WO2022104808A1 - 呼吸支持设备及其通气控制方法和计算机可读存储介质 - Google Patents

呼吸支持设备及其通气控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2022104808A1
WO2022104808A1 PCT/CN2020/130952 CN2020130952W WO2022104808A1 WO 2022104808 A1 WO2022104808 A1 WO 2022104808A1 CN 2020130952 W CN2020130952 W CN 2020130952W WO 2022104808 A1 WO2022104808 A1 WO 2022104808A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive end
support device
expiratory pressure
respiratory support
mechanical energy
Prior art date
Application number
PCT/CN2020/130952
Other languages
English (en)
French (fr)
Inventor
刘京雷
刘玲
周小勇
潘纯
朱锋
谢剑锋
陈俊
杨毅
邱海波
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
东南大学附属中大医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 东南大学附属中大医院 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/130952 priority Critical patent/WO2022104808A1/zh
Priority to CN202080005853.8A priority patent/CN112955204B/zh
Publication of WO2022104808A1 publication Critical patent/WO2022104808A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to a respiratory support device, a ventilation control method thereof, and a computer-readable storage medium.
  • Human respiration refers to the periodic rhythmic inhalation and exhalation of gas, absorbing oxygen and expelling carbon dioxide, thereby realizing gas exchange.
  • mechanical ventilation can be used to help patients complete their breathing.
  • external equipment such as ventilators can usually be used to provide patients with respiratory support.
  • PEEP Positive End Expiratory Pressure
  • PEEP Positive End Expiratory Pressure
  • Its function is to maintain a certain positive airway pressure during the expiratory phase, so as to keep the alveoli open, prevent collapse, and then Ensure effective ventilation of the alveoli.
  • Different patients require different PEEP in different pathological states. If PEEP is too low, some alveoli will collapse and cannot participate in gas exchange. On the contrary, if PEEP is too high, it will lead to excessive expansion of alveoli, which will cause damage to the lungs. Therefore, setting an appropriate PEEP is very important for patient treatment.
  • the embodiments of the present application provide a respiratory support device, a ventilation control method, and a computer-readable storage medium, which can automatically adjust the positive end expiratory pressure, improve the accuracy and timeliness of the adjustment of the positive end expiratory pressure, and The convenience and reliability of ventilation control of respiratory support equipment are improved.
  • an embodiment of the present application provides a ventilation control method for a respiratory support device, including:
  • the respiratory support device determines the mechanical energy corresponding to when the patient is ventilated according to different positive end-expiratory pressures within a preset time period, and obtains a plurality of mechanical energy;
  • the respiratory support device sets the positive end-expiratory pressure corresponding to when the mechanical energy among the plurality of mechanical energies is minimum or starts to increase significantly as the target positive end-expiratory pressure.
  • the embodiments of the present application also provide a respiratory support device, including:
  • a patient interface for communicating with the airflow providing device through the breathing circuit and attached to the patient for delivering ventilation airflow generated by the airflow providing device to the patient's airway;
  • a ventilation detection device which is arranged on the breathing circuit or the patient interface and is used to detect ventilation parameters
  • the positive end expiratory pressure corresponding to when the mechanical energy among the plurality of mechanical energies is minimum or starts to increase significantly is set as the target positive end expiratory pressure.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, and the computer program is loaded by a processor to execute any of the methods provided by the embodiments of the present application.
  • a ventilation control method for respiratory support equipment is used to store a computer program, and the computer program is loaded by a processor to execute any of the methods provided by the embodiments of the present application.
  • the respiratory support device in the embodiment of the present application can determine the mechanical energy corresponding to the ventilation of the patient according to different positive end-expiratory pressures within a preset time period, obtain multiple mechanical energies, and reduce the mechanical energy corresponding to the minimum or start to increase significantly among the multiple mechanical energies.
  • the positive end-expiratory pressure is set to the target positive end-expiratory pressure so that subsequent respiratory support devices can ventilate the patient according to the target positive end-expiratory pressure.
  • the scheme can determine the target positive end expiratory pressure suitable for the patient based on the corresponding mechanical energy when the respiratory support device ventilates the patient according to different positive end expiratory pressures, so that the respiratory support device can ventilate the patient according to the target positive end expiratory pressure, and realizes
  • the automatic adjustment of the positive end expiratory pressure without manual manual adjustment improves the accuracy and timeliness of the positive end expiratory pressure adjustment, as well as the convenience and reliability of the ventilation control of the respiratory support equipment.
  • Fig. 1 is the schematic diagram of the application scenario of the ventilation control method of the respiratory support device provided in the embodiment of the present application;
  • FIG 2 is another schematic structural diagram of the respiratory support device provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a ventilation control method of a respiratory support device provided by an embodiment of the present application
  • FIG. 4 is another schematic flowchart of a ventilation control method of a respiratory support device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of determining the optimal PEEP value provided by the embodiment of the present application.
  • Embodiments of the present application provide a respiratory support device, a ventilation control method thereof, and a computer-readable storage medium.
  • FIG. 1 is a schematic diagram of a scenario for implementing a ventilation control method for a respiratory support device provided by an embodiment of the present application.
  • the respiratory support device may include an airflow providing device 10 , a breathing circuit 20 , a patient interface 30 , and a ventilation detection device.
  • Airflow providing device 10 communicates with patient interface 30 through breathing circuit 20, which may include a mask, nasal mask, nasal cannula, and endotracheal tube, etc., which are attached To the patient, the ventilation airflow generated by the airflow providing device 10 can be transmitted to the airway of the patient; the ventilation detection device 40 is arranged on the breathing circuit or the patient interface to detect ventilation parameters, which may include the flow rate of the ventilation airflow, Airway pressure, respiratory rate, tidal volume, inspiratory time, compliance of respiratory system or lungs, etc. It should be noted that the detection of ventilation parameters may be obtained by direct detection, or may be obtained by calculation after certain basic parameters are detected.
  • the respiratory support device may also include a human-computer interaction device, and the human-computer interaction device may include a display for displaying the positive end-expiratory pressure when the respiratory support device ventilates the patient, as well as displaying the patient's status information, ventilation parameters, etc.
  • the content can include text, graphs, numbers, colors, waveforms, characters, etc., to visually display various types of information.
  • the human-computer interaction device may also include an input device, through which medical staff can set various parameters, select and control the display interface of the display, etc., to realize information interaction between humans and machines.
  • the display can also be a touch display.
  • the processor 50 and the memory 60 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • the processor 50 can be a central processing unit (Central Processing Unit, CPU), and the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any other conventional processor.
  • the memory 60 may be a volatile memory (volatile memory), such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • volatile memory such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • Memory 60 is used to store computer programs that can provide instructions and data to processor 50 .
  • the processor 50 is configured to execute the computer program stored in the memory 60, and when executing the computer program, implement any ventilation control method of the respiratory support device provided by the embodiments of the present application, for example, the following steps may be performed:
  • the airflow providing device 10 is controlled to ventilate the patient according to the target positive end expiratory pressure; alternatively, the respiratory support device displays a suggestion message indicating that the target positive end expiratory pressure is recommended as a setting parameter for the patient Ventilate.
  • the processor 50 when determining the mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to different positive end-expiratory pressures within a preset time period, and when a plurality of mechanical energies are obtained, the processor 50 further executes: obtaining within the preset time period The airflow providing device 10 ventilates the patient according to the pressure and flow rate corresponding to different positive end expiratory pressures; mechanical energy is determined according to the pressure and flow rate corresponding to the different positive end expiratory pressures, and multiple mechanical energies are obtained.
  • the processor 50 when determining the mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to different positive end-expiratory pressures within a preset time period, and when a plurality of mechanical energies are obtained, the processor 50 further executes: obtaining within the preset time period The airflow providing device 10 ventilates the patient according to the corresponding respiratory frequency, tidal volume, inspiratory time, compliance, resistance and airway pressure according to different positive end expiratory pressures; Volume, inspiration time, resistance, compliance, and airway pressure determine mechanical energy, resulting in multiple mechanical energies.
  • the processor 50 when determining the mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to different positive end-expiratory pressures within a preset time period, and when multiple mechanical energies are obtained, the processor 50 further executes: obtaining the airflow providing device 10 according to The initial positive end expiratory pressure corresponds to the initial mechanical energy when ventilating the patient; the initial positive end expiratory pressure is adjusted according to the preset step size within a preset time period to obtain the current positive end expiratory pressure; the airflow providing device 10 is obtained according to the current expiratory pressure.
  • the current mechanical energy corresponding to the positive end-expiratory pressure to ventilate the patient if the current mechanical energy is smaller than the initial mechanical energy or does not increase significantly or does not increase significantly, the operation of adjusting the initial positive end-expiratory pressure according to the preset step size within a preset time period is performed , until the current mechanical energy is greater than or equal to the initial mechanical energy or significantly increased from the previous value, and multiple mechanical energies are obtained.
  • the processor 50 when acquiring the initial mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to the initial positive end-expiratory pressure, the processor 50 further executes: setting the initial positive end-expiratory pressure, and controlling the airflow providing device 10 according to the initial positive end-expiratory pressure.
  • the positive end expiratory pressure is used to ventilate the patient; after the airflow providing device 10 ventilates the patient according to the initial positive end expiratory pressure for a preset time, the initial mechanical energy corresponding to the airflow providing device 10 is obtained.
  • the processor 50 when setting the initial positive end expiratory pressure, the processor 50 further executes: when the respiratory support device starts to operate, obtain the current state of the patient, and set the initial positive end expiratory pressure according to the current state; When the respiratory support device starts to run, obtain the patient's historical positive end-expiratory pressure, and set the initial positive end-expiratory pressure according to the historical positive end-expiratory pressure; The information sets the initial positive end expiratory pressure; or, during the operation of the respiratory support device, the current positive end expiratory pressure of the airflow providing device 10 is set as the initial positive end expiratory pressure.
  • the processor 50 when acquiring the current mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to the current positive end expiratory pressure, the processor 50 further executes: controlling the airflow providing device 10 to ventilate the patient according to the current positive end expiratory pressure ; After the airflow providing device 10 ventilates the patient for a preset time according to the current positive end-expiratory pressure, obtain the current mechanical energy corresponding to the airflow providing device 10 .
  • the processor 50 when the initial positive end expiratory pressure is adjusted according to a preset step size within a preset time period to obtain the current positive end expiratory pressure, the processor 50 further executes: when the initial positive end expiratory pressure is greater than the preset When the positive end expiratory pressure is used, reduce the initial positive end expiratory pressure according to the preset step size to obtain the current positive end expiratory pressure; when the initial positive end expiratory pressure is less than or equal to the preset positive end expiratory pressure, according to the preset positive end expiratory pressure. Set the step size to increase the initial positive end expiratory pressure to obtain the current positive end expiratory pressure.
  • the operation of adjusting the initial positive end-expiratory pressure according to a preset step size within a preset time period is performed until the current mechanical energy is greater than or equal to the initial mechanical energy or more The previous value increases significantly, and when multiple mechanical energies are obtained, the processor 50 further executes: if the current mechanical energy is smaller than the initial mechanical energy or does not increase significantly, execute adjusting the initial positive end-expiratory pressure according to a preset step size within a preset time period Operate until the current mechanical energy is greater than or equal to the initial mechanical energy or significantly increases from the previous value, and the number of times the current mechanical energy is greater than or equal to the initial mechanical energy statistically obtained in different consecutive time periods is greater than the preset number of times, multiple mechanical energies are obtained.
  • the processor 50 before determining the mechanical energy corresponding to when the airflow providing device 10 ventilates the patient according to different positive end-expiratory pressures within a preset time period, and before obtaining a plurality of mechanical energy, the processor 50 further executes: obtaining the current state of the patient, If the current state satisfies the first preset condition, the adjustment mode of the positive end-expiratory pressure of the respiratory support device is triggered, so as to perform the determination in the adjustment mode that the airflow providing device 10 according to different positive end-expiratory pressures within the preset time period The operation of the mechanical energy corresponding to the patient's ventilation; or, acquiring the patient's physiological parameters, and if the physiological parameters meet the second preset condition, triggering the adjustment mode of the positive end-expiratory pressure of the respiratory support device to perform the determination in the adjustment mode The operation of the airflow providing device 10 corresponding to the mechanical energy when ventilating the patient according to different positive end-expiratory pressures within a preset time period.
  • the processor 50 when the positive end expiratory pressure corresponding to when the mechanical energy among the plurality of mechanical energies is minimum or starts to increase significantly is set as the target positive end expiratory pressure, the processor 50 further performs: normalizing the plurality of mechanical energies After normalization, multiple normalized mechanical energies are obtained; the positive end expiratory pressure corresponding to when the mechanical energy is minimum or starts to increase significantly among the normalized multiple mechanical energies is set as the target positive end expiratory pressure.
  • the processor 50 when the multiple mechanical energies are normalized to obtain the normalized multiple mechanical energies, the processor 50 further executes: acquiring the airflow providing device 10 according to different positive end-expiratory pressures within a preset time period The ventilation volume corresponding to the ventilation of the patient is obtained to obtain multiple ventilation volumes; the multiple mechanical energies are respectively normalized according to the multiple ventilation volumes to obtain the normalized multiple mechanical energies.
  • the processor 50 after controlling the airflow providing device 10 to ventilate the patient according to the target positive end expiratory pressure, the processor 50 further performs: outputting the target positive end expiratory pressure, and/or storing the target positive end expiratory pressure.
  • the processor 50 when outputting the target positive end expiratory pressure, the processor 50 further executes: displaying the target positive end expiratory pressure through a preset display of the respiratory support device, or broadcasting the target positive end expiratory pressure by voice, or sending the output instruction carrying the target positive end expiratory pressure to the mobile terminal, and controlling the mobile terminal to output the target positive end expiratory pressure based on the output instruction;
  • the respiratory support device may be a ventilator or an anesthesia machine, which will be described in detail below.
  • the respiratory support device may be a ventilator, which is an artificial mechanical ventilation device used to assist or control the patient's breathing movement to achieve gas exchange in the lungs, reduce the patient's work of breathing, and facilitate respiratory function recovery.
  • the respiratory support device may further include a respiratory interface 211 (ie, a patient interface), a gas source interface 212, a breathing circuit (ie, a breathing circuit), a breathing assistance device (ie, an airflow providing device), a
  • the processor 50, the memory 60, the display 70, etc. for detecting ventilation parameters the processor 50 can determine the target positive end expiratory pressure based on the ventilation parameters detected by the ventilation detection device, so as to control the respiratory assistance device to exhale according to the target. Ventilate the patient with positive end-air pressure.
  • the breathing circuit selectively communicates the air source interface 212 with the patient's breathing system.
  • the breathing circuit includes an expiratory branch 213a and an inspiratory branch 213b.
  • the expiratory branch 213a is connected between the breathing interface 211 and the exhaust port 213c for directing the patient's exhaled air to the exhaust port. 213c.
  • the exhaust port 213c can lead to the external environment, or can be channeled into a dedicated gas recovery device.
