WO2022105248A1 - 单片式总线从机电路结构 - Google Patents

单片式总线从机电路结构 Download PDF

Info

Publication number
WO2022105248A1
WO2022105248A1 PCT/CN2021/104278 CN2021104278W WO2022105248A1 WO 2022105248 A1 WO2022105248 A1 WO 2022105248A1 CN 2021104278 W CN2021104278 W CN 2021104278W WO 2022105248 A1 WO2022105248 A1 WO 2022105248A1
Authority
WO
WIPO (PCT)
Prior art keywords
output pin
signal output
diode
pin
module
Prior art date
Application number
PCT/CN2021/104278
Other languages
English (en)
French (fr)
Inventor
曾洁琼
张天舜
张钧
丁增伟
吴君磊
刘玉芳
姜黎黎
Original Assignee
华润微集成电路(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华润微集成电路(无锡)有限公司 filed Critical 华润微集成电路(无锡)有限公司
Priority to US18/033,201 priority Critical patent/US11844160B2/en
Priority to EP21893400.8A priority patent/EP4110022A4/en
Publication of WO2022105248A1 publication Critical patent/WO2022105248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines

Definitions

  • the invention relates to the field of bus networking, in particular to the field of emergency evacuation lights, in particular to a single-chip bus slave circuit structure.
  • the bus networked emergency evacuation light slave circuit is implemented as shown in Figure 1, where Lp and Ln are the positive and negative lines of the bus, respectively, and multiple emergency evacuation light systems are usually hung on the bus of a host as slaves, usually A maximum of 64 slaves can be connected, and each slave system is unified.
  • the host can perform address coding on each slave through bus communication, so as to achieve one-to-one correspondence.
  • Emergency evacuation lights are usually composed of three-way LED lights, and the three-way LED lights light up the left arrow, the right arrow, and the middle human figure respectively.
  • the bus voltage VBUS in the slave closest to the host side is 36V
  • the voltage VCC output by the DC/DC voltage conversion integrated chip is 12V
  • the voltage VDD output by the LDO integrated chip is 5V or 3V. Since the connected slaves are distributed in various positions of the building, the bus line is long, about 500 meters, and its line resistance cannot be ignored.
  • the end slaves eg slave 64
  • the input voltage signal range from 16V to 36V must generate a stable 12V, and the load capacity must be sufficient to light up various emergency evacuation lights. DC/DC performance requirements are high.
  • the bus networked emergency evacuation light slave circuit adopts a constant voltage drive light to achieve constant current
  • the current value I LED flowing through the emergency evacuation lights depends on the voltage drop of each emergency evacuation light and the value of the resistor R4
  • I LED (VCC-VLED)/R4
  • VCC usually 12V
  • VLED is the voltage drop of the three lamps, usually about 10V
  • the current I LED is usually about 10mA, so the resistance of the resistor R4 is about 2K ⁇ .
  • the current I LED is related to the voltage drop of the emergency evacuation light, and in actual production, the voltage drop value of the emergency evacuation light has a large deviation, resulting in a large deviation of the current I LED of each channel.
  • the constant current characteristic of the street lamp depends on the parameter characteristics of the lamp, and the brightness of the lamp is not uniform.
  • the energy usage efficiency of the LED driving part can be expressed as (VLED ⁇ I LED )/(VCC ⁇ I LED ) ⁇ 10/12 ⁇ 83.3%. It can be seen that about 16.7% of the energy is wasted on the resistor R4, and the energy usage efficiency is low.
  • the present invention focuses on at least one of the above shortcomings and proposes a solution, using a monolithic integrated solution to reduce the cost of the entire system, improve the reliability and anti-interference ability, and ensure the constant current driving characteristics of the lamp and high energy usage efficiency.
  • the purpose of the present invention is to overcome at least one of the above shortcomings, and to provide a single-chip bus slave circuit structure that satisfies the requirements of high reliability, strong anti-interference ability and wide application range.
  • the monolithic bus slave circuit structure of the present invention is as follows:
  • the main feature of the monolithic bus slave circuit structure is that the circuit structure includes a monolithic integrated chip, a rectifier bridge, a first street light circuit, a second street light circuit and a third street light circuit.
  • the chip has at least a bus voltage input pin, a ground pin, a first drive signal output pin, a second drive signal output pin, a third drive signal output pin, and a power output pin,
  • the bus voltage input pin and the ground pin are both connected to the output end of the rectifier bridge, the input end of the rectifier bridge is connected to the positive and negative bus lines, and the ground pin is also ground,
  • the first street lamp circuit is connected between the first driving signal output pin and the power supply output pin
  • the second driving signal output pin is connected with the power supply output pin
  • the third street lamp circuit is connected between the third drive signal output pin and the power supply output pin
  • the power output pin is also connected to one end of the energy storage capacitor, and the other end of the energy storage capacitor is grounded.
  • the first street lamp circuit includes a first inductor, a first diode light string and a first freewheeling diode, and the first driving signal output pin is connected to the first inductor after being connected to the first inductor.
  • One end of the first diode light string is connected, and the other end of the first diode light string is connected to the power output pin, and is connected with the anode of the first freewheeling diode and the first drive
  • the signal output pin is connected, and the cathode is connected with the power output pin;
  • the second street lamp circuit includes a second inductor, a second diode light string and a second freewheeling diode, and the second driving signal output pin is connected to the second diode after being connected to the second inductor.
  • One end of the tube light string is connected, and the other end of the second diode light string is connected to the power output pin, and is connected to the anode of the second freewheeling diode and the second drive signal output pin connected, the cathode is connected with the power output pin;
  • the third street lamp circuit includes a third inductor, a third diode light string and a third freewheeling diode, and the third driving signal output pin is connected to the third diode after being connected to the third inductor.
  • One end of the tube light string is connected, and the other end of the third diode light string is connected to the power output pin, and is connected to the anode of the third freewheeling diode and the third drive signal output pin connected, and the cathode is connected with the power output pin.
  • the first diode light string includes a first diode, a second diode, and a third diode connected in series
  • the second diode light string includes a series connected
  • the fourth diode, the fifth diode, and the sixth diode, and the third diode light string includes a seventh diode, an eighth diode, and a ninth diode connected in series in sequence.
  • the monolithic integrated chip at least includes:
  • the power conversion module is connected with the central processing unit, the communication module, the analog-to-digital conversion module, the resistor divider module and the driving module, and is used to generate the internal power supply, and is used for the central processing unit, the communication module, the analog-to-digital conversion module, and the resistor.
  • the voltage divider module and the driver module provide power;
  • the central processing unit is connected with the communication module, the analog-to-digital conversion module, the resistance voltage dividing module and the driving module, and is used to control the signal transmission between the host and the slave;
  • a communication module which is also connected to the bus voltage input pin for transmitting signals between the master and the slave;
  • an analog-to-digital conversion module which is also connected to the resistance voltage divider module for converting analog signals to digital signals;
  • the resistance voltage dividing module is also connected with the first driving signal output pin, the second driving signal output pin, and the third driving signal output pin, and is used for obtaining the resistance voltage dividing value;
  • the drive module is also connected with the first drive signal output pin, the second drive signal output pin, and the third drive signal output pin for driving the first street lamp circuit , the second street lamp circuit and the third street lamp circuit.
  • the communication module includes a switch control unit, a comparator threshold selection switch control unit and a comparator
  • the switch control unit is respectively connected with the power supply voltage terminal and the bus voltage terminal, and the power supply voltage terminal is connected through a plurality of series resistors. are connected to ground in series in sequence, and the nodes between the plurality of series resistors are all connected to the comparator threshold selection switch control unit, and the comparator threshold selection switch control unit is also connected to the inverting input end of the comparator, so The non-inverting input terminal of the comparator is connected to the bus voltage terminal through a resistor, and the non-inverting input terminal of the comparator is also grounded through a second resistor.
  • the driving module includes a zero-crossing detection unit, a peak current detection unit and a reference unit, and the first driving signal output pin, the second driving signal output pin and the third driving signal output pin are all It is connected with the input end of the zero-crossing detection unit, and the input end of the peak current detection unit is connected with the output end of the zero-crossing detection unit and the output end of the reference unit,
  • the driving module further includes a first field effect transistor, a second field effect transistor and a third field effect transistor, and the drains of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively connected to The first driving signal output pin, the second driving signal output pin and the third driving signal output pin are connected, and the gates of the first field effect transistor, the second field effect transistor and the third field effect transistor are all connected to the peak current detection
  • the output terminals of the units are connected, and the sources of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively grounded through resistors, and are respectively connected to the input terminals of the peak current detection unit.
  • the communication module is connected to the central processing unit through the first line, the second line and the third line, and the first line is used for outputting the decoded signal sent by the host to realize the control and control of the slave by the host.
  • the second line is used to send signals to the host according to the situation of intelligent driving and intelligent fault detection
  • the third line is used to output control signals to the communication module, and intelligently adjust the comparison threshold point of the code receiving comparator in the communication module.
  • the driving module is connected with the central processing unit through the fourth circuit and the fifth circuit, the central processing unit controls the constant current value of the driving module through the fourth circuit, and controls the opening and closing of the driving module through the fifth circuit. .
  • the communication module transmits the signal between the host and the slave by sampling and decoding the voltage waveform of the bus voltage, and extracting current from the bus voltage input pin.
  • the resistor divider value is the bus voltage input pin, the ground pin, the first drive signal output pin, the second drive signal output pin, the third drive signal output pin, the power supply output pin.
  • the single-chip integrated chip is further provided with a first extension pin and a second extension pin.
  • the monolithic bus slave circuit structure of the present invention is adopted to realize the intelligent constant current driving function, and the constant current driving of the lamp is realized in the whole bus voltage range, which does not depend on the parameters of the lamp, and the brightness of the lamp remains uniform and can be adjusted flexibly at the same time.
  • the number of driven lamps can ensure high energy efficiency.
  • the invention can realize the function of intelligent fault detection, realize the open and short circuit detection of each street lamp, and report the result to the host through bus communication, and the host can locate and arrange timely maintenance according to the fault situation.
  • FIG. 1 is a structural diagram of a slave machine circuit of a bus networked emergency evacuation light provided by an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a monolithic bus slave circuit structure of a monolithic bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit structure of a monolithic integrated chip of a monolithic bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit structure of a communication module with a single-chip bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a circuit structure of a resistive voltage divider module of a single-chip bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a circuit structure of a driving module of a single-chip bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a circuit structure of an embodiment of a monolithic integrated chip with a monolithic bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a circuit structure of another embodiment of a monolithic integrated chip with a monolithic bus slave circuit structure provided by an exemplary embodiment of the present invention.
  • the single-chip bus slave circuit structure of the present invention includes
  • a monolithic integrated chip, a rectifier bridge, a first street light circuit, a second street light circuit and a third street light circuit the monolithic integrated chip is at least provided with a bus voltage input pin, a ground pin, and a first drive signal output pin , the second drive signal output pin, the third drive signal output pin, the power output pin,
