WO2022105195A1 - 一种可多挡变速调节的中置电机 - Google Patents

一种可多挡变速调节的中置电机 Download PDF

Info

Publication number
WO2022105195A1
WO2022105195A1 PCT/CN2021/098366 CN2021098366W WO2022105195A1 WO 2022105195 A1 WO2022105195 A1 WO 2022105195A1 CN 2021098366 W CN2021098366 W CN 2021098366W WO 2022105195 A1 WO2022105195 A1 WO 2022105195A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
assembly
sleeve
speed
Prior art date
Application number
PCT/CN2021/098366
Other languages
English (en)
French (fr)
Inventor
贺先兵
官景旗
邹斌
黄善劲
Original Assignee
八方电气(苏州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八方电气(苏州)股份有限公司 filed Critical 八方电气(苏州)股份有限公司
Publication of WO2022105195A1 publication Critical patent/WO2022105195A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/08Actuators for gearing speed-change mechanisms specially adapted for cycles with electrical or fluid transmitting systems

Definitions

  • the invention relates to the field of power-assisted bicycle motors, in particular to a mid-mounted motor that can be adjusted for multi-gear speed change.
  • the middle-mounted power-assisted bicycle motors on the market are mainly ordinary deceleration middle-mounted motors, which cannot realize shifting gears to change gears.
  • the existing Chinese patent with the authorization announcement number CN104953759B discloses a mid-mounted motor with a variable reduction ratio for electric bicycles, which includes a casing, a motor, a primary gear, a pinion, a secondary gear, a pinion and a power output
  • the second-level large gear is fixedly connected with the double-layer one-way overrunning clutch and the differential planetary gear reduction mechanism.
  • the intermediate output ring of the overrunning clutch and the power output sleeve constitute a low-speed output mechanism; the forward rotation of the secondary large gear drives the intermediate output ring of the double-layer one-way overrunning clutch and the power output sleeve to form a high-speed output mechanism through the outer ring of the double-layer one-way overrunning clutch.
  • the purpose of the present invention is to provide a mid-mounted motor that can be adjusted by multi-speed speed change, which has both motor power assist and multi-speed shifting functions, which can reduce the number of modules on the power-assisted bicycle and make user assembly easier.
  • the present invention provides the following technical solutions:
  • a mid-mounted motor with multi-speed variable speed adjustment comprising:
  • the central axis mechanism includes a pedal power input assembly and a driving power output assembly;
  • booster drive mechanism including a booster motor and a booster input assembly
  • a speed change mechanism carried between the central axle mechanism and the power-assisted drive mechanism includes a speed change input assembly, a gear shift execution assembly, a gear shift adjustment assembly and a speed change output assembly, and the speed change input assembly includes a pedal speed change input components and power shift input components;
  • the pedal power input component is connected with the pedal shift input component to realize pedal power input
  • the boost input component is connected with the boost shift input component to realize auxiliary power input
  • the shift output component is connected with the driving power output component to realize Driving force output.
  • the pedal power input assembly includes a pedal input gear, and a center shaft is arranged in the middle of the pedal input gear, and the center shaft and the pedal input gear are in linkage cooperation;
  • the driving power output assembly includes a rolling bearing. an output gear on the central shaft, the output gear is connected with a crankset.
  • the power assist input assembly includes a first planet carrier, a plurality of first planet gears, and a power input ring gear, and a power input unit connected to the power shift input assembly is provided on the power input ring gear;
  • the power assist The motor includes a motor shaft, and the motor shaft is provided with a motor shaft sun gear matched with the first planetary gear.
  • the first planetary gear includes an input planetary gear and an output planetary gear that are coaxially linked, wherein the input planetary gear is meshed with the motor shaft sun gear, and the output planetary gear is meshed with the power-assisted input ring gear.
  • the power input unit is a power input gear
  • the power transmission input assembly includes a motor input gear
  • an idler gear assembly is provided between the power input gear and the motor input gear.
  • the pedal speed change input assembly includes a center shaft input sleeve, and the outer side wall of the center shaft input sleeve is linked with a center shaft input gear;
  • the power-assisted speed change input assembly includes a center shaft input sleeve sleeved on.
  • the motor input gear on the cylinder and one-way linkage with it.
  • the speed change input assembly includes a center shaft input sleeve and a sliding sleeve, and the sliding sleeve and the center shaft input sleeve are in a circumferential linkage fit;
  • the shift execution assembly includes a shift ring gear, a second planet carrier, a multi-stage planetary gear, and N shift-shift sun gears matched with the multi-stage planetary gear, and the sliding sleeve can realize a cycle with the shift ring gear. to the linkage;
  • the speed change output assembly includes a speed change output sleeve that is unidirectionally linked with the planet carrier;
  • the gear shifting adjustment assembly includes a first sliding block, and the first sliding block can stop the N gear shifting sun gears in sequence in the axial direction, so as to realize the adjustment of the 1st to Nth gears of the transmission mechanism.
  • sliding sleeve can also move in the axial direction relative to the central shaft input sleeve;
  • the shifting actuator assembly further includes a first spring that applies an elastic thrust F1 to the shifting ring gear;
  • the sliding sleeve can limit the axial position of the speed change ring gear, and limit the displacement of the speed change ring gear under the action of the elastic thrust F1;
  • the shifting adjustment assembly further includes a second sliding block, which can limit the axial position of the sliding sleeve to limit the displacement of the sliding sleeve under the action of the elastic thrust F1;
  • the second sliding block can push the sliding sleeve to move in the axial direction, and the speed change ring gear can move in the axial direction under the action of the elastic thrust F1;
  • the speed change ring gear can move to clutch with the end of the speed change output sleeve to realize the circumferential linkage between the two, and realize the N+1th speed adjustment of the speed change mechanism on the basis of the Nth speed.
  • the second sliding block can push the sliding sleeve to continue to move, and the sliding sleeve can move until the second planet carrier contacts;
  • the first sliding block can perform reciprocating motion, and on the basis of the N+2th gear, the N+3-2N+1th gears of the transmission mechanism can be adjusted.
  • the gear shift adjustment assembly includes a gear shift shaft barrel passing through the middle of the gear shift input assembly, the gear shift execution assembly and the gear shift output assembly, and the gear shift shaft barrel is provided with an axially movable relative to the gear shift shaft barrel.
  • a reciprocating drive rod ; the first sliding block is carried on the reciprocating driving rod, and the two are elastically linked in the axial direction; the reciprocating driving rod and the shifting shaft are respectively provided with the first sliding block The matched first limit chute and the second limit chute.
  • a drive sleeve is sleeved on the reciprocating drive rod, and the position of the drive sleeve in the axial direction relative to the speed change shaft remains unchanged;
  • a first driving pin on the outer side wall of the rod, the outer side wall of the reciprocating driving rod is provided with a reciprocating chute matched with the first driving pin.
  • a push plate that is axially linked with the second sliding block is embedded on the shift shaft barrel, and a third limit chute that cooperates with the push plate is provided on the shift shaft barrel;
  • the push plate is provided with a second drive pin embedded in the outer side wall of the drive sleeve, and the outer side wall of the drive sleeve is provided with a push groove matched with the second drive pin.
  • gear shift adjustment assembly is connected with a gear shift adjustment drive assembly for controlling the rotation of the drive sleeve.
  • the present invention has the following beneficial effects:
  • the central axis mechanism, speed change mechanism and power-assisted drive mechanism form a three-axis design, which ensures that the overall size of the motor is small and the weight is reduced;
  • the use of the first planetary gear realizes a high reduction ratio on one shaft, effectively reduces the plane space of the power-assisted drive mechanism, and at the same time can effectively reduce the force on a single gear.
  • Nylon gears can be used to ensure the motor Output low noise at high speed;
  • the speed change mechanism can independently carry the pedal input to realize the speed change output, or simultaneously carry the pedal input and the motor power input to realize the speed change output, and can realize the speed change adjustment of 1 ⁇ 2N+1 gear, which can bring more smoothness to the rider. and effortless riding experience.
  • FIG. 1 is a schematic diagram of the overall structure of a mid-mounted motor that can be adjusted by multi-speed variable speed in Embodiment 1;
  • FIG. 2 is a schematic structural diagram of a power-assisted drive mechanism, a speed change mechanism and a central axis mechanism in Embodiment 1;
  • FIG. 3 is a schematic structural diagram of a booster input ring gear and an idler gear assembly in Embodiment 1;
  • FIG. 4 is a schematic structural diagram 1 of a booster drive mechanism in Embodiment 1;
  • FIG. 5 is a second structural schematic diagram of the booster drive mechanism in Embodiment 1;
  • FIG. 6 is a schematic structural diagram of a booster motor in Embodiment 1;
  • FIG. 7 is a schematic diagram of some parts of the central axis mechanism in Embodiment 1;
  • FIG. 8 is a schematic structural diagram of the central axis mechanism in Embodiment 1;
  • Embodiment 9 is a cross-sectional view of the speed change mechanism in Embodiment 1;
  • FIG. 10 is an exploded schematic diagram of the center shaft input sleeve, the sliding sleeve and the planet carrier in Embodiment 1;
  • FIG. 11 is a schematic structural diagram of a speed change ring gear in Embodiment 1;
  • FIG. 12 is an exploded schematic diagram of a planet carrier, a multi-planetary gear and a variable speed output sleeve in Embodiment 1;
  • FIG. 13 is a schematic exploded view of the first sun gear, the second sun gear and the third sun gear in Embodiment 1;
  • FIG. 14 is a schematic diagram of the displacement gears of the first slider and the second slider in Embodiment 1;
  • FIG. 15 is a schematic diagram of the shifting process of the multi-speed adjustment shifting mechanism of the central motor in Embodiment 1;
  • Figure 16 is an exploded schematic diagram of the gear shifting adjustment assembly in Example 1;
  • Example 19 is an exploded schematic diagram of the drive sleeve and the reciprocating drive rod in Example 1;
  • FIG. 20 is an exploded schematic diagram of the gear shifting adjustment actuator assembly in Embodiment 1;
  • FIG. 21 is a cross-sectional view of the multi-speed adjustment transmission mechanism of the central motor in Embodiment 2;
  • Figure 22 is an enlarged schematic view of part A in Figure 21;
  • Fig. 23 is the exploded schematic diagram of the center shaft input sleeve and the sliding sleeve in the embodiment 2;
  • FIG. 25 is a schematic structural diagram of the shift adjustment assembly in Embodiment 2.
  • FIG. 26 is a cross-sectional view of the shift adjustment assembly in Embodiment 2.
  • FIG. 26 is a cross-sectional view of the shift adjustment assembly in Embodiment 2.