  • the gas source interface 212 is used to connect with a gas source (not shown in the figure), and the gas source is used to provide gas, and the gas can usually use oxygen and air; in some embodiments, the gas source can use a compressed gas cylinder or
  • the central air supply source supplies air to the ventilator through the air source interface 212.
  • the air supply types include oxygen O2 and air, etc.
  • the air source interface 212 may include pressure gauges, pressure regulators, flow meters, pressure reducing valves and air-oxygen Conventional components such as proportional control protection devices are used to control the flow of various gases such as oxygen and air, respectively.
  • the inspiratory branch 213b is connected between the breathing interface 211 and the air source interface 212 to provide oxygen or air for the patient, for example, the gas input from the air source interface 212 enters the inspiratory branch 213b, and then enters through the breathing interface 211 the patient's lungs.
  • the breathing interface 211 is used to connect the patient to the breathing circuit.
  • the gas exhaled by the patient can also be introduced into the exhaust port 213c through the expiratory branch 213a;
  • the breathing interface 211 may be a nasal cannula or a mask for wearing over the mouth and nose.
  • the breathing assistance device is connected to the air source interface 212 and the breathing circuit, and controls the delivery of gas provided by an external air source to the patient through the breathing circuit; in some embodiments, the breathing assistance device may include an expiratory controller 214a and an inspiratory controller 214b, the exhalation controller 214a is disposed on the expiratory branch 213a, and is used to connect or close the expiratory branch 213a according to the control instruction, or control the flow rate or pressure of the patient's exhaled gas.
  • the exhalation controller 214a may include one or more of the exhalation valve, one-way valve, flow controller, PEEP valve and other devices that can control the flow or pressure.
  • the suction controller 214b is disposed on the suction branch 213b, and is used to turn on the suction branch 213b or close the suction branch 213b according to the control command, or control the flow rate or pressure of the output gas.
  • the inhalation controller 214b may include one or more of the devices capable of controlling the flow or pressure, such as an exhalation valve, a one-way valve or a flow controller.
  • the memory 60 may be used to store data or programs, such as data collected by sensors or ventilation detection devices, and data calculated by the processor 50 or image frames generated by the processor, which may be 2D or 2D. 3D images, or memory 60 may store a graphical user interface, one or more default image display settings, programming instructions for the processor.
  • Memory 60 may be a tangible and non-transitory computer readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
  • the processor 50 may also be used to execute instructions or programs to control the breathing assistance device, the air source interface 212 and/or various control valves in the breathing circuit, or to process the received data to generate the The required calculation or judgment results, or generate visual data or graphics, and output the visual data or graphics to the display 70 for display.
  • the respiratory support device is a ventilator. It should be noted that the above Figure 2 is only an example of a ventilator, which is not intended to limit the structure of the ventilator to such a structure.
  • the memory 60 can be used to store data or programs, for example, to store data collected by various sensors, data generated by the processor through calculation, or image frames generated by the processor, and the image frames can be 2D or 3D images, or a memory 60 may store a graphical user interface, one or more default image display settings, programming instructions for the processor.
  • Memory 60 may be a tangible and non-transitory computer readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
  • the processor 50 may also be used to execute instructions or programs to control the respiratory assist device 320, the air source interface 310 and/or various control valves in the breathing circuit, or to process the received data to generate the required calculations or Judgment results, or generate visualized data or graphs, and output the visualized data or graphs to the display 70 for display.
  • FIG. 3 is a schematic flowchart of a ventilation control method of a respiratory support device provided by an embodiment of the present application.
  • the ventilation control method of the respiratory support device can be applied to the respiratory support device, and the respiratory support device can include a ventilator or an anesthesia machine, which will be described in detail below.
  • the ventilation control method of the respiratory support device may include steps S101 and S102, etc., and the details may be as follows:
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end-expiratory pressures within a preset time period, and obtains a plurality of mechanical energy.
  • the positive end-expiratory pressure is PEEP, which can increase the end-expiratory lung volume (EELV), make the alveoli not easily trapped at the end of expiration, increase the end-expiratory lung volume, and improve the alveolar-arterial blood oxygen
  • EELV end-expiratory lung volume
  • the partial pressure difference promotes the regression of pulmonary interstitial and alveolar edema, thereby improving alveolar diffusing function and ventilation/blood flow ratio, and reducing intrapulmonary shunt to improve oxygenation and lung compliance.
  • the PEEP can be automatically adjusted dynamically, so that the adjusted PEEP can be suitable for the patient.
  • the adjustment to PEEP may be to adjust PEEP to a value appropriate for the patient when the patient begins to use the respiratory support device for ventilation, or to adjust dynamically during the operation of the respiratory support device.
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end-expiratory pressures within a preset time period.
  • the respiratory support The ventilation control method of the device may further include: the respiratory support device obtains the current state of the patient, and if the current state satisfies the first preset condition, triggering an adjustment mode of the positive end-expiratory pressure of the respiratory support device to execute in the adjustment mode.
  • the respiratory support device determines the operation of the corresponding mechanical energy when ventilating the patient according to different positive end-expiratory pressures within a preset time period.
  • the respiratory support device can trigger the timing of dynamic PEEP adjustment according to the state of the patient.
  • the current state of the patient using the respiratory support device can be acquired, and the current state may include lying down state, standing state, or sitting on the bed, etc.
  • the respiratory support device can collect an image containing the patient through a preset camera, identify the contour of the patient in the image, and determine the current state of the patient according to the contour of the patient; or breathing
  • the support device can detect the preset parameters of the patient (such as heartbeat or respiratory rate, etc.), and determine the current state of the patient according to the preset parameters (such as a faster heartbeat when the patient is standing, and a slower heartbeat when the patient is lying).
  • the first preset condition can be flexibly set according to actual needs. For example, it can be determined whether the current state changes, and if there is a change in the current state, it is determined that the current state satisfies the first preset condition; if there is no change in the current state, it is determined that the current state does not meet the first preset condition. If the current state does not meet the first preset condition, the current PEEP is maintained to ventilate the patient.
  • the adjustment mode of the PEEP of the respiratory support device is triggered to perform the operation of determining the mechanical energy corresponding to the respiratory support device ventilating the patient according to different PEEPs in the adjustment mode. For example, when the current state of the patient is converted from the state of sitting on the bed to the state of lying down and sleeping, the PEEP adjustment mode can be entered to dynamically adjust the PEEP.
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end-expiratory pressures within a preset time period, and before obtaining a plurality of mechanical energies, the ventilation control method of the respiratory support device may further include: the respiratory support device Acquire the physiological parameters of the patient, and if the physiological parameters meet the second preset condition, trigger the adjustment mode of the positive end-expiratory pressure of the respiratory support device, so as to execute the respiratory support device in the adjustment mode to determine the preset time period according to different expiratory pressures.
  • the corresponding mechanical energy operation when ventilating a patient with positive end-air pressure may be used to determine the preset time period.
  • the respiratory support device can trigger the timing of dynamic PEEP adjustment according to the patient's physiological parameters.
  • the patient's physiological parameters can be obtained, and the physiological parameters can be flexibly set according to actual needs.
  • the physiological parameters may include respiratory rate or blood oxygen saturation, etc.
  • the physiological parameters of the patient may be obtained through the wearable device of the patient or other detection devices worn by the medical staff to the patient.
  • it can be determined whether the physiological parameters of the patient meet the second preset condition, and the second preset condition can be flexibly set according to actual needs.
  • the second preset condition is met, and when the breathing frequency or the blood oxygen saturation change range is small, it is determined that the patient's physiological parameter does not meet the second preset condition. If the physiological parameters of the patient do not meet the first preset condition, maintaining the current PEEP to ventilate the patient. If the physiological parameter satisfies the second preset condition, the adjustment mode of PEEP of the respiratory support device is triggered, so that the respiratory support device is executed in the adjustment mode to determine the corresponding values when ventilating the patient according to different positive end-expiratory pressures within the preset time period. The operation of mechanical energy.
  • the respiratory support device in order to improve the convenience of automatically adjusting PEEP, can monitor the mechanical energy in real time when ventilating the patient.
  • the mechanical energy changes greatly for example, the mechanical energy increases or decreases a preset threshold, the preset threshold According to the actual needs of flexible settings
  • the PEEP in order to improve the flexibility of automatically adjusting PEEP, the PEEP may be dynamically adjusted periodically or periodically. For example, it may be detected whether the timing time arrives, and when the timing time arrives, the PEEP adjustment mode may be entered.
  • the respiratory support device can ventilate the patient according to a preset time period through the airflow providing device, and within the preset time period, the respiratory support device can ventilate the patient according to different PEEPs, and then the preset time can be determined In the cycle, the respiratory support device obtains a plurality of mechanical energies according to the mechanical energy corresponding to the ventilation of the patient according to different exhaled PEEPs, which will be described in detail below.
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end-expiratory pressures within a preset time period, and obtaining a plurality of mechanical energies may include: obtaining the respiratory support device within the preset time period according to the following steps: The corresponding pressure and flow rate when ventilating the patient with different positive end expiratory pressures; the mechanical energy is determined according to the pressure and flow rate corresponding to different positive end expiratory pressures, and multiple mechanical energies are obtained.
  • the respiratory support device can determine the mechanical energy through ventilation parameters such as the corresponding pressure and flow rate when ventilating the patient, where the pressure is the airway pressure of the patient, and the flow rate is the gas flow rate.
  • ventilation parameters such as pressure and flow rate corresponding to when the breathing support device ventilates the patient according to different PEEPs within a preset time period can be detected by the ventilation detection device, and then the pressure and flow rate are integrated within a preset unit time, or the pressure and the flow rate are integrated within a breathing cycle, or the pressure and gas flow rate are integrated within a preset time period, etc., to obtain the corresponding mechanical energy.
  • the complete mechanical energy calculation formula can be as follows:
  • the simplified integral method formula can also be used to calculate the mechanical energy, and the calculation formula can be as follows:
  • RR represents respiratory rate, The unit is per minute; ⁇ V is the tidal volume, C is the lung compliance, the unit is ml/cmH2O; I:E is the ratio of inspiratory to breathing (that is, the ratio of inspiratory time to expiratory time); R aw is the resistance, in unit is cmH2O/L/s;
  • PEEP means positive end-expiratory pressure, the unit is cmH2O;
  • PEEPVolume means the tidal volume caused by PEEP, the unit is liter (L), and the PEEP is reduced to 0 exhaled volume;
  • Paw means the airway pressure, the unit It is cmH2O, which can be measured by the preset pressure sensor of the respiratory support device;
  • the integral operation of the pressure (that is, the airway pressure) and the flow rate (that is, the gas flow rate) in a single cycle can be performed to obtain the corresponding mechanical energy when ventilating the patient, and the formula is as follows:
  • Energyrs is the mechanical energy applied to the patient's respiratory system by ventilation obtained by integrating the airway pressure and gas flow rate in a single cycle
  • Tinsp is the inspiratory time of each breathing cycle
  • Paw is the airway pressure
  • Flow is the gas flow rate.
  • the mechanical energy calculated in a single cycle can also be converted into mechanical energy per minute combined with the respiratory rate. The formula is as follows:
  • the unit of airway pressure Paw is cmH2O
  • the unit of gas flow rate Flow is L/min
  • the unit of inspiratory time Tinsp of each breathing cycle is s
  • RR is the respiratory rate
  • the unit is per minute
  • the potential energy generated by the tidal volume portion formed by positive end-expiratory pressure may also be considered.
  • Energy is generally a fixed value that does not vary with mechanical ventilation and can often be omitted because of the additional release of positive end-expiratory pressure.
  • the mechanical energy per minute is obtained by unit conversion combined with the respiration rate:
  • PEEPVolume is the tidal volume caused by positive end expiratory pressure
  • the unit is L, which is the exhaled volume when the positive end expiratory pressure drops to 0
  • PEEP is the positive end expiratory pressure
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end-expiratory pressures within a preset time period, and obtaining a plurality of mechanical energies may include: obtaining the respiratory support device within the preset time period according to the following steps: Corresponding respiratory frequency, tidal volume, inspiratory time, compliance, resistance and airway pressure when ventilating patients with different positive end expiratory pressures; , compliance, resistance, and airway pressure determine mechanical energy, resulting in multiple mechanical energies.
  • respiratory support equipment can determine mechanical energy through ventilation parameters such as respiratory rate, tidal volume, inspiratory time, compliance, resistance, and airway pressure corresponding to ventilation of the patient.
  • Volume TV refers to the volume of air inhaled or exhaled each time during calm breathing, and the tidal volume is related to age, gender, volume surface, breathing habits, and body metabolism, etc.
  • the tidal volume set in this embodiment can refer to the volume of inhaled air;
  • the compliance is the compliance of the patient's lungs (may also be referred to as lung compliance).
  • the human respiratory system has characteristics such as resistance and compliance.
  • the respiratory support equipment When the respiratory support equipment performs mechanical ventilation, it must overcome the resistance (resistance generated when the flow rate flows through the airway) and compliance (generated when the alveoli are inflated). pressure. Therefore, the respiratory support equipment needs to perform work on the patient's respiratory system.
  • the respiratory support equipment In order to maintain PEEP, the respiratory support equipment also needs to apply a certain amount of energy to the patient's respiratory system.
  • the mechanical power during mechanical ventilation is obtained by combining the respiratory work and the energy required to maintain PEEP. , the formula can be as follows:
  • the respiratory support equipment can detect the ventilation rate, tidal volume, inspiratory time, compliance, resistance and airway pressure corresponding to the ventilation of the patient according to different positive end-expiratory pressures within a preset period of time through the ventilation detection device. parameters, the mechanical energy can then be determined based on respiratory rate, tidal volume, inspiratory time, compliance, resistance, and airway pressure, etc., according to the above formula.
  • the respiratory support device determines the mechanical energy corresponding to when ventilating the patient according to different positive end expiratory pressures within a preset time period, and obtaining a plurality of mechanical energies may include: obtaining the respiratory support device according to the initial positive end expiratory pressure.
  • the respiratory support equipment can gradually increase or decrease PEEP in the process of ventilating patients according to different PEEPs, so as to find the PEEP value corresponding to the best mechanical energy according to the changes of mechanical energy corresponding to different PEEPs.
  • the initial mechanical energy corresponding to when the respiratory support device ventilates the patient according to the initial positive end-expiratory pressure can be obtained first.
  • acquiring the corresponding initial mechanical energy when the respiratory support device ventilates the patient according to the initial positive end expiratory pressure may include: setting the initial positive end expiratory pressure, and controlling the respiratory support device to ventilate the patient according to the initial positive end expiratory pressure ; After the respiratory support device ventilates the patient for a preset time according to the initial positive end-expiratory pressure, the initial mechanical energy corresponding to the respiratory support device is obtained.
  • initial PEEP can be set, and initial mechanical energy can be obtained after a preset time of initial PEEP ventilation to ensure that reliable initial mechanical energy can be obtained after initial PEEP runs stably.
  • the initial PEEP may be set to ventilate the patient according to the initial PEEP.
  • setting the initial positive end expiratory pressure may include: when the respiratory support device starts to operate, acquiring the current state of the patient, and setting the initial positive end expiratory pressure according to the current state.
