WO2022105356A1 - 带有增量式调节功能的核电机组控制棒调节方法及*** - Google Patents

带有增量式调节功能的核电机组控制棒调节方法及*** Download PDF

Info

Publication number
WO2022105356A1
WO2022105356A1 PCT/CN2021/115643 CN2021115643W WO2022105356A1 WO 2022105356 A1 WO2022105356 A1 WO 2022105356A1 CN 2021115643 W CN2021115643 W CN 2021115643W WO 2022105356 A1 WO2022105356 A1 WO 2022105356A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
deviation
value
control rod
load
Prior art date
Application number
PCT/CN2021/115643
Other languages
English (en)
French (fr)
Inventor
刘俊峰
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022105356A1 publication Critical patent/WO2022105356A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of nuclear energy science and engineering, and relates to a control rod adjustment method and system of a nuclear power unit with an incremental adjustment function.
  • the nuclear power unit coordinated control system controls the entire nuclear power plant as a whole, adopts a hierarchical control system structure, and organically combines automatic adjustment, logic control, interlocking protection and other functions to form a multi-control function.
  • a comprehensive control system that meets the control requirements of different operating modes and different working conditions.
  • the coordinated control system of nuclear power unit based on modern control theory is the current development direction.
  • the high temperature gas-cooled reactor nuclear power plant uses multiple reactors and one steam turbine generator set for system combination. It is a complex large system with multiple inputs and multiple outputs. There is a close coupling relationship between each control variable and the adjusted variable.
  • the existing The high-temperature gas-cooled reactor coordinated control system adopts a large-system hierarchical cascade control scheme, and the control structure is divided into power distribution control layer, coordinated control layer and local control layer from top to bottom.
  • the local control layer is used to realize single-loop control of all operating variables, including nuclear power control, helium gas flow control, feedwater flow control, and steam turbine regulating stage pressure control;
  • the coordinated control layer is used to realize the coordinated control of all controlled variables, including Thermal helium temperature control, steam generator outlet steam temperature control, reactor output thermal power control and steam turbine speed control;
  • the power distribution control layer is used to realize the power distribution of multiple reactor modules and steam turbine generator sets.
  • the control rods of the high temperature gas-cooled reactor Due to the high temperature of the high temperature gas-cooled reactor core and the complex structure of the core, the control rods of the high temperature gas-cooled reactor have the characteristics of long stroke and heavy weight.
  • the conventional control rod drive mechanism cannot achieve reliable transmission and accurate rod position positioning under the high temperature operating conditions of the high temperature gas-cooled reactor and the long stroke displacement of the control rod. Therefore, the control rod drive mechanism of the high temperature gas-cooled reactor adopts a stepping motor with a magnetic damper.
  • the control variables of the high temperature gas-cooled reactor control rod are affected by the internal structural properties of the equipment and the external operating conditions.
  • the control characteristics are nonlinear, and have distributed parameters and time-varying characteristics.
  • the purpose of the present invention is to overcome the above shortcomings of the prior art, and to provide a nuclear power plant control rod adjustment method and system with an incremental adjustment function, which can realize precise control of nuclear power plant control rods.
  • the method for adjusting the control rod of a nuclear power plant with an incremental adjustment function includes the following steps:
  • a nuclear power plant control rod adjustment system with incremental adjustment function includes:
  • the first calculation module is used to obtain the unit load measurement value, calculate the deviation between the unit load setting value and the unit load measurement value to obtain the first load deviation value, and calculate the load calculation value according to the unit power setting value.
  • the deviation calculation of the unit load measurement value is performed to obtain the second load deviation value, and the first load deviation value and the second load deviation value are weighted and calculated to obtain the load correction value for the load PID adjustment;
  • the second calculation module is used to obtain the measured value of the power of the unit, calculate the deviation of the power set value of the unit and the measured value of the power of the unit to obtain the power deviation value, and then calculate the power correction value for power PID adjustment according to the power deviation value;
  • the third calculation module is used to obtain the measured value of the control rod position, calculate the calculated value of the control rod position according to the measured value of the unit power, and calculate the deviation between the calculated value of the control rod position and the measured value of the control rod position to obtain the first control rod position deviation value , the first control rod position deviation value is adjusted by incremental calculation and inertia link, and then the deviation calculation is performed with the control rod position set value after fitting by the historical operation database to obtain the second control rod position deviation value, and then according to the second control rod position deviation value
  • the rod position deviation value is used to calculate the control rod position correction value for rod position PID adjustment;
  • the control module is used to input the load correction value for load PID adjustment, the power correction value for power PID adjustment and the control rod position correction value for rod position PID adjustment into the T module for three-impulse control, and then according to T The module output controls the reactor.
  • the first calculation module includes a load setting module, a load measurement module, a first deviation module, a first PID module, a first function solver, a second deviation module, a second PID module and a summation calculator;
