WO2022105501A1 - 用于加热装置的控制方法及加热装置 - Google Patents

用于加热装置的控制方法及加热装置 Download PDF

Info

Publication number
WO2022105501A1
WO2022105501A1 PCT/CN2021/124128 CN2021124128W WO2022105501A1 WO 2022105501 A1 WO2022105501 A1 WO 2022105501A1 CN 2021124128 W CN2021124128 W CN 2021124128W WO 2022105501 A1 WO2022105501 A1 WO 2022105501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
matching
weight
generating module
wave generating
Prior art date
Application number
PCT/CN2021/124128
Other languages
English (en)
French (fr)
Inventor
韩志强
朱小兵
李春阳
王铭
Original Assignee
青岛海尔特种电冰箱有限公司
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔特种电冰箱有限公司, 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔特种电冰箱有限公司
Priority to JP2023530594A priority Critical patent/JP2023549928A/ja
Priority to US18/038,018 priority patent/US20230413385A1/en
Priority to EP21893650.8A priority patent/EP4230935A4/en
Publication of WO2022105501A1 publication Critical patent/WO2022105501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/48Circuits
    • H05B6/50Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0261For cooking of food
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications

Definitions

  • the invention relates to the field of food processing, in particular to a control method and a heating device for an electromagnetic wave heating device.
  • the quality of the food is preserved during the freezing process, however frozen food needs to be thawed before being processed or eaten.
  • the food is usually thawed by an electromagnetic wave heating device.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art, and to provide a control method for an electromagnetic wave heating device.
  • a further object of the first aspect of the invention is to save energy.
  • Another further object of the first aspect of the present invention is to prolong the service life of the electromagnetic wave generating module.
  • An object of the second aspect of the present invention is to provide an electromagnetic wave heating device.
  • a control method for a heating device including an electromagnetic wave generating module that generates an electromagnetic wave signal for heating an object to be treated, and adjusting the electromagnetic wave by adjusting its own impedance
  • the matching module of the load impedance of the generating module includes:
  • control method further includes:
  • the electromagnetic wave generating module is controlled to stop working.
  • control method further includes:
  • the preset adjustment time is determined according to the weight of the object to be treated.
  • the step of determining the preset adjustment time according to the weight of the object to be treated includes:
  • the preset adjustment time corresponding to different weights is recorded in the weight-time comparison relationship, and the preset adjustment time is positively correlated with the weight.
  • control method further includes:
  • the electromagnetic wave generating module is controlled to stop working;
  • the second matching threshold is smaller than the first matching threshold.
  • control method further includes:
  • the electromagnetic wave generating module is controlled to stop working.
  • control method further includes:
  • the rate of change threshold is determined according to the weight of the object to be treated.
  • the step of determining the change rate threshold according to the weight of the object to be treated includes:
  • the change rate threshold is matched according to the weight according to a preset weight rate comparison
  • the weight rate comparison relationship records change rate thresholds corresponding to different weights, and the change rate thresholds are negatively correlated with weight.
  • the method before the step of controlling the electromagnetic wave generating module to generate an electromagnetic wave signal with a preset heating power, the method further includes:
  • controlling the electromagnetic wave generating module to generate an electromagnetic wave signal with a preset initial power
  • the weight is determined according to the impedance value; wherein,
  • the weight is determined according to the largest impedance value.
  • control method further includes:
  • the step of determining the load matching degree of the electromagnetic wave generating module is performed.
  • the step of adjusting the impedance of the matching module according to the load matching degree is performed.
  • a heating device comprising:
  • Cavity capacitor for placing the object to be processed
  • an electromagnetic wave generating module configured to generate an electromagnetic wave signal for heating the object to be processed in the cavity capacitor
  • a matching module configured to adjust the load impedance of the electromagnetic wave generating module by adjusting its own impedance
  • a controller configured to perform any one of the above control methods.
  • the electromagnetic wave generating module stops working, which can avoid containing more electromagnetic waves.
  • the material to be treated with components with poor absorption capacity will continue to be heated after its moisture has been turned from ice to liquid, thereby avoiding excessive heating of the material to be treated, ensuring the quality of the material to be treated, reducing undesired energy waste, and prolonging the occurrence of electromagnetic waves. the service life of the module.
  • the present invention determines whether the heating of the object to be processed is completed according to the rate of change of the dielectric coefficient of the object to be processed. Compared with judging whether the heating is completed according to the temperature and time, the object to be processed can be stopped more accurately in the state expected by the user. For example, the heated food can be stopped at -4--2°C by setting the change rate threshold, so that the to-be-processed object is easy to be cut and processed, and the meat to-be-processed object can be prevented from producing bloody water.
  • the present invention makes the electromagnetic wave generating module stop working when the load matching degree is less than or equal to the second matching threshold, so as to avoid the load matching being too low due to the weight, volume being too large or too small to be processed, and preventing more electromagnetic waves from being damaged.
  • the reflected electromagnetic wave generator module will burn out the electromagnetic wave generator module and even cause safety hazards.
  • FIG. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of the controller in Fig. 1;
  • FIG. 3 is a schematic circuit diagram of a matching module according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 5 is a detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cavity capacitor 110 , an electromagnetic wave generating module 120 , a matching module 130 and a controller 140 .
  • the cavity capacitor 110 may include a cavity for placing the object to be processed 150 and a radiation plate disposed in the cavity.
  • a receiving plate can also be arranged in the cavity to form a capacitor with the radiating plate.
  • the cavity can be made of metal, which serves as the receiver plate and the radiator plate to form a capacitor.
  • the electromagnetic wave generating module 120 can be configured to generate electromagnetic wave signals and be electrically connected to the radiation plate of the cavity capacitor 110 to generate electromagnetic waves in the cavity capacitor 110 to heat the object to be processed 150 in the cavity capacitor 110 .
  • the matching module 130 can be connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 or connected in parallel with both ends of the cavity capacitor 110, and is configured to adjust the load impedance of the electromagnetic wave generating module 120 by adjusting its own impedance to achieve load matching, Improve heating efficiency.
  • FIG. 2 is a schematic structural diagram of the controller 140 in FIG. 1 .
  • the controller 140 may include a processing unit 141 and a storage unit 142 .
  • the storage unit 142 stores a computer program 143, and when the computer program 143 is executed by the processing unit 141, is used to implement the control method of the embodiment of the present invention.
  • the processing unit 141 may be configured to determine the load matching degree of the electromagnetic wave generating module 120 after controlling the electromagnetic wave generating module 120 to generate the electromagnetic wave signal of the preset heating power, and adjust the impedance of the matching module 130 according to the load matching degree, so as to improve the object to be processed 150