  • a mid-mounted motor with multi-speed variable speed adjustment includes a first housing 81 and a second housing 82, and a cavity formed by the first housing 81 and the second housing 82 is provided with
  • the booster drive mechanism 91 , the speed change mechanism and the central axis mechanism 93 ; the booster drive mechanism 91 , the shift mechanism and the central axis mechanism 93 form a three-axis design, which ensures that the overall size of the motor is small and the weight is reduced.
  • the central axle mechanism 93 includes a pedal power input assembly and a driving power output assembly
  • the booster drive mechanism 91 includes a booster motor 911 and a booster input assembly
  • Adjustment assembly and speed change output assembly The speed change input assembly includes a pedal speed change input assembly and a power speed change input assembly; wherein, the pedal power input assembly is connected with the pedal speed change input assembly to realize pedal power input, and the power input assembly and the power speed change input assembly.
  • the connection realizes auxiliary power input, and the speed change output component is connected with the driving power output component to realize driving driving force output.
  • the booster input assembly includes a first planet carrier 912 , a plurality of first planetary gears, and a booster input ring gear 915 .
  • the booster motor 911 includes a motor shaft 9111, and the motor shaft 9111 is provided with a motor shaft sun gear 9112 that cooperates with the first planetary gear; in this embodiment, the booster input assembly is decelerated and output through a planetary structure, in other optional embodiments , it can also be driven by fixed-axis gear train or worm gear, etc., which is not limited here.
  • the first planetary gear includes an input planetary gear 9131 and an output planetary gear 9132 that are coaxially linked.
  • the input planetary gear 9131 and the output planetary gear 9132 are integrally formed. Of course, the two can also be separated.
  • the number of teeth of the input planetary gear 9131 is greater than the number of teeth of the output planetary gear 9132, so that a high reduction ratio can be achieved on one shaft, which is beneficial to reduce the plane space of the booster input assembly; at the same time,
  • the structural design of the first planetary gear can effectively reduce the force on a single gear, and nylon gears can be used to ensure low noise output from the booster motor 911 at high speeds.
  • a booster input unit connected to the booster shift input assembly is provided on the booster input ring gear 915 , and the booster input unit is arranged on the axial extension of the outer end face of the booster input ring gear 915 ; inside the first housing 81 A first inner bracket 84 is provided, and the first inner bracket 84 is connected with the first housing 81 by bolts; the axial extension of the power input ring gear 915 is supported in the first inner bracket 84 through bearings, while the first planet carrier 912
  • the stator of the booster motor 911 is connected to the second housing 82 through bolts respectively, and the end of the motor shaft 9111 is supported on the inner wall of the second housing 82 through bearings.
  • the power assist input unit is the power boost input gear 916
  • the power shift input assembly includes the motor input gear 53
  • the first inner bracket 84 is provided with a connection between the power boost input gear 916 and the motor input gear 53 .
  • the idler gear assembly 92 between the two, and the first inner bracket 84 is provided with a notch 841 for connecting the power input gear 916 with the idler gear assembly 92; the setting of the idler gear assembly 92 can make the overall size of the motor small; in other optional implementations
  • the power input unit is a synchronous wheel, or the power input unit and the motor input gear 53 are both sprockets, the idler gear assembly 92 may be omitted.
  • the end of the motor shaft 9111 is provided with a resolver magnetic steel fixing seat 918
  • the resolver magnetic steel fixing seat 918 is embedded with a resolver magnetic steel 919
  • the end plate of the first planet carrier 912 is provided with
  • the resolver control plate 917 opposite to the resolver magnetic steel 919 can measure the rotational speed of the motor shaft 9111 through the cooperation of the resolver magnetic steel 919 and the resolver control plate 917; in other optional embodiments, other methods may also be used. Measure the rotational speed of the motor shaft 9111, which is not limited here.
  • the pedal power input assembly includes a pedal input gear 933, and a center shaft 931 is provided in the middle of the pedal input gear 933, and the center shaft 931 and the pedal input gear 933 are linked for cooperation;
  • the driving power output assembly includes an output gear 934 rollingly supported on the central shaft 931, the output gear 934 is connected with a crankset 938, the crankset 938 is sleeved on the axial extension of the output gear 934, and the axial extension is provided with The output splines 935 matched with the crankset 938; the two ends of the center shaft 931 respectively pass through the first housing 81 and the second housing 82 for connecting the pedals of the bicycle, while the crankset 938 is located outside the housing for connection bicycle chain.
  • the center shaft 931 and the pedal input gear 933 are one-way linked.
  • the one-way clutch assembly 936 realizes the one-way transmission of the two in the circumferential direction;
  • the first one-way clutch assembly 936 includes a sleeve 932 sleeved on the center shaft 931, and the sleeve 932 and the center shaft 931 are fitted with a keyway to achieve circumferential
  • a ratchet and pawl assembly is arranged between the sleeve 932 and the pedal input gear 933, so that when the central shaft 931 rotates forward, the pedal input gear 933 can be driven to rotate by the ratchet pawl assembly, while the central axis 931 is reversed. At this time, the pedal input gear 933 cannot be driven to rotate; in other optional embodiments, the central shaft 931 and the pedal input gear 933 can also be fixedly connected, and then coordinated operation is realized through electronic control.
  • the central shaft mechanism 93 further includes a torque sensing assembly 937 and a rotational speed sensing assembly, and the second housing 82 is connected with the torque sensing assembly 937 by bolts.
  • the matched second inner bracket 85; the torque sensing component 937 can sense the input force of the pedal and transmit the signal to the controller, and the rotational speed sensing component can sense the corresponding pedaling speed, and the controller combines the corresponding signal at this time Afterwards, a signal is sent to the power-assisted driving mechanism 91 to control the power-assisted driving mechanism 91 to start.
  • the shift adjustment assembly includes a shift shaft barrel 1 passing through the middle of the shift input assembly, the shift execution assembly and the shift output assembly; this embodiment The two ends of the middle shift shaft barrel 1 are respectively abutted with the first housing 81 and the second housing 82 to realize the axial limit of the shift shaft barrel 1, and at the same time, the shift shaft barrel 1 and the first housing 81 pass through the key groove.
  • the speed change shaft barrel 1 is fixed relative to the first housing 81 and the second housing 82;
  • the speed change input assembly includes the center shaft
  • the input sleeve 51 and the sliding sleeve 61, the sliding sleeve 61 and the center shaft input sleeve 51 are linked in a circumferential direction, wherein two first bearings 55 are arranged between the center shaft input sleeve 51 and the transmission shaft barrel 1; this embodiment
  • the outer side wall of the central shaft input sleeve 51 is provided with a plurality of key grooves 56 arranged in the axial direction, and the plurality of key grooves 56 are evenly distributed along the circumferential direction. The cooperation of the key groove 56 can realize the circumferential linkage between the center shaft input sleeve 51 and the sliding sleeve 61 .
  • the pedal input assembly includes a central axis input gear 52 disposed on the outer side wall of the central axis input sleeve 51 and linked with it in the circumferential direction.
  • the central axis input gear 52 and the central axis input sleeve 51 are One-piece molding;
  • the speed change input assembly includes a motor input gear 53 arranged on the outer side wall of the center shaft input sleeve 51 and linked with it in one direction in the circumferential direction.
  • the second one-way clutch assembly 54 is a one-way needle bearing; by arranging the second one-way clutch assembly 54, the rotational speed of the motor input gear 53 can be transmitted to the center shaft input sleeve 51, On the other hand, the rotational speed of the center shaft input gear 52 cannot be transmitted to the motor input gear 53 .
  • the shifting actuator assembly includes a shifting ring gear 62 , a second planetary carrier 63 , multiple planetary gears 64 and N shifting sun gears matched with the multiple planetary gears 64 , on the second planetary carrier 63
  • a second planetary shaft 635 passing through the multi-stage planetary gear 64 is provided; the inner side wall of the speed change ring gear 62 is provided with an internal tooth portion 622 that cooperates with the multi-stage planetary gear 64.
  • the internal tooth portion 622 is connected to the speed change ring gear 62.
  • the multi-planetary gear 64 is a triple-planetary gear, which includes a first planetary gear 641, a second planetary gear 642 and a third planetary gear 643.
  • the part 622 meshes with the second planetary gear 642; the number of shifting sun gears is three, namely the first sun gear 651 meshing with the first planetary gear 641, the second sun gear 652 meshing with the second planetary gear 642, and The third sun gear 653 meshed with the third planetary gear 643 .
  • the first sun gear 651 , the second sun gear 652 and the third sun gear 653 are all sleeved on the transmission shaft barrel 1 , and the end of the second planet carrier 63 is embedded with a support contacting the first sun gear 651
  • the end plate 631 meanwhile, the outer side wall of the transmission shaft cylinder 1 forms a step for limiting the position of the supporting end plate 631; the transmission shaft cylinder 1 is sleeved with a second spring 66, one end of the second spring 66 is in contact with the third sun gear 653, and the other is in contact with the third sun gear 653.
  • One end is in contact with the elastic retaining ring on the shifting shaft barrel 1; the supporting end plate 631 cooperates with the second spring 66 to axially elastically limit the three shifting sun gears, which can avoid loosening and abnormal noise.
  • the sliding sleeve 61 can realize circumferential linkage with the gear ring 62 .
  • the sliding sleeve 61 includes a sleeve portion 611 and a ring plate portion 612 ; the end surface of the ring plate portion 612 is provided with a number of first The meshing teeth 614 and the inner end surface of the gear ring gear 62 are provided with second meshing teeth 621 that cooperate with the first meshing teeth 614 .
  • the speed change output assembly includes a speed change output sleeve 71 that is unidirectionally linked with the second planet carrier 63 , and two second bearings 73 are arranged between the speed change output sleeve 71 and the speed change shaft barrel 1 , And the outer side wall of the speed change output sleeve 71 is provided with a speed change output gear 72; in this embodiment, the speed change output gear 72 and the speed change output sleeve 71 are fixed by interference fit, and the two can also be integrally formed; the speed change output sleeve 71 and the second planetary A third one-way clutch assembly is arranged between the frames 63 .
  • the third one-way clutch assembly includes a plurality of pawl assemblies 634 arranged on the outer side wall of the second planet carrier 63 and arranged on the inner side wall of the speed change output sleeve 71 .