  • the output end of the load setting module and the output end of the load measurement module are connected with the input end of the first deviation module; the output end of the first deviation module is connected with the first input end of the summation calculator, and the first end of the load measurement module is connected with the first input end of the summation calculator.
  • the second output terminal is connected to the first input terminal of the second deviation module, the input terminal of the first function solver is connected to the output terminal of the second calculation module, and the output terminal of the first function solver is connected to the first input terminal of the second deviation module.
  • the two input ends are connected, the output end of the second deviation module is connected with the second input end of the summation calculator, the output end of the summation calculator is connected with the input end of the first PID module, and the output end of the first PID module is connected
  • the terminal is connected with the first input terminal of the T module.
  • the second calculation module includes a power setting module, a power measurement module, a third deviation module, a second PID module, a T module and a reactor manual/automatic main control module, wherein the output end of the power setting module is connected to the first function solver
  • the input end of the power measurement module is connected to the first input end of the third deviation module
  • the output end of the power measurement module is connected to the second input end of the third deviation module and the input end of the second function solver
  • the output end of the third deviation module is connected.
  • the terminal is connected to the input terminal of the second PID module
  • the output terminal of the second PID module is connected to the second input terminal of the T module.
  • the third calculation module includes a control rod position measurement module, a second function solver, a fourth deviation module, a first incremental calculator, a first inertial link module, a second incremental calculator, a second inertial link module, a third PID module, fifth deviation module, historical operation database module and control rod position setting module;
  • the output end of the second function solver is connected to the first input end of the fourth deviation module, the output end of the control rod position measurement module is connected to the second input end of the fourth deviation module, and the output end of the fourth deviation module is connected to The first input end of the first incremental calculator is connected, the output end of the first incremental calculator is connected with the input end of the first inertial link module, and the output end of the first inertial link module is connected with the second incremental calculator
  • the output end of the second incremental calculator is connected with the input end of the second inertial link module, and the output end of the second inertial link module is connected with the first input end and the third input end of the fifth deviation module.
  • the input end of the PID module is connected, the output end of the third PID module is connected with the third input end of the T module, the output end of the historical operation database module is connected with the input end of the control rod position setting module, and the control rod position setting module is connected.
  • the output terminal of the fixed module is connected to the second input terminal of the fifth deviation module, and the output terminal of the fifth deviation module is connected to the second input terminal of the first incremental calculator and the second input terminal of the second incremental calculator. connect.
  • the control module includes the reactor manual/automatic main control module, and the output end of the T module is connected with the input end of the reactor manual/automatic main control module.
  • an incremental calculator and an inertial link are added as the feedforward of the control rod position variable, so as to quickly track the change of the control variable trend, correct the output of control variables, effectively overcome the output characteristics of the main control loop PID regulator of the reactor and the phenomenon of power overshoot or oscillation caused by the inertia of the reactor regulation, and play a key role in the stability of the reactor.
  • the incremental calculator Based on the nonlinear controlled system, it has more control stability and accuracy for the nonlinear distributed control variable disturbance, especially when the unit is running under variable operating conditions, the control loop can track the parameter changes in time, and improve the high temperature gas-cooled reactor.
  • the inertial link has its own negative feedback closed-loop characteristics, and its amplitude decreases with the increase of frequency, so it has the function of low-pass filtering.
  • Fig. 1 is the logic diagram of the present invention
  • FIG. 2 is a control logic diagram of the T module 20 .
  • 1 is the first calculation module
  • 2 is the second calculation module
  • 3 is the third calculation module
  • 4 is the first deviation module
  • 5 is the second deviation module
  • 6 is the third deviation module
  • 7 is the fourth deviation module
  • 8 is the fifth deviation module
  • 9 is the first function solver
  • 10 is the second function solver
  • 11 is the first PID module
  • 12 is the second PID module
  • 13 is the third PID module
  • 14 is the summation calculation 15 is the control rod position setting module
  • 16 is the first increment calculator
  • 17 is the second increment calculator
  • 18 is the first inertia link module
  • 19 is the second inertia link module
  • 20 is the T module.
  • the method for adjusting the control rods of a nuclear power plant with an incremental adjustment function includes the following steps:
  • the nuclear power plant control rod adjustment system with incremental adjustment function includes:
  • the first calculation module 1 includes a load setting module, a load measurement module, a first deviation module 4, a first PID module 11, a first function solver 9, a second deviation module 5, a second PID module 12 and a first summation calculator 14;