  • the bus voltage input pin and the ground pin are both connected to the output end of the rectifier bridge, the input end of the rectifier bridge is connected to the positive and negative bus lines, and the ground pin is also ground,
  • the first street lamp circuit is connected between the first driving signal output pin and the power supply output pin
  • the second driving signal output pin is connected with the power supply output pin
  • the third street lamp circuit is connected between the third drive signal output pin and the power supply output pin
  • the power output pin is also connected to one end of the energy storage capacitor, and the other end of the energy storage capacitor is grounded.
  • the first street lamp circuit includes a first inductor, a first diode light string and a first freewheeling diode, and the first driving signal output pin is connected to the first diode after being connected to the first inductor.
  • One end of the tube light string is connected, and the other end of the first diode light string is connected to the power output pin, and is connected to the anode of the first freewheeling diode and the first drive signal output pin connected, the cathode is connected with the power output pin;
  • the second street lamp circuit includes a second inductor, a second diode light string and a second freewheeling diode, and the second driving signal output pin is connected to the second diode after being connected to the second inductor.
  • One end of the tube light string is connected, and the other end of the second diode light string is connected to the power output pin, and is connected to the anode of the second freewheeling diode and the second drive signal output pin connected, the cathode is connected with the power output pin;
  • the third street lamp circuit includes a third inductor, a third diode light string and a third freewheeling diode, and the third driving signal output pin is connected to the third diode after being connected to the third inductor.
  • One end of the tube light string is connected, and the other end of the third diode light string is connected to the power output pin, and is connected to the anode of the third freewheeling diode and the third drive signal output pin connected, and the cathode is connected with the power output pin.
  • the first diode light string includes a first diode, a second diode, and a third diode connected in series in sequence
  • the second diode light string It includes a fourth diode, a fifth diode, and a sixth diode in series
  • the third diode light string includes a seventh diode, an eighth diode, and a ninth diode in series in series. diode
  • the monolithic integrated chip at least includes:
  • the power conversion module is connected with the central processing unit, the communication module, the analog-to-digital conversion module, the resistor divider module and the driving module, and is used to generate the internal power supply, and is used for the central processing unit, the communication module, the analog-to-digital conversion module, and the resistor.
  • the voltage divider module and the driver module provide power;
  • the central processing unit is connected with the communication module, the analog-to-digital conversion module, the resistance voltage dividing module and the driving module, and is used to control the signal transmission between the host and the slave;
  • a communication module which is also connected to the bus voltage input pin for transmitting signals between the master and the slave;
  • an analog-to-digital conversion module which is also connected to the resistance voltage divider module for converting analog signals to digital signals;
  • the resistance voltage dividing module is also connected with the first driving signal output pin, the second driving signal output pin, and the third driving signal output pin, and is used for obtaining the resistance voltage dividing value;
  • the drive module is also connected with the first drive signal output pin, the second drive signal output pin, and the third drive signal output pin for driving the first street lamp circuit , the second street lamp circuit and the third street lamp circuit.
  • the communication module includes a switch control unit, a comparator threshold selection switch control unit and a comparator, and the switch control unit is respectively connected to the power supply voltage terminal and the bus voltage terminal, and the power supply voltage terminal passes through the A plurality of series resistors are connected to ground in series, and the nodes between the plurality of resistors are all connected to the comparator threshold selection switch control unit, and the comparator threshold selection switch control unit is also connected to the inverting input end of the comparator
  • the non-inverting input terminal of the comparator is connected to the bus voltage terminal through a resistor, and the non-inverting input terminal of the comparator is also grounded through a second resistor.
  • the driving module includes a zero-crossing detection unit, a peak current detection unit and a reference unit, the first driving signal output pin, the second driving signal output pin and the third driving signal
  • the output pins are connected with the input terminal of the zero-crossing detection unit, and the input terminal of the peak current detection unit is connected with the output terminal of the zero-crossing detection unit and the output terminal of the reference unit.
  • the driving module further includes a first field effect transistor, a second field effect transistor and a third field effect transistor, and the drains of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively connected to The first driving signal output pin, the second driving signal output pin and the third driving signal output pin are connected, and the gates of the first field effect transistor, the second field effect transistor and the third field effect transistor are all connected to the peak current detection
  • the output terminals of the units are connected, and the sources of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively grounded through resistors, and are respectively connected to the input terminals of the peak current detection unit.
  • the communication module is connected to the central processing unit through a first line, a second line, and a third line, and the first line is used to output the decoded signal sent by the host, so that the host can communicate with the slave control and command operation of the computer; the second line is used to send signals to the host according to the situation of intelligent drive and intelligent fault detection; the third line is used to output control signals to the communication module, and intelligently adjust the comparison of the code receiving comparator in the communication module threshold point.
  • the driving module is connected to the central processing unit through a fourth circuit and a fifth circuit, the central processing unit controls the constant current value of the driving module through the fourth circuit, and controls the driving module through the fifth circuit of opening and closing.
  • the communication module transmits the signal between the master and the slave by sampling and decoding the voltage waveform of the bus voltage, and extracting current from the bus voltage input pin.
  • the resistor divider value is the bus voltage input pin, the ground pin, the first drive signal output pin, the second drive signal output pin, and the third drive signal output pin Resistor divider value of pin, power output pin.
  • the monolithic integrated chip is further provided with a first extension pin and a second extension pin.
  • a host in the bus networking technology, can control a certain number of slave circuits according to the scale, and all the slaves are connected to the bus in parallel through two cables.
  • the bus also It is used as a signal line for the communication between the master and the slave.
  • all slave devices do not need to be equipped with batteries, and do not need to be connected to the power supply separately. The installation and maintenance costs are low, and the environment is environmentally friendly and pollution-free. More importantly, through the bus networking technology, the unified management and deployment of all slave circuits can be realized, so that the originally independent slave circuits can be interconnected and linked to each other.
  • the bus networking technology Realize intelligent evacuation, intelligent lighting, unified control and communication networking of the sensor and slave circuits of the entire building.
  • the total emergency evacuation system will be based on the signals detected at various locations (including smoke, temperature, humidity, etc. ) to calculate the best evacuation route, and then communicate through the bus interface, so that each emergency evacuation light receives the command from the general emergency evacuation system, obtains the evacuation indication status, controls the corresponding indicator light and voice module, and finally realizes the effective indication of the evacuation direction.
  • the invention proposes a single-chip bus slave circuit, which avoids the complicated design of using a DC/DC voltage conversion integrated chip in the prior art, and can realize intelligent constant current drive, intelligent bus communication, and intelligent fault detection at the same time.
  • the invention can adopt the cheapest SOP8 package to realize the slave circuit of emergency evacuation lights, and at the same time, according to the demand for extended functions and the number of driving lights, SOP14, SOP16, and SOP20 packages can also be used to realize a single-chip integrated chip solution. , the periphery of the whole system is simpler, the system cost is greatly reduced, and the reliability and anti-interference ability of the system are improved.
  • the single-chip bus slave circuit adopts a single-chip integrated chip that can realize intelligent bus communication, intelligent constant current drive and intelligent fault detection.
  • the monolithic integrated chip contains at least six pins, which are bus voltage input pins, power output pins, ground pins, first drive signal output pins, second drive signal output pins, and third drive signal output pins pin.
  • Lp and Ln are the positive and negative lines of the bus, respectively.
  • the rectifier bridge composed of diode D6, diode D7, diode D8, and diode D9, the bus voltage VBUS is generated, and the bus voltage VBUS is connected to the single line.
  • On-chip integrated chip as the bus input.
  • the power output pin of the monolithic integrated chip is connected to an external energy storage capacitor C4, and the voltage VH is used as the power supply for driving the lamp.
  • the first drive signal output pin of the monolithic integrated chip is connected to one end of the first inductor L1, and at the same time is connected to the anode of the first freewheeling diode D11;
  • the second drive signal output pin of the monolithic integrated chip is connected to the second inductor One end of L2 is connected to the anode of the second freewheeling diode D12 at the same time;
  • the third drive signal output pin of the monolithic integrated chip is connected to one end of the third inductor L3 and is connected to the anode of the third freewheeling diode D13 at the same time;
  • the cathode of the pole tube LED12 is connected to one end of the first inductor L1; the anode of the second fourth diode LED13 is connected to VH, the fourth diode LED13, the fifth diode LED14, and the sixth diode LED15 are sequentially After connecting in series, the cathode of the sixth diode LED15 is connected to one end of the second inductor L2; the anode of the seventh diode LED16 of the third channel is connected to VH, the seventh diode LED16, the eighth diode LED17, After the ninth diodes LED18 are sequentially connected in series, the cathode of the ninth diodes LED18 is connected to one end of the third inductor L3.
  • the VBUS end is a bus voltage input pin
  • the GND end is a ground pin
  • the VD1 end is a first drive signal output pin
  • the VD2 end is a second drive signal output pin
  • the VD3 end is a third drive signal output pin Signal output pin
  • VH terminal is the power output pin.
  • the modules mainly included in the monolithic integrated chip are: a power conversion module, a communication module, a driver module, a central processing unit, a resistor divider module, and an analog-to-digital conversion module, as shown in FIG. 3 .
  • the positive and negative electrodes of the bus pass through a rectifier bridge composed of a diode D1, a diode D2, a diode D3, and a diode D4 to generate the bus voltage VBUS.
  • the bus voltage VBUS generates the voltage VH through the current limiting resistor R5, the diode D10 for preventing reverse bias, and the storage capacitor C4.
  • the bus voltage VBUS is also connected to the communication module.
  • the communication module can sample the voltage waveform of the bus voltage VBUS and decode it to realize the function of receiving the host signal.
  • the communication module can also draw a certain current from the bus voltage VBUS to realize the slave to the host. The function of sending a signal.
  • the voltage VH generates an internal power supply VDD (usually 5V or 3V) through an internal power conversion module, and the internal power supply VDD is used as the power supply for other modules of the monolithic integrated chip, and is connected to the communication module, the central processing unit, the analog-digital A conversion module, a resistor divider module, and a drive module.
  • VDD usually 5V or 3V
  • the internal power supply VDD is used as the power supply for other modules of the monolithic integrated chip, and is connected to the communication module, the central processing unit, the analog-digital A conversion module, a resistor divider module, and a drive module.
  • the central processing unit and the communication module have three interconnecting lines, the line RXD, the line TXD, and the line VCTRL.
  • the signal transmitted by the line RXD is the signal sent by the decoded host output by the communication module, and the signal transmitted by the line RXD is transmitted to the central processing unit. , which can realize the control and instruction operation of the host to the slave; the signal transmitted by the line TXD is the signal sent by the slave circuit to the host according to the intelligent drive, intelligent fault detection, etc.; the signal transmitted by the line VCTRL is the output of the CPU module to the communication module.