  • the initial PEEP can be set based on the current state of the patient. For example, when the patient is sleeping or sitting on the bed, the initial PEEP may be different. At this time, you can obtain and use respiratory support
  • the current state of the patient of the device which may include a lying state, a standing state, or a bed-sitting state, etc.
  • the respiratory support device can collect an image containing the patient through a preset camera, and perform a contour analysis of the patient in the image.
  • the respiratory support device can detect the patient's preset parameters (such as heartbeat or respiratory rate, etc.), and determine the patient's current state according to the preset parameters (such as when the patient is standing. fast, the heartbeat is slower when the patient is lying down).
  • the initial PEEP can be set according to the current state of the patient. For example, when the current state of the patient is the lying state, the initial PEEP can be set as a, and when the current state of the patient is the state of sitting on the bed, The initial PEEP can be set to b, etc.
  • the specific values of a and b can be flexibly set according to actual needs, which are not limited here.
  • setting the initial positive end expiratory pressure may include: obtaining the patient's historical positive end expiratory pressure when the respiratory support device starts to operate, and setting the initial positive end expiratory pressure according to the historical positive end expiratory pressure.
  • the historical optimal PEEP adjusted by the patient each time can be stored in the local database of the respiratory support device, or stored in the server.
  • the pre-stored historical PEEP of the patient can be obtained from the server or the local database of the respiratory support device, and the state and/or physiological parameters corresponding to the historical PEEP can be obtained.
  • the current state and/or the current physiological parameter, etc., and the historical PEEP matching the current state and/or the current physiological parameter is determined.
  • the matching historical PEEP may be set as the initial PEEP. Therefore, the initial positive end-expiratory pressure can be set with reference to the better PEEP when the patient used the respiratory support device before, which improves the efficiency and accuracy of the initial PEEP setting.
  • the setting of the initial positive end expiratory pressure may include: when the respiratory support device starts to operate, acquiring the condition information of the patient, and setting the initial positive end expiratory pressure according to the condition information.
  • the initial PEEP can be set according to different conditions of the patient, for example, a severe respiratory disease may require a larger positive end-expiratory pressure value.
  • the mapping relationship between different condition information of different patients and the initial PEEP can be preset, such as establishing a patient identification (such as name or account number, etc.), the mapping relationship between different disease information and different initial PEEP, the mapping relationship can be It is the historical optimal value adjusted during the patient's historical use of respiratory support equipment.
  • the mapping relationship can also be preset by medical staff based on experience, and the mapping relationship can also be generated in other ways. The specific content is not limited here. .
  • the mapping relationship can be stored in a server or a local database of the respiratory support device, or the like.
  • the pre-stored mapping relationship between the different condition information of the patient and the initial PEEP can be obtained from the server or the local database of the respiratory support device.
  • the patient's condition information can be obtained and determined The initial PEEP matched to the detected condition information.
  • setting the initial positive end expiratory pressure may include: during the operation of the respiratory support device, setting the current positive end expiratory pressure of the respiratory support device as the initial positive end expiratory pressure.
  • the current PEEP can be set as the initial PEEP.
  • the respiratory support device can ventilate the patient according to the initial PEEP. After the respiratory support device ventilates the patient according to the initial PEEP for a preset time, the initial mechanical energy corresponding to the respiratory support device can be obtained.
  • the preset time can be performed according to actual needs. Flexible settings.
  • the initial PEEP1 in order to avoid large fluctuations when the respiratory support equipment ventilates the patient according to the initial PEEP1, resulting in inaccurate initial mechanical energy, the initial PEEP1 can be stably run for the T1 time (the T1 time can be based on the actual After flexible settings are required), the ventilation parameters corresponding to the initial PEEP1 are obtained, and based on the ventilation parameters, the initial mechanical energy MP1 during ventilation under the initial PEEP1 is calculated according to the above formula, so as to improve the accuracy of the calculation of the initial mechanical energy MP1.
  • the respiratory support device can adjust the initial PEEP according to the preset step size within a preset time period to obtain the current PEEP, wherein the preset time period and the preset step size can be flexibly set according to actual needs , and the specific value is not limited here.
  • the initial PEEP may be increased by a preset step size or the initial PEEP may be decreased by a preset step size. Then, the current mechanical energy corresponding to when the respiratory support device ventilates the patient according to the current PEEP can be obtained.
  • acquiring the current mechanical energy corresponding to when the respiratory support device ventilates the patient according to the current positive end expiratory pressure may include: controlling the respiratory support device to ventilate the patient according to the current positive end expiratory pressure; After the positive end-air pressure ventilates the patient for a preset time, the current mechanical energy corresponding to the respiratory support device is obtained.
  • the ventilation parameters corresponding to the current PEEP2 can be obtained after the current PEEP2 runs steadily for the T2 time (ie, the preset time), and based on the current PEEP2
  • the ventilation parameter calculates the current mechanical energy MP2 when ventilating at the current PEEP2 according to the above formula. It is avoided that there is a large fluctuation when ventilating the patient according to the current PEEP2, resulting in inaccurate current mechanical energy obtained.
  • adjusting the initial positive end expiratory pressure according to a preset step size within a preset time period, and obtaining the current positive end expiratory pressure may include: when the initial positive end expiratory pressure is greater than the preset positive end expiratory pressure When the initial positive end expiratory pressure is reduced by the preset step size, the current positive end expiratory pressure is obtained; when the initial positive end expiratory pressure is less than or equal to the preset positive end expiratory pressure, the initial positive end expiratory pressure is increased according to the preset step size Initial positive end-expiratory pressure to get the current positive end-expiratory pressure.
  • the adjustment direction can be determined based on the size of the initial PEEP. For example, it can be determined whether the initial PEEP is greater than the preset PEEP.
  • the preset PEEP can be flexibly set according to actual needs. The value is not limited here.
  • the initial PEEP is greater than the preset PEEP, it means that the initial PEEP at this time is relatively large, and the initial PEEP can be reduced according to the preset step size to obtain the current PEEP; when the initial PEEP is less than or equal to the preset PEEP, it means that the initial PEEP at this time is If it is smaller, the initial PEEP can be increased according to the preset step size to obtain the current PEEP. That is, when the initial PEEP is at a low level, it is preferred to increase the initial PEEP by a preset step size; when the initial PEEP is at a high level, it is preferred to decrease the initial PEEP by a preset step size.
  • the adjustment direction can be determined based on the change of mechanical energy in the process of multiple adjustment. For example, as shown in FIG. 4 , after the initial mechanical energy MP1 is calculated based on the ventilation parameters corresponding to the initial positive end expiratory pressure PEEP1, and the current mechanical energy MP2 is calculated based on the ventilation parameters corresponding to the current positive end expiratory pressure PEEP2, it can be determined that MP2 Is it less than or equal to MP1. When MP2 is less than or equal to MP1, based on the current PEEP2, increase the value of PEEP according to the preset step size to obtain PEEP3, and calculate the corresponding mechanical energy MP3 when ventilating according to PEEP3.
  • MP3 is close to or equal to MP2 (that is, the difference between MP3 and MP2)
  • the difference between the two is less than the preset threshold, which can be flexibly set according to actual needs)
  • the mechanical energy MP value is no longer reduced, and the adjustment of the PEEP value can be stopped at this time, or if the preset value is preset two or more times in a row
  • the step size that is, two or more gradients
  • the mechanical energy MP corresponding to PEEP remains unchanged, and then the adjustment of the value of PEEP is stopped.
  • the operation of adjusting the initial positive end-expiratory pressure according to a preset step size within a preset time period is performed until the current mechanical energy is greater than or equal to the initial mechanical energy or more
  • the previous value increases significantly and obtaining multiple mechanical energies may include: if the current mechanical energy is smaller than the initial mechanical energy or does not increase significantly, performing an operation of adjusting the initial positive end-expiratory pressure according to a preset step size within a preset time period until the current mechanical energy When it is greater than or equal to the initial mechanical energy or significantly increased from the previous value, and the number of times that the current mechanical energy is greater than or equal to the initial mechanical energy statistically obtained in successive different time periods is greater than the preset number of times, multiple mechanical energies are obtained.
  • the operation of adjusting the initial positive end-expiratory pressure according to the preset step size within a preset time period is performed until the current mechanical energy is greater than or equal to the initial mechanical energy or significantly increased from the previous value.
  • the mechanical energy in the process of obtaining multiple mechanical energy, in order to improve the stability of mechanical energy acquisition, the mechanical energy can be increased or unchanged after PEEP is increased two or more times, indicating that PEEP does not need to be increased; The mechanical energy increases or remains unchanged after several times, indicating that there is no need to reduce PEEP.
  • the operation of adjusting the initial PEEP according to the preset step size within a preset time period is performed until the current mechanical energy is greater than or equal to the initial mechanical energy or increases significantly from the previous value, and continuously
  • the number of times that the current mechanical energy is greater than or equal to the initial mechanical energy statistically obtained in different time periods is greater than the preset number of times, multiple mechanical energies are obtained.
  • the significantly increased amplitude can be flexibly set according to actual needs, and the specific content is not limited here. For example, it may be determined that the current mechanical energy is greater than a preset threshold as a significant increase, and the preset threshold may be flexibly set according to actual needs.
  • the respiratory support device sets the positive end-expiratory pressure corresponding to when the mechanical energy among the multiple mechanical energies is the smallest or starts to increase significantly as the target positive end-expiratory pressure.
  • Mechanical energy represents the amount of energy applied by the respiratory support device to the patient. Under the same ventilation volume, it is hoped that the smaller the mechanical energy, the better, which can reduce lung damage.
  • the PEEP can be adjusted to minimize the mechanical energy, and the PEEP at this time is considered to be the optimal PEEP under the ventilation conditions.
  • the optimal PEEP can be found based on the minimum mechanical energy, that is, the PEEP corresponding to the minimum mechanical energy among the obtained multiple mechanical energies can be set as the target PEEP, and the target PEEP is the optimal PEEP in FIG. 5 .
  • the PEEP can be adjusted so that when the mechanical energy starts to increase significantly, the PEEP at this time is considered to be the optimal PEEP under the ventilation conditions.
  • the significant increase may be the increase of mechanical energy exceeding the preset threshold or exceeding the preset ratio, etc. If the increase of mechanical energy exceeds the preset threshold, it means that the change of mechanical energy is large, and the preset threshold can be flexibly set according to actual needs. For example, when the respiratory support device ventilates the patient according to the current positive end expiratory pressure a, the corresponding mechanical energy is A, and then the positive end expiratory pressure b obtained by increasing the current positive end expiratory pressure a by a preset step length is used to ventilate the patient. The corresponding mechanical energy is B.
  • the mechanical energy B is greater than the mechanical energy A and exceeds the preset threshold, it means that the mechanical energy begins to increase significantly, and the positive end expiratory pressure corresponding to the mechanical energy A is set as the target positive end expiratory pressure.
  • the respiratory support device ventilates the patient according to the current positive end expiratory pressure a
  • the corresponding mechanical energy is A
  • the positive end expiratory pressure b obtained by increasing the current positive end expiratory pressure a by a preset step length.
  • the corresponding mechanical energy is B
  • the positive end-expiratory pressure c obtained by increasing the preset step according to the positive end-expiratory pressure b
  • the corresponding mechanical energy when ventilating the patient is C.
  • the mechanical energy B is greater than the mechanical energy A and exceeds the preset value If the threshold value, and the mechanical energy C is greater than the mechanical energy B and exceeds the preset threshold, it means that the mechanical energy begins to increase significantly, and the positive end expiratory pressure corresponding to the mechanical energy A is set as the target positive end expiratory pressure.
  • the PEEP at this time is considered to be the optimal PEEP under the ventilation condition, that is, the turning point of the mechanical energy changing with the PEEP can be regarded as the optimal PEEP.
  • the significant increase may be the reduction of mechanical energy exceeding a certain threshold or exceeding a certain proportion, etc.
  • the certain threshold or exceeding a certain proportion may be consistent with or inconsistent with the increase exceeding the preset threshold or exceeding the preset proportion, and the specific value may be determined according to the actual situation. Flexible settings are required, which are not limited here. If the mechanical energy decreases beyond a certain threshold, it means that the mechanical energy changes greatly.
  • the respiratory support device ventilates the patient according to the current positive end expiratory pressure d
  • the corresponding mechanical energy is D
  • the positive end expiratory pressure e obtained by increasing the current positive end expiratory pressure d by a preset step length is used to ventilate the patient
  • the corresponding mechanical energy is E.
  • the mechanical energy E is less than the mechanical energy D and exceeds a certain threshold, it means that the mechanical energy begins to decrease significantly, and the positive end expiratory pressure corresponding to the mechanical energy D is set as the target positive end expiratory pressure.
  • the human lung is composed of many alveoli, and some of the alveoli in the patient are collapsed. If the PEEP is increased, the pressure will increase, the collapsed alveoli will be stretched, and the compliance will increase; if the PEEP is decreased, the compliance will become smaller. That is, since PEEP can re-expand collapsed alveoli, too low PEEP can lead to alveolar collapse, reducing lung compliance, while too high PEEP can lead to alveolar over-inflation, which also reduces lung compliance, or Cause lung damage. From the calculation formula of mechanical energy, it can be seen that while keeping the ventilation volume (ie, tidal volume TV and respiratory rate f) unchanged, adjusting PEEP affects the compliance C, which in turn can change the mechanical energy during ventilation.
  • the ventilation volume ie, tidal volume TV and respiratory rate f
  • the PEEP can be increased or decreased in a gradient, and according to the change of mechanical energy, the PEEP value with the minimum mechanical energy or the PEEP value corresponding to when the mechanical energy starts to increase significantly is found.
  • the current PEEP level is low (such as less than 5cmH2O, this time is recorded as PEEP1)
  • the PEEP1 level is stable for T1 time
  • the mechanical energy MP1 of ventilation under PEEP1 is calculated, and then the first step is to increase PEEP (PEEP2)
  • PEEP2 After running PEEP2 for T2 time stably, calculate the mechanical energy MP2 during PEEP2 ventilation.
  • MP2 is less than or equal to MP1
  • PEEP ventilation can be continued to be increased, and the mechanical energy increases or remains unchanged after PEEP is increased two or more times, indicating that there is no need to increase PEEP.
  • MP2 is less than or equal to MP1
  • the gradient change of PEEP find the minimum value point of MP, and determine the PEEP at this time as the best PEEP.
  • the PEEP search can be reduced first, and the current PEEP trigger and higher levels can also continue to increase the PEEP search.
  • the optimal PEEP has been found, it is not necessary to stop changing the PEEP, which means that the stable running time can be lengthened and the frequency of changing the PEEP can be reduced.
  • the optimal PEEP ventilation can be used continuously. If MP is rising or falling, PEEP can be changed by gradient to find a new optimal PEEP point.
  • the respiratory support device setting the positive end expiratory pressure corresponding to when the mechanical energy among the multiple mechanical energies is minimum or starts to increase significantly as the target positive end expiratory pressure may include: the respiratory support device normalizes the multiple mechanical energies After normalization, multiple normalized mechanical energies are obtained; the positive end expiratory pressure corresponding to when the mechanical energy is minimum or starts to increase significantly among the normalized multiple mechanical energies is set as the target positive end expiratory pressure.
