WO2022106675A1 - Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes - Google Patents

Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes Download PDF

Info

Publication number
WO2022106675A1
WO2022106675A1 PCT/EP2021/082446 EP2021082446W WO2022106675A1 WO 2022106675 A1 WO2022106675 A1 WO 2022106675A1 EP 2021082446 W EP2021082446 W EP 2021082446W WO 2022106675 A1 WO2022106675 A1 WO 2022106675A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
mixture
filtration device
weight
filtration
Prior art date
Application number
PCT/EP2021/082446
Other languages
English (en)
Inventor
Damien Ponthenier
Béatrice Drevet
Malek BENMANSOUR
Séverine BAILLY
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP21810045.1A priority Critical patent/EP4247756A1/fr
Publication of WO2022106675A1 publication Critical patent/WO2022106675A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the invention relates to a process making it possible to reduce the contents of metals, oxygen and carbon, in a single melting and solidification cycle, of the micron particles of silicon in the solid mixture resulting from the cutting of silicon bricks into wafers (called also kerf), said method involving a device for filtering slag consisting of SiO2 and SiC.
  • the filtration system has the advantage of being able to adapt in particular to a standard industrial furnace for directional solidification DSS (Directional Solidification System) as used in the photovoltaic industry.
  • DSS Directional Solidification System
  • Photovoltaic cells are made from silicon wafers obtained by sawing silicon bricks.
  • the brick sawing step was traditionally carried out using a steel wire and an abrasive mixture, called slurry, made up of SiC particles about ten microns in diameter.
  • slurry an abrasive mixture
  • the dominant cutting technology is using diamond wires.
  • the sawing of silicon bricks generates material losses of the order of 30 to 40% due to the saw cut and this in the form of micron particles of silicon, also called kerf.
  • the recycling of this production scrap therefore represents an issue of cost reduction and loss of raw material.
  • Kerf has a much lower purity than silicon before cutting. Indeed, the kerf is highly contaminated with metals coming from the cutting wire as well as from the support on which the silicon brick is glued, which is generally a polymer containing hardening particles. In addition to metals, kerf also contains high carbon and oxygen contents, several percent by weight, from this same medium. as well as cutting fluid. In the case of slurry cutting, the kerf also contains carbon in the form of SiC particles.
  • kerf Without taking into account carbon and oxygen, kerf has a purity ranging from 98% to 99.9% by weight of silicon, and cannot be recycled as is in the field of photovoltaics which requires a higher purity. (at least 99.9999% by weight of silicon). For this application, the recycling of kerf therefore requires prior purification at a lower cost in order to reduce the contents of metallic elements, oxygen and carbon.
  • Acid attack does not significantly reduce the carbon and oxygen contents in the kerf, but other processes can reduce the concentration of these two elements.
  • Si MG metallurgical grade silicon
  • the Si MG obtained contains oxygen and carbon but in lower proportions than kerf (0.3% by weight of oxygen and 0.06% by weight of carbon, compared to total weight of silicon according to D. Sarti et al., Silicon feedstock for the multicrystalline photovoltaic industry, Solar Energy Materials & Solar Cells 72 (2002) p. 27-40).
  • Plasma purification is another method for reducing oxygen and carbon concentrations in Si MG as described by D. Sarti et al. (Silicon feedstock for the multi-crystalline photovoltaic industry, Solar Energy Materials & Solar Cells 72 (2002) p. 27-40).
  • Another method consists in filtering the liquid Si MG in a graphite crucible with a density of less than 1.85 g/cm 3 provided with orifices in its bottom as described in DE341 1955.
  • the solid impurities to be filtered are silica ( SiO2), carbon and silicon carbide (SiC).
  • the diameter of the openings at the bottom of the crucible is very small, in the range of a few microns, so that the liquid silicon flows through the openings under the effect of capillary forces and that the solid particles of size greater than 10 microns are retained in the crucible.
  • the graphite is not necessarily a crucible, it can be in the form of a film.
  • EP0160294 describes a method for separating solid reaction products, such as SiO2 and SiC, from molten Si MG produced in an arc furnace.
  • the separation is carried out using a filter consisting of a SiC/Si plate placed at the bottom of a graphite crucible.
  • the method is characterized in that it consists in adjusting the SiC content of the SiC/Si composite material so as to form, during filtration, in the SiC/Si layer, channels with a diameter of less than 3 microns. .
  • Zhang et al. (Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation, Solar Energy Materials & Solar Cells, 92 (2008) pp. 1450-1461 ), seek to recycle the upper part of the crystallized photovoltaic silicon ingots which is rejected because containing a large quantity of SiC and SiaIXk inclusions originating, respectively, from contamination by the crystallization furnace and by the crucible coated with an anti-adherent layer of SiaIXk.
  • the inclusions present on the surface of the ingot trimmings have a size of a few millimeters, while inside the trimmings, the SiaIXk inclusions have a diameter of the order of 20 microns, and the SiC inclusions have a size less than 500 microns.
  • the liquid silicon is purified of its inclusions thanks to a particle filter consisting of a SiC foam containing 15% AhOa used as a binder.
  • the foam is placed at the bottom of a graphite crucible pierced with an orifice.
  • the pore size of the foam is 0.5-3 mm, even more than 5 mm from the photographs of cross-sections given in Zhang et al.
  • This process makes it possible to effectively filter SiaIXk particles in the form of needles several millimeters long which remain on the surface of the foam because their size is comparable to that of the pores.
  • the SiC inclusions mostly smaller than 200 microns, penetrate inside the foam and are retained in the pores.
  • the filtration of these particles of size smaller than that of the pores is explained by the tortuosity of the porosity.
  • the tortuosity creates, in fact, a flow of the liquid having recirculation loops which transport the particles towards the walls of the filter on which they adhere and remain fixed.
  • the structure of the foam is therefore essential for the filtration of small particles.
  • WO201 2113461 relates to a process for obtaining high purity silicon, comprising the treatment of a silicon melt.
  • the molten silicon is poured into a filter device comprising a porous molded body whose surface consists of SiO2.
  • the porous molded body with an SiO2 surface is prepared by impregnating a carrier consisting of zirconium oxide with SiCk and subsequent hydrolysis of the SiCk with formation of an SiO2 coating on the carrier.
  • JP 2014076927 describes a process for obtaining high purity silicon from a silicon sludge using a system of three crucibles and two filters.
  • the impurity removal furnace is divided into two zones separated by a wall: a first zone whose temperature is from 1530° C. to 1650° C., comprising a first crucible and a first filter placed below the first crucible; and a second zone whose temperature is from 1410°C to 1450°C, comprising a second and a third crucible with a second filter placed below the second crucible.
  • the first filter allows the filtration of particles whose size is between 1 and 5mm and the second filter allows the filtration of particles of size between 0.1 and 0.5 mm.
  • the first and second "crucibles" described in JP 2014076927 are not crucibles in the sense of a solidification crucible but rather a receptacle provided at its bottom with a first filter and a second filter, respectively.
  • the purity of a mixture when expressed in % by weight of silicon "without taking into account oxygen and carbon", this means that the mixture comprises the % by weight of silicon and possibly impurities other than oxygen and carbon, such as for example metallic elements or doping elements.
  • the purpose of the present invention is precisely to meet these needs by providing a process for purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, which mixture comprises silicon , oxygen, carbon and metals, with a silicon content of at least 96% by weight, an oxygen content greater than or equal to 1% by weight and a carbon content greater than or equal to 0.1 % by weight, relative to the total weight of the mixture, characterized in that it comprises the steps in which a) the mixture is brought to a temperature between 1450 and 1650°C; b) the mixture is filtered through a filtration device comprising a bottom provided with through holes with a diameter of between 0.5 and 2 mm and preferably between 1 and 1.5 mm, and a surface density of between 0, 2 and 2 cm -2 , preferably between 0.5 and 1 cm -2 ; and c) the filtered liquid phase of the mixture is subjected to controlled solidification.
  • through holes is meant holes which do not exhibit tortuosity from one
  • the mixture in the solid state is introduced into the filtration device and to be brought there to a temperature between 1450 and 1650°C.
  • the invention also relates to an installation for the purification of silicon from a solid mixture, in particular in the form of powder, resulting from the cutting of silicon bricks into wafers and comprising silicon, oxygen, carbon and optionally metals, the silicon content being at least 96% by weight, the oxygen content being greater than or equal to 1% by weight and the carbon content being greater than or equal to 0, 1% by weight, relative to the total weight of the mixture, said installation comprising
  • the filtration means capable of filtering the mixture, the filtration means comprising through-holes with a diameter of between 0.1 and 5 mm, preferably between 0.5 and 2 mm.
  • the installation of the invention further comprises means capable of carrying out a directed solidification of the filtered liquid phase of the mixture.
  • the filtration is advantageously carried out through a single filtration device comprising a bottom provided with through holes preferably all having the same diameter, between 0.5 and 2 mm and preferably between 1 and 1 .5mm.