  • the control signal can realize the intelligent adjustment of the comparison threshold point of the code receiving comparator in the communication module.
  • the central processing unit and the analog-to-digital conversion module are connected to each other.
  • the central processing unit outputs the control signal ACRTL to control the time-division multiplexing sampling control and ADC value reading functions of the analog-to-digital conversion module.
  • the analog-to-digital conversion module sends the final AD through the signal DATA. The converted value is sent to the CPU.
  • the central processing unit and the driving module have two interconnecting lines, the line ICTRL and the line MCTRL.
  • the central processing unit controls the constant current value of the driving module through the line ICTRL, and controls the opening and closing of each BUCK driver through the line MCTRL, so as to realize the lamp smart drive.
  • the driving module is also connected with the first driving signal output pin, the second driving signal output pin and the third driving signal output pin, so as to realize the intelligent constant current driving function of the three-way lamp.
  • the central processing unit is interconnected with the resistance voltage divider module, and the resistance voltage divider module is also connected with the first drive signal output pin, the second drive signal output pin, the third drive signal output pin, and the power output pin, and the central processing unit
  • the resistance voltage division value of each pin is controlled and selected by the signal VSEL to be output to the signal DIV in time division, and the signal DIV is connected with the analog-to-digital conversion module, so as to detect the voltage of each outer pin of the solid line, and then realize intelligent fault detection and realize each
  • the CPU module can report the result to the host through bus communication, and the host can locate and arrange timely maintenance according to the fault situation.
  • the circuit structure of the invention can realize the intelligent bus communication function, and can cover a wider bus voltage range.
  • the comparison threshold point of the code receiving comparator can be adjusted intelligently, so that the bus can be increased.
  • the number of connected slaves reduces the total installation cost of the entire building and improves the reliability and anti-interference of the system.
  • the specific implementation principle is: obtain the voltage division value of the voltage VH through the resistance voltage dividing module, and then obtain the corresponding AD value through the analog-to-digital conversion module, and the CPU module obtains the current slave bus voltage value through the detected AD value.
  • the communication module is controlled by the signal VCTRL, and the appropriate comparison threshold point of the code receiving comparator is selected, so as to accurately receive the commands sent by the host, and improve the reliability and anti-interference of the system.
  • the circuit structure of the invention can realize the intelligent constant current driving function, realize the constant current driving of the lamp in the whole bus voltage range, does not depend on the parameters of the lamp, the brightness of the lamp remains uniform, and at the same time, the number of driven lamps can be flexibly adjusted, which can ensure The high energy efficiency can basically reach more than 90%.
  • the specific implementation principle is: obtain the voltage division value of the voltage VH through the resistance voltage dividing module, and then obtain the corresponding AD value through the analog-to-digital conversion module, and the CPU module obtains the current slave bus voltage value through the detected AD value.
  • the peak current value of the driving module is controlled by the signal ICTRL to achieve compensation, so as to realize the constant current characteristic of the lamp in the whole wide bus voltage range.
  • the constant current characteristics of the lamp do not depend on the parameters of the lamp, the brightness of the lamp remains uniform, and the number of lamps to be driven can be flexibly adjusted, which can ensure high energy efficiency, which can basically reach more than 90%.
  • the circuit structure of the invention can realize the intelligent fault detection function, realize the open and short circuit detection of each street lamp, and report the result to the host through bus communication, and the host can locate and arrange timely maintenance according to the fault situation.
  • the specific implementation principle is: through time-division multiplexing, the resistance voltage dividing module obtains the voltage division values of the voltage VH, voltage VD1, voltage VD2, and voltage VD3 respectively, and then obtains the corresponding AD value through the analog-to-digital conversion module.
  • the detected AD value can be calculated to determine the voltage drop value of the current lamp, so as to determine whether each street lamp has open circuit and short circuit fault conditions, and report the result to the host through bus communication.
  • the circuit structure of the invention can realize the intelligent control of each street lamp.
  • the central processing unit communicates through the bus, receives the instructions of the host, and controls the opening and closing of each BUCK driver through the signal MCTRL, so as to realize the control of the state of the lights by the host, for example, in a fire
  • the emergency evacuation lights of each channel are lit or extinguished or flashed according to the instructions of the host, so as to guide the best escape route.
  • an implementation manner of the communication module is shown in FIG. 4
  • an implementation manner of the resistance voltage dividing module is shown in FIG. 5
  • an implementation manner of the driving module is shown in FIG. 6 .
  • the communication module shown in FIG. 4 includes a switch control unit, a comparator threshold selection switch control unit and a comparator.
  • the switch control unit is respectively connected to the power supply voltage terminal and the bus voltage terminal, and the power supply voltage terminal is connected to ground through a plurality of resistors in series , the nodes between the multiple resistors are connected to the comparator threshold selection switch control unit, the positive input terminal of the comparator is connected to the bus voltage terminal through the resistor, and is grounded through the resistor, and the negative terminal of the comparator is connected to the ground.
  • the input terminal is connected with the comparator threshold selection switch control unit.
  • the resistive voltage divider module shown in Figure 5 includes a voltage selection switch, which is respectively connected with the first driving signal output pin, the second driving signal output pin, the third driving signal output pin and the power supply output pin. Connect to VSEL and connect to resistor divider circuit.
  • the driving module shown in FIG. 6 includes a zero-crossing detection unit, a peak current detection unit and a reference unit.
  • the first driving signal output pin, the second driving signal output pin and the third driving signal output pin are all the same as the
  • the input terminal of the zero-crossing detection unit is connected to the input terminal of the peak current detection unit, and the output terminal of the zero-crossing detection unit is connected to the output terminal of the reference voltage.
  • the driving module further includes a first field effect transistor, a second field effect transistor and a third field effect transistor, and the drains of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively connected to A driving signal output pin, a second driving signal output pin and a third driving signal output pin are connected, and the gates of the first field effect transistor, the second field effect transistor and the third field effect transistor are all connected to the peak current detection unit
  • the output terminals of the first field effect transistor, the second field effect transistor and the third field effect transistor are respectively grounded through resistors, and are respectively connected to the input terminal of the peak current detection unit.
  • the monolithic integrated chip in other optional embodiments of the present invention contains at least six pins when driving three-way lights (the number of lights can be reduced or expanded as needed), and two more pins can be added. pins, namely the first extension pin and the second extension pin.
  • the first extension pin is the P0 pin
  • the second extension pin is the P1 pin for extending functions (it can be an IO port or an AD port, etc.), as shown in FIG. 7 .
  • the current limiting resistor R9 and the anti-backflow diode D14 can also be placed on the periphery, and the resistor used to detect the peak current in the driving module can be placed on the periphery,
  • the resistor used to detect the peak current in the driving module can be placed on the periphery.
  • add 5 pins as an extended function application it can be IO port or AD port, etc.
  • this solution can be packaged in SOP14 accomplish.
  • SOP16 package and SOP20 package can also be used to realize a single-chip integrated chip solution.
  • the invention proposes a single-chip bus slave circuit, which avoids the complicated design of using a DC/DC voltage conversion integrated chip in the prior art, and can realize the intelligent constant current driving function at the same time, which greatly reduces the system cost.
  • the realization method proposed by the present invention can adopt the cheapest SOP8 package to realize the slave circuit of the emergency evacuation lamp, and at the same time, according to the demand for extended functions and the number of driving lights, SOP14, SOP16 and SOP20 packages can also be used to realize a single-chip integrated chip plan.
  • the single-chip integrated chip when driving the three-way lamp, contains at least six pins, which are the bus voltage input pin, the power output pin, the ground pin, the first driving signal output pin, the second driving signal output pin, and the second driving signal output pin. Signal output pin, the third drive signal output pin.
  • the specific implementation circuit is shown in Figure 2.
  • Lp and Ln are the positive and negative lines of the bus, respectively.
  • the power output pin of the monolithic integrated chip is connected to the energy storage capacitor C4, and the voltage VH is used as the power supply for driving the lamp.
  • the first drive signal output pin of the monolithic integrated chip is connected to one end of the first inductor L1, and at the same time is connected to the anode of the first freewheeling diode D11;
  • the second drive signal output pin of the monolithic integrated chip is connected to the second inductor One end of L2 is connected to the anode of the second freewheeling diode D12 at the same time;
  • the third drive signal output pin of the monolithic integrated chip is connected to one end of the third inductor L3 and is connected to the anode of the third freewheeling diode D13 at the same time;
  • the modules mainly included in the monolithic integrated chip are: a power conversion module, a communication module, a driver module, a central processing unit, a resistor divider module, and an analog-to-digital conversion module, as shown in FIG. 3 .
  • the single-chip integrated chip can realize intelligent bus communication function, intelligent constant current drive function, and intelligent fault detection function.
  • the invention proposes a single-chip bus slave circuit, which avoids the complicated design of using a DC/DC voltage conversion integrated chip in the prior art, and can realize the intelligent constant current driving function at the same time, which greatly reduces the system cost.
  • the implementation method proposed by the present invention can adopt the cheapest SOP8 package to realize the slave circuit of the emergency evacuation light, and at the same time, according to the demand for extended functions and the number of driving lights, SOP14, SOP16, and SOP20 packages can also be used to realize a single-chip integrated chip 's plan.
  • the communication module is realized by a large number of discrete devices, the communication threshold point is single, it is difficult to adapt to the entire bus voltage range, and the reliability and anti-interference characteristics are poor.
  • the communication function can cover a wider bus voltage range.
  • the comparison threshold point of the code receiving comparator can be adjusted intelligently, thereby increasing the number of slaves attached to the bus. , reduce the total installation cost of the whole building, improve the reliability and anti-interference of the system.
  • the invention can realize the intelligent constant current driving function, realize the constant current driving of the lamp in the whole bus voltage range, does not depend on the parameters of the lamp, keeps the brightness of the lamp uniform, and can flexibly adjust the number of lamps to be driven, and can ensure high energy efficiency.
  • the intelligent fault detection function can be realized, the open and short circuit detection of each street lamp can be realized, and the results are reported to the host through bus communication, and the host can locate and arrange timely maintenance according to the fault situation.
  • the monolithic bus slave circuit structure of the present invention is adopted to realize the intelligent constant current driving function, and the constant current driving of the lamp is realized in the whole bus voltage range, which does not depend on the parameters of the lamp, and the brightness of the lamp remains uniform and can be adjusted flexibly at the same time.
  • the number of driven lamps can ensure high energy efficiency.
  • the invention can realize the function of intelligent fault detection, realize the open and short circuit detection of each street lamp, and report the result to the host through bus communication, and the host can locate and arrange timely maintenance according to the fault situation.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc Digital Transmission (AREA)
  • Led Devices (AREA)