  • the output end of the load setting module and the output end of the load measuring module are connected with the input end of the first deviation module 4; the output end of the first deviation module 4 is connected with the first input end of the summation calculator 14.
  • the second output terminal of the load measurement module is connected to the first input terminal of the second deviation module 5 , the input terminal of the first function solver 9 is connected to the output terminal of the power setting module, and the output terminal of the first function solver 9 is connected.
  • the terminal is connected to the second input terminal of the second deviation module 5, the output terminal of the second deviation module 5 is connected to the second input terminal of the summation calculator 14, and the output end of the summation calculator 14 is connected to the first PID module.
  • the input end of the first PID module 11 is connected to the first input end of the T module 20 .
  • the second calculation module 2 includes a power setting module, a power measurement module, a third deviation module 6, a second PID module 12, a T module 20 and a reactor manual/automatic main control module, wherein the output end of the power setting module is connected to the first
  • the input end of a function solver 9 is connected to the first input end of the third deviation module 6
  • the output end of the power measurement module is connected to the second input end of the third deviation module 6 and the input end of the second function solver 10
  • the output end of the third deviation module 6 is connected with the input end of the second PID module 12
  • the output end of the second PID module 12 is connected with the second input end of the T module 20
  • the output end of the T module 20 is connected to the reactor manually /Automatic main control module input terminal is connected.
  • the third calculation module 3 includes a control rod position measurement module, a second function solver 10, a fourth deviation module 7, a first incremental calculator 16, a first inertial link module 18, a second incremental calculator 17, a second Inertia link module 19, third PID module 13, fifth deviation module 8, historical operation database module and control rod position setting module 15;
  • the output end of the second function solver 10 is connected to the first input end of the fourth deviation module 7 , the output end of the control rod position measurement module is connected to the second input end of the fourth deviation module 7 , and the fourth deviation module 7
  • the output of the first incremental calculator 16 is connected to the first input of the first incremental calculator 16, the output of the first incremental calculator 16 is connected to the input of the first inertial link module 18, and the output of the first inertial link module 18
  • the terminal is connected to the first input terminal of the second incremental calculator 17, the output terminal of the second incremental calculator 17 is connected to the input terminal of the second inertial link module 19, and the output terminal of the second inertial link module 19 is connected to the input terminal of the second inertial link module 19.
  • the first input end of the fifth deviation module 8 is connected with the input end of the third PID module 13, the output end of the third PID module 13 is connected with the third input end of the T module 20, and the output end of the historical operation database module is connected with the third input end of the T module 20.
  • the input end of the control rod position setting module 15 is connected, the output end of the control rod position setting module 15 is connected with the second input end of the fifth deviation module 8, and the output end of the fifth deviation module 8 is connected with the first increment
  • the second input of the calculator 16 and the second input of the second incremental calculator 17 are connected.
  • the calculation formulas included in the first calculation module 1, the second calculation module 2, and the third calculation module 3 are described as follows:
  • the calculation formula of the first function solver 9 is: Among them, f( xi ) is the load calculation value corresponding to the reactor power, xi is the thermal power of the ith reactor; ⁇ i is the proportional coefficient.
  • the calculation formula of the second deviation module 5 is:
  • K P is the proportional coefficient
  • K I is the integral coefficient
  • K D is the differential coefficient
  • x is the total load deviation
  • y is the load PID adjustment amount.
  • the calculation formula of the second PID module 12 is: K P proportional coefficient, K I is the integral coefficient, K D is the differential coefficient, x is the reactor power deviation, and y is the power PID adjustment amount.
  • the calculation formulas of the first increment calculator 16 and the second increment calculator 17 are: Among them, Y i is the post-increment control rod position value, and a i and b i are the incremental acceleration coefficients.
  • the motion equations of the first inertial link module 18 and the second inertial link module 19 are: Among them, T is the time constant, and K is the inertia link gain.
  • the calculation formula of the third PID module 13 is: K P proportional coefficient, K I is the integral coefficient, K D is the differential coefficient, x is the control rod position deviation, and y is the control rod PID adjustment amount.
  • the T module 20 realizes the three-impulse adjustment function of the reactor power, and its control strategy is shown in FIG. 2 .
  • the present invention improves the stability and flexibility of the control loop adjustment in the operating mode of the reactor under variable working conditions, and provides a control idea for the subsequent participation of the nuclear power unit in the power grid peak regulation and frequency regulation. Meanwhile, the present invention is based on the reactor power in long-term operation The fitting curve with the actual corresponding relationship of the control rod position is used to obtain the functional relationship between the power and the control rod position under different operating conditions, and the set value of the control rod position is fed forward to improve the fast response of the control system. sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种带有增量式调节功能的核电机组控制棒调节方法及***,包括以下步骤:1)计算用于负荷PID调节的负荷修正值;2)计算用于功率PID调节的功率修正值;3)计算用于棒位PID调节的控制棒位修正值;4)将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块(20)进行三冲量控制,再根据T模块(20)输出控制反应堆,该方法及***能够实现核电机组控制棒的精确控制。