  • the installation according to the invention comprises only one heating zone.
  • Another object of the invention relates to the use of a process for purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, according to the invention. , or an installation according to the invention, for the manufacture of photovoltaic cells.
  • the invention also relates to a method for manufacturing photovoltaic cells implementing a step of purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, according to the method of the invention, or an installation according to the invention.
  • FIG 1 represents an embodiment of the method of the invention in which the filtration device in the form of a crucible is placed above another crucible within which the directed solidification of the mixture is carried out.
  • FIG 2 represents an embodiment of the method of the invention in which the filtration device in the form of a crucible is placed at the bottom of another crucible within which the directed solidification of the mixture is carried out.
  • FIG 3 represents an embodiment of the method of the invention in which the filtration device in the form of a crucible is coupled to a continuous kerf supply system.
  • FIG 4 represents an embodiment of the method of the invention in which the filtration device comprises a plurality of unitary filtration devices in the form of crucibles.
  • FIG 5 represents an embodiment of the method of the invention in which the filtration device in the form of a crucible comprises an inert gas blowing system consisting of a graphite tube placed in its center. This system being above the mixture/kerf, it will favor the evacuation of the oxygen dissolved in the mixture in the form of the volatile species SiO.
  • the present invention relates to a method for purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, which mixture comprises silicon, oxygen, carbon and metals, with a silicon content of at least 96% by weight, an oxygen content greater than or equal to 1% by weight and a carbon content greater than or equal to 0.1% by weight, based on the total weight of the mixture, characterized in that it comprises the steps in which a) the mixture is brought to a temperature between 1450 and 1650°C; b) the mixture is filtered through a filtration device comprising a bottom provided with through holes with a diameter of between 0.5 and 2 mm and preferably between 1 and 1.5 mm, and with a surface density of between 0.2 and 2 cm -2 , preferably between 0.5 and 1 cm -2 ; and c) the filtered liquid phase of the mixture is subjected to controlled solidification.
  • the solid mixture in particular in powder form, resulting from the cutting of silicon bricks into wafers, comprises silicon, oxygen, carbon and metals, with a silicon content of at least 96% by weight, an oxygen content greater than or equal to 1% by weight and a carbon content greater than or equal to 0.1% by weight, relative to the total weight of the mixture.
  • the term "kerf" can also be used to designate this mixture.
  • the mixture used as defined above is solid, in particular in powder form.
  • the particle size of this powder is generally such that the average diameter of the particles can range from 0.1 to 10 microns.
  • the method comprises a step c), in which the liquid phase filtered at the end of step b) is subjected to directed solidification.
  • step c) the liquid phase filtered at the end of step b) undergoes an operation of segregation of metallic impurities by directed solidification.
  • the segregation of metallic impurities by directional solidification is a process well known to those skilled in the art.
  • Directed solidification can be implemented, for example, according to the HEM method (Heat Extraction Method in English) described by Khattak and Schmid (Growth of silicon ingots by HEM for photovoltaic applications, Silicon Processing for Photovoltaics II, edited by C.P. Khattak and K.V. Ravi, Elsevier Science Publishers B.V., 1987).
  • the process of the invention relates to the purification of silicon from the mixture or from kerf containing silicon contents of at least 96% by weight, oxygen contents greater than or equal to 1% by weight and carbon contents greater than or equal to 0.1% by weight, relative to the total weight of the mixture.
  • the mixture/kerf can come from the cutting of silicon bricks, with slurry or with diamond wire.
  • the method consists in carrying out a filtration of the solid particles of SiO2 and SiC, then a segregation, by directed solidification, of the silicon metals present in the filtered liquid, the filtration and segregation operations advantageously being able to be carried out during the same cycle. heating/cooling in a standard DSS (Directional Solidification System) industrial furnace used in the photovoltaic industry.
  • DSS Directional Solidification System
  • the geometry of the filtration device used is adapted to the volume of kerf or mixture.
  • the filtration device used in the process of the invention has the advantage of being able to adapt in particular to a standard industrial furnace for directed solidification DSS (Directional Solidification System) as used in the photovoltaic industry.
  • DSS Directional Solidification System
  • the filtration device is in the form of a crucible.
  • a filtration device is used in the form of a crucible comprising a bottom provided with through holes with a diameter of between 0.5 and 2 mm, and preferably between 1 and 1.5 mm.
  • the filtration device can be in the form of a plate.
  • a continuous supply of kerf can be considered.
  • through holes is meant holes through which one can see and which exhibit no tortuosity from one end to the other.
  • the silicon particles In the mixture (or kerf), in solid form, in particular in powder form, the silicon particles have a micron size, which is also the case for compounds based on carbon and oxygen.
  • micron size particles particles having a diameter of 0.1 to 10 microns.
  • the oxygen is mainly found in the form of a SiC film around the Si particles.
  • the carbon coming from the cutting fluid is in the form of organic species grafted onto the Si particles.
  • the carbon is also found in the form of micron particles of polymer which constitutes the support for the silicon bricks and ingots during cutting and which is partially cut.
  • the carbon is also in the form of SiC particles, the size of which is around 10 microns.
  • millimetric holes allow effective filtration of the precipitates present in the molten kerf. Indeed, during heating and melting, oxygen and carbon react with silicon to form SiO2 and SiC which are stable compounds at high temperature in molten silicon.
  • the SiO2 particles agglomerate between them during fusion, and the SiC particles adhere to SiO2, the whole forming large agglomerates, from a few mm to a few cm which are retained inside the filter even if the holes are millimeter in size.
  • the filtration device in particular in the form of a crucible, is made of a material chosen from the group consisting of graphite, silicon carbide (SiC), silicon nitride (SiNa), silica (SiC), or a mixture of these materials, or a mixture of graphite with silicon carbide (SiC), silicon nitride (SiNa), and silica (SiC).
  • the filtration device is made of a mixture of graphite with silicon carbide (SiC), silicon nitride (SiNa), and silica (SiOa), it may be in the form of a multilayer.
  • SiC silicon carbide
  • SiNa silicon nitride
  • SiOa silica
  • This type of filter is described in patent application FR1661788.
  • the filter is preferably made of graphite, in particular of isostatic graphite for its mechanical properties, in particular its mechanical resistance during the infiltration of liquid silicon into its porosity.
  • the isostatic graphite may for example be the 2020 grade from Mersen having a porosity of 9% and a bending strength of 45 MPa, or the R7500 grade from SGL having a porosity of 14% and a bending strength of 50 MPa.
  • the filter can be made of another refractory ceramic material, such as for example Al2O3 or ZrO2 .
  • the size of the filter device holes is such that the holes are easily made with standard machining tools. As already indicated, the diameter of the holes is between 0.5 and 2 mm, and preferably between 1 and 1.5 mm.
  • the surface density of holes must be within a range of optimal values. Indeed, the holes must not be too close together otherwise the filter risks cracking during the machining of the holes or during its use under the effect of the stresses generated by the infiltration of the liquid silicon into the pores of the graphite. and its transformation into silicon carbide. On the other hand, the holes must not be too far apart, otherwise the flow rate of the filtered liquid silicon will be low and the productivity of the purification process mediocre.
  • the standard masses of silicon ingots manufactured by directional solidification are for example 13 kg (furnace of size called Gen 1), 60 kg (furnace of size called Gen 2) or even 650 kg on an industrial scale (furnace of size called Gen 6).
  • a filtration device is used in the form of a crucible comprising a bottom provided with a surface density of holes of between 0.2 cm -2 and 2 cm -2 , preferably between 0.5 cm -2 and 1 cm -2 .
  • the thickness of the filtration device could condition its mechanical strength. Typical thicknesses can range from 5mm to 20mm.
  • the solid state mixture may be introduced into the filtration device prior to the heating cycle.
  • the method may include a step of introducing the mixture/kerf into the filtration device when the maximum temperature is reached in the furnace.
  • the mixture is brought to a temperature greater than or equal to the melting point of silicon, in particular to a temperature between 1450 and 1650°C, preferably between 1500°C and 1600°C.
  • the duration of the plateau at the maximum temperature depends on the maximum temperature and the quantity of kerf/mixture. For example, for a maximum temperature of 1535°C and a mass of kerf/mixture of 10 kg, the stage duration is approximately 1 hour. Those skilled in the art will be able to determine the duration of this plateau based on the maximum temperature and the amount of kerf/mixture.
  • the filtered liquid phase freed in particular of slag consisting of SiO2 and SiC, is subjected to controlled solidification, during which the segregation of the impurities, in particular metal impurities, of the mixture is obtained.