Abstract

提供了一种单片式总线从机电路结构,包括单片集成芯片、整流桥、第一路灯电路、第二路灯电路和第三路灯电路,单片集成芯片至少设有总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚,总线电压输入引脚和接地引脚均与整流桥的输出端相连,整流桥的输入端与正负极总线相连接,接地引脚还接地。采用了本发明的单片式总线从机电路结构,实现智能恒流驱动功能,整个总线电压范围内实现灯的恒流驱动,不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效率。

Description

单片式总线从机电路结构
相关申请的交叉引用
本申请主张2020年11月20日提交的申请号为202011307397.0的中国发明专利申请的优先权,其内容通过引用的方式并入本申请中。
技术领域
本发明涉及总线联网领域,尤其涉及应急疏散灯领域,具体是指一种单片式总线从机电路结构。
背景技术
总线联网式应急疏散灯从机电路,实现方式如图1所示,其中Lp和Ln分别为总线的正负极线,一个主机的总线上通常会挂多个应急疏散灯***作为从机,通常最多挂接64个从机,每个从机***都是统一的,主机可以通过总线通信对各个从机进行地址编码,从而实现一一对应。应急疏散灯通常由三路LED灯组成,三路LED灯分别点亮左箭头、右箭头、中间人形。
通常最接近主机端的从机中总线电压VBUS为36V,DC/DC电压转换集成芯片输出的电压VCC为12V,LDO集成芯片输出的电压VDD为5V或3V。而由于挂接的从机分布在楼宇各个位置,总线线长较长,约500米,其线阻不能忽略,各从机电流流过该线阻后会产生较大压降,挂接在总线末端的从机(如从机64)其VBUS电压会降低到约16V。因此,对于DC/DC电压转换集成芯片DC/DC电压转换集成芯片来说,输入电压信号范围在16V~36V均要产生出稳定的12V,且负载能力必须足够点亮各路应急疏散灯,对DC/DC性能要求较高。市面上这类DC/DC电压转换集成芯片造价高,然而该DC/DC电压转换集成芯片是必须存在的,否则图1中的VH电压(约36V)直接连接到图1中的应急疏散灯上作为电源,这将导致能耗的极大浪费。且从机电路需要用到多颗集成芯片:主要含造价较高的DC/DC电压转换集成芯片、LDO集成芯片、MCU集成芯片,需要大量的分立器件来搭建通信模块,这将导致***可靠性差,抗干扰能力弱。
此外,总线联网式应急疏散灯从机电路中采用的是恒压驱动灯来实现恒流的方式,流过应急疏散灯的电流值I LED依赖于各应急疏散灯的压降以及电阻R4的值,可以表达为I LED=(VCC-VLED)/R4,其中VCC通常为12V,VLED为三个灯的压降,通常为10V左右,通 常电流I LED约10mA,因此电阻R4的阻值约2KΩ。由此可见,电流I LED与应急疏散灯的压降相关,而实际生产中,应急疏散灯的压降值有较大的偏差,从而导致每一路的电流I LED会存在较大偏差,表各路灯的恒流特性依赖于灯的参数特性,现出灯的亮度不统一。LED驱动部分能量使用效率可以表达为(VLED×I LED)/(VCC×I LED)≈10/12≈83.3%,可见有约16.7%的能量浪费在了电阻R4上,能量使用效率较低。
因此,本发明着眼于以上至少一个缺点提出了解决方案,利用单片式的集成方案,降低整个***的成本、提升可靠性和抗干扰能力,并保证灯的恒流驱动特性和高的能量使用效率。
发明内容
本发明的目的是克服了上述至少一个缺点,提供了一种满足可靠性高、抗干扰能力强、适用范围较为广泛的单片式总线从机电路结构。
为了实现上述目的或其他目的,本发明的单片式总线从机电路结构如下:
该单片式总线从机电路结构,其主要特点是,所述的电路结构包括单片集成芯片、整流桥、第一路灯电路、第二路灯电路和第三路灯电路,所述的单片集成芯片至少设有总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚,
所述的总线电压输入引脚和所述的接地引脚均与所述的整流桥的输出端相连,所述的整流桥的输入端与正负极总线相连接,所述的接地引脚还接地,
所述的第一驱动信号输出引脚与所述的电源输出引脚之间连接所述的第一路灯电路,所述的第二驱动信号输出引脚与所述的电源输出引脚之间连接所述的第二路灯电路,所述的第三驱动信号输出引脚与所述的电源输出引脚之间连接所述的第三路灯电路,
所述的电源输出引脚还外接储能电容的一端,所述储能电容的另一端接地。
较佳地,所述的第一路灯电路包括第一电感、第一二极管灯串和第一续流二极管,所述的第一驱动信号输出引脚与第一电感连接后与所述的第一二极管灯串的一端连接,所述的第一二极管灯串的另一端连接至所述的电源输出引脚,且与第一续流二极管的阳极与所述的第一驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接;
所述的第二路灯电路包括第二电感、第二二极管灯串和第二续流二极管,所述的第二驱动信号输出引脚与第二电感连接后与所述的第二二极管灯串的一端连接,所述的第二二极管灯串的另一端连接至所述的电源输出引脚,且与第二续流二极管的阳极与所述的第二驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接;
所述的第三路灯电路包括第三电感、第三二极管灯串和第三续流二极管,所述的第三驱动信号输出引脚与第三电感连接后与所述的第三二极管灯串的一端连接,所述的第三二极管灯串的另一端连接至所述的电源输出引脚,且与第三续流二极管的阳极与所述的第三驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接。
较佳地,所述的第一二极管灯串包括依次串联的第一二极管、第二二极管、第三二极管,所述的第二二极管灯串包括依次串联的第四二极管、第五二极管、第六二极管,所述的第三二极管灯串包括依次串联的第七二极管、第八二极管、第九二极管。
较佳地,所述的单片集成芯片至少包括:
电源转换模块,与中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块连接,用于产生内部电源,并为所述的中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块提供电源;
中央处理单元,与所述的通信模块、模数转换模块、电阻分压模块和驱动模块相连接,用于控制主机和从机间的信号传输;
通信模块,还与所述的总线电压输入引脚相连接,用于传输主机与从机间的信号;
模数转换模块,还与所述的电阻分压模块相连接,用于实现模拟信号到数字信号的转换;
电阻分压模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于获取电阻分压值;
驱动模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于驱动所述的第一路灯电路、所述的第二路灯电路和所述的第三路灯电路。
较佳地,所述的通信模块包括开关控制单元、比较器阈值选择开关控制单元和比较器,所述的开关控制单元分别与电源电压端和总线电压端相连,电源电压端通过多个串联电阻依次串联接地,所述的多个串联电阻间的节点均与比较器阈值选择开关控制单元相连,所述的比较器阈值选择开关控制单元还与所述的比较器的反向输入端相连,所述的比较器的正相输入端通过电阻与总线电压端相连,且所述的比较器的正相输入端还通过第二电阻接地。
较佳地,所述的驱动模块包括过零检测单元、峰值电流检测单元和基准单元,所述的第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚均与过零检测单元的输入端相连接,峰值电流检测单元的输入端与过零检测单元的输出端和基准单元的输出端相连接,
所述的驱动模块还包括第一场效应管、第二场效应管和第三场效应管,所述的第一场效应管、第二场效应管和第三场效应管的漏极分别与第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚相连,第一场效应管、第二场效应管和第三场效应管的栅极均与峰值电流检测单元的输出端相连,第一场效应管、第二场效应管和第三场效应管的源极分别通过电阻接地,且分别与峰值电流检测单元的输入端相连。
较佳地,所述的通信模块通过第一线路、第二线路、第三线路与中央处理单元连接,第一线路用于输出的解码后的主机发送的信号,实现主机对从机的控制和指令操作;第二线路用于根据智能驱动、智能故障检测的情况将信号发送至主机;第三线路用于输出控制信号至通信模块,智能调整通信模块中收码比较器的比较阈值点。
较佳地,所述的驱动模块通过第四线路和第五线路与中央处理单元相连接,中央处理单元通过第四线路控制驱动模块的恒流值,通过第五线路控制驱动模块的打开和关闭。
较佳地,所述的通信模块通过采样总线电压的电压波形并解码,以及从总线电压输入引脚抽取电流来实现传输主机与从机间的信号。
较佳地,所述的电阻分压值为所述的总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚。
较佳地,所述的单片集成芯片还设有第一扩展引脚和第二扩展引脚。
采用了本发明的单片式总线从机电路结构,实现智能恒流驱动功能,整个总线电压范围内实现灯的恒流驱动,不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效率。本发明中可以实现智能故障检测功能,实现每一路灯的开短路检测,并将结果通过总线通信上报到主机,主机根据故障情况可以定位并安排及时维修。
附图说明
图1为本发明一示例性实施例提供的总线联网式应急疏散灯从机电路结构图。
图2为本发明一示例性实施例提供的单片式总线从机电路结构的单片式总线从机电路结构示意图。
图3为本发明一示例性实施例提供的单片式总线从机电路结构的单片集成芯片的电路结构示意图。
图4为本发明一示例性实施例提供的单片式总线从机电路结构的通信模块的电路结构示意图。
图5为本发明一示例性实施例提供的单片式总线从机电路结构的电阻分压模块的电路结构示意图。
图6为本发明一示例性实施例提供的单片式总线从机电路结构的驱动模块的电路结构示意图。
图7为本发明一示例性实施例提供的单片式总线从机电路结构的单片集成芯片的实施例的电路结构示意图。