  • the absorption rate of electromagnetic waves improves the heating efficiency.
  • the heating device 100 may further include a bidirectional coupler connected in series between the cavity capacitor 110 and the electromagnetic wave generating module 120 for real-time monitoring of the forward power signal output by the electromagnetic wave generating module 120 and the reverse power signal returning to the electromagnetic wave generating module 120 .
  • Load matching may be the difference between the number 1 and the ratio of the reverse power signal to the forward power signal.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to stop working when the determined load matching degree within the preset adjustment time is less than or equal to the first matching threshold, In order to prevent the object to be treated 150 containing many components with poor electromagnetic wave absorption ability from being heated continuously after its moisture has turned from ice to liquid, thereby preventing the object to be treated 150 from being overheated, ensuring the quality of the object to be treated 150, reducing Undesirable energy waste, prolonging the service life of the electromagnetic wave generating module 120 .
  • the processing unit 141 may be configured to determine the load matching degree of the electromagnetic wave generating module 120 every preset time interval. That is, if the load matching degree determined for consecutive preset times is less than or equal to the first matching threshold, the electromagnetic wave generating module 120 is controlled to stop working.
  • the processing unit 141 may be configured to adjust the impedance of the matching module 130 according to the load matching degree when the load matching degree is less than or equal to the first matching threshold, so as to ensure the electromagnetic wave absorption rate of the object to be processed 150 .
  • the load matching degree can be replaced by the return loss, and the return loss is about low, which means that the higher the proportion of the output power allocated by the electromagnetic wave generating module 120 to the cavity capacitor 110, and the other conditions are the same. The higher the heating efficiency.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to stop working when the determined return losses within the preset adjustment time are all greater than the preset loss threshold.
  • the processing unit 141 may be configured to determine a preset adjustment time according to the weight of the object to be processed 150 , so as to improve the accuracy of determining whether the object to be processed 150 has been basically heated and has components with poor electromagnetic wave absorption capability.
  • the processing unit 141 may match the preset adjustment time according to the weight according to the preset weight-time comparison relationship in the storage unit 142 .
  • the preset adjustment time corresponding to different weights is recorded in the weight-time comparison relationship, and the preset adjustment time is positively correlated with the weight, so as to adapt to different objects to be treated 150, so that the stop of the electromagnetic wave generating module 120 is more accurate.
  • the weight-time comparison relationship records preset adjustment times corresponding to different weight intervals, and the larger the middle value of the weight interval, the longer the corresponding preset adjustment time.
  • the processing unit 141 may be configured to determine the rate of change of the dielectric coefficient of the object to be treated 150, and control the electromagnetic wave generating module 120 to stop working when the rate of change drops to a threshold value of the rate of change or less, In cooperation with the threshold judgment of the load matching degree, the object to be processed 150 is stopped more accurately in the state expected by the user.
  • the processing unit 141 may determine the change rate threshold according to the weight of the object to be processed 150, so as to improve the accuracy of judging whether the heating is completed.
  • the processing unit 141 may match the change rate threshold according to the preset weight rate comparison relationship according to the weight.
  • the weight rate comparison relationship records the change rate thresholds corresponding to different weights, and the change rate thresholds are negatively correlated with the weights, so as to adapt to the demand for electromagnetic wave energy of the objects to be processed 150 of different weights, so that the stopping of the electromagnetic wave generating module 120 is more accurate.
  • the weight of the object to be processed 150 may be determined by the initial impedance value of the matching module 130 for optimal load matching of the electromagnetic wave generating module 120, so as to improve the weight accuracy and reduce the production cost.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power, adjust the impedance of the matching module 130, and determine to make the electromagnetic wave
  • the impedance value of the module 130 with the maximum load matching degree of the generation module 120 is matched, and then the weight is determined according to the impedance value.
  • the weight is determined according to the largest impedance value.
  • FIG. 3 is a schematic circuit diagram of the matching module 130 according to one embodiment of the present invention.
  • the matching module 130 may include a first matching unit 131 connected in series between the electromagnetic wave generating module 120 and the cavity capacitor 110 , and one end electrically connected to the first matching unit 131 and the cavity capacitor 110 The second matching unit 132 between which the other end is grounded.
  • the first matching unit 131 and the second matching unit 132 may respectively include a plurality of matching branches connected in parallel, and each matching branch includes a fixed-value capacitor and a switch, so as to simplify the circuit and improve the performance of the matching module 130. reliability and adjustment range.
  • the first matching unit 131 can be mainly used to adjust the frequency of the resonance point, and the capacitance values of the fixed-value capacitors of the plurality of matching branches are all different, and are controlled by switches S 1 , S 2 , . . . , Sa respectively.
  • the second matching unit 132 can be mainly used to further adjust the frequency of the resonance point and the amplitude of the resonance point, and the capacitance values of the fixed-value capacitors of its multiple matching branches are all different, and are determined by the switches K 1 , K 2 , . . . , K b respectively. control.
  • the processing unit 141 may be configured to adjust the on-off states of the switches K 1 , K 2 , .
  • the capacitance value interval is determined, and the capacitance value of the second matching unit 132 that realizes the maximum load matching degree (the capacitance value of the second matching unit 132 can be directly represented by the switch number of the capacitance value of the second matching unit 132) is determined, and then the object to be processed is determined. 150 weight.
  • the processing unit 141 may first turn on the switches K 8 , K 12 and K 4 of the second matching unit 132 , and traverse the corresponding switches S 1 , S 2 , . . . , Sa of the first matching unit 131 to determine the load matching degree. If the load matching degree corresponding to the switch K 12 is the largest, it is determined that the optimal value is between the switches K 8 to K 15 , the switches K 10 and K 14 of the second matching unit 132 are turned on, and the corresponding first matching is traversed respectively.
  • the switches S 1 , S 2 , ... , Sa of the unit 131 determine the load matching degree, and so on, determine the switch number of the second matching unit 132 that realizes the maximum load matching degree.
  • the processing unit 141 may be configured to divide the capacity value interval of the second matching unit 132 into a plurality of sub-intervals, determine the middle value of the plurality of sub-intervals with the highest load matching degree, and then traverse the sub-intervals All capacity values in the interval are determined, and then the capacity value of the second matching unit 132 that achieves the maximum load matching degree is determined, and the weight of the object to be processed 150 is determined.
  • the processing unit 141 may first turn on the switches K 2 , K 4 , K 6 , K 8 , K 10 , K 12 and K 14 of the second matching unit 132 , and traverse the corresponding switches S 1 , K 1 , K 12 and K 14 of the first matching unit 131 respectively.
  • S 2 , ..., Sa determine the load matching degree.