  • Directed solidification is a method well known to those skilled in the art. It can be carried out according to the HEM method (Heat Extraction Method in English) described by Khattak and Schmid (Growth of silicon ingots by HEM for photovoltaic applications, Silicon Processing for Photovoltaics II, edited by CP Khattak and KV Ravi, Elsevier Science Publishers BV, 1987).
  • the method of the invention may comprise a step d) of cooling, in particular to ambient temperature, of the silicon in the solid state obtained at the end of step c).
  • Ambient temperature means a temperature of 20°C + 5°C.
  • the method may also comprise a step e) of recovering the silicon in the solid state purified after the cooling of step d).
  • the expression "after cooling” means the return to ambient temperature, i.e. to a temperature of 20°C + 5°C.
  • the filtration device is placed above another crucible, on which it rests, in a photovoltaic silicon segregation or crystallization furnace as shown in [Fig 1].
  • Kerf charge is placed in the filtration device and, on melting, the liquid phase comprising the silicon and the metallic impurities flows through the holes present in the bottom of said device, while the slag is retained in said device.
  • a cooling ramp is then applied to allow the controlled solidification of the silicon within the crucible and the segregation of the impurities present in the dissolved state in the initial mixture comprising the silicon.
  • the filtration device initially rests at the bottom of another crucible as shown in [Fig 2].
  • the volume of the filtration device is adjusted to contain only the slag to be filtered.
  • the kerf/mixture is loaded into the filtration device and the crucible.
  • the filtration device is raised above the filtered mixture by mechanical means using rods, in particular made of graphite.
  • the advantage of this embodiment is that for the same volume of crucible, it makes it possible to filter much larger quantities of kerf than in the case of the embodiment illustrated in [Fig 1] where only the filter is loaded with kerf .
  • the filtration device is coupled to a continuous kerf supply system.
  • FIG. 3 shows an example of this embodiment in which the filtration device is arranged above another crucible, on which it rests, this other crucible being intended for the segregation of the metallic elements of the liquid phase filtered from the mixture.
  • the filtration device comprises a plurality of unitary filtration devices resting on bars, in particular of graphite, themselves resting on the side plates, in particular of graphite, holding the crucible as shown in [ Fig 4],
  • This filtration device is intended in particular for large size crucibles for the production of industrial size silicon ingots.
  • the interior walls of the filtration device, or the interior and exterior walls of the filtration device can be covered with an anti-adherent deposit based on SiaIXk powder, such as conventionally used for photovoltaic silicon crystallization crucibles.
  • the filtration device comprises an additional blowing system making it possible to inject neutral gas above the filtered liquid phase contained in the crucible.
  • the neutral gas can, for example, be injected through a graphite tube placed in the center of the filter as shown in [Fig 5].
  • silicon wafers or pieces of broken silicon wafers can advantageously be placed at the bottom of the device filtration to cover the holes. These wafers are then made of photovoltaic or microelectronic grade silicon. Their thickness is advantageously at least 100 microns.
  • the kerf can be densified beforehand by compaction techniques, for example isostatic compaction, or by agglomeration techniques, for example agglomeration by high shear mixing or agglomeration by spray drying. These techniques are well known to those skilled in the art.
  • the process of the invention makes it possible to reduce the contents of metals, oxygen and carbon in the kerf, in a single melting and solidification cycle, which is particularly advantageous industrially compared to the processes of the state of the art.
  • the filtration device fits into an industrial DSS furnace for the segregation or crystallization of photovoltaic silicon. This is not the case for the melting and pouring process in a segregation crucible, as described in WO201 2113461.
  • the silicon is sought to purify the silicon from a mixture in the solid state, in particular in the form of powder, resulting from the cutting of silicon bricks into wafers, which mixture comprising silicon, oxygen , carbon and metals, with a silicon content of at least 96% by weight, an oxygen content greater than or equal to 1% by weight and a carbon content greater than or equal to 0.1% by weight, by relative to the total weight of the mixture.
  • a mixture does not have the same characteristics as MG silicon and scrap crystallization ingots.
  • Si MG contains oxygen and carbon in lower proportions than kerf (0.3% by weight of oxygen and 0.06% by weight of carbon according to D.
  • the filters of the state of the art for the filtration of liquid Si MG have holes of small size, of a few microns in DE 3411955 and with a diameter of less than 3 microns in EP 0160294.
  • the silicon seeps into micron-sized holes which can be blocked by inclusions penetrating inside.
  • the solid mixture in powder form, resulting from the cutting of silicon bricks into wafers, initially contains a high oxygen content (an oxygen content greater than or equal to 1% by weight) relative to the total weight of the mixture.
  • Oxygen is transformed into Si ⁇ 2 during heating and melting, and the agglomeration of Si ⁇ 2 leads to large particles, from a few millimeters to a few centimeters.
  • the filtration device used in the process of the present invention is provided with through holes, that is to say holes which do not present any tortuosity from one end to the other, and through which one can see.
  • the filtration device in the method of the invention is therefore simpler to produce than the SiC foam filter described by Zhang et al., and unlike the latter, the filtration device of the invention does not generate contamination. liquid silicon.
  • the process of the invention makes it possible to obtain a mixture having the purity required for the photovoltaic application (up to 99.9999% by weight of silicon or more, without taking into account oxygen and carbon).
  • the invention also relates to an installation for the purification of silicon from a solid mixture, in particular in the form of powder, resulting from the cutting of silicon bricks into wafers and comprising silicon, oxygen, carbon and optionally metals, the silicon content being at least 96% by weight, the oxygen content being greater than or equal to 1% by weight and the carbon content being greater than or equal to 0.1% by weight, relative to the total weight of the mixture, said installation comprising:
  • the filtration means capable of filtering the mixture, the filtration means comprising through-holes with a diameter of between 0.5 and 2 mm, and preferably between 1 and 1.5 mm.
  • the installation of the invention further comprises means capable of carrying out a directed solidification of the filtered liquid phase of the mixture.
  • Another object of the invention relates to the use of a process for purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, according to the invention. , or an installation according to the invention, for the manufacture of photovoltaic cells.
  • the invention also relates to a method for manufacturing photovoltaic cells implementing a step of purifying a mixture in the solid state, in particular in powder form, resulting from the cutting of silicon bricks into wafers, according to the method of the invention, or an installation according to the invention.
  • the invention although described for a mixture resulting from the cutting of bricks, could also apply to a mixture resulting from the cutting of ingots.
  • the mixture used is solid, in particular in the form of powder.
  • the particle size of this powder is generally such that the average diameter of the particles can range from 80 to 100 microns.
  • Kerf has a purity of 99.955% by weight of silicon (without taking into account oxygen and carbon), and is previously compacted in the form of granules a few millimeters in diameter.
  • the filter has an internal section of 1246 cm 2 and is pierced at its bottom with 529 holes 1.5 mm in diameter.
  • the filter and the crucible are placed in a DSS silicon segregation furnace for photovoltaic application with a capacity of 60 kg.
  • the thermal cycle consists of a rise to 900°C under vacuum (residual pressure of 10'1 mbar), a rise to 1500°C under argon (partial pressure of 600 mbar) and a plateau at 1500°C for 6 hours.
  • the melting of the silicon in the mixture begins during the ramp-up and ends after a 45-minute plateau.
  • 4.2 kg of solid kerf in the form of granules are recharged in the filter by means of the supply system represented in FIG. 3. This recharge is carried out 10 times in succession, every 25 minutes.
  • the liquid silicon has completely flowed into the crucible through the filter holes.
  • a cooling ramp is then applied allowing a directed solidification of the silicon contained in the crucible at a speed of the order of 1 cm/h.
  • the solidified silicon ingot has a mass of 43 kg and the material yield, ie the ratio between the mass of filtered silicon and the initial mass of kerf (60 kg), is 72%.
  • the segregated part of the ingot contains 0.003% by weight of oxygen and less than 0.001% by weight of carbon, relative to the total weight of the ingot.
  • the purity of the ingot is 99.9999% by weight of silicon, relative to the total weight of the ingot (without taking into account oxygen and carbon).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne un procédé permettant de diminuer les teneurs en métaux, en oxygène et en carbone, en un seul cycle de fusion et solidification, des particules microniques de silicium dans le mélange solide issu de la découpe de briques de silicium en plaquettes (appelées également kerf), ledit procédé mettant en jeu un dispositif de filtration des scories constituées de SiO2 et de SiC. Après filtration de ces résidus solides, la phase liquide subit une étape de ségrégation des impuretés métalliques du silicium par solidification dirigée. Le système de filtration a l'avantage de pouvoir s'adapter notamment à un four industriel standard de solidification dirigée DSS (Directional Solidification System en anglais) tel qu'utilisé dans l'industrie photovoltaïque.

