and load of the boom, and divides the calculated load by the detected tensile force to calculate the number of wire hooks.
  • the conventional crane device calculates the number of wires hooked by actually suspending the luggage. Therefore, the number of wire hooks is determined only after the crane work is started, and is insufficient as a measure to prevent input errors by the operator.
  • the present invention has been made under such a background, and an object thereof is to provide a crane device capable of automatically specifying the number of wire hooks before performing crane work.
  • the crane device winds a pedestal, a boom supported by the pedestal and capable of undulating operation between a retracted position and a fully upright position, and a wire wound around the tip of the boom.
  • a winch having a wire drum for taking out or feeding out, a hanging hook provided on the wire, a first actuator for raising and lowering the boom, a second actuator for driving the winch, and a pedestal are provided.
  • a controller having a memory and a controller are provided.
  • the controller responds to the undulation process of undulating the boom by the first predetermined angle, the first winding process of winding the wire to a predetermined tension state, and the length of the wire wound by the first winding process.
  • the storage process to be stored in the memory is executed.
  • the wire feeding length changes by the length corresponding to the first predetermined angle.
  • the amount of change in the wire feeding length depends on the number of wires hooked.
  • the controller acquires the detection value according to the length of the wire wound in the first winding process. That is, the controller acquires the detection value depending on the number of wires.
  • the controller identifies the wire hooking number based on the acquired detection value, and stores the specified wire hooking number in the memory. Therefore, the number of wire hooks is automatically specified prior to the crane work.
  • the controller may further execute the second winding process of winding the wire up to the predetermined tension state.
  • the controller executes the undulation process after the execution of the second winding process, and in the undulation process, the boom is laid down.
  • the controller changes the wire feeding length by tilting the boom by the first predetermined angle. Therefore, in the crane device according to the present invention, the boom can be laid down to specify the number of wire hooks.
  • the controller also winds the wire up to a predetermined tension state before the boom is laid down. That is, the controller puts the wire in a predetermined initial state before tilting the boom by a first predetermined angle.
  • the predetermined initial state is, for example, a state in which the wire is stretched without loosening. Therefore, it is possible to more accurately detect the amount of change (detection value) in the feeding length of the wire that has changed by tilting the boom by the first predetermined angle, as compared with the case where the wire is not brought into a predetermined initial state. As a result, the specific accuracy of wire hooking is improved.
  • the controller determines that the boom is in the retracted position based on the undulation angle indicated by the detection value detected by the undulation angle sensor, and sets the boom to the first predetermined angle or more. 2
  • the standing process for standing up by a predetermined angle may be further executed. After executing the standing process, the controller executes the second winding process.
  • the controller erects the boom by a second predetermined angle and then tilts the boom by a first predetermined angle. Therefore, in the crane device according to the present invention, even if the boom is in the retracted position, the boom can be laid down to specify the number of wires hooked.
  • the controller further executes the second winding process of winding the wire up to the predetermined tension state, and the feeding process of unwinding the wire by a predetermined length after executing the second winding process. You may.
  • the controller executes the undulating process after executing the feeding process, and raises the boom in the undulating process.
  • the controller changes the wire feeding length by erecting the boom by the first predetermined angle. That is, in the crane device according to the present invention, the number of wires hooked can be specified by raising the boom. In addition, the controller pays out the wire by a predetermined length before raising the boom. Therefore, it is possible to prevent the locking member from being damaged when the boom is raised. Further, the controller winds up the wire until the wire reaches a predetermined tension state (second winding process) before unwinding the wire by a predetermined length. That is, the wire is brought into a predetermined initial state before being unwound by a predetermined length.
  • a predetermined tension state second winding process
  • the controller determines that the boom is in the full upright position based on the undulation angle indicated by the detection value detected by the undulation angle sensor, and the third predetermined angle of the first predetermined angle or more. Further, a lodging process for tilting the boom by an angle may be further performed. After executing the lodging process, the second volume processing is executed.
  • the controller tilts the boom by the third predetermined angle and then raises the boom by the first predetermined angle. Therefore, the crane device according to the present invention can raise the boom and specify the number of wire hooks regardless of the initial position of the boom.
  • the hydraulic pressure supply device has a relief circuit provided with a relief valve that reduces the hydraulic oil supplied to the second actuator to less than a predetermined pressure, and the controller executes a switching process for switching the flow path to the relief circuit. After that, the above-mentioned first volume processing may be executed.
  • the controller may specify the wire multiplication number based on whether or not the value corresponding to the detected value is equal to or higher than the threshold value stored in the memory.
  • the threshold value By using the threshold value, it becomes easy to specify the number of wires hooked in the controller. It should be noted that one threshold value may be stored in the memory, or a plurality of threshold values may be stored in the memory. That is, the number of wires to be specified may be two types or three or more types.
  • the memory may store a plurality of threshold values according to the undulation angle of the boom.
  • the controller specifies the number of wire hooks using the threshold value corresponding to the detection value detected by the undulation angle sensor before or after the execution of the undulation process.
  • the controller specifies the wire hooking number by using the threshold value according to the undulation angle of the boom before or after the execution of the undulating process, the accuracy of specifying the wire hooking number is improved.
  • the controller generates an undulation angle acquisition process for acquiring an acquisition angle which is a detection value output by the undulation angle sensor before or after executing the undulation process, and generates a threshold value based on the acquisition angle.
  • the threshold generation process may be further executed, and in the specific process, the number of wires may be specified based on whether or not the value corresponding to the detected value is equal to or greater than the threshold value.
  • the amount of change in the wire feeding length that changes when the boom is undulated by the first predetermined angle changes depending on the undulation angle of the boom before or after the boom is undulated by the first predetermined angle.
  • the controller generates a threshold value for specifying the number of wire hooks based on the undulation angle of the boom before or after the boom is undulated by a first predetermined angle. Therefore, the specific accuracy of wire hooking is improved.
  • the crane device according to the present invention can automatically specify the number of wire hooks before performing crane work.
  • FIG. 1 is a schematic view of a mobile crane 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the mobile crane 10 (boom 32 is in a fully upright posture).
  • FIG. 3 is a diagram schematically showing the pulley mechanism 60 of the mobile crane 10.
  • FIG. 4 is a diagram schematically showing the structure of the pulley mechanism 60.
  • FIG. 5 is a functional block diagram of the mobile crane 10.
  • FIG. 6 is a part of the flowchart of the wire hooking number specifying process.
  • FIG. 7 is another part of the flowchart of the wire hooking number specifying process.
  • FIG. 8 is a diagram showing a correspondence table.
  • FIG. 9 is a part of the flowchart of the wire hooking number specifying process in the first modification.
  • FIG. 10 is another part of the flowchart of the wire hooking number specifying process in the first modification.
  • FIG. 11 is a diagram showing a first correspondence table and a second correspondence table in the second modification.
  • the present embodiment is only one aspect of the present invention, and the embodiments may be changed without changing the gist of the present invention.
  • the execution order of each process described later can be appropriately changed without changing the gist of the present invention.
  • a part of the processing described later can be omitted as appropriate without changing the gist of the present invention.
  • FIG. 1 schematically shows the crane vehicle 10 according to the present embodiment, and shows a state in which the boom 32 is in the retracted position.
  • the crane vehicle 10 mainly includes a traveling body 11, a crane device 12 mounted on the traveling body 11, and a cabin 13.
  • the traveling body 11 includes a vehicle body 20, an engine 22 mounted on the vehicle body 20, and a battery 23.
  • the engine 22 rotationally drives the axles 98 and 99 via a transmission (not shown) or the like.
  • the engine 22 drives a hydraulic pump (not shown) included in the hydraulic pressure supply device 24 (see FIG. 5), and the hydraulic pressure supply device 24 generates hydraulic pressure to drive the crane device 12 and the like.
  • the cabin 13 is mounted on the swivel table 31 of the crane device 12.
  • the cabin 13 has a driving device 14 (see FIG. 5) for operating the crane vehicle 10 and a steering device 15 (see FIG. 5) for manipulating the crane device 12. That is, the crane vehicle 10 is a so-called rough terrain crane, and the operation of the crane vehicle 10 and the operation of the crane device 12 are performed in one cabin 13.
  • the mobile crane 10 may be a so-called all-terrain crane.
  • the control device 15 shown in FIG. 5 has an operation lever, an operation button, and the like for operating the crane device 12.
  • the control device 15 outputs an operation signal indicating the direction and amount of operation of the operation lever and an operation signal indicating whether or not the operation button is operated.
  • the operation signal output by the control device 15 is input to the controller 50.
  • the cabin 13 has a control box (not shown).
  • This control box comprises a control board.
  • the control board is mounted with a microcomputer, a resistor, a capacitor, a diode, and various ICs, and constitutes a controller 50 and a power supply circuit 17.
  • the crane device 12 includes a swivel table 31, a boom 32, and a hydraulic pressure supply device 24 (see FIG. 5).
  • the swivel table 31 is supported by the vehicle body 20 so as to be swivelable.
  • the swivel table 31 corresponds to the "pedestal" described in the claims.
  • the boom 32 has a proximal boom 33, a single or plurality of intermediate booms 34, and a tip boom 35.
  • the proximal boom 33, the intermediate boom 34, and the distal boom 35 are arranged in a nested manner, which constitute a telescopic.
  • the base boom 33 is undulatingly supported by the swivel table 31, and thus the boom 32 is swivelable, undulating, and telescopic.
  • the boom 32 expands and contracts between the contracted state shown in FIG. 1 and the expanded state (not shown), and undulates between the storage position shown in FIG. 1 and the predetermined upright position shown in FIG.
  • the mobile crane 10 travels in a retracted state (see FIG. 1) with the boom 32 in the retracted state and the retracted position.
  • the crane device 12 further includes a swivel motor 25, an undulating cylinder 36 for undulating the boom 32, and a telescopic cylinder 37 for expanding and contracting the boom 32.
  • the swivel motor 25 is provided on the vehicle body 20 (see FIG. 1).
  • the swivel motor 25 receives hydraulic pressure from the hydraulic pressure supply device 24 and rotates to swivel the swivel table 31.
  • the undulating cylinder 36 is provided on the swivel table 31.
  • the undulating cylinder 36 expands and contracts by receiving hydraulic pressure from the hydraulic pressure supply device 24.
  • the undulating cylinder 36 that expands and contracts undulates the boom 32.
  • the undulating cylinder 36 corresponds to the "first actuator" described in the claims.
  • the telescopic cylinder 37 is provided on the boom 32.
  • the telescopic cylinder 37 expands and contracts by receiving hydraulic pressure from the hydraulic pressure supply device 24.
  • the telescopic cylinder 37 that expands and contracts expands and contracts the boom 32.
  • the crane device 12 further includes a hydraulic motor 38, a winch 39, a pulley mechanism 60 (see FIG. 3), and a hanging bracket 41 (see FIG. 1).
  • the winch 39 is attached to the base end of the boom 32.
  • the winch 39 has a wire drum 44, a winch sheave 43, and a wire 42.
  • the wire 42 is wound around the wire drum 44.
  • the winch sheave 43 is located above the base end of the boom 32 in a state where the boom 32 is in a retracted position along the horizontal direction.
  • the wire 42 drawn from the wire drum 44 is wound around the winch sheave 43 and then pulled out to the pulley mechanism 60 (see FIG. 3).
  • the hydraulic motor 38 rotates by receiving the supply of hydraulic pressure from the hydraulic pressure supply device 24.
  • the rotating hydraulic motor 38 rotates the wire drum 44.
  • the rotating wire drum 44 winds up the wire 42 (winding up) or unwinds the wire 42 (winding down).
  • the hydraulic motor 38 corresponds to the "second actuator" described in the claims.
  • the pulley mechanism 60 has a fixed sheave block 61 and a hook block 62.
  • the fixed sheave block 61 has one first sheave 63 and three second sheaves 64, 65, 66.
  • the first sheave 63 is rotatably supported by a central axis (not shown).
  • the second sheaves 64, 65, 66 are supported by a central axis 58 (see FIG. 4).
  • the second sheaves 64, 65, 66 have a disk shape and can rotate around the central axis 58.
  • the first sheave 63 is located above the tip of the boom 32 in a state where the boom 32 is in a storage position along the horizontal direction.
  • the three second sheaves 64, 65, 66 are located below the tip of the boom 32 in the retracted position. As shown in FIG. 4, the three second sheaves 64, 65, 66 are arranged side by side in the width direction of the boom 32.
  • the fixed sheave block 61 has three second sheaves 64, 65, 66 in the present embodiment, the fixed sheave block 61 may have two second sheaves. However, it may have four or more second sheaves.
  • the hook block 62 has a frame 45, a hanging hook 40 attached to the frame 45, and three third sheaves 68, 69, 70.
  • the third sheaves 68, 69, and 70 are supported by a central axis 59 held by the frame 45, and are arranged side by side in the horizontal direction (width direction of the boom 32).
  • the third sheaves 68, 69, and 70 have a disk shape and can rotate around the central axis 59.
  • the hook block 62 may have two third sheaves or may have four or more third sheaves.
  • the wire 42 drawn from the winch sheave 43 is hung around the first sheave 63 and then hung around the second sheave of the fixed sheave block 61 and the third sheave of the hook block 62.
  • the wire 42 is hung around the second sheave 64, the third sheave 68, the second sheave 66, and the third sheave 70. That is, the number of wire hooks, which is the number of times the wire 42 is hooked around the pulley mechanism 60, is "4". By increasing the number of wires hooked, the maximum suspension load amount of the crane device 12 increases.
  • the hanging bracket 41 shown in FIG. 1 can engage with the hanging load hook 40 to fix the hanging load hook 40.
  • One end of the hanging bracket 41 is rotatably supported by the swivel base 31.
  • the hanging load hook 40 is hooked on the other end of the hanging metal fitting 41.
  • the hanging bracket 41 is located directly below the tip of the boom 32 in a state where the boom 32 is in a predetermined standing position and is fully reduced.
  • the hanging metal fitting 41 fixes the hanging load hook 40 so that the hanging load hook 40 does not move while the crane wheel 10 is traveling.
  • the hanging metal fitting 41 corresponds to the "locking member" described in the claims.
  • the hydraulic pressure supply device 24 shown in FIG. 5 is mounted on the traveling body 11.
  • the hydraulic pressure supply device 24 supplies hydraulic oil of a predetermined pressure to the swivel motor 25, the undulating cylinder 36, the telescopic cylinder 37, the hydraulic motor 38, and other actuators (hereinafter, also referred to as swivel motor 25 and the like).
  • the hydraulic pressure supply device 24 includes an electromagnetic flow path switching valve (not shown). This flow path switching valve is operated by a drive signal input from the controller 50 described later. By operating the flow path switching valve and changing the hydraulic pressure supply line, the swivel motor 25 and the like are driven. That is, the controller 50 controls the drive of the swivel motor 25 and the like by outputting the drive signal.
  • the hydraulic pressure supply device 24 supplies the hydraulic oil to reduce the pressure of the supplied hydraulic oil to less than the predetermined pressure.
  • a relief circuit 18 for relief is provided.
  • the relief circuit 18 has a relief valve 19.
  • the relief valve 19 switches the flow path of the hydraulic oil between the normal circuit and the relief circuit 18 by the drive signal input from the controller 50. That is, the controller 50 can change the pressure of the hydraulic oil supplied to the hydraulic motor 38 and the undulating cylinder 36 by inputting the drive signal to the relief valve 19.
  • the controller 50 changes the pressure of the hydraulic oil supplied to the hydraulic motor 38 in the wire hooking number specifying process (see FIGS. 6 and 7) described later.
  • the crane device 12 further includes a boom length sensor 26, an undulation angle sensor 27, and a drum sensor 28.
  • the boom length sensor 26 is a sensor that outputs a detection value according to the length of the boom 32.
  • the boom length sensor 26 may be a sensor that directly detects the length of the boom 32, or may be a sensor that detects the extension length of the telescopic cylinder 37. That is, the boom length sensor 26 may be a sensor that detects a physical quantity that changes according to the length of the boom 32.
  • the undulation angle sensor 27 is a sensor that outputs a detection value according to the undulation angle of the boom 32.
  • the undulation angle sensor 27 may be a sensor that directly detects the undulation angle of the boom 32, or may be a sensor that detects the extension length of the undulation cylinder 36. That is, the undulation angle sensor 27 may be a sensor that detects a physical quantity that changes according to the undulation angle of the boom 32.
  • the undulation angle sensor 27 is, for example, a tilt sensor or a horizontal sensor that is attached to the boom 32 and outputs an angle with respect to a horizontal plane.
  • the drum sensor 28 is, for example, a rotary encoder that detects the rotation amount and rotation speed (angular velocity) of the wire drum 44 (see FIGS. 1 and 2).
  • the drum sensor 28 outputs a pulse signal whose voltage value changes according to the rotation of the wire drum 44.
  • the drum sensor 28 is connected to the controller 50 by a signal line such as a cable.
  • the controller 50 calculates the rotation amount of the wire drum 44 from the number of pulses input from the drum sensor 28, and calculates the rotation speed of the wire drum 44 from the number of pulses per unit time input from the drum sensor 28. Then, the controller 50 calculates the feeding length and the winding length of the wire 42 based on the calculated rotation amount of the wire drum 44 and the radius of the wire drum 44.
  • drum sensor 28 Any kind of sensor may be used for the drum sensor 28 as long as the controller 50 can acquire the winding length of the wire 42 and the rotation speed of the wire drum 44.
  • the drum sensor 28 corresponds to the "wire sensor” described in the claims.
  • the pulse output by the drum sensor 28 corresponds to the "detection value according to the length of the wire” described in the claims.
  • the power supply circuit 17 is a circuit that generates electric power to be supplied to the controller 50 and the like.
  • the power supply circuit 17 is, for example, a DC-DC converter.
  • the power supply circuit 17 converts the DC voltage supplied from the battery 23 into a DC voltage having a stable predetermined voltage value and outputs the DC voltage.
  • the controller 50 includes a CPU 51, which is a central processing unit, and a memory 52.
  • the memory 52 is composed of, for example, a ROM, a RAM, an EEPROM, or the like.
  • the CPU 51, the memory 52, the boom length sensor 26, the undulation angle sensor 27, and the drum sensor 28 are connected to a communication bus (not shown) included in the controller 50.
  • the control program 54 executed by the CPU 51 reads information and data from the memory 52 or stores the information and data in the memory 52 through the communication bus, and the boom length sensor 26, the undulation angle sensor 27, and the drum sensor 28 Acquire the output detection value.
  • the memory 52 stores the OS 53, which is an operating system, the control program 54 that controls the drive of the crane device 12, the corresponding table, the first predetermined angle, the second predetermined angle, and the total standing angle ⁇ . There is.
  • the OS 53 and the control program 54 are executed by the CPU 51 in a pseudo-parallel manner by so-called multitasking processing.
  • the corresponding table is a table in which the total number of output pulses and the number of wire hooks are associated with each other, and is stored in the memory 52 in advance.
  • the total number of output pulses is a value acquired by the control program 54 in step S30 of the wire hooking number specifying process (see FIG. 7).
  • the total output pulse number “less than A” and the wire hook number “0” are associated, and the total output pulse number “A or more and less than B” and the wire hook number “2” are associated.
  • the total output pulse number “B or more and less than C” is associated with the wire hook number "4"
  • the total output pulse number "C or more and less than D” is associated with the wire hook number "6”.
  • the number "D or more” and the number of wire hooks "0" are associated with each other.
  • the wire hooking number "0" indicates that the wire hooking number cannot be specified.
  • the first predetermined angle, the second predetermined angle, and the predetermined standing angle ⁇ are constants and are stored in advance in the memory 52.
  • the first predetermined angle is, for example, 1 degree or 2 degrees.
  • the second predetermined angle is an angle equal to or higher than the first predetermined angle, and is, for example, 1 degree, 2 degrees, or 3 degrees.
  • the predetermined standing angle ⁇ is the undulating angle of the boom 32 when the boom 32 is in the predetermined standing position.
  • the control program 54 executes the wire hooking number specifying process shown in FIGS. 6 and 7 before the crane operation is performed. Then, the control program 54 sets an upper limit on the suspension load amount in the crane work, the undulation angle of the boom 32, the extension length of the boom 32, and the like, based on the wire hook number specified in the wire hook number specifying process. Alternatively, the control program 54 performs a boom expansion process for automatically deploying the boom 32, a boom storage process for automatically storing the boom 32, and the like, using the wire hook number specified in the wire hook number specifying process.
  • the process executed by the control program 54 is a process executed by the controller 50.
  • the control program 54 executes the wire multiplication number specifying process based on, for example, an operation instructing the execution of the wire multiplication number specifying process to be input through the control device 15.
  • the control program 54 executes the wire multiplication number specifying process based on the operation instructing the execution of the boom automatic expansion process and the boom automatic storage process to be input through the control device 15.
  • control program 54 determines that the length of the boom 32 detected by the boom length sensor 26 is different from the length of the boom 32 when the boom 32 is fully reduced. Based on this, the execution of the wire multiplication number specifying process may be canceled. That is, the control program 54 executes the wire hooking number specifying process in a state where the boom 32 is completely reduced.
  • the control program 54 acquires the undulation angle ⁇ of the boom 32 detected by the undulation angle sensor 27 (S11). The control program 54 determines whether or not the boom 32 is in the retracted position based on the acquired undulation angle ⁇ (S12). Specifically, the control program 54 determines whether or not the acquired undulation angle ⁇ is zero.
  • control program 54 determines that the boom 32 is in the retracted position (S12: Yes), it drives the hydraulic motor 38 and causes the winch 39 to pay out the wire 42 by a predetermined length (S13).
  • the control program 54 drives the hydraulic motor 38 for a predetermined time stored in the memory 52 in advance, or drives the hydraulic motor 38 until the wire drum 44 rotates by a predetermined rotation amount stored in the memory 52 in advance.
  • the predetermined length is set to a length within a range in which the wire 42 is not stretched and tension acts on the wire 42 to prevent random winding when the boom 32 is erected by the second predetermined angle in the next step S14. .. That is, in the execution of step S14, the wire 42 is unwound in step S13 so that the hook 41 is not damaged by the load applied to the hook 41 by the wire 42 through the hook block 62.
  • the control program 54 raises the boom 32 by the second predetermined angle ( ⁇ first predetermined angle) (S14). Specifically, the control program 54 periodically acquires the undulation angle ⁇ of the boom 32 detected by the undulation angle sensor 27 while extending the undulation cylinder 36, and the acquired undulation angle ⁇ reaches the second predetermined angle. Based on this, the extension of the undulating cylinder 36 is stopped.
  • step S14 By executing the process of step S14, even if the boom 32 is in a storage position where it cannot be laid down any further, the boom 32 can be laid down by a first predetermined angle in the process from steps S16 to S19. ..
  • the process of step S14 corresponds to the "standing process" described in the claims.
  • the control program 54 determines in step S12 that the boom 32 is not in the retracted position (S12: No), or after executing the process of step S14, switches the flow path of the hydraulic oil from the normal circuit to the relief circuit 18 (S12: No). S15). That is, the control program 54 sets the pressure of the hydraulic oil supplied to the hydraulic motor 38 to less than a predetermined pressure so that the hook 41 is not damaged by the wire drum 44 driven through the hydraulic motor 38 in the next step S16.
  • the process of step S15 corresponds to the "switching process" described in the claims.
  • control program 54 drives the winch 39 through the hydraulic motor 38 (S16). Specifically, the control program 54 drives the hydraulic motor 38 to rotate the wire drum 44 in the direction of winding the wire 42.
  • the control program 54 calculates the rotation speed of the wire drum 44 based on the pulse signal output by the drum sensor 28 (S17).
  • the control program 54 determines whether or not the calculated rotation speed has become zero (S18). That is, the control program 54 determines whether or not the wire 42 is stretched and the rotation of the wire drum 44 is stopped.
  • the control program 54 determines that the rotation speed of the wire drum 44 is not zero (S18: No)
  • the control program 54 re-executes the processes after step S17.
  • the process of step S17 which is repeatedly executed, is performed at predetermined time intervals of, for example, several milliseconds to several tens of milliseconds. That is, it is determined whether or not the wire drum 44 has stopped at predetermined time intervals.
  • step S18 the control program 54 calculates the rate of change of the winding length of the wire 42 per unit time instead of the rotation speed of the wire drum 44, and determines whether or not the rate of change has become zero. May be good. That is, the control program 54 may determine whether or not the wire 42 is stretched by a physical quantity other than the rotation speed of the wire drum 44.
  • the control program 54 determines that the rotation speed of the wire drum 44 has become zero (S18: Yes)
  • the drive of the hydraulic motor 38 is stopped (S19). That is, the control program 54 stops the winding of the wire 42.
  • the wire 42 is stretched.
  • the processing of steps S16 to S19 corresponds to the "second volume processing” described in the claims.
  • the state in which the wire 42 is stretched corresponds to the "predetermined tension state” described in the claims.
  • the control program 54 acquires the undulation angle ⁇ (hereinafter, referred to as the first acquisition angle ⁇ 1) detected by the undulation angle sensor 27 (S20). Then, the control program 54 starts the lodging of the boom 32 (S21). Specifically, the control program 54 reduces the undulating cylinder 36. The control program 54 acquires the undulation angle ⁇ (hereinafter, referred to as the second acquisition angle ⁇ 2) of the boom 32 detected by the undulation angle sensor 27 (S22).
  • the process of step S20 corresponds to the "undulation angle acquisition process" described in the claims.
  • control program 54 determines that the boom 32 has fallen by the first predetermined angle (S23: Yes)
  • the control program 54 stops the contraction of the undulating cylinder 36 and ends the downturn of the boom 32 (S24).
  • the wire 42 is loosened by the length corresponding to the first predetermined angle.
  • the control program 54 starts counting the number of pulses output by the drum sensor 28 (S25), and rotates the wire drum 44 in the direction in which the wire 42 is wound through the hydraulic motor 38 (S25). S26).
  • the control program 54 calculates the rotation speed (angular velocity) of the wire drum 44 based on the amount of change in the number of output pulses that started counting in step S25 per unit time (S27).
  • the control program 54 determines whether or not the calculated rotation speed of the wire drum 44 has become zero (S28). That is, it is determined whether or not the wire 42 is wound up until the wire 42 is stretched.
  • step S27 is executed again.
  • the process of step S27, which is repeatedly executed, is performed at predetermined time intervals.
  • the control program 54 acquires the count value (total number of output pulses) of the number of output pulses that started counting in step S25 (S30).
  • the total number of output pulses becomes a value corresponding to the length of the (slackened) wire 42 changed by tilting the boom 32 by the first predetermined angle.
  • the amount of change in the length of the wire 42, which changes by tilting the boom 32 by the first predetermined angle, depends on the number of wires hooked. That is, the total number of output pulses is a value corresponding to the number of wire hooks.
  • the process of step S30 corresponds to the "acquisition process” described in the claims.
  • the total number of output pulses corresponds to the "detection value" described in the claims.
  • the control program 54 specifies the number of wire hooks based on the total number of output pulses and the corresponding table (see FIG. 8) stored in the memory 52 (S31). Specifically, when the total output pulse number is less than A or D or more, the control program 54 specifies the wire hook number as "0" as an error in which the wire hook number cannot be specified. The control program 54 specifies the number of wire hooks as "2" when the total number of output pulses is A or more and less than B. The control program 54 specifies the number of wire hooks as "4" when the total number of output pulses is B or more and less than C. When the total number of output pulses is C or more and less than D, the control program 54 specifies the number of wire hooks as "6".
  • the process of step S31 corresponds to the "specific process” described in the claims. A, B, C, and D in the corresponding table correspond to the "threshold" described in the claims.
  • the control program 54 determines whether or not the wire hooking number can be specified in step S31 (S32). Specifically, it is determined whether or not the number of wire hooks specified in step S31 is "0". When the wire hooking number is "0", the control program 54 determines that the wire hooking number could not be specified (S32: No), and notifies an error (S33). For example, the control program 54 performs error notification by displaying an error screen on a display (not shown) or outputting an error voice on a speaker (not shown).
  • the operator who confirmed the error notification for example, after eliminating the cause that the wire hooking number could not be specified, inputs a re-execution instruction instructing the re-execution of the wire hooking number specifying process to the controller 50 through the control device 15. ..
  • the control program 54 waits until a re-execution instruction is input (S34: No). When the control program 54 determines that the re-execution instruction has been input (S34: Yes), the control program 54 re-executes the processes after step S11.
  • step S32 determines that the wire hooking number can be specified in step S32, that is, determines that the specified wire hooking number is not "0" (S32: Yes)
  • the specified wire hooking number is stored in the memory 52 (S). S35).
  • the process of step S35 corresponds to the "memory process" described in the claims.
  • control program 54 switches the flow path of the hydraulic oil from the relief circuit 18 to the normal circuit (S36), and ends the wire hooking number specifying process.
  • the boom 32 is laid down by the first predetermined angle, so that the wire feeding length changes by the length corresponding to the first predetermined angle. That is, the wire 42 is loosened.
  • the controller 50 winds up the loose wire 42 and acquires a total output count indicating the length of the wound wire 42. Then, the controller 50 identifies the number of wire hooks based on the acquired total output count number and stores it in the memory 52. Therefore, the crane device 12 according to the present invention can automatically specify the number of wire hooks before performing the crane operation.
  • the wire 42 is wound up by the processing from steps S16 to S19 until the rotation of the wire drum 44 is stopped. Therefore, the feeding length of the wire 42 before the boom 32 is laid down by the first predetermined angle is always in a constant initial state. As a result, the specific accuracy of wire hooking is improved.
  • the boom 32 When the initial position of the boom 32 before executing the wire hooking number specifying process is the storage position and the boom 32 cannot be tilted any further (S12: No), the boom 32 has a second predetermined angle ( ⁇ 1). It is raised only by a predetermined angle) (S14). Therefore, even if the boom 32 is in the retracted position, the boom 32 can be laid down by a first predetermined angle to specify the number of wires hooked. As a result, the number of wires hooked can be specified regardless of the initial position of the boom 32.
  • the hydraulic oil flow path is switched from the normal circuit to the relief circuit 18 and supplied to the hydraulic motor 38.
  • the pressure of is less than the predetermined pressure (S15). Therefore, the tension generated in the wound wire 42 is reduced, and the hanging metal fitting 41 is prevented from being damaged.
  • control program 54 specifies the wire hooking number using A, B, C, and D (threshold value) of the corresponding table (S31), the wire hooking number is easier than specifying the wire hooking number by calculation or the like. Can be identified.
  • the boom 32 is laid down by a first predetermined angle, and the number of wires hooked is specified.
  • the boom 32 is erected by a first predetermined angle to specify the number of wire hooks.
  • the configurations other than the configurations described below are the same as the configurations described in the embodiments. Further, the same configurations and processes as those described in the embodiments are designated by the same reference numerals as those in the embodiments, and the description thereof will be omitted.
  • the memory 52 further stores the third predetermined angle and the predetermined rotation amount shown in FIG.
  • the third predetermined angle is an angle equal to or higher than the first predetermined angle.
  • the predetermined rotation amount indicates the rotation amount for rotating the wire drum 44 in step S43 (see FIG. 9) described later.
  • the predetermined rotation amount is, for example, a constant indicating the number of pulses detected by the drum sensor 28.
  • the control program 54 executes the wire hooking number specifying process shown in FIGS. 9 and 10 instead of the wire hooking number specifying process shown in FIGS. 6 and 7.
  • the control program 54 determines whether or not the boom 32 is in the predetermined standing position after executing the process of step S11 (S41). Specifically, the control program 54 determines whether or not the undulation angle ⁇ of the boom 32 acquired in step S11 matches the total standing angle ⁇ .
  • step S42 When the control program 54 determines that the boom 32 is in a predetermined standing position that cannot be further erected (S41: Yes), the control program 54 causes the boom 32 to lie down by the third predetermined angle ( ⁇ first predetermined angle) (S42). .. Specifically, the control program 54 periodically acquires the undulation angle ⁇ of the boom 32 detected by the undulation angle sensor 27 while reducing the undulation cylinder 36, and the difference between the acquired undulation angle ⁇ and the predetermined standing angle ⁇ . Based on the fact that ( ⁇ ) reaches the third predetermined angle, the reduction of the undulating cylinder 36 is stopped.
  • the third predetermined angle may be the same as the second predetermined angle.
  • the process of step S42 corresponds to the "falling process" described in the claims.
  • the control program 54 determines that the boom 32 is not in the predetermined standing position (S41: No), or executes the processes of steps S15 to S20 after executing the process of step S42. That is, the control program 54 winds up the wire 42 until the rotation of the wire drum 44 stops (S16 to S19) after switching the flow path of the hydraulic oil from the normal circuit to the relief circuit 18 (S15), and then the boom.
  • the undulation angle (first acquisition angle ⁇ 1) of 32 is acquired (S20).
  • the processing from steps S16 to S19 corresponds to the "second volume processing" described in the claims.
  • the control program 54 rotates the wire drum 44 in the direction in which the wire 42 is unwound by the predetermined rotation amount (see FIG. 5) through the hydraulic motor 38 (S43). Specifically, the control program 54 rotates the wire drum 44 through the hydraulic motor 38, counts the number of pulses output by the drum sensor 28, and hydraulic pressure is based on the count value reaching the predetermined rotation amount. The drive of the motor 38 is stopped. By rotating the wire drum 44 by a predetermined rotation amount and feeding out the wire 42, when the boom 32 is erected in step S45, the wire 42 is stretched and the hanging metal fitting 41 is prevented from being damaged.
  • the process of step S43 corresponds to the "delivery process" described in the claims.
  • the process of step S43 may be executed after the process of the next step S44. That is, the wire 42 may be unwound after the flow path of the hydraulic oil is returned from the relief circuit 18 to the normal circuit.
  • the control program 54 switches the flow path of the hydraulic oil from the relief circuit 18 to the normal circuit so that the boom 32 can be raised in the next step S45 (S44). More specifically, the relief circuit 18 sets the pressure of the hydraulic oil supplied to the undulating cylinder 36 in addition to the hydraulic motor 38 to less than a predetermined pressure. Therefore, if the flow path of the hydraulic oil is still switched to the relief circuit 18, the hydraulic oil having a pressure sufficient to raise the boom 32 in the next step S45 is not supplied to the undulating cylinder 36. The control program 54 returns the hydraulic oil flow path from the relief circuit 18 to the normal circuit so that the boom 32 can stand up. When the relief circuit 18 is a circuit that makes the pressure of the hydraulic oil less than a predetermined pressure only for the hydraulic motor 38, the process of step S43 may not be executed.
  • the control program 54 drives the hydraulic motor 38 to start the erection of the boom 32 (S45), and the undulation angle ⁇ of the boom 32 detected by the undulation angle sensor 27 (hereinafter, referred to as a second acquisition angle ⁇ 2). (S46).
  • control program 54 determines that the boom 32 has stood up by the first predetermined angle (S47: Yes)
  • the control program 54 stops the extension of the undulating cylinder 36 and ends the standing of the boom 32 (S48).
  • the feeding length of the wire 42 changes (shortens) by the length corresponding to the first predetermined angle.
  • the process from steps S45 to S48 corresponds to the "undulation process" described in the claims.
  • step S49 corresponds to the "switching process" described in the claims.
  • control program 54 executes the processes from steps S25 to S30 shown in FIG. That is, the control program 54 starts counting the number of pulses (S25), drives the wire drum 44 through the hydraulic motor 38 to wind the wire 42 (S26 to S29), and indicates the total length of the wound wire 42. Acquire the number of output pulses (S30).
  • the control program 54 calculates the difference between the predetermined rotation amount stored in the memory 52 and the acquired total number of output pulses (S50).
  • the difference between the predetermined rotation amount and the total number of output pulses corresponds to the change in the feeding length of the wire 42 changed by raising the boom 32 by the first predetermined angle.
  • the control program 54 specifies the number of wire hooks based on the difference between the predetermined rotation amount and the total number of output pulses and the corresponding table (see FIG. 8) (see FIG. 8). Then, the control program 54 executes the processes from steps S32 to S36 to end the wire multiplication number specifying process.
  • the control program 54 can specify the number of wires hooked by raising the boom 32 by a first predetermined angle to change the feeding length of the wire 42.
  • control program 54 pays out the wire 42 by a predetermined length corresponding to the predetermined rotation amount before the boom 32 is raised, it is possible to prevent the hanging metal fitting 41 from being damaged when the boom 32 is raised. To.
  • control program 54 winds the wire 42 on the wire drum 44 until the wire 42 is stretched before the wire 42 is unwound by a predetermined length corresponding to the predetermined rotation amount. Therefore, the amount of change in the feeding length of the wire 42 changed by raising the boom 32 by the first predetermined angle can be detected more accurately than in the case where the wire 42 is unwound from the loosened state of the wire 42. As a result, the specific accuracy of wire hooking is improved.
  • the control program 54 tilts the boom 32 by a third predetermined angle and then raises the boom 32 by a first predetermined angle. .. Therefore, regardless of the initial position of the boom 32, the boom 32 can be erected to specify the number of wires hooked.
  • control program 54 generates threshold values such as A, B, C, and D in the above table for specifying the number of wires hooked based on the first acquisition angle ⁇ 1 acquired in step S20.
  • threshold values such as A, B, C, and D in the above table for specifying the number of wires hooked based on the first acquisition angle ⁇ 1 acquired in step S20.
  • the extension length of the wire 42 is the case where the boom 32 is undulated by the first predetermined angle from the case where the boom 32 is near the storage position and the case where the boom 32 is undulated by the first predetermined angle from the case where the boom 32 is near the predetermined standing position.
  • the amount of change is different. That is, the amount of change in the feeding length of the wire 42 when the boom 32 is undulated by the first predetermined angle is the first acquisition angle ⁇ 1 which is the undulation angle of the boom 32 before the boom 32 is undulated by the first predetermined angle.
  • the threshold value in the above table is set to a value corresponding to the first acquisition angle ⁇ 1.
  • various pulley mechanisms 60 such as the pulley mechanism 60 in which the maximum value of the number of wire hooks is "4" and the pulley mechanism 60 in which the maximum value of the number of wire hooks is "8" can be adopted in the crane vehicle 10. Therefore, if the control program 54 can determine the threshold value in the table based on the maximum value of the number of wires hooked, the control program 54 can be used regardless of the type of the pulley mechanism 60. That is, the versatility of the control program 54 is improved.
  • the memory 52 has a class that generates a threshold value by inputting the maximum value N of the wire hooking number and the first acquisition angle ⁇ 1. It is stored in advance.
  • the theoretical value of the feeding length of the wire 42 is the length of the boom 32 in the fully reduced state, the position of the hanging bracket 41 with respect to the undulating center of the boom 32, and the boom 32. It can be expressed based on the undulation angle ⁇ .
  • the length of the boom is a fixed value, and the position of the hanging bracket 41 with respect to the undulating center of the boom 32 is a fixed position. Therefore, the theoretical value of the feeding length of the wire 42 when the wire multiplication number W is “1” can be expressed as X ( ⁇ ) with the undulation angle ⁇ as a variable.
  • the value dX ( ⁇ ) can be expressed as an absolute value of X ( ⁇ 1) ⁇ X ( ⁇ 2).
  • the threshold value is a value corresponding to the average value of dX ( ⁇ , W) and dX ( ⁇ , W + 2)
  • K is a conversion formula that converts the feeding length of the wire 42 into the number of pulses.
  • the above class is, for example, an arithmetic expression for calculating threshold values A, B, C, D, etc. from the function X ( ⁇ ), the first acquisition angle ⁇ 1, and the maximum value N of the wire multiplication number.
  • the above class is a function that outputs threshold values A, B, C, D and the like as return values by being given an undulation angle ⁇ 1 and a maximum value N as arguments.
  • the maximum value N of the number of wires hooked is stored in advance in the memory 52 according to the type of the pulley mechanism 60 adopted at the time of manufacturing the crane wheel 10.
  • the control program 54 generates a threshold value based on the first acquisition angle ⁇ 1 and the above class after the execution of step S20 for acquiring the first acquisition angle ⁇ 1 and before the execution of step S31 for specifying the wire hooking number. Execute the process. Then, in step S31, the wire hooking number is specified using the generated threshold value.
  • the process in which the control program 54 generates a threshold value based on the first acquisition angle ⁇ 1 corresponds to the “threshold value generation process” described in the claims.
  • the threshold value is generated using the first acquisition angle ⁇ 1 which is the undulation angle of the boom 32 before the boom 32 is undulated by the first predetermined angle
  • the threshold value is stored in advance in the memory 52 as a constant.
  • the specific accuracy of wire hooking is higher than in the case of.
  • control program 54 determines an appropriate number of threshold values based on the maximum value N of the number of wires hooked according to the above class. Therefore, the control program 54 can be commonly used for various pulley mechanisms 60 that differ in the maximum number of wires.
  • the above class has been described by taking the case of the pulley mechanism 60 in which the number of wire hooks changes by two as an example, but the above class generates a threshold value corresponding to the pulley mechanism 60 in which the number of wire hooks changes by one. It may be a thing.
  • the above class may generate a threshold value from the maximum value N of the number of wires hooked and the second acquisition angle ⁇ 2 (see S22 in FIG. 6).
  • the above class may generate a threshold value from the maximum value N of the number of wires hooked and the first acquisition angle ⁇ 1 and the second acquisition angle ⁇ 2.
  • the second acquisition angle ⁇ 2 the first acquisition angle ⁇ 1 ⁇ the first predetermined angle.
  • the memory 52 stores the first correspondence table and the second correspondence table in advance.
  • E, F, G, and H in the second correspondence table are constants like A, B, C, and D.
  • E, F, G, and H correspond to the "threshold” described in the claims.
  • the threshold values "A, B, C, D” and the threshold values "E, F, G, H” correspond to "a plurality of the above threshold values according to the undulation angle of the boom" described in the claims.
  • the control program 54 executes the following processing in step S31 (see FIG. 7) for specifying the number of wires to be hooked.
  • the control program 54 determines that the undulation angle ⁇ is zero or more and less than ⁇ , it decides to use the first correspondence table.
  • the control program 54 determines that the undulation angle ⁇ is equal to or greater than the above ⁇ and equal to or less than the above ⁇
  • the control program 54 decides to use the second correspondence table. Then, the control program 54 uses the determined correspondence table to specify the number of wires hooked in the same manner as in the above embodiment.
  • the undulation angle ⁇ of the boom 32 for determining the corresponding table may be acquired before the boom 32 is undulated (S11), or after the boom 32 is undulated (after S24). ), And may be acquired before specifying the number of wires hooked (before S31).
  • control program 54 pays out the wire 42 by a predetermined length before the boom 32 is in the retracted position and the boom 32 is raised by the second predetermined angle (S13).
  • the process of step S13 may not be executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