  • the mechanical energy can be normalized. Processing, excluding the influence of other factors, for example, normalized mechanical energy such as ventilation volume or average pressure can be used.
  • the positive end-expiratory pressure corresponding to the significant increase is set as the target positive end-expiratory pressure.
  • the respiratory support device normalizes multiple mechanical energies
  • obtaining the normalized multiple mechanical energies may include: obtaining the respiratory support device according to different positive end-expiratory pressures within a preset time period by the respiratory support device.
  • the ventilation volume corresponding to the patient's ventilation is obtained, and multiple ventilation volumes are obtained; the multiple mechanical energies are respectively normalized according to the multiple ventilation volumes, and the normalized multiple mechanical energies are obtained.
  • the ventilation volume may be minute ventilation volume, or other ventilation volume per unit time.
  • the key to determining the optimal PEEP is to find the minimum point of mechanical energy. Under ideal conditions, the ventilation volume is stable, and the original value of mechanical energy can be directly used to determine the minimum point. Since the minute ventilation MV may fluctuate in actual clinical use, in order to improve the accuracy of the target positive end-expiratory pressure determination, the minute ventilation MV can be used to normalize the mechanical energy MP. For example, MP/MV can be used to find its The minimum point to determine the target PEEP.
  • the minute ventilation MV the larger the mechanical energy MP, which may not be caused by PEEP, but may be caused by the minute ventilation MV, that is, the minute ventilation MV may be unstable and may exist in different time periods. (For example, a period of 1 minute) the minute ventilation MV will change.
  • the minute ventilation corresponding to the first minute is MV11
  • the minute ventilation corresponding to the second minute is MV22
  • the minute ventilation corresponding to the third minute is MV33.
  • MV11, MV22 and MV33 may be different, so if the MV is not constant, you can calculate the MV every minute and the mechanical energy MP every minute, and then use the MV in the same minute to normalize the MP to get
  • the normalized mechanical energy for example, the normalized multiple mechanical energies are MP1/MV1, MP2/MV2, and MP3/MV3, etc.
  • MP1/MV1, MP2/MV2, and MP3/MV3, etc. can be compared, In order to filter out the smallest normalized mechanical energy. If the MV is constant over different minutes, normalization of the mechanical energy may not be required, and multiple mechanical energies, such as MP1, MP2, MP3, etc., can be directly compared to filter out the smallest mechanical energy.
  • the ventilation control method of the respiratory support device further includes: the respiratory support device ventilates the patient according to the target positive end expiratory pressure; or, the respiratory support device displays a suggestion message, The advice message indicates that the target positive end-expiratory pressure is recommended as the setting parameter to ventilate the patient.
  • the respiratory support device can ventilate the patient according to the target PEEP, for example, by generating a ventilation airflow according to the target PEEP through the airflow providing device, and delivering the generated ventilation airflow to the patient interface through the breathing circuit, and passing the airflow through the patient interface
  • the ventilation airflow generated by the device is provided for delivery to the patient's airway.
  • the respiratory support device may output and display the target PEEP for the medical staff to view, for example, display a message about the setting suggestion of the target PEEP.
  • the respiratory support device can receive the determined instruction input by the medical staff, and ventilate the patient according to the target PEEP based on the determined instruction.
  • the respiratory support device may automatically adjust ventilation settings to ventilate the patient based on the obtained target PEEP.
  • the respiratory support equipment can monitor the mechanical energy in the ventilation process in real time, and determine whether there is a change in the mechanical energy, or determine whether the change in the mechanical energy is greater than a preset value, which can be flexibly adjusted according to actual needs. set up.
  • the target PEEP is re-adjusted according to the above method.
  • the current target PEEP is maintained to ventilate the patient; or when the change in the mechanical energy is greater than the preset value, It means that the change range of mechanical energy is large, and the target PEEP can be re-adjusted according to the above method.
  • the change range of mechanical energy is less than or equal to the preset value, it means that the change range of mechanical energy is small, and the current target PEEP can be maintained to the patient. ventilation.
  • the ventilation control method of the respiratory support device may further include: outputting the target positive end expiratory pressure by the respiratory support device, and/or storing the target expiratory breath positive pressure at the end.
  • the respiratory support device can output the target positive end expiratory pressure, which is convenient for medical staff to check.
  • outputting the target positive end expiratory pressure may include: displaying the target positive end expiratory pressure through a preset display of the respiratory support device, or broadcasting the target positive end expiratory pressure by voice, or carrying the target end expiratory pressure
  • the output command of the positive pressure is sent to the mobile terminal, and based on the output command, the mobile terminal is controlled to output the target positive end-expiratory pressure.
  • the target PEEP can be displayed on the preset display of the respiratory support device, the real-time value of the target PEEP can be displayed and/or the target expiratory value can be displayed Variation of final positive pressure with time.
  • the target positive end expiratory pressure there are multiple adjustments to the target positive end expiratory pressure, and the timestamp of the target end expiratory pressure obtained by each adjustment can also be obtained. Press to generate a graph or table, etc., and display the graph or table on the display.
  • the target PEEP in order to improve the convenience of the target PEEP output, can be reported by voice, wherein the decibel size of the voice broadcast and the language (such as Chinese or English) of the voice broadcast can be based on the actual situation.
  • Flexible settings are required. At this time, it can be automatically closed after the number of cycles of the voice broadcast reaches a preset number, or the user can click the close button to close, etc.
  • the preset number of times can be flexibly set according to actual needs.
  • the target PEEP in order to improve the flexibility of the target PEEP output, can be displayed in a pop-up window in the display interface of the display, wherein the size, background color and display position of the pop-up window can be adjusted according to actual needs.
  • the dialog box displayed in the pop-up window can be automatically closed after the display time reaches the preset time, or the user can click the close button in the upper right corner to close, etc.
  • the preset time can be flexibly set according to actual needs.
  • the output command carrying the target positive end-expiratory pressure can be sent to a mobile terminal, and the mobile terminal can be a mobile phone carried by medical staff, a computer used by medical staff, or a monitor, etc. , at this time, the mobile terminal can be controlled to output the target PEEP based on the output instruction.
  • the mobile terminal can display the target PEEP in the display interface, broadcast the target PEEP by voice, or display the target PEEP in the display interface.
  • a pop-up window displays the target positive end-expiratory pressure, etc.
  • the setting instruction input by the medical staff can be received, and the output mode of the target positive end expiratory pressure can be set according to the setting instruction.
  • the target positive end expiratory pressure may be stored, so that the pre-stored target positive end expiratory pressure corresponding to the patient (ie, the historical positive end expiratory pressure) can be obtained subsequently as required.
  • storing the target positive end expiratory pressure may include storing the target positive end expiratory pressure to a local database of the respiratory support device, or storing the target positive end expiratory pressure to a preset server. So that the target positive end-expiratory pressure matching the patient can be queried from the local database or preset server of the respiratory support device subsequently.
  • the respiratory support device can display the real-time value of the mechanical energy acting on the patient's respiratory system by mechanical ventilation, and/or display the changing trend of the mechanical energy acting on the patient's respiratory system by mechanical ventilation over time.