图8为本发明一示例性实施例提供的单片式总线从机电路结构的单片集成芯片的另一实施例的电路结构示意图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
本发明的该单片式总线从机电路结构,其中包括
单片集成芯片、整流桥、第一路灯电路、第二路灯电路和第三路灯电路,所述的单片集成芯片至少设有总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚,
所述的总线电压输入引脚和所述的接地引脚均与所述的整流桥的输出端相连,所述的整流桥的输入端与正负极总线相连接,所述的接地引脚还接地,
所述的第一驱动信号输出引脚与所述的电源输出引脚之间连接所述的第一路灯电路,所述的第二驱动信号输出引脚与所述的电源输出引脚之间连接所述的第二路灯电路,所述的第三驱动信号输出引脚与所述的电源输出引脚之间连接所述的第三路灯电路,
所述的电源输出引脚还外接储能电容的一端,所述储能电容的另一端接地。
作为本发明的优选实施方式,
所述的第一路灯电路包括第一电感、第一二极管灯串和第一续流二极管,所述的第一驱动信号输出引脚与第一电感连接后与所述的第一二极管灯串的一端连接,所述的第一二极管灯串的另一端连接至所述的电源输出引脚,且与第一续流二极管的阳极与所述的第一驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接;
所述的第二路灯电路包括第二电感、第二二极管灯串和第二续流二极管,所述的第二驱动信号输出引脚与第二电感连接后与所述的第二二极管灯串的一端连接,所述的第二二极管灯串的另一端连接至所述的电源输出引脚,且与第二续流二极管的阳极与所述的第二驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接;
所述的第三路灯电路包括第三电感、第三二极管灯串和第三续流二极管,所述的第三驱动信号输出引脚与第三电感连接后与所述的第三二极管灯串的一端连接,所述的第三二极管灯串的另一端连接至所述的电源输出引脚,且与第三续流二极管的阳极与所述的第三驱动信号输出引脚相连接,阴极与所述的电源输出引脚相连接。
作为本发明的优选实施方式,所述的第一二极管灯串包括依次串联的第一二极管、第二二极管、第三二极管,所述的第二二极管灯串包括依次串联的第四二极管、第五二极管、第六二极管,所述的第三二极管灯串包括依次串联的第七二极管、第八二极管、第九二极管
作为本发明的优选实施方式,所述的单片集成芯片至少包括:
电源转换模块,与中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块连接,用于产生内部电源,并为所述的中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块提供电源;
中央处理单元,与所述的通信模块、模数转换模块、电阻分压模块和驱动模块相连接,用于控制主机和从机间的信号传输;
通信模块,还与所述的总线电压输入引脚相连接,用于传输主机与从机间的信号;
模数转换模块,还与所述的电阻分压模块相连接,用于实现模拟信号到数字信号的转换;
电阻分压模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于获取电阻分压值;
驱动模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于驱动所述的第一路灯电路、所述的第二路灯电路和所述的第三路灯电路。
作为本发明的优选实施方式,所述的通信模块包括开关控制单元、比较器阈值选择开关控制单元和比较器,所述的开关控制单元分别与电源电压端和总线电压端相连,电源电压端通过多个串联电阻依次串联接地,所述的多个电阻间的节点均与比较器阈值选择开关控制单元相连,所述的比较器阈值选择开关控制单元还与所述的比较器的反向输入端相连,所述的比较器的正相输入端通过电阻与总线电压端相连,且所述的比较器的正相输入端还通过第二电阻接地。
作为本发明的优选实施方式,所述的驱动模块包括过零检测单元、峰值电流检测单元和基准单元,所述的第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚均与过零检测单元的输入端相连接,峰值电流检测单元的输入端与过零检测单元的输出端和 基准单元的输出端相连接,
所述的驱动模块还包括第一场效应管、第二场效应管和第三场效应管,所述的第一场效应管、第二场效应管和第三场效应管的漏极分别与第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚相连,第一场效应管、第二场效应管和第三场效应管的栅极均与峰值电流检测单元的输出端相连,第一场效应管、第二场效应管和第三场效应管的源极分别通过电阻接地,且分别与峰值电流检测单元的输入端相连。
作为本发明的优选实施方式,所述的通信模块通过第一线路、第二线路、第三线路与中央处理单元连接,第一线路用于输出的解码后的主机发送的信号,实现主机对从机的控制和指令操作;第二线路用于根据智能驱动、智能故障检测的情况将信号发送至主机;第三线路用于输出控制信号至通信模块,智能调整通信模块中收码比较器的比较阈值点。
作为本发明的优选实施方式,所述的驱动模块通过第四线路和第五线路与中央处理单元相连接,中央处理单元通过第四线路控制驱动模块的恒流值,通过第五线路控制驱动模块的打开和关闭。
作为本发明的优选实施方式,所述的通信模块通过采样总线电压的电压波形并解码,以及从总线电压输入引脚抽取电流来实现传输主机与从机间的信号。
作为本发明的优选实施方式,所述的电阻分压值为所述的总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚的电阻分压值。
作为本发明的优选实施方式,所述的单片集成芯片还设有第一扩展引脚和第二扩展引脚。
本发明的具体实施方式中,总线联网技术中,一个主机可以根据规模控制一定数量的从机电路,所有的从机都通过两根电缆并联连接在总线上,通过总线获取电源的同时,总线也作为主机与从机相互通信的信号线。通过总线联网技术,可以使所有从机设备无需配备电池,无需另行布接电源,安装维护成本低,环保无污染。更重要的是,通过总线联网技术,可以实现所有从机电路统一管理和调配,让各个本来相互独立的从机电路,相互关联和联动作业,比如在消防及安防领域,通过总线联网技术,可以实现智能疏散、智能照明,将整个楼宇的传感从机电路进行统一控制和通信联网,当出现火灾或者紧急情况时,总应急疏散***根据各个位置检测到的信号(包括烟雾、温度、湿度等)计算出最佳疏散路线,然后通过总线接口通信,让各应急疏散灯接收来自总应急疏散***的指挥,获取疏散指示状态,控制相应的指示灯和语音模块,最后实现疏散方向的有效指示。
现有技术中,实现总线联网式应急疏散灯从机电路,需要用到多颗复杂的集成芯片及大量的分立器件搭建,成本高、可靠性差且能量使用效率低。
本发明提出了一种单片式总线从机电路,免去了现有技术中使用DC/DC电压转换集成芯片这样的复杂设计,同时可以实现智能恒流驱动、智能总线通信、智能故障检测的功能,并且本发明可采用最廉价的SOP8封装,实现应急疏散灯从机电路,同时根据扩展功能的需求量及驱动灯的数量,还可以采用SOP14、SOP16、SOP20封装实现单片集成芯片的方案,整个******更简单,大大降低了***成本,提高了***的可靠性和抗干扰能力。
在一个实施例中,单片式总线从机电路采用了单片可实现智能总线通信、智能恒流驱动及智能故障检测的集成芯片,结构如图2所示,以实现三路灯的驱动为例,单片集成芯片含有至少六个引脚,分别为总线电压输入引脚、电源输出引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚。其连接关系如图2所示,Lp和Ln分别为总线的正负极线,通过由二极管D6、二极管D7、二极管D8、二极管D9组成的整流桥,产生总线电压VBUS,总线电压VBUS连接到单片集成芯片作为总线输入。单片集成芯片的电源输出引脚外接储能电容C4,电压VH作为驱动灯的电源。单片集成芯片的第一驱动信号输出引脚连接到第一电感L1的一端,同时连接到第一续流二极管D11的阳极;单片集成芯片的第二驱动信号输出引脚连接到第二电感L2的一端,同时连接到第二续流二极管D12的阳极;单片集成芯片的第三驱动信号输出引脚连接到第三电感L3的一端,同时连接到第三续流二极管D13的阳极;三路灯的连接关系为:第一路中的第一二极管LED10的阳极连接到VH,第一二极管LED10、第二二极管LED11、第三二极管LED12依次串联后,第三二极管LED12的阴极连接到第一电感L1的一端;第二路第四二极管LED13的阳极连接到VH,第四二极管LED13、第五二极管LED14、第六二极管LED15依次串联后,第六二极管LED15的阴极连接到第二电感L2的一端;第三路的第七二极管LED16的阳极连接到VH,第七二极管LED16、第八二极管LED17、第九二极管LED18依次串联后,第九二极管LED18的阴极连接到第三电感L3的一端。
在一个实施例中,VBUS端为总线电压输入引脚,GND端为接地引脚,VD1端为第一驱动信号输出引脚,VD2端为第二驱动信号输出引脚,VD3端为第三驱动信号输出引脚,VH端为电源输出引脚。
在一个实施例中,单片集成芯片主要包含的模块有:电源转换模块、通信模块、驱动模块、中央处理单元、电阻分压模块、模数转换模块,如图3所示。
在一个实施例中,总线的正负极通过由二极管D1、二极管D2、二极管D3、二极管D4组成的整流桥,产生总线电压VBUS。总线电压VBUS通过限流电阻R5及防止反偏的二极管D10及储能电容C4产生电压VH。在总线作为通信作用时,通过储能电容C4维持电压VH,从而给整个从机供电。同时总线电压VBUS也连接到通信模块,通信模块可以采样总线电压VBUS的电压波形并解码,实现接收主机信号的功能,同时通信模块还可以在总线电压VBUS上抽取一定的电流,实现从机给主机发送信号的功能。
在一个实施例中,电压VH通过内部电源转换模块产生内部电源VDD(通常为5V或者3V),内部电源VDD作为单片集成芯片其他模块的供电电源,连接到通信模块、中央处理单元、模数转换模块、电阻分压模块、及驱动模块。