  • the switches K 11 and K 13 of the second matching unit 132 are turned on, and the corresponding first matching is traversed respectively.
  • the switches S 1 , S 2 , ... , Sa of the unit 131 determine the load matching degree, and determine the switch number of the second matching unit 132 that realizes the maximum load matching degree.
  • the weight of the object to be processed 150 can also be detected and obtained by a weight sensor, or manually input by the user.
  • the processing unit 141 may be configured to control the electromagnetic wave generating module 120 to stop working when the load matching degree is less than or equal to the second matching threshold.
  • the second matching threshold may be smaller than the first matching threshold, so as to avoid the load matching being too low due to the object 150 being too large or too small in weight, volume, and preventing more electromagnetic waves from being reflected back to the electromagnetic wave generating module 120 and burning
  • the bad electromagnetic wave generating module 120 may even cause a safety hazard.
  • control method for the heating device 100 of the present invention may include the following steps:
  • Step S402 Controlling the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset heating power.
  • Step S404 Determine the load matching degree of the electromagnetic wave generating module 120, and adjust the impedance of the matching module 130 according to the load matching degree.
  • Step S406 Determine whether the load matching degrees determined within the preset adjustment time are all less than or equal to the first matching threshold. If yes, go to step S408; if no, go back to step S404.
  • Step S408 Control the electromagnetic wave generating module 120 to stop working.
  • the electromagnetic wave generating module 120 stops working, which can avoid
  • the object to be treated 150 that contains many components with poor electromagnetic wave absorption ability is still heated after its moisture has turned from ice to liquid, thereby preventing the object to be treated 150 from being overheated, ensuring the quality of the object to be treated 150, and reducing undesired energy waste, and prolong the service life of the electromagnetic wave generating module 120.
  • the load matching degree of the electromagnetic wave generating module 120 may be determined every preset time interval. That is, if the load matching degree determined for consecutive preset times is less than or equal to the first matching threshold, the electromagnetic wave generating module 120 is controlled to stop working.
  • the impedance of the matching module 130 may be adjusted according to the load matching degree when the load matching degree is less than or equal to the first matching threshold, so as to ensure the absorption rate of the electromagnetic wave by the object to be processed 150 .
  • the preset adjustment time may be determined according to the weight of the object to be processed 150 , so as to improve the accuracy of determining whether the object to be processed 150 has been basically heated and has components with poor electromagnetic wave absorption capability.
  • the preset adjustment time can be obtained by matching the weight according to the preset weight-time comparison relationship in the storage unit 142 .
  • the preset adjustment time corresponding to different weights is recorded in the weight-time comparison relationship, and the preset adjustment time is positively correlated with the weight to adapt to different objects 150 to be processed, so that the electromagnetic wave generating module 120 can be stopped more accurately.
  • control method may further include: determining a rate of change of the permittivity of the object to be treated 150; if the rate of change drops to a threshold value of the rate of change or less, controlling the electromagnetic wave generating module 120 to stop working to match the load matching degree.
  • the threshold value judgment cooperates to make the object to be processed 150 stop in the user's desired state more accurately.
  • the threshold value of the rate of change may be determined according to the weight of the object to be processed 150, so as to improve the accuracy of judging whether the heating is completed.
  • the change rate threshold can be obtained by matching the weight according to the preset weight rate comparison relationship.
  • the weight rate comparison relationship records the change rate thresholds corresponding to different weights, and the change rate thresholds are negatively correlated with the weight, so as to adapt to the demand for electromagnetic wave energy of the objects to be processed 150 of different weights, so that the stop of the electromagnetic wave generating module 120 is more accurate.
  • the weight of the object to be processed 150 may be determined by the initial impedance value of the matching module 130 for optimal load matching of the electromagnetic wave generating module 120, so as to improve the weight accuracy and reduce the production cost. Specifically, the weight of the object to be treated 150 can be obtained through the following steps:
  • the preset initial power may be smaller than the preset heating power, so as to reduce the influence of the heating effect of the object to be processed 150 in the weight acquisition stage, and reduce the damage to the electromagnetic wave generating module 120;
  • the weight is determined according to the impedance value (in this step, if the multiple impedance values of the matching module 130 all maximize the load matching degree of the electromagnetic wave generating module 120, the weight is determined according to the largest impedance value).
  • control method may further include: if the load matching degree is less than or equal to the second matching threshold, controlling the electromagnetic wave generating module 120 to stop working.
  • the second matching threshold is smaller than the first matching threshold, so as to avoid the load matching being too low due to the object 150 being too large or too small in weight, volume, and preventing more electromagnetic waves from being reflected back to the electromagnetic wave generating module 120 and burning out The electromagnetic wave generating module 120 may even cause safety hazards.
  • FIG. 5 is a detailed flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may specifically include the following detailed steps:
  • Step S502 Obtain a heating instruction.
  • Step S504 Control the electromagnetic wave generating module 120 to generate an electromagnetic wave signal with a preset initial power.
  • Step S506 Adjust the impedance of the matching module 130, and determine the impedance value of the matching module 130 that maximizes the load matching degree of the electromagnetic wave generating module 120.
  • Step S508 Determine the weight according to the impedance value of the matching module 130 that maximizes the load matching degree of the electromagnetic wave generating module 120, and further determine the preset adjustment time and the change rate threshold according to the weight.
  • Step S510 Determine the load matching degree of the electromagnetic wave generating module 120 and the rate of change of the dielectric coefficient of the object to be processed 150 at each preset time interval. Steps S512 and S520 are performed.
  • Step S512 Determine whether the load matching degree is less than or equal to the second matching threshold. If yes, go to step S522; if not, go to step S514.
  • Step S514 Determine whether the load matching degree is less than or equal to the first matching threshold. If yes, go to step S516 and step S518; if no, go back to step S510.
  • Step S516 Adjust the impedance of the matching module 130 according to the load matching degree.
  • Step S518 Determine whether the load matching degrees determined within the preset adjustment time are all less than or equal to the first matching threshold. If yes, go to step S522; if no, go back to step S510.
  • Step S520 Determine whether the rate of change of the dielectric coefficient of the object to be processed 150 has dropped to a threshold value of the rate of change or less. If yes, go to step S522; if no, go back to step S510.
  • Step S522 Control the electromagnetic wave generating module 120 to stop working. Return to step S502.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种用于加热装置的控制方法及加热装置。加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和通过调节自身阻抗来调节电磁波发生模块的负载阻抗的匹配模块。控制方法包括:控制电磁波发生模块产生预设加热功率的电磁波信号;确定电磁波发生模块的负载匹配度,并根据负载匹配度调节匹配模块的阻抗。其中,若在预设调节时间内确定出的负载匹配度均小于等于第一匹配阈值,控制电磁波发生模块停止工作,以避免含有较多电磁波吸收能力差的成分的待处理物在其水分已由冰化为液体后仍被继续加热,进而避免待处理物被过分加热,保证待处理物的品质,减少不期望的能源浪费,延长电磁波发生模块的使用寿命。