Description

带有增量式调节功能的核电机组控制棒调节方法及*** 技术领域
本发明属于核能科学与工程领域,涉及一种带有增量式调节功能的核电机组控制棒调节方法及***。
背景技术
核电机组协调控制***是将整个核动力装置作为一个整体进行控制,采用递阶控制***结构,把自动调节、逻辑控制、联锁保护等功能有机地结合起来,构成一种具有多种控制功能,满足不同运行方式和不同工况下控制要求的综合控制***。基于现代控制理论的核电机组协调控制***是目前的发展方向。高温气冷堆核电站采用多台反应堆和一台汽轮发电机组进行***组合,是一个多输入多输出的复杂大***,各控制量与被调量之间都存在紧密的耦合关系,现有的高温气冷堆协调控制***采用了大***递阶串级控制方案,将控制结构由上到下分为功率分配控制层、协调控制层和局部控制层。其中局部控制层用于实现所有操作变量的单回路控制,包括核功率控制、氦气流量控制、给水流量控制,汽轮机调节级压力控制;协调控制层用于实现所有被控变量的协调控制,包括热氦温度控制、蒸汽发生器出口蒸汽温度控制、反应堆输出热功率控制和汽轮机转速控制;功率分配控制层用于实现多个反应堆模块和汽轮发电机组的功率分配。
由于高温气冷堆堆芯温度高,堆芯结构复杂,高温气冷堆控制棒具有行程较长,重量较重的特点。常规的控制棒驱动机构无法在高温气冷堆高温运行工况和控制棒长行程位移下实现传动可靠、棒位准确定位功能。因此,高温气冷堆控制棒驱动机构采用了带有磁阻尼器的步进电机。高温气冷堆控制棒控制变量受设 备内部结构属性和外部运行工况的共同作用,其控制特性是非线性的,并具有分布参数和时变特性,目前还难以做到精确控制。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种带有增量式调节功能的核电机组控制棒调节方法及***,该方法及***能够实现核电机组控制棒的精确控制。
为达到上述目的,本发明所述的带有增量式调节功能的核电机组控制棒调节方法包括以下步骤:
1)获取机组负荷测量值,将机组负荷设定值与机组负荷测量值进行偏差计算得到第一负荷偏差值,根据机组功率设定值计算得到负荷计算值,负荷计算值与机组负荷测量值进行偏差计算得到第二负荷偏差值,第一负荷偏差值与第二负荷偏差值进行加权计算,得用于负荷PID调节的负荷修正值;
2)获取机组功率测量值,将机组功率设定值和机组功率测量值进行偏差计算得到功率偏差值,再根据功率偏差值计算用于功率PID调节的功率修正值;
3)获取控制棒位测量值,根据机组功率测量值计算得到控制棒位计算值,将控制棒位计算值与控制棒位测量值进行偏差计算得到第一控制棒位偏差值,第一控制棒位偏差值经增量计算及惯性环节调节,然后与经历史运行数据库拟合后的控制棒位设定值进行偏差计算得到第二控制棒位偏差值,然后根据第二控制棒位偏差值计算用于棒位PID调节的控制棒位修正值;
4)将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块进行三冲量控制,再根据T模块输出控制反应堆。
一种带有增量式调节功能的核电机组控制棒调节***包括:
第一计算模块,用于获取机组负荷测量值,将机组负荷设定值与机组负荷测量值进行偏差计算得到第一负荷偏差值,根据机组功率设定值计算得到负荷计算值,负荷计算值与机组负荷测量值进行偏差计算得到第二负荷偏差值,第一负荷偏差值与第二负荷偏差值进行加权计算,得用于负荷PID调节的负荷修正值;
第二计算模块,用于获取机组功率测量值,将机组功率设定值和机组功率测量值进行偏差计算得到功率偏差值,再根据功率偏差值计算用于功率PID调节的功率修正值;
第三计算模块,用于获取控制棒位测量值,根据机组功率测量值计算得到控制棒位计算值,将控制棒位计算值与控制棒位测量值进行偏差计算得到第一控制棒位偏差值,第一控制棒位偏差值经增量计算及惯性环节调节,然后与经历史运行数据库拟合后的控制棒位设定值进行偏差计算得到第二控制棒位偏差值,然后根据第二控制棒位偏差值计算用于棒位PID调节的控制棒位修正值;
控制模块,用于将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块进行三冲量控制,再根据T模块输出控制反应堆。
第一计算模块包括负荷设定模块、负荷测量模块、第一偏差模块、第一PID模块、第一函数求解器、第二偏差模块、第二PID模块及求和计算器;
负荷设定模块的输出端及负荷测量模块的输出端与第一偏差模块的输入端相连接;第一偏差模块的输出端与求和计算器的第一输入端相连接,负荷测量模块的第二输出端与第二偏差模块的第一输入端相连接,第一函数求解器的输入端与第二计算模块的输出端相连接,第一函数求解器的输出端与第二偏差模块的第 二输入端相连接,第二偏差模块的输出端与求和计算器的第二输入端相连接,求和计算器的输出端与第一PID模块的输入端相连接,第一PID模块的输出端与T模块的第一输入端相连接。