中央处理单元与通信模块有三根互联线,线路RXD、线路TXD、线路VCTRL,其中线路RXD输送的信号为通信模块输出的解码后的主机发送的信号,线路RXD输送的信号传递给中央处理单元后,可实现主机对从机的控制和指令操作;线路TXD输送的信号为从机电路根据智能驱动、智能故障检测等情况发送给主机的信号;线路VCTRL输送的信号为CPU模块输出给通信模块的控制信号,可以实现通信模块中收码比较器的比较阈值点的智能调整。
中央处理单元与模数转换模块相互连接,中央处理单元输出控制信号ACRTL来控制实现模数转换模块的分时复用采样控制及ADC值读取功能,模数转换模块则通过信号DATA将最终AD转换后的值传送给CPU。
中央处理单元与驱动模块,有两根互联线,线路ICTRL和线路MCTRL,中央处理单元通过线路ICTRL来控制驱动模块的恒流值,通过线路MCTRL控制各路BUCK驱动的打开和关闭,从而实现灯的智能驱动。
驱动模块还与第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚相连,实现三路灯的智能恒流驱动功能。
中央处理单元与电阻分压模块互联,同时电阻分压模块还与第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚相连,中央处理单元通过信号VSEL来控制选择对各引脚的电阻分压值分时输出到信号DIV,信号DIV与模数转换模块相连,从而实线各外引脚的电压检测,进而实现智能故障检测,实现每一路灯的开短路检测,CPU模块可将结果通过总线通信上报到主机,主机根据故障情况可以定位并安排及时维修。
本发明电路结构可实现智能总线通信功能,可覆盖更广的总线电压范围,对于挂接在总线上不同位置的从机电路,可以实现智能调整收码比较器的比较阈值点,从而可以增加总线 上挂接的从机个数,降低整个楼宇的安装总成本,提升***的可靠性、抗干扰性。具体的实现原理为:通过电阻分压模块,取得电压VH的分压值,再通过模数转换模块得到相对应的AD值,CPU模块通过检测到的AD值得到当前从机的总线电压值,然后根据主机通信时的电压波形图,通过信号VCTRL来控制通信模块,选择合适的收码比较器的比较阈值点,从而实现精准的接收主机发送的命令,提升***的可靠性、抗干扰性。
本发明电路结构可实现智能恒流驱动功能,整个总线电压范围内实现灯的恒流驱动,不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效率,基本可以达到90%以上。具体的实现原理为:通过电阻分压模块,取得电压VH的分压值,再通过模数转换模块得到相对应的AD值,CPU模块通过检测到的AD值得到当前从机的总线电压值,然后根据驱动模块的基本原理,通过信号ICTRL来控制驱动模块的峰值电流值实现补偿,从而实现在整个宽总线电压范围内灯的恒流特性。同时BUCK驱动结构下,灯的恒流特性不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效率,基本可以达到90%以上。
本发明电路结构可以实现智能故障检测功能,实现每一路灯的开短路检测,并将结果通过总线通信上报到主机,主机根据故障情况可以定位并安排及时维修。具体的实现原理为:通过分时复用,电阻分压模块分别取得电压VH、电压VD1、电压VD2、电压VD3的分压值,再通过模数转换模块得到相对应的AD值,CPU模块通过检测到的AD值可以通过计算判断出当前灯的压降值,从而判断每一路灯是否存在开路和短路的故障情况,并将结果通过总线通信上报到主机。
本发明电路结构可以实现各路灯的智能控制,中央处理单元通过总线通信,接收主机的指令,通过信号MCTRL控制各路BUCK驱动的打开和关闭,来实现主机对灯的状态的控制,例如在火灾和紧急疏散时,按照主机指令对各路应急疏散灯进行点亮或熄灭或闪烁控制,从而指引出最佳的逃生路线。
在一个实施例中,通信模块的一种实现方式如图4所示,电阻分压模块的一种实现方式如图5所示,驱动模块的一种实现方式如图6所示。
如图4所示的通信模块包括开关控制单元、比较器阈值选择开关控制单元和比较器,所述的开关控制单元分别与电源电压端和总线电压端相连,电源电压端通过多个电阻串联接地,所述的多个电阻间的节点均与比较器阈值选择开关控制单元相连,所述的比较器的正极输入端通过电阻与总线电压端相连,且通过电阻接地,所述的比较器的负极输入端与比较器阈值 选择开关控制单元相连。
如图5所示的电阻分压模块包括电压选择开关,分别与第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚和电源输出引脚相连接,输入端与VSEL相连,且与电阻分压电路相连。
如图6所示的驱动模块包括过零检测单元、峰值电流检测单元和基准单元,所述的第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚均与过零检测单元的输入端相连接,峰值电流检测单元的输入端与过零检测单元的输出端和基准电压的输出端相连接,
所述的驱动模块还包括第一场效应管、第二场效应管和第三场效应管,所述的第一场效应管、第二场效应管和第三场效应管的漏极分别与一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚相连,第一场效应管、第二场效应管和第三场效应管的栅极均与峰值电流检测单元的输出端相连,第一场效应管、第二场效应管和第三场效应管的源极分别通过电阻接地,且分别与峰值电流检测单元的输入端相连。
本发明的其他可选实施例中的单片集成芯片,驱动三路灯时(根据需要还可以对灯的路数进行减少或扩展),则含有至少六个引脚,还可再增加两个引脚,即第一扩展引脚和第二扩展引脚。在本发明的其他可选实施例中,第一扩展引脚为P0引脚、第二扩展引脚为P1引脚用于扩展功能(可以为IO口或者AD口等),如图7所示,可以采用最廉价的SOP8封装即可实现,大大降低整个***的成本。
另外,本发明的其他可选实施例中的单片集成芯片,还可以将限流电阻R9和防反灌的二极管D14放置在***,将驱动模块中用于检测峰值电流的电阻放在***,以减小芯片的功率及获得更精准的恒流特性,如图8所示,再增加5个引脚作为扩展功能应用(可以为IO口或者AD口等),此方案可以采用SOP14封装即可实现。同理,根据需要的扩展功能数据、驱动灯的数量,还可以采用SOP16封装、SOP20封装实现单片集成芯片的方案。
本发明提出了一种单片式总线从机电路,免去了现有技术中使用DC/DC电压转换集成芯片这样的复杂设计,同时可以实现智能恒流驱动功能,大大降低了***成本。本发明提出的实现方法,可采用最廉价的SOP8封装,实现应急疏散灯从机电路,同时根据扩展功能的需求量及驱动灯的数量,还可以采用SOP14、SOP16、SOP20封装实现单片集成芯片的方案。
采用本发明电路结构,驱动三路灯时,单片集成芯片含有至少六个引脚,分别为总线电压输入引脚、电源输出引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、 第三驱动信号输出引脚。其具体实现电路如图2所示,Lp和Ln分别为总线的正负极线,通过由二极管D6、二极管D7、二极管D8、二极管D9组成的整流桥,产生总线电压VBUS,产生总线电压VBUS连接到单片集成芯片作为总线输入,单片集成芯片的电源输出引脚外接储能电容C4,电压VH作为驱动灯的电源。单片集成芯片的第一驱动信号输出引脚连接到第一电感L1的一端,同时连接到第一续流二极管D11的阳极;单片集成芯片的第二驱动信号输出引脚连接到第二电感L2的一端,同时连接到第二续流二极管D12的阳极;单片集成芯片的第三驱动信号输出引脚连接到第三电感L3的一端,同时连接到第三续流二极管D13的阳极;三路灯的连接关系为:第一路中的第一二极管LED10的阳极连接到电源输出引脚,第一二极管LED10、第二二极管LED11、第三二极管LED12串联后,第三二极管LED12的阴极连接到第一电感L1的一端;第二路第四二极管LED13的阳极连接到电源输出引脚,第四二极管LED13、第五二极管LED14、第六二极管LED15串联后,第六二极管LED15的阴极连接到第二电感L2的一端;第三路的第七二极管LED16的阳极连接到电源输出引脚,第七二极管LED16、第八二极管LED17、第九二极管LED18串联后,第九二极管LED18的阴极连接到第三电感L3的一端。
在一个实施例中,单片集成芯片主要包含的模块有:电源转换模块、通信模块、驱动模块、中央处理单元、电阻分压模块、模数转换模块,如图3所示。单片集成芯片可实现智能总线通信功能、智能恒流驱动功能、智能故障检测功能。
现有技术中,需要用到造价较高的DC/DC电压转换集成芯片,***成本高。本发明提出了一种单片式总线从机电路,免去了现有技术中使用DC/DC电压转换集成芯片这样的复杂设计,同时可以实现智能恒流驱动功能,大大降低了***成本。本发明提出的实现方法,可采用最廉价的SOP8封装,实现应急疏散灯从机电路,同时根据扩展功能的需求量及驱动灯的数量,还可以采用SOP14、SOP16、SOP20封装实现单片集成芯片的方案。
现有技术中,通信模块通过大量的分立器件实现,通信阈值点单一,难以适应整个总线电压范围,可靠性及抗干扰特性差,本发明中将其集成在单片芯片内部,可实现智能总线通信功能,可覆盖更广的总线电压范围,对于挂接在总线上不同位置的从机电路,可以实现智能调整收码比较器的比较阈值点,从而可以增加总线上挂接的从机个数,降低整个楼宇的安装总成本,提升***的可靠性、抗干扰性。
本发明可实现智能恒流驱动功能,整个总线电压范围内实现灯的恒流驱动,不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效 率。
本发明中,可以实现智能故障检测功能,实现每一路灯的开短路检测,并将结果通过总线通信上报到主机,主机根据故障情况可以定位并安排及时维修。
采用了本发明的单片式总线从机电路结构,实现智能恒流驱动功能,整个总线电压范围内实现灯的恒流驱动,不依赖于灯的参数,灯的亮度保持统一,同时可以灵活调整驱动的灯的个数,可以保证高的能量使用效率。本发明中可以实现智能故障检测功能,实现每一路灯的开短路检测,并将结果通过总线通信上报到主机,主机根据故障情况可以定位并安排及时维修。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (11)