Description

DESCRIPTION
PROCEDE ET INSTALLATION DE PURIFICATION DE SILICIUM A PARTIR D’UN MELANGE ISSU DE LA DECOUPE DE BRIQUES DE SILICIUM EN PLAQUETTES
Domaine technique de l'invention
L’invention concerne un procédé permettant de diminuer les teneurs en métaux, en oxygène et en carbone, en un seul cycle de fusion et solidification, des particules microniques de silicium dans le mélange solide issu de la découpe de briques de silicium en plaquettes (appelées également kerf), ledit procédé mettant en jeu un dispositif de filtration des scories constituées de SiÛ2 et de SiC.
Après filtration de ces résidus solides, la phase liquide subit une étape de ségrégation des impuretés métalliques du silicium par solidification dirigée. Le système de filtration a l’avantage de pouvoir s’adapter notamment à un four industriel standard de solidification dirigée DSS (Directional Solidification System en anglais) tel qu’utilisé dans l’industrie photovoltaïque.
Arrière-plan technique
Les cellules photovoltaïques sont fabriquées à partir de plaquettes de silicium obtenues par sciage de briques de silicium. L’étape de sciage de briques était traditionnellement réalisée au moyen d’un fil en acier et d’un mélange abrasif, appelé slurry, constitué de particules de SiC d’une dizaine de microns de diamètre. Actuellement, la technologie dominante de découpe se fait à l’aide de fils diamantés. Le sciage de briques de silicium génère des pertes de matière de l’ordre de 30 à 40% dues au trait de scie et cela sous forme de particules microniques de silicium, appelées également kerf. Le recyclage de ces rebuts de production représente donc un enjeu de réduction de coût et de perte de matière première.
Le kerf a une pureté bien plus faible que le silicium avant découpe. En effet, le kerf est fortement contaminé en métaux provenant du fil de découpe ainsi que du support sur lequel est collée la brique de silicium, qui est généralement un polymère contenant des particules durcissantes. Outre les métaux, le kerf contient également de fortes teneurs en carbone et en oxygène, de plusieurs pourcents en poids, provenant de ce même support ainsi que du fluide de découpe. Dans le cas de la découpe au slurry, le kerf contient aussi du carbone sous forme de particules de SiC.
Sans prendre en compte le carbone et l’oxygène, le kerf a une pureté variant de 98% à 99,9% en poids de silicium, et ne peut être recyclé en l’état dans le domaine du photovoltaïque qui requiert une pureté plus élevée (au moins 99,9999% en poids de silicium). Pour cette application, le recyclage du kerf nécessite donc une purification préalable à moindre coût afin de réduire les teneurs en éléments métalliques, en oxygène et en carbone.
De nombreux procédés ont été mis en oeuvre pour purifier le kerf et réduire les teneurs en impuretés notamment en éléments métalliques. On peut citer, à titre d’exemple :
- l’attaque chimique par des acides pour réduire la teneur en métaux dans le kerf, avec, dans certains cas, l’utilisation d’acide fluorhydrique pour éliminer le film de SiÛ2 autour des particules de Si,
- la séparation électrostatique des impuretés solides,
- la séparation magnétique du fer, du nickel et de leurs oxydes,
- l’évaporation/condensation du silicium,
- le traitement par laitier.
Ces procédés sont bien connus de l’homme du métier.
L’attaque acide ne permet pas de réduire significativement les teneurs en carbone et en oxygène dans le kerf, mais d’autres procédés permettent de diminuer la concentration de ces deux éléments. A ce titre on peut citer, par exemple, un traitement thermique sous air ou gaz neutre, la carbothermie sous vide, la purification par voie métallurgique basée sur la réaction SiC + 0,5 SiÛ2 1 ,5 Si + CO permettant d’obtenir un silicium de grade métallurgique, la séparation des impuretés solides à l’aide d’un brasseur mécanique, ou encore une fusion suivie d’une coulée dans un creuset de ségrégation.
La problématique du carbone et de l’oxygène existe également pour le silicium de grade métallurgique (ci-après Si MG) produit par carbothermie par réduction de la silice par du carbone. En effet, le Si MG obtenu contient de l’oxygène et du carbone mais dans des proportions moindres que le kerf (0,3% en poids d’oxygène et 0,06% en poids de carbone, par rapport au poids total du silicium selon D. Sarti ét al., Silicon feedstock for the multicrystalline photovoltaic industry, Solar Energy Materials & Solar Cells 72 (2002) p. 27-40).
La purification par plasma est un autre procédé permettant de réduire les concentrations en oxygène et en carbone dans le Si MG comme décrit par D. Sarti et al. (Silicon feedstock for the multi-crystalline photovoltaic industry, Solar Energy Materials & Solar Cells 72 (2002) p. 27-40).
Une autre méthode consiste à filtrer le Si MG liquide dans un creuset en graphite de densité inférieure à 1 ,85 g/cm3 muni d’orifices dans son fond telle que décrite dans DE341 1955. Les impuretés solides à filtrer sont de la silice (SiO2), du carbone et du carbure de silicium (SiC). Le diamètre des ouvertures au fond du creuset est très faible, dans la gamme de quelques microns, de telle façon que le silicium liquide s’écoule par les ouvertures sous l’effet des forces capillaires et que les particules solides de dimension supérieure à 10 microns sont retenues dans le creuset. Le graphite n’est pas obligatoirement un creuset, il peut être sous forme de film.
EP0160294 décrit un procédé de séparation de produits de réaction solides, comme SiÛ2 et SiC, du Si MG fondu produit au four à arc. La séparation est réalisée grâce à un filtre constitué d'une plaque en SiC/Si disposé au fond d’un creuset en graphite. Le procédé est caractérisé en ce qu'il consiste à régler la teneur en SiC du matériau composite SiC/Si de manière à former, lors de la filtration, dans la couche de SiC/Si, des canaux d'un diamètre inférieur à 3 microns.
Zhang et al. (Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation, Solar Energy Materials & Solar Cells, 92 (2008) pp. 1450-1461 ), cherchent à recycler la partie haute des lingots de silicium photovoltaïque cristallisés qui est rebutée car contenant une grande quantité d’inclusions de SiC et de SiaIXk provenant, respectivement, d’une contamination par le four de cristallisation et par le creuset revêtu d’une couche anti-adhérente en SiaIXk. Les inclusions présentes à la surface des éboutages de lingots ont une taille de quelques millimètres, tandis qu’à l’intérieur des éboutages, les inclusions de SiaIXk ont un diamètre de l’ordre de 20 microns, et les inclusions de SiC ont une taille inférieure à 500 microns. Le silicium liquide est purifié de ses inclusions grâce à un filtre à particules constitué d’une mousse de SiC contenant 15% d’AhOa utilisé en tant que liant. La mousse est disposée au fond d’un creuset en graphite percé d’un orifice. La taille des pores de la mousse est de 0,5-3 mm, voire de plus de 5 mm d’après les photographies de coupes transversales données dans Zhang ét al. Ce procédé permet de filtrer efficacement les particules de SiaIXk sous forme d’aiguilles de plusieurs millimètres de long qui restent à la surface de la mousse car leur taille est comparable à celle des pores. Les inclusions de SiC, majoritairement de taille inférieure à 200 microns, pénètrent à l’intérieur de la mousse et sont retenues dans les pores. La filtration de ces particules de taille inférieure à celle des pores s’explique par la tortuosité de la porosité. La tortuosité crée, en effet, un écoulement du liquide présentant des boucles de recirculation qui transportent les particules vers les parois du filtre sur lesquelles elles adhèrent et restent fixées. La structure de la mousse est donc essentielle pour la filtration des petites particules. Bien que le procédé de filtration soit opérant, le filtre et le creuset entraînent une contamination importante du silicium liquide, due notamment à la présence d’AhOa dans le filtre, et les auteurs concluent qu’il est nécessaire de mettre au point un procédé non contaminant pour envisager un développement à l’échelle industrielle.
WO201 2113461 concerne un procédé d'obtention de silicium de haute pureté, comprenant le traitement d'une masse fondue de silicium. Le silicium fondu est versé dans un dispositif de filtration comprenant un corps moulé poreux dont la surface est constituée de SiÛ2. Le corps moulé poreux avec une surface en SiÛ2 est préparé par imprégnation d'un support constitué d'oxyde de zirconium avec du SiCk et par hydrolyse ultérieure du SiCk avec formation d'un revêtement de SiÛ2 sur le support.
JP 2014076927 décrit un procédé d'obtention de silicium de haute pureté à partir d’une boue de silicium utilisant un système de trois creusets et deux filtres. Le four d’élimination d’impuretés est divisé en deux zones séparées par une paroi : une première zone dont la température est de 1530°C à 1650°C, comportant un premier creuset et un premier filtre placé en dessous du premier creuset ; et une deuxième zone dont la température est de 1410°C à 1450°C, comportant un deuxième et un troisième creusets avec un deuxième filtre placé en dessous du deuxième creuset.
Le premier filtre permet la filtration des particules dont la taille est entre 1 et 5mm et le deuxième filtre permet la filtration de particules de taille comprise entre 0,1 et 0,5 mm.
Les premier et deuxième « creusets >> décrits dans JP 2014076927, ne sont pas des creusets au sens d’un creuset de solidification mais plutôt d’un réceptacle muni en son fond d’un premier filtre et d’un deuxième filtre, respectivement.
Malgré les différents procédés existants, il subsiste un réel besoin d’un procédé permettant de réduire significativement les teneurs en impuretés comme le carbone, l’oxygène et les éléments métalliques, en particulier, en oxygène et en carbone, dans le mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comporte du silicium, de l’oxygène, du carbone et des métaux,
- qui soit simple à réaliser, et/ou
- qui ne génère pas de contamination supplémentaire du silicium fondu, et/ou