第二计算模块包括功率设定模块、功率测量模块、第三偏差模块、第二PID模块、T模块和反应堆手动/自动主控模块,其中,功率设定模块的输出端与第一函数求解器的输入端及第三偏差模块的第一输入端相连接,功率测量模块的输出端与第三偏差模块的第二输入端及第二函数求解器的输入端相连接,第三偏差模块的输出端与第二PID模块的输入端相连接,第二PID模块的输出端与T模块的第二输入端相连接。
第三计算模块包括控制棒位测量模块、第二函数求解器、第四偏差模块、第一增量计算器、第一惯性环节模块、第二增量计算器、第二惯性环节模块、第三PID模块、第五偏差模块、历史运行数据库模块及控制棒位设定模块;
第二函数求解器的输出端与第四偏差模块的第一输入端相连接,控制棒位测量模块的输出端与第四偏差模块的第二输入端相连接,第四偏差模块的输出端与第一增量计算器的第一输入端相连接,第一增量计算器的输出端与第一惯性环节模块的输入端相连接,第一惯性环节模块的输出端与第二增量计算器的第一输入端相连接,第二增量计算器的输出端与第二惯性环节模块的输入端相连接,第二惯性环节模块的输出端与第五偏差模块的第一输入端及第三PID模块的输入端相连接,第三PID模块的输出端与T模块的第三输入端相连接,历史运行数据库模块的输出端与控制棒位设定模块的输入端相连接,控制棒位设定模块的输出端与第五偏差模块的第二输入端相连接,第五偏差模块的输出端与第一增量计算器的第二输入端及第二增量计算器的第二输入端相连接。
控制模块包括反应堆手动/自动主控模块,T模块的输出端与反应堆手动/自动主控模块的输入端相连接。
本发明具有以下有益效果:
本发明所述的带有增量式调节功能的核电机组控制棒调节方法及***在具体操作时,增加增量计算器和惯性环节作为控制棒位变量的前馈,以便快速跟踪控制变量的变化趋势,修正控制变量的输出,有效克服反应堆主控回路PID调节器的输出特性和反应堆调节惯性所引起的功率过调或振荡的现象,对反应堆稳定性起到关键作用,其中,增量计算器建立在非线性受控***基础上,对于非线性分布的控制变量扰动,更具有控制稳定性及精确性,尤其在机组变工况运行时,控制回路能够及时跟踪参数变化,提高高温气冷堆控制***的鲁棒性,惯性环节自带负反馈闭环特性,其幅值随着频率的增大而减小,因而具有低通滤波的功能。
附图说明
图1为本发明的逻辑图;
图2为T模块20的控制逻辑图。
其中,1为第一计算模块、2为第二计算模块、3为第三计算模块、4为第一偏差模块、5为第二偏差模块、6为第三偏差模块、7为第四偏差模块、8为第五偏差模块、9为第一函数求解器、10为第二函数求解器、11为第一PID模块、12为第二PID模块、13为第三PID模块、14为求和计算器、15为控制棒位设定模块、16为第一增量计算器、17为第二增量计算器、18为第一惯性环节模块、19为第二惯性环节模块、20为T模块。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图2,本发明所述的带有增量式调节功能的核电机组控制棒调节方法包括以下步骤:
1)获取机组负荷测量值,将机组负荷设定值与机组负荷测量值进行偏差计算得到第一负荷偏差值,根据机组功率设定值计算得到负荷计算值,负荷计算值与机组负荷测量值进行偏差计算得到第二负荷偏差值,第一负荷偏差值与第二负荷偏差值进行加权计算,得用于负荷PID调节的负荷修正值;
2)获取机组功率测量值,将机组功率设定值和机组功率测量值进行偏差计算得到功率偏差值,再根据功率偏差值计算用于功率PID调节的功率修正值;
3)获取控制棒位测量值,根据机组功率测量值计算得到控制棒位计算值,将控制棒位计算值与控制棒位测量值进行偏差计算得到第一控制棒位偏差值,第一控制棒位偏差值经增量计算及惯性环节调节,然后与经历史运行数据库拟合后的控制棒位设定值进行偏差计算得到第二控制棒位偏差值,然后根据第二控制棒位偏差值计算用于棒位PID调节的控制棒位修正值。
4)将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块20进行三冲量控制,再根据T模块20输出控制反应堆。
参考图1,本发明所述的带有增量式调节功能的核电机组控制棒调节***包括:
第一计算模块1包括负荷设定模块、负荷测量模块、第一偏差模块4、第一PID模块11、第一函数求解器9、第二偏差模块5、第二PID模块12及第一求和计算器14;
负荷设定模块的输出端及负荷测量模块的输出端与第一偏差模块4的输入端 相连接;第一偏差模块4的输出端与求和计算器14的第一输入端相连接。负荷测量模块的第二输出端与第二偏差模块5的第一输入端相连接,第一函数求解器9的输入端与功率设定模块的输出端相连接,第一函数求解器9的输出端与第二偏差模块5的第二输入端相连接,第二偏差模块5的输出端与求和计算器14的第二输入端相连接,求和计算器14的输出端与第一PID模块11的输入端相连接,第一PID模块11的输出端与T模块20的第一输入端相连接。