  • the respiratory support device can also judge the patient's condition according to the real-time value and/or change trend of the mechanical energy acting on the patient's respiratory system by mechanical ventilation.
  • the respiratory support device can also give an alarm based on the mechanical energy of the mechanical ventilation acting on the patient's respiratory system.
  • alarm information can be output; and/or, when it is judged that the mechanical energy of the mechanical ventilation acting on the patient's respiratory system is lower than the second threshold, it means that the mechanical energy is too small, which may lead to alveolar collapse, and alarm information can be output at this time (for example, it can display alarm information, buzzer sounding or indicator light flashing, etc.), wherein the alarm mode, the first threshold and the second threshold can be flexibly set according to actual needs.
  • the respiratory support device in the embodiment of the present application can determine the mechanical energy corresponding to the ventilation of the patient according to different positive end-expiratory pressures within a preset time period, obtain multiple mechanical energies, and reduce the mechanical energy corresponding to the minimum or start to increase significantly among the multiple mechanical energies.
  • the positive end-expiratory pressure is set to the target positive end-expiratory pressure, and the respiratory support equipment can be controlled to ventilate the patient according to the target positive end-expiratory pressure.
  • the scheme can determine the target positive end expiratory pressure suitable for the patient based on the corresponding mechanical energy when the respiratory support device ventilates the patient according to different positive end expiratory pressures, so that the respiratory support device can ventilate the patient according to the target positive end expiratory pressure, and realizes
  • the automatic adjustment of the positive end expiratory pressure without manual manual adjustment improves the accuracy and timeliness of the positive end expiratory pressure adjustment, as well as the convenience and reliability of the ventilation control of the respiratory support equipment.
  • the embodiments of the present application further provide a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the ventilation control method of the respiratory support device provided by the embodiments of the present application.
  • the embodiments of the present application also provide a storage medium, where the storage medium is a computer-readable storage medium, and the storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions, so as to realize the provision of the embodiments of the present application.
  • ventilation control methods for respiratory support equipment are a storage medium, where the storage medium is a computer-readable storage medium, and the storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions, so as to realize the provision of the embodiments of the present application.
  • the storage medium may be an internal storage unit of the respiratory support device described in any of the foregoing embodiments, such as a hard disk or a memory of the respiratory support device.
  • the storage medium can also be an external storage device of the respiratory support device, such as a plug-in hard disk equipped on the respiratory support device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card), etc.
  • the computer program stored in the storage medium can execute any ventilation control method of the respiratory support device provided by the embodiments of the present application, it is possible to realize the ventilation of any respiratory support device provided by the embodiments of the present application.
  • the control method For the beneficial effects that can be achieved by the control method, refer to the foregoing embodiments for details, which will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸支持设备及其通气控制方法和计算机可读存储介质,包括:呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能(S101);呼吸支持设备将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压(S102)。提高了对呼气末正压调节的准确性和及时性,及对呼吸支持设备通气控制的便捷性和可靠性。

Description

呼吸支持设备及其通气控制方法和计算机可读存储介质 技术领域
本申请涉及医疗设备技术领域,尤其涉及一种呼吸支持设备及其通气控制方法和计算机可读存储介质。
背景技术
人的呼吸是指周期节律性地吸入和呼出气体,吸收氧气排出二氧化碳,从而实现气体交换。当一些患者无法进行自主呼吸时,则可以通过机械通气来帮助患者完成呼吸,例如对于呼吸衰竭等的患者,通常可以通过外置的设备如呼吸机等来给患者提供呼吸支持。
其中,呼气末正压通气(PEEP,Positive End Expiratory Pressure)是呼吸机的重要设置参数,它的作用是在呼气阶段维持一定的气道正压,从而保持肺泡的开放,防止塌陷,进而保证肺泡的有效通气。不同患者在不同病理状态下所需的PEEP各不相同,如果PEEP过低,会导致部分肺泡塌陷,无法参与气体交换,反之如果PEEP过高,则会导致肺泡过度膨胀,会对肺部产生损伤,因此设置合适的PEEP对患者治疗是非常重要的。
目前,在使用呼吸机给患者通气时,需要将呼吸机的PEEP参数调节至适合患者的值,当前医护人员主要依靠经验,或复杂的PEEP滴定工具,或食道压辅助等手段手动调整PEEP值,由于受到医护人员主观因素的影响以及精力有限,因此人工手动调节会导致PEEP的值调整的准确性和及时性降低。
发明内容
本申请实施例提供一种呼吸支持设备及其通气控制方法和计算机可读存储介质,可以对呼气末正压的自动调节,提高了对呼气末正压调节的准确性和及时性,以及提高了对呼吸支持设备通气控制的便捷性和可靠性。
第一方面,本申请实施例提供了一种呼吸支持设备的通气控制方法,包括:
所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能;
所述呼吸支持设备将所述多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
第二方面,本申请实施例还提供了一种呼吸支持设备,包括:
气流提供装置,用于产生通气气流;
呼吸管路;
患者接口,用于通过呼吸管路与气流提供装置连通,并附接到患者,以将所述气流提供装置产生的通气气流传送到患者的气道;
通气检测装置,其设置在呼吸管路或患者接口上,用于检测通气参数;
存储器,用于存储计算机程序;
处理器,用于调用所述存储器中的计算机程序,以执行:
确定预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能;
将所述多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序被处理器加载,以执行本申请实施例提供的任一种呼吸支持设备的通气控制方法。
本申请实施例呼吸支持设备可以确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能,以及将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压,以便后续呼吸支持设备可以按照目标呼气末正压给患者通气。该方案可以基于呼吸支持设备按照不同呼气末正压给患者通气时对应的机械能确定适合患者的目标呼气末正压,以使得呼吸支持设备按照目标呼气末正压给患者通气,实现了对呼气末正压的自动调节,而不需要人工手动调节,提高了对呼气末正压调节的准确性和及时性,以及提高了对呼吸支持设备通气控制的便捷性和可靠性。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的呼吸支持设备的通气控制方法的应用场景的示 意图;
图2是本申请实施例提供的呼吸支持设备的另一结构示意图;
图3是本申请实施例提供的呼吸支持设备的通气控制方法的流程示意图;
图4是本申请实施例提供的呼吸支持设备的通气控制方法的另一流程示意图;
图5是本申请实施例提供的最佳PEEP值确定的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的实施例提供了一种呼吸支持设备及其通气控制方法和计算机可读存储介质。
图1是实施本申请实施例提供的呼吸支持设备的通气控制方法的一场景示意图,如图1所示,该呼吸支持设备可以包括气流提供装置10、呼吸管路20、患者接口30、通气检测装置40、处理器50以及存储器60等;其中,气流提供装置10通过呼吸管路20与患者接口30连通,患者接口30可以包括面罩、鼻罩、鼻套管、以及气管导管等,其附接到患者,能够将气流提供装置10产生的通气气流传送到患者的气道;通气检测装置40设置在呼吸管路或患者接口上,用来检测通气参数,该通气参数可以包括通气气流的流速、气道压力、呼吸频率、潮气量、吸气时间、呼吸***或肺部的顺应性等。需要说明的是,通气参数的检测可以是直接检测得到,也可以是检测得到某些基础参数后,再进行计算得出。呼吸支持设备还可以包括人机交互装置,该人机交互装置可以包括显示器,用于显示呼吸支持设备给患者通气时的呼气末正压,以及显示患者的状态信息、通气参数等,显示具体内容可以包括文字、图表、数字、颜色、波形、 字符等,用于直观地显示各类信息。实际应用中,人机交互装置还可以包括输入装置,医护人员可以通过该输入装置进行各类参数的设置,以及显示器的显示界面的选择和控制等,实现人机之间的信息交互。该显示器也可以是一触控显示器。
处理器50和存储器60之间可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。处理器50可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者其他任何常规的处理器。
存储器60可以是易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者以上种类的存储器的组合。存储器60用于存储计算机程序,可以向处理器50提供指令和数据。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种呼吸支持设备的通气控制方法,例如可以执行如下步骤:
确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能;将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
在一些实施方式中,控制气流提供装置10按照目标呼气末正压给患者通气;或者,呼吸支持设备展示一建议消息,建议消息表示建议采用目标呼气末正压为设置参数,以对患者进行通气。
在一些实施方式中,在确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能时,处理器50还执行:获取预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的压力和流速;根据不同呼气末正压对应的压力和流速确定机械能,得到多个机械能。
在一些实施方式中,在确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能时,处理器50还执行:获取预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力;根据不同呼气末正及其对应的呼吸频率、潮气量、吸气时间、阻力、顺应性、以及气道压力确定机械能,得到多个机械能。
在一些实施方式中,在确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能时,处理器50还执行:获取气流提供装置10按照初始呼气末正压给患者通气时对应的初始机械能;在预设时间周期内按照预设步长调节初始呼气末正压,得到当前呼气末正压;获取气流提供装置10按照当前呼气末正压给患者通气时对应的当前机械能;若当前机械能小于初始机械能或未显著增大或没有显著增加,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,得到多个机械能。
在一些实施方式中,在获取气流提供装置10按照初始呼气末正压给患者通气时对应的初始机械能时,处理器50还执行:设置初始呼气末正压,控制气流提供装置10按照初始呼气末正压给患者通气;在气流提供装置10按照初始呼气末正压给患者通气预设时间后,获取气流提供装置10对应的初始机械能。
在一些实施方式中,在设置初始呼气末正压时,处理器50还执行:在呼吸支持设备开始运行时,获取患者的当前状态,根据当前状态设置初始呼气末正压;或者,在呼吸支持设备开始运行时,获取患者的历史呼气末正压,根据历史呼气末正压设置初始呼气末正压;或者,在呼吸支持设备开始运行时,获取患者的病情信息,根据病情信息设置初始呼气末正压;或者,在呼吸支持设备运行的过程中,将气流提供装置10当前的呼气末正压设置为初始呼气末正压。
在一些实施方式中,在获取气流提供装置10按照当前呼气末正压给患者通气时对应的当前机械能时,处理器50还执行:控制气流提供装置10按照当前呼气末正压给患者通气;在气流提供装置10按照当前呼气末正压给患者通气预设时间后,获取气流提供装置10对应的当前机械能。
在一些实施方式中,在预设时间周期内按照预设步长调节初始呼气末正压,得到当前呼气末正压时,处理器50还执行:当初始呼气末正压大于预设呼气末正压时,按照预设步长减小初始呼气末正压,得到当前呼气末正压;当初始呼 气末正压小于或等于预设呼气末正压时,按照预设步长增大初始呼气末正压,得到当前呼气末正压。
在一些实施方式中,若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,得到多个机械能时,处理器50还执行:若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,且连续不同时间周期内统计得到的当前机械能大于或等于初始机械能的次数大于预设次数时,得到多个机械能。
在一些实施方式中,在确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能之前,处理器50还执行:获取患者的当前状态,若当前状态满足第一预设条件,则触发对呼吸支持设备的呼气末正压的调节模式,以在调节模式下执行确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能的操作;或者,获取患者的生理参数,若生理参数满足第二预设条件,则触发对呼吸支持设备的呼气末正压的调节模式,以在调节模式下执行确定预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的机械能的操作。
在一些实施方式中,在将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压时,处理器50还执行:对多个机械能进行归一化,得到归一化后的多个机械能;将归一化后的多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
在一些实施方式中,在对多个机械能进行归一化,得到归一化后的多个机械能时,处理器50还执行:获取预设时间周期内气流提供装置10按照不同呼气末正压给患者通气时对应的通气量,得到多个通气量;根据多个通气量分别对多个机械能进行归一化,得到归一化后的多个机械能。
在一些实施方式中,在控制气流提供装置10按照目标呼气末正压给患者通气之后,处理器50还执行:输出目标呼气末正压,和/或存储目标呼气末正压。
在一些实施方式中,在输出目标呼气末正压时,处理器50还执行:通过呼吸支持设备预设的显示器显示目标呼气末正压,或者通过语音播报目标呼气末正压,或者将携带目标呼气末正压的输出指令发送给移动终端,并基于输出指令控制移动终端输出目标呼气末正压;