[Problem] To provide a crane device with which it is possible to automatically identify the number of times a wire is to be wrapped before crane work. [Solution] This controller lowers a boom through a first predetermined angle (S21 to S24). The wire slackens by a length corresponding to the first predetermined angle. The amount of wire slack depends on the number of times the wire is wrapped. This controller winds up the slack wire and acquires the total number of output pulses, which indicates the length of the wire wound up. A memory stores in advance a correspondence table in which the total number of output pulses and the number of times the wire is wrapped have been associated. The controller identifies, as the current number of times the wire is wrapped, the number of times the wire is wrapped associated with the acquired total number of output pulses, and causes the memory to store the identified number of times the wire is wrapped.

Description

クレーン装置Crane equipment
 本発明は、吊荷ワイヤが掛け回される滑車を備えたクレーン装置に関する。 The present invention relates to a crane device provided with a pulley on which a suspended load wire is hung.
 一般に車両に搭載されるクレーン装置は、ブーム、吊荷に係合されるフック、吊荷ワイヤ(以下、「ワイヤ」と称される。)を有するウインチ、ウインチによる吊荷性能(吊り下げ可能な荷物の最大重量)を増加させる滑車装置を備えている。滑車装置は、定滑車機構及び動滑車機構を有し、ウインチから繰り出されたワイヤが両者間に掛け回される。フックは、動滑車機構に固定される。定滑車機構及び動滑車機構は、それぞれ複数のシーブを備え、これらシーブにワイヤが所定の順序で掛け回される。定滑車機構は、ブームの先端に設けられている。定滑車機構と動滑車機構との間にワイヤが掛け回される回数(ワイヤ掛数)が多いほど、吊荷性能が向上する。 Generally, a crane device mounted on a vehicle has a boom, a hook engaged with a suspended load, a winch having a suspended load wire (hereinafter referred to as "wire"), and a winch-based suspension performance (suspendable). It is equipped with a pulley device that increases the maximum weight of luggage). The pulley device has a fixed pulley mechanism and a moving pulley mechanism, and a wire unwound from the winch is hung between the two. The hook is fixed to the moving pulley mechanism. The fixed pulley mechanism and the moving pulley mechanism each include a plurality of sheaves, and wires are hung around these sheaves in a predetermined order. The fixed pulley mechanism is provided at the tip of the boom. The greater the number of times the wire is hung between the fixed pulley mechanism and the moving pulley mechanism (the number of wires hung), the better the suspension performance.
 オペレータは、ワイヤ掛数をたとえば手動でクレーン装置に入力する。クレーン装置は、入力されたワイヤ掛数に基づいて、ブームの長さ及び起伏角度の範囲や、吊荷の重量に制限を設ける。したがって、オペレータによるワイヤ掛数の入力操作は、クレーン作業において重要である。 The operator manually inputs the number of wires to the crane device, for example. The crane device sets a limit on the range of boom length and undulation angle and the weight of the suspended load based on the input number of wires. Therefore, the operation of inputting the number of wires by the operator is important in the crane operation.
 オペレータによるワイヤ掛数の入力ミスを防止するため、ワイヤ掛数を自動で算出するクレーン装置がある(特許文献1参照)。このクレーン装置は、ブームの起伏角度を検出するブーム起伏角度検出器と、ブームの長さを検出するブーム長さ検出器と、ブームに加わる負荷を検出するブーム負荷検出器と、ワイヤに加わる引張力を検出する引張力検出器と、演算装置とを備える。演算装置は、検出したブームの起伏角度、長さ、及び負荷に基づいて吊荷の荷重を算出し、算出した荷重を、検出した引張力で除算することによって、ワイヤ掛数を算出する。 There is a crane device that automatically calculates the number of wire hooks in order to prevent the operator from making a mistake in inputting the number of wire hooks (see Patent Document 1). This crane device includes a boom undulation angle detector that detects the undulation angle of the boom, a boom length detector that detects the length of the boom, a boom load detector that detects the load applied to the boom, and tension applied to the wire. It is equipped with a tensile force detector for detecting force and a calculation device. The arithmetic unit calculates the load of the suspended load based on the detected undulation angle, length, and load of the boom, and divides the calculated load by the detected tensile force to calculate the number of wire hooks.
特開平4-350097号公報Japanese Unexamined Patent Publication No. 4-350097
 従来のクレーン装置は、実際に荷物を吊り下げることによってワイヤ掛数を算出する。したがって、ワイヤ掛数は、クレーン作業が開始された後にしか判別されず、オペレータによる入力ミスを防ぐ対策としては不十分であった。 The conventional crane device calculates the number of wires hooked by actually suspending the luggage. Therefore, the number of wire hooks is determined only after the crane work is started, and is insufficient as a measure to prevent input errors by the operator.
 本発明はかかる背景のもとになされたものであって、その目的は、クレーン作業を行う前にワイヤ掛数を自動で特定することができるクレーン装置を提供することである。 The present invention has been made under such a background, and an object thereof is to provide a crane device capable of automatically specifying the number of wire hooks before performing crane work.
 (1) 本発明に係るクレーン装置は、台座と、当該台座に支持され、格納位置と全起立位置との間で起伏動作可能なブームと、上記ブームの先端部に巻きかけられたワイヤを巻き取り或いは繰り出すワイヤドラムを有するウインチと、上記ワイヤに設けられた吊荷用フックと、上記ブームを起伏させる第1アクチュエータと、上記ウインチを駆動する第2アクチュエータと、上記台座に設けられており、上記吊荷用フックが係合される係止部材と、上記ブームの起伏角度に応じた検出値を出力する起伏角センサと、上記ワイヤの長さに応じた検出値を出力するワイヤセンサと、メモリを有するコントローラと、を備える。上記コントローラは、上記ブームを第1所定角度だけ起伏させる起伏処理と、所定の張力状態まで上記ワイヤを巻き上げる第1巻上処理と、上記第1巻上処理で巻き上げた上記ワイヤの長さに応じた検出値であって、上記ワイヤセンサが出力した当該検出値を取得する取得処理と、上記取得処理で取得した上記検出値に基づいてワイヤ掛数を特定する特定処理と、上記ワイヤ掛数を上記メモリに記憶させる記憶処理と、を実行する。 (1) The crane device according to the present invention winds a pedestal, a boom supported by the pedestal and capable of undulating operation between a retracted position and a fully upright position, and a wire wound around the tip of the boom. A winch having a wire drum for taking out or feeding out, a hanging hook provided on the wire, a first actuator for raising and lowering the boom, a second actuator for driving the winch, and a pedestal are provided. A locking member to which the hanging hook is engaged, an undulation angle sensor that outputs a detection value according to the undulation angle of the boom, and a wire sensor that outputs a detection value according to the length of the wire. A controller having a memory and a controller are provided. The controller responds to the undulation process of undulating the boom by the first predetermined angle, the first winding process of winding the wire to a predetermined tension state, and the length of the wire wound by the first winding process. The detection process of acquiring the detected value output by the wire sensor, the specific process of specifying the wire hooking number based on the detected value acquired in the acquisition process, and the wire hooking number. The storage process to be stored in the memory is executed.
 この構成によれば、起伏処理が実行されることにより、第1所定角度に応じた長さだけワイヤの繰り出し長さが変化する。ワイヤの繰り出し長さの変化量は、ワイヤ掛数に依存する。コントローラは、取得処理において、第1巻上処理において巻き上げたワイヤの長さに応じた検出値を取得する。すなわち、コントローラは、ワイヤ掛数に依存する検出値を取得する。コントローラは、取得した検出値に基づいてワイヤ掛数を特定し、特定したワイヤ掛数をメモリに記憶させる。したがって、クレーン作業に先だってワイヤ掛数が自動で特定される。 According to this configuration, by executing the undulation process, the wire feeding length changes by the length corresponding to the first predetermined angle. The amount of change in the wire feeding length depends on the number of wires hooked. In the acquisition process, the controller acquires the detection value according to the length of the wire wound in the first winding process. That is, the controller acquires the detection value depending on the number of wires. The controller identifies the wire hooking number based on the acquired detection value, and stores the specified wire hooking number in the memory. Therefore, the number of wire hooks is automatically specified prior to the crane work.
 (2) 上記コントローラは、上記所定の張力状態まで上記ワイヤを巻き上げる第2巻上処理をさらに実行してもよい。コントローラは、上記第2巻上処理の実行後に上記起伏処理を実行し、上記起伏処理において、上記ブームを倒伏させる。 (2) The controller may further execute the second winding process of winding the wire up to the predetermined tension state. The controller executes the undulation process after the execution of the second winding process, and in the undulation process, the boom is laid down.
 この構成では、コントローラは、ブームを第1所定角度だけ倒伏させることによってワイヤの繰り出し長さを変化させる。したがって、本発明に係るクレーン装置は、ブームを倒伏させてワイヤ掛数を特定することができる。また、コントローラは、ブームを倒伏させる前に、所定の張力状態までワイヤを巻き上げる。すなわち、コントローラは、ブームを第1所定角度だけ倒伏させる前にワイヤを所定の初期状態にする。所定の初期状態は、例えば、ワイヤが弛まずに張った状態である。したがって、ワイヤを所定の初期状態にしない場合よりも、ブームを第1所定角度だけ倒伏させることによって変化したワイヤの繰り出し長さの変化量(検出値)を精度良く検出することができる。その結果、ワイヤ掛数の特定の精度が向上する。 In this configuration, the controller changes the wire feeding length by tilting the boom by the first predetermined angle. Therefore, in the crane device according to the present invention, the boom can be laid down to specify the number of wire hooks. The controller also winds the wire up to a predetermined tension state before the boom is laid down. That is, the controller puts the wire in a predetermined initial state before tilting the boom by a first predetermined angle. The predetermined initial state is, for example, a state in which the wire is stretched without loosening. Therefore, it is possible to more accurately detect the amount of change (detection value) in the feeding length of the wire that has changed by tilting the boom by the first predetermined angle, as compared with the case where the wire is not brought into a predetermined initial state. As a result, the specific accuracy of wire hooking is improved.
 (3) 上記コントローラは、上記起伏角センサが検出した検出値が示す起伏角度に基づいて上記ブームが上記格納位置にあると判断したことに応じて、上記ブームを上記第1所定角度以上の第2所定角度だけ起立させる起立処理をさらに実行してもよい。コントローラは、上記起立処理の実行後、上記第2巻上処理を実行する。 (3) The controller determines that the boom is in the retracted position based on the undulation angle indicated by the detection value detected by the undulation angle sensor, and sets the boom to the first predetermined angle or more. 2 The standing process for standing up by a predetermined angle may be further executed. After executing the standing process, the controller executes the second winding process.
 この構成では、ブームが格納位置にあってそれ以上ブームを倒伏させることができない場合、コントローラは、ブームを第2所定角度だけ起立させた後、ブームを第1所定角度だけ倒伏させる。したがって、本発明に係るクレーン装置は、ブームが格納位置にあっても、ブームを倒伏させてワイヤ掛数を特定することができる。 In this configuration, if the boom is in the retracted position and the boom cannot be tilted any further, the controller erects the boom by a second predetermined angle and then tilts the boom by a first predetermined angle. Therefore, in the crane device according to the present invention, even if the boom is in the retracted position, the boom can be laid down to specify the number of wires hooked.
 (4) 上記コントローラは、上記所定の張力状態まで上記ワイヤを巻き上げる第2巻上処理と、上記第2巻上処理の実行後、上記ワイヤを所定長さだけ繰り出す繰出処理と、をさらに実行してもよい。コントローラは、上記繰出処理の実行後に上記起伏処理を実行し、上記起伏処理において、上記ブームを起立させる。 (4) The controller further executes the second winding process of winding the wire up to the predetermined tension state, and the feeding process of unwinding the wire by a predetermined length after executing the second winding process. You may. The controller executes the undulating process after executing the feeding process, and raises the boom in the undulating process.
 この構成では、コントローラは、ブームを第1所定角度だけ起立させることによってワイヤの繰り出し長さを変化させる。すなわち、本発明に係るクレーン装置は、ブームを起立させることによってワイヤ掛数を特定することができる。また、コントローラは、ブームを起立させる前に所定長さだけワイヤを繰り出させる。したがって、ブームを起立させる際に係止部材が破損することを防止することができる。また、コントローラは、所定長さだけワイヤを繰り出す前に、ワイヤが所定の張力状態になるまでワイヤを巻き上げる(第2巻上処理)。すなわち、ワイヤを所定長さだけ繰り出す前に、ワイヤを所定の初期状態にする。したがって、ワイヤを所定の初期状態にしない場合よりも、ブームを第1所定角度だけ起立させることによって変化したワイヤの繰り出し長さの変化量を精度良く検出することができる。その結果、ワイヤ掛数の特定の精度が向上する。 In this configuration, the controller changes the wire feeding length by erecting the boom by the first predetermined angle. That is, in the crane device according to the present invention, the number of wires hooked can be specified by raising the boom. In addition, the controller pays out the wire by a predetermined length before raising the boom. Therefore, it is possible to prevent the locking member from being damaged when the boom is raised. Further, the controller winds up the wire until the wire reaches a predetermined tension state (second winding process) before unwinding the wire by a predetermined length. That is, the wire is brought into a predetermined initial state before being unwound by a predetermined length. Therefore, it is possible to more accurately detect the amount of change in the feeding length of the wire that has changed by erecting the boom by the first predetermined angle, as compared with the case where the wire is not brought into a predetermined initial state. As a result, the specific accuracy of wire hooking is improved.
 (5) 上記コントローラは、上記起伏角センサが検出した検出値が示す起伏角度に基づいて上記ブームが上記全起立位置にあると判断したことに応じて、上記第1所定角度以上の第3所定角度だけ上記ブームを倒伏させる倒伏処理をさらに実行してもよい。上記倒伏処理の実行後、上記第2巻上処理を実行する。 (5) The controller determines that the boom is in the full upright position based on the undulation angle indicated by the detection value detected by the undulation angle sensor, and the third predetermined angle of the first predetermined angle or more. Further, a lodging process for tilting the boom by an angle may be further performed. After executing the lodging process, the second volume processing is executed.
 この構成では、ブームが全起立位置にあってそれ以上ブームを起立させることができない場合、コントローラは、ブームを第3所定角度だけ倒した後、ブームを第1所定角度だけ起立させる。したがって、本発明に係るクレーン装置は、ブームの初期位置に拘わらず、ブームを起立させてワイヤ掛数を特定することができる。 In this configuration, when the boom is in the full standing position and the boom cannot be raised any more, the controller tilts the boom by the third predetermined angle and then raises the boom by the first predetermined angle. Therefore, the crane device according to the present invention can raise the boom and specify the number of wire hooks regardless of the initial position of the boom.
 (6) 上記第2アクチュエータに作動油を供給する油圧供給装置をさらに備えており、
 上記油圧供給装置は、上記第2アクチュエータに供給する作動油を所定圧力未満に低減するリリーフバルブを備えるリリーフ回路を有しており、上記コントローラは、流路を上記リリーフ回路に切り替える切替処理を実行した後、上記第1巻上処理を実行してもよい。
(6) It is further equipped with a hydraulic pressure supply device that supplies hydraulic oil to the second actuator.
The hydraulic pressure supply device has a relief circuit provided with a relief valve that reduces the hydraulic oil supplied to the second actuator to less than a predetermined pressure, and the controller executes a switching process for switching the flow path to the relief circuit. After that, the above-mentioned first volume processing may be executed.
 この構成では、流路がリリーフ回路に切り替えられると、第2アクチュエータに供給される作動油の圧力が所定圧力未満となるので、巻き上げられるワイヤに生じる張力は小さい。したがって、第1巻上処理において係止部材が破損することが防止される。 In this configuration, when the flow path is switched to the relief circuit, the pressure of the hydraulic oil supplied to the second actuator becomes less than the predetermined pressure, so the tension generated in the wound wire is small. Therefore, it is possible to prevent the locking member from being damaged in the first winding process.
 (7) 上記コントローラは、上記特定処理において、上記検出値に応じた値が上記メモリに記憶された閾値以上か否かに基づいてワイヤ掛数を特定してもよい。 (7) In the specific process, the controller may specify the wire multiplication number based on whether or not the value corresponding to the detected value is equal to or higher than the threshold value stored in the memory.
 閾値を用いることにより、コントローラにおけるワイヤ掛数の特定が容易になる。なお、1つの閾値がメモリに記憶されていてもよいし、複数の閾値がメモリに記憶されていてもよい。すなわち、特定されるワイヤ掛数は、2種類であってもよいし、3種類以上であってもよい。 By using the threshold value, it becomes easy to specify the number of wires hooked in the controller. It should be noted that one threshold value may be stored in the memory, or a plurality of threshold values may be stored in the memory. That is, the number of wires to be specified may be two types or three or more types.
 (8) 上記メモリは、上記ブームの起伏角度に応じた複数の上記閾値を記憶していてもよい。上記コントローラは、上記特定処理において、上記起伏処理の実行前或いは実行後における上記起伏角センサが検出した検出値に対応する上記閾値を用いてワイヤ掛数を特定する。 (8) The memory may store a plurality of threshold values according to the undulation angle of the boom. In the specific process, the controller specifies the number of wire hooks using the threshold value corresponding to the detection value detected by the undulation angle sensor before or after the execution of the undulation process.
 ブームが格納位置に近い位置にある状態からブームが起伏される場合と、ブームが全起立位置に近い状態から起伏される場合とでは、同じ第1所定角度だけブームが起伏されたとしても、当該ブームの起伏によるワイヤの繰り出し長さの変化量が若干相違する。コントローラは、起伏処理の実行前或いは実行後におけるブームの起伏角度に応じた閾値を用いてワイヤ掛数を特定するから、ワイヤ掛数の特定の精度が向上する。 In the case where the boom is undulated from a position close to the retracted position and the case where the boom is undulated from a state close to the fully upright position, even if the boom is undulated by the same first predetermined angle, the said The amount of change in the wire feeding length due to the undulation of the boom is slightly different. Since the controller specifies the wire hooking number by using the threshold value according to the undulation angle of the boom before or after the execution of the undulating process, the accuracy of specifying the wire hooking number is improved.
 (9) 上記コントローラは、上記起伏処理を実行する前或いは実行した後に上記起伏角センサが出力した検出値である取得角度を取得する起伏角度取得処理と、上記取得角度に基づいて閾値を生成する閾値生成処理と、をさらに実行し、上記特定処理において、上記検出値に応じた値が上記閾値以上か否かに基づいてワイヤ掛数を特定してもよい。 (9) The controller generates an undulation angle acquisition process for acquiring an acquisition angle which is a detection value output by the undulation angle sensor before or after executing the undulation process, and generates a threshold value based on the acquisition angle. The threshold generation process may be further executed, and in the specific process, the number of wires may be specified based on whether or not the value corresponding to the detected value is equal to or greater than the threshold value.
 ブームが第1所定角度だけ起伏されることよって変化するワイヤの繰り出し長さの変化量は、ブームが第1所定角度だけ起伏される前或いは後のブームの起伏角度によって変化する。コントローラは、ワイヤ掛数を特定するための閾値を、ブームを第1所定角度だけ起伏させる前或いは後のブームの起伏角度に基づいて生成する。したがって、ワイヤ掛数の特定の精度が向上する。 The amount of change in the wire feeding length that changes when the boom is undulated by the first predetermined angle changes depending on the undulation angle of the boom before or after the boom is undulated by the first predetermined angle. The controller generates a threshold value for specifying the number of wire hooks based on the undulation angle of the boom before or after the boom is undulated by a first predetermined angle. Therefore, the specific accuracy of wire hooking is improved.
 本発明に係るクレーン装置は、クレーン作業を行う前にワイヤ掛数を自動で特定することができる。 The crane device according to the present invention can automatically specify the number of wire hooks before performing crane work.