Description

用于加热装置的控制方法及加热装置 技术领域
本发明涉及食物处理领域,特别是涉及一种用于电磁波加热装置的控制方法及加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但是,不同种类的食物因本身的组成成分差异导致其对电磁波吸收的能力存在差异,另外,承载食物的容器材质也会导致食物及容器整体对电磁波吸收的能力存在差异,导致电磁波发生模块不能准确、合适地及时停止工作,使食物被过分的加热或浪费***能耗。综合考虑,在设计上需要提供一种可使解冻较为准确、合适地结束的用于电磁波加热装置的控制方法及加热装置。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于电磁波加热装置的控制方法。
本发明第一方面的一个进一步的目的是要节约能源。
本发明第一方面的另一个进一步的目的是要延长电磁波发生模块的使用寿命。
本发明第二方面的一个目的是要提供一种电磁波加热装置。
根据本发明的第一方面,提供了一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,所述控制方法包括:
控制所述电磁波发生模块产生预设加热功率的电磁波信号;
确定所述电磁波发生模块的负载匹配度,并根据所述负载匹配度调节所述匹配模块的阻抗;其中,所述控制方法还包括:
若在预设调节时间内确定出的所述负载匹配度均小于等于第一匹配阈值,控制所述电磁波发生模块停止工作。
可选地,所述控制方法,还包括:
根据待处理物的重量确定所述预设调节时间。
可选地,所述根据待处理物的重量确定所述预设调节时间的步骤包括:
根据所述重量按照预设的重量时间对照关系匹配所述预设调节时间;其中
所述重量时间对照关系记录有不同重量对应的预设调节时间,且预设调节时间与重量正相关。
可选地,所述控制方法,还包括:
若所述负载匹配度小于等于第二匹配阈值,控制所述电磁波发生模块停止工作;其中
所述第二匹配阈值小于所述第一匹配阈值。
可选地,所述控制方法,还包括:
确定待处理物的介电系数的变化速率;
若所述变化速率下降至小于等于变化速率阈值,控制所述电磁波发生模块停止工作。
可选地,所述控制方法,还包括:
根据待处理物的重量确定所述变化速率阈值。
可选地,所述根据待处理物的重量确定所述变化速率阈值的步骤包括:
根据所述重量按照预设的重量速率对照关系匹配所述变化速率阈值;其中
所述重量速率对照关系记录有不同重量对应的变化速率阈值,且变化速率阈值与重量负相关。
可选地,在所述控制所述电磁波发生模块产生预设加热功率的电磁波信号的步骤之前还包括:
控制所述电磁波发生模块产生预设初始功率的电磁波信号;
调节所述匹配模块的阻抗,并确定使所述电磁波发生模块的负载匹配度最大的所述匹配模块的阻抗值;
根据所述阻抗值确定所述重量;其中,
若所述匹配模块的多个阻抗值均使所述电磁波发生模块的负载匹配度 最大,在所述根据所述阻抗值确定所述重量的步骤中,根据最大的阻抗值确定所述重量。
可选地,所述控制方法,还包括:
每间隔预设时间间隔,执行所述确定所述电磁波发生模块的负载匹配度的步骤;和/或
若所述负载匹配度小于等于第一匹配阈值,执行所述根据所述负载匹配度调节所述匹配模块的阻抗的步骤。
根据本发明的第二方面,提供了一种加热装置,包括:
腔体电容,用于放置待处理物;
电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
匹配模块,配置为可通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗;以及
控制器,配置为用于执行以上任一所述的控制方法。
本发明通过确定阻抗调节后的负载匹配度,在预设调节时间内若连续确定出的负载匹配度均小于等于预设的第一匹配度,使电磁波发生模块停止工作,可避免含有较多电磁波吸收能力差的成分的待处理物在其水分已由冰化为液体后仍被继续加热,进而避免待处理物被过分加热,保证待处理物的品质,减少不期望的能源浪费,延长电磁波发生模块的使用寿命。
进一步地,本发明根据待处理物的介电系数的变化速率判断待处理物是否加热完成,相比于根据温度、时间判断是否加热完成,可使待处理物更准确地停止在用户期望的状态,例如可通过变化速率阈值的设置使加热完成的食物停止在-4~-2℃,使得待处理物易于切割处理,避免肉类待处理物产生血水。
进一步地,本发明使电磁波发生模块在负载匹配度小于等于第二匹配阈值时停止工作,避免因重量、体积过大或过小的待处理物导致负载匹配度过低,防止较多的电磁波被反射回电磁波发生模块而烧坏电磁波发生模块甚至引发安全隐患。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中控制器的示意性结构图;
图3是根据本发明一个实施例的匹配模块的示意性电路图;
图4是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图5是根据本发明一个实施例的用于加热装置的控制方法的详细流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括腔体电容110、电磁波发生模块120、匹配模块130和控制器140。
具体地,腔体电容110可包括用于放置待处理物150的腔体和设置于腔体内的辐射极板。在一些实施例中,腔体内还可设置有接收极板,以与辐射极板组成电容器。在另一些实施例中,腔体可由金属制成,以作为接收极板与辐射极板组成电容器。
电磁波发生模块120可配置为产生电磁波信号,并与腔体电容110的辐射极板电连接,以在腔体电容110内产生电磁波,进而加热腔体电容110内的待处理物150。