  • the ratchet tooth part 75 of the 10000-2000, the pawl assembly 634 includes a pawl and an elastic collar; in this embodiment, the ratchet tooth part 75 and the speed change output sleeve 71 are fixed by interference fit, and the two can also be integrally formed; in this embodiment
  • the end of the second planet carrier 63 away from the support end plate 631 is connected to the transmission output sleeve 71 through the bushing 632 , wherein the bushing 632 and the second planetary carrier 63 are fixed by interference fit, and the bushing 632 and the transmission output sleeve 71 are Contact fit.
  • the shift adjustment assembly includes a first sliding block 21, the end of the first sliding block 21 protrudes from the outer side wall of the shift shaft barrel 1, and can move relative to the shift shaft barrel 1 in the axial direction; the first The slider 21 can stop the three shifting sun gears in turn in the axial direction, so as to realize the 1st to 3rd gear adjustment of the shifting mechanism; the first sun gear 651 , the second sun gear 652 and the third sun gear 653 are respectively provided with There are a first stop groove 6511, a second stop groove 6521, and a third stop groove 6531 that cooperate with the first slider 21; in this embodiment, the first stop groove 6511 and the second stop groove 6521 are respectively provided in The inner side walls of the first sun gear 651 and the second sun gear 652 , and the third retaining groove 6531 runs through the wall thickness of the third sun gear 653 .
  • the center shaft input sleeve 51 and the sliding sleeve 61 cooperate with the keyway 56 to realize the circumferential linkage through the spline 613 , and the length of the keyway 56 is arranged in the axial direction, so the sliding sleeve 61 can be relative to each other.
  • the input sleeve 51 of the central shaft moves in the axial direction;
  • the shift actuator assembly further includes a first spring 67 that exerts an elastic thrust F1 on the shift ring gear 62.
  • the first spring 67 is sleeved on the sleeve portion 611, And the sleeve portion 611 and the first spring 67 are supported and provided with a spring bushing 671 with an L-shaped cross-section, and the spring bushing 671 is in contact with the end face of the central shaft input gear 52 to achieve axial limit; in this embodiment, the first spring 67 is The outer end wall of the transmission gear ring 62 is provided with a notch which is matched with the big end of the first spring 67 .
  • the ring plate portion 612 is in contact with the inner end face of the speed change ring gear 62 , which can limit the axial position of the speed change ring gear 62 and limit the displacement of the speed change ring gear 62 under the action of the elastic thrust F1 ;
  • the assembly also includes a second sliding block 41, which can limit the axial position of the sliding sleeve 61 and limit the displacement of the sliding sleeve 61 under the action of the elastic thrust F1; in this embodiment, the inner side wall of the sliding sleeve 61 is provided with a The second sliding block 41 is embedded in the clamping groove, so that the sliding sleeve 61 can be axially limited.
  • the end face of the speed change gear 62 is provided with a number of fifth meshing teeth 623
  • the end surface of the speed change output sleeve 71 is provided with a sixth meshing tooth 74 that cooperates with the fifth meshing tooth 623
  • the fifth meshing tooth 623 cooperates with the sixth meshing tooth 74
  • the speed change ring gear 62 and the speed change output sleeve 71 realize the circumferential linkage, and realize the fourth speed adjustment of the transmission mechanism on the basis of the third speed.
  • the power is output to the speed change output sleeve 71 through the center shaft input sleeve 51 , the sliding sleeve 61 and the speed change ring gear 62 .
  • the ratio of the output speed to the input speed is equal to 1, forming the fourth gear; in the fourth gear, the first slider 21 stops the third sun gear 653, and the gear ring gear 62 drives the second planet carrier 63 to rotate, However, the rotational speed of the second planetary carrier 63 is lower than the rotational speed of the transmission ring gear 62 , the pawl assembly 634 on the second planetary carrier 63 and the ratchet tooth portion 75 on the transmission output sleeve 71 are in an overrunning clutch state, and the second planetary carrier 63 is parallel to the Does not output power.
  • the second sliding block 41 pushes the sliding sleeve 61 to continue to move, and the sliding sleeve 61 can move to contact the second planet carrier 63 ; in this embodiment, the ring plate
  • the end face of the part 612 is provided with a plurality of third gear teeth 615
  • the end face of the second planet carrier 63 is provided with fourth gear teeth 633 that cooperate with the third gear teeth 615; after the sliding sleeve 61 is in contact with the second planet carrier 63, the third gear teeth 615 and the fourth The meshing teeth 633 cooperate to realize the circumferential linkage between the sliding sleeve 61 and the second planet carrier 63, and at this time, the circumferential linkage between the sliding sleeve 61 and the speed change ring gear 62 is released. 5-speed adjustment.
  • the circumferential linkage between the sliding sleeve 61 and the gear ring gear 62 is released, that is, the first meshing teeth 614 and the second meshing teeth are released. 621 is separated.
  • the power is output to the speed change output sleeve 71 through the center shaft input sleeve 51, the sliding sleeve 61, the second planet carrier 63 and the speed change ring gear 62.
  • the ratio of the output speed to the input speed is greater than 1, forming the fifth gear speed change .
  • the first slider 21 stops the third sun gear 653, and the sliding sleeve 61 drives the second planet carrier 63 to rotate, but the rotation speed of the second planet carrier 63 is lower than the speed change gear
  • the pawl assembly 634 on the second planet carrier 63 and the ratchet tooth portion 75 on the speed change output sleeve 71 are in an overrunning clutch state, and the second planet carrier 63 does not output power.
  • the first slider 21 can perform reciprocating motion, and on the basis of the fifth gear, the sixth to seventh gears of the transmission mechanism can be adjusted; in the state of the fifth gear, the first slider 21 Move to stop the second sun gear 652 to form the sixth gear speed change; at this time, the power is output to the speed change output sleeve 71 through the center shaft input sleeve 51, the sliding sleeve 61, the second planet carrier 63 and the speed change ring gear 62, The ratio of the output speed to the input speed is greater than 1, and the ratio of the sixth gear is greater than the ratio of the fifth gear; at the same time, the sliding sleeve 61 drives the second planetary carrier 63 to rotate, but the speed of the second planetary carrier 63 is lower than that of the transmission ring gear 62 If the rotation speed is high, the pawl assembly 634 on the second planet carrier 63 and the ratchet tooth portion 75 on the speed change output sleeve 71 are in an overrunning clutch state, and
  • the first slider 21 moves to stop the first sun gear 651 to form the seventh gear; at this time, the power is input through the center shaft input sleeve 51, the slider
  • the sleeve 61, the second planet carrier 63 and the speed change ring gear 62 are output to the speed change output sleeve 71, the ratio of the output speed to the input speed is greater than 1, and the ratio of the seventh gear is greater than that of the sixth gear; at the same time, the sliding sleeve 61 drives the first gear.
  • the second planetary carrier 63 rotates, but the rotational speed of the second planetary carrier 63 is lower than the rotational speed of the speed change ring gear 62, the pawl assembly 634 on the second planetary carrier 63 and the ratchet tooth portion 75 on the speed change output sleeve 71 are in an overrunning clutch state, The second planet carrier 63 does not output power.
  • the first slider 21 advances twice, and during the process from the third gear to the fifth gear, the first slider 21 remains stationary During the process from the fifth gear to the seventh gear, the first sliding block 21 retreats twice to reset, so in a shifting cycle, the first sliding block 21 will perform a reciprocating motion; from the first gear to the During the process of the third gear, the second slider 41 remains stationary. During the process from the third gear to the fifth gear, the second slider 41 advances twice. During the process from the fifth gear to the seventh gear, the second slider 41 moves forward twice. The second sliding block 41 remains stationary, so in a shifting cycle, the second sliding block 41 performs one-way movement.
  • a reciprocating drive rod that can move in the axial direction relative to it is arranged in the transmission shaft barrel 1 ;
  • the first sliding block 21 is carried on the reciprocating drive rod, and the two are elastically linked in the axial direction Matching;
  • the reciprocating driving rod includes a reciprocating driving part 252 and a reciprocating sleeve part 251, the end of the reciprocating driving part 252 is provided with an axially extending section 2521, and the reciprocating sleeve part 251 is sleeved on the axially extending section 2521, And a limit rod 253 is passed between the two;
  • the reciprocating sleeve part 251 and the shifting shaft barrel 1 are respectively provided with a first limit chute 2511 and a second limit chute 11 that cooperate with the first slider 21;
  • the first limit chute 2511 and the second limit chute 11 can provide the first sliding block 21 with an axial displacement, and on the other hand, can limit the rotation of the reciprocating drive rod.
  • the second sun gear 652 needs to be rotated to a certain angle before the first slider 21 can be embedded in the second stop groove 6521; therefore, the first slider 21 and the reciprocating driving rod are axially Flexible linkage, rather than fixed linkage, can avoid the situation of being stuck.
  • the reciprocating driving rod is provided with a guide rod 22 passing through the first sliding block 21, and the guide rod 22 is provided with a guide rod limit block 23 in contact with the first sliding block 21;
  • One end of the guide rod 22 is embedded in the end wall of the axially extending section 2521, and the other end is embedded in the end wall of the guide rod limit block 23;
  • the reciprocating drive rod is provided with a third spring 24 that exerts an elastic thrust F2 on the guide rod limit block 23,
  • the fourth spring 26 that applies an elastic thrust F3 to the first slider 21, the first slider 21 can be kept in a relatively stable state relative to the reciprocating drive rod under the action of the elastic thrust F2 and the elastic thrust F3;
  • the reciprocating The sleeve portion 251 is provided with a positioning stopper 2512 in contact with the end of the third spring 24 , and the end of the fourth spring 26 away from the first slider 21 abuts against the axially extending section 2521 .
  • the first slider 21 When the first slider 21 is aligned with the second stop groove 6521, the first slider 21 is under the action of the elastic thrust F3 Embed into the second stop groove 6521, and maintain a stable state; when the first slider 21 moves from the second stop groove 6521 to the first stop groove 6511, the reciprocating drive rod moves to the left by a certain amount of displacement, the first After a slider 21 is blocked from contacting the end face of the first sun gear 651, the third spring 24 is compressed, and the elastic thrust F2 becomes larger.
  • the first slider 21 When the first slider 21 is aligned with the first stop groove 6511, the first slider 21 Under the action of the elastic thrust F2, it is inserted into the first stop groove 6511 and maintained in a stable state.
  • a drive sleeve 3 is sleeved on the reciprocating drive rod, and the position of the drive sleeve 3 relative to the speed change shaft barrel 1 in the axial direction is unchanged.
  • the axial position is limited between the drive sleeve 3 and the shift shaft barrel 1 through the stepped stop;
  • the drive sleeve 3 is provided with the first drive pin 27 embedded in the outer side wall of the reciprocating drive part 252, and the drive sleeve