図1は、本発明の一実施形態に係るクレーン車10の模式図である。FIG. 1 is a schematic view of a mobile crane 10 according to an embodiment of the present invention. 図2は、クレーン車10の模式図である(ブーム32が全起立姿勢)。FIG. 2 is a schematic view of the mobile crane 10 (boom 32 is in a fully upright posture). 図3は、クレーン車10の滑車機構60を模式的に示す図である。FIG. 3 is a diagram schematically showing the pulley mechanism 60 of the mobile crane 10. 図4は、滑車機構60の構造を模式的に示す図である。FIG. 4 is a diagram schematically showing the structure of the pulley mechanism 60. 図5は、クレーン車10の機能ブロック図である。FIG. 5 is a functional block diagram of the mobile crane 10. 図6は、ワイヤ掛数特定処理のフローチャートの一部である。FIG. 6 is a part of the flowchart of the wire hooking number specifying process. 図7は、ワイヤ掛数特定処理のフローチャートの他の部分である。FIG. 7 is another part of the flowchart of the wire hooking number specifying process. 図8は、対応テーブルを示す図である。FIG. 8 is a diagram showing a correspondence table. 図9は、変形例1におけるワイヤ掛数特定処理のフローチャートの一部である。FIG. 9 is a part of the flowchart of the wire hooking number specifying process in the first modification. 図10は、変形例1におけるワイヤ掛数特定処理のフローチャートの他の部分である。FIG. 10 is another part of the flowchart of the wire hooking number specifying process in the first modification. 図11は、変形例2における第1対応テーブル及び第2の対応テーブルを示す図である。FIG. 11 is a diagram showing a first correspondence table and a second correspondence table in the second modification.
 以下、本発明の好ましい実施形態が、適宜図面が参照されつつ説明される。なお、本実施形態は、本発明の一態様にすぎず、本発明の要旨を変更しない範囲で実施態様が変更されてもよいことは、言うまでもない。例えば、後述する各処理の実行順序は、本発明の要旨を変更しない範囲で適宜変更することができる。或いは、後述の処理の一部は、本発明の要旨を変更しない範囲で適宜省略することができる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as appropriate. Needless to say, the present embodiment is only one aspect of the present invention, and the embodiments may be changed without changing the gist of the present invention. For example, the execution order of each process described later can be appropriately changed without changing the gist of the present invention. Alternatively, a part of the processing described later can be omitted as appropriate without changing the gist of the present invention.
 図1は、本実施形態に係るクレーン車10を模式的に示しており、ブーム32が格納位置にある状態が示されている。 FIG. 1 schematically shows the crane vehicle 10 according to the present embodiment, and shows a state in which the boom 32 is in the retracted position.
 クレーン車10は、走行体11と、走行体11に搭載されたクレーン装置12と、キャビン13とを主に備える。走行体11は、車体20と、車体20に搭載されたエンジン22及びバッテリ23とを備える。エンジン22は、不図示のトランスミッション等を介して車軸98、99を回転駆動する。エンジン22は、油圧供給装置24(図5参照)が備える油圧ポンプ(不図示)を駆動させ、油圧供給装置24はクレーン装置12等を駆動させる油圧を発生させる。 The crane vehicle 10 mainly includes a traveling body 11, a crane device 12 mounted on the traveling body 11, and a cabin 13. The traveling body 11 includes a vehicle body 20, an engine 22 mounted on the vehicle body 20, and a battery 23. The engine 22 rotationally drives the axles 98 and 99 via a transmission (not shown) or the like. The engine 22 drives a hydraulic pump (not shown) included in the hydraulic pressure supply device 24 (see FIG. 5), and the hydraulic pressure supply device 24 generates hydraulic pressure to drive the crane device 12 and the like.
 キャビン13は、クレーン装置12の旋回台31に搭載されている。キャビン13は、クレーン車10の運転を行う運転装置14(図5参照)と、クレーン装置12の操縦を行う操縦装置15(図5参照)とを有する。すなわち、クレーン車10は、いわゆるラフテレーンクレーンであって、クレーン車10の運転及びクレーン装置12の操縦が1つのキャビン13にて行われる。但し、クレーン車10は、いわゆるオールテレーンクレーンであってもよい。 The cabin 13 is mounted on the swivel table 31 of the crane device 12. The cabin 13 has a driving device 14 (see FIG. 5) for operating the crane vehicle 10 and a steering device 15 (see FIG. 5) for manipulating the crane device 12. That is, the crane vehicle 10 is a so-called rough terrain crane, and the operation of the crane vehicle 10 and the operation of the crane device 12 are performed in one cabin 13. However, the mobile crane 10 may be a so-called all-terrain crane.
 図5が示す操縦装置15は、クレーン装置12を操作する操作レバーや操作ボタン等を有する。操縦装置15は、操作レバーの操作の向きや操作量を示す操作信号や、操作ボタンの操作の有無を示す操作信号を出力する。操縦装置15が出力した操作信号は、コントローラ50に入力される。 The control device 15 shown in FIG. 5 has an operation lever, an operation button, and the like for operating the crane device 12. The control device 15 outputs an operation signal indicating the direction and amount of operation of the operation lever and an operation signal indicating whether or not the operation button is operated. The operation signal output by the control device 15 is input to the controller 50.
 キャビン13は、不図示の制御ボックスを有する。この制御ボックスは、制御基板を備える。制御基板は、マイクロコンピュータ、抵抗、コンデンサ、ダイオード、種々のICを実装されており、コントローラ50及び電源回路17を構成している。 The cabin 13 has a control box (not shown). This control box comprises a control board. The control board is mounted with a microcomputer, a resistor, a capacitor, a diode, and various ICs, and constitutes a controller 50 and a power supply circuit 17.
 図1が示すように、クレーン装置12は、旋回台31と、ブーム32と、油圧供給装置24(図5参照)とを備える。旋回台31は、車体20に旋回可能に支持されている。旋回台31は、特許請求の範囲に記載された「台座」に相当する。ブーム32は、基端ブーム33、単一又は複数の中間ブーム34、及び先端ブーム35を有する。基端ブーム33、中間ブーム34、及び先端ブーム35は、入れ子状に配置されており、これらはテレスコピックを構成している。基端ブーム33は、旋回台31に起伏可能に支持されており、したがって、ブーム32は、旋回、起伏、及び伸縮可能である。ブーム32は、図1に示される縮小状態と、不図示の拡張状態との間で伸縮すると共に、図1に示される格納位置と、図2に示される所定起立位置との間で起伏する。クレーン車10は、ブーム32を縮小状態かつ格納位置にした格納状態(図1参照)で走行する。 As shown in FIG. 1, the crane device 12 includes a swivel table 31, a boom 32, and a hydraulic pressure supply device 24 (see FIG. 5). The swivel table 31 is supported by the vehicle body 20 so as to be swivelable. The swivel table 31 corresponds to the "pedestal" described in the claims. The boom 32 has a proximal boom 33, a single or plurality of intermediate booms 34, and a tip boom 35. The proximal boom 33, the intermediate boom 34, and the distal boom 35 are arranged in a nested manner, which constitute a telescopic. The base boom 33 is undulatingly supported by the swivel table 31, and thus the boom 32 is swivelable, undulating, and telescopic. The boom 32 expands and contracts between the contracted state shown in FIG. 1 and the expanded state (not shown), and undulates between the storage position shown in FIG. 1 and the predetermined upright position shown in FIG. The mobile crane 10 travels in a retracted state (see FIG. 1) with the boom 32 in the retracted state and the retracted position.
 図5が示すように、クレーン装置12は、旋回モータ25と、ブーム32を起伏させる起伏シリンダ36と、ブーム32を伸縮させる伸縮シリンダ37とをさらに備える。旋回モータ25は、車体20(図1参照)に設けられている。旋回モータ25は、油圧供給装置24から油圧の供給を受けて回転し、旋回台31を旋回させる。起伏シリンダ36は、旋回台31に設けられている。起伏シリンダ36は、油圧供給装置24から油圧の供給を受けて伸縮する。伸縮する起伏シリンダ36は、ブーム32を起伏させる。起伏シリンダ36は、特許請求の範囲に記載された「第1アクチュエータ」に相当する。伸縮シリンダ37は、ブーム32に設けられている。伸縮シリンダ37は、油圧供給装置24から油圧の供給を受けて伸縮する。伸縮する伸縮シリンダ37は、ブーム32を伸縮させる。 As shown in FIG. 5, the crane device 12 further includes a swivel motor 25, an undulating cylinder 36 for undulating the boom 32, and a telescopic cylinder 37 for expanding and contracting the boom 32. The swivel motor 25 is provided on the vehicle body 20 (see FIG. 1). The swivel motor 25 receives hydraulic pressure from the hydraulic pressure supply device 24 and rotates to swivel the swivel table 31. The undulating cylinder 36 is provided on the swivel table 31. The undulating cylinder 36 expands and contracts by receiving hydraulic pressure from the hydraulic pressure supply device 24. The undulating cylinder 36 that expands and contracts undulates the boom 32. The undulating cylinder 36 corresponds to the "first actuator" described in the claims. The telescopic cylinder 37 is provided on the boom 32. The telescopic cylinder 37 expands and contracts by receiving hydraulic pressure from the hydraulic pressure supply device 24. The telescopic cylinder 37 that expands and contracts expands and contracts the boom 32.
 クレーン装置12は、油圧モータ38、ウインチ39、滑車機構60(図3参照)、及び掛け金具41(図1参照)をさらに備える。 The crane device 12 further includes a hydraulic motor 38, a winch 39, a pulley mechanism 60 (see FIG. 3), and a hanging bracket 41 (see FIG. 1).
 ウインチ39は、ブーム32の基端に取り付けられている。ウインチ39は、ワイヤドラム44と、ウインチシーブ43と、ワイヤ42とを有する。ワイヤ42は、ワイヤドラム44に巻き付けられている。ウインチシーブ43は、ブーム32が水平方向に沿う格納位置にある状態において、ブーム32の基端の上部に位置している。ワイヤドラム44から引き出されたワイヤ42は、ウインチシーブ43に巻き掛けられた後、滑車機構60(図3参照)まで引き出されている。 The winch 39 is attached to the base end of the boom 32. The winch 39 has a wire drum 44, a winch sheave 43, and a wire 42. The wire 42 is wound around the wire drum 44. The winch sheave 43 is located above the base end of the boom 32 in a state where the boom 32 is in a retracted position along the horizontal direction. The wire 42 drawn from the wire drum 44 is wound around the winch sheave 43 and then pulled out to the pulley mechanism 60 (see FIG. 3).
 油圧モータ38は、油圧供給装置24から油圧の供給を受けて回転する。回転する油圧モータ38は、ワイヤドラム44を回転させる。回転するワイヤドラム44は、ワイヤ42を巻き取り(巻上)、或いはワイヤ42を繰り出す(巻下)。油圧モータ38は、特許請求の範囲に記載された「第2アクチュエータ」に相当する。 The hydraulic motor 38 rotates by receiving the supply of hydraulic pressure from the hydraulic pressure supply device 24. The rotating hydraulic motor 38 rotates the wire drum 44. The rotating wire drum 44 winds up the wire 42 (winding up) or unwinds the wire 42 (winding down). The hydraulic motor 38 corresponds to the "second actuator" described in the claims.
 図3が示すように、滑車機構60は、固定シーブブロック61と、フックブロック62とを有する。 As shown in FIG. 3, the pulley mechanism 60 has a fixed sheave block 61 and a hook block 62.
 固定シーブブロック61は、1つの第1シーブ63と、3つの第2シーブ64、65、66とを有している。第1シーブ63は、図示されていない中心軸に回転可能に支持されている。第2シーブ64、65、66は、中心軸58(図4参照)に支持されている。第2シーブ64、65、66は円盤状を呈し、中心軸58を中心として回転可能である。 The fixed sheave block 61 has one first sheave 63 and three second sheaves 64, 65, 66. The first sheave 63 is rotatably supported by a central axis (not shown). The second sheaves 64, 65, 66 are supported by a central axis 58 (see FIG. 4). The second sheaves 64, 65, 66 have a disk shape and can rotate around the central axis 58.
 図1が示すように、第1シーブ63は、ブーム32が水平方向に沿う格納位置にある状態において、ブーム32の先端の上部に位置している。3つの第2シーブ64、65、66は、格納位置において、ブーム32の先端の下部に位置している。図4が示すように、3つの第2シーブ64、65、66は、ブーム32の幅方向に並設されている。なお、本実施形態では、固定シーブブロック61が3つの第2シーブ64、65、66を有する例が示されているが、固定シーブブロック61は、2つの第2シーブを有していてもよいし、4つ以上の第2シーブを有していてもよい。 As shown in FIG. 1, the first sheave 63 is located above the tip of the boom 32 in a state where the boom 32 is in a storage position along the horizontal direction. The three second sheaves 64, 65, 66 are located below the tip of the boom 32 in the retracted position. As shown in FIG. 4, the three second sheaves 64, 65, 66 are arranged side by side in the width direction of the boom 32. Although the fixed sheave block 61 has three second sheaves 64, 65, 66 in the present embodiment, the fixed sheave block 61 may have two second sheaves. However, it may have four or more second sheaves.
 フックブロック62は、フレーム45と、フレーム45に取り付けられた吊荷用フック40と、3つの第3シーブ68、69、70と、を有している。第3シーブ68、69、70は、フレーム45に保持された中心軸59に支持されており、水平方向(ブーム32の幅方向)に並設されている。第3シーブ68、69、70は円盤状を呈し、上記中心軸59を中心に回転可能である。なお、フックブロック62は、2つの第3シーブを有していてもよいし、4つ以上の第3シーブを有していてもよい。 The hook block 62 has a frame 45, a hanging hook 40 attached to the frame 45, and three third sheaves 68, 69, 70. The third sheaves 68, 69, and 70 are supported by a central axis 59 held by the frame 45, and are arranged side by side in the horizontal direction (width direction of the boom 32). The third sheaves 68, 69, and 70 have a disk shape and can rotate around the central axis 59. The hook block 62 may have two third sheaves or may have four or more third sheaves.
 ウインチシーブ43(図1参照)から引き出されたワイヤ42は、第1シーブ63に掛け回された後、固定シーブブロック61の第2シーブ及びフックブロック62の第3シーブに掛け回される。図4が示す例では、ワイヤ42は、第2シーブ64、第3シーブ68、第2シーブ66、第3シーブ70に掛け回されている。すなわち、ワイヤ42が滑車機構60に掛け回された回数であるワイヤ掛数は、「4」である。ワイヤ掛数が増加されることにより、クレーン装置12の最大吊荷重量が増加する。 The wire 42 drawn from the winch sheave 43 (see FIG. 1) is hung around the first sheave 63 and then hung around the second sheave of the fixed sheave block 61 and the third sheave of the hook block 62. In the example shown in FIG. 4, the wire 42 is hung around the second sheave 64, the third sheave 68, the second sheave 66, and the third sheave 70. That is, the number of wire hooks, which is the number of times the wire 42 is hooked around the pulley mechanism 60, is "4". By increasing the number of wires hooked, the maximum suspension load amount of the crane device 12 increases.
 図1が示す掛け金具41は、吊荷用フック40と係合して吊荷用フック40を固定することができる。掛け金具41の一端部は、旋回台31に回動可能に支持されている。吊荷用フック40は、掛け金具41の他端部に引っ掛けられる。掛け金具41は、ブーム32が所定起立位置にあり且つ全縮小された状態において、当該ブーム32の先端の直下に位置する。掛け金具41は、クレーン車10の走行中において吊荷用フック40が移動しないように、吊荷用フック40を固定する。掛け金具41は、特許請求の範囲に記載された「係止部材」に相当する。 The hanging bracket 41 shown in FIG. 1 can engage with the hanging load hook 40 to fix the hanging load hook 40. One end of the hanging bracket 41 is rotatably supported by the swivel base 31. The hanging load hook 40 is hooked on the other end of the hanging metal fitting 41. The hanging bracket 41 is located directly below the tip of the boom 32 in a state where the boom 32 is in a predetermined standing position and is fully reduced. The hanging metal fitting 41 fixes the hanging load hook 40 so that the hanging load hook 40 does not move while the crane wheel 10 is traveling. The hanging metal fitting 41 corresponds to the "locking member" described in the claims.
 図5が示す油圧供給装置24は、走行体11に搭載されている。油圧供給装置24は、所定圧力の作動油を、旋回モータ25、起伏シリンダ36、伸縮シリンダ37、油圧モータ38、及びその他のアクチュエータ(以下、旋回モータ25等とも記載する)に供給する。 The hydraulic pressure supply device 24 shown in FIG. 5 is mounted on the traveling body 11. The hydraulic pressure supply device 24 supplies hydraulic oil of a predetermined pressure to the swivel motor 25, the undulating cylinder 36, the telescopic cylinder 37, the hydraulic motor 38, and other actuators (hereinafter, also referred to as swivel motor 25 and the like).
 油圧供給装置24は、不図示の電磁式流路切替弁を備えている。この流路切替弁は、後述のコントローラ50から入力される駆動信号によって作動する。流路切替弁が作動し、油圧供給ラインが変更されることにより、旋回モータ25等が駆動される。すなわち、コントローラ50は、駆動信号を出力することにより、旋回モータ25等の駆動を制御する。 The hydraulic pressure supply device 24 includes an electromagnetic flow path switching valve (not shown). This flow path switching valve is operated by a drive signal input from the controller 50 described later. By operating the flow path switching valve and changing the hydraulic pressure supply line, the swivel motor 25 and the like are driven. That is, the controller 50 controls the drive of the swivel motor 25 and the like by outputting the drive signal.
 油圧供給装置24は、油圧モータ38及び起伏シリンダ36に所定圧力の作動油を供給する不図示の通常回路に加え、供給される作動油の圧力を所定圧力未満に低減するために当該作動油をリリーフするリリーフ回路18を備える。リリーフ回路18は、リリーフバルブ19を有する。リリーフバルブ19は、コントローラ50から入力される駆動信号によって、通常回路とリリーフ回路18との間で作動油の流路を切り替える。すなわち、コントローラ50は、駆動信号をリリーフバルブ19に入力することにより、油圧モータ38及び起伏シリンダ36に供給される作動油の圧力を変更することができる。コントローラ50は、後述のワイヤ掛数特定処理(図6及び図7参照)において、油圧モータ38に供給される作動油の圧力を変更する。 In addition to a normal circuit (not shown) that supplies hydraulic oil at a predetermined pressure to the hydraulic motor 38 and the undulating cylinder 36, the hydraulic pressure supply device 24 supplies the hydraulic oil to reduce the pressure of the supplied hydraulic oil to less than the predetermined pressure. A relief circuit 18 for relief is provided. The relief circuit 18 has a relief valve 19. The relief valve 19 switches the flow path of the hydraulic oil between the normal circuit and the relief circuit 18 by the drive signal input from the controller 50. That is, the controller 50 can change the pressure of the hydraulic oil supplied to the hydraulic motor 38 and the undulating cylinder 36 by inputting the drive signal to the relief valve 19. The controller 50 changes the pressure of the hydraulic oil supplied to the hydraulic motor 38 in the wire hooking number specifying process (see FIGS. 6 and 7) described later.
 図5が示すように、クレーン装置12は、ブーム長さセンサ26、起伏角センサ27、及びドラムセンサ28をさらに備える。 As shown in FIG. 5, the crane device 12 further includes a boom length sensor 26, an undulation angle sensor 27, and a drum sensor 28.
 ブーム長さセンサ26は、ブーム32の長さに応じた検出値を出力するセンサである。ブーム長さセンサ26は、ブーム32の長さを直接検出するセンサであってもよいし、伸縮シリンダ37の伸長長さを検出するセンサであってもよい。すなわち、ブーム長さセンサ26は、ブーム32の長さに応じて変化する物理量を検出するセンサであればよい。 The boom length sensor 26 is a sensor that outputs a detection value according to the length of the boom 32. The boom length sensor 26 may be a sensor that directly detects the length of the boom 32, or may be a sensor that detects the extension length of the telescopic cylinder 37. That is, the boom length sensor 26 may be a sensor that detects a physical quantity that changes according to the length of the boom 32.
 起伏角センサ27は、ブーム32の起伏角度に応じた検出値を出力するセンサである。起伏角センサ27は、ブーム32の起伏角度を直接検出するセンサであってもよいし、起伏シリンダ36の伸長長さを検出するセンサであってもよい。すなわち、起伏角センサ27は、ブーム32の起伏角度に応じて変化する物理量を検出するセンサであればよい。起伏角センサ27は、例えば、ブーム32に取り付けられており、水平面に対する角度を出力する傾斜センサや水平センサである。 The undulation angle sensor 27 is a sensor that outputs a detection value according to the undulation angle of the boom 32. The undulation angle sensor 27 may be a sensor that directly detects the undulation angle of the boom 32, or may be a sensor that detects the extension length of the undulation cylinder 36. That is, the undulation angle sensor 27 may be a sensor that detects a physical quantity that changes according to the undulation angle of the boom 32. The undulation angle sensor 27 is, for example, a tilt sensor or a horizontal sensor that is attached to the boom 32 and outputs an angle with respect to a horizontal plane.
 ドラムセンサ28は、例えば、上記ワイヤドラム44(図1及び図2参照)の回転量及び回転速度(角速度)を検出するロータリエンコーダである。ドラムセンサ28は、ワイヤドラム44の回転に応じて電圧値が変化するパルス信号を出力する。ドラムセンサ28は、ケーブルなどの信号線によってコントローラ50と接続されている。コントローラ50は、ドラムセンサ28から入力するパルス数からワイヤドラム44の回転量を算出し、また、ドラムセンサ28から入力する単位時間当たりのパルス数からワイヤドラム44の回転速度を算出する。そして、コントローラ50は、算出したワイヤドラム44の回転量と、ワイヤドラム44の半径とに基づいてワイヤ42の繰り出し長さや巻き取り長さを算出する。なお、コントローラ50がワイヤ42の巻き取り長さやワイヤドラム44の回転速度を取得可能であれば、どのような種類のセンサがドラムセンサ28に用いられてもよい。ドラムセンサ28は、特許請求の範囲に記載された「ワイヤセンサ」に相当する。ドラムセンサ28が出力するパルスは、特許請求の範囲に記載された「ワイヤの長さに応じた検出値」に相当する。 The drum sensor 28 is, for example, a rotary encoder that detects the rotation amount and rotation speed (angular velocity) of the wire drum 44 (see FIGS. 1 and 2). The drum sensor 28 outputs a pulse signal whose voltage value changes according to the rotation of the wire drum 44. The drum sensor 28 is connected to the controller 50 by a signal line such as a cable. The controller 50 calculates the rotation amount of the wire drum 44 from the number of pulses input from the drum sensor 28, and calculates the rotation speed of the wire drum 44 from the number of pulses per unit time input from the drum sensor 28. Then, the controller 50 calculates the feeding length and the winding length of the wire 42 based on the calculated rotation amount of the wire drum 44 and the radius of the wire drum 44. Any kind of sensor may be used for the drum sensor 28 as long as the controller 50 can acquire the winding length of the wire 42 and the rotation speed of the wire drum 44. The drum sensor 28 corresponds to the "wire sensor" described in the claims. The pulse output by the drum sensor 28 corresponds to the "detection value according to the length of the wire" described in the claims.
