WO2022105263A1 - 光伏***及其控制方法、以及空调*** - Google Patents

光伏***及其控制方法、以及空调*** Download PDF

Info

Publication number
WO2022105263A1
WO2022105263A1 PCT/CN2021/105666 CN2021105666W WO2022105263A1 WO 2022105263 A1 WO2022105263 A1 WO 2022105263A1 CN 2021105666 W CN2021105666 W CN 2021105666W WO 2022105263 A1 WO2022105263 A1 WO 2022105263A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
bus
input unit
output unit
converter
Prior art date
Application number
PCT/CN2021/105666
Other languages
English (en)
French (fr)
Inventor
陈宁宁
徐金辉
俞贤桥
王京
黄猛
党培育
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022105263A1 publication Critical patent/WO2022105263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present application is based on the CN application number 202011312375.3 and the filing date is Nov. 20, 2020, and claims its priority.
  • the disclosure content of the CN application is hereby incorporated into the present application as a whole.
  • the present disclosure relates to the technical field of photovoltaic systems, and in particular, to a photovoltaic system and a control method thereof, and an air conditioning system.
  • Figure 1 shows a photovoltaic air conditioning system, the photovoltaic cell voltage is connected to the high-voltage DC bus through a DC/DC (Direct Current/Direct Current) converter; the energy storage battery is connected to the high voltage through the energy storage DC/DC DC bus; on the one hand, the energy in the bus can be connected to the grid or taken from the grid through a bidirectional DC/AC (Direct Current/Alternating Current) converter, and on the other hand, the energy in the bus can be compressed by the DC/AC converter. machine load power supply. In this system, all converters are connected to the DC bus capacitor. When any converter in the system has a short-circuit fault, the positive and negative electrodes of the bus capacitor can be short-circuited, causing rapid discharge and explosion, which in turn leads to the paralysis of the entire system. The safety factor is low.
  • DC/DC Direct Current/Direct Current
  • a photovoltaic system including a DC bus, the DC bus having at least one input terminal and at least one output terminal, each of which is connected with at least one input unit or output unit , the input unit and the output unit are both connected to the capacitor of the DC bus, and the DC bus is also provided with a control unit, the control unit switches the input unit or the output unit and the output unit according to the operating state of the input unit or the output unit. On/off status of the DC bus.
  • the operating state of the input unit or the output unit includes a normal operating state and an abnormal operating state, and when the input unit or the output unit is in a normal operating state, the input unit or the output unit is in communication with the DC bus; so When the input unit or output unit is in an abnormal operation state, the input unit or output unit is disconnected from the DC bus.
  • control unit includes a switch disposed between each of the input unit and the output unit and the capacitor, and when the switch is closed, the input unit or the output unit is connected to the DC bus; the When the switch is turned off, the input unit or the output unit is disconnected from the DC bus.
  • control unit further includes: a plurality of current transformers, respectively disposed between each of the input unit or the output unit and the DC bus, and one end of each of the current transformers is connected to a capacitor, The other end is connected to the switch.
  • a converter is connected between the input unit or the output unit and the DC bus, and one end of the converter is connected with the input unit or the output unit, and the other end is connected with the control unit.
  • the input unit is an energy storage battery unit
  • the converter between the energy storage battery unit and the DC bus is an energy storage DC/DC converter
  • the input unit is a photovoltaic panel unit
  • the converter between the photovoltaic panel unit and the DC bus is a DC/DC converter
  • the output unit is a compressor drive unit
  • the converter between the compressor drive unit and the DC bus is a DC/AC converter