匹配模块130可串联在电磁波发生模块120与腔体电容110之间或并联在腔体电容110的两端,并配置为可通过调节自身阻抗来调节电磁波发生模块120的负载阻抗,以实现负载匹配,提高加热效率。
图2是图1中控制器140的示意性结构图。参见图2,控制器140可包括处理单元141和存储单元142。其中存储单元142存储有计算机程序143,计算机程序143被处理单元141执行时用于实现本发明实施例的控制方法。
处理单元141可配置为在控制电磁波发生模块120产生预设加热功率的电磁波信号之后,确定电磁波发生模块120的负载匹配度,并根据负载匹配 度调节匹配模块130的阻抗,以提高待处理物150对电磁波的吸收率,提高加热效率。负载匹配度越高,表示电磁波发生模块120分配给腔体电容110的输出功率的占比越高,其他条件相同的情况下待处理物150的加热效率越高。
加热装置100还可包括串联在腔体电容110与电磁波发生模块120之间的双向耦合器,用于实时监测电磁波发生模块120输出的正向功率信号和返回电磁波发生模块120的反向功率信号。负载匹配度可为数字1与反向功率信号与正向功率信号之比的差值。
特别地,在确定电磁波发生模块120的负载匹配度之后,处理单元141可配置为当预设调节时间内确定出的负载匹配度均小于等于第一匹配阈值时,控制电磁波发生模块120停止工作,以避免含有较多电磁波吸收能力差的成分的待处理物150在其水分已由冰化为液体后仍被继续加热,进而避免待处理物150被过分加热,保证待处理物150的品质,减少不期望的能源浪费,延长电磁波发生模块120的使用寿命。
处理单元141可配置为每间隔预设时间间隔,确定电磁波发生模块120的负载匹配度。即,若连续预设次数确定出的负载匹配度均小于等于第一匹配阈值,控制电磁波发生模块120停止工作。
处理单元141可配置为在负载匹配度小于等于第一匹配阈值,根据负载匹配度调节匹配模块130的阻抗,以保证待处理物150对电磁波的吸收率。
可替换地,负载匹配度可由回波损耗替换,回波损耗约低,表示电磁波发生模块120分配给腔体电容110的输出功率的占比越高,其他条件相同的情况下待处理物150的加热效率越高。
在确定电磁波发生模块120的回波损耗之后,处理单元141可配置为当预设调节时间内确定出的回波损耗均大于预设损耗阈值时,控制电磁波发生模块120停止工作。
在一些实施例中,处理单元141可配置为根据待处理物150的重量确定预设调节时间,以提高判断待处理物150是否已基本加热完成、存在电磁波吸收能力差的成分的准确性。
处理单元141可根据重量按照存储单元142中预设的重量时间对照关系匹配预设调节时间。其中,重量时间对照关系记录有不同重量对应的预设调节时间,且预设调节时间与重量正相关,以适应不同的待处理物150,使得 电磁波发生模块120的停止更加精准。
例如,重量时间对照关系记录有不同重量区间对应的预设调节时间,重量区间的中间值越大,对应的预设调节时间越长。
在一些实施例中,在加热过程中,处理单元141可配置为确定待处理物150的介电系数的变化速率,并在变化速率下降至小于等于变化速率阈值,控制电磁波发生模块120停止工作,以与负载匹配度的阈值判断相配合,使待处理物150更准确地停止在用户期望的状态。
处理单元141可根据待处理物150的重量确定变化速率阈值,以提高判断加热是否完成的准确性。
处理单元141可根据重量按照预设的重量速率对照关系匹配变化速率阈值。其中,重量速率对照关系记录有不同重量对应的变化速率阈值,且变化速率阈值与重量负相关,以适应不同重量待处理物150对电磁波能量的需求量,使得电磁波发生模块120的停止更加精准。
在一些进一步地实施例中,待处理物150的重量可通过实现电磁波发生模块120的最佳负载匹配的匹配模块130的初始阻抗值确定,以提高重量的精度,减少生产成本。
具体地,在控制电磁波发生模块120产生预设加热功率的电磁波信号之前,处理单元141可配置为控制电磁波发生模块120产生预设初始功率的电磁波信号,调节匹配模块130的阻抗,并确定使电磁波发生模块120的负载匹配度最大的匹配模块130的阻抗值,再根据阻抗值确定重量。其中,若匹配模块130的多个阻抗值均使电磁波发生模块120的负载匹配度最大,根据其中最大的阻抗值确定重量。
图3是根据本发明一个实施例的匹配模块130的示意性电路图。参见图3,在一些实施例中,匹配模块130可包括串联在电磁波发生模块120与腔体电容110之间的第一匹配单元131、和一端电连接于第一匹配单元131与腔体电容110之间且另一端接地的第二匹配单元132。
第一匹配单元131和第二匹配单元132可分别包括并联的多个匹配支路,且每个匹配支路包括一个定值电容和一个开关,以在使电路简单的同时,提高匹配模块130的可靠性和调节范围。
第一匹配单元131可主要用于调节谐振点频率,其多个匹配支路的定值电容的电容值均不相同,分别由开关S 1、S 2、…、S a控制。第二匹配单元132 可主要用于进一步调节谐振点频率和谐振点幅值,其多个匹配支路的定值电容的电容值均不相同,分别由开关K 1、K 2、…、K b控制。
在一些进一步地实施例中,处理单元141可配置为以二分法的方式调节第二匹配单元132中开关K 1、K 2、…、K b的通断状态,逐步缩小实现负载匹配度最大的容值区间,并确定实现负载匹配度最大的第二匹配单元132的容值(第二匹配单元132的容值可直接由第二匹配单元132的容值的开关编号表示)进而确定待处理物150的重量。