 電源回路17は、コントローラ50等に供給する電力を生成する回路である。電源回路17は、例えばDC-DCコンバータである。電源回路17は、バッテリ23から供給された直流電圧を、安定した所定の電圧値の直流電圧に変換して出力する。 The power supply circuit 17 is a circuit that generates electric power to be supplied to the controller 50 and the like. The power supply circuit 17 is, for example, a DC-DC converter. The power supply circuit 17 converts the DC voltage supplied from the battery 23 into a DC voltage having a stable predetermined voltage value and outputs the DC voltage.
 コントローラ50は、中央演算処理装置であるCPU51と、メモリ52とを備える。メモリ52は、例えば、ROM、RAM、EEPROM等によって構成されている。 The controller 50 includes a CPU 51, which is a central processing unit, and a memory 52. The memory 52 is composed of, for example, a ROM, a RAM, an EEPROM, or the like.
 CPU51、メモリ52、ブーム長さセンサ26、起伏角センサ27、及びドラムセンサ28は、コントローラ50が有する不図示の通信バスに接続されている。CPU51によって実行される制御プログラム54は、通信バスを通じて、メモリ52から情報やデータを読み出し、或いは情報やデータをメモリ52に記憶させ、ブーム長さセンサ26、起伏角センサ27、及びドラムセンサ28が出力した検出値を取得する。 The CPU 51, the memory 52, the boom length sensor 26, the undulation angle sensor 27, and the drum sensor 28 are connected to a communication bus (not shown) included in the controller 50. The control program 54 executed by the CPU 51 reads information and data from the memory 52 or stores the information and data in the memory 52 through the communication bus, and the boom length sensor 26, the undulation angle sensor 27, and the drum sensor 28 Acquire the output detection value.
 メモリ52は、オペレーティングシステムであるOS53と、クレーン装置12の駆動を制御する制御プログラム54と、対応テーブルと、第1所定角度と、第2所定角度と、全起立角度φと、を記憶している。OS53及び制御プログラム54は、いわゆるマルチタスク処理により、疑似的に並行してCPU51によって実行される。 The memory 52 stores the OS 53, which is an operating system, the control program 54 that controls the drive of the crane device 12, the corresponding table, the first predetermined angle, the second predetermined angle, and the total standing angle φ. There is. The OS 53 and the control program 54 are executed by the CPU 51 in a pseudo-parallel manner by so-called multitasking processing.
 図8が示すように、対応テーブルは、総出力パルス数とワイヤ掛数とが対応付けられたテーブルであり、メモリ52に予め記憶される。総出力パルス数は、ワイヤ掛数特定処理(図7参照)のステップS30において制御プログラム54が取得する値である。 As shown in FIG. 8, the corresponding table is a table in which the total number of output pulses and the number of wire hooks are associated with each other, and is stored in the memory 52 in advance. The total number of output pulses is a value acquired by the control program 54 in step S30 of the wire hooking number specifying process (see FIG. 7).
 図8が示す例では、総出力パルス数「A未満」とワイヤ掛数「0」とが対応付けられ、総出力パルス数「A以上B未満」とワイヤ掛数「2」とが対応付けられ、総出力パルス数「B以上C未満」とワイヤ掛数「4」とが対応付けられ、総出力パルス数「C以上D未満」とワイヤ掛数「6」とが対応付けられ、総出力パルス数「D以上」とワイヤ掛数「0」とが対応付けられている。ワイヤ掛数「0」は、ワイヤ掛数を特定できないことを示す。 In the example shown in FIG. 8, the total output pulse number “less than A” and the wire hook number “0” are associated, and the total output pulse number “A or more and less than B” and the wire hook number “2” are associated. , The total output pulse number "B or more and less than C" is associated with the wire hook number "4", and the total output pulse number "C or more and less than D" is associated with the wire hook number "6". The number "D or more" and the number of wire hooks "0" are associated with each other. The wire hooking number "0" indicates that the wire hooking number cannot be specified.
 第1所定角度、第2所定角度、及び所定起立角度φは定数であり、メモリ52に予め記憶される。第1所定角度は、例えば1度や2度などである。第2所定角度は、第1所定角度以上の角度であり、例えば、1度や2度や3度である。所定起立角度φは、ブーム32が所定起立位置にあるときのブーム32の起伏角度である。 The first predetermined angle, the second predetermined angle, and the predetermined standing angle φ are constants and are stored in advance in the memory 52. The first predetermined angle is, for example, 1 degree or 2 degrees. The second predetermined angle is an angle equal to or higher than the first predetermined angle, and is, for example, 1 degree, 2 degrees, or 3 degrees. The predetermined standing angle φ is the undulating angle of the boom 32 when the boom 32 is in the predetermined standing position.
 制御プログラム54は、クレーン作業が行われる前に、図6及び図7が示すワイヤ掛数特定処理を実行する。そして、制御プログラム54は、ワイヤ掛数特定処理で特定したワイヤ掛数に基づいて、クレーン作業における吊荷重量やブーム32の起伏角度やブーム32の伸長長さなどに上限を設ける。或いは、制御プログラム54は、ワイヤ掛数特定処理で特定したワイヤ掛数を用いて、ブーム32を自動で展開するブーム展開処理や、ブーム32を自動で格納するブーム格納処理などの処理を行う。以下、ワイヤ掛数特定処理について詳しく説明がされる。なお、制御プログラム54が実行する処理は、コントローラ50が実行する処理である。 The control program 54 executes the wire hooking number specifying process shown in FIGS. 6 and 7 before the crane operation is performed. Then, the control program 54 sets an upper limit on the suspension load amount in the crane work, the undulation angle of the boom 32, the extension length of the boom 32, and the like, based on the wire hook number specified in the wire hook number specifying process. Alternatively, the control program 54 performs a boom expansion process for automatically deploying the boom 32, a boom storage process for automatically storing the boom 32, and the like, using the wire hook number specified in the wire hook number specifying process. Hereinafter, the wire hooking number specifying process will be described in detail. The process executed by the control program 54 is a process executed by the controller 50.
 制御プログラム54は、例えば、ワイヤ掛数特定処理の実行を指示する操作が操縦装置15を通じて入力されたことに基づいて、ワイヤ掛数特定処理を実行する。或いは、制御プログラム54は、ブーム自動展開処理やブーム自動格納処理の実行を指示する操作が操縦装置15を通じて入力されたことに基づいて、ワイヤ掛数特定処理を実行する。 The control program 54 executes the wire multiplication number specifying process based on, for example, an operation instructing the execution of the wire multiplication number specifying process to be input through the control device 15. Alternatively, the control program 54 executes the wire multiplication number specifying process based on the operation instructing the execution of the boom automatic expansion process and the boom automatic storage process to be input through the control device 15.
 なお、フローチャートには示されていないが、制御プログラム54は、ブーム長さセンサ26が検出したブーム32の長さが、ブーム32が全縮小された状態でのブーム32の長さと相違することに基づいて、ワイヤ掛数特定処理の実行をキャンセルしてもよい。すなわち、制御プログラム54は、ブーム32が全縮小された状態において、ワイヤ掛数特定処理を実行する。 Although not shown in the flowchart, the control program 54 determines that the length of the boom 32 detected by the boom length sensor 26 is different from the length of the boom 32 when the boom 32 is fully reduced. Based on this, the execution of the wire multiplication number specifying process may be canceled. That is, the control program 54 executes the wire hooking number specifying process in a state where the boom 32 is completely reduced.
 図6が示すように、制御プログラム54は、起伏角センサ27が検出したブーム32の起伏角度θを取得する(S11)。制御プログラム54は、取得した起伏角度θに基づいて、ブーム32が格納位置にあるか否かを判断する(S12)。具体的には、制御プログラム54は、取得した起伏角度θがゼロであるか否かを判断する。 As shown in FIG. 6, the control program 54 acquires the undulation angle θ of the boom 32 detected by the undulation angle sensor 27 (S11). The control program 54 determines whether or not the boom 32 is in the retracted position based on the acquired undulation angle θ (S12). Specifically, the control program 54 determines whether or not the acquired undulation angle θ is zero.
 制御プログラム54は、ブーム32が格納位置にあると判断すると(S12:Yes)、油圧モータ38を駆動させて、ウインチ39に所定長さだけワイヤ42を繰り出させる(S13)。例えば、制御プログラム54は、メモリ52に予め記憶された所定時間だけ油圧モータ38を駆動させ、或いはメモリ52に予め記憶された所定回転量だけワイヤドラム44が回転するまで油圧モータ38を駆動させる。所定長さは、次のステップS14でブーム32が第2所定角度だけ起立される際に、ワイヤ42が張らず、かつワイヤ42に張力が作用して乱巻きが発生しない範囲の長さとされる。すなわち、ステップS14の実行において、ワイヤ42がフックブロック62を通じて掛け金具41に加える負荷によって掛け金具41が破損しないように、ステップS13においてワイヤ42が繰り出される。 When the control program 54 determines that the boom 32 is in the retracted position (S12: Yes), it drives the hydraulic motor 38 and causes the winch 39 to pay out the wire 42 by a predetermined length (S13). For example, the control program 54 drives the hydraulic motor 38 for a predetermined time stored in the memory 52 in advance, or drives the hydraulic motor 38 until the wire drum 44 rotates by a predetermined rotation amount stored in the memory 52 in advance. The predetermined length is set to a length within a range in which the wire 42 is not stretched and tension acts on the wire 42 to prevent random winding when the boom 32 is erected by the second predetermined angle in the next step S14. .. That is, in the execution of step S14, the wire 42 is unwound in step S13 so that the hook 41 is not damaged by the load applied to the hook 41 by the wire 42 through the hook block 62.
 次に、制御プログラム54は、上記第2所定角度(≧第1所定角度)だけブーム32を起立させる(S14)。具体的には、制御プログラム54は、起伏シリンダ36を伸長させるとともに起伏角センサ27が検出するブーム32の起伏角度θを定期的に取得し、取得した起伏角度θが第2所定角度に達したことに基づいて、起伏シリンダ36の伸長を停止させる。 Next, the control program 54 raises the boom 32 by the second predetermined angle (≧ first predetermined angle) (S14). Specifically, the control program 54 periodically acquires the undulation angle θ of the boom 32 detected by the undulation angle sensor 27 while extending the undulation cylinder 36, and the acquired undulation angle θ reaches the second predetermined angle. Based on this, the extension of the undulating cylinder 36 is stopped.
 ステップS14の処理が実行されることにより、ブーム32が、それ以上倒伏させることができない格納位置にあっても、ステップS16からS19までの処理においてブーム32を第1所定角度だけ倒伏させることができる。ステップS14の処理は、特許請求の範囲に記載された「起立処理」に相当する。 By executing the process of step S14, even if the boom 32 is in a storage position where it cannot be laid down any further, the boom 32 can be laid down by a first predetermined angle in the process from steps S16 to S19. .. The process of step S14 corresponds to the "standing process" described in the claims.
 制御プログラム54は、ステップS12において、ブーム32が格納位置にないと判断すると(S12:No)、或いはステップS14の処理の実行後、上記通常回路からリリーフ回路18に作動油の流路を切り替える(S15)。すなわち、制御プログラム54は、次のステップS16において油圧モータ38を通じて駆動されたワイヤドラム44によって掛け金具41が破損しないように、油圧モータ38に供給する作動油の圧力を所定圧力未満にする。ステップS15の処理は、特許請求の範囲に記載された「切替処理」に相当する。 The control program 54 determines in step S12 that the boom 32 is not in the retracted position (S12: No), or after executing the process of step S14, switches the flow path of the hydraulic oil from the normal circuit to the relief circuit 18 (S12: No). S15). That is, the control program 54 sets the pressure of the hydraulic oil supplied to the hydraulic motor 38 to less than a predetermined pressure so that the hook 41 is not damaged by the wire drum 44 driven through the hydraulic motor 38 in the next step S16. The process of step S15 corresponds to the "switching process" described in the claims.
 次に、制御プログラム54は、油圧モータ38を通じてウインチ39を駆動させる(S16)。具体的には、制御プログラム54は、油圧モータ38を駆動させて、ワイヤ42を巻き取る向きにワイヤドラム44を回転させる。 Next, the control program 54 drives the winch 39 through the hydraulic motor 38 (S16). Specifically, the control program 54 drives the hydraulic motor 38 to rotate the wire drum 44 in the direction of winding the wire 42.
 制御プログラム54は、ドラムセンサ28が出力するパルス信号に基づいて、ワイヤドラム44の回転速度を算出する(S17)。制御プログラム54は、算出した回転速度がゼロになったか否かを判断する(S18)。すなわち、制御プログラム54は、ワイヤ42が張ってワイヤドラム44の回転が止まったか否かを判断する。制御プログラム54は、ワイヤドラム44の回転速度がゼロになっていないと判断すると(S18:No)、ステップS17以降の処理を再度実行する。なお、繰り返し実行されるステップS17の処理は、例えば数ミリ秒から数十ミリ秒の所定の時間間隔で行われる。すなわち、所定の時間ごとにワイヤドラム44が止まったか否かが判断される。 The control program 54 calculates the rotation speed of the wire drum 44 based on the pulse signal output by the drum sensor 28 (S17). The control program 54 determines whether or not the calculated rotation speed has become zero (S18). That is, the control program 54 determines whether or not the wire 42 is stretched and the rotation of the wire drum 44 is stopped. When the control program 54 determines that the rotation speed of the wire drum 44 is not zero (S18: No), the control program 54 re-executes the processes after step S17. The process of step S17, which is repeatedly executed, is performed at predetermined time intervals of, for example, several milliseconds to several tens of milliseconds. That is, it is determined whether or not the wire drum 44 has stopped at predetermined time intervals.
 制御プログラム54は、ステップS18において、ワイヤドラム44の回転速度に代えてワイヤ42の巻き取り長さの単位時間当たりの変化率を算出し、当該変化率がゼロになったか否かを判断してもよい。すなわち、制御プログラム54は、ワイヤドラム44の回転速度以外の物理量でワイヤ42が張られたか否かを判断してもよい。 In step S18, the control program 54 calculates the rate of change of the winding length of the wire 42 per unit time instead of the rotation speed of the wire drum 44, and determines whether or not the rate of change has become zero. May be good. That is, the control program 54 may determine whether or not the wire 42 is stretched by a physical quantity other than the rotation speed of the wire drum 44.
 制御プログラム54は、ワイヤドラム44の回転速度がゼロになったと判断すると(S18:Yes)、油圧モータ38の駆動を停止させる(S19)。すなわち、制御プログラム54は、ワイヤ42の巻き取りを停止させる。ステップS16からS19までの処理が実行されることにより、ワイヤ42が張られる。ステップS16からS19の処理は、特許請求の範囲に記載された「第2巻上処理」に相当する。ワイヤ42が張られた状態は、特許請求の範囲に記載された「所定の張力状態」に相当する。 When the control program 54 determines that the rotation speed of the wire drum 44 has become zero (S18: Yes), the drive of the hydraulic motor 38 is stopped (S19). That is, the control program 54 stops the winding of the wire 42. By executing the processes from steps S16 to S19, the wire 42 is stretched. The processing of steps S16 to S19 corresponds to the "second volume processing" described in the claims. The state in which the wire 42 is stretched corresponds to the "predetermined tension state" described in the claims.
 次に、制御プログラム54は、起伏角センサ27が検出する起伏角度θ(以下、第1取得角度θ1と記載する)を取得する(S20)。そして、制御プログラム54は、ブーム32の倒伏を開始する(S21)。具体的には、制御プログラム54は、起伏シリンダ36を縮小させる。制御プログラム54は、起伏角センサ27が検出するブーム32の起伏角度θ(以下、第2取得角度θ2と記載する)を取得する(S22)。ステップS20の処理は、特許請求の範囲に記載された「起伏角度取得処理」に相当する。 Next, the control program 54 acquires the undulation angle θ (hereinafter, referred to as the first acquisition angle θ1) detected by the undulation angle sensor 27 (S20). Then, the control program 54 starts the lodging of the boom 32 (S21). Specifically, the control program 54 reduces the undulating cylinder 36. The control program 54 acquires the undulation angle θ (hereinafter, referred to as the second acquisition angle θ2) of the boom 32 detected by the undulation angle sensor 27 (S22). The process of step S20 corresponds to the "undulation angle acquisition process" described in the claims.
 制御プログラム54は、第1取得角度θ1と第2取得角度θ2との差(=θ1-θ2)が上記第1所定角度に達したか否かを判断する(S23)。すなわち、制御プログラム54は、ブーム32が第1所定角度だけ倒伏したか否かを判断する(S23)。制御プログラム54は、ブーム32が第1所定角度だけ倒伏していないと判断すると(S23:No)、ステップS22以降の処理を再度実行する。なお、繰り返し実行されるステップS22の処理は、所定の時間間隔で行われる。すなわち、所定の時間ごとに、ブーム32が第1所定角度だけ倒伏されたか否かが判断される。 The control program 54 determines whether or not the difference (= θ1-θ2) between the first acquisition angle θ1 and the second acquisition angle θ2 has reached the first predetermined angle (S23). That is, the control program 54 determines whether or not the boom 32 has fallen by the first predetermined angle (S23). When the control program 54 determines that the boom 32 has not fallen by the first predetermined angle (S23: No), the process after step S22 is executed again. The process of step S22, which is repeatedly executed, is performed at predetermined time intervals. That is, it is determined whether or not the boom 32 has been laid down by the first predetermined angle at predetermined time intervals.
 制御プログラム54は、ブーム32が第1所定角度だけ倒伏したと判断すると(S23:Yes)、起伏シリンダ36の縮小を停止させ、ブーム32の倒伏を終了する(S24)。第1所定角度だけブーム32が倒伏されることにより、第1所定角度に応じた長さだけワイヤ42が弛む。ステップS21からS24までの処理は、特許請求の範囲に記載された「起伏処理」に相当する。 When the control program 54 determines that the boom 32 has fallen by the first predetermined angle (S23: Yes), the control program 54 stops the contraction of the undulating cylinder 36 and ends the downturn of the boom 32 (S24). When the boom 32 is laid down by the first predetermined angle, the wire 42 is loosened by the length corresponding to the first predetermined angle. The processing from steps S21 to S24 corresponds to the "undulation processing" described in the claims.
 図7が示すように、制御プログラム54は、ドラムセンサ28が出力するパルスの個数のカウントを開始するとともに(S25)、油圧モータ38を通じて、ワイヤ42が巻き上げられる向きにワイヤドラム44を回転させる(S26)。制御プログラム54は、ステップS25でカウントを開始した出力パルス数の単位時間当たりの変化量に基づいて、ワイヤドラム44の回転速度(角速度)を算出する(S27)。制御プログラム54は、算出したワイヤドラム44の回転速度がゼロになったか否かを判断する(S28)。すなわち、ワイヤ42が張るまでワイヤ42が巻き上げられたか否かを判断する。 As shown in FIG. 7, the control program 54 starts counting the number of pulses output by the drum sensor 28 (S25), and rotates the wire drum 44 in the direction in which the wire 42 is wound through the hydraulic motor 38 (S25). S26). The control program 54 calculates the rotation speed (angular velocity) of the wire drum 44 based on the amount of change in the number of output pulses that started counting in step S25 per unit time (S27). The control program 54 determines whether or not the calculated rotation speed of the wire drum 44 has become zero (S28). That is, it is determined whether or not the wire 42 is wound up until the wire 42 is stretched.
 制御プログラム54は、ワイヤドラム44の回転速度がゼロになっていないと判断すると(S28:No)、ステップS27の処理を再度実行する。繰り返し実行されるステップS27の処理は、所定の時間間隔で行われる。 When the control program 54 determines that the rotation speed of the wire drum 44 is not zero (S28: No), the process of step S27 is executed again. The process of step S27, which is repeatedly executed, is performed at predetermined time intervals.
 制御プログラム54は、ワイヤドラム44の回転速度がゼロになったと判断すると(S28:Yes)、油圧モータ38の駆動を停止させ、ワイヤドラム44によるワイヤ42の巻き上げを停止させる(S29)。ステップS26からS29までの処理が実行されることにより、ブーム32が第1所定角度だけ倒されることによって弛んだワイヤ42がワイヤドラム44に巻き上げられる。ステップS26からS29までの処理は、特許請求の範囲に記載された「第1巻上処理」に相当する。 When the control program 54 determines that the rotation speed of the wire drum 44 has become zero (S28: Yes), the drive of the hydraulic motor 38 is stopped, and the winding of the wire 42 by the wire drum 44 is stopped (S29). By executing the processes from steps S26 to S29, the loose wire 42 is wound up on the wire drum 44 by tilting the boom 32 by the first predetermined angle. The processing from steps S26 to S29 corresponds to the "first volume processing" described in the claims.