- qui soit efficace, c’est-à-dire qui permette d’obtenir du silicium ayant une pureté adaptée au domaine du photo voltaïque mais également à tout autre domaine où du silicium ayant une pureté supérieure ou égale à 99,9999% en poids de silicium est requis (sans tenir compte de l’oxygène et du carbone). En particulier, il existe un réel besoin d’un procédé permettant de réduire significativement les teneurs en impuretés comme le carbone, l’oxygène et les éléments métalliques, en particulier, en oxygène et en carbone, dans le mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comporte du silicium, de l’oxygène, du carbone et des métaux, qui mette en oeuvre un système de filtration efficace permettant d’obtenir un mélange de pureté élevée comportant 99,9999% en poids de silicium (sans tenir compte de l’oxygène) et ne produisant pas de contamination par lui-même, notamment par des métaux comme Al, Fe, Ti, Cr, Zr, Ni etc. et/ou d’autres éléments dopants comme B, P etc., lequel procédé pouvant être utilisé dans des procédés industriels de purification et/ou de recyclage de silicium.
Dans le cadre de la présente invention, lorsque la pureté d’un mélange est exprimée en % en poids de silicium « sans prendre en compte l’oxygène et le carbone >>, cela signifie que le mélange comporte le % en poids de silicium et éventuellement des impuretés autres que l’oxygène et le carbone, comme par exemple les éléments métalliques ou les éléments dopants.
Résumé de l'invention
La présente invention a précisément pour but de répondre à ces besoins en fournissant un procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comporte du silicium, de l’oxygène, du carbone et des métaux, avec une teneur en silicium d’au moins 96% en poids, une teneur en oxygène supérieure ou égale à 1 % en poids et une teneur en carbone supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, caractérisé en ce qu’il comprend les étapes dans lesquelles a) on porte le mélange à une température comprise entre 1450 and 1650°C ; b) on filtre le mélange à travers d’un dispositif de filtration comportant un fond muni de trous traversants de diamètre compris entre 0,5 et 2 mm et de préférence entre 1 et 1 ,5 mm, et de densité surfacique comprise entre 0,2 et 2 cm-2, de préférence entre 0,5 et 1 cm-2 ; et c) on soumet la phase liquide filtrée du mélange à une solidification dirigée. Par « trous traversants >>, on entend des trous qui ne présentent pas de tortuosité d’une extrémité à l’autre, et à travers lesquels on peut voir.
Le mélange à l’état solide est introduit dans le dispositif de filtration et pour y être porté à une température comprise entre 1450 et 1650°C.
L’invention a également pour objet une installation de purification de silicium à partir d’un mélange solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes et comportant du silicium, de l’oxygène, du carbone et éventuellement des métaux, la teneur en silicium étant d’au moins 96% en poids, la teneur en oxygène étant supérieure ou égale à 1% en poids et la teneur en carbone étant supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, ladite installation comportant
- des moyens aptes à chauffer le mélange au-delà de la température de fusion du silicium ; et
- des moyens de filtration aptes à filtrer le mélange, les moyens de filtration comportant des trous traversants de diamètre compris entre 0,1 et 5 mm, de préférence entre 0,5 et 2 mm.
L’installation de l’invention comporte, en outre, des moyens aptes à réaliser une solidification dirigée de la phase liquide filtrée du mélange.
Dans le procédé de l’invention, la filtration est avantageusement réalisée à travers un unique dispositif de filtration comportant un fond muni de trous traversants ayant de préférence tous le même diamètre, compris entre 0,5 et 2 mm et de préférence entre 1 et 1 ,5 mm.
De plus, avantageusement, l’installation selon l’invention ne comporte qu’une seule zone de chauffe.
Un autre objet de l’invention se rapporte à l’utilisation d’un procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, selon l’invention, ou d’une installation selon l’invention, pour la fabrication des cellules photovoltaïques.
L’invention concerne, en outre, un procédé de fabrication de cellules photovoltaïques mettant en oeuvre une étape de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, selon le procédé de l’invention, ou une installation selon l’invention.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaitront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : [Fig 1] représente un mode de réalisation du procédé de l’invention dans lequel le dispositif de filtration sous forme de creuset est placé au-dessus d’un autre creuset au sein duquel la solidification dirigée du mélange est réalisée.
[Fig 2] représente un mode de réalisation du procédé de l’invention dans lequel le dispositif de filtration sous forme de creuset est disposé au fond d’un autre creuset au sein duquel la solidification dirigée du mélange est réalisée.
[Fig 3] représente un mode de réalisation du procédé de l’invention dans lequel le dispositif de filtration sous forme de creuset est couplé à un système d’alimentation en continu en kerf.
[Fig 4] représente un mode de réalisation du procédé de l’invention dans lequel le dispositif de filtration comprend une pluralité de dispositifs de filtration unitaires sous forme de creusets.
[Fig 5] représente un mode de réalisation du procédé de l’invention dans lequel le dispositif de filtration sous forme de creuset comprend un système de soufflage de gaz neutre constitué d’un tube en graphite disposé en son centre. Ce système étant au-dessus du mélange/kerf, il favorisera l’évacuation de l’oxygène dissous dans le mélange sous forme de l’espèce volatile SiO.
Description détaillée de l'invention
La présente invention concerne un procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comporte du silicium, de l’oxygène, du carbone et des métaux, avec une teneur en silicium d’au moins 96% en poids, une teneur en oxygène supérieure ou égale à 1% en poids et une teneur en carbone supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, caractérisé en ce qu’il comprend les étapes dans lesquelles a) on porte le mélange à une température comprise entre 1450 and 1650°C ; b) on filtre le mélange à travers d’un dispositif de filtration comportant un fond muni de trous traversants de diamètre compris entre 0,5 et 2 mm et de préférence entre 1 et 1 ,5 mm, et de densité surfacique comprise entre 0,2 et 2 cm-2, de préférence entre 0,5 et 1 cm-2 ; et c) on soumet la phase liquide filtrée du mélange à une solidification dirigée. Le mélange solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, comporte du silicium, de l’oxygène, du carbone et des métaux, avec une teneur en silicium d’au moins 96% en poids, une teneur en oxygène supérieure ou égale à 1 % en poids et une teneur en carbone supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange. Dans la suite de l’exposé, le terme « kerf >> peut également être utilisé pour désigner ce mélange.
Le mélange mis en oeuvre tel que défini ci-dessus est solide, notamment sous forme de poudre. La granulométrie de cette poudre est généralement telle que le diamètre moyen des particules peut aller de 0,1 à 10 microns. Le procédé comprend une étape c), dans laquelle on soumet la phase liquide filtrée à l’issue de l’étape b) à une solidification dirigée.
Au cours de l’étape c), la phase liquide filtrée à l’issue de l’étape b) subit une opération de ségrégation des impuretés métalliques par solidification dirigée. La ségrégation des impuretés métalliques par solidification dirigée est un procédé bien connu de l’homme de l’art. La solidification dirigée peut être mise en oeuvre, par exemple, selon la méthode HEM (Heat Extraction Method en anglais) décrite par Khattak et Schmid (Growth of silicon ingots by HEM for photovoltaic applications, Silicon Processing for Photovoltaics II, edited by C.P. Khattak and K.V. Ravi, Elsevier Science Publishers B.V., 1987). Dans le cas du silicium, il est connu que cette ségrégation est efficace si le silicium solidifié est monophasé, c’est-à-dire ne contenant pas de précipités ou d’inclusions. La ségrégation des impuretés métalliques sera donc inopérante si le mélange, en particulier le silicium qui y est présent, contient des teneurs en oxygène et en carbone dans la gamme du pourcent. En effet, compte tenu du fait que ces teneurs sont bien supérieures à la limite de solubilité de l’oxygène et du carbone dans le silicium à l’état fondu, le liquide contiendra des inclusions de SiÛ2 et de SiC.
Le procédé de l’invention concerne la purification du silicium à partir du mélange ou du kerf contenant des teneurs en silicium d’au moins 96% en poids, des teneurs en oxygène supérieures ou égale à 1 % en poids et des teneurs en carbone supérieures ou égales à 0,1 % en poids, par rapport au poids total du mélange. Le mélange/kerf peut être issu de la découpe de briques en silicium, au slurry ou au fil diamanté. Le procédé consiste à réaliser une filtration des particules solides de SiÛ2 et SiC, puis une ségrégation, par solidification dirigée, des métaux du silicium présents dans le liquide filtré, les opérations de filtration et de ségrégation pouvant avantageusement être réalisées lors d’un même cycle de chauffage/refroidissement dans un four industriel standard DSS (Directional Solidification System en anglais) utilisé dans l’industrie photovoltaïque.
La géométrie du dispositif de filtration utilisé est adaptée au volume de kerf ou de mélange.
Le dispositif de filtration utilisé dans le procédé de l’invention a l’avantage de pouvoir s’adapter notamment à un four industriel standard de solidification dirigée DSS (Directional Solidification System en anglais) tel qu’utilisé dans l’industrie photovoltaïque.
De préférence, le dispositif de filtration est sous forme de creuset. Dans un mode de réalisation préféré de l’invention, pour l’étape de filtration, on utilise un dispositif de filtration sous forme de creuset comportant un fond muni de trous traversants de diamètre compris entre 0,5 et 2 mm, et de préférence entre 1 et 1 ,5 mm.
Dans le cas où une petite quantité de kerf est utilisée, qui, à la fusion, formerait une goutte, le dispositif de filtration peut être sous forme d’une plaque. Dans ce cas, une alimentation continue en kerf peut être envisagée. Par « trous traversants >>, on entend des trous à travers lesquels on peut voir et qui ne présentent aucune tortuosité d’une extrémité à l’autre.