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见下文针对呼吸支持设备的通气控制方法的详细描述,此处不再赘述。
其中,呼吸支持设备可以是呼吸机或麻醉机,以下将进行详细说明。
在一些实施例中呼吸支持设备可以是呼吸机,呼吸机是一种人工的机械通气装置,用以辅助或控制患者的呼吸运动,以实现肺内气体交换,降低病人呼吸做功,以利于呼吸功能的恢复。请参照图2,在一些实施例中呼吸支持设备还可以包括呼吸接口211(即患者接口)、气源接口212、呼吸回路(即呼吸管路)、呼吸辅助装置(即气流提供装置)、用于检测通气参数的通气检测装置、处理器50、存储器60和显示器70等,处理器50可以基于通气检测装置检测得到的通气参数确定目标呼气末正压,以便控制呼吸辅助装置按照该目标呼气末正压给患者通气。
呼吸回路将气源接口212和患者的呼吸***选择性连通。在一些实施例中呼吸回路包括呼气支路213a和吸气支路213b,呼气支路213a连接在呼吸接口211和排气口213c之间,用于将患者呼出的气导出到排气口213c。排气口213c可以通到外界环境,也可以通道专用的气体回收装置中。气源接口212用于与气源(图中未示出)连接,气源用以提供气体,该气体通常可采用氧气和空气等;在一些实施例中,该气源可以采用压缩气瓶或中心供气源,通过气源接口212为呼吸机供气,供气种类有氧气O2和空气等,气源接口212中可以包括压力表、压力调节器、流量计、减压阀和空气-氧气比例调控保护装置等常规组件,分别用于控制各种气体(例如氧气和空气)的流量。吸气支路213b连接在呼吸接口211和气源接口212之间,用于为患者提供氧气或空气,例如从气源接口212输入的气体进入吸气支路213b中,然后通过呼吸接口211进入患者的肺部。呼吸接口211是用于将患者连接到呼吸回路,除了将由吸气支路213b传输过来的气体导入到患者外,还可以将患者呼出的气体通过呼气支路213a导入到排气口213c;根据情况,呼吸接口211可以是鼻插管或用于佩戴在口鼻上的面罩。呼吸辅助装置与气源接口212和呼吸回路连接,控制将外部气源提供的气体通过所述呼吸回路输送给患者;在一些实施例中呼吸辅助装置可以包括呼气控制器214a和吸气控制器214b,呼气控制器214a设置在呼气支路213a上,用于根据控制指令接通呼气支路213a或关闭呼气支路213a,或控制患者呼出气体的流速或压力。具体实现时,呼气控制器214a可以包括呼气阀、单向阀、流量 控制器、PEEP阀等能实现对流量或压力控制的器件中的一个或多个。吸气控制器214b设置在吸气支路213b上,用于根据控制指令接通吸气支路213b或关闭吸气支路213b,或控制输出气体的流速或压力。具体实现时,吸气控制器214b可以包括呼气阀、单向阀或流量控制器等能实现对流量或压力控制的器件中的一个或多个。
存储器60可以用于存储数据或者程序,例如用于存储传感器或通气检测装置所采集的数据、以及处理器50经计算所生成的数据或处理器所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器60可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器的编程指令。存储器60可以是有形且非暂态的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
在一些实施例中处理器50还可以用于执行指令或程序,对呼吸辅助装置、气源接口212和/或呼吸回路中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器70进行显示。
以上是呼吸支持设备为呼吸机的一些描述,需要说明的是,上面图2只是呼吸机的一种例子,这并不用于限定呼吸机只能是如此的结构。
存储器60可以用于存储数据或者程序,例如用于存储各传感器所采集的数据、处理器经计算所生成的数据或处理器所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器60可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器的编程指令。存储器60可以是有形且非暂态的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
处理器50还可以用于执行指令或程序,对呼吸辅助装置320、气源接口310和/或呼吸回路中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器70进行显示。
请参阅图3,图3是本申请一实施例提供的一种呼吸支持设备的通气控制方法的流程示意图。该呼吸支持设备的通气控制方法可以应用于呼吸支持设备中,该呼吸支持设备可以包括呼吸机或麻醉机,以下将进行详细说明。
如图3所示,该呼吸支持设备的通气控制方法可以包括步骤S101和步骤S102等,具体可以如下:
S101、呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气 时对应的机械能,得到多个机械能。
其中,呼气末正压即为PEEP,可增加呼末肺容积(End Expiratory Lung Volume,EELV),使肺泡在呼气末不易陷闭,使呼气末肺容量增加,提高肺泡-动脉血氧分压差,促进肺间质及肺泡水肿的消退,从而改善肺泡弥散功能和通气/血流比例,减少肺内分流达到改善氧合和肺顺应性的目的。
由于不同患者在不同病理状态下所需的PEEP各不相同,如果PEEP过低,会导致部分肺泡塌陷,无法参与气体交换,反之如果PEEP过高,则会导致肺泡过度膨胀,会对肺部产生损伤,因此设置合适的PEEP对患者治疗是非常重要,本申请实施例可以自动对PEEP进行动态调节,以使得调节后的PEEP能够适合患者。对PEEP的调节可以是患者开始使用呼吸支持设备进行通气时将PEEP调节至合适患者的值,或者是在呼吸支持设备运行的过程中进行动态调节。
首先,可以确定对PEEP进行动态调节的时机,在一些实施方式中,呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能之前,呼吸支持设备的通气控制方法还可以包括:呼吸支持设备获取患者的当前状态,若当前状态满足第一预设条件,则触发对呼吸支持设备的呼气末正压的调节模式,以在调节模式下执行所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能的操作。
为了提高自动调节PEEP的准确性和可靠性,呼吸支持设备可以根据患者的状态来触发PEEP动态调节的时机,具体地,可以获取使用呼吸支持设备的患者的当前状态,该当前状态可以包括躺卧状态、站立状态或靠床坐状态等,例如,呼吸支持设备可以通过预设的摄像头采集包含患者的图像,对该图像内患者的轮廓进行识别,根据患者的轮廓确定患者的当前状态;或者呼吸支持设备可以检测患者的预设参数(例如心跳或呼吸频率等),根据预设参数确定患者的当前状态(例如患者处于站立状态时心跳较快,患者处于躺卧状态时心跳较平缓)。
在得到患者的当前状态后,可以判断当前状态是否满足第一预设条件,该第一预设条件可以根据实际需要进行灵活设置。例如,可以判断当前状态是否存在变化,若当前状态存在变化,则确定当前状态满足第一预设条件;若当前状态不存在变化,则确定当前状态不满足第一预设条件。若当前状态不满足第一预设条件,则维持当前的PEEP给患者通气。若当前状态满足第一预设条件, 则触发对呼吸支持设备的PEEP的调节模式,以在调节模式下执行确定预设时间周期内呼吸支持设备按照不同PEEP给患者通气时对应的机械能的操作。例如,当患者的当前状态为从靠床坐状态转换为躺卧睡觉状态后,可以进入PEEP的调节模式,以对PEEP进行动态调节。
在一些实施方式中,呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能之前,呼吸支持设备的通气控制方法还可以包括:呼吸支持设备获取患者的生理参数,若生理参数满足第二预设条件,则触发对呼吸支持设备的呼气末正压的调节模式,以在调节模式下执行呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能的操作。
为了提高自动调节PEEP的灵活性和及时性,呼吸支持设备可以根据患者的生理参数来触发PEEP动态调节的时机,具体地,可以获取患者的生理参数,该生理参数可以根据实际需要进行灵活设置,例如该生理参数可以包括呼吸频率或血氧饱和度等,可以通过患者的可穿戴设备或通过医护人员给患者佩戴的其他检测设备等,获取患者的生理参数。此时可以判断患者的生理参数是否满足第二预设条件,该第二预设条件可以根据实际需要进行灵活设置,例如当呼吸频率或血氧饱和度变化幅度较大时,确定患者的生理参数满足第二预设条件,当呼吸频率或血氧饱和度变化幅度较小时,确定患者的生理参数不满足第二预设条件。若患者的生理参数不满足第一预设条件,则维持当前的PEEP给患者通气。若生理参数满足第二预设条件,则触发对呼吸支持设备的PEEP的调节模式,以在调节模式下执行呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能的操作。
在一些实施方式中,为了提高自动调节PEEP的便捷性,呼吸支持设备可以实时监测给患者通气时机械能,当机械能变化幅度较大(例如机械能增大或减小预设阈值,该预设阈值可以根据实际需要进行灵活设置)时,可以进入PEEP的调节模式,重新调整PEEP值。
在一些实施方式中,为了提高自动调节PEEP的灵活性,可以是周期性或定时对PEEP进行动态调节,例如,可以检测定时时间是否到达,当定时时间到达时,可以进入PEEP的调节模式。
当需要对PEEP进行调节时,呼吸支持设备通过气流提供装置可以按照预设时间周期给患者通气,并且在该预设时间周期内呼吸支持设备可以按照不同 PEEP给患者通气,然后可以确定预设时间周期内呼吸支持设备按照不同呼PEEP给患者通气时对应的机械能,得到多个机械能,以下将进行详细说明。
在一些实施方式中,呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能可以包括:呼吸支持设备获取预设时间周期内呼吸支持设备按照不同呼气末正压给患者通气时对应的压力和流速;根据不同呼气末正压对应的压力和流速确定机械能,得到多个机械能。
为了提高机械能确定的准确性,呼吸支持设备可以通过给患者通气时对应的压力和流速等通气参数来确定机械能,其中,该压力为患者的气道压力,该流速为气体流速。具体地,可以通过通气检测装置检测预设时间周期内呼吸支持设备按照不同PEEP给患者通气时对应的压力和流速等通气参数,然后对压力和流速在预设单位时间内进行积分,或者对压力和流速在一个呼吸周期内进行积分,或者对压力和气体流速在预设时间周期内进行积分等,得到对应的机械能。
例如,完整的机械能计算公式可以如下:
Figure PCTCN2020130952-appb-000001
也可以用压力和流速积分法计算,其计算公式可以如下:
Figure PCTCN2020130952-appb-000002
进一步地,也可以用简化后的积分法公式计算机械能,其计算公式可以如下:
Power rs=∫Paw*Flow dt
其中,Power rs表示机械能,单位为J/min;0.098为常数值(0.098:1cmH2O*L/min=0.098J/min),该0.098还可以根据实际需要设置为其他常数值;RR表示呼吸频率,单位为每分钟;ΔV表示潮气量,C表示肺顺应性,单位为ml/cmH2O;I:E表示吸气与呼吸之比(即吸气时间与呼气时间比值);R aw表示阻力,单位为cmH2O/L/s;PEEP表示呼气末正压,单位为cmH2O;PEEPVolume表示PEEP所导致的潮气量,单位为升(L),PEEP降为0呼出的容积;Paw表示气道压力,单位为cmH2O,可通过呼吸支持设备预设的压力传感器测量得到;Flow表示流速,单位为L/min,可通过外接的患者端流量传感器,或者呼吸支持设备的吸气流量传感器与呼气流量传感器差值监测得到;dt表示对时间积分;
具体地,可以对单个周期内压力(即气道压力)和流速(即气体流速)进行积分运算得到给患者通气时对应的机械能,公式如下:
Figure PCTCN2020130952-appb-000003
其中,Energyrs为单个周期由气道压力和气体流速积分得到的通气作用于患者呼吸***对应的机械能,Tinsp为每个呼吸周期的吸气时间,Paw为气道压力,Flow为气体流速。当然也可以将单个周期计算得到的机械能结合呼吸率换算成每分钟的机械能,公式如下:
Figure PCTCN2020130952-appb-000004
其中,气道压力Paw的单位为cmH2O,气体流速Flow的单位为L/min;每个呼吸周期的吸气时间Tinsp的单位为s;RR为呼吸率,单位为每分钟;由气道压和气体流速积分得到的通气作用于患者呼吸***的机械能Power rs的单位为J/min,由于1cmH2O*1L/min=0.098J/min,因此上面的公式中有0.098这一系数。当然,也可以直接将1分钟内所有周期的Energyrs进行累加,得到每分钟的能量。
在一些实施例中,根据气道压和气体流速计算通气(即机械通气)作用于患者呼吸***的机械能时,还可以考虑由呼气末正压形成的潮气量部分所产生的势能,这一部分能量一般是一个固定的值,并不会随着机械通气产生变化,并且因为需要额外进行呼气末正压释放,所以也常常可以省略。当考虑这一部分势能时,上面的公式可以变为:
Figure PCTCN2020130952-appb-000005
结合呼吸率进行单位换算后得到每分钟的机械能:
Figure PCTCN2020130952-appb-000006
这两个公式中PEEPVolume为呼气末正压所导致的潮气量,单位为L,具体为呼气末正压降为0时呼出的容积,PEEP则为呼气末正压。
在一些实施方式中,呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能可以包括:呼吸支持设备获取预设时间周期内呼吸支持设备按照不同呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力;根据不同呼气末正及其对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力确定机械能, 得到多个机械能。
为了提高机械能确定的精准性和可靠性,呼吸支持设备可以通过给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力等通气参数来确定机械能,其中,潮气量TV是指平静呼吸时每次吸入或呼出的气量,潮气量与年龄、性别、体积表面、呼吸习惯、以及机体新陈代谢等有关,本实施例设定的潮气量可以是指吸入的气量;顺应性为患者肺部的顺应性(也可以称为肺顺应性)。
由于PEEP取值的大小会影响肺泡的塌陷与过度膨胀,因此PEEP会对患者肺顺应性产生较大影响。根据呼吸力学模型,人体呼吸***存在阻力和顺应性等特性,当呼吸支持设备进行机械通气时要克服阻力(流速流过气道时产生的阻力)和顺应性(肺泡充气时产生的)产生的压力。因此呼吸支持设备需要对患者呼吸***做功,同时为了维持PEEP,呼吸支持设备同样需要对患者呼吸***施加一定的能量,综合呼吸做功和维持PEEP所需的能量得到机械通气时的机械能(Mechanical Power),其公式可以如下:
Figure PCTCN2020130952-appb-000007
其中Power rs表示机械能,单位为J/min;f表示呼吸频率(例如患者一分钟呼吸的次数),TV表示潮气量(例如患者一次吸入气体的气量),Tinsp表示吸气时间,例如可以是每个呼吸周期的吸气时间,单位为秒(s),C表示患者肺部的顺应性(肺部的特征),Raw表示气道压力(即气道阻力),PEEP表示呼气末正压。
呼吸支持设备可以通过通气检测装置检测预设时间周期内呼吸支持设备按照不同呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力等通气参数,然后可以按照上述公式基于呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力等确定机械能。
在一些实施方式中,呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能可以包括:呼吸支持设备获取呼吸支持设备按照初始呼气末正压给患者通气时对应的初始机械能;在预设时间周期内按照预设步长调节初始呼气末正压,得到当前呼气末正压;获取呼吸支持设备按照当前呼气末正压给患者通气时对应的当前机械能;若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初 始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,得到多个机械能。
为了提高机械能确定的精准性,呼吸支持设备在按照不同PEEP给患者通气的过程中,可以梯度增大或减小PEEP,以便根据不同PEEP对应的机械能的变化,寻找最佳机械能对应的PEEP值。具体地,首先可以获取呼吸支持设备按照初始呼气末正压给患者通气时对应的初始机械能。
在一些实施方式中,获取呼吸支持设备按照初始呼气末正压给患者通气时对应的初始机械能可以包括:设置初始呼气末正压,控制呼吸支持设备按照初始呼气末正压给患者通气;在呼吸支持设备按照初始呼气末正压给患者通气预设时间后,获取呼吸支持设备对应的初始机械能。
为了提高初始机械能获取的准确性,可以设置初始PEEP,并在按照初始PEEP通气预设时间后获取初始机械能,保证初始PEEP稳定运行后获取到可靠的初始机械能。例如,如图4所示,可以设置初始PEEP,以便按照初始PEEP给患者通气。
在一些实施方式中,设置初始呼气末正压可以包括:在呼吸支持设备开始运行时,获取患者的当前状态,根据当前状态设置初始呼气末正压。
为了提高对初始PEEP设置的灵活性,可以基于患者的当前状态来设置初始PEEP,例如,患者睡觉或靠床坐立等不同状态下,设置的初始PEEP可能不一样,此时可以获取使用呼吸支持设备的患者的当前状态,该当前状态可以包括躺卧状态、站立状态或靠床坐状态等,例如,呼吸支持设备可以通过预设的摄像头采集包含患者的图像,对该图像内患者的轮廓进行识别,根据患者的轮廓确定患者的当前状态;或者呼吸支持设备可以检测患者的预设参数(例如心跳或呼吸频率等),根据预设参数确定患者的当前状态(例如患者处于站立状态时心跳较快,患者处于躺卧状态时心跳较平缓)。在确定患者的当前状态后,可以根据患者的当前状态设置初始PEEP,例如,当患者的当前状态为躺卧状态时,可以设置初始PEEP为a,当患者的当前状态为靠床坐状态时,可以设置初始PEEP为b等,a和b的具体取值可以根据实际需要进行灵活设置,在此处不做限定。
在一些实施方式中,设置初始呼气末正压可以包括:在呼吸支持设备开始运行时,获取患者的历史呼气末正压,根据历史呼气末正压设置初始呼气末正压。
为了提高对初始PEEP设置的效率,在患者使用呼吸支持设备的过程中,可以将患者每次调节的历史最优PEEP存储在呼吸支持设备的本地数据库中,也可以存储至服务器。此时,当需要设置初始PEEP时,可以从服务器或呼吸支持设备的本地数据库中获取预先存储的患者的历史PEEP,以及获取历史PEEP对应的状态和/或生理参数等,此时可以检测患者的当前状态和/或当前生理参数等,并确定与当前状态和/或当前生理参数匹配的历史PEEP,此时可以将匹配的历史PEEP设置为初始PEEP。从而可以参考患者之前使用呼吸支持设备时,较优的PEEP来设置初始呼气末正压,提高了对初始PEEP设置的效率和准确性。
在一些实施方式中,设置初始呼气末正压可以包括:在呼吸支持设备开始运行时,获取患者的病情信息,根据病情信息设置初始呼气末正压。
为了提高对初始PEEP设置的便捷性,可以根据患者不同病情来设置初始PEEP,例如呼吸疾病比较严重的可能需要呼气末正压的值比较大。具体地,可以预先设置不同患者的不同病情信息与初始PEEP之间的映射关系,例如建立患者标识(如姓名或账号等)、不同病情信息与不同初始PEEP之间的映射关系,该映射关系可以是患者历史使用呼吸支持设备的过程中调节得到的历史最优值,该映射关系还可以是医护人员根据经验预先设置的,该映射关系还可以通过其他方式生成,具体内容在此处不做限定。该映射关系可以存储在服务器或呼吸支持设备的本地数据库等。此时,当需要设置初始PEEP时,可以从服务器或呼吸支持设备的本地数据库中获取预先存储的患者的不同病情信息与初始PEEP之间的映射关系,此时可以获取患者的病情信息,并确定与检测到的病情信息匹配的初始PEEP。
在一些实施方式中,设置初始呼气末正压可以包括:在呼吸支持设备运行的过程中,将呼吸支持设备当前的呼气末正压设置为初始呼气末正压。
为了提高对初始PEEP设置的便捷性,在呼吸支持设备运行的过程中,当需要设置初始PEEP来确定目标PEEP时,可以将当前的PEEP设置为初始PEEP。
在确定初始PEEP后,呼吸支持设备可以按照初始PEEP给患者通气,在呼吸支持设备按照初始PEEP给患者通气预设时间后,获取呼吸支持设备对应的初始机械能,该预设时间可以根据实际需要进行灵活设置。例如,如图4所示,为了避免呼吸支持设备按照初始PEEP1给患者通气时存在较大波动,导致得到的初始机械能不准确,此时可以在初始PEEP1稳定运行T1时间(该T1 时间可以根据实际需要进行灵活设置)后,获取初始PEEP1对应的通气参数,并基于通气参数按照上述公式计算在初始PEEP1下通气时的初始机械能MP1,以提高初始机械能MP1计算的准确性。