示例性地,第二匹配单元132共有15个开关(即b=15),依次为开关K 1、K 2、…、K 14、K 15。处理单元141可首先导通第二匹配单元132的开关K 8、K 12和K 4,并分别遍历对应的第一匹配单元131的开关S 1、S 2、…、S a确定负载匹配度。若开关K 12对应的负载匹配度最大,由此确定最佳值在开关K 8至K 15之间,导通第二匹配单元132的开关K 10和K 14,并分别遍历对应的第一匹配单元131的开关S 1、S 2、…、S a确定负载匹配度,以此类推,确定出实现负载匹配度最大的第二匹配单元132的开关编号。
在另一些进一步地实施例中,处理单元141可配置为将第二匹配单元132的容值区间划分为多个子区间,确定出多个子区间的中间值中负载匹配度最大的,再遍历该子区间的所有容值,进而确定实现负载匹配度最大的第二匹配单元132的容值,确定待处理物150的重量。
示例性地,第二匹配单元132共有15个开关(即b=15),依次为开关K 1、K 2、…、K 14、K 15。处理单元141可首先导通第二匹配单元132的开关K 2、K 4、K 6、K 8、K 10、K 12和K 14,并分别遍历对应的第一匹配单元131的开关S 1、S 2、…、S a确定负载匹配度。若开关K 12对应的负载匹配度最大,由此确定最佳值在开关K 11至K 13之间,导通第二匹配单元132的开关K 11和K 13,并分别遍历对应的第一匹配单元131的开关S 1、S 2、…、S a确定负载匹配度,确定出实现负载匹配度最大的第二匹配单元132的开关编号。
在另一些实施例中,待处理物150的重量也可由重量传感器检测获得、或由用户手动输入。
在一些实施例中,处理单元141可配置为在负载匹配度小于等于第二匹配阈值时,控制电磁波发生模块120停止工作。其中,第二匹配阈值可小于第一匹配阈值,以避免因重量、体积过大或过小的待处理物150导致负载匹配度过低,防止较多的电磁波被反射回电磁波发生模块120而烧坏电磁波发 生模块120甚至引发安全隐患。
图4是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图(在本发明的说明书附图中,“Y”表示“是”,“N”表示“否”)。参见图4,本发明的用于加热装置100的控制方法可包括如下步骤:
步骤S402:控制电磁波发生模块120产生预设加热功率的电磁波信号。
步骤S404:确定电磁波发生模块120的负载匹配度,并根据负载匹配度调节匹配模块130的阻抗。
步骤S406:判断在预设调节时间内确定出的负载匹配度是否均小于等于第一匹配阈值。若是,执行步骤S408;若否,返回步骤S404。
步骤S408:控制电磁波发生模块120停止工作。
本发明的控制方法通过确定阻抗调节后的负载匹配度,在预设调节时间内若连续确定出的负载匹配度均小于等于预设的第一匹配度,使电磁波发生模块120停止工作,可避免含有较多电磁波吸收能力差的成分的待处理物150在其水分已由冰化为液体后仍被继续加热,进而避免待处理物150被过分加热,保证待处理物150的品质,减少不期望的能源浪费,延长电磁波发生模块120的使用寿命。
电磁波发生模块120的负载匹配度可每间隔预设时间间隔进行一次确定。即,若连续预设次数确定出的负载匹配度均小于等于第一匹配阈值,控制电磁波发生模块120停止工作。
匹配模块130的阻抗可在负载匹配度小于等于第一匹配阈值时,根据负载匹配度进行调节,以保证待处理物150对电磁波的吸收率。
在一些实施例中,预设调节时间可根据待处理物150的重量确定,以提高判断待处理物150是否已基本加热完成、存在电磁波吸收能力差的成分的准确性。
预设调节时间可根据重量按照存储单元142中预设的重量时间对照关系匹配获得。其中,重量时间对照关系记录有不同重量对应的预设调节时间,且预设调节时间与重量正相关,以适应不同的待处理物150,使得电磁波发生模块120的停止更加精准。
在一些实施例中,控制方法还可包括:确定待处理物150的介电系数的变化速率;若变化速率下降至小于等于变化速率阈值,控制电磁波发生模块120停止工作,以与负载匹配度的阈值判断相配合,使待处理物150更准确 地停止在用户期望的状态。
变化速率阈值可根据待处理物150的重量确定,以提高判断加热是否完成的准确性。
变化速率阈值可根据重量按照预设的重量速率对照关系匹配获得。其中,重量速率对照关系记录有不同重量对应的变化速率阈值,且变化速率阈值与重量负相关,以适应不同重量待处理物150对电磁波能量的需求量,使得电磁波发生模块120的停止更加精准。
在一些进一步地实施例中,待处理物150的重量可通过实现电磁波发生模块120的最佳负载匹配的匹配模块130的初始阻抗值确定,以提高重量的精度,减少生产成本。具体地,待处理物150的重量可通过如下步骤获得:
控制电磁波发生模块120产生预设初始功率的电磁波信号,预设初始功率可小于预设加热功率,以减少重量获取阶段对待处理物150的加热效果的影响、并减少对电磁波发生模块120的损害;
调节匹配模块130的阻抗,并确定使电磁波发生模块120的负载匹配度最大的匹配模块130的阻抗值;
根据阻抗值确定重量(在该步骤中,若匹配模块130的多个阻抗值均使电磁波发生模块120的负载匹配度最大,根据最大的阻抗值确定重量)。
在一些实施例中,控制方法还可包括:若负载匹配度小于等于第二匹配阈值,控制电磁波发生模块120停止工作。其中,第二匹配阈值小于第一匹配阈值,以避免因重量、体积过大或过小的待处理物150导致负载匹配度过低,防止较多的电磁波被反射回电磁波发生模块120而烧坏电磁波发生模块120甚至引发安全隐患。
图5是根据本发明一个实施例的用于加热装置100的控制方法的详细流程图。参见图5,本发明的用于加热装置100的控制方法可具体地包括如下详细步骤:
步骤S502:获取加热指令。
步骤S504:控制电磁波发生模块120产生预设初始功率的电磁波信号。