 制御プログラム54は、ステップS25でカウントを開始した出力パルス数のカウント値(総出力パルス数)を取得する(S30)。当該総出力パルス数は、第1所定角度だけブーム32を倒伏させることによって変化した(弛んだ)ワイヤ42の長さに応じた値となる。そして、第1所定角度だけブーム32を倒伏させることによって変化するワイヤ42の長さの変化量は、ワイヤ掛数に依存する。すなわち、上記総出力パルス数は、ワイヤ掛数に応じた値となる。ステップS30の処理は、特許請求の範囲に記載された「取得処理」に相当する。総出力パルス数は、特許請求の範囲に記載された「検出値」に相当する。 The control program 54 acquires the count value (total number of output pulses) of the number of output pulses that started counting in step S25 (S30). The total number of output pulses becomes a value corresponding to the length of the (slackened) wire 42 changed by tilting the boom 32 by the first predetermined angle. The amount of change in the length of the wire 42, which changes by tilting the boom 32 by the first predetermined angle, depends on the number of wires hooked. That is, the total number of output pulses is a value corresponding to the number of wire hooks. The process of step S30 corresponds to the "acquisition process" described in the claims. The total number of output pulses corresponds to the "detection value" described in the claims.
 制御プログラム54は、上記総出力パルス数と、メモリ52に記憶された対応テーブル(図8参照)とに基づいて、ワイヤ掛数を特定する(S31)。具体的には、制御プログラム54は、上記総出力パルス数がA未満或いはD以上である場合、ワイヤ掛数を特定できないエラーとしてワイヤ掛数を「0」と特定する。制御プログラム54は、上記総出力パルス数がA以上B未満である場合、ワイヤ掛数を「2」と特定する。制御プログラム54は、上記総出力パルス数がB以上C未満である場合、ワイヤ掛数を「4」と特定する。制御プログラム54は、上記総出力パルス数がC以上D未満である場合、ワイヤ掛数を「6」と特定する。ステップS31の処理は、特許請求の範囲に記載された「特定処理」に相当する。対応テーブルにおけるA、B、C、及びDは、特許請求の範囲に記載された「閾値」に相当する。 The control program 54 specifies the number of wire hooks based on the total number of output pulses and the corresponding table (see FIG. 8) stored in the memory 52 (S31). Specifically, when the total output pulse number is less than A or D or more, the control program 54 specifies the wire hook number as "0" as an error in which the wire hook number cannot be specified. The control program 54 specifies the number of wire hooks as "2" when the total number of output pulses is A or more and less than B. The control program 54 specifies the number of wire hooks as "4" when the total number of output pulses is B or more and less than C. When the total number of output pulses is C or more and less than D, the control program 54 specifies the number of wire hooks as "6". The process of step S31 corresponds to the "specific process" described in the claims. A, B, C, and D in the corresponding table correspond to the "threshold" described in the claims.
 制御プログラム54は、ステップS31においてワイヤ掛数を特定できたか否かを判断する(S32)。具体的には、ステップS31で特定したワイヤ掛数が「0」であるか否かを判断する。制御プログラム54は、ワイヤ掛数が「0」である場合、ワイヤ掛数を特定できなかったと判断し(S32:No)、エラー報知を行う(S33)。例えば、制御プログラム54は、不図示のディスプレイにエラー画面を表示させ、或いは不図示のスピーカにエラー音声を出力させることにより、エラー報知を行う。 The control program 54 determines whether or not the wire hooking number can be specified in step S31 (S32). Specifically, it is determined whether or not the number of wire hooks specified in step S31 is "0". When the wire hooking number is "0", the control program 54 determines that the wire hooking number could not be specified (S32: No), and notifies an error (S33). For example, the control program 54 performs error notification by displaying an error screen on a display (not shown) or outputting an error voice on a speaker (not shown).
 エラー報知を確認した作業者は、例えば、ワイヤ掛数を特定できなかった原因を排除した後、操縦装置15を通じて、ワイヤ掛数特定処理の再実行を指示する再実行指示をコントローラ50に入力する。 The operator who confirmed the error notification, for example, after eliminating the cause that the wire hooking number could not be specified, inputs a re-execution instruction instructing the re-execution of the wire hooking number specifying process to the controller 50 through the control device 15. ..
 制御プログラム54は、再実行指示が入力されるまで待機する(S34:No)。制御プログラム54は、再実行指示が入力されたと判断すると(S34:Yes)、ステップS11以降の処理を再度実行する。 The control program 54 waits until a re-execution instruction is input (S34: No). When the control program 54 determines that the re-execution instruction has been input (S34: Yes), the control program 54 re-executes the processes after step S11.
 制御プログラム54は、ステップS32においてワイヤ掛数を特定できたと判断すると、すなわち特定したワイヤ掛数が「0」でないと判断すると(S32:Yes)、特定したワイヤ掛数をメモリ52に記憶させる(S35)。ステップS35の処理は、特許請求の範囲に記載された「記憶処理」に相当する。 When the control program 54 determines that the wire hooking number can be specified in step S32, that is, determines that the specified wire hooking number is not "0" (S32: Yes), the specified wire hooking number is stored in the memory 52 (S). S35). The process of step S35 corresponds to the "memory process" described in the claims.
 制御プログラム54は、ステップS35の処理の実行後、リリーフ回路18から上記通常回路に作動油の流路を切り替え(S36)、ワイヤ掛数特定処理を終了する。 After executing the process of step S35, the control program 54 switches the flow path of the hydraulic oil from the relief circuit 18 to the normal circuit (S36), and ends the wire hooking number specifying process.
[実施形態の作用効果] [Action and effect of the embodiment]
 ステップS21からS24までの処理によってブーム32が第1所定角度だけ倒伏されることにより、第1所定角度に応じた長さだけワイヤの繰り出し長さが変化する。すなわち、ワイヤ42が弛む。コントローラ50は、弛んだワイヤ42を巻き上げ、巻き上げたワイヤ42の長さを示す総出力カウント数を取得する。そして、コントローラ50は、取得した総出力カウント数に基づいて、ワイヤ掛数を特定してメモリ52に記憶させる。したがって、本発明に係るクレーン装置12は、クレーン作業を行う前にワイヤ掛数を自動で特定することができる。 By the processing from steps S21 to S24, the boom 32 is laid down by the first predetermined angle, so that the wire feeding length changes by the length corresponding to the first predetermined angle. That is, the wire 42 is loosened. The controller 50 winds up the loose wire 42 and acquires a total output count indicating the length of the wound wire 42. Then, the controller 50 identifies the number of wire hooks based on the acquired total output count number and stores it in the memory 52. Therefore, the crane device 12 according to the present invention can automatically specify the number of wire hooks before performing the crane operation.
 ブーム32が第1所定角度だけ倒伏される前に、ステップS16からS19までの処理によって、ワイヤドラム44の回転が停止するまでワイヤ42が巻き上げられる。したがって、ブーム32が第1所定角度だけ倒伏される前におけるワイヤ42の繰り出し長さが常に一定の初期状態になる。その結果、ワイヤ掛数の特定の精度が向上する。 Before the boom 32 is laid down by the first predetermined angle, the wire 42 is wound up by the processing from steps S16 to S19 until the rotation of the wire drum 44 is stopped. Therefore, the feeding length of the wire 42 before the boom 32 is laid down by the first predetermined angle is always in a constant initial state. As a result, the specific accuracy of wire hooking is improved.
 ワイヤ掛数特定処理を実行する前のブーム32の初期位置が格納位置であって、それ以上ブーム32を倒伏することができない場合(S12:No)、ブーム32が第2所定角度(≧第1所定角度)だけ起こされる(S14)。したがって、ブーム32が格納位置にあっても、ブーム32を第1所定角度だけ倒伏させてワイヤ掛数を特定することができる。その結果、ブーム32の初期位置に拘わらずワイヤ掛数を特定することができる。 When the initial position of the boom 32 before executing the wire hooking number specifying process is the storage position and the boom 32 cannot be tilted any further (S12: No), the boom 32 has a second predetermined angle (≧ 1). It is raised only by a predetermined angle) (S14). Therefore, even if the boom 32 is in the retracted position, the boom 32 can be laid down by a first predetermined angle to specify the number of wires hooked. As a result, the number of wires hooked can be specified regardless of the initial position of the boom 32.
 ワイヤドラム44の回転が停止するまでワイヤドラム44を駆動してワイヤ42を巻き上げる前に、上記通常回路からリリーフ回路18に作動油の流路が切り替えられて、油圧モータ38に供給される作動油の圧力が所定圧力未満にされる(S15)。したがって、巻き上げられるワイヤ42に生じる張力が小さくなり、掛け金具41が破損することが防止される。 Before the wire drum 44 is driven to wind up the wire 42 until the rotation of the wire drum 44 is stopped, the hydraulic oil flow path is switched from the normal circuit to the relief circuit 18 and supplied to the hydraulic motor 38. The pressure of is less than the predetermined pressure (S15). Therefore, the tension generated in the wound wire 42 is reduced, and the hanging metal fitting 41 is prevented from being damaged.
 制御プログラム54は、上記対応テーブルのA、B、C、及びD(閾値)を用いてワイヤ掛数を特定するから(S31)、演算などによってワイヤ掛数を特定するよりも容易にワイヤ掛数を特定することができる。 Since the control program 54 specifies the wire hooking number using A, B, C, and D (threshold value) of the corresponding table (S31), the wire hooking number is easier than specifying the wire hooking number by calculation or the like. Can be identified.
[変形例1] [Modification 1]
 上述の実施形態では、ブーム32が第1所定角度だけ倒伏されてワイヤ掛数が特定された。本変形例では、ブーム32が第1所定角度だけ起立されてワイヤ掛数が特定される。なお、以下で説明される構成以外の構成は、実施形態で説明された構成と同一である。また、実施形態で説明された構成及び処理と同一の構成及び処理については、実施形態と同一の符号を付して説明が省略される。 In the above-described embodiment, the boom 32 is laid down by a first predetermined angle, and the number of wires hooked is specified. In this modification, the boom 32 is erected by a first predetermined angle to specify the number of wire hooks. The configurations other than the configurations described below are the same as the configurations described in the embodiments. Further, the same configurations and processes as those described in the embodiments are designated by the same reference numerals as those in the embodiments, and the description thereof will be omitted.
 メモリ52は、図5が示す第3所定角度及び所定回転量をさらに記憶している。第3所定角度は、第1所定角度以上の角度である。所定回転量は、後述のステップS43(図9参照)においてワイヤドラム44を回転させる回転量を示す。所定回転量は、例えば、ドラムセンサ28が検出するパルスの個数を示す定数である。 The memory 52 further stores the third predetermined angle and the predetermined rotation amount shown in FIG. The third predetermined angle is an angle equal to or higher than the first predetermined angle. The predetermined rotation amount indicates the rotation amount for rotating the wire drum 44 in step S43 (see FIG. 9) described later. The predetermined rotation amount is, for example, a constant indicating the number of pulses detected by the drum sensor 28.
 制御プログラム54は、図6及び図7が示すワイヤ掛数特定処理に代えて、図9及び図10が示すワイヤ掛数特定処理を実行する。まず、制御プログラム54は、ステップS11の処理の実行後、ブーム32が所定起立位置にあるか否かを判断する(S41)。具体的には、制御プログラム54は、ステップS11で取得したブーム32の起伏角度θが、上記全起立角度φに一致するか否かを判断する。 The control program 54 executes the wire hooking number specifying process shown in FIGS. 9 and 10 instead of the wire hooking number specifying process shown in FIGS. 6 and 7. First, the control program 54 determines whether or not the boom 32 is in the predetermined standing position after executing the process of step S11 (S41). Specifically, the control program 54 determines whether or not the undulation angle θ of the boom 32 acquired in step S11 matches the total standing angle φ.
 制御プログラム54は、それ以上起立させることができない所定起立位置にブーム32があると判断すると(S41:Yes)、上記第3所定角度(≧第1所定角度)だけブーム32を倒伏させる(S42)。具体的には、制御プログラム54は、起伏シリンダ36を縮小させるとともに起伏角センサ27が検出するブーム32の起伏角度θを定期的に取得し、取得した起伏角度θと所定起立角度φとの差(φ-θ)が第3所定角度に達したことに基づいて、起伏シリンダ36の縮小を停止させる。なお、第3所定角度は、第2所定角度と同一の角度であってもよい。ステップS42の処理は、特許請求の範囲に記載された「倒伏処理」に相当する。 When the control program 54 determines that the boom 32 is in a predetermined standing position that cannot be further erected (S41: Yes), the control program 54 causes the boom 32 to lie down by the third predetermined angle (≧ first predetermined angle) (S42). .. Specifically, the control program 54 periodically acquires the undulation angle θ of the boom 32 detected by the undulation angle sensor 27 while reducing the undulation cylinder 36, and the difference between the acquired undulation angle θ and the predetermined standing angle φ. Based on the fact that (φ−θ) reaches the third predetermined angle, the reduction of the undulating cylinder 36 is stopped. The third predetermined angle may be the same as the second predetermined angle. The process of step S42 corresponds to the "falling process" described in the claims.
 制御プログラム54は、ブーム32が所定起立位置にないと判断すると(S41:No)、或いはステップS42の処理の実行後、ステップS15からS20までの処理を実行する。すなわち、制御プログラム54は、上記通常回路からリリーフ回路18に作動油の流路を切り替えた後(S15)、ワイヤドラム44の回転が停止するまでワイヤ42を巻き上げ(S16~S19)、次いで、ブーム32の起伏角度(第1取得角度θ1)を取得する(S20)。ステップS16からS19までの処理は、特許請求の範囲に記載された「第2巻上処理」に相当する。 The control program 54 determines that the boom 32 is not in the predetermined standing position (S41: No), or executes the processes of steps S15 to S20 after executing the process of step S42. That is, the control program 54 winds up the wire 42 until the rotation of the wire drum 44 stops (S16 to S19) after switching the flow path of the hydraulic oil from the normal circuit to the relief circuit 18 (S15), and then the boom. The undulation angle (first acquisition angle θ1) of 32 is acquired (S20). The processing from steps S16 to S19 corresponds to the "second volume processing" described in the claims.
 制御プログラム54は、油圧モータ38を通じて、上記所定回転量(図5参照)だけ、ワイヤ42が繰り出される向きにワイヤドラム44を回転させる(S43)。具体的には、制御プログラム54は、油圧モータ38を通じてワイヤドラム44を回転させるとともに、ドラムセンサ28が出力するパルス数をカウントし、カウント値が上記所定回転量に到達したことに基づいて、油圧モータ38の駆動を停止させる。ワイヤドラム44が所定回転量だけ回転されてワイヤ42が繰り出されることにより、ステップS45でブーム32が起立される際に、ワイヤ42が張って掛け金具41が破損することが防止される。ステップS43の処理は、特許請求の範囲に記載された「繰出処理」に相当する。なお、ステップS43の処理は、次のステップS44の処理の後に実行されてもよい。すなわち、作動油の流路がリリーフ回路18から上記通常回路に戻されてからワイヤ42が繰り出されてもよい。 The control program 54 rotates the wire drum 44 in the direction in which the wire 42 is unwound by the predetermined rotation amount (see FIG. 5) through the hydraulic motor 38 (S43). Specifically, the control program 54 rotates the wire drum 44 through the hydraulic motor 38, counts the number of pulses output by the drum sensor 28, and hydraulic pressure is based on the count value reaching the predetermined rotation amount. The drive of the motor 38 is stopped. By rotating the wire drum 44 by a predetermined rotation amount and feeding out the wire 42, when the boom 32 is erected in step S45, the wire 42 is stretched and the hanging metal fitting 41 is prevented from being damaged. The process of step S43 corresponds to the "delivery process" described in the claims. The process of step S43 may be executed after the process of the next step S44. That is, the wire 42 may be unwound after the flow path of the hydraulic oil is returned from the relief circuit 18 to the normal circuit.
 次に、制御プログラム54は、次のステップS45でブーム32を起立できるように、リリーフ回路18から上記通常回路に作動油の流路を切り替える(S44)。詳しく説明すると、リリーフ回路18は、油圧モータ38に加え、起伏シリンダ36に供給される作動油の圧力を所定圧力未満にする。したがって、作動油の流路がリリーフ回路18に切り替えられたままであると、次のステップS45においてブーム32を起立させることができるだけの圧力の作動油が起伏シリンダ36に供給されない。制御プログラム54は、ブーム32を起立できるように、リリーフ回路18から上記通常回路に作動油の流路を戻す。なお、リリーフ回路18が、油圧モータ38のみについて作動油の圧力を所定圧力未満にする回路である場合、ステップS43の処理は実行されなくてもよい。 Next, the control program 54 switches the flow path of the hydraulic oil from the relief circuit 18 to the normal circuit so that the boom 32 can be raised in the next step S45 (S44). More specifically, the relief circuit 18 sets the pressure of the hydraulic oil supplied to the undulating cylinder 36 in addition to the hydraulic motor 38 to less than a predetermined pressure. Therefore, if the flow path of the hydraulic oil is still switched to the relief circuit 18, the hydraulic oil having a pressure sufficient to raise the boom 32 in the next step S45 is not supplied to the undulating cylinder 36. The control program 54 returns the hydraulic oil flow path from the relief circuit 18 to the normal circuit so that the boom 32 can stand up. When the relief circuit 18 is a circuit that makes the pressure of the hydraulic oil less than a predetermined pressure only for the hydraulic motor 38, the process of step S43 may not be executed.
 制御プログラム54は、油圧モータ38を駆動させて、ブーム32の起立を開始させるとともに(S45)、起伏角センサ27が検出するブーム32の起伏角度θ(以下、第2取得角度θ2と記載する)を取得する(S46)。 The control program 54 drives the hydraulic motor 38 to start the erection of the boom 32 (S45), and the undulation angle θ of the boom 32 detected by the undulation angle sensor 27 (hereinafter, referred to as a second acquisition angle θ2). (S46).
 制御プログラム54は、第1取得角度θ1と第2取得角度θ2との差(=θ2-θ1)が上記第1所定角度に達したか否かを判断する(S47)。すなわち、制御プログラム54は、ブーム32が第1所定角度だけ起立したか否かを判断する(S47)。制御プログラム54は、ブーム32が第1所定角度だけ起立していないと判断すると(S47:No)、ステップS46以降の処理を再度実行する。なお、繰り返し実行されるステップS46の処理は、所定の時間間隔で行われる。すなわち、所定の時間ごとに、ブーム32が第1所定角度だけ起立されたか否かが判断される。 The control program 54 determines whether or not the difference (= θ2-θ1) between the first acquisition angle θ1 and the second acquisition angle θ2 has reached the first predetermined angle (S47). That is, the control program 54 determines whether or not the boom 32 has stood up by the first predetermined angle (S47). When the control program 54 determines that the boom 32 is not upright by the first predetermined angle (S47: No), the control program 54 re-executes the processes after step S46. The process of step S46, which is repeatedly executed, is performed at predetermined time intervals. That is, it is determined whether or not the boom 32 is erected by the first predetermined angle at predetermined time intervals.
 制御プログラム54は、ブーム32が第1所定角度だけ起立したと判断すると(S47:Yes)、起伏シリンダ36の伸長を停止させ、ブーム32の起立を終了する(S48)。第1所定角度だけブーム32が起立されることにより、第1所定角度に応じた長さだけワイヤ42の繰り出し長さが変化する(短くなる)。ステップS45からS48までの処理は、特許請求の範囲に記載された「起伏処理」に相当する。 When the control program 54 determines that the boom 32 has stood up by the first predetermined angle (S47: Yes), the control program 54 stops the extension of the undulating cylinder 36 and ends the standing of the boom 32 (S48). When the boom 32 is erected by the first predetermined angle, the feeding length of the wire 42 changes (shortens) by the length corresponding to the first predetermined angle. The process from steps S45 to S48 corresponds to the "undulation process" described in the claims.
 次に、制御プログラム54は、ステップS26(図7参照)においてワイヤ42を巻き上げる際に掛け金具41が破損しないように、作動油の流路を上記通常回路からリリーフ回路18に再度切り替える(S49)。ステップS49の処理は、特許請求の範囲に記載された「切替処理」に相当する。 Next, the control program 54 switches the flow path of the hydraulic oil from the normal circuit to the relief circuit 18 again so that the hook 41 is not damaged when the wire 42 is wound up in step S26 (see FIG. 7) (S49). .. The process of step S49 corresponds to the "switching process" described in the claims.
 次に、制御プログラム54は、図10が示すステップS25からS30までの処理を実行する。すなわち、制御プログラム54は、パルス数のカウントを開始するとともに(S25)、油圧モータ38を通じてワイヤドラム44を駆動してワイヤ42を巻き上げ(S26~S29)、巻き上げたワイヤ42の長さを示す総出力パルス数を取得する(S30)。 Next, the control program 54 executes the processes from steps S25 to S30 shown in FIG. That is, the control program 54 starts counting the number of pulses (S25), drives the wire drum 44 through the hydraulic motor 38 to wind the wire 42 (S26 to S29), and indicates the total length of the wound wire 42. Acquire the number of output pulses (S30).