第二计算模块2包括功率设定模块、功率测量模块、第三偏差模块6、第二PID模块12、T模块20和反应堆手动/自动主控模块,其中,功率设定模块的输出端与第一函数求解器9输入端及第三偏差模块6的第一输入端相连接,功率测量模块的输出端与第三偏差模块6的第二输入端及第二函数求解器10的输入端相连接,第三偏差模块6的输出端与第二PID模块12的输入端相连接,第二PID模块12的输出端与T模块20的第二输入端相连接,T模块20的输出端与反应堆手动/自动主控模块输入端相连接。
第三计算模块3包括控制棒位测量模块、第二函数求解器10、第四偏差模块7、第一增量计算器16、第一惯性环节模块18、第二增量计算器17、第二惯性环节模块19、第三PID模块13、第五偏差模块8、历史运行数据库模块及控制棒位设定模块15;
第二函数求解器10的输出端与第四偏差模块7的第一输入端相连接,控制棒位测量模块的输出端与第四偏差模块7的第二输入端相连接,第四偏差模块7的输出端与第一增量计算器16的第一输入端相连接,第一增量计算器16的输出端与第一惯性环节模块18的输入端相连接,第一惯性环节模块18的输出端与第二增量计算器17的第一输入端相连接,第二增量计算器17的输出端与第二惯性 环节模块19的输入端相连接,第二惯性环节模块19的输出端与第五偏差模块8的第一输入端及第三PID模块13的输入端相连接,第三PID模块13的输出端与T模块20的第三输入端相连接,历史运行数据库模块的输出端与控制棒位设定模块15的输入端相连接,控制棒位设定模块15的输出端与第五偏差模块8的第二输入端相连接,第五偏差模块8的输出端与第一增量计算器16的第二输入端及第二增量计算器17的第二输入端相连接。
第一计算模块1、第二计算模块2、第三计算模块3包含的计算公式说明如下:
第一偏差模块4的计算公式为:ΔP 1=P 1-P 2,其中,P 1、P 2、ΔP 1分别为负荷设定值、负荷测量值和负荷偏差。
第一函数求解器9的计算公式为:
Figure PCTCN2021115643-appb-000001
其中,f(x i)为反应堆功率对应的负荷计算值,x i为第i座反应堆热功率;μ i为比例系数。
第二偏差模块5的计算公式为:
Figure PCTCN2021115643-appb-000002
第一求和计算器14的计算公式为:x=∑[aΔP 1+bΔP 2],其中,x为总负荷偏差,a、b为负荷偏差权重系数。
第一PID模块11的计算公式为:
Figure PCTCN2021115643-appb-000003
K P为比例系数,K I为积分系数,K D为微分系数,x为总负荷偏差,y为负荷PID调节量。
第三偏差模块6的计算公式为:ΔP 3=P 3-P 4,其中,P 3、P 4、ΔP 3分别为反应堆功率设定值、反应堆功率测量值和反应堆功率偏差。
第二PID模块12计算公式为:
Figure PCTCN2021115643-appb-000004
K P比例系数,K I 为积分系数,K D为微分系数,x为反应堆功率偏差,y为功率PID调节量。
第二函数求解器10的计算公式为:f(x i)=μ ix i,其中,f(x i)为功率对应的控制棒棒位计算值,x i为第i座反应堆热功率,μ i为比例系数。
第四偏差模块7的计算公式为:ΔP 4=f(x i)-Y 1,其中,Y 1、ΔP 4分别为控制棒位测量值和控制棒位第一偏差值。
第一增量计算器16及第二增量计算器17的计算公式为:
Figure PCTCN2021115643-appb-000005
其中,Y i为增量后控制棒位值,a i、b i为增量加速系数。
第一惯性环节模块18和第二惯性环节模块19的运动方程为:
Figure PCTCN2021115643-appb-000006
其中,T为时间常数,K为惯性环节增益。
第五偏差模块8的计算公式为:ΔP 5=Y i-Y 2,其中,Y 2、ΔP 5分别为经历史运行数据拟合的控制棒位值和控制棒棒位第二偏差值。
第三PID模块13计算公式为:
Figure PCTCN2021115643-appb-000007
K P比例系数,K I为积分系数,K D为微分系数,x为控制棒棒位偏差,y为控制棒PID调节量。
T模块20实现反应堆功率三冲量调节功能,其控制策略如图2所示。
最后需要说明的是,本发明提高了反应堆变工况运行方式下控制回路调节的稳定性和灵活性,为核电机组后续参与电网调峰调频提供了控制思路,同时本发明基于长期运行中反应堆功率与控制棒位实际对应关系的拟合曲线,得出不同运行工况下功率与控制棒位的函数关系,并对所述控制棒位设定值进行前馈整定,提高了控制***的快速响应性。