  1. 一种单片式总线从机电路结构,其特征在于,所述的电路结构包括单片集成芯片、整流桥、第一路灯电路、第二路灯电路和第三路灯电路,所述的单片集成芯片至少设有总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚;
    所述的总线电压输入引脚和所述的接地引脚均与所述的整流桥的输出端相连接,所述的整流桥的输入端与正负极总线相连接,所述的接地引脚接地;
    所述的第一驱动信号输出引脚与所述的电源输出引脚之间连接所述的第一路灯电路,所述的第二驱动信号输出引脚与所述的电源输出引脚之间连接所述的第二路灯电路,所述的第三驱动信号输出引脚与所述的电源输出引脚之间连接所述的第三路灯电路;
    所述的电源输出引脚还外接储能电容的一端,所述储能电容的另一端接地。
  2. 根据权利要求1所述的单片式总线从机电路结构,其特征在于,
    所述的第一路灯电路包括第一电感、第一二极管灯串和第一续流二极管,所述的第一驱动信号输出引脚与所述的第一电感连接后与所述的第一二极管灯串的一端连接,所述的第一二极管灯串的另一端连接至所述的电源输出引脚,且与所述的第一续流二极管的阳极与所述的第一驱动信号输出引脚相连接,所述的第一续流二极管的阴极与所述的电源输出引脚相连接;
    所述的第二路灯电路包括第二电感、第二二极管灯串和第二续流二极管,所述的第二驱动信号输出引脚与第二电感连接后与所述的第二二极管灯串的一端相连接,所述的第二二极管灯串的另一端连接至所述的电源输出引脚,且与所述的第二续流二极管的阳极与所述的第二驱动信号输出引脚相连接,所述的第二续流二极管的阴极与所述的电源输出引脚相连接;
    所述的第三路灯电路包括第三电感、第三二极管灯串和第三续流二极管,所述的第三驱动信号输出引脚与第三电感连接后与所述的第三二极管灯串的一端相连接,所述的第三二极管灯串的另一端连接至所述的电源输出引脚,且与所述的第三续流二极管的阳极与所述的第三驱动信号输出引脚相连接,所述的第三续流二极管阴极与所述的电源输出引脚相连接。
  3. 根据权利要求2所述的单片式总线从机电路结构,其特征在于,所述的第一二极管灯串包括依次串联的第一二极管、第二二极管、第三二极管,所述的第二二极管灯串包括依次串联的第四二极管、第五二极管、第六二极管,所述的第三二极管灯串包括依次串联的第七二极管、第八二极管、第九二极管。
  4. 根据权利要求1所述的单片式总线从机电路结构,其特征在于,所述的单片集成芯片至少包括:
    电源转换模块,与中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块连接,用于产生内部电源,并为所述的中央处理单元、通信模块、模数转换模块、电阻分压模块和驱动模块提供电源;
    中央处理单元,与所述的通信模块、模数转换模块、电阻分压模块和驱动模块相连接,用于控制主机和从机间的信号传输;
    通信模块,还与所述的总线电压输入引脚相连接,用于传输主机与从机间的信号;
    模数转换模块,还与所述的电阻分压模块相连接,用于实现模拟信号到数字信号的转换;
    电阻分压模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于获取电阻分压值;
    驱动模块,还与所述的第一驱动信号输出引脚、所述的第二驱动信号输出引脚、所述的第三驱动信号输出引脚相连接,用于驱动所述的第一路灯电路、所述的第二路灯电路和所述的第三路灯电路。
  5. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的通信模块包括开关控制单元、比较器阈值选择开关控制单元和比较器,所述的开关控制单元分别与电源电压端和总线电压端相连接,所述的电源电压端通过多个串联电阻依次串联接地,所述的多个串联电阻间的节点均与比较器阈值选择开关控制单元相连接,所述的比较器阈值选择开关控制单元还与所述的比较器的反向输入端相连接,所述的比较器的正相输入端通过电阻与所述的总线电压端相连接,且所述的比较器的正相输入端还通过第二电阻接地。
  6. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的驱动模块包括过零检测单元、峰值电流检测单元和基准单元,所述的第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚均与所述的过零检测单元的输入端相连接,所述的峰值电流检测单元的输入端与所述的过零检测单元的输出端和所述的基准单元的输出端相连接;
    所述的驱动模块还包括第一场效应管、第二场效应管和第三场效应管,所述的第一场效应管、第二场效应管和第三场效应管的漏极分别与第一驱动信号输出引脚、第二驱动信号输出引脚和第三驱动信号输出引脚相连接,所述的第一场效应管、第二场效应管和第三场效应管的栅极均与所述的峰值电流检测单元的输出端相连接,所述的第一场效应管、第二场效应管和第三场效应管的源极分别通过电阻接地,且分别与所述的峰值电流检测单元的输入端相 连接。
  7. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的通信模块通过第一线路、第二线路、第三线路与所述的中央处理单元相连接,所述的第一线路用于输出的解码后的主机发送的信号,实现主机对从机的控制和指令操作;所述的第二线路用于根据智能驱动、智能故障检测的情况将信号发送至主机;所述的第三线路用于输出控制信号至通信模块,智能调整通信模块中收码比较器的比较阈值点。
  8. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的驱动模块通过第四线路和第五线路与所述的中央处理单元相连接,所述的中央处理单元通过该第四线路控制驱动模块的恒流值,且通过该第五线路控制驱动模块的打开和关闭。
  9. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的通信模块通过采样总线电压的电压波形并解码,以及从所述的总线电压输入引脚抽取电流来实现传输主机与从机间的信号。
  10. 根据权利要求4所述的单片式总线从机电路结构,其特征在于,所述的电阻分压值为所述的总线电压输入引脚、接地引脚、第一驱动信号输出引脚、第二驱动信号输出引脚、第三驱动信号输出引脚、电源输出引脚的电阻分压值。
  11. 根据权利要求1所述的单片式总线从机电路结构,其特征在于,所述的单片集成芯片还设有第一扩展引脚和第二扩展引脚。
PCT/CN2021/104278 2020-11-20 2021-07-02 单片式总线从机电路结构 WO2022105248A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/033,201 US11844160B2 (en) 2020-11-20 2021-07-02 Monolithic bus slave circuit structure
EP21893400.8A EP4110022A4 (en) 2020-11-20 2021-07-02 SLAVE CIRCUIT STRUCTURE FOR SINGLE CHIP BUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011307397.0A CN112351565B (zh) 2020-11-20 2020-11-20 单片式总线从机电路结构
CN202011307397.0 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105248A1 true WO2022105248A1 (zh) 2022-05-27