Dans le mélange (ou kerf), sous forme solide, notamment sous forme de poudre, les particules de silicium ont une taille micronique, ce qui est aussi le cas des composés à base de carbone et d’oxygène.
Par des particules de « taille micronique >>, on entend des particules ayant un diamètre de 0,1 à 10 microns.
En effet, l’oxygène se trouve principalement sous forme de film de SiC autour des particules de Si. Le carbone provenant du fluide de découpe est sous forme d’espèces organiques greffées sur les particules de Si. Le carbone se trouve aussi sous forme de particules microniques de polymère qui constitue le support des briques et des lingots de silicium lors de la coupe et qui est partiellement découpé. Pour la découpe au slurry, le carbone est aussi sous forme de particules de SiC dont la taille est de l’ordre de 10 microns. Contre toute attente, des trous millimétriques permettent une filtration efficace des précipités présents dans le kerf fondu. En effet, lors du chauffage et de la fusion, l’oxygène et le carbone réagissent avec le silicium pour former SiÛ2 et SiC qui sont les composés stables à haute température dans le silicium fondu. Les particules de SiÛ2 s’agglomèrent entre elles lors de la fusion, et les particules de SiC adhèrent à SiO2, l’ensemble formant des agglomérats de grande dimension, de quelques mm à quelques cm qui sont retenus à l’intérieur du filtre même si les trous sont de taille millimétrique. Le dispositif de filtration, notamment sous forme de creuset, est en un matériau choisi dans le groupe constitué par le graphite, le carbure de silicium (SiC), le nitrure de silicium (SiNa), la silice (SiC ), ou un mélange de ces matériaux, ou en un mélange de graphite avec le carbure de silicium (SiC), le nitrure de silicium (SiNa), et la silice (SiC ). Dans le cas où le dispositif de filtration est en un mélange de graphite avec le carbure de silicium (SiC), le nitrure de silicium (SiNa), et la silice (SiOa), il peut être sous forme de multicouche. A ce titre, on peut, par exemple, citer un filtre en graphite d’épaisseur de quelques millimètres à 1 cm, recouvert, soit sur toutes ses faces, soit sur ses faces internes en contact avec le kerf, d’une couche de SiC ou de SiaIXk ou de SiO2, de 10 à 500 microns d’épaisseur. Ce type de filtre est décrit dans la demande de brevet FR1661788.
Pour l’application photovoltaïque, le filtre est de préférence constitué de graphite, notamment de graphite isostatique pour ses propriétés mécaniques, notamment sa résistance mécanique lors de l’infiltration du silicium liquide dans sa porosité. Le graphite isostatique peut par exemple être la nuance 2020 de Mersen présentant une porosité de 9% et une résistance à la flexion de 45 MPa, ou la nuance R7500 de SGL présentant une porosité de 14% et une résistance à la flexion de 50 MPa. Pour des applications visant une pureté du silicium inférieur à 99,9999% en poids de silicium (sans tenir compte de l’oxygène et du carbone), le filtre peut être constitué d’un autre matériau céramique réfractaire, comme par exemple AI2O3 ou ZrÛ2.
La taille des trous du dispositif de filtration est telle que les trous sont facilement réalisables avec des outils d’usinage standard. Comme déjà indiqué, le diamètre des trous est compris entre 0,5 et 2 mm, et de préférence entre 1 et 1 ,5 mm.
La densité surfacique de trous doit être comprise dans une gamme de valeurs optimales. En effet, les trous ne doivent pas être trop rapprochés sinon le filtre risque de se fissurer lors de l’usinage des trous ou encore lors de son utilisation sous l’effet des contraintes générées par l’infiltration du silicium liquide dans les pores du graphite et sa transformation en carbure de silicium. A l’opposé, les trous ne doivent pas être trop distants les uns des autres sinon le débit du silicium liquide filtré sera faible et la productivité du procédé de purification médiocre.
Le débit volumique du liquide Q à travers le dispositif de filtration est donné par la formule Q = V.St.nt.Sf, dans laquelle V est la vitesse d’écoulement du liquide, St la section d’un trou (St = K.dt2/4, avec dt le diamètre du trou), nt la densité surfacique de trous, et St la section intérieure du filtre.
Dans l’hypothèse d’un régime inertiel, c’est-à-dire en négligeant les forces visqueuses et les forces de tension de surface du liquide, la valeur maximale de la vitesse d’écoulement est donnée par la formule V = (2.g.H)1/2, où p est la densité volumique de masse du silicium liquide, g l’accélération de la pesanteur, et H la hauteur de silicium liquide dans le filtre. Dans le domaine du photovoltaïque, les masses standards des lingots de silicium fabriqués par solidification dirigée sont par exemple 13 kg (four de taille dénommée Gen 1 ), 60 kg (four de taille dénommée Gen 2) ou encore 650 kg à échelle industrielle (four de taille dénommée Gen 6). Pour des hauteurs de silicium liquide H dans le filtre allant de 18 cm pour Gen 1 à 25 cm pour Gen 6, les inventeurs ont constaté que pour des trous de diamètre compris entre 0,5 mm et 5 mm, une densité surfacique de trous comprise entre 0,2 cm-2 et 2 cm-2 permet d’obtenir un débit maximal de liquide Q en début d’écoulement de quelques dizièmes à quelques dizaines de kg par seconde. Pour des masses de silicium allant de Gen 1 à Gen 6, cette gamme de débits correspond à un temps minimal de vidange du filtre allant de quelques secondes à quelques centaines de secondes, assurant ainsi une bonne productivité du procédé de purification.
Pour l’étape de filtration, on utilise un dispositif de filtration sous forme de creuset comportant un fond muni avec une densité surfacique de trous comprise entre 0,2 cm-2 et 2 cm-2, de préférence entre 0,5 cm-2 et 1 cm-2. L’épaisseur du dispositif de filtration pourrait conditionner sa tenue mécanique. Les épaisseurs typiques peuvent aller de de 5 mm à 20 mm. Le mélange à l’état solide peut être introduit dans le dispositif de filtration avant le cycle de chauffage. En variante, le procédé peut comporter une étape d’introduction du mélange/kerf dans le dispositif de filtration lorsque la température maximale est atteinte dans le four.
Le mélange est porté à une température supérieure ou égale à la température de fusion du silicium, notamment à une température comprise entre 1450 and 1650°C, de préférence entre 1500°C et 1600°C.
La durée de palier à la température maximale dépend de la température maximale et de la quantité de kerf/mélange. Par exemple, pour une température maximale de 1535°C et une masse de kerf/mélange de 10 kg, la durée de palier est d’environ 1 heure. L’homme du métier sera en mesure de déterminer la durée de ce palier sur la base de la température maximale et de la quantité de kerf/mélange.
Après l’étape de filtration b), la phase liquide filtrée, débarrassée notamment des scories constituées de SiÛ2 et de SiC, est soumise à une solidification dirigée, au cours de laquelle on obtient la ségrégation des impuretés notamment métalliques du mélange.
La solidification dirigée est un procédé bien connu de l’homme du métier. Elle peut être réalisée selon la méthode HEM (Heat Extraction Method en anglais) décrite par Khattak et Schmid (Growth of silicon ingots by HEM for photovoltaic applications, Silicon Processing for Photovoltaics II, edited by C.P. Khattak and K.V. Ravi, Elsevier Science Publishers B.V., 1987). Le procédé de l’invention peut comporter une étape d) de refroidissement, notamment jusqu’à température ambiante, du silicium à l’état solide obtenu à l’issue de l’étape c).
Par température ambiante, on entend une température de 20°C + 5°C. Le procédé peut comporter, en outre, une étape e) de récupération du silicium à l’état solide purifié à l’issue du refroidissement de l’étape d). On entend par l’expression « à l’issue du refroidissement >>, le retour à la température ambiante, c’est-à-dire à une température de 20°C + 5°C. Après filtration et à l’issue du refroidissement, une fine couche de silicium demeure au fond du dispositif de filtration par capillarité, et les scories adhèrent peu à la surface dudit dispositif de telle sorte qu’elles peuvent être retirées manuellement et que le dispositif de filtration peut être réutilisé. Selon un mode de réalisation de l’invention, le dispositif de filtration est disposé au-dessus d’un autre creuset, sur lequel il repose, dans un four de ségrégation ou de cristallisation du silicium photovoltaïque comme montré en [Fig 1], La charge de kerf est disposée dans le dispositif de filtration et, à la fusion, la phase liquide comportant le silicium et les impuretés métalliques s’écoule par les trous présents dans le fond dudit dispositif, tandis que les scories sont retenues dans ledit dispositif. Une rampe de refroidissement est ensuite appliquée pour permettre la solidification dirigée du silicium au sein du creuset et la ségrégation des impuretés présentes à l’état dissout dans le mélange initial comportant le silicium.
Dans un autre mode de réalisation de l’invention, le dispositif de filtration repose initialement au fond d’un autre creuset comme montré en [Fig 2], Le volume du dispositif de filtration est ajusté pour ne contenir que les scories à filtrer. Le kerf/mélange est chargé dans le dispositif de filtration et le creuset. A la fin du palier de fusion, le dispositif de filtration est remonté au-dessus du mélange filtré par un moyen mécanique à l’aide de tiges, notamment en graphite. L’intérêt de ce mode de réalisation est que pour un même volume de creuset, il permet de filtrer des quantités de kerf bien plus importantes que dans le cas du mode de réalisation illustré en [Fig 1] où seul le filtre est chargé en kerf. Dans un autre mode de réalisation de l’invention, le dispositif de filtration est couplé à un système d’alimentation en continu en kerf. La contenance du dispositif de filtration est dans ce cas réduite, le volume du dispositif étant ajusté pour ne contenir que les scories à filtrer. Un tel système d’alimentation en continu est bien connu de l’homme du métier, par exemple pour la croissance des lingots de silicium monocristallins par tirage Czochralski afin d’augmenter la productivité du procédé. La [Fig 3] représente un exemple de ce mode de réalisation dans lequel le dispositif de filtration est disposé au- dessus d’un autre creuset, sur lequel il repose, cet autre creuset étant destiné à la ségrégation des éléments métalliques de la phase liquide filtrée du mélange.