 制御プログラム54は、メモリ52に記憶された上記所定回転量と、取得した総出力パルス数との差を算出する(S50)。所定回転量と総出力パルス数との差は、ブーム32を第1所定角度だけ起立させたことによって変化したワイヤ42の繰り出し長さの変化分に相当する。制御プログラム54は、所定回転量と総出力パルス数との差と、上記対応テーブル(図8参照)とに基づいて、ワイヤ掛数を特定する(S31)。そして、制御プログラム54は、ステップS32からS36までの処理を実行して、ワイヤ掛数特定処理を終了する。 The control program 54 calculates the difference between the predetermined rotation amount stored in the memory 52 and the acquired total number of output pulses (S50). The difference between the predetermined rotation amount and the total number of output pulses corresponds to the change in the feeding length of the wire 42 changed by raising the boom 32 by the first predetermined angle. The control program 54 specifies the number of wire hooks based on the difference between the predetermined rotation amount and the total number of output pulses and the corresponding table (see FIG. 8) (see FIG. 8). Then, the control program 54 executes the processes from steps S32 to S36 to end the wire multiplication number specifying process.
[変形例1の作用効果] [Action and effect of variant 1]
 制御プログラム54は、ブーム32を第1所定角度だけ起立させてワイヤ42の繰り出し長さを変化させ、ワイヤ掛数を特定することができる。 The control program 54 can specify the number of wires hooked by raising the boom 32 by a first predetermined angle to change the feeding length of the wire 42.
 また、制御プログラム54は、ブーム32を起立させる前に上記所定回転量に応じた所定の長さだけワイヤ42を繰り出させるから、ブーム32を起立させる際に掛け金具41が破損することが防止される。 Further, since the control program 54 pays out the wire 42 by a predetermined length corresponding to the predetermined rotation amount before the boom 32 is raised, it is possible to prevent the hanging metal fitting 41 from being damaged when the boom 32 is raised. To.
 また、制御プログラム54は、上記所定回転量に応じた所定の長さだけワイヤ42を繰り出す前に、ワイヤ42が張るまでワイヤドラム44にワイヤ42を巻き上げさせる。したがって、ワイヤ42が弛んだ状態からワイヤ42が繰り出される場合よりも、ブーム32を第1所定角度だけ起立させることによって変化したワイヤ42の繰り出し長さの変化量を精度良く検出することができる。その結果、ワイヤ掛数の特定の精度が向上する。 Further, the control program 54 winds the wire 42 on the wire drum 44 until the wire 42 is stretched before the wire 42 is unwound by a predetermined length corresponding to the predetermined rotation amount. Therefore, the amount of change in the feeding length of the wire 42 changed by raising the boom 32 by the first predetermined angle can be detected more accurately than in the case where the wire 42 is unwound from the loosened state of the wire 42. As a result, the specific accuracy of wire hooking is improved.
 また、制御プログラム54は、ブーム32が所定起立位置にあってそれ以上ブーム32を起立させることができない場合、ブーム32を第3所定角度だけ倒した後、ブーム32を第1所定角度だけ起立させる。したがって、ブーム32の初期位置に拘わらず、ブーム32を起立させてワイヤ掛数を特定することができる。 Further, when the boom 32 is in a predetermined standing position and the boom 32 cannot be raised any more, the control program 54 tilts the boom 32 by a third predetermined angle and then raises the boom 32 by a first predetermined angle. .. Therefore, regardless of the initial position of the boom 32, the boom 32 can be erected to specify the number of wires hooked.
[変形例2] [Modification 2]
 本変形例では、ワイヤ掛数を特定するための上記テーブルのA、B、C、Dなどの閾値の値を、ステップS20で取得した第1取得角度θ1等に基づいて制御プログラム54が生成する例が説明される。なお、以下で説明される構成及び処理以外の構成及び処理は、実施形態で説明された構成及び処理と同一である。 In this modification, the control program 54 generates threshold values such as A, B, C, and D in the above table for specifying the number of wires hooked based on the first acquisition angle θ1 acquired in step S20. An example is explained. The configurations and processes other than the configurations and processes described below are the same as the configurations and processes described in the embodiments.
 ブーム32が格納位置近くにある場合から第1所定角度だけ起伏された場合と、ブーム32が所定起立位置近くにある場合から第1所定角度だけ起伏された場合とでは、ワイヤ42の繰り出し長さの変化量が異なる。すなわち、ブーム32が第1所定角度だけ起伏した場合のワイヤ42の繰り出し長さの変化量は、ブーム32が第1所定角度だけ起伏される前のブーム32の起伏角度である第1取得角度θ1に依存する。したがって、ワイヤ掛数の特定の精度を高めるために、上記テーブルの閾値の値を、第1取得角度θ1に応じた値とすることが望ましい。 The extension length of the wire 42 is the case where the boom 32 is undulated by the first predetermined angle from the case where the boom 32 is near the storage position and the case where the boom 32 is undulated by the first predetermined angle from the case where the boom 32 is near the predetermined standing position. The amount of change is different. That is, the amount of change in the feeding length of the wire 42 when the boom 32 is undulated by the first predetermined angle is the first acquisition angle θ1 which is the undulation angle of the boom 32 before the boom 32 is undulated by the first predetermined angle. Depends on. Therefore, in order to improve the specific accuracy of the wire hooking number, it is desirable that the threshold value in the above table is set to a value corresponding to the first acquisition angle θ1.
 また、ワイヤ掛数の最大値が「4」である滑車機構60や、ワイヤ掛数の最大値が「8」である滑車機構60など、種々の滑車機構60がクレーン車10に採用され得る。したがって、制御プログラム54が、ワイヤ掛数の最大値に基いて上記テーブルの閾値を決定することができれば、滑車機構60の種類に拘わらず、制御プログラム54を使用することができる。すなわち、制御プログラム54の汎用性が向上する。 Further, various pulley mechanisms 60 such as the pulley mechanism 60 in which the maximum value of the number of wire hooks is "4" and the pulley mechanism 60 in which the maximum value of the number of wire hooks is "8" can be adopted in the crane vehicle 10. Therefore, if the control program 54 can determine the threshold value in the table based on the maximum value of the number of wires hooked, the control program 54 can be used regardless of the type of the pulley mechanism 60. That is, the versatility of the control program 54 is improved.
 ワイヤ掛数の特定の精度を高めるため、かつ制御プログラム54の汎用性を高めるため、ワイヤ掛数の最大値N及び第1取得角度θ1が入力されることによって閾値を生成するクラスがメモリ52に予め記憶される。 In order to improve the specific accuracy of the wire hooking number and to improve the versatility of the control program 54, the memory 52 has a class that generates a threshold value by inputting the maximum value N of the wire hooking number and the first acquisition angle θ1. It is stored in advance.
 上記クラスについて詳しく説明する。ワイヤ掛数Wが「1」である場合、ワイヤ42の繰り出し長さの理論値は、全縮小状態でのブーム32の長さ、ブーム32の起伏中心に対する掛け金具41の位置、及びブーム32の起伏角度θとに基づいて表すことができる。ブームの長さは固定値であり、ブーム32の起伏中心に対する掛け金具41の位置は固定位置である。したがって、ワイヤ掛数Wが「1」である場合のワイヤ42の繰り出し長さの理論値は、起伏角度θを変数として、X(θ)として表すことができる。このX(θ)を用いて、起伏角度θ1から起伏角度θ2(=θ1±第1所定角度)まで、第1所定角度だけブーム32を起伏させた場合のワイヤの繰り出し長さの変化量の理論値dX(θ)は、X(θ1)-X(θ2)の絶対値と表すことができる。 The above class will be explained in detail. When the wire hooking number W is "1", the theoretical value of the feeding length of the wire 42 is the length of the boom 32 in the fully reduced state, the position of the hanging bracket 41 with respect to the undulating center of the boom 32, and the boom 32. It can be expressed based on the undulation angle θ. The length of the boom is a fixed value, and the position of the hanging bracket 41 with respect to the undulating center of the boom 32 is a fixed position. Therefore, the theoretical value of the feeding length of the wire 42 when the wire multiplication number W is “1” can be expressed as X (θ) with the undulation angle θ as a variable. Using this X (θ), the theory of the amount of change in the wire feeding length when the boom 32 is undulated by the first predetermined angle from the undulation angle θ1 to the undulation angle θ2 (= θ1 ± first predetermined angle). The value dX (θ) can be expressed as an absolute value of X (θ1) −X (θ2).
 そうすると、ワイヤ掛数が「W」である場合、単位角度dθ(=第1所定角度)だけブーム32が起伏された場合のワイヤの繰り出し長さの変化量の理論値dX(θ,W)は、W×dX(θ)となる。そして、閾値を、dX(θ,W)とdX(θ,W+2)との平均値に応じた値とすると、閾値Aは、A=K×{dX(θ,W=0)+dX(θ,W=2)}/2と算出することができる。「K」は、ワイヤ42の繰り出し長さをパルス数に変換する変換式である。同様にして、閾値Bは、B=K×{dX(θ,W=2)+dX(θ,W=4)}/2と算出することができ、閾値Cは、C=K×{dX(θ,W=4)+dX(θ,W=6)}/2と算出することができ、閾値Dは、D=K×{dX(θ,W=6)+dX(θ,W=8)}/2と算出することができる。上記クラスは、例えば、関数X(θ)、第1取得角度θ1、及びワイヤ掛数の最大値Nから閾値A、B、C、D等を算出する演算式である。或いは、上記クラスは、引数として起伏角度θ1及び最大値Nとを与えられることによって、戻り値として閾値A、B、C、D等を出力する関数である。なお、ワイヤ掛数の最大値Nは、クレーン車10の製造時において、採用される滑車機構60の種類に応じて、メモリ52に予め記憶される。 Then, when the number of wires hooked is "W", the theoretical value dX (θ, W) of the amount of change in the wire feeding length when the boom 32 is undulated by the unit angle dθ (= first predetermined angle) is , W × dX (θ). Then, assuming that the threshold value is a value corresponding to the average value of dX (θ, W) and dX (θ, W + 2), the threshold value A is A = K × {dX (θ, W = 0) + dX (θ, θ,). It can be calculated as W = 2)} / 2. “K” is a conversion formula that converts the feeding length of the wire 42 into the number of pulses. Similarly, the threshold B can be calculated as B = K × {dX (θ, W = 2) + dX (θ, W = 4)} / 2, and the threshold C is C = K × {dX ( It can be calculated as θ, W = 4) + dX (θ, W = 6)} / 2, and the threshold value D is D = K × {dX (θ, W = 6) + dX (θ, W = 8)}. It can be calculated as / 2. The above class is, for example, an arithmetic expression for calculating threshold values A, B, C, D, etc. from the function X (θ), the first acquisition angle θ1, and the maximum value N of the wire multiplication number. Alternatively, the above class is a function that outputs threshold values A, B, C, D and the like as return values by being given an undulation angle θ1 and a maximum value N as arguments. The maximum value N of the number of wires hooked is stored in advance in the memory 52 according to the type of the pulley mechanism 60 adopted at the time of manufacturing the crane wheel 10.
 制御プログラム54は、第1取得角度θ1を取得するステップS20の実行後であって、ワイヤ掛数を特定するステップS31の実行前に、第1取得角度θ1及び上記クラスに基づいて閾値を生成する処理を実行する。そして、生成した閾値を用いて、ステップS31において、ワイヤ掛数を特定する。制御プログラム54が、第1取得角度θ1に基づいて閾値を生成する処理は、特許請求の範囲に記載された「閾値生成処理」に相当する。 The control program 54 generates a threshold value based on the first acquisition angle θ1 and the above class after the execution of step S20 for acquiring the first acquisition angle θ1 and before the execution of step S31 for specifying the wire hooking number. Execute the process. Then, in step S31, the wire hooking number is specified using the generated threshold value. The process in which the control program 54 generates a threshold value based on the first acquisition angle θ1 corresponds to the “threshold value generation process” described in the claims.
[変形例2の作用効果] [Action and effect of variant 2]
 本変形例では、ブーム32を第1所定角度だけ起伏させる前のブーム32の起伏角度である第1取得角度θ1を用いて閾値を生成するので、当該閾値が定数としてメモリ52に予め記憶されている場合に比べ、ワイヤ掛数の特定の精度が高くなる。 In this modification, since the threshold value is generated using the first acquisition angle θ1 which is the undulation angle of the boom 32 before the boom 32 is undulated by the first predetermined angle, the threshold value is stored in advance in the memory 52 as a constant. The specific accuracy of wire hooking is higher than in the case of.
 また、本変形例では、制御プログラム54は、上記クラスによって、ワイヤ掛数の最大値Nに基づいて適正な個数の閾値を決定する。したがって、制御プログラム54は、ワイヤ掛数の最大値が相違する種々の滑車機構60に共通して使用され得る。 Further, in this modification, the control program 54 determines an appropriate number of threshold values based on the maximum value N of the number of wires hooked according to the above class. Therefore, the control program 54 can be commonly used for various pulley mechanisms 60 that differ in the maximum number of wires.
 なお、ワイヤ掛数が2ずつ変化する滑車機構60の場合を例に上記クラスの説明がされたが、上記クラスは、ワイヤ掛数が1ずつ変化する滑車機構60に対応して閾値を生成するものであってもよい。 The above class has been described by taking the case of the pulley mechanism 60 in which the number of wire hooks changes by two as an example, but the above class generates a threshold value corresponding to the pulley mechanism 60 in which the number of wire hooks changes by one. It may be a thing.
 また、上記クラスは、ワイヤ掛数の最大値Nと第2取得角度θ2(図6のS22参照)とから閾値を生成するものであってもよい。或いは、上記クラスは、ワイヤ掛数の最大値Nと、第1取得角度θ1及び第2取得角度θ2とから閾値を生成するものであってもよい。なお、第2取得角度θ2=第1取得角度θ1±第1所定角度である。 Further, the above class may generate a threshold value from the maximum value N of the number of wires hooked and the second acquisition angle θ2 (see S22 in FIG. 6). Alternatively, the above class may generate a threshold value from the maximum value N of the number of wires hooked and the first acquisition angle θ1 and the second acquisition angle θ2. The second acquisition angle θ2 = the first acquisition angle θ1 ± the first predetermined angle.
[変形例3] [Modification 3]
 本変形例では、ブーム32の起伏角度に応じた複数種類の対応テーブル(図11参照)をメモリ52が記憶する例が説明される。なお、以下で説明される構成及び処理以外の構成及び処理は、実施形態で説明された構成及び処理と同一である。 In this modification, an example in which the memory 52 stores a plurality of types of correspondence tables (see FIG. 11) according to the undulation angle of the boom 32 will be described. The configurations and processes other than the configurations and processes described below are the same as the configurations and processes described in the embodiments.
 図11が示すように、メモリ52は、第1の対応テーブル及び第2の対応テーブルを予め記憶する。第1の対応テーブルは、ブーム32の起伏角度θが0以上α(=40°)未満である場合の総出力パルス数とワイヤ掛数との対応を示すテーブルである。なお、αは40°以外の角度であってもよい。また、図示例では、第1の対応テーブルは、実施形態で説明された対応テーブルと同一である。 As shown in FIG. 11, the memory 52 stores the first correspondence table and the second correspondence table in advance. The first correspondence table is a table showing the correspondence between the total number of output pulses and the number of wire hooks when the undulation angle θ of the boom 32 is 0 or more and less than α (= 40 °). In addition, α may have an angle other than 40 °. Further, in the illustrated example, the first correspondence table is the same as the correspondence table described in the embodiment.
 第2の対応テーブルは、ブーム32の起伏角度θがα(=40°)以上φ以下である場合の総出力パルス数とワイヤ掛数との対応を示すテーブルである。第2対応テーブルにおけるE、F、G、及びHは、A、B、C、及びDと同様に定数である。E、F、G、及びHは、特許請求の範囲に記載された「閾値」に相当する。閾値「A、B、C、D」と閾値「E、F、G、H」とは、特許請求の範囲に記載された「上記ブームの起伏角度に応じた複数の上記閾値」に相当する。 The second correspondence table is a table showing the correspondence between the total number of output pulses and the number of wire hooks when the undulation angle θ of the boom 32 is α (= 40 °) or more and φ or less. E, F, G, and H in the second correspondence table are constants like A, B, C, and D. E, F, G, and H correspond to the "threshold" described in the claims. The threshold values "A, B, C, D" and the threshold values "E, F, G, H" correspond to "a plurality of the above threshold values according to the undulation angle of the boom" described in the claims.
 制御プログラム54は、ワイヤ掛数を特定するステップS31(図7参照)において、以下の処理を実行する。制御プログラム54は、ステップS11(図6参照)で取得したブーム32の起伏角度θが、上記α(=40°)未満であるか否かを判断する。制御プログラム54は、起伏角度θがゼロ以上かつ上記α未満であると判断すると、第1の対応テーブルを用いることに決定する。制御プログラム54は、起伏角度θが上記α以上かつ上記φ以下であると判断すると、第2の対応テーブルを用いることに決定する。そして、制御プログラム54は、決定した対応テーブルを用いて、上記実施形態と同様にしてワイヤ掛数を特定する。 The control program 54 executes the following processing in step S31 (see FIG. 7) for specifying the number of wires to be hooked. The control program 54 determines whether or not the undulation angle θ of the boom 32 acquired in step S11 (see FIG. 6) is less than α (= 40 °). When the control program 54 determines that the undulation angle θ is zero or more and less than α, it decides to use the first correspondence table. When the control program 54 determines that the undulation angle θ is equal to or greater than the above α and equal to or less than the above φ, the control program 54 decides to use the second correspondence table. Then, the control program 54 uses the determined correspondence table to specify the number of wires hooked in the same manner as in the above embodiment.
 なお、制御プログラム54は、対応テーブルを決定するためのブーム32の起伏角度θは、ブーム32を起伏させる前に取得してもよいし(S11)、ブーム32を起伏させた後(S24の後)であって、ワイヤ掛数を特定する前(S31の前)に取得してもよい。 In the control program 54, the undulation angle θ of the boom 32 for determining the corresponding table may be acquired before the boom 32 is undulated (S11), or after the boom 32 is undulated (after S24). ), And may be acquired before specifying the number of wires hooked (before S31).
 本変形例では、第1の対応テーブルと第2の対応テーブルとの2種類の対応テーブルがメモリ52に記憶された例が説明されたが、3種類以上の対応テーブルがメモリ52に記憶されていてもよい。 In this modification, an example in which two types of correspondence tables, a first correspondence table and a second correspondence table, are stored in the memory 52 has been described, but three or more types of correspondence tables are stored in the memory 52. You may.
[変形例3の作用効果] [Action and effect of variant 3]
 本変形例では、ブーム32が格納位置に近い位置から第1所定角度だけ起伏された場合と、ブーム32が全起立位置に近い位置から第1所定角度だけ起伏された場合とで、異なる対応テーブルが用いられてワイヤ掛数が特定される。したがって、上記総出力パルス数の検出の精度が向上する。その結果、ワイヤ掛数の特定の精度が向上する。 In this modification, different correspondence tables are used depending on whether the boom 32 is undulated by a first predetermined angle from a position close to the retracted position and a case where the boom 32 is undulated by a first predetermined angle from a position close to the fully upright position. Is used to specify the number of wire hooks. Therefore, the accuracy of detecting the total number of output pulses is improved. As a result, the specific accuracy of wire hooking is improved.
 また、本変形例では、上記変形例2に比べ、制御プログラム54のプログラム容量及び処理負担を低減することができる。 Further, in this modification, the program capacity and processing load of the control program 54 can be reduced as compared with the above modification 2.
[その他の変形例] [Other variants]
 上述の実施形態では、ワイヤ42は、ブーム32が第1所定角度だけ倒伏される前に、ワイヤドラム44の回転が停止するまでワイヤ42が巻き上げられる例が説明された。しかしながら、作業者が操縦装置15を操作して、ワイヤ42が張った状態にしてからワイヤ掛数特定処理の実行を指示する場合、ワイヤ42を張らせるステップS16からS19までの処理は、実行されなくてもよい。 In the above-described embodiment, an example has been described in which the wire 42 is wound up until the rotation of the wire drum 44 is stopped before the boom 32 is laid down by the first predetermined angle. However, when the operator operates the control device 15 to instruct the execution of the wire hooking number specifying process after the wire 42 is stretched, the processes from steps S16 to S19 for stretching the wire 42 are executed. It does not have to be.
 また、上述の実施形態では、制御プログラム54は、ブーム32が格納位置にあってブーム32を第2所定角度だけ起立させる前に、所定長さだけワイヤ42を繰り出させている(S13)。しかしながら、作業者が操縦装置15を操作して十分な長さだけワイヤ42を繰り出させる場合、ステップS13の処理は実行されなくてもよい。 Further, in the above-described embodiment, the control program 54 pays out the wire 42 by a predetermined length before the boom 32 is in the retracted position and the boom 32 is raised by the second predetermined angle (S13). However, when the operator operates the control device 15 to pay out the wire 42 by a sufficient length, the process of step S13 may not be executed.
10・・・クレーン車
11・・・走行体
12・・・クレーン装置
18・・・リリーフ回路
19・・・リリーフバルブ
24・・・油圧供給装置
27・・・起伏角センサ
28・・・ドラムセンサ
31・・・旋回台
32・・・ブーム
36・・・起伏シリンダ
38・・・油圧モータ
39・・・ウインチ
40・・・吊荷用フック
41・・・掛け金具
42・・・ワイヤ
44・・・ワイヤドラム
50・・・コントローラ
52・・・メモリ
54・・・制御プログラム
10 ... Crane car 11 ... Traveling body 12 ... Crane device 18 ... Relief circuit 19 ... Relief valve 24 ... Hydraulic supply device 27 ... Rough angle sensor 28 ... Drum sensor 31 ... Swing table 32 ... Boom 36 ... Undulating cylinder 38 ... Hydraulic motor 39 ... Winch 40 ... Crane hook 41 ... Hanging bracket 42 ... Wire 44 ...・ Wire drum 50 ・ ・ ・ Controller 52 ・ ・ ・ Memory 54 ・ ・ ・ Control program