  • the DC bus is also connected to the grid, and the converter between the grid and the DC bus is a bidirectional DC/AC converter.
  • a control method of a photovoltaic system comprising the steps of: judging the operation state of each input unit and output unit; and switching if there is an input unit or output unit in an abnormal operation state
  • the on-off state between the input unit or output unit and the DC bus is an open-circuit state.
  • the method further includes: after switching the on-off state between the input unit or the output unit in the abnormal operation state and the DC bus to the off-circuit state, feeding back the off-circuit state of the unit or the state switching action to the main Control the system and activate the alarm.
  • an air conditioning system including the aforementioned photovoltaic system.
  • an air conditioning system employing the aforementioned control method.
  • Figure 1 is a diagram of a photovoltaic air conditioning system
  • FIG. 2 is a system diagram of this embodiment.
  • the present disclosure provides a photovoltaic system and a control method thereof, and an air conditioning system.
  • a photovoltaic system comprising a DC bus
  • the DC bus has at least one input end and at least one output end, the input end and the output end are both connected with at least one input unit or output unit, the input unit and the output unit are Connected to the capacitor of the DC bus, the DC bus is further provided with a control unit, the control unit switches the on-off state of the input unit or the output unit and the DC bus according to the operating state of the input unit or the output unit.
  • the operating state of the input unit or the output unit includes a normal operating state and an abnormal operating state.
  • the input unit or the output unit is connected to the DC bus.
  • the input unit or the output unit is in an abnormal operation state, the input unit or the output unit is disconnected from the DC bus.
  • the abnormal state may be set according to different operating environments, and may be a short-circuit state in one embodiment.
  • the control unit includes a switch provided between each of the input unit and the output unit and the capacitor. When the switch is closed, the input unit or the output unit is connected to the DC bus. When the switch is turned off, the input unit or the output unit is disconnected from the DC bus.
  • the control unit further includes: a plurality of current transformers, respectively arranged between each of the input unit or the output unit and the DC bus, one end of each of the current transformers is connected to the capacitor, and the other end is connected to the switch.
  • the current transformers are in communication with the main control system, which is in communication with all the switches.
  • the detection signal can be uploaded to the main control system, and the main control system will control the corresponding switch to perform actions according to the signal to cut off the input.
  • the path of a unit or output unit such that the input unit or output unit and the DC bus are switched to a short circuit state.
  • a converter is connected between the input unit or the output unit and the DC bus, and one end of the converter is connected with the input unit or the output unit, and the other end is connected with the control unit.
  • Different input and output terminals can also be connected to converters of different functions and types.
  • the control method of the photovoltaic system includes the steps of: judging the operation state of each input unit and output unit; and if there is an input unit or output unit in an abnormal operation state, switching the on-off between the input unit or output unit and the DC bus
  • the state is the open circuit state.
  • control method of the photovoltaic system further includes: after switching the on-off state between the input unit or the output unit in the abnormal operation state and the DC bus to the off-circuit state, switching the off-circuit state or state of the unit The action feedback to the main control system and start the alarm.
  • the present disclosure has the following beneficial effects:
  • the control unit can be cut off in time according to the operating status of each input unit or output unit, avoiding accidents such as rapid discharge of capacitors and explosions caused by a single input short circuit, and improving the safety and stability of the overall system.
  • the photovoltaic system includes a photovoltaic DC/DC part, an energy storage DC/DC part, a DC/AC part, a compressor drive and a motor part, and a bus capacitor C1.
  • the photovoltaic panel is an external system in the project.
  • the components in particular, also include switches K1, K2, K3, K4, current transformers U1, U2, U3, U4.
  • the photovoltaic DC/DC part is used as an input unit of the DC bus, which includes a photovoltaic panel unit, and the converter between the photovoltaic panel unit and the DC bus is a DC/DC converter.
  • the energy storage DC/DC part as an input unit of the DC bus, includes an energy storage battery unit, and the converter between the energy storage battery unit and the DC bus is an energy storage DC/DC converter.
  • the compressor drive and motor part as an output end of the DC bus, include a compressor drive unit, and the converter between the compressor drive unit and the DC bus is a DC/AC converter.
  • the DC/AC part includes a power grid and a converter.
  • the converter is a bidirectional DC/AC converter, so that the power grid can be used as both an output terminal and an input terminal.
  • the positive pole of the photovoltaic DC/DC converter is connected to the DC bus through switch K1 and current transformer U1
  • the positive pole of the energy storage DC/DC converter is connected to the DC bus through switch K2 and current transformer U2
  • the bidirectional DC/AC converter is connected to the DC bus through switch K3 .
  • the current transformer U3 is connected to the DC bus, and the compressor drives the DC/AC converter to connect to the DC bus through the switch K4 and the current transformer U4.
  • the current transformer U1 monitors the current of the photovoltaic DC/DC converter connected to the DC bus.
  • the current transformer U2 monitors the current of the energy storage DC/DC converter connected to the DC bus.
  • the current transformer U3 monitors the current of the bidirectional DC/AC converter connected to the DC bus.
  • the current transformer U4 monitors the current that the compressor drives the DC/AC converter into the DC bus. Set the maximum value of each converter's access bus current according to the system operating parameters. The actual runtime situation is as follows:
  • the photovoltaic cell panel unit is the only output terminal of any solar cell panel and its accessory devices combined in series and parallel.
  • DC/DC converter used to change the DC voltage of the photovoltaic input port to the voltage across the DC bus, the specific topology can be BUCK, BOOST, forward excitation, flyback, half bridge, full bridge, etc.; commonly used BOOST or its derived topologies .
  • Main control system All main control systems can be a single chip or any chip with a certain connection relationship, which is mainly suitable for the corresponding operation and processing of the signals detected by the current transformer, and at the same time generates the corresponding PWM (Pulse Width Modulation, pulse width). Modulation) signal to process all switch tubes, and judge whether protection is needed.
  • PWM Pulse Width Modulation, pulse width. Modulation
  • the DC bus can be a fixed DC voltage or a wide range of DC voltage, mostly open interfaces, which can be used for any connection.
  • Bidirectional DC/AC converter It can convert the DC bus voltage into single-phase AC voltage, and the generated voltage can be connected to the grid; it can also convert the AC grid voltage into the voltage required by the DC bus.
  • DC/AC Converter Converts the DC bus voltage to the voltage required for the AC compressor load.
  • This embodiment also discloses an air conditioning system, which includes the photovoltaic system described above, or adopts the control method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开公开了光伏***及其控制方法、以及空调***,该光伏***包括直流母线,所述直流母线具有至少一个输入端和至少一个输出端,所述输入端和输出端均至少连接有一个输入单元或输出单元,所述输入单元和输出单元均与直流母线的电容连接,所述直流母线还设置有控制单元,所述控制单元根据输入单元或输出单元的运行状态切换所述输入单元或所述输出单元与直流母线的通断状态。本公开通过上述设置,控制单元可以根据每个输入单元或输出单元的运行状态及时切断,避免了单个输入端短路导致电容急速放电而***等事故,提高了整体***的安全性和稳定性。