  • the cylinder 3 is provided with a first pin hole 34 that cooperates with the first driving pin 27
  • the outer side wall of the reciprocating driving portion 252 is provided with a reciprocating chute that cooperates with the first driving pin 27 .
  • the reciprocating chute includes a first chute 2524, a third chute 2522, and two second chute 2523, the second chute 2523 is in the shape of a spiral segment, and the two second chute 2523 form a meeting point , and one end of the two second chute 2523 is communicated through the first chute 2524 , and the other end is communicated through the third chute 2522 .
  • the reciprocating drive rod when the driving sleeve 3 rotates, the reciprocating drive rod can be driven to move in the axial direction through the reciprocating chute; when the first driving pin 27 is in the first chute 2524 , the reciprocating driving rod Not moving in the axial direction, when the first drive pin 27 passes through a second chute 2523 and enters the third chute 2522, the first slider 21 advances twice to realize the speed change from the first gear to the third gear; the third During the shifting process from gear to fifth gear, the first drive pin 27 is located in the third chute 2522, and the reciprocating drive rod does not move in the axial direction. During the chute 2524, the first sliding block 21 retreats twice to realize the shift from the fifth gear to the seventh gear.
  • a push plate 42 that is axially linked with the second slider 41 is embedded on the shift shaft barrel 1 , and a third limit chute that cooperates with the push plate 42 is opened on the shift shaft barrel 1 12;
  • the third limit chute 12 provides axial displacement to the push plate 42 on the one hand, and can limit the rotation of the push plate 42 on the other hand;
  • Claws 43 are provided for sandwiching the second sliding block 41, and the axial linkage between the second sliding block 41 and the push plate 42 is realized through the clamping claw 43; in this embodiment, the second sliding block 41 has an elastic amount in the radial direction.
  • the second slider 41 is compressed when installed between the sleeve portion 611 and the push plate 42 , on the one hand, the stability of the linkage between the second slider 41 and the sleeve portion 611 in the axial direction can be ensured, and on the other hand, it is convenient for Install the second slider 41 .
  • the push plate 42 is provided with a second drive pin 44 embedded in the outer side wall of the drive sleeve 3, and the outer side wall of the drive sleeve 3 is provided with a push groove that matches the second drive pin 44;
  • the push slot includes a first push slot 31 and a third push slot 33, and a second push slot 32 connected between the first push slot 31 and the third push slot 33, and the second push slot 32 is in the shape of a spiral segment.
  • the second sliding block 41 can also be driven to move in the axial direction through the push groove, and the speed change from the first gear to the third gear
  • the second drive pin 44 is located in the first push groove 31, and the second slider 41 does not move in the axial direction; during the process of the second drive pin 44 moving through the second push groove 32 to the third push groove 33, the first The second sliding block 41 advances twice to realize the shift from the third gear to the fifth gear; during the shifting process from the fifth gear to the seventh gear, the second driving pin 44 is located in the third push groove 33, and the second sliding block 41 moves along the Axial does not move.
  • the speed change mechanism further includes a shift adjustment drive assembly for controlling the rotation of the drive sleeve 3
  • the shift adjustment drive assembly includes a gear box 945 .
  • the gear motor 941, the rotating shaft of the gear shifting motor 941 is sleeved with a motor gear 942 located in the gear box 945; wherein, the first housing 81 is formed with a gear box housing 83 matched with the gear box 945, so as to facilitate installation and operation.
  • the gear box 945 is provided with a shift drive gear 944, and a reduction gear set 943 carried between the motor gear 942 and the shift drive gear 944; the shift drive gear 944 and the end of the drive sleeve 3 are clutched to realize the circumferential direction
  • the gear shifting motor 941 can control the rotation of the driving sleeve 3 through the motor gear 942, the reduction gear set 943 and the shifting driving gear 944; in this embodiment, the shifting motor 941 is rotated forward or reversely to realize automatic shifting At the same time, manual shifting can also be realized by means of rope pulling and so on.
  • the central motor of the present invention is installed on the power-assisted bicycle, the pedal is connected with the central axle 931 , and the chain on the rear wheel is connected with the crankset 938 .
  • the central shaft 931 When riding, the central shaft 931 is rotated by stepping on the foot pedal, the central shaft 931 drives the pedal input gear 933 to rotate through the first one-way clutch assembly 936, and the pedal input gear 933 inputs the rotational speed to the input gear 52 through the central shaft input gear 52.
  • the speed change mechanism, and then the speed change mechanism outputs a certain speed through the speed change output gear 72 to the output gear 934, the output spline 935 on the output gear 934 is connected with the crankset 938, and then transmitted to the rear wheel through the chain, at this time, the human pedal is completed. Input to output on the center shaft 931 side.
  • the motor shaft 9111 rotates, and the motor shaft sun gear 9112 drives the booster input ring gear 915 to rotate through the input planetary gear 9131 and the output planetary gear 9132.
  • the rotational speed of the motor is transmitted to the idler gear assembly 92, and then to the motor input gear 53.
  • the motor input gear 53 drives the center shaft input sleeve 51 to rotate through the second one-way clutch assembly 54;
  • the other way is input to the pedal input gear 933 through the central shaft input gear 52, and the pedal input gear 933 cannot transmit the rotational speed to the central shaft 931 through the first one-way clutch assembly 936, so it can only be input to the speed change mechanism, and the speed change mechanism passes
  • the variable speed output gear 72 outputs a certain rotational speed to the output gear 934.
  • the output splines 935 on the output gear 934 are connected to the crankset 938, and then output to the rear wheel through the chain to drive the power-assisted bicycle to rotate.
  • the input to the output of the power-assisted motor 911 is completed.
  • the combination of the two is that the force of the power-assisted motor 911 and the power of the power-assisted motor 911 are simultaneously output to the rear wheel to drive the power-assisted bicycle; through the control of the controller program, the power of the power-assisted motor 911 can be controlled.
  • the gear shifting motor 941 realizes automatic shifting and shifting, so that the rider can obtain a smoother and more comfortable riding experience; more importantly, the shifting can keep the working conditions of the booster motor 911 in a high-efficiency and energy-saving state. Go down and do the work, so that the power-assisted bicycle has a longer cruising range.
  • the control system of the central motor of the present invention can collect various signals, including wheel speed signal, torque signal, cadence signal, gear shift signal, gear adjustment signal, battery information and motor output, etc.
  • the battery information includes Current, voltage, temperature, remaining capacity, and total capacity, integrating multiple signals into a human-computer interaction system.
  • the control system can know the mechanical transmission ratio in real time according to the gear position signal of the transmission mechanism, and can adjust the effective value of the torque input according to different gear positions of the transmission mechanism, and adjust the duty ratio of the cadence signal to the motor output, so as to effectively solve the problem of riding interruption and The problem of stepping on the air can improve the riding experience.
  • a mid-mounted motor with multi-speed variable speed adjustment referring to FIG. 21 , based on Embodiment 1, the difference between this embodiment and Embodiment 1 is that in this embodiment, the first spring 67 is sleeved on the central shaft input sleeve 51, and a first plane bearing assembly 672 is provided between the first spring 67 and the speed change ring gear 62; the first plane bearing assembly 672 includes a ball, a cage and a bearing bracket, and the bearing bracket also acts as a racetrack for the balls.
  • the ball is in contact with the outer end surface of the speed change ring gear 62; one end of the first spring 67 is in contact with the end surface of the center shaft input gear 52, and one end is in contact with the bearing bracket, and its elastic thrust F1 is applied to the speed change ring gear 62 through the bearing bracket and the roller.
  • a second plane bearing assembly is provided between the second slider 41 and the sleeve portion 611, and the inner side wall of the sleeve portion 611 is provided with a stop 616 that cooperates with the second plane bearing assembly;
  • the two sliding blocks 41 limit the axial position of the sleeve portion 611 through the second plane bearing assembly and the stop port 616, so as to limit the displacement of the sleeve portion 611 under the action of the elastic thrust F1.
  • the second plane bearing assembly includes a plane bearing bracket 682 and two sets of ball cage assemblies 683.
  • the plane bearing bracket 682 includes two parts, and the two sets of ball cage assemblies 683 are covered therein, and the two sets of ball cage assemblies 683 are respectively located on both sides of the second sliding block 41; the balls are in contact with the plane bearing bracket 682 and the second sliding block 41, and the plane bearing bracket 682 cooperates with the stop 616, then the second sliding block 41 can axially carry out the axial direction of the sleeve part 611.
  • the plane bearing bracket 682 is provided with a fifth spring 681, and the inner side wall of the sleeve portion 611 is provided with a bayonet 617 matched with the end of the fifth spring 681, so that the second slider 41 can pass through the second The plane bearing assembly and the fifth spring 681 elastically push the sleeve portion 611, thereby driving it to move in the axial direction.
  • the bottom bracket input sleeve 51 is sleeved on the sleeve portion 611
  • the keyway 56 is provided on the inner side wall of the bottom bracket input sleeve 51
  • the splines 613 are provided on the outer side wall of the sleeve portion 611 .
  • the third retaining groove 6531 is disposed on the inner side wall of the third sun gear 653 without penetrating the wall thickness thereof.
  • the second sliding block 41 is in the shape of a circular ring, which is integrally formed with the push plate 42 , so that the two can be linked in the axial direction; in this embodiment, the driving sleeve 3 and the speed changer A third bearing 35 is arranged between the shaft barrels 1, so that the driving sleeve 3 can rotate on its own, and the relative position along the axial direction with the speed change shaft barrel 1 remains unchanged; in this embodiment, the reciprocating drive rod 25 is integrally formed, wherein the reciprocating drive The rod 25 is provided with a second blocking post 255 in contact with the end of the third spring 24, and a first blocking post 254 in contact with the end of the fourth spring 26; The block 21 is in contact, and the fourth spring 26 is in contact with the guide rod limit block 23 , and the guide rod limit block 23 and the guide rod 22 are integrally formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种可多挡变速调节的中置电机包括:中轴机构(93),包括脚踏动力输入组件和行车动力输出组件;助力驱动机构(91),包括助力电机(911)和助力输入组件;以及变速机构,包括变速输入组件、变挡执行组件、变挡调节组件以及变速输出组件,变速输入组件包括脚踏变速输入组件和助力变速输入组件。脚踏动力输入组件与脚踏变速输入组件连接实现脚踏动力输入,助力输入组件与助力变速输入组件连接实现辅助动力输入,变速输出组件与行车动力输出组件连接实现行车驱动力输出。此中置电机兼具电机助力和多挡变换功能,能够减少助力自行车上的模块,实现多挡变速调节,使用户装配更简单。