Claims (6)

  1. 一种带有增量式调节功能的核电机组控制棒调节方法,其特征在于,包括以下步骤:
    1)获取机组负荷测量值,将机组负荷设定值与机组负荷测量值进行偏差计算得到第一负荷偏差值,根据机组功率设定值计算得到负荷计算值,负荷计算值与机组负荷测量值进行偏差计算得到第二负荷偏差值,第一负荷偏差值与第二负荷偏差值进行加权计算,得用于负荷PID调节的负荷修正值;
    2)获取机组功率测量值,将机组功率设定值和机组功率测量值进行偏差计算得到功率偏差值,再根据功率偏差值计算用于功率PID调节的功率修正值;
    3)获取控制棒位测量值,根据机组功率测量值计算得到控制棒位计算值,将控制棒位计算值与控制棒位测量值进行偏差计算得到第一控制棒位偏差值,第一控制棒位偏差值经增量计算及惯性环节调节,然后与经历史运行数据库拟合后的控制棒位设定值进行偏差计算得到第二控制棒位偏差值,然后根据第二控制棒位偏差值计算用于棒位PID调节的控制棒位修正值;
    4)将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块(20)进行三冲量控制,再根据T模块(20)输出控制反应堆。
  2. 一种带有增量式调节功能的核电机组控制棒调节***,其特征在于,包括:
    第一计算模块(1),用于获取机组负荷测量值,将机组负荷设定值与机组负荷测量值进行偏差计算得到第一负荷偏差值,根据机组功率设定值计算得到负荷计算值,负荷计算值与机组负荷测量值进行偏差计算得到第二负荷偏差值,第一负荷偏差值与第二负荷偏差值进行加权计算,得用于负荷PID调节的负荷修正值;
    第二计算模块(2),用于获取机组功率测量值,将机组功率设定值和机组功率测量值进行偏差计算得到功率偏差值,再根据功率偏差值计算用于功率PID调节的功率修正值;
    第三计算模块(3),用于获取控制棒位测量值,根据机组功率测量值计算得到控制棒位计算值,将控制棒位计算值与控制棒位测量值进行偏差计算得到第一控制棒位偏差值,第一控制棒位偏差值经增量计算及惯性环节调节,然后与经历史运行数据库拟合后的控制棒位设定值进行偏差计算得到第二控制棒位偏差值,然后根据第二控制棒位偏差值计算用于棒位PID调节的控制棒位修正值;
    控制模块,用于将用于负荷PID调节的负荷修正值、用于功率PID调节的功率修正值及用于棒位PID调节的控制棒位修正值输入到T模块(20)进行三冲量控制,再根据T模块(20)输出控制反应堆。
  3. 根据权利要求2所述的带有增量式调节功能的核电机组控制棒调节***,其特征在于,第一计算模块(1)包括负荷设定模块、负荷测量模块、第一偏差模块(4)、第一PID模块(11)、第一函数求解器(9)、第二偏差模块(5)、第二PID模块(12)及求和计算器(14);
    负荷设定模块的输出端及负荷测量模块的输出端与第一偏差模块4的输入端相连接;第一偏差模块(4)的输出端与求和计算器(14)的第一输入端相连接,负荷测量模块的第二输出端与第二偏差模块(5)的第一输入端相连接,第一函数求解器(9)的输入端与第二计算模块(2)的输出端相连接,第一函数求解器(9)的输出端与第二偏差模块(5)的第二输入端相连接,第二偏差模块(5)的输出端与求和计算器(14)的第二输入端相连接,求和计算器(14)的输出端与第一PID模块(11)的输入端相连接,第一PID模块(11)的输出端与T模块(20) 的第一输入端相连接。
  4. 根据权利要求3所述的带有增量式调节功能的核电机组控制棒调节***,其特征在于,第二计算模块(2)包括功率设定模块、功率测量模块、第三偏差模块(6)、第二PID模块(12)、T模块(20)和反应堆手动/自动主控模块,其中,功率设定模块的输出端与第一函数求解器(9)的输入端及第三偏差模块(6)的第一输入端相连接,功率测量模块的输出端与第三偏差模块(6)的第二输入端及第二函数求解器(10)的输入端相连接,第三偏差模块(6)的输出端与第二PID模块(12)的输入端相连接,第二PID模块(12)的输出端与T模块(20)的第二输入端相连接。
  5. 根据权利要求4所述的带有增量式调节功能的核电机组控制棒调节***,其特征在于,第三计算模块(3)包括控制棒位测量模块、第二函数求解器(10)、第四偏差模块(7)、第一增量计算器(16)、第一惯性环节模块(18)、第二增量计算器(17)、第二惯性环节模块(19)、第三PID模块(13)、第五偏差模块(8)、历史运行数据库模块及控制棒位设定模块(15);
    第二函数求解器(10)的输出端与第四偏差模块(7)的第一输入端相连接,控制棒位测量模块的输出端与第四偏差模块(7)的第二输入端相连接,第四偏差模块(7)的输出端与第一增量计算器(16)的第一输入端相连接,第一增量计算器(16)的输出端与第一惯性环节模块(18)的输入端相连接,第一惯性环节模块(18)的输出端与第二增量计算器(17)的第一输入端相连接,第二增量计算器(17)的输出端与第二惯性环节模块(19)的输入端相连接,第二惯性环节模块(19)的输出端与第五偏差模块(8)的第一输入端及第三PID模块(13)的输入端相连接,第三PID模块(13)的输出端与T模块(20)的第三输入端相连 接,历史运行数据库模块的输出端与控制棒位设定模块(15)的输入端相连接,控制棒位设定模块(15)的输出端与第五偏差模块(8)的第二输入端相连接,第五偏差模块(8)的输出端与第一增量计算器(16)第二输入端及第二增量计算器(17)的第二输入端相连接。
  6. 根据要求2所述的带有增量式调节功能的核电机组控制棒调节***,其特征在于,控制模块包括反应堆手动/自动主控模块,T模块(20)的输出端与反应堆手动/自动主控模块的输入端相连接。
PCT/CN2021/115643 2020-11-20 2021-08-31 带有增量式调节功能的核电机组控制棒调节方法及*** WO2022105356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011315151.8 2020-11-20
CN202011315151.8A CN112394639B (zh) 2020-11-20 2020-11-20 带有增量式调节功能的核电机组控制棒调节方法及***