Description

光伏***及其控制方法、以及空调***
相关申请的交叉引用
本申请是以CN申请号为202011312375.3,申请日为2020年11月20日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光伏***技术领域,尤其涉及光伏***及其控制方法、以及空调***。
背景技术
图1示出了一种光伏空调***,其光伏电池电压经DC/DC(Direct Current/Direct Current,直流/直流)变换器接入高压直流母线;储能电池经储能DC/DC接入高压直流母线;母线中能量一方面可经双向DC/AC(Direct Current/Alternating Current,直流/交流)变换器实现并网或者从电网取电,另一方面母线中能量经DC/AC变换器给压缩机负载供电。在此***中所有变换器均连接在直流母线电容处,当***中任意一个变换器出现短路故障时均可使母线电容正、负极短路,使其快速放电,引起***,进而导致整个***瘫痪,安全系数较低。
发明内容
根据本公开的一个方面,提供了一种光伏***,包括直流母线,所述直流母线具有至少一个输入端和至少一个输出端,所述输入端和输出端均至少连接有一个输入单元或输出单元,所述输入单元和输出单元均与直流母线的电容连接,所述直流母线还设置有控制单元,所述控制单元根据输入单元或输出单元的运行状态切换所述输入单元或所述输出单元与直流母线的通断状态。
在一些实施例中,所述输入单元或输出单元的运行状态包括正常运行状态和异常运行状态,所述输入单元或输出单元处于正常运行状态时,该输入单元或输出单元与直流母线通路;所述输入单元或输出单元处于异常运行状态时,该输入单元或输出单元与直流母线断路。
在一些实施例中,所述控制单元包括所述输入单元和输出单元的每一个与电容之间均设置有的开关,所述开关闭合时,所述输入单元或输出单元与直流母线通路;所 述开关断开时,所述输入单元或输出单元与直流母线断路。
在一些实施例中,所述控制单元还包括:多个电流互感器,分别设置于所述输入单元或输出单元的每一个与直流母线之间,每个所述电流互感器一端与电容连接,另一端与开关连接。
在一些实施例中,所述输入单元或输出单元与直流母线之间均连接有变换器,且所述变换器一端与输入单元或输出单元连接,另一端与控制单元连接。
在一些实施例中,所述输入单元为储能电池单元,所述储能电池单元与直流母线之间的变换器为储能DC/DC变换器。
在一些实施例中,所述输入单元为光伏电池板单元,所述光伏电池板单元与直流母线之间的变换器为DC/DC变换器。
在一些实施例中,所述输出单元为压缩机驱动单元,所述压缩机驱动单元与直流母线之间的变换器为DC/AC变换器。
在一些实施例中,所述直流母线还与电网连接,且电网与直流母线之间的变换器为双向DC/AC变换器。
根据本公开的另一个方面,提供了一种光伏***的控制方法,包括步骤如下:判断每个输入单元和输出单元的运行状态;以及若存在处于异常运行状态的输入单元或输出单元,则切换该输入单元或输出单元与直流母线之间的通断状态为断路状态。
在一些实施例中,还包括:在将处于异常运行状态的输入单元或输出单元与直流母线之间的通断状态切换为断路状态后,将该单元的断路状态或状态切换的动作反馈至主控制***并启动报警。
根据本公开的另一个方面,提供了一种空调***,其包括前述的光伏***。
根据本公开的另一个方面,提供了一种空调***,其采用前述的控制方法。
附图说明
下面结合实施例和附图对本公开进行详细说明,其中:
图1是一种光伏空调***图;
图2是本实施例的***图。
具体实施方式
鉴于相关技术中的光伏空调***中安全系数较低,本公开提出一种光伏***及其 控制方法、以及空调***。
一种光伏***,包括直流母线,所述直流母线具有至少一个输入端和至少一个输出端,所述输入端和输出端均至少连接有一个输入单元或输出单元,所述输入单元和输出单元均与直流母线的电容连接,所述直流母线还设置有控制单元,所述控制单元根据输入单元或输出单元的运行状态切换所述输入单元或所述输出单元与直流母线的通断状态。
输入单元或输出单元的运行状态包括正常运行状态和异常运行状态。所述输入单元或输出单元处于正常运行状态时,该输入单元或输出单元与直流母线通路。所述输入单元或输出单元处于异常运行状态时,该输入单元或输出单元与直流母线断路。异常状态可以根据不同运行环境进行设置,在一个实施例中可以是短路状态。