Selon un autre mode de réalisation de l’invention, le dispositif de filtration comprend une pluralité de dispositifs de filtration unitaires reposant sur des barres notamment en graphite, elles-mêmes reposant sur les plaques latérales notamment en graphite, maintenant le creuset comme montré en [Fig 4], Ce dispositif de filtration est notamment destiné aux creusets de grandes dimensions pour la production de lingots de silicium de taille industrielle.
Dans un autre mode de réalisation de l’invention, les parois intérieures du dispositif de filtration, ou les parois intérieures et extérieures du dispositif de filtration, peuvent être recouvertes d’un dépôt anti-adhérent à base de poudre de SiaIXk, tel qu’utilisé classiquement pour les creusets de cristallisation du silicium photovoltaïque.
Dans un autre mode de réalisation de l’invention, le dispositif de filtration comprend un système de soufflage additionnel permettant d’injecter du gaz neutre au-dessus de la phase liquide filtrée contenue dans le creuset. Dans ce mode de réalisation, le gaz neutre peut, par exemple, être injecté par l’intermédiaire d’un tube de graphite disposé au centre du filtre comme montré en [Fig 5].
Afin que la poudre de kerf ne s’échappe pas par les trous du dispositif de filtration lors de son chargement dans ledit dispositif et lors de l’étape de chauffage, des wafers de silicium ou des morceaux de wafers de silicium cassés peuvent avantageusement être disposés au fond du dispositif de filtration de façon à recouvrir les trous. Ces wafers sont alors en silicium de grade photovoltaïque ou microélectronique. Leur épaisseur est avantageusement d’au moins 100 microns.
Pour augmenter la quantité de kerf chargé dans le dispositif de filtration et ainsi améliorer la productivité du procédé, le kerf peut être préalablement densifié par des techniques de compaction, par exemple la compaction isostatique, ou par des techniques d’agglomération, par exemple l’agglomération par mélange à fort cisaillement ou l’agglomération par séchage par pulvérisation. Ces techniques sont bien connues de l’homme du métier.
Comme déjà indiqué, le procédé de l’invention permet de diminuer les teneurs en métaux, en oxygène et en carbone dans le kerf, en un seul cycle de fusion et solidification, ce qui est particulièrement avantageux sur le plan industriel par rapport aux procédés de l’état de la technique.
Plus particulièrement, dans le procédé de l’invention, le dispositif de filtration s’adapte dans un four industriel DSS de ségrégation ou cristallisation du silicium photovoltaïque. Cela n’est pas le cas pour le procédé de fusion et versement dans un creuset de ségrégation, tel que décrit dans WO201 2113461.
Dans l’invention, on cherche à purifier le silicium à partir d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comportant du silicium, de l’oxygène, du carbone et des métaux, avec une teneur en silicium d’au moins 96% en poids, une teneur en oxygène supérieure ou égale à 1% en poids et une teneur en carbone supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange. Un tel mélange n’a pas les mêmes caractéristiques que le silicium MG et que les rebuts des lingots de cristallisation. Le Si MG contient de l’oxygène et du carbone dans des proportions moindres que le kerf (0,3% en poids d’oxygène et 0,06% en poids de carbone selon D. Sarti étal., Silicon feedstock for the multi-crystalline photovoltaic industry, Solar Energy Materials & Solar Cells 72 (2002) p. 27-40), et les rebuts des lingots de cristallisation de silicium photovoltaïque ne contiennent pas de précipités d’oxygène mais des précipités de SiaIXk d’une taille de 20 microns, et des précipités de SiC majoritairement de taille inférieure à 200 microns.
Ainsi, contrairement au procédé de l’invention où les trous du dispositif de filtration ont un diamètre dans la gamme du millimètre, les filtres de l’état de la technique pour la filtration du Si MG liquide ont des trous de faible dimension, de quelques microns dans DE 3411955 et d'un diamètre inférieur à 3 microns dans EP 0160294. Le silicium s’infiltre dans les trous de taille micronique qui peuvent être bouchés par les inclusions pénétrant à l’intérieur.
Dans le système de filtration en mousse de SiC décrit dans Zhang ét al. (Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation, Solar Energy Materials & Solar Cells, 92 (2008) pp. 1450-1461 ) pour la filtration des rebuts de lingots de cristallisation du Si photovoltaïque, la tortuosité de la porosité de la mousse est nécessaire pour la filtration des particules qui sont de petite taille. La tortuosité crée en effet un écoulement du liquide présentant des boucles de recirculation qui transportent les particules vers les parois du filtre sur lesquelles elles adhèrent et restent fixées. Or, dans le procédé de l’invention, le mélange solide, sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, contient au départ une teneur importante d’oxygène (une teneur en oxygène supérieure ou égale à 1% en poids) par rapport au poids total du mélange. L’oxygène se transforme en SiÛ2 lors du chauffage et de la fusion, et l’agglomération de SiÛ2 conduit à des particules de grande dimension, de quelques millimètres à quelques centimètres. Par ailleurs, le dispositif de filtration utilisé dans le procédé de la présente invention est muni de trous traversants c’est-à-dire des trous qui ne présentent pas de tortuosité d’une extrémité à l’autre, et à travers lesquels on peut voir. Le dispositif de filtration dans le procédé de l’invention est donc plus simple à réaliser que le filtre en mousse de SiC décrit par Zhang ét al., et contrairement à ce dernier, le dispositif de filtration de l’invention ne génère pas de contamination du silicium liquide.
Le procédé de l’invention permet d'obtenir un mélange ayant la pureté requise pour l’application photovoltaïque (jusqu’à 99,9999% en poids de silicium ou plus, sans tenir compte de l’oxygène et du carbone). L’invention a également pour objet une installation de purification de silicium à partir d’un mélange solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes et comportant du silicium, de l’oxygène, du carbone et éventuellement des métaux, la teneur en silicium étant d’au moins 96% en poids, la teneur en oxygène étant supérieure ou égale à 1% en poids et la teneur en carbone étant supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, ladite installation comportant :
- des moyens aptes à chauffer le mélange au-delà de la température de fusion du silicium ; et
- des moyens de filtration aptes à filtrer le mélange, les moyens de filtration comportant des trous traversants de diamètre compris entre 0,5 et 2 mm, et de préférence entre 1 et 1 ,5 mm.
L’installation de l’invention comporte, en outre, des moyens aptes à réaliser une solidification dirigée de la phase liquide filtrée du mélange.
Un autre objet de l’invention se rapporte à l’utilisation d’un procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, selon l’invention, ou d’une installation selon l’invention, pour la fabrication des cellules photovoltaïques.
L’invention concerne, en outre, un procédé de fabrication de cellules photovoltaïques mettant en oeuvre une étape de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de de briques de silicium en plaquettes, selon le procédé de l’invention, ou une installation selon l’invention.
L’invention, bien que décrite pour un mélange issu de la découpe de briques, pourrait également s’appliquer à un mélange issu de la découpe de lingots. Dans le cas de la découpe de lingots, le mélange mis en oeuvre est solide, notamment sous forme de poudre. La granulométrie de cette poudre est généralement telle que le diamètre moyen des particules peut aller de 80 à 100 microns.
Sauf mention contraire, l’expression « comportant/comprenant un(e) >> doit être comprise comme « comportant/comprenant au moins un(e) ». Sauf mention contraire, l’expression « compris(e) entre ... et ... >> doit s’entendre comme bornes incluses.
Sauf mention contraire, l’expression « compris(e) entre allant de ... à ... >> doit s’entendre comme bornes incluses.
EXEMPLE
Une purification est réalisée selon le procédé de la présente invention sur du kerf contenant 4,3% en poids d’oxygène, et 1 ,8% en poids de carbone, par rapport au poids total du kerf. Le kerf présente une pureté de 99,955% en poids de silicium (sans prendre en compte l’oxygène et le carbone), et préalablement compacté sous forme de granules de quelques millimètres de diamètre.
18 kg de kerf sont chargés dans un filtre en graphite (nuance R7550 de SGL) reposant sur un creuset en silice revêtu d’une couche de SiaIXk selon la configuration de la [Fig 3].
Le filtre a une section intérieure de 1246 cm2 et est percé en son fond de 529 trous de 1 ,5 mm de diamètre. Le filtre et le creuset sont placés dans un four DSS de ségrégation du silicium pour application photovoltaïque de capacité 60 kg.
Le cycle thermique consiste en une montée à 900°C sous vide (pression résiduelle de 10’1 mbar), une montée à 1500°C sous argon (pression partielle de 600 mbar) et un palier à 1500°C pendant 6 heures. La fusion du silicium du mélange commence durant la rampe de montée et se termine après 45 minutes de palier. Ensuite, 4,2 kg de kerf solide sous forme de granules sont rechargés dans le filtre au moyen du système d’alimentation représenté sur la Fig 3. Ce rechargement est effectué 10 fois de suite, toutes les 25 minutes. A la fin du palier à 1500°C, le silicium liquide s’est totalement écoulé dans le creuset par les trous du filtre. Une rampe de refroidissement est ensuite appliquée permettant une solidification dirigée du silicium contenu dans le creuset à une vitesse de l’ordre de 1 cm/h.
Le lingot de silicium solidifié a une masse de 43 kg et le rendement matière, c’est-à-dire le ratio entre la masse de silicium filtré et la masse initiale de kerf (60 kg), est de 72%. La partie ségrégée du lingot contient 0,003% en poids d’oxygène et moins de 0,001% en poids de carbone, par rapport au poids total du lingot. La pureté du lingot est de 99,9999% en poids de silicium, par rapport au poids total du lingot (sans prendre en compte l’oxygène et le carbone).