Description

一种可多挡变速调节的中置电机 技术领域
本发明涉及助力自行车电机领域,更具体地说,它涉及一种可多挡变速调节的中置电机。
背景技术
目前市面上助力自行车电机中置的主要为普通的减速中置电机,不能实现变换挡位去变速,自行车变速仍要依靠其自身的自行车挡位切换器。
如果用户想要电机的助力和变速的顺畅,则需要自行车挡位切换器与减速中置电机两套***。但是两套***不仅匹配困难而且自行车组装也变的相对复杂。
现有授权公告号为CN104953759B的中国专利,公开了一种电动自行车用可变减速比的中置电机,其包括壳体、电机、一级大、小齿轮、二级大、小齿轮和动力输出套,二级大齿轮与双层单向超越离合器及差动行星齿轮减速机构固接,二级大齿轮反转通过差动行星齿轮减速机构及双层单向超越离合器内圈带动双层单向超越离合器中间输出圈及动力输出套构成低速输出机构;二级大齿轮正转通过双层单向超越离合器外圈带动双层单向超越离合器中间输出圈及动力输出套构成高速输出机构。
但是,上述中置电机在单纯脚蹬时并不能实现变速,而且通过电机也只能实现两种不同减速比。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种可多挡变速调节的中置电机,其兼具电机助力和多挡变换功能,能够减少助力自行车上的模 块,使用户装配更简单。
为实现上述目的,本发明提供了如下技术方案:
一种可多挡变速调节的中置电机,包括:
中轴机构,所述中轴机构包括脚踏动力输入组件和行车动力输出组件;
助力驱动机构,所述助力驱动机构包括助力电机和助力输入组件;以及,
承载于所述中轴机构与助力驱动机构之间的变速机构,所述变速机构包括变速输入组件、变挡执行组件、变挡调节组件以及变速输出组件,所述变速输入组件包括脚踏变速输入组件和助力变速输入组件;
其中,所述脚踏动力输入组件与脚踏变速输入组件连接实现脚踏动力输入,所述助力输入组件与助力变速输入组件连接实现辅助动力输入,所述变速输出组件与行车动力输出组件连接实现行车驱动力输出。
进一步地,所述脚踏动力输入组件包括脚踏输入齿轮,所述脚踏输入齿轮中间设置有中轴,所述中轴与脚踏输入齿轮为联动配合;所述行车动力输出组件包括滚动支承于所述中轴上的输出齿轮,所述输出齿轮连接有牙盘。
进一步地,所述助力输入组件包括第一行星架、若干第一行星轮以及助力输入齿圈,所述助力输入齿圈上设置有与所述助力变速输入组件连接的助力输入单元;所述助力电机包括电机轴,所述电机轴上设置有与所述第一行星轮配合的电机轴太阳轮。
进一步地,所述第一行星轮包括同轴联动的输入行星轮和输出行星轮,其中所述输入行星轮与电机轴太阳轮啮合,所述输出行星轮与助力输入齿圈啮合。
进一步地,所述助力输入单元为助力输入齿轮,所述助力变速输入组件 包括电机输入齿轮,且所述助力输入齿轮与电机输入齿轮之间设置有惰轮组件。
进一步地,所述脚踏变速输入组件包括中轴输入套筒,所述中轴输入套筒外侧壁联动设置有中轴输入齿轮;所述助力变速输入组件包括套设于所述中轴输入套筒上、且与其单向联动的电机输入齿轮。
进一步地,所述变速输入组件包括中轴输入套筒和滑套,所述滑套与中轴输入套筒为周向联动配合;
所述变挡执行组件包括变速齿圈、第二行星架、多联行星轮以及与所述多联行星轮配合的N个变挡太阳轮,所述滑套能够与所述变速齿圈实现周向联动配合;
所述变速输出组件包括与所述行星架单向联动配合的变速输出套;
所述变挡调节组件包括第一滑块,所述第一滑块能够对N个所述变挡太阳轮沿轴向依次进行止动,实现变速机构的第1~N挡调节。
进一步地,所述滑套还能够相对于所述中轴输入套筒沿轴向移动;
所述变挡执行组件还包括对所述变速齿圈施加弹性推力F1的第一弹簧;
所述滑套能够对所述变速齿圈进行轴向限位,限制所述变速齿圈在弹性推力F1的作用下产生位移;
所述变挡调节组件还包括第二滑块,所述第二滑块能够对所述滑套进行轴向限位,限制所述滑套在弹性推力F1的作用下产生位移;
所述第二滑块能够推动所述滑套沿轴向移动,则所述变速齿圈能够在弹性推力F1的作用下沿轴向移动;
所述变速齿圈能够移动至与所述变速输出套端部离合,实现两者周向联 动,在第N挡的基础上,实现变速机构的第N+1挡调节。
进一步地,所述变速齿圈与变速输出套接触后,所述第二滑块能够推动所述滑套继续移动,所述滑套能够移动至所述第二行星架接触;
所述滑套与第二行星架接触后,两者端部离合实现周向联动,且此时所述滑套与变速齿圈的周向联动配合关系解除,在第N+1挡的基础上,实现变速机构的第N+2挡调节。
进一步地,所述第一滑块能够进行往复运动,在第N+2挡的基础上,能够实现变速机构的第N+3~2N+1挡调节。
进一步地,所述变挡调节组件包括穿设于所述变速输入组件、变挡执行组件以及变速输出组件中间的变速轴筒,所述变速轴筒内设置有能够相对于其沿轴向移动的往复驱动杆;所述第一滑块承载于所述往复驱动杆上,且两者沿轴向为弹性联动配合;所述往复驱动杆和变速轴筒上分别开设有与所述第一滑块配合的第一限位滑槽和第二限位滑槽。
进一步地,所述往复驱动杆上套设有驱动套筒,所述驱动套筒相对于所述变速轴筒沿轴向位置不变;所述驱动套筒上穿设有嵌于所述往复驱动杆外侧壁的第一驱动销,所述往复驱动杆外侧壁设置有与所述第一驱动销配合的往复滑槽。
进一步地,所述变速轴筒上嵌设有与所述第二滑块沿轴向联动的推板,且所述变速轴筒上开设有与所述推板配合的第三限位滑槽;所述推板上穿设有嵌于所述驱动套筒外侧壁的第二驱动销,所述驱动套筒外侧壁开设有与所述第二驱动销配合的推槽。
进一步地,所述变挡调节组件连接有用于控制所述驱动套筒转动的变挡 调节驱动组件。
综上所述,本发明具有以下有益效果:
1、通过助力驱动机构与变速机构的整合,配合电气的整套控制,来实现助力电机效率的最大化和顺畅的变速体验,同时减少助力自行车上的模块,使用户装配更简单;
2、中轴机构、变速机构以及助力驱动机构形成三轴设计,该设计保证了电机整体尺寸小巧和重量的降低;
3、第一行星轮的使用实现了在一根轴上就实现高减速比,有效减小助力驱动机构的平面空间,同时能够有效降低单个齿轮上的受力,可使用尼龙齿轮,来保证电机输出在高转速时的低噪音;
4、变速机构可以单独承载脚踏输入实现变速输出,也可以同时承载脚踏输入和电机助力输入实现变速输出,而且能够实现1~2N+1挡的变速调节,能够给骑行者带来更加顺畅和省力的骑行体验。
附图说明
图1为实施例1中可多挡变速调节的中置电机的整体结构示意图;
图2为实施例1中助力驱动机构、变速机构以及中轴机构的结构示意图;
图3为实施例1中助力输入齿圈与惰轮组件的结构示意图;
图4为实施例1中助力驱动机构的结构示意图一;
图5为实施例1中助力驱动机构的结构示意图二;
图6为实施例1中助力电机的结构示意图;
图7为实施例1中中轴机构的部分零件示意图;
图8为实施例1中中轴机构的结构示意图;
图9为实施例1中变速机构的剖视图;
图10为实施例1中中轴输入套筒、滑套以及行星架的***示意图;
图11为实施例1中变速齿圈的结构示意图;
图12为实施例1中行星架、多联行星轮以及变速输出套的***示意图;
图13为实施例1中第一太阳轮、第二太阳轮以及第三太阳轮的***示意图;
图14为实施例1中第一滑块和第二滑块的位移挡位示意图;
图15为实施例1中中置电机多挡调节变速机构的变挡过程示意图;
图16为实施例1中变挡调节组件的***示意图;
图17为实施例1中变挡调节组件的剖视图;
图18为实施例1中驱动套筒与第二驱动销的结构示意图;
图19为实施例1中驱动套筒与往复驱动杆的***示意图;
图20为实施例1中变挡调节执行组件的***示意图;
图21为实施例2中中置电机多挡调节变速机构的剖视图;
图22为图21中A部分的放大示意图;
图23为实施例2中中轴输入套筒与滑套的***示意图;
图24为实施例2中第一太阳轮、第二太阳轮以及第三太阳轮的***示意图;
图25为实施例2中变挡调节组件的结构示意图;
图26为实施例2中变挡调节组件的剖视图。
图中:1、变速轴筒;11、第二限位滑槽;12、第三限位滑槽;21、第一滑块;22、导杆;23、导杆限位块;24、第三弹簧;25、往复驱动杆;251、 往复套筒部;2511、第一限位滑槽;2512、定位挡柱;252、往复驱动部;2521、轴向延伸段;2522、第三滑槽;2523、第二滑槽;2524、第一滑槽;253、限位杆;254、第一挡柱;255、第二挡柱;26、第四弹簧;27、第一驱动销;3、驱动套筒;31、第一推槽;32、第二推槽;33、第三推槽;34、第一销孔;35、第三轴承;41、第二滑块;42、推板;43、卡爪;44、第二驱动销;51、中轴输入套筒;52、中轴输入齿轮;53、电机输入齿轮;54、第二单向离合组件;55、第一轴承;56、键槽;61、滑套;611、套筒部;612、环板部;613、花键;614、第一啮齿;615、第三啮齿;616、止口;617、卡口;62、变速齿圈;621、第二啮齿;622、内齿部;623、第五啮齿;63、第二行星架;631、支撑端板;632、衬套;633、第四啮齿;634、棘爪组件;635、第二行星轴;64、多联行星轮;641、第一行星轮;642、第二行星轮;643、第三行星轮;651、第一太阳轮;6511、第一止动槽;652、第二太阳轮;6521、第二止动槽;653、第三太阳轮;6531、第三止动槽;66、第二弹簧;67、第一弹簧;671、弹簧衬套;672、第一平面轴承组件;681、第五弹簧;682、平面轴承支架;683、滚珠保持架组件;71、变速输出套;72、变速输出齿轮;73、第二轴承;74、第六啮齿;75、棘齿部;81、第一壳体;82、第二壳体;83、齿轮箱壳体;84、第一内支架;841、豁口;85、第二内支架;91、助力驱动机构;911、助力电机;9111、电机轴;9112、电机轴太阳轮;912、第一行星架;9131、输入行星轮;9132、输出行星轮;914、第一行星轴;915、助力输入齿圈;916、助力输入齿轮;917、旋变控制板;918、旋变磁钢固定座;919、旋变磁钢;92、惰轮组件;93、中轴机构;931、中轴;932、套管;933、脚踏输入齿轮;934、输出齿轮;935、输出花键;936、第一单向离合 组件;937、力矩传感组件;938、牙盘;941、变挡电机;942、电机齿轮;943、减速齿轮组;944、变挡驱动齿轮;945、齿轮箱。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
实施例1:
一种可多挡变速调节的中置电机,参照图1和图2,其包括第一壳体81和第二壳体82,第一壳体81与第二壳体82形成的腔室内设置有助力驱动机构91、变速机构以及中轴机构93;助力驱动机构91、变速机构以及中轴机构93形成三轴设计,该设计保证了电机整体尺寸小巧和重量的降低。
参照图2和图4,中轴机构93包括脚踏动力输入组件和行车动力输出组件,助力驱动机构91包括助力电机911和助力输入组件;变速机构包括变速输入组件、变挡执行组件、变挡调节组件以及变速输出组件,变速输入组件包括脚踏变速输入组件和助力变速输入组件;其中,脚踏动力输入组件与脚踏变速输入组件连接实现脚踏动力输入,助力输入组件与助力变速输入组件连接实现辅助动力输入,变速输出组件与行车动力输出组件连接实现行车驱动力输出。
参照图2至图6,助力输入组件包括第一行星架912、若干第一行星轮以及助力输入齿圈915,第一行星轮中间穿设有与第一行星架912连接的第一行星轴914;助力电机911包括电机轴9111,电机轴9111上设置有与第一行 星轮配合的电机轴太阳轮9112;本实施例中助力输入组件通过行星结构进行减速输出,在其他可选的实施例中,也可以用定轴轮系齿轮传动或者蜗轮蜗杆等方式传动,在此不做限制。