控制单元包括所述输入单元和输出单元的每一个与电容之间均设置有的开关。所述开关闭合时,所述输入单元或输出单元与直流母线通路。所述开关断开时,所述输入单元或输出单元与直流母线断路。控制单元还包括:多个电流互感器,分别设置于输入单元或输出单元的每一个与直流母线之间,每个所述电流互感器一端与电容连接,另一端与开关连接。
当然,电流互感器通讯连通有主控制***,该主控制***与所有开关通讯连接。当电流互感器检测到某个输入单元或输出单元的电流变化符合短路状态时,即可将检测信号上传至主控制***中,主控制***再根据该信号控制对应的开关执行动作,切断该输入单元或输出单元的通路,使得该输入单元或输出单元与直流母线切换至短路状态。
同时,输入单元或输出单元与直流母线之间均连接有变换器,且所述变换器一端与输入单元或输出单元连接,另一端与控制单元连接。不同的输入端和输出端也可以接不同功能和型号的变换器。
光伏***的控制方法包括步骤:判断每个输入单元和输出单元的运行状态;以及若存在处于异常运行状态的输入单元或输出单元,则切换该输入单元或输出单元与直流母线之间的通断状态为断路状态。
在一些实施例中,光伏***的控制方法还包括:在将处于异常运行状态的输入单元或输出单元与直流母线之间的通断状态切换为断路状态后,将该单元的断路状态或状态切换的动作反馈至主控制***并启动报警。
与相关技术相比,本公开具有以下有益效果:
1、控制单元可以根据每个输入单元或输出单元的运行状态及时切断,避免了单个输入端短路导致电容急速放电而***等事故,提高了整体***的安全性和稳定性。
2、由于将处于异常运行状态的输入单元或输出单元与直流母线之间为断路状态后,将该单元的断路状态或状态切换的动作反馈至主控制***并启动报警,可以及时将故障部位反馈至维修人员,方便故障定位。
3、由于故障部位及时被切断了与***的联系,因此其不会影响***其余部分的正常运行,也可以达到给负载持续供电的目的,极大的消除了故障对负载的影响。
实施例:如图2所示,光伏***包括光伏DC/DC部分、储能DC/DC部分、DC/AC部分、压缩机驱动及电机部分、母线电容C1,光伏电池板为工程中外接的***部件,特别的,还包括开关K1、K2、K3、K4,电流互感器U1、U2、U3、U4。
具体的,光伏DC/DC部分作为直流母线的一个输入单元,其包括光伏电池板单元,光伏电池板单元与直流母线之间的变换器为DC/DC变换器。储能DC/DC部分作为直流母线的一个输入单元,其包括储能电池单元,所述储能电池单元与直流母线之间的变换器为储能DC/DC变换器。压缩机驱动及电机部分作为直流母线的一个输出端,其包括压缩机驱动单元,所述压缩机驱动单元与直流母线之间的变换器为DC/AC变换器。而DC/AC部分则包括电网和变换器,该变换器为双向DC/AC变换器,使得电网既可以作为输出端也可以作为输入端。
光伏DC/DC变换器正极通过开关K1、电流互感器U1接入直流母线,储能DC/DC变换器正极通过开关K2、电流互感器U2接入直流母线,双向DC/AC变换器通过开关K3、电流互感器U3接入直流母线,压缩机驱动DC/AC变换器通过开关K4、电流互感器U4接入直流母线。
电流互感器U1监测光伏DC/DC变换器接入直流母线的电流。电流互感器U2监测储能DC/DC变换器接入直流母线的电流。电流互感器U3监测双向DC/AC变换器接入直流母线的电流。电流互感器U4监测压缩机驱动DC/AC变换器接入直流母线的电流。根据***运行参数设定各个变换器接入母线电流的最大值。实际运行时情况如下:
(1)当电流互感器U1监测光伏DC/DC变换器接入直流母线的电流大于设定值时,开关K1断开,切断光伏DC/DC与***的连接,同时把K1的断开状态上传主控制***,报出光伏DC/DC变换器故障,在此状态下,由电网或者储能DC/DC持续给负载供电。
(2)当电流互感器U2监测储能DC/DC变换器接入直流母线的电流大于设定值时,开关K2断开,切断储能DC/DC变换器与***的连接,同时把K2的断开状态上传主控制***,报出储能DC/DC变换器故障,在此状态下,由电网或者光伏DC/DC持续给负载供电。
(3)当电流互感器U3监测双向DC/AC变换器接入直流母线的电流大于设定值时,开关K3断开,切断双向DC/AC变换器与***的连接,同时把K3的断开状态上传主控制***,报出双向DC/AC变换器故障,在此状态下,由储能DC/DC或者光伏DC/DC持续给负载供电。
(4)当电流互感器U4监测压缩机驱动DC/AC变换器接入直流母线的电流大于设定值时,开关K4断开,切断压缩机驱动DC/AC变换器与***的连接,同时把K4的断开状态上传主控制***,报出压缩机驱动DC/AC变换器故障,在此状态下,光伏发电可以并网,也可以给储能电池充电。