步骤S506:调节匹配模块130的阻抗,并确定使电磁波发生模块120的负载匹配度最大的匹配模块130的阻抗值。
步骤S508:根据使电磁波发生模块120的负载匹配度最大的匹配模块130的阻抗值确定重量,并进一步根据重量确定预设调节时间、和变化速率 阈值。
步骤S510:每间隔预设时间间隔,确定电磁波发生模块120的负载匹配度、和待处理物150的介电系数的变化速率。执行步骤S512和步骤S520。
步骤S512:判断负载匹配度是否小于等于第二匹配阈值。若是,执行步骤S522;若否,执行步骤S514。
步骤S514:判断负载匹配度是否小于等于第一匹配阈值。若是,执行步骤S516和步骤S518;若否,返回步骤S510。
步骤S516:根据负载匹配度调节匹配模块130的阻抗。
步骤S518:判断在预设调节时间内确定出的负载匹配度是否均小于等于第一匹配阈值。若是,执行步骤S522;若否,返回步骤S510。
步骤S520:判断待处理物150的介电系数的变化速率是否下降至小于等于变化速率阈值。若是,执行步骤S522;若否,返回步骤S510。
步骤S522:控制电磁波发生模块120停止工作。返回步骤S502。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于加热装置的控制方法,所述加热装置包括产生用于加热待处理物的电磁波信号的电磁波发生模块、和通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗的匹配模块,所述控制方法包括:
    控制所述电磁波发生模块产生预设加热功率的电磁波信号;
    确定所述电磁波发生模块的负载匹配度,并根据所述负载匹配度调节所述匹配模块的阻抗;其中,所述控制方法还包括:
    若在预设调节时间内确定出的所述负载匹配度均小于等于第一匹配阈值,控制所述电磁波发生模块停止工作。
  2. 根据权利要求1所述的控制方法,还包括:
    根据待处理物的重量确定所述预设调节时间。
  3. 根据权利要求2所述的控制方法,其中,所述根据待处理物的重量确定所述预设调节时间的步骤包括:
    根据所述重量按照预设的重量时间对照关系匹配所述预设调节时间;其中
    所述重量时间对照关系记录有不同重量对应的预设调节时间,且预设调节时间与重量正相关。
  4. 根据权利要求1所述的控制方法,还包括:
    若所述负载匹配度小于等于第二匹配阈值,控制所述电磁波发生模块停止工作;其中
    所述第二匹配阈值小于所述第一匹配阈值。
  5. 根据权利要求1所述的控制方法,还包括:
    确定待处理物的介电系数的变化速率;
    若所述变化速率下降至小于等于变化速率阈值,控制所述电磁波发生模块停止工作。
  6. 根据权利要求5所述的控制方法,还包括:
    根据待处理物的重量确定所述变化速率阈值。
  7. 根据权利要求6所述的控制方法,其中,所述根据待处理物的重量确定所述变化速率阈值的步骤包括:
    根据所述重量按照预设的重量速率对照关系匹配所述变化速率阈值;其中
    所述重量速率对照关系记录有不同重量对应的变化速率阈值,且变化速率阈值与重量负相关。
  8. 根据权利要求2或6所述的控制方法,其中,在所述控制所述电磁波发生模块产生预设加热功率的电磁波信号的步骤之前还包括:
    控制所述电磁波发生模块产生预设初始功率的电磁波信号;
    调节所述匹配模块的阻抗,并确定使所述电磁波发生模块的负载匹配度最大的所述匹配模块的阻抗值;
    根据所述阻抗值确定所述重量;其中,
    若所述匹配模块的多个阻抗值均使所述电磁波发生模块的负载匹配度最大,在所述根据所述阻抗值确定所述重量的步骤中,根据最大的阻抗值确定所述重量。
  9. 根据权利要求1所述的控制方法,还包括:
    每间隔预设时间间隔,执行所述确定所述电磁波发生模块的负载匹配度的步骤;和/或
    若所述负载匹配度小于等于第一匹配阈值,执行所述根据所述负载匹配度调节所述匹配模块的阻抗的步骤。
  10. 一种加热装置,包括:
    腔体电容,用于放置待处理物;
    电磁波发生模块,配置为产生电磁波信号,用于加热所述腔体电容内的待处理物;
    匹配模块,配置为可通过调节自身阻抗来调节所述电磁波发生模块的负载阻抗;以及
    控制器,配置为用于执行权利要求1-9中任一所述的控制方法。
PCT/CN2021/124128 2020-11-20 2021-10-15 用于加热装置的控制方法及加热装置 WO2022105501A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023530594A JP2023549928A (ja) 2020-11-20 2021-10-15 加熱装置用の制御方法および加熱装置
US18/038,018 US20230413385A1 (en) 2020-11-20 2021-10-15 Heating device and control method thereof
EP21893650.8A EP4230935A4 (en) 2020-11-20 2021-10-15 CONTROL METHODS FOR HEATER AND HEATER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011314469.4 2020-11-20
CN202011314469.4A CN114521033A (zh) 2020-11-20 2020-11-20 用于加热装置的控制方法及加热装置