为了能够确定出最优的PEEP,呼吸支持设备可以在预设时间周期内按照预设步长调节初始PEEP,得到当前PEEP,其中,预设时间周期和预设步长可以根据实际需要进行灵活设置,具体取值在此处不做限定,例如,可以将初始PEEP提高预设步长或者将初始PEEP降低预设步长。然后可以获取呼吸支持设备按照当前PEEP给患者通气时对应的当前机械能。
在一些实施方式中,获取呼吸支持设备按照当前呼气末正压给患者通气时对应的当前机械能可以包括:控制呼吸支持设备按照当前呼气末正压给患者通气;在呼吸支持设备按照当前呼气末正压给患者通气预设时间后,获取呼吸支持设备对应的当前机械能。
为了提高当前机械能确定的稳定性和准确性,如图4所示,在确定当前PEEP2后,可以在当前PEEP2稳定运行T2时间(即预设时间)后,获取当前PEEP2对应的通气参数,并基于该通气参数按照上述公式计算在当前PEEP2下通气时的当前机械能MP2。避免了按照当前PEEP2给患者通气时存在较大波动,而导致得到的当前机械能不准确。
在一些实施方式中,在预设时间周期内按照预设步长调节初始呼气末正压,得到当前呼气末正压可以包括:当初始呼气末正压大于预设呼气末正压时,按照预设步长减小初始呼气末正压,得到当前呼气末正压;当初始呼气末正压小于或等于预设呼气末正压时,按照预设步长增大初始呼气末正压,得到当前呼气末正压。
为了提高对初始PEEP调节的便捷性和准确性,可以基于初始PEEP的大小来确定调节方向,例如,可以判断初始PEEP是否大于预设PEEP,该预设PEEP可以根据实际需要进行灵活设置,具体取值在此处不做限定。当初始PEEP大于预设PEEP时,说明此时的初始PEEP较大,可以按照预设步长减小初始PEEP,得到当前PEEP;当初始PEEP小于或等于预设PEEP时,说明此时的初始PEEP较小,可以按照预设步长增大初始PEEP,得到当前PEEP。即初始PEEP处于较低水平时,首选以预设步长提高初始PEEP;当初始PEEP处于较高水平时,首选以预设步长减小初始PEEP。
需要说明的是,为了提高对初始PEEP调节的精准性,在多次调节的过程 中可以基于机械能的变化大小来确定调节方向。例如,如图4所示,在基于初始呼气末正压PEEP1对应的通气参数计算得到初始机械能MP1,以及基于当前呼气末正压PEEP2对应的通气参数计算得到当前机械能MP2后,可以判断MP2是否小于或等于MP1。当MP2小于或等于MP1时,在当前PEEP2的基础上,按照预设步长增加PEEP的值,得到PEEP3,计算按照PEEP3通气时对应的机械能MP3,如果MP3接近或等于MP2(即MP3与MP2之间的差值小于预设阈值,该预设阈值可以根据实际需要进行灵活设置),则说明机械能MP值不再降低,此时可以停止调整PEEP的值,或者如果连续两次或多次预设步长(即两个或多个梯度)增加得到PEEP分别对应的机械能MP保持不变,则停止调整PEEP的值。
当MP2大于MP1时,在当前PEEP2的基础上,按照预设步长降低PEEP的值,得到PEEP4,计算按照PEEP4通气时对应的机械能MP4,如果MP4接近或等于MP2(即MP4与MP2之间的差值小于预设阈值,该预设阈值可以根据实际需要进行灵活设置),则说明机械能MP值不再降低,此时可以停止调整PEEP的值,或者如果连续两次或多次预设步长(即两个或多个梯度)降低得到PEEP分别对应的机械能MP保持不变,则停止调整PEEP的值。
在一些实施方式中,若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,得到多个机械能可以包括:若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,且连续不同时间周期内统计得到的当前机械能大于或等于初始机械能的次数大于预设次数时,得到多个机械能。
上述若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始呼气末正压操作,直至当前机械能大于或等于初始机械能或较前值显著增大,得到多个机械能的过程中,为了提高机械能获取的稳定性,可以在PEEP提高两次或多次后机械能增大或不变,说明不需要再增大PEEP;或者以在PEEP降低两次或多次后机械能增大或不变,说明不需要再降低PEEP。例如,若当前机械能小于初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节初始PEEP操作,直至当前机械能大于或等于初始机械能或较前值显著增大,且连续不同时间周期内统计得到的当前机械能大 于或等于初始机械能的次数大于预设次数时,得到多个机械能,其中,显著增大的幅值可以根据实际需要进行灵活设置,具体内容在此处不作限定,例如,可以将当前机械能大于预设阈值确定为显著增大,该预设阈值可以根据实际需要进行灵活设置。
S102、呼吸支持设备将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
机械能表示呼吸支持设备对患者施加的能量大小,在通气量相同的情况下,希望机械能越小越好,这样可以降低肺损伤。本申请实施例可以在单位时间内通气量相同的情况下,通过调整PEEP使得机械能最小,此时的PEEP认为是该通气条件下的最佳PEEP。例如,如图5所示,可以基于机械能最小寻找最佳PEEP,即可以将得到的多个机械能中机械能最小所对应的PEEP设置为目标PEEP,该目标PEEP即为图5中的最佳PEEP。又例如,可以调整PEEP使得机械能开始显著增大时,此时的PEEP认为是该通气条件下的最佳PEEP。其中,显著增大可以是机械能增加超过预设阈值或超过预设比例等,若机械能增加超过预设阈值,则说明机械能变化幅度较大,该预设阈值可以根据实际需要进行灵活设置。例如,呼吸支持设备按照当前呼气末正压a给患者通气时对应的机械能为A,然后按照当前呼气末正压a增加预设步长后得到的呼气末正压b给患者通气时对应的机械能为B,此时若机械能B大于机械能A超过预设阈值,则说明机械能开始显著增大,将机械能A所对应的呼气末正压设置为目标呼气末正压。又例如,呼吸支持设备按照当前呼气末正压a给患者通气时对应的机械能为A,然后按照当前呼气末正压a增加预设步长后得到的呼气末正压b给患者通气时对应的机械能为B,按照呼气末正压b增加预设步长后得到的呼气末正压c给患者通气时对应的机械能为C,此时,若机械能B大于机械能A超过预设阈值,以及机械能C大于机械能B超过预设阈值,则说明机械能开始显著增大,将机械能A所对应的呼气末正压设置为目标呼气末正压。
又例如,可以调整PEEP使得机械能开始显著减小时,此时的PEEP认为是该通气条件下的最佳PEEP,即机械能随PEEP变化的转折点可以作为最佳PEEP。其中,显著增小可以是机械能减小超过一定阈值或超过一定比例等,该一定阈值或过一定比例可以是与增加超过的预设阈值或超过预设比例一致或不一致,具体取值可以根据实际需要进行灵活设置,在此处不作限定。若机械能减小超过一定阈值,则说明机械能变化幅度较大。例如,呼吸支持设备按照当 前呼气末正压d给患者通气时对应的机械能为D,然后按照当前呼气末正压d增加预设步长后得到的呼气末正压e给患者通气时对应的机械能为E,此时若机械能E小于机械能D超过一定阈值,则说明机械能开始显著减小,将机械能D所对应的呼气末正压设置为目标呼气末正压。
人的肺有很多肺泡组成,患者有些肺泡塌陷了,如果把PEEP升高,压力就升高,会把塌陷的肺泡撑开,顺应性就变大;如果把PEEP降低,顺应性就变小。也就是说,由于PEEP可以使得塌陷的肺泡复张,过低的PEEP会导致肺泡塌陷,使得肺顺应性降低,而过高的PEEP会导致肺泡过度膨胀,同样也会使得肺顺应性降低,或引起肺损伤。从机械能的计算公式可知,在保持通气量(即潮气量TV和呼吸率f)不变的情况下,调整PEEP,影响顺应性C,进而可以改变通气时的机械能。因此,可以梯度增大或减小PEEP,根据机械能的变化,寻找最小机械能的PEEP值或者机械能开始显著增大时所对应的PEEP值。比如,当前处于较低PEEP水平(如小于5cmH2O,此时记为PEEP1)时,在PEEP1水平稳定运行T1时间,计算PEEP1下通气的机械能MP1,之后首选以一定步长提高PEEP(为PEEP2),以PEEP2稳定运行T2时间后,计算PEEP2通气时的机械能MP2。如果MP2小于等于MP1,则说明可以继续提高PEEP通气,PEEP提高两次或多次后机械能增大或不变,说明不需要再增大PEEP。当PEEP处于较高水平时,首选以一定梯度减小PEEP,比较MP的变化。以此类推,通过PEEP的梯度变化,寻找MP的极小值点,确定此时的PEEP为最佳PEEP。当然,如果当前PEEP处于较低水平仍可以先降低PEEP寻找,当前PEEP触发与较高水平也可以继续提高PEEP寻找。如已找到最佳PEEP,也可以不停止改变PEEP,这是此时稳定运行时间可以加长,减少PEEP改变的频率。设置最佳PEEP后如果MP无明显变化说明患者呼吸***状态未产生变化,可持续使用该最佳PEEP通气。如果MP呈上升或下降趋势,则可通过梯度变化PEEP,寻找新的最佳PEEP点。
在一些实施方式中,呼吸支持设备将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压可以包括:呼吸支持设备对多个机械能进行归一化,得到归一化后的多个机械能;将归一化后的多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
在基于机械能最小自动调整PEEP大小的过程中,由于机械能可能会受到呼吸率、潮气量、吸呼比(I:E)和PEEP等多因素影响,为了准确确定目标PEEP, 可以将机械能归一化处理,排除其他因素的影响,比如可以使用通气量、或平均压等归一化机械能,在得到归一化后的多个机械能后,可以将归一化后的多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
在一些实施方式中,呼吸支持设备对多个机械能进行归一化,得到归一化后的多个机械能可以包括:呼吸支持设备获取预设时间周期内呼吸支持设备按照不同呼气末正压给患者通气时对应的通气量,得到多个通气量;根据多个通气量分别对多个机械能进行归一化,得到归一化后的多个机械能。
其中,通气量可以是分钟通气量,或者其他单位时间的通气量。确定最佳PEEP的关键是寻找机械能的极小值点的过程中,理想状态下通气量稳定,可以直接使用机械能的原始值判断极小值点。由于实际临床使用中分钟通气量MV可能存在波动,因此为了提高目标呼气末正压确定的精准性,此时可以使用分钟通气量MV将机械能MP归一化,例如可以使用MP/MV寻找其极小值点来确定目标PEEP。
需要说明的是,一般分钟通气量MV越大,则机械能MP越大,这可能不是PEEP导致的,可能是分钟通气量MV导致的,即分钟通气量MV可能不稳定,可能存在不同时间周期内(例如以1分钟为一个周期)分钟通气量MV会变化,例如第一分钟对应的分钟通气量为MV11,第二分钟对应的分钟通气量为MV22,第三分钟对应的分钟通气量为MV33,其中MV11、MV22以及MV33可能不同,因此如果MV是不恒定的,可以每间隔一分钟计算一次MV,以及每间隔一分钟一次机械能MP,然后利用相同分钟内的MV对MP进行归一化,得到归一化后的机械能,例如,归一化后的多个机械能为MP1/MV1、MP2/MV2、以及MP3/MV3等,此时可以比较MP1/MV1、MP2/MV2、以及MP3/MV3等,以便从中筛选出最小的归一化后的机械能。如果不同分钟内的MV是恒定的,则可以不需要对机械能进行归一化,可以直接比较多个机械能,例如,MP1、MP2和MP3等,以便从中筛选出最小的机械能。
在一些实施方式中,在得到目标呼气末正压后,呼吸支持设备的通气控制方法还包括:呼吸支持设备按照目标呼气末正压给患者通气;或者,呼吸支持设备展示一建议消息,建议消息表示建议采用目标呼气末正压为设置参数,以对患者进行通气。
在确定目标PEEP后,呼吸支持设备可以按照目标PEEP给患者通气,例 如,通过气流提供装置按照目标PEEP产生通气气流,并通过呼吸管路将产生的通气气流输送至患者接口,通过患者接口将气流提供装置产生的通气气流传送到患者的气道。
需要说明的是,在得到目标PEEP后,呼吸支持设备可以输出显示该目标PEEP,以供医护人员查看,例如显示关于目标PEEP设置建议的消息。显示目标PEEP设置建议后,呼吸支持设备可以接收医护人员输入的确定指令,基于确定指令按照目标PEEP给患者通气。或者,呼吸支持设备可基于得到的目标PEEP自动调节通气设置,以给患者通气。
为了提高对PEEP调节的及时性,呼吸支持设备可以实时监测通气过程中的机械能,并判断机械能是否存在变化,或者判断机械能的变化幅度是否大于预设值,该预设值可以根据实际需要进行灵活设置。当机械能存在变化(机械能增大或减小),则按照上述方式重新调节目标PEEP,当机械能不存在变化,则维持当前的目标PEEP给患者通气;或者当机械能的变化幅度大于预设值时,说明机械能的变化幅度较大,此时可以按照上述方式重新调节目标PEEP,当机械能的变化幅度小于或等于预设值时,说明机械能的变化幅度较小,此时可以维持当前的目标PEEP给患者通气。
在一些实施方式中,呼吸支持设备按照目标呼气末正压给患者通气之后,呼吸支持设备的通气控制方法还可以包括:呼吸支持设备输出目标呼气末正压,和/或存储目标呼气末正压。
为了方便医护人员及时获知当前给患者通气的PEEP值,在呼吸支持设备按照目标呼气末正压给患者通气的过程中,可以输出目标呼气末正压,方便医护人员查看。
在一些实施方式中,输出目标呼气末正压可以包括:通过呼吸支持设备预设的显示器显示目标呼气末正压,或者通过语音播报目标呼气末正压,或者将携带目标呼气末正压的输出指令发送给移动终端,并基于输出指令控制移动终端输出目标呼气末正压。
例如,为了提高目标呼气末正压输出的灵活性,可以通过呼吸支持设备预设的显示器显示目标呼气末正压,可以显示目标呼气末正压的实时数值和/或显示目标呼气末正压随时间的变化情况。当对该患者通气的过程中,存在多次调节目标呼气末正压,还可以获取每次调节得到的目标呼气末的时间戳,根据每个时间戳和对应的各个目标呼气末正压生成曲线图或表格等,并在显示器内显 示该曲线图或表格等。
又例如,为了提高目标呼气末正压输出的便捷性,可以通过语音播报目标呼气末正压,其中,语音播报的分贝大小、以及语音播报的语言(如中文或英文)等可以根据实际需要进行灵活设置。此时,可以在语音播报的循环次数达到预设次数后自动关闭,或者由用户点击关闭按钮进行关闭等,该预设次数可以根据实际需要进行灵活设置。
又例如,为了提高目标呼气末正压输出的灵活性,可以在显示器的显示界面内弹窗显示目标呼气末正压,其中,弹窗的大小、背景颜色以及显示位置等可以根据实际需要进行灵活设置。此时,弹窗显示的对话框可以在显示时间达到预设时间后自动关闭,或者由用户点击右上角的关闭按钮进行关闭等,该预设时间可以根据实际需要进行灵活设置。
又例如,为了提高位置信息输出的多样性,可以将携带目标呼气末正压的输出指令发送给移动终端,该移动终端可以是医护人员携带的手机、医护人员使用的电脑、或监测仪等,此时可以基于输出指令控制移动终端输出目标呼气末正压,该移动终端可以是在显示界面内显示目标呼气末正压、通过语音播报目标呼气末正压、或在显示界面内弹窗显示目标呼气末正压等。
需要说明的是,可以接收医护人员输入的设置指令,根据设置指令对目标呼气末正压的输出方式进行设置。
在确定目标呼气末正压后,可以对目标呼气末正压进行存储,以便后续可以根据需求获取患者对应的预先存储的目标呼气末正压(即历史呼气末正压)。
在一些实施方式中,存储目标呼气末正压可以包括:将目标呼气末正压存储至呼吸支持设备的本地数据库,或者将目标呼气末正压存储至预设服务器。以便后续可以从呼吸支持设备的本地数据库或预设服务器,查询与该患者匹配的目标呼气末正压。
需要说明的是,呼吸支持设备可以显示机械通气作用于患者呼吸***的机械能的实时数值,和/或显示机械通气作用于患者呼吸***的机械能随时间的变化趋势等。呼吸支持设备还可以根据机械通气作用于患者呼吸***的机械能的实时值和/或变化趋势来判断患者病情。例如,在通气参数不变的情况下,当机械通气作用于患者呼吸***的机械能在预设时间段的变化趋势为降低,则判定患者病情在改善,并生成相应提示信息;和/或,在通气参数不变的情况下,当机械通气作用于患者呼吸***的机械能在预设时间段的变化趋势为升高,则判 定患者病情在恶化,并生成相应提示信息。此外,呼吸支持设备还可以根据机械通气作用于患者呼吸***的机械能来进行报警,例如当机械通气作用于患者呼吸***的机械能超过第一阈值时,说明机械能过大,可能会导致肺泡过度膨胀,此时可以输出报警信息;和/或,当判断机械通气作用于患者呼吸***的机械能低于第二阈值时,说明机械能过小,可能会导致肺泡塌陷,此时可以输出报警信息(例如可以显示警报信息、蜂鸣器鸣响或指示灯闪烁等),其中,报警的方式、第一阈值和第二阈值可以根据实际需要进行灵活设置。
本申请实施例呼吸支持设备可以确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能,以及将多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压,此时可以控制呼吸支持设备按照目标呼气末正压给患者通气。该方案可以基于呼吸支持设备按照不同呼气末正压给患者通气时对应的机械能确定适合患者的目标呼气末正压,以使得呼吸支持设备按照目标呼气末正压给患者通气,实现了对呼气末正压的自动调节,而不需要人工手动调节,提高了对呼气末正压调节的准确性和及时性,以及提高了对呼吸支持设备通气控制的便捷性和可靠性。
本申请的实施例中还提供一种计算机程序,该计算机程序中包括程序指令,处理器执行程序指令,实现本申请实施例提供的呼吸支持设备的通气控制方法。
本申请的实施例中还提供一种存储介质,该存储介质为计算机可读存储介质,该存储介质存储有计算机程序,计算机程序中包括程序指令,处理器执行程序指令,实现本申请实施例提供的呼吸支持设备的通气控制方法。
其中,存储介质可以是前述任一实施例所述的呼吸支持设备的内部存储单元,例如呼吸支持设备的硬盘或内存。存储介质也可以是呼吸支持设备的外部存储设备,例如呼吸支持设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
由于该存储介质中所存储的计算机程序,可以执行本申请实施例所提供的任一种呼吸支持设备的通气控制方法,因此,可以实现本申请实施例所提供的任一种呼吸支持设备的通气控制方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个” 及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种呼吸支持设备的通气控制方法,其特征在于,包括:
    所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能;
    所述呼吸支持设备将所述多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
  2. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备的通气控制方法还包括:
    所述呼吸支持设备按照所述目标呼气末正压给所述患者通气;
    或者,所述呼吸支持设备展示一建议消息,所述建议消息表示建议采用所述目标呼气末正压为设置参数,以对所述患者进行通气。
  3. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能包括:
    所述呼吸支持设备获取预设时间周期内按照不同呼气末正压给患者通气时对应的压力和流速;
    所述呼吸支持设备根据不同呼气末正压对应的压力和流速确定机械能,得到所述多个机械能。
  4. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能包括:
    所述呼吸支持设备获取预设时间周期内按照不同呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力;
    所述呼吸支持设备根据不同呼气末正及其对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力确定机械能,得到所述多个机械能。
  5. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能包括:
    获取所述呼吸支持设备按照初始呼气末正压给所述患者通气时对应的初始 机械能;
    在预设时间周期内按照预设步长调节所述初始呼气末正压,得到当前呼气末正压;
    获取所述呼吸支持设备按照所述当前呼气末正压给所述患者通气时对应的当前机械能;
    若所述当前机械能小于所述初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节所述初始呼气末正压操作,直至所述当前机械能大于或等于所述初始机械能或较前值显著增大,得到所述多个机械能。
  6. 根据权利要求5所述的呼吸支持设备的通气控制方法,其特征在于,所述获取所述呼吸支持设备按照初始呼气末正压给所述患者通气时对应的初始机械能包括:
    设置初始呼气末正压,控制所述呼吸支持设备按照所述初始呼气末正压给所述患者通气;
    在所述呼吸支持设备按照所述初始呼气末正压给所述患者通气预设时间后,获取所述呼吸支持设备对应的初始机械能。
  7. 根据权利要求6所述的呼吸支持设备的通气控制方法,其特征在于,所述设置初始呼气末正压包括:
    在所述呼吸支持设备开始运行时,获取所述患者的当前状态,根据所述当前状态设置初始呼气末正压;或者,
    在所述呼吸支持设备开始运行时,获取所述患者的历史呼气末正压,根据所述历史呼气末正压设置初始呼气末正压;或者,
    在所述呼吸支持设备开始运行时,获取所述患者的病情信息,根据所述病情信息设置初始呼气末正压;或者,