需要指出在较佳实施例中,光伏电池板单元:为任意块太阳能电池板及其附属装置串并联组合后唯一输出端。
DC/DC变换器:用于将光伏输入端口的直流电压变化为直流母线两端电压,具体拓扑可为BUCK、BOOST、正激、反激、半桥、全桥等;常用BOOST或其衍生拓扑。
主控制***:所有主控制***可为单一芯片或具有一定连接关系的任意块芯片,主要适用于对电流互感器检测到的信号进行相应运算处理,同时产生相应的PWM(Pulse Width Modulation,脉冲宽度调制)信号对所有开关管进行处理,并判断是否需要进行保护。
直流母线:直流母线可为固定的直流电压也可为较宽范围的直流电压,多为开放性接口,可供任意连接使用。
双向DC/AC变换器:可将直流母线电压转化为单相交流电压,产生的电压可并网运行;也可将交流电网电压转化为直流母线所需电压。
DC/AC变换器:将直流母线电压转换为可供交流压缩机负载所需电压。
本实施例还公开了一种空调***,其包前所述的光伏***,或采用了如前所述的控制方法。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种光伏***,包括直流母线,所述直流母线具有至少一个输入端和至少一个输出端,所述输入端和输出端均至少连接有一个输入单元或输出单元,所述输入单元和输出单元均与直流母线的电容连接,所述直流母线还设置有控制单元,所述控制单元被配置为根据输入单元或输出单元的运行状态切换所述输入单元或所述输出单元与所述直流母线的通断状态。
  2. 根据权利要求1所述的光伏***,其中,所述输入单元或输出单元的运行状态包括正常运行状态和异常运行状态,
    所述输入单元或输出单元处于正常运行状态时,该输入单元或输出单元与直流母线通路;
    所述输入单元或输出单元处于异常运行状态时,该输入单元或输出单元与直流母线断路。
  3. 根据权利要求1所述的光伏***,其中,所述控制单元包括所述输入单元和输出单元的每一个与电容之间均设置有的开关,所述开关闭合时,所述输入单元或输出单元与直流母线通路,所述开关断开时,所述输入单元或输出单元与直流母线断路。
  4. 根据权利要求3所述的光伏***,其中,所述控制单元还包括:多个电流互感器,分别设置于所述输入单元或输出单元的每一个与直流母线之间,每个所述电流互感器一端与电容连接,另一端与开关连接。
  5. 根据权利要求1所述的光伏***,其中,所述输入单元或输出单元与直流母线之间均连接有变换器,且所述变换器一端与输入单元或输出单元连接,另一端与控制单元连接。
  6. 根据权利要求5所述的光伏***,其中,所述输入单元为储能电池单元,所述储能电池单元与直流母线之间的变换器为储能DC/DC变换器。
  7. 根据权利要求5所述的光伏***,其中,所述输入单元为光伏电池板单元,所述光伏电池板单元与直流母线之间的变换器为DC/DC变换器。
  8. 根据权利要求5所述的光伏***,其中,所述输出单元为压缩机驱动单元,所述压缩机驱动单元与直流母线之间的变换器为DC/AC变换器。
  9. 根据权利要求5所述的光伏***,其中,所述直流母线还与电网连接,且电网与直流母线之间的变换器为双向DC/AC变换器。
  10. 一种用于如权利要求1-9任意一项所述的光伏***的控制方法,包括:判断每个输入单元和输出单元的运行状态;以及若存在处于异常运行状态的输入单元或输出单元,则切换该输入单元或输出单元与直流母线之间的通断状态为断路状态。
  11. 根据权利要求10所述的光伏***的控制方法,还包括:在将处于异常运行状态的输入单元或输出单元与直流母线之间的通断状态切换为断路状态后,将该单元的断路状态或状态切换的动作反馈至主控制***并启动报警。
  12. 一种空调***,包括如权利要求1-9任意一项所述的光伏***。
  13. 一种空调***,采用如权利要求10或11所述的控制方法。
PCT/CN2021/105666 2020-11-20 2021-07-12 光伏***及其控制方法、以及空调*** WO2022105263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011312375.3A CN112398171A (zh) 2020-11-20 2020-11-20 光伏***及其控制方法、以及空调***
CN202011312375.3 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105263A1 true WO2022105263A1 (zh) 2022-05-27