参照图1至图6,第一行星轮包括同轴联动的输入行星轮9131和输出行星轮9132,本实施例中输入行星轮9131和输出行星轮9132为一体成型,当然两者也可以分体后固定连接;其中,输入行星轮9131与电机轴太阳轮9112啮合,输出行星轮9132与助力输入齿圈915内壁的内齿啮合;第一行星架912与第二壳体82通过螺栓连接,助力电机911的定子通过螺栓与第二壳体82连接,则电机轴9111的转速通过电机轴太阳轮9112、输入行星轮9131、输出行星轮9132传递至助力输入齿圈915。
参照图4和图5,本实施例中输入行星轮9131的齿数大于输出行星轮9132的齿数,从而能够在一根轴上实现高减速比,有利于减小助力输入组件的平面空间;同时,第一行星轮的结构设计能够有效降低单个齿轮上的受力,则可以使用尼龙齿轮,来保证助力电机911输出在高转速时的低噪音。
参照图1至图6,助力输入齿圈915上设置有与助力变速输入组件连接助力输入单元,助力输入单元设置于助力输入齿圈915外端面的轴向延伸段上;第一壳体81内设置有第一内支架84,第一内支架84与第一壳体81通过螺栓连接;助力输入齿圈915的轴向延伸段通过轴承支承于第一内支架84中,同时第一行星架912和助力电机911的定子分别通过螺栓与第二壳体82连接,电机轴9111端部通过轴承支承于第二壳体82内壁。
参照图1至图4,本实施例中助力输入单元为助力输入齿轮916,助力变速输入组件包括电机输入齿轮53,第一内支架84上设置有连接于助力输入 齿轮916和电机输入齿轮53之间的惰轮组件92,且第一内支架84上开设有用于助力输入齿轮916与惰轮组件92连接的豁口841;惰轮组件92的设置能够使电机整体尺寸小巧;在其他可选的实施例中,若助力输入单元为同步轮,或者助力输入单元与电机输入齿轮53均为链轮,则可以省去惰轮组件92。
参照图4至图6,电机轴9111端部设置有旋变磁钢固定座918,旋变磁钢固定座918内嵌设有旋变磁钢919,第一行星架912的端板上设置有与旋变磁钢919相对的旋变控制板917,通过旋变磁钢919与旋变控制板917配合能够测量电机轴9111的转速;在其他可选的实施例中,也可以通过其他方式来测量电机轴9111的转速,在此不做限制。
参照图1、图2、图7和图8,脚踏动力输入组件包括脚踏输入齿轮933,脚踏输入齿轮933中间设置有中轴931,中轴931与脚踏输入齿轮933为联动配合;行车动力输出组件包括滚动支承于中轴931上的输出齿轮934,输出齿轮934连接有牙盘938,牙盘938套设在输出齿轮934的轴向延伸段上,且轴向延伸段上设置有与牙盘938配合的输出花键935;中轴931两端分别穿过第一壳体81和第二壳体82,用于连接自行车的脚踏,而牙盘938位于壳体外部用于连接自行车的链条。
参照图7,本实施例中中轴931与脚踏输入齿轮933为单向联动配合,具体地,中轴931与脚踏输入齿轮933之间设置有第一单向离合组件936,通过第一单向离合组件936实现两者沿周向的单向传动;第一单向离合组件936包括套设在中轴931上的套管932,套管932与中轴931之间通过键槽配合实现周向联动;套管932与脚踏输入齿轮933之间设置有棘轮棘爪组件, 则中轴931正转前行时可以通过棘轮棘爪组件带动脚踏输入齿轮933转动,而中轴931反转时则无法带动脚踏输入齿轮933转动;在其他可选的实施例中,中轴931与脚踏输入齿轮933也可以为固定连接,然后通过电子控制实现协调运行。
参照图1、图2、图7和图8,本实施例中中轴机构93还包括力矩传感组件937和转速传感组件,第二壳体82内通过螺栓连接有与力矩传感组件937配合的第二内支架85;力矩传感组件937能够感知脚踏的输入力,并将信号传递给控制器,同时转速传感组件能够感应到相应的踩踏转速,此时控制器结合相应的信号后,发出信号给助力驱动机构91,控制助力驱动机构91启动。
参照图1、图2、图9和图10,对于变速机构,具体地,变挡调节组件包括穿设于变速输入组件、变挡执行组件以及变速输出组件中间的变速轴筒1;本实施例中变速轴筒1两端分别与第一壳体81和第二壳体82抵接,实现对变速轴筒1的轴向限位,同时变速轴筒1与第一壳体81之间通过键槽配合来限制变速轴筒1的转动,实现对变速轴筒1的周向限位,则变速轴筒1相对于第一壳体81和第二壳体82固定不动;变速输入组件包括中轴输入套筒51和滑套61,滑套61与中轴输入套筒51为周向联动配合,其中中轴输入套筒51与变速轴筒1之间设置有两个第一轴承55;本实施例中中轴输入套筒51外侧壁设置有若干沿轴向设置的键槽56,且若干键槽56沿周向均布,滑套61内侧壁上设置有与键槽56配合的花键613,花键613与键槽56配合能够实现中轴输入套筒51与滑套61的周向联动。
参照图9,脚踏输入组件包括设置于中轴输入套筒51外侧壁、且与其沿 周向联动的中轴输入齿轮52,本实施例中中轴输入齿轮52与中轴输入套筒51为一体成型;变速输入组件包括设置于中轴输入套筒51外侧壁、且与其沿周向单向联动的电机输入齿轮53,电机输入齿轮53与中轴输入套筒51之间设置有第二单向离合组件54,本实施例中第二单向离合组件54为单向滚针轴承;通过设置第二单向离合组件54,则电机输入齿轮53的转速可以传递至中轴输入套筒51,而中轴输入齿轮52的转速无法传递至电机输入齿轮53。
参照图9和图12,变挡执行组件包括变速齿圈62、第二行星架63、多联行星轮64以及与多联行星轮64配合的N个变挡太阳轮,第二行星架63上设置有穿过多联行星轮64的第二行星轴635;变速齿圈62内侧壁设置有与多联行星轮64配合的内齿部622,本实施例中内齿部622与变速齿圈62为过盈配合固定,同时两者也可以一体成型;本实施例中多联行星轮64为三联行星轮,其包括第一行星轮641、第二行星轮642以及第三行星轮643,内齿部622与第二行星轮642啮合;变挡太阳轮的数量为三个,分别为与第一行星轮641啮合的第一太阳轮651、与第二行星轮642啮合的第二太阳轮652以及与第三行星轮643啮合的第三太阳轮653。
参照图9,第一太阳轮651、第二太阳轮652以及第三太阳轮653均套设在变速轴筒1上,第二行星架63端部嵌设有与第一太阳轮651接触的支撑端板631,同时变速轴筒1外侧壁形成对支撑端板631进行限位的台阶;变速轴筒1上套设有第二弹簧66,第二弹簧66一端与第三太阳轮653接触,另一端与变速轴筒1上的弹性挡圈接触;支撑端板631与第二弹簧66配合对三个变挡太阳轮进行轴向弹性限位,能够避免松动异响。
参照图9和图10,滑套61能够与变速齿圈62实现周向联动配合,本实施例中滑套61包括套筒部611和环板部612;环板部612端面设置有若干第一啮齿614,变速齿圈62内端面设置有与第一啮齿614配合的第二啮齿621,第一啮齿614与第二啮齿621配合使滑套61与变速齿圈62实现周向联动。
参照图9、图10和图12,变速输出组件包括与第二行星架63单向联动配合的变速输出套71,变速输出套71与变速轴筒1之间设置有两个第二轴承73,且变速输出套71外侧壁设置有变速输出齿轮72;本实施例中变速输出齿轮72与变速输出套71为过盈配合固定,同时两者也为可以一体成型;变速输出套71与第二行星架63之间设置有第三单向离合组件,本实施例中第三单向离合组件包括设置于第二行星架63外侧壁的多个棘爪组件634,以及设置于变速输出套71内侧壁的棘齿部75,棘爪组件634包括棘爪和弹性卡圈;本实施例中棘齿部75与变速输出套71为过盈配合固定,同时两者也可以为一体成型;本实施例中第二行星架63上远离支撑端板631的一端通过衬套632与变速输出套71连接,其中衬套632与第二行星架63通过过盈配合固定,而衬套632与变速输出套71为接触配合。
参照图9和图13,变挡调节组件包括第一滑块21,第一滑块21端部凸出于变速轴筒1外侧壁,且能够相对于变速轴筒1沿轴向移动;第一滑块21能够对三个变挡太阳轮沿轴向依次进行止动,实现变速机构的第1~3挡调节;第一太阳轮651、第二太阳轮652以及第三太阳轮653上分别开设有与第一滑块21配合的第一止动槽6511、第二止动槽6521以及第三止动槽6531;本实施例中第一止动槽6511和第二止动槽6521分别设置于第一太阳轮651和第二太阳轮652的内侧壁,而第三止动槽6531贯穿于第三太阳轮653的壁厚。
参照图9、图10和图13,当第一滑块21与第一止动槽6511配合对第一太阳轮651进行止动,则动力经中轴输入套筒51、滑套61、变速齿圈62、第二行星架63以及第二单向离合组件输出至变速输出套71;本实施例中第一太阳轮651、第二太阳轮652以及第三太阳轮653的齿数依次递减,则第一滑块21向右移动过程中依次加挡,第一太阳轮651止动为第一挡,第二太阳轮652止动为第二挡,第三太阳轮653止动为第三挡;第一挡、第二挡和第三挡的输出速度与输入速度的比值均小于1,且第二挡大于第一挡,第三挡大于第二挡。
参照图9和图10,本实施例中中轴输入套筒51与滑套61通过花键613与键槽56配合实现周向联动,同时键槽56的长度沿轴向设置,所以滑套61能够相对于中轴输入套筒51沿轴向移动;变挡执行组件还包括对变速齿圈62施加弹性推力F1的第一弹簧67,本实施例中第一弹簧67套设在套筒部611上,且套筒部611与第一弹簧67支撑设置有截面呈L型的弹簧衬套671,弹簧衬套671与中轴输入齿轮52端面接触实现轴向限位;本实施例中第一弹簧67为锥型弹簧,且变速齿圈62外端壁设置有与第一弹簧67大端配合的槽口。
参照图9和图10,环板部612与变速齿圈62内端面接触,能够对变速齿圈62进行轴向限位,限制变速齿圈62在弹性推力F1的作用下产生位移;变挡调节组件还包括第二滑块41,第二滑块41能够对滑套61进行轴向限位,限制滑套61在弹性推力F1的作用下产生位移;本实施例中滑套61内侧壁设置有与第二滑块41配合的卡槽,第二滑块41嵌于卡槽内,从而能够对滑套61进行轴向限位。
参照图9至图12,第二滑块41向右移动过程中带动滑套61沿轴向移动,则变速齿圈62在弹性推力F1的作用下沿轴向向右移动,变速齿圈62能够移动至与变速输出套71接触;本实施例中变速齿圈62端面设置有若干第五啮齿623,变速输出套71端面设置有与第五啮齿623配合的第六啮齿74;变速齿圈62与变速输出套71接触后,第五啮齿623与第六啮齿74配合,则变速齿圈62与变速输出套71实现周向联动,在第3挡的基础上,实现变速机构的第4挡调节。
参照图9至图12,变速齿圈62与变速输出套71端部离合实现周向联动后,此时动力经中轴输入套筒51、滑套61以及变速齿圈62输出至变速输出套71,输出速度与输入速度的比值等于1,形成第四挡变速;在第四挡时,第一滑块21对第三太阳轮653止动,变速齿圈62会带动第二行星架63转动,但是第二行星架63的转速低于变速齿圈62的转速,第二行星架63上的棘爪组件634与变速输出套71上的棘齿部75处于超越离合状态,第二行星架63并不输出功率。
参照图9和图10,变速齿圈62与变速输出套71接触后,第二滑块41推动滑套61继续移动,滑套61能够移动至与第二行星架63接触;本实施例中环板部612端面设置有若干第三啮齿615,第二行星架63端面设置有与第三啮齿615配合的第四啮齿633;滑套61与第二行星架63接触后,第三啮齿615与第四啮齿633配合实现滑套61与第二行星架63的周向联动,且此时滑套61与变速齿圈62的周向联动配合关系解除,在第4挡的基础上,实现变速机构的第5挡调节。
参照图9至图11,滑套61与第二行星架63端部离合实现周向联动后, 滑套61与变速齿圈62的周向联动配合关系解除,即第一啮齿614与第二啮齿621分离,此时动力经中轴输入套筒51、滑套61、第二行星架63以及变速齿圈62输出至变速输出套71,输出速度与输入速度的比值大于1,形成第五挡变速。
参照图9至图12,在第五挡时,第一滑块21对第三太阳轮653止动,滑套61带动第二行星架63转动,但是第二行星架63的转速低于变速齿圈62的转速,第二行星架63上的棘爪组件634与变速输出套71上的棘齿部75处于超越离合状态,第二行星架63并不输出功率。