Publications (1)

Publication Number Publication Date
WO2022105501A1 true WO2022105501A1 (zh) 2022-05-27

Family

ID=81594355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124128 WO2022105501A1 (zh) 2020-11-20 2021-10-15 用于加热装置的控制方法及加热装置

Country Status (5)

Country Link
US (1) US20230413385A1 (zh)
EP (1) EP4230935A4 (zh)
JP (1) JP2023549928A (zh)
CN (1) CN114521033A (zh)
WO (1) WO2022105501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4114143A4 (en) * 2020-04-22 2023-07-26 Qingdao Haier Refrigerator Co., Ltd. DEFROST METHOD FOR HEATER, AND HEATER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117412422A (zh) * 2022-07-06 2024-01-16 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334215A1 (en) * 2012-06-18 2013-12-19 Whirlpool Corporation Microwave heating apparatus with multi-feeding points
CN109000418A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN108991338A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109000397A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109150132A (zh) * 2017-06-19 2019-01-04 展讯通信(上海)有限公司 阻抗调谐方法、装置及移动终端
CN112996158A (zh) * 2019-12-13 2021-06-18 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
CN113519753A (zh) * 2020-04-22 2021-10-22 青岛海尔电冰箱有限公司 用于加热装置的解冻方法及加热装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288626A (zh) * 2016-08-29 2017-01-04 合肥华凌股份有限公司 一种解冻装置、冰箱及其解冻控制方法
US10952289B2 (en) * 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
CN209893783U (zh) * 2019-01-30 2020-01-03 青岛海尔电冰箱有限公司 加热装置及具有该加热装置的冰箱
JP2020145114A (ja) * 2019-03-07 2020-09-10 シャープ株式会社 高周波解凍装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334215A1 (en) * 2012-06-18 2013-12-19 Whirlpool Corporation Microwave heating apparatus with multi-feeding points
CN109000418A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 解冻装置及具有该解冻装置的冰箱
CN108991338A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109000397A (zh) * 2017-06-06 2018-12-14 青岛海尔股份有限公司 用于解冻装置的解冻方法
CN109150132A (zh) * 2017-06-19 2019-01-04 展讯通信(上海)有限公司 阻抗调谐方法、装置及移动终端
CN112996158A (zh) * 2019-12-13 2021-06-18 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
CN113519753A (zh) * 2020-04-22 2021-10-22 青岛海尔电冰箱有限公司 用于加热装置的解冻方法及加热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230935A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4114143A4 (en) * 2020-04-22 2023-07-26 Qingdao Haier Refrigerator Co., Ltd. DEFROST METHOD FOR HEATER, AND HEATER

Also Published As

Publication number Publication date
CN114521033A (zh) 2022-05-20
EP4230935A1 (en) 2023-08-23
JP2023549928A (ja) 2023-11-29
US20230413385A1 (en) 2023-12-21
EP4230935A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022105501A1 (zh) 用于加热装置的控制方法及加热装置
WO2021139387A1 (zh) 用于加热装置的控制方法及加热装置
KR101569235B1 (ko) Rf 에너지를 사용하여 가열하는 장치 및 방법
JP5400885B2 (ja) マイクロ波加熱装置
US20140008357A1 (en) Microwave power source and method of automatic adjustement of operation frequence
US20120067873A1 (en) Microwave heating device and microwave heating method
CN109587861B (zh) 一种多频固态微波炉及使用多频固态微波炉的加热方法
WO2021213441A1 (zh) 用于加热装置的解冻方法及加热装置
WO2021114998A1 (zh) 用于加热装置的控制方法及加热装置
CN112969248B (zh) 用于加热装置的控制方法及加热装置
EP3902376B1 (en) Electromagnetic wave generation system, and heating apparatus with electromagnetic wave generation system
CN209251648U (zh) 一种采用开关匹配模块的解冻装置
CN105338675B (zh) 一种高频电磁加热设备及其电力控制方法
CN113316280A (zh) 用于加热装置的控制方法以及加热装置
CN109257025A (zh) 开关匹配模块、解冻装置及自动解冻方法
CN112996161A (zh) 用于加热装置的控制方法及加热装置
CN113288414B (zh) 一种基于小信号扫描检测的自适应宽频微波肿瘤消融仪
CN109452530B (zh) 开关匹配模块及具有两个辐射机构的解冻装置
CN109221882B (zh) 开关匹配模块及使用该开关匹配模块的解冻装置
CN209660317U (zh) 单极板解冻装置和解冻设备
CN110195882A (zh) 解冻控制方法、解冻控制装置及计算机存储介质
JPH0395312A (ja) 高周波加熱装置
WO2021139363A1 (zh) 用于加热装置的控制方法及加热装置
WO2023005289A1 (zh) 加热方法及冷藏冷冻装置
WO2024008119A1 (zh) 用于加热装置的控制方法及加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530594

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021893650

Country of ref document: EP

Effective date: 20230516

NENP Non-entry into the national phase

Ref country code: DE