Family

ID=74606780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105666 WO2022105263A1 (zh) 2020-11-20 2021-07-12 光伏***及其控制方法、以及空调***

Country Status (2)

Country Link
CN (1) CN112398171A (zh)
WO (1) WO2022105263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117639279A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 家用储能***的控制装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398171A (zh) * 2020-11-20 2021-02-23 珠海格力电器股份有限公司 光伏***及其控制方法、以及空调***
CN113489046B (zh) * 2021-04-16 2024-05-17 华为数字能源技术有限公司 一种光伏***、直流汇流箱及接线错误检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135225A (zh) * 2014-07-11 2014-11-05 珠海格力电器股份有限公司 光伏逆变器及空调器
JP2015002622A (ja) * 2013-06-14 2015-01-05 富士電機株式会社 電力供給装置
CN105406512A (zh) * 2015-12-26 2016-03-16 江苏方程电力科技有限公司 共直流母线型分布式光伏储能集成供电***及控制方法
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调***及其控制方法
CN112398171A (zh) * 2020-11-20 2021-02-23 珠海格力电器股份有限公司 光伏***及其控制方法、以及空调***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002622A (ja) * 2013-06-14 2015-01-05 富士電機株式会社 電力供給装置
CN104135225A (zh) * 2014-07-11 2014-11-05 珠海格力电器股份有限公司 光伏逆变器及空调器
CN105406512A (zh) * 2015-12-26 2016-03-16 江苏方程电力科技有限公司 共直流母线型分布式光伏储能集成供电***及控制方法
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调***及其控制方法
CN112398171A (zh) * 2020-11-20 2021-02-23 珠海格力电器股份有限公司 光伏***及其控制方法、以及空调***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117639279A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 家用储能***的控制装置

Also Published As

Publication number Publication date
CN112398171A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2022105263A1 (zh) 光伏***及其控制方法、以及空调***
CN101447666B (zh) 一种电源供电***及电源过压安全保护控制方法
CN102355042B (zh) 一种基于超级电容的电站直流电源装置及其供电方法
CN107579591B (zh) 一种交流电源供电的备电***
CN108075562B (zh) 大功率便携式用电设备及其电源控制装置及方法
WO2007096994A1 (ja) 系統連系インバータ装置
CN111404367B (zh) Pfc电路、线路板及空调器
CN109066829A (zh) 一种蓄电池组开路故障重组放电***及蓄电池
CN116094143B (zh) 一种电力电压检测***
CN111251930A (zh) 一种直流充电桩设备
CN111446761A (zh) 电池供电装置
WO2020155804A1 (zh) 一种动车组应急牵引***
CN102769336B (zh) 一种用于紧急电力供给电源的单相逆变器
CN1866668A (zh) 风能、太阳能发电控制逆变方法及一体电源
CN110967579A (zh) 一种无负荷计量回路自动检测设备的测试源
CN107390079B (zh) 变流器、撬棒电路及其状态检测方法和控制方法
CN115792419A (zh) 一种三相电源缺相检测电路及bldc电机控制器
CN215934728U (zh) 一种dc/dc变换器及氢燃料电池动力***
CN203135566U (zh) 一种不间断电源
CN213402467U (zh) 光伏***以及空调***
CN212210526U (zh) 电池供电装置
US20040201278A1 (en) Charging circuit in uninterruptible power supply system
CN210619906U (zh) 电梯停电应急***
CN112289589A (zh) 可拆卸电容组模块及空调***
CN202696172U (zh) 电动汽车电池放电的改进逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893415

Country of ref document: EP

Kind code of ref document: A1