参照图9至图12,第一滑块21能够进行往复运动,在第5挡的基础上,能够实现变速机构的第6~7挡调节;在第五挡的状态下,第一滑块21移动至对第二太阳轮652进行止动,形成第六挡变速;此时动力经中轴输入套筒51、滑套61、第二行星架63以及变速齿圈62输出至变速输出套71,输出速度与输入速度的比值大于1,且第六挡的比值大于第五挡的比值;同时,滑套61带动第二行星架63转动,但是第二行星架63的转速低于变速齿圈62的转速,第二行星架63上的棘爪组件634与变速输出套71上的棘齿部75处于超越离合状态,第二行星架63并不输出功率。
参照图9至图12,在第六挡的状态下,第一滑块21移动至对第一太阳轮651进行止动,形成第七挡变速;此时动力经中轴输入套筒51、滑套61、第二行星架63以及变速齿圈62输出至变速输出套71,输出速度与输入速度的比值大于1,且第七挡的比值大于第六挡的比值;同时,滑套61带动第二行星架63转动,但是第二行星架63的转速低于变速齿圈62的转速,第二行星架63上的棘爪组件634与变速输出套71上的棘齿部75处于超越离合状态, 第二行星架63并不输出功率。
参照图9、图14和图15,从第一挡至第三挡的过程中,第一滑块21前进两次,从第三挡至第五挡的过程中,第一滑块21保持不动,从第五挡至第七挡的过程中,第一滑块21退后两次至复位,所以在一个变挡周期内,第一滑块21会进行一次往复运动;从第一挡至第三挡的过程中,第二滑块41保持不动,从第三挡至第五挡的过程中,第二滑块41前进两次,从第五挡至第七挡的过程中,第二滑块41保持不动,所以在一个变挡周期内,第二滑块41进行单向运动。
参照图16、图17和图19,变速轴筒1内设置有能够相对于其沿轴向移动的往复驱动杆;第一滑块21承载于往复驱动杆,且两者沿轴向为弹性联动配合;本实施例中往复驱动杆包括往复驱动部252和往复套筒部251,往复驱动部252端部设置有轴向延伸段2521,往复套筒部251套设在轴向延伸段2521上,且两者之间穿设有限位杆253;往复套筒部251和变速轴筒1上分别开设有与第一滑块21配合的第一限位滑槽2511和第二限位滑槽11;第一限位滑槽2511与第二限位滑槽11一方面能够给第一滑块21提供轴向位移量,另一方面能够限制往复驱动杆的转动。
参照图17和图13,第二太阳轮652需要转动至一定的角度,第一滑块21才能够嵌于第二止动槽6521内;所以第一滑块21与往复驱动杆沿轴向为弹性联动,而不是固定联动,能够避免出现卡住不动的情况。
参照图17和图19,往复驱动杆内设置有穿过第一滑块21的导杆22,导杆22上设置有与第一滑块21接触的导杆限位块23;本实施例中导杆22一端嵌于轴向延伸段2521端壁,另一端嵌于导杆限位块23端壁;往复驱动杆 内设置有对导杆限位块23施加弹性推力F2的第三弹簧24,以及对第一滑块21施加弹性推力F3的第四弹簧26,第一滑块21在弹性推力F2和弹性推力F3的作用下能够相对于往复驱动杆保持在相对稳定状态;本实施例中往复套筒部251内设置有与第三弹簧24端部接触的定位挡柱2512,而第四弹簧26远离第一滑块21的一端与轴向延伸段2521抵接。
参照图17和图13,第一滑块21从第一止动槽6511内移动至第二止动槽6521内时,往复驱动杆向右移动一定量的位移,第一滑块21与第二太阳轮652端面接触受到阻挡后,第四弹簧26被压缩,弹性推力F3变大,当第一滑块21与第二止动槽6521对准时,第一滑块21在弹性推力F3的作用下嵌入第二止动槽6521内,并保持稳定状态;第一滑块21从第二止动槽6521内移动至第一止动槽6511内时,往复驱动杆向左移动一定量的位移,第一滑块21与第一太阳轮651端面接触受到阻挡后,第三弹簧24被压缩,弹性推力F2变大,当第一滑块21与第一止动槽6511对准时,第一滑块21在弹性推力F2的作用下嵌入第一止动槽6511内,并保持稳定状态。
参照图17和图19,往复驱动杆上套设有驱动套筒3,驱动套筒3相对于变速轴筒1沿轴向位置不变。本实施例中驱动套筒3与变速轴筒1之间通过台阶止口进行轴向限位;驱动套筒3上穿设有嵌于往复驱动部252外侧壁的第一驱动销27,驱动套筒3上开设有与第一驱动销27配合的第一销孔34,往复驱动部252外侧壁设置有与第一驱动销27配合的往复滑槽。
参照图19,往复滑槽包括第一滑槽2524和第三滑槽2522,以及两个第二滑槽2523,第二滑槽2523呈螺旋段状,且两个第二滑槽2523形成交汇点,且两个第二滑槽2523之间一端通过第一滑槽2524连通,另一端通过第三滑 槽2522连通。
参照图14、图15、图17和图19,驱动套筒3转动时通过往复滑槽能够带动往复驱动杆沿轴向移动;第一驱动销27在第一滑槽2524内时,往复驱动杆沿轴向不动,第一驱动销27经过一个第二滑槽2523进入至第三滑槽2522过程中,第一滑块21前进两次,实现第一挡至第三挡的变速;第三挡至第五挡的变速过程中,第一驱动销27位于第三滑槽2522内,往复驱动杆沿轴向不动,当第一驱动销27经过另一个第二滑槽2523进入至第一滑槽2524过程中,第一滑块21后退两次,实现第五挡至第七挡的变速。
参照图9和图13,变速轴筒1上嵌设有与第二滑块41沿轴向联动的推板42,且变速轴筒1上开设有与推板42配合的第三限位滑槽12;第三限位滑槽12一方面给推板42提供轴向位移量,另一方面能够限制推板42的转动;本实施例中第二滑块41呈圆盘状,推板42上设置有将第二滑块41夹于其中的卡爪43,通过卡爪43实现第二滑块41与推板42的轴向联动;本实施例中第二滑块41沿径向具有弹性量,则第二滑块41安装于套筒部611与推板42之间时被压缩,一方面能够保证第二滑块41与套筒部611沿轴向联动的稳定性,另一方面也是便于安装第二滑块41。
参照图16至图18,推板42上穿设有嵌于驱动套筒3外侧壁的第二驱动销44,驱动套筒3外侧壁开设有与第二驱动销44配合的推槽;本实施例中推槽包括第一推槽31和第三推槽33,以及连接于第一推槽31与第三推槽33之间的第二推槽32,第二推槽32呈螺旋段状。
参照图14、图15、图16和图18,本实施例中驱动套筒3转动过程中通过推槽还能够带动第二滑块41沿轴向移动,则第一挡至第三挡的变速过程中, 第二驱动销44位于第一推槽31内,第二滑块41沿轴向不动;第二驱动销44经过第二推槽32移动至第三推槽33的过程中,第二滑块41前进两次,实现第三挡至第五挡的变速;第五挡至第七挡的变速过程中,第二驱动销44位于第三推槽33内,第二滑块41沿轴向不动。
参照图17、图20和图1,本实施例中变速机构还包括用于控制驱动套筒3转动的变挡调节驱动组件,变挡调节驱动组件包括齿轮箱945,齿轮箱945上设置有变挡电机941,变挡电机941的转轴上套设有位于齿轮箱945内的电机齿轮942;其中,第一壳体81上形成有与齿轮箱945配合的齿轮箱壳体83,从而便于安装和检修;齿轮箱945内设置有变挡驱动齿轮944,以及承载于电机齿轮942与变挡驱动齿轮944之间的减速齿轮组943;变挡驱动齿轮944与驱动套筒3端部离合实现周向联动,则变挡电机941通过电机齿轮942、减速齿轮组943以及变挡驱动齿轮944能够控制驱动套筒3转动;本实施例中通过变挡电机941的正转或者反转来实现自动变挡,同时也可以利用线绳拉动等方式实现手动换档变速。
工作原理如下:
将本发明的中置电机安装于助力自行车上,脚踏板与中轴931连接,后轮上的链条与牙盘938连接。
骑行时,通过脚踩脚踏板使中轴931转动,中轴931通过第一单向离合组件936带动脚踏输入齿轮933转动,脚踏输入齿轮933通过中轴输入齿轮52将转速输入到变速机构,然后变速机构通过变速输出齿轮72输出一定的转速到输出齿轮934,输出齿轮934上的输出花键935与牙盘938连接,再通过链条传到后轮,此时完成了人脚踏中轴931侧的输入到输出。
当后轮启动时,由于人和助力自行车本身的重量决定了需要车动起来的话就是要踩踏输入相应的力到中轴931,此时力矩传感组件937和转速传感组件将信号传递给控制器,控制器发出信号,控制助力电机911启动。
助力电机911启动后电机轴9111转动,电机轴太阳轮9112通过输入行星轮9131和输出行星轮9132带动助力输入齿圈915转动,与助力输入齿圈915为一体式结构的助力输入齿轮916输出一定的转速到惰轮组件92,再传到电机输入齿轮53,电机输入齿轮53通过第二单向离合组件54带动中轴输入套筒51转动;接下来分为两路,一路输入到变速机构,另一路通过中轴输入齿轮52输入到脚踏输入齿轮933,而脚踏输入齿轮933无法通过第一单向离合组件936将转速输至中轴931,则只能输入到变速机构,变速机构通过变速输出齿轮72输出一定的转速到输出齿轮934,输出齿轮934上的输出花键935与牙盘938连接,再通过链条输出到后轮,带动助力自行车转动。
至此完成了助力电机911侧的输入到输出,两者的结合就是人和助力电机911的力同时输出到后轮,带动助力自行车行驶;通过控制器程序的控制,可控制人和助力电机911的出力比,同时通过变挡电机941实现自动换挡变速,来使骑行者获得更为顺畅舒适的骑行体验;更为重要的是变速可使助力电机911的使用工况一直处于高效节能的状态下去做功,让助力自行车有更长的续航里程。
本发明的中置电机,其控制***可以采集到多种信号,包括车轮速度信号、力矩信号、踏频信号、变速机构挡位信号、挡位调节信号、电池信息以及电机输出等,电池信息包括电流、电压、温度、剩余容量以及总容量,将多种信号集成到一个人机交互***中。控制***可以根据变速机构挡位信号 可以实时知道机械传动比,可以根据不同的变速机构挡位调节力矩输入的有效值,调节踏频信号对电机输出的占空比,从而有效解决骑行中断与踏空的问题,提升骑行体验。
实施例2:
一种可多挡变速调节的中置电机,参照图21,以实施例1为基础,本实施例与实施例1的区别在于:本实施例中第一弹簧67套设在中轴输入套筒51上,且第一弹簧67与变速齿圈62之间设置有第一平面轴承组件672;第一平面轴承组件672包括滚珠、保持架以及轴承托架,轴承托架也作为滚珠的跑道,同时滚珠与变速齿圈62外端面接触;第一弹簧67一端与中轴输入齿轮52端面接触,一端与轴承托架接触,其弹性推力F1通过轴承托架和滚轴施加给变速齿圈62。
参照图22,本实施例中第二滑块41与套筒部611之间设置有第二平面轴承组件,且套筒部611内侧壁设置有与第二平面轴承组件配合的止口616;第二滑块41通过第二平面轴承组件和止口616对套筒部611进行轴向限位,限制套筒部611在弹性推力F1的作用下产生位移。本实施例中第二平面轴承组件包括平面轴承支架682以及两组滚珠保持架组件683,平面轴承支架682包括两部分,将两组滚珠保持架组件683罩于其中,且两组滚珠保持架组件683分别位于第二滑块41两侧;滚珠与平面轴承支架682和第二滑块41接触,平面轴承支架682与止口616配合,则第二滑块41能够对套筒部611进行轴向限位;本实施例中平面轴承支架682上设置有第五弹簧681,套筒部611内侧壁设置有与第五弹簧681端部配合的卡口617,则第二滑块41能够通过第二平面轴承组件和第五弹簧681对套筒部611进行弹性推动,从而 带动其沿轴向移动。
参照图23,本实施例中中轴输入套筒51套设在套筒部611上,则键槽56设置于中轴输入套筒51内侧壁,而花键613设置于套筒部611外侧壁。
参照图24,本实施例中第三止动槽6531设置于第三太阳轮653内侧壁,而没有贯穿其壁厚。
参照图25和图26,本实施例中第二滑块41呈圆环状,其与推板42为一体成型,从而能够实现两者沿轴向联动;本实施例中驱动套筒3与变速轴筒1之间设置有第三轴承35,则驱动套筒3能够自转,同时与变速轴筒1沿轴向的相对位置不变;本实施例中往复驱动杆25为一体成型,其中往复驱动杆25内设置有与第三弹簧24端部接触的第二挡柱255,以及与第四弹簧26端部接触的第一挡柱254;同时,本实施例中第三弹簧24与第一滑块21接触,而第四弹簧26与导杆限位块23接触,且导杆限位块23与导杆22为一体成型。