Claims (9)

  1.  台座と、
     当該台座に支持され、格納位置と全起立位置との間で起伏動作可能なブームと、
     上記ブームの先端部に巻きかけられたワイヤを巻き取り或いは繰り出すワイヤドラムを有するウインチと、
     上記ワイヤに設けられた吊荷用フックと、
     上記ブームを起伏させる第1アクチュエータと、
     上記ウインチを駆動する第2アクチュエータと、
     上記台座に設けられており、上記吊荷用フックが係合される係止部材と、
     上記ブームの起伏角度に応じた検出値を出力する起伏角センサと、
     上記ワイヤの長さに応じた検出値を出力するワイヤセンサと、
     メモリを有するコントローラと、を備え、
     上記コントローラは、
     上記ブームを第1所定角度だけ起伏させる起伏処理と、
     所定の張力状態まで上記ワイヤを巻き上げる第1巻上処理と、
     上記第1巻上処理で巻き上げた上記ワイヤの長さに応じた検出値であって、上記ワイヤセンサが出力した当該検出値を取得する取得処理と、
     上記取得処理で取得した上記検出値に基づいてワイヤ掛数を特定する特定処理と、
     上記ワイヤ掛数を上記メモリに記憶させる記憶処理と、を実行する、クレーン装置。
    With the pedestal
    A boom that is supported by the pedestal and can move up and down between the retracted position and the fully upright position,
    A winch having a wire drum that winds up or unwinds the wire wound around the tip of the boom.
    The hanging hook provided on the above wire and
    The first actuator that raises and lowers the boom,
    The second actuator that drives the winch and
    A locking member provided on the pedestal to which the hanging hook is engaged, and
    An undulation angle sensor that outputs a detection value according to the undulation angle of the boom, and
    A wire sensor that outputs a detection value according to the length of the wire,
    With a controller with memory,
    The above controller
    The undulation process that undulates the boom by the first predetermined angle,
    The first winding process of winding the wire up to a predetermined tension state, and
    The acquisition process for acquiring the detection value output by the wire sensor, which is the detection value according to the length of the wire wound up in the first winding process,
    A specific process for specifying the number of wire hooks based on the detected value acquired in the above acquisition process, and a specific process for specifying the number of wires.
    A crane device that executes a storage process for storing the number of wires in the memory.
  2.  上記コントローラは、
     上記所定の張力状態まで上記ワイヤを巻き上げる第2巻上処理をさらに実行し、
     上記第2巻上処理の実行後に上記起伏処理を実行し、
     上記起伏処理において、上記ブームを倒伏させる、請求項1に記載のクレーン装置。
    The above controller
    Further, the second winding process of winding the wire to the predetermined tension state is further executed.
    After executing the second volume processing, the undulation process is executed.
    The crane device according to claim 1, wherein the boom is laid down in the undulation process.
  3.  上記コントローラは、
     上記起伏角センサが検出した検出値が示す起伏角度に基づいて上記ブームが上記格納位置にあると判断したことに応じて、上記ブームを上記第1所定角度以上の第2所定角度だけ起立させる起立処理をさらに実行し、
     上記起立処理の実行後、上記第2巻上処理を実行する、請求項2に記載のクレーン装置。
    The above controller
    In response to the determination that the boom is in the retracted position based on the undulation angle indicated by the detection value detected by the undulation angle sensor, the boom is erected by a second predetermined angle equal to or higher than the first predetermined angle. Do more processing,
    The crane device according to claim 2, wherein the second hoisting process is executed after the erecting process is executed.
  4.  上記コントローラは、
     上記所定の張力状態まで上記ワイヤを巻き上げる第2巻上処理と、
     上記第2巻上処理の実行後、上記ワイヤを所定長さだけ繰り出す繰出処理と、をさらに実行し、
     上記繰出処理の実行後に上記起伏処理を実行し、
     上記起伏処理において、上記ブームを起立させる、請求項1に記載のクレーン装置。
    The above controller
    The second winding process of winding the wire to the predetermined tension state and
    After executing the second winding process, the feeding process of feeding out the wire by a predetermined length is further executed.
    After executing the feeding process, the undulating process is executed, and the undulation process is executed.
    The crane device according to claim 1, wherein the boom is raised in the undulation process.
  5.  上記コントローラは、
     上記起伏角センサが検出した検出値が示す起伏角度に基づいて上記ブームが上記全起立位置にあると判断したことに応じて、上記第1所定角度以上の第3所定角度だけ上記ブームを倒伏させる倒伏処理をさらに実行し、
     上記倒伏処理の実行後、上記第2巻上処理を実行する、請求項4に記載のクレーン装置。
    The above controller
    Based on the undulation angle indicated by the detection value detected by the undulation angle sensor, the boom is tilted by a third predetermined angle equal to or higher than the first predetermined angle in response to the determination that the boom is in the all upright position. Perform further lodging processing and
    The crane device according to claim 4, wherein the second winding process is executed after the lodging process is executed.
  6.  上記第2アクチュエータに作動油を供給する油圧供給装置をさらに備えており、
     上記油圧供給装置は、上記第2アクチュエータに供給する作動油を所定圧力未満に低減するリリーフバルブを備えるリリーフ回路を有しており、
     上記コントローラは、
     流路を上記リリーフ回路に切り替える切替処理を実行した後、上記第1巻上処理を実行する、請求項1から5のいずれかに記載のクレーン装置。
    It is further equipped with a hydraulic pressure supply device that supplies hydraulic oil to the second actuator.
    The hydraulic pressure supply device has a relief circuit provided with a relief valve that reduces the hydraulic oil supplied to the second actuator to less than a predetermined pressure.
    The above controller
    The crane device according to any one of claims 1 to 5, wherein the first hoisting process is executed after the switching process of switching the flow path to the relief circuit is executed.
  7.  上記コントローラは、
     上記特定処理において、上記検出値に応じた値が上記メモリに記憶された閾値以上か否かに基づいてワイヤ掛数を特定する、請求項1から5のいずれかに記載のクレーン装置。
    The above controller
    The crane device according to any one of claims 1 to 5, wherein in the specific process, the number of wires is specified based on whether or not the value corresponding to the detected value is equal to or higher than the threshold value stored in the memory.
  8.  上記メモリは、上記ブームの起伏角度に応じた複数の上記閾値を記憶しており、
     上記コントローラは、
     上記特定処理において、上記起伏処理の実行前或いは実行後における上記起伏角センサが検出した検出値に対応する上記閾値を用いてワイヤ掛数を特定する、請求項7に記載のクレーン装置。
    The memory stores a plurality of the above threshold values according to the undulation angle of the boom.
    The above controller
    The crane device according to claim 7, wherein in the specific process, the number of wires is specified by using the threshold value corresponding to the detection value detected by the undulation angle sensor before or after the execution of the undulation process.
  9.  上記コントローラは、
     上記起伏処理を実行する前或いは実行した後に上記起伏角センサが出力した検出値である取得角度を取得する起伏角度取得処理と、
     上記取得角度に基づいて閾値を生成する閾値生成処理と、をさらに実行し、
     上記特定処理において、上記検出値に応じた値が上記閾値以上か否かに基づいてワイヤ掛数を特定する、請求項1から5のいずれかに記載のクレーン装置。
     