    在所述呼吸支持设备运行的过程中,将所述呼吸支持设备当前的呼气末正压设置为初始呼气末正压。
  8. 根据权利要求5所述的呼吸支持设备的通气控制方法,其特征在于,所述获取所述呼吸支持设备按照所述当前呼气末正压给所述患者通气时对应的当前机械能包括:
    控制所述呼吸支持设备按照所述当前呼气末正压给所述患者通气;
    在所述呼吸支持设备按照所述当前呼气末正压给所述患者通气预设时间后,获取所述呼吸支持设备对应的当前机械能。
  9. 根据权利要求5所述的呼吸支持设备的通气控制方法,其特征在于,所述在预设时间周期内按照预设步长调节所述初始呼气末正压,得到当前呼气末正压包括:
    当所述初始呼气末正压大于预设呼气末正压时,按照预设步长减小所述初始呼气末正压,得到当前呼气末正压;
    当所述初始呼气末正压小于或等于预设呼气末正压时,按照预设步长增大所述初始呼气末正压,得到当前呼气末正压。
  10. 根据权利要求5所述的呼吸支持设备的通气控制方法,其特征在于,所述若所述当前机械能小于所述初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节所述初始呼气末正压操作,直至所述当前机械能大于或等于所述初始机械能或较前值显著增大,得到多个机械能包括:
    若所述当前机械能小于所述初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节所述初始呼气末正压操作,直至所述当前机械能大于或等于所述初始机械能或显著增大,且连续不同时间周期内统计得到的当前机械能大于或等于所述初始机械能的次数大于预设次数时,得到多个机械能。
  11. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能之前,所述呼吸支持设备的通气控制方法还包括:
    所述呼吸支持设备获取所述患者的当前状态,若所述当前状态满足第一预设条件,则触发对所述呼吸支持设备的呼气末正压的调节模式,以在所述调节模式下执行所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能的操作;或者,
    所述呼吸支持设备获取所述患者的生理参数,若所述生理参数满足第二预设条件,则触发对所述呼吸支持设备的呼气末正压的调节模式,以在所述调节模式下执行所述呼吸支持设备确定预设时间周期内按照不同呼气末正压给患者通气时对应的机械能的操作。
  12. 根据权利要求1所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备按照所述目标呼气末正压给所述患者通气之后,所述呼吸支持设备的通气控制方法还包括:
    所述呼吸支持设备输出所述目标呼气末正压,和/或存储所述目标呼气末正压。
  13. 根据权利要求12所述的呼吸支持设备的通气控制方法,其特征在于,所述输出所述目标呼气末正压包括:
    所述呼吸支持设备通过所述呼吸支持设备预设的显示器显示所述目标呼气末正压,或者通过语音播报所述目标呼气末正压,或者将携带所述目标呼气末正压的输出指令发送给移动终端,并基于所述输出指令控制所述移动终端输出所述目标呼气末正压;
    所述存储所述目标呼气末正压包括:
    所述呼吸支持设备将所述目标呼气末正存储至所述呼吸支持设备的本地数据库,或者将所述目标呼气末正存储至预设服务器。
  14. 根据权利要求1至13任一项所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备将所述多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压包括:
    所述呼吸支持设备对所述多个机械能进行归一化,得到归一化后的多个机械能;
    所述呼吸支持设备将所述归一化后的多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
  15. 根据权利要求14所述的呼吸支持设备的通气控制方法,其特征在于,所述呼吸支持设备对所述多个机械能进行归一化,得到归一化后的多个机械能包括:
    所述呼吸支持设备获取所述预设时间周期内按照不同呼气末正压给所述患者通气时对应的通气量,得到多个通气量;
    所述呼吸支持设备根据所述多个通气量分别对所述多个机械能进行归一化,得到归一化后的多个机械能。
  16. 一种呼吸支持设备,其特征在于,包括:
    气流提供装置,用于产生通气气流;
    呼吸管路;
    患者接口,用于通过呼吸管路与气流提供装置连通,并附接到患者,以将所述气流提供装置产生的通气气流传送到患者的气道;
    通气检测装置,其设置在呼吸管路或患者接口上,用于检测通气参数;
    存储器,用于存储计算机程序;
    处理器,用于调用所述存储器中的计算机程序,以执行:
    确定预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的机械能,得到多个机械能;
    将所述多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
  17. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    控制所述气流提供装置按照所述目标呼气末正压给所述患者通气;
    或者,所述呼吸支持设备展示一建议消息,所述建议消息表示建议采用所述目标呼气末正压为设置参数,以对所述患者进行通气。
  18. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    获取预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的压力和流速;
    根据不同呼气末正压对应的压力和流速确定机械能,得到所述多个机械能。
  19. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    获取预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力;
    根据不同呼气末正及其对应的呼吸频率、潮气量、吸气时间、顺应性、阻力以及气道压力确定机械能,得到所述多个机械能。
  20. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    获取所述气流提供装置按照初始呼气末正压给所述患者通气时对应的初始机械能;
    在预设时间周期内按照预设步长调节所述初始呼气末正压,得到当前呼气末正压;
    获取所述气流提供装置按照所述当前呼气末正压给所述患者通气时对应的当前机械能;
    若所述当前机械能小于所述初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节所述初始呼气末正压操作,直至所述当前机械能大于或等于所述初始机械能或较前值显著增大,得到所述多个机械能。
  21. 根据权利要求20所述的呼吸支持设备,其特征在于,所述处理器还执行:
    设置初始呼气末正压,控制所述气流提供装置按照所述初始呼气末正压给所述患者通气;
    在所述气流提供装置按照所述初始呼气末正压给所述患者通气预设时间后,获取所述气流提供装置对应的初始机械能。
  22. 根据权利要求21所述的呼吸支持设备,其特征在于,所述处理器还执行:
    在所述呼吸支持设备开始运行时,获取所述患者的当前状态,根据所述当前状态设置初始呼气末正压;或者,
    在所述呼吸支持设备开始运行时,获取所述患者的历史呼气末正压,根据所述历史呼气末正压设置初始呼气末正压;或者,
    在所述呼吸支持设备开始运行时,获取所述患者的病情信息,根据所述病情信息设置初始呼气末正压;或者,
    在所述呼吸支持设备运行的过程中,将所述气流提供装置当前的呼气末正压设置为初始呼气末正压。
  23. 根据权利要求20所述的呼吸支持设备,其特征在于,所述处理器还执行:
    控制所述气流提供装置按照所述当前呼气末正压给所述患者通气;
    在所述气流提供装置按照所述当前呼气末正压给所述患者通气预设时间后,获取所述气流提供装置对应的当前机械能。
  24. 根据权利要求20所述的呼吸支持设备,其特征在于,所述处理器还执行:
    当所述初始呼气末正压大于预设呼气末正压时,按照预设步长减小所述初始呼气末正压,得到当前呼气末正压;
    当所述初始呼气末正压小于或等于预设呼气末正压时,按照预设步长增大所述初始呼气末正压,得到当前呼气末正压。
  25. 根据权利要求20所述的呼吸支持设备,其特征在于,所述处理器还执行:
    若所述当前机械能小于所述初始机械能或未显著增大,则执行在预设时间周期内按照预设步长调节所述初始呼气末正压操作,直至所述当前机械能大于 或等于所述初始机械能或较前值显著增大,且连续不同时间周期内统计得到的当前机械能大于或等于所述初始机械能的次数大于预设次数时,得到多个机械能。
  26. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    获取所述患者的当前状态,若所述当前状态满足第一预设条件,则触发对所述呼吸支持设备的呼气末正压的调节模式,以在所述调节模式下执行确定预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的机械能的操作;或者,
    获取所述患者的生理参数,若所述生理参数满足第二预设条件,则触发对所述呼吸支持设备的呼气末正压的调节模式,以在所述调节模式下执行确定预设时间周期内气流提供装置按照不同呼气末正压给患者通气时对应的机械能的操作。
  27. 根据权利要求16所述的呼吸支持设备,其特征在于,所述处理器还执行:
    输出所述目标呼气末正压,和/或存储所述目标呼气末正压。
  28. 根据权利要求27所述的呼吸支持设备,其特征在于,所述处理器还执行:
    通过所述呼吸支持设备预设的显示器显示所述目标呼气末正压,或者通过语音播报所述目标呼气末正压,或者将携带所述目标呼气末正压的输出指令发送给移动终端,并基于所述输出指令控制所述移动终端输出所述目标呼气末正压;
    所述存储所述目标呼气末正压包括:
    将所述目标呼气末正压存储至所述呼吸支持设备的本地数据库,或者将所述目标呼气末正压存储至预设服务器。
  29. 根据权利要求16至28任一项所述的呼吸支持设备,其特征在于,所述处理器还执行:
    对所述多个机械能进行归一化,得到归一化后的多个机械能;
    将所述归一化后的多个机械能中机械能最小或开始显著增大时所对应的呼气末正压设置为目标呼气末正压。
  30. 根据权利要求29所述的呼吸支持设备,其特征在于,所述处理器还执 行:
    获取所述预设时间周期内所述气流提供装置按照不同呼气末正压给所述患者通气时对应的通气量,得到多个通气量;
    根据所述多个通气量分别对所述多个机械能进行归一化,得到归一化后的多个机械能。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序被处理器加载以执行权利要求1至15任一项所述的呼吸支持设备的通气控制方法。
PCT/CN2020/130952 2020-11-23 2020-11-23 呼吸支持设备及其通气控制方法和计算机可读存储介质 WO2022104808A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/130952 WO2022104808A1 (zh) 2020-11-23 2020-11-23 呼吸支持设备及其通气控制方法和计算机可读存储介质
CN202080005853.8A CN112955204B (zh) 2020-11-23 2020-11-23 呼吸支持设备及其通气控制方法和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130952 WO2022104808A1 (zh) 2020-11-23 2020-11-23 呼吸支持设备及其通气控制方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022104808A1 true WO2022104808A1 (zh) 2022-05-27

Family

ID=76236242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130952 WO2022104808A1 (zh) 2020-11-23 2020-11-23 呼吸支持设备及其通气控制方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112955204B (zh)
WO (1) WO2022104808A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004087A1 (de) * 2020-08-18 2022-02-24 Löwenstein Medical Technology S.A. Verfahren zur Unterstützung eines Benutzenden eines Beatmungsgeräts und Beatmungssystem
WO2022141125A1 (zh) * 2020-12-29 2022-07-07 东南大学附属中大医院 呼吸支持设备及其控制方法和存储介质
CN113599645A (zh) * 2021-08-09 2021-11-05 深圳华声医疗技术股份有限公司 用于动态预览各种通气模式的波形的方法、装置、存储介质及呼吸机、麻醉机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030225339A1 (en) * 2002-05-06 2003-12-04 Respironics Novametrix Methods for inducing temporary changes in ventilation for estimation of hemodynamic performance
CN102369036A (zh) * 2009-03-27 2012-03-07 马奎特紧急护理公司 呼吸设备的peep调节
CN102451506A (zh) * 2010-10-19 2012-05-16 袁含光 一种呼吸机气流控制方法以及控制装置
CN109731195A (zh) * 2018-12-28 2019-05-10 北京谊安医疗***股份有限公司 呼吸支持设备的呼吸参数设置方法、装置及呼吸支持设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011195A1 (en) * 2004-07-14 2006-01-19 Ric Investments, Llc. Method and apparatus for non-rebreathing positive airway pressure ventilation
US8312879B2 (en) * 2006-10-16 2012-11-20 General Electric Company Method and apparatus for airway compensation control
EP2696925A4 (en) * 2011-04-11 2014-09-03 Murdoch Childrens Res Inst SYSTEM AND METHOD FOR DETERMINING POSITIVE END SPIRATOR PRESSURE FOR A MECHANICAL VENTILATION SYSTEM
US10835699B2 (en) * 2014-12-23 2020-11-17 Koninklijke Philips N.V. Systems and methods for model-based optimization of mechanical ventilation
JP7004748B2 (ja) * 2017-02-22 2022-02-04 コーニンクレッカ フィリップス エヌ ヴェ 機械的人工換気のための自動的なpeepの選択
JP7145885B2 (ja) * 2017-05-24 2022-10-03 コーニンクレッカ フィリップス エヌ ヴェ 圧力摂動を使用する呼気流量制限の検出

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030225339A1 (en) * 2002-05-06 2003-12-04 Respironics Novametrix Methods for inducing temporary changes in ventilation for estimation of hemodynamic performance
CN102369036A (zh) * 2009-03-27 2012-03-07 马奎特紧急护理公司 呼吸设备的peep调节
CN102451506A (zh) * 2010-10-19 2012-05-16 袁含光 一种呼吸机气流控制方法以及控制装置
CN109731195A (zh) * 2018-12-28 2019-05-10 北京谊安医疗***股份有限公司 呼吸支持设备的呼吸参数设置方法、装置及呼吸支持设备

Also Published As

Publication number Publication date
CN112955204B (zh) 2022-09-02
CN112955204A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022104808A1 (zh) 呼吸支持设备及其通气控制方法和计算机可读存储介质
US20200297950A1 (en) Methods and systems for adaptive base flow and leak compensation
US9089657B2 (en) Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US20140261424A1 (en) Methods and systems for phase shifted pressure ventilation
US20130047989A1 (en) Methods and systems for adjusting tidal volume during ventilation
US20140373845A1 (en) Methods and systems for adaptive adjustment of ventilator settings
US9925346B2 (en) Systems and methods for ventilation with unknown exhalation flow
US11771858B2 (en) Patient specific auto-flowrate control
US20070272241A1 (en) System and Method for Scheduling Pause Maneuvers Used for Estimating Elastance and/or Resistance During Breathing
US20140261409A1 (en) Systems and methods for ventilation with unreliable exhalation flow and/or exhalation pressure
US20180304034A1 (en) Anomaly detection device and method for respiratory mechanics parameter estimation
CN111760140B (zh) 呼吸器及其控制方法
WO2021189197A1 (zh) 一种呼吸监测装置及方法
US10821247B2 (en) Ventilator and operating method for a ventilator with a determination of cough attacks
WO2020037519A1 (zh) 通气触发检测方法、装置、通气设备及存储介质
US20230173208A1 (en) Flow therapy system and method
US20200108215A1 (en) Systems and methods for automatic cycling or cycling detection
WO2022141125A1 (zh) 呼吸支持设备及其控制方法和存储介质
JP2019500933A5 (zh)
WO2021189198A1 (zh) 一种对患者进行通气监测的方法和装置
WO2017079860A1 (zh) 呼吸机压力控制方法
CN104105522A (zh) 呼吸***
WO2023050108A1 (zh) 一种医疗通气设备及通气控制方法
WO2023115531A1 (zh) 一种呼吸监测方法和呼吸监测装置
US20230157574A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962099

Country of ref document: EP

Kind code of ref document: A1