Claims (14)

  1. 一种可多挡变速调节的中置电机,其特征在于,包括:
    中轴机构,所述中轴机构包括脚踏动力输入组件和行车动力输出组件;
    助力驱动机构,所述助力驱动机构包括助力电机和助力输入组件;以及,
    承载于所述中轴机构与助力驱动机构之间的变速机构,所述变速机构包括变速输入组件、变挡执行组件、变挡调节组件以及变速输出组件,所述变速输入组件包括脚踏变速输入组件和助力变速输入组件;
    其中,所述脚踏动力输入组件与脚踏变速输入组件连接实现脚踏动力输入,所述助力输入组件与助力变速输入组件连接实现辅助动力输入,所述变速输出组件与行车动力输出组件连接实现行车驱动力输出。
  2. 根据权利要求1所述的可多挡变速调节的中置电机,其特征在于:所述脚踏动力输入组件包括脚踏输入齿轮,所述脚踏输入齿轮中间设置有中轴,所述中轴与脚踏输入齿轮为联动配合;所述行车动力输出组件包括滚动支承于所述中轴上的输出齿轮,所述输出齿轮连接有牙盘。
  3. 根据权利要求1所述的可多挡变速调节的中置电机,其特征在于:所述助力输入组件包括第一行星架、若干第一行星轮以及助力输入齿圈,所述助力输入齿圈上设置有与所述助力变速输入组件连接的助力输入单元;所述助力电机包括电机轴,所述电机轴上设置有与所述第一行星轮配合的电机轴太阳轮。
  4. 根据权利要求3所述的可多挡变速调节的中置电机,其特征在于:所述第一行星轮包括同轴联动的输入行星轮和输出行星轮,其中所述输入行星轮与电机轴太阳轮啮合,所述输出行星轮与助力输入齿圈啮合。
  5. 根据权利要求3所述的可多挡变速调节的中置电机,其特征在于:所 述助力输入单元为助力输入齿轮,所述助力变速输入组件包括电机输入齿轮,且所述助力输入齿轮与电机输入齿轮之间设置有惰轮组件。
  6. 根据权利要求1所述的可多挡变速调节的中置电机,其特征在于:所述脚踏变速输入组件包括中轴输入套筒,所述中轴输入套筒外侧壁联动设置有中轴输入齿轮;所述助力变速输入组件包括套设于所述中轴输入套筒上、且与其单向联动的电机输入齿轮。
  7. 根据权利要求1所述的可多挡变速调节的中置电机,其特征在于:所述变速输入组件包括中轴输入套筒和滑套,所述滑套与中轴输入套筒为周向联动配合;
    所述变挡执行组件包括变速齿圈、第二行星架、多联行星轮以及与所述多联行星轮配合的N个变挡太阳轮,所述滑套能够与所述变速齿圈实现周向联动配合;
    所述变速输出组件包括与所述行星架单向联动配合的变速输出套;
    所述变挡调节组件包括第一滑块,所述第一滑块能够对N个所述变挡太阳轮沿轴向依次进行止动,实现变速机构的第1~N挡调节。
  8. 根据权利要求7所述的可多挡变速调节的中置电机,其特征在于:所述滑套还能够相对于所述中轴输入套筒沿轴向移动;
    所述变挡执行组件还包括对所述变速齿圈施加弹性推力F1的第一弹簧;
    所述滑套能够对所述变速齿圈进行轴向限位,限制所述变速齿圈在弹性推力F1的作用下产生位移;
    所述变挡调节组件还包括第二滑块,所述第二滑块能够对所述滑套进行轴向限位,限制所述滑套在弹性推力F1的作用下产生位移;
    所述第二滑块能够推动所述滑套沿轴向移动,则所述变速齿圈能够在弹性推力F1的作用下沿轴向移动;
    所述变速齿圈能够移动至与所述变速输出套端部离合,实现两者周向联动,在第N挡的基础上,实现变速机构的第N+1挡调节。
  9. 根据权利要求8所述的可多挡变速调节的中置电机,其特征在于:所述变速齿圈与变速输出套接触后,所述第二滑块能够推动所述滑套继续移动,所述滑套能够移动至所述第二行星架接触;
    所述滑套与第二行星架接触后,两者端部离合实现周向联动,且此时所述滑套与变速齿圈的周向联动配合关系解除,在第N+1挡的基础上,实现变速机构的第N+2挡调节。
  10. 根据权利要求9所述的可多挡变速调节的中置电机,其特征在于:所述第一滑块能够进行往复运动,在第N+2挡的基础上,能够实现变速机构的第N+3~2N+1挡调节。
  11. 根据权利要求10所述的可多挡变速调节的中置电机,其特征在于:所述变挡调节组件包括穿设于所述变速输入组件、变挡执行组件以及变速输出组件中间的变速轴筒,所述变速轴筒内设置有能够相对于其沿轴向移动的往复驱动杆;所述第一滑块承载于所述往复驱动杆上,且两者沿轴向为弹性联动配合;所述往复驱动杆和变速轴筒上分别开设有与所述第一滑块配合的第一限位滑槽和第二限位滑槽。
  12. 根据权利要求11所述的可多挡变速调节的中置电机,其特征在于:所述往复驱动杆上套设有驱动套筒,所述驱动套筒相对于所述变速轴筒沿轴向位置不变;所述驱动套筒上穿设有嵌于所述往复驱动杆外侧壁的第一驱动 销,所述往复驱动杆外侧壁设置有与所述第一驱动销配合的往复滑槽。
  13. 根据权利要求12所述的可多挡变速调节的中置电机,其特征在于:所述变速轴筒上嵌设有与所述第二滑块沿轴向联动的推板,且所述变速轴筒上开设有与所述推板配合的第三限位滑槽;所述推板上穿设有嵌于所述驱动套筒外侧壁的第二驱动销,所述驱动套筒外侧壁开设有与所述第二驱动销配合的推槽。
  14. 根据权利要求12所述的可多挡变速调节的中置电机,其特征在于:所述变挡调节组件连接有用于控制所述驱动套筒转动的变挡调节驱动组件。
PCT/CN2021/098366 2020-11-23 2021-06-04 一种可多挡变速调节的中置电机 WO2022105195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011318090.0A CN112407135B (zh) 2020-11-23 2020-11-23 一种可多挡变速调节的中置电机
CN202011318090.0 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105195A1 true WO2022105195A1 (zh) 2022-05-27

Family

ID=74777823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098366 WO2022105195A1 (zh) 2020-11-23 2021-06-04 一种可多挡变速调节的中置电机

Country Status (2)

Country Link
CN (1) CN112407135B (zh)
WO (1) WO2022105195A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115195932A (zh) * 2022-07-07 2022-10-18 蔡明� 一种带负荷变速的自行车中轴变速箱
CN115432102A (zh) * 2022-10-08 2022-12-06 八方电气(苏州)股份有限公司 无级变速机构、变速花鼓以及车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112407135B (zh) * 2020-11-23 2021-12-31 八方电气(苏州)股份有限公司 一种可多挡变速调节的中置电机
JP2023046226A (ja) * 2021-09-22 2023-04-03 日本電産株式会社 モータ、車両
CN113998050A (zh) * 2021-12-02 2022-02-01 深圳洛梵狄变速器有限公司 内变速器中换档控制器的控制结构、内变速器及自行车
CN114475897B (zh) * 2022-03-23 2024-03-15 八方电气(苏州)股份有限公司 中置自动五速电机
CN115664123A (zh) * 2022-10-12 2023-01-31 迪普生数码动力***(苏州)有限公司 一种应用旋转变压器的中置电机及电动自行车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227669A (ja) * 1998-02-16 1999-08-24 Toshiba Tec Corp 電動補助動力装置付自転車
JP2013129336A (ja) * 2011-12-22 2013-07-04 Ntn Corp 電動補助人力車両用ハブユニットおよび電動補助人力車両
CN106428394A (zh) * 2016-09-07 2017-02-22 新安乃达驱动技术(上海)股份有限公司 电动助力自行车及其中置电机驱动***和控制方法
CN109606530A (zh) * 2018-11-15 2019-04-12 八方电气(苏州)股份有限公司 自行车变速机构和自行车
CN209852516U (zh) * 2019-03-27 2019-12-27 新安乃达驱动技术(上海)股份有限公司 电动助力自行车及其中置电机驱动***
CN110949597A (zh) * 2019-12-28 2020-04-03 苏州万佳电器有限公司 一种中置驱动装置和具有该装置的自行车
CN111532369A (zh) * 2020-06-03 2020-08-14 深圳市洋利昂科技有限责任公司 一种驱动与变速一体式中置装置及电助力自行车
CN111776129A (zh) * 2020-07-10 2020-10-16 张家港川梭车业有限公司 一种电助力中轴变速器
CN112407135A (zh) * 2020-11-23 2021-02-26 八方电气(苏州)股份有限公司 一种可多挡变速调节的中置电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6595072B2 (en) * 2001-10-22 2003-07-22 Gordon Liao Sensor of the pedaling force of a power-assisting bike
DE102011077903A1 (de) * 2011-06-21 2012-12-27 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Antriebseinrichtung für ein Elektrorad
CN103195878A (zh) * 2013-03-27 2013-07-10 石铭正 圆柱体变速箱及手动换挡装置
WO2014172422A1 (en) * 2013-04-19 2014-10-23 Fallbrook Intellectual Property Company Llc Continuously variable transmission
EP3153393B1 (en) * 2014-06-06 2018-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrically assisted bicycle
CN106143776A (zh) * 2015-04-03 2016-11-23 久鼎金属实业股份有限公司 自行车的中置双马达少齿差行星齿轮变速装置
DE102016216557C5 (de) * 2016-09-01 2020-04-30 Robert Bosch Gmbh Antriebsanordnung und Fahrzeug
DE102016014066B3 (de) * 2016-11-25 2018-02-22 Oechsler Ag Gangschaltung für einen elektromotorischen Fahrrad-Zusatzantrieb
JP2018159442A (ja) * 2017-03-23 2018-10-11 武蔵精密工業株式会社 電動補助車両用動力ユニット
DE102017216502A1 (de) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Antriebsanordnung und Fahrzeug
CN111532368A (zh) * 2020-06-03 2020-08-14 深圳市洋利昂科技有限责任公司 一种分体式驱动与变速装置及电助力自行车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227669A (ja) * 1998-02-16 1999-08-24 Toshiba Tec Corp 電動補助動力装置付自転車
JP2013129336A (ja) * 2011-12-22 2013-07-04 Ntn Corp 電動補助人力車両用ハブユニットおよび電動補助人力車両
CN106428394A (zh) * 2016-09-07 2017-02-22 新安乃达驱动技术(上海)股份有限公司 电动助力自行车及其中置电机驱动***和控制方法
CN109606530A (zh) * 2018-11-15 2019-04-12 八方电气(苏州)股份有限公司 自行车变速机构和自行车
CN209852516U (zh) * 2019-03-27 2019-12-27 新安乃达驱动技术(上海)股份有限公司 电动助力自行车及其中置电机驱动***
CN110949597A (zh) * 2019-12-28 2020-04-03 苏州万佳电器有限公司 一种中置驱动装置和具有该装置的自行车
CN111532369A (zh) * 2020-06-03 2020-08-14 深圳市洋利昂科技有限责任公司 一种驱动与变速一体式中置装置及电助力自行车
CN111776129A (zh) * 2020-07-10 2020-10-16 张家港川梭车业有限公司 一种电助力中轴变速器
CN112407135A (zh) * 2020-11-23 2021-02-26 八方电气(苏州)股份有限公司 一种可多挡变速调节的中置电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115195932A (zh) * 2022-07-07 2022-10-18 蔡明� 一种带负荷变速的自行车中轴变速箱
CN115195932B (zh) * 2022-07-07 2023-09-05 宁波恒隆车业有限公司 一种带负荷变速的自行车中轴变速箱
CN115432102A (zh) * 2022-10-08 2022-12-06 八方电气(苏州)股份有限公司 无级变速机构、变速花鼓以及车辆
CN115432102B (zh) * 2022-10-08 2023-08-04 八方电气(苏州)股份有限公司 无级变速机构、变速花鼓以及车辆

Also Published As

Publication number Publication date
CN112407135A (zh) 2021-02-26
CN112407135B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2022105195A1 (zh) 一种可多挡变速调节的中置电机
WO2013159720A1 (zh) 自动变速器
EP3131184A1 (en) Electric bicycle wheel hub motor device
WO2009030115A1 (fr) Moyeu porte-came à variation de vitesse à adaptation automatique
CN214690026U (zh) 一种双模两速轮毂电机
CN102107712A (zh) 中置驱动助力自行车
EP3131185A1 (en) Electric bicycle wheel hub motor
WO2020143340A1 (zh) 采用一级齿轮减速传动的紧凑型中置电机
WO2023184860A1 (zh) 一种三轮车用后置自动变速器
CN113184106A (zh) 一种中置变速电机
WO2022105194A1 (zh) 一种变挡调节机构
CN216424670U (zh) 一种变速换挡装置
JP2011126416A (ja) 電動補助自転車用リアハブ内装変速装置
CN201887599U (zh) 电动车变速器
CN211525386U (zh) 一种可控单向螺旋离合装置
JP2011189877A (ja) 回生機構を備えた電動補助自転車
CN201136582Y (zh) 变速器长圆柱磁性离心棘爪换档变速装置
CN109606530B (zh) 自行车变速机构和自行车
CN215883966U (zh) 中置电机的牙盘变速装置及其中置电机
CN215361732U (zh) 一种中置变速电机
CN111016625B (zh) 中央驱动型单侧双电机智能传动***
CN113086080A (zh) 一种双模两速轮毂电机
CN115610571A (zh) 中置电机的牙盘变速装置及其中置电机
CN217227830U (zh) 中置电机的牙盘变速装置及其中置电机
CN112413067B (zh) 一种中置电机多挡调节变速机构及中置电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893349

Country of ref document: EP

Kind code of ref document: A1