    The above controller
    The undulation angle acquisition process for acquiring the acquisition angle, which is the detection value output by the undulation angle sensor, before or after the undulation process is executed.
    Further executing the threshold value generation process of generating the threshold value based on the above acquisition angle,
    The crane device according to any one of claims 1 to 5, wherein in the specific process, the number of wire hooks is specified based on whether or not the value corresponding to the detected value is equal to or greater than the threshold value.
PCT/JP2021/037564 2020-11-18 2021-10-11 Crane device WO2022107495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-191735 2020-11-18
JP2020191735A JP7476769B2 (en) 2020-11-18 2020-11-18 Crane Equipment

Publications (1)

Publication Number Publication Date
WO2022107495A1 true WO2022107495A1 (en) 2022-05-27

Family

ID=81708840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037564 WO2022107495A1 (en) 2020-11-18 2021-10-11 Crane device

Country Status (2)

Country Link
JP (1) JP7476769B2 (en)
WO (1) WO2022107495A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930781A (en) * 1995-07-13 1997-02-04 Komatsu Ltd Drum lock safety device of winch, and control method thereof
JP2009107745A (en) * 2007-10-29 2009-05-21 Kobelco Cranes Co Ltd Detecting device for number of stretching turns
JP2019104551A (en) * 2017-12-08 2019-06-27 株式会社タダノ Mobile crane
JP2020050523A (en) * 2018-09-21 2020-04-02 リープヘル−ヴェルク エーインゲン ゲーエムベーハーLiebherr−Werk EhingenGmbH Method of calculating rope hanging number for pulley block
WO2020085314A1 (en) * 2018-10-22 2020-04-30 株式会社タダノ Crane device, method for determining number of falls, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930781A (en) * 1995-07-13 1997-02-04 Komatsu Ltd Drum lock safety device of winch, and control method thereof
JP2009107745A (en) * 2007-10-29 2009-05-21 Kobelco Cranes Co Ltd Detecting device for number of stretching turns
JP2019104551A (en) * 2017-12-08 2019-06-27 株式会社タダノ Mobile crane
JP2020050523A (en) * 2018-09-21 2020-04-02 リープヘル−ヴェルク エーインゲン ゲーエムベーハーLiebherr−Werk EhingenGmbH Method of calculating rope hanging number for pulley block
WO2020085314A1 (en) * 2018-10-22 2020-04-30 株式会社タダノ Crane device, method for determining number of falls, and program

Also Published As

Publication number Publication date
JP7476769B2 (en) 2024-05-01
JP2022080590A (en) 2022-05-30

Similar Documents

Publication Publication Date Title
JP6673085B2 (en) crane
JP6747633B1 (en) Crane device, hanging number determination method and program
WO2020004038A1 (en) Crane and crane posture changing method
WO2022107495A1 (en) Crane device
CN114007977B (en) Controller, boom device, and crane
JP7299123B2 (en) Auxiliary device for horizontal movement of suspended load, crane equipped with same, method for horizontal movement of suspended load
JP6708986B2 (en) How to change the orientation of the crane and crane
JP7031315B2 (en) Height adjustment assist device, crane equipped with this and height adjustment method
JP6926691B2 (en) Movement range notification device
JP4788490B2 (en) Elevating mechanism of hoisting members
WO2022107494A1 (en) Controller, boom device, and crane truck
JP6708987B2 (en) How to change the orientation of the crane and crane
WO2022107493A1 (en) Controller, boom device, and mobile crane
JP5580710B2 (en) Crane lifting load deriving device
JP7439850B2 (en) Hook position calculation device
JP6558233B2 (en) Strut assembly assist device and strut assembly method
JP2021178731A (en) Crane device and crane vehicle
JP2011219213A (en) Crane
JPH08127491A (en) Hook position detecting device for crane
JP7485211B2 (en) Winding layer number estimation device and crane
JP2021195243A (en) crane
JP2003261287A (en) Work range limiting device for construction machine
US11772943B2 (en) Monitoring device for winch drum
WO2023176673A1 (en) Sheave device retracting and unfolding method
JPH0570086A (en) Constant-jib tilt angle control device for mobile crane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894369

Country of ref document: EP

Kind code of ref document: A1