Family

ID=74364372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104278 WO2022105248A1 (zh) 2020-11-20 2021-07-02 单片式总线从机电路结构

Country Status (4)

Country Link
US (1) US11844160B2 (zh)
EP (1) EP4110022A4 (zh)
CN (1) CN112351565B (zh)
WO (1) WO2022105248A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785869A (zh) * 2022-06-20 2022-07-22 陕西中测智能科技有限公司 一种RS232转one-wire协议模块及转换方法
WO2024119796A1 (zh) * 2022-12-06 2024-06-13 浙江桃园智能科技有限公司 一种数字通信协议驱动电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351565B (zh) * 2020-11-20 2024-05-31 华润微集成电路(无锡)有限公司 单片式总线从机电路结构
CN118075940A (zh) * 2024-04-25 2024-05-24 佛山市南海区平翊电子有限公司 一种多档可调光照明电路、pcb板及照明装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166165A (ja) * 2006-12-28 2008-07-17 Toshiba Lighting & Technology Corp 点灯装置
KR20090092994A (ko) * 2008-02-28 2009-09-02 동방전자산업 주식회사 비상구 유도등 장치
CN201764452U (zh) * 2009-12-01 2011-03-16 沈阳宏宇光电子科技有限公司 集中电源集中控制型消防应急标志灯
KR20140102047A (ko) * 2013-02-13 2014-08-21 김진국 비상등용 전등스위치 및 그 스위치와 함께 사용되는 비상등겸용 led 램프.
CN110602834A (zh) * 2019-10-17 2019-12-20 上海芯荃微电子科技有限公司 一种利用开关控制应急照明灯具亮度的电路及方法
US20200060010A1 (en) * 2013-12-19 2020-02-20 Aleddra Inc. Solid-State Lighting With Multiple Time Delays
CN112351565A (zh) * 2020-11-20 2021-02-09 华润微集成电路(无锡)有限公司 单片式总线从机电路结构
CN213244437U (zh) * 2020-11-20 2021-05-18 华润微集成电路(无锡)有限公司 单片式总线从机电路结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598686B2 (en) * 1997-12-17 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Organic light emitting diode methods and apparatus
KR20110051062A (ko) * 2009-11-09 2011-05-17 삼성전자주식회사 발광 다이오드 구동회로, 발광 다이오드 구동방법 및 이를 포함하는 발광 다이오드 시스템
US8749167B2 (en) * 2012-06-15 2014-06-10 Lightel Technologies, Inc. Linear solid-state lighting with voltage sensing mechanism free of fire and shock hazards
CN104202866A (zh) * 2014-08-04 2014-12-10 上海维芯电子科技有限公司 一种灯光照明控制***
TWI577234B (zh) * 2014-09-29 2017-04-01 Hu Yu Jie Chang An adjustable lighting fixture
CN205648096U (zh) * 2016-04-26 2016-10-12 无锡恒芯微科技有限公司 Led驱动芯片及led驱动电路
CN107820355A (zh) * 2017-12-01 2018-03-20 赛尔富电子有限公司 一种带有自举功能的dali接口电路
CN110896574A (zh) * 2018-09-13 2020-03-20 华域视觉科技(上海)有限公司 Oled光源驱动控制电路及oled灯具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166165A (ja) * 2006-12-28 2008-07-17 Toshiba Lighting & Technology Corp 点灯装置
KR20090092994A (ko) * 2008-02-28 2009-09-02 동방전자산업 주식회사 비상구 유도등 장치
CN201764452U (zh) * 2009-12-01 2011-03-16 沈阳宏宇光电子科技有限公司 集中电源集中控制型消防应急标志灯
KR20140102047A (ko) * 2013-02-13 2014-08-21 김진국 비상등용 전등스위치 및 그 스위치와 함께 사용되는 비상등겸용 led 램프.
US20200060010A1 (en) * 2013-12-19 2020-02-20 Aleddra Inc. Solid-State Lighting With Multiple Time Delays
CN110602834A (zh) * 2019-10-17 2019-12-20 上海芯荃微电子科技有限公司 一种利用开关控制应急照明灯具亮度的电路及方法
CN112351565A (zh) * 2020-11-20 2021-02-09 华润微集成电路(无锡)有限公司 单片式总线从机电路结构
CN213244437U (zh) * 2020-11-20 2021-05-18 华润微集成电路(无锡)有限公司 单片式总线从机电路结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4110022A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785869A (zh) * 2022-06-20 2022-07-22 陕西中测智能科技有限公司 一种RS232转one-wire协议模块及转换方法
WO2024119796A1 (zh) * 2022-12-06 2024-06-13 浙江桃园智能科技有限公司 一种数字通信协议驱动电路

Also Published As

Publication number Publication date
CN112351565B (zh) 2024-05-31
US11844160B2 (en) 2023-12-12
US20230292419A1 (en) 2023-09-14
EP4110022A1 (en) 2022-12-28
EP4110022A4 (en) 2023-09-13
CN112351565A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022105248A1 (zh) 单片式总线从机电路结构
CN201585178U (zh) 一种基于dmx512协议的led灯具控制装置
CN202019482U (zh) 一种单向rs-485控制led驱动电源***
CN101511143A (zh) 大功率led无线智能控制***
CN103428961A (zh) 用于容错led***的led旁路和控制电路
CN102427644B (zh) 一种led道路照明灯零光衰的方法和控制***
CN103313473A (zh) 基于电力线载波通信的led调光电路
CN206506754U (zh) 一种自动检测人流量车流量光强的智能led路灯
HRP20151348T1 (hr) Svjetiljka i postupak njezinog upravljanja
CN204119581U (zh) 一种地下停车场智能照明***
CN213244437U (zh) 单片式总线从机电路结构
CN203352870U (zh) 一种基于电力线载波通信的led调光电路
CN202565531U (zh) 一种智能灯光控制***
WO2010091619A1 (zh) 照明用发光二极管电流自动辨识方法
CN201436850U (zh) 一种输电线路声光电子驱鸟器
CN201429013Y (zh) Led应急照明灯
CN202475867U (zh) 导光管采光照明***用辅助照明装置
CN107454705A (zh) 一种基于dali协议的植物灯智能电源***及调光方法
CN201589120U (zh) 由单闪led灯的串联做成的led灯串
CN206260115U (zh) 一种基于数字电位器的led调光电路
CN216600134U (zh) 一种双光源路灯控制***
CN109362152A (zh) 智能照明管理***及控制方法
CN109302773A (zh) 一种led投光灯驱动电路
CN203327336U (zh) 一种高效率的led驱动电路
CN210225824U (zh) 一种利用距离传感器实现自动调光的灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021893400

Country of ref document: EP

Effective date: 20220923

NENP Non-entry into the national phase

Ref country code: DE