Claims

REVENDICATIONS
1 . Procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, lequel mélange comporte du silicium, de l’oxygène, du carbone et des métaux, avec une teneur en silicium d’au moins 96 % en poids, une teneur en oxygène supérieure ou égale à 1% en poids et une teneur en carbone supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, caractérisé en ce qu’il comprend les étapes dans lesquelles a) on porte le mélange à une température comprise entre 1450 and 1650°C ; b) on filtre le mélange à travers d’un dispositif de filtration comportant un fond muni de trous traversants de diamètre compris entre 0,5 et 2 mm et de préférence entre 1 et 1 ,5 mm, et de densité surfacique comprise entre 0,2 et 2 cm-2, de préférence entre 0,5 et 1 cm-2 ; et c) on soumet la phase liquide filtrée du mélange à une solidification dirigée.
2. Procédé selon la revendication 1 , caractérisé en ce que le dispositif de filtration est en un matériau choisi dans le groupe constitué par le graphite, le carbure de silicium (SiC), le nitrure de silicium (SiNs), la silice (SiC ), ou un mélange de ces matériaux, ou en un mélange de graphite avec le carbure de silicium (SiC), le nitrure de silicium (SiNs), et la silice (SiC ).
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que le dispositif de filtration est sous forme de creuset.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le mélange à l’état solide est introduit dans le dispositif de filtration et pour y être porté à une température comprise entre 1450 et 1650°C.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que le mélange est porté à une température comprise entre 1500 and 1600°C.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le dispositif de filtration est disposé au-dessus d’un creuset, sur lequel il repose, dans un four de ségrégation ou de cristallisation du silicium photovoltaïque.
7. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le dispositif de filtration repose initialement au fond du creuset et est remonté au-dessus du mélange filtré par un moyen mécanique à l’aide de tiges notamment en graphite, à la fin du palier de fusion.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que le dispositif de filtration est couplé à un système d’alimentation en continu en kerf/mélange.
9. Procédé selon l’une quelconque des revendications 1 à 5 et 8, caractérisé en ce que le dispositif de filtration comprend une pluralité de dispositifs de filtration unitaires reposant sur des barres notamment en graphite, elles- mêmes reposant sur les plaques latérales notamment en graphite, maintenant le creuset.
10. Procédé selon l’une quelconque des revendications 1 à 5 et 8, caractérisé en ce que le dispositif de filtration dispose en son centre un système de soufflage additionnel permettant d’injecter du gaz neutre au- dessus de la phase liquide filtrée contenue dans le creuset lors de la solidification dirigée.
11 . Installation de purification de silicium à partir d’un mélange solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes et comportant du silicium, de l’oxygène, du carbone et éventuellement des métaux, la teneur en silicium étant d’au moins 96% en poids, la teneur en oxygène étant supérieure ou égale à 1% en poids et la teneur en carbone étant supérieure ou égale à 0,1% en poids, par rapport au poids total du mélange, caractérisée en ce qu’elle comporte - des moyens aptes à chauffer le mélange au-delà de la température de fusion du silicium ;
- des moyens de filtration aptes à filtrer le mélange, les moyens de filtration comportant des trous traversants de diamètre compris entre 0,5 et 2 mm, et de préférence entre 1 et 1 ,5 mm ; et
- des moyens aptes à réaliser une solidification dirigée de la phase liquide filtrée du mélange.
12. Utilisation d’un procédé de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, selon l’une quelconque des revendications 1 à 10, ou d’une installation selon la revendication 11 , pour la fabrication des cellules photovoltaïques.
13. Procédé de fabrication de cellules photovoltaïques mettant en oeuvre une étape de purification d’un mélange à l’état solide, notamment sous forme de poudre, issu de la découpe de briques de silicium en plaquettes, selon le procédé des revendications 1 à 10, ou une installation selon la revendication 11.
PCT/EP2021/082446 2020-11-23 2021-11-22 Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes WO2022106675A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21810045.1A EP4247756A1 (fr) 2020-11-23 2021-11-22 Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2011999 2020-11-23
FR2011999A FR3116527B1 (fr) 2020-11-23 2020-11-23 Procede et installation de purification de silicium a partir d’un melange issu de la decoupe de briques de silicium en plaquettes

Publications (1)

Publication Number Publication Date
WO2022106675A1 true WO2022106675A1 (fr) 2022-05-27

Family

ID=74592127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082446 WO2022106675A1 (fr) 2020-11-23 2021-11-22 Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes

Country Status (3)

Country Link
EP (1) EP4247756A1 (fr)
FR (1) FR3116527B1 (fr)
WO (1) WO2022106675A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411955A1 (de) 1984-03-30 1985-10-10 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum abtrennen fester bestandteile aus fluessigem silicium
EP0160294A2 (fr) 1984-05-04 1985-11-06 Siemens Aktiengesellschaft Procédé de séparation de produits de réaction solides du silicium produit au four à arc
WO2012113461A1 (fr) 2011-02-25 2012-08-30 Evonik Degussa Gmbh Procédé d'obtention de silicium de haute pureté
JP2014076927A (ja) 2012-10-12 2014-05-01 Panasonic Corp 不純物除去炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411955A1 (de) 1984-03-30 1985-10-10 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum abtrennen fester bestandteile aus fluessigem silicium
EP0160294A2 (fr) 1984-05-04 1985-11-06 Siemens Aktiengesellschaft Procédé de séparation de produits de réaction solides du silicium produit au four à arc
WO2012113461A1 (fr) 2011-02-25 2012-08-30 Evonik Degussa Gmbh Procédé d'obtention de silicium de haute pureté
JP2014076927A (ja) 2012-10-12 2014-05-01 Panasonic Corp 不純物除去炉

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. SARTI ET AL.: "Silicon feedstock for the multi-crystalline photovoltaic industry", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 72, 2002, pages 27 - 40, XP004339747, DOI: 10.1016/S0927-0248(01)00147-7
KHATTAKSCHMID: "Silicon Processing for Photovoltaics", vol. II, 1987, ELSEVIER SCIENCE PUBLISHERS B.V, article "Growth of silicon ingots by HEM for photovoltaic applications"
ZHANG ET AL.: "Recycling of solar cell silicon scraps through filtration, Part I: Expérimental investigation", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 92, 2008, pages 1450 - 1461, XP024522888, DOI: 10.1016/j.solmat.2008.06.006

Also Published As

Publication number Publication date
FR3116527A1 (fr) 2022-05-27
EP4247756A1 (fr) 2023-09-27
FR3116527B1 (fr) 2023-04-14

Similar Documents

Publication Publication Date Title
TWI428482B (zh) 製備用於矽晶體成長之矽粉末融化物之方法
US20090130014A1 (en) Silicon recycling method, and silicon and silicon ingot manufactured with that method
FR2827592A1 (fr) Silicium metallurgique de haute purete et procede d'elaboration
FR2880013A1 (fr) Procede de purification de silice en poudre
FR2602503A1 (fr) Procede et appareillage pour la purification du silicium
FR2726820A1 (fr) Creuset de quartz dont la paroi a une teneur en bulles reduite, procede de fabrication et procede d'utilisation de ce creuset
EP3330240A1 (fr) Procede pour la siliciuration surfacique de graphite
WO2005016837A1 (fr) Procede de fabrication d'une piece en silice amorphe frittee, moule et barbotine mis en oeuvre dans ce procede
WO1987005287A1 (fr) Procede de fabrication de verre
WO2022106675A1 (fr) Procede et installation de purification de silicium a partir d'un melange issu de la decoupe de briques de silicium en plaquettes
CA2634592A1 (fr) Procede de production de silicium a usage solaire
FR2645938A1 (fr) Tube de transfert
WO2019122567A1 (fr) Granules de silicium pour la preparation de trichlorosilane et procede de fabrication associe
EP0274283B1 (fr) Procédé de purification sous plasma de silicium divisé
EP0125173A1 (fr) Procédé de production de particules solides métalliques à partir d'un bain métallique
EP3489196A1 (fr) Procédé et dispositif pour alimenter un bain de silicium liquide en particules de silicium solides
WO2015036974A1 (fr) Substrat à revêtement peu perméable pour solidification de silicium
FR2607492A1 (fr) Procede et appareil pour la production de poudres d'alliages ceramiques solidifiees rapidement
FR2934186A1 (fr) Fabrication et purification d'un solide semiconducteur
EP0158563B1 (fr) Procédé de fabrication non polluant de silicium massif à partir de silicium divisé
JP2005046866A (ja) シリコン鋳造用鋳型およびその製造方法
EP2769160B1 (fr) Installation de purification d'un materiau
EP0668376B1 (fr) Procédé de production de trichites ou whiskers fibreux, longs de carbure de silicium
FR2690462A1 (fr) Procédé de fabrication de cuivre à très basse teneur en oxygène.
CN103124693B (zh) 硅锭制造用容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021810045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021810045

Country of ref document: EP

Effective date: 20230623