Publications (1)

Publication Number Publication Date
WO2022105356A1 true WO2022105356A1 (zh) 2022-05-27

Family

ID=74606014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115643 WO2022105356A1 (zh) 2020-11-20 2021-08-31 带有增量式调节功能的核电机组控制棒调节方法及***

Country Status (2)

Country Link
CN (1) CN112394639B (zh)
WO (1) WO2022105356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017402A1 (zh) * 2022-07-21 2024-01-25 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394639B (zh) * 2020-11-20 2021-08-24 西安热工研究院有限公司 带有增量式调节功能的核电机组控制棒调节方法及***
CN113110048B (zh) * 2021-04-13 2022-06-17 中国空气动力研究与发展中心设备设计与测试技术研究所 采用hosm观测器的非线性***输出反馈自适应控制***和方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208037A (ja) * 2005-01-25 2006-08-10 Mitsubishi Electric Corp 制御棒位置検出装置
US20070201602A1 (en) * 2006-02-27 2007-08-30 Kimiko Isono Reactor power control apparatus of natural circulation reactor, generation system of natural circulation reactor and method for controlling reactor power of natural circulation reactor
CN102323748A (zh) * 2011-04-25 2012-01-18 上海迪吉特控制***有限公司 直流炉单元机组直接能质平衡协调控制***
CN108962410A (zh) * 2018-06-26 2018-12-07 华北电力大学 一种用于铅冷快堆功率的自抗扰控制方法
CN109147967A (zh) * 2017-06-15 2019-01-04 广东核电合营有限公司 一种用于核电站的硼浓度控制装置和方法
CN109190145A (zh) * 2018-07-12 2019-01-11 广西电网有限责任公司电力科学研究院 一种包含功率控制***的核电机组仿真模型
CN109543222A (zh) * 2018-10-19 2019-03-29 广西电网有限责任公司电力科学研究院 一种不同功率水平下压水堆核电机组甩负荷保护仿真方法
CN109597328A (zh) * 2018-11-21 2019-04-09 清华大学 调频与自动发电控制方法、装置以及控制***
CN110879620A (zh) * 2019-11-19 2020-03-13 中广核工程有限公司 一种核电站立式蒸汽发生器液位控制方法以及***
CN111262280A (zh) * 2018-11-30 2020-06-09 上海明华电力技术工程有限公司 一种用于压水堆核电机组一次调频的建模及分析方法
CN111462925A (zh) * 2020-04-17 2020-07-28 西安交通大学 一种基于运行数据的核反应堆功率调节方法及其调节***
CN111564226A (zh) * 2020-04-03 2020-08-21 中国原子能科学研究院 一种基于模糊控制的研究堆功率自动调节方法
CN111780089A (zh) * 2020-07-20 2020-10-16 中国核动力研究设计院 一种直流蒸汽发生器给水控制方法及***
CN112394639A (zh) * 2020-11-20 2021-02-23 西安热工研究院有限公司 带有增量式调节功能的核电机组控制棒调节方法及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187144A (en) * 1977-05-23 1980-02-05 Westinghouse Electric Corp. Nuclear reactor power supply
CN103268728B (zh) * 2013-04-27 2016-01-20 国家电网公司 一种电力***动态仿真压水反应堆控制***模型构建方法
CN105957568A (zh) * 2016-07-07 2016-09-21 中国核动力研究设计院 一种电加热模拟核释热的***及方法
CN106773666B (zh) * 2016-11-11 2020-01-10 中国电力科学研究院 一种针对压水堆一回路***的模型参数获取方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208037A (ja) * 2005-01-25 2006-08-10 Mitsubishi Electric Corp 制御棒位置検出装置
US20070201602A1 (en) * 2006-02-27 2007-08-30 Kimiko Isono Reactor power control apparatus of natural circulation reactor, generation system of natural circulation reactor and method for controlling reactor power of natural circulation reactor
CN102323748A (zh) * 2011-04-25 2012-01-18 上海迪吉特控制***有限公司 直流炉单元机组直接能质平衡协调控制***
CN109147967A (zh) * 2017-06-15 2019-01-04 广东核电合营有限公司 一种用于核电站的硼浓度控制装置和方法
CN108962410A (zh) * 2018-06-26 2018-12-07 华北电力大学 一种用于铅冷快堆功率的自抗扰控制方法
CN109190145A (zh) * 2018-07-12 2019-01-11 广西电网有限责任公司电力科学研究院 一种包含功率控制***的核电机组仿真模型
CN109543222A (zh) * 2018-10-19 2019-03-29 广西电网有限责任公司电力科学研究院 一种不同功率水平下压水堆核电机组甩负荷保护仿真方法
CN109597328A (zh) * 2018-11-21 2019-04-09 清华大学 调频与自动发电控制方法、装置以及控制***
CN111262280A (zh) * 2018-11-30 2020-06-09 上海明华电力技术工程有限公司 一种用于压水堆核电机组一次调频的建模及分析方法
CN110879620A (zh) * 2019-11-19 2020-03-13 中广核工程有限公司 一种核电站立式蒸汽发生器液位控制方法以及***
CN111564226A (zh) * 2020-04-03 2020-08-21 中国原子能科学研究院 一种基于模糊控制的研究堆功率自动调节方法
CN111462925A (zh) * 2020-04-17 2020-07-28 西安交通大学 一种基于运行数据的核反应堆功率调节方法及其调节***
CN111780089A (zh) * 2020-07-20 2020-10-16 中国核动力研究设计院 一种直流蒸汽发生器给水控制方法及***
CN112394639A (zh) * 2020-11-20 2021-02-23 西安热工研究院有限公司 带有增量式调节功能的核电机组控制棒调节方法及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017402A1 (zh) * 2022-07-21 2024-01-25 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Also Published As

Publication number Publication date
CN112394639B (zh) 2021-08-24
CN112394639A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2022105356A1 (zh) 带有增量式调节功能的核电机组控制棒调节方法及***
CN112382418B (zh) 带有增量式调节功能的高温气冷堆氦气流量控制***及方法
Sun et al. Direct energy balance based active disturbance rejection control for coal-fired power plant
CN107168101B (zh) 考虑调频及稳定约束的机组调速***控制参数整定方法
CN108983602B (zh) 一种用于快堆功率和冷却剂出口温度的自抗扰控制方法
CN106919053A (zh) 一种基于变结构预测控制算法的火电机组协调控制***
CN108227500A (zh) 一种火电机组快速调峰的协调控制方法及***
CN101286045A (zh) 一种燃煤锅炉***混合控制方法
CN107065556A (zh) 一种堆芯机组变功率运行策略优化方案的自动搜索方法
CN101709869A (zh) 燃煤锅炉过热蒸汽温度***混合控制方法
CN111637444B (zh) 一种基于q学习的核电蒸汽发生器水位控制方法
CN106340331B (zh) 一种用于核反应堆功率的自抗扰控制方法
CN101709863B (zh) 燃煤锅炉炉膛压力***混合控制方法
CN101709867B (zh) 燃煤锅炉汽包水位***混合控制方法
Surjagade et al. Robust optimal integral sliding mode controller for total power control of large PHWRs
CN108661725A (zh) 一种供热抽汽机组自整调节***与控制方法
CN110879620A (zh) 一种核电站立式蒸汽发生器液位控制方法以及***
CN111462925A (zh) 一种基于运行数据的核反应堆功率调节方法及其调节***
CN110579968A (zh) 一种超超临界机组深度调峰协调***预测控制策略
CN109802416B (zh) 提高汽轮发电机组deh一次调频性能的方法
CN107102550B (zh) 一种超超临界火电机组控制分离器温度的预测控制方法
CN112435768B (zh) 带有增量式调节功能的核电机组给水流量控制方法及***
CN109253443B (zh) 火力发电锅炉主汽压力最优控制***及其控制方法
CN107110104B (zh) 用于稳定具有s特性的液压机的旋转速度的方法以及用于将液压能转换成电能的设备
CN108828932B (zh) 一种单元机组负荷控制器参数优化整定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893507

Country of ref document: EP

Kind code of ref document: A1