WO2022102857A1 - Junction box-integrated output compensation device for photovoltaic module - Google Patents

Junction box-integrated output compensation device for photovoltaic module Download PDF

Info

Publication number
WO2022102857A1
WO2022102857A1 PCT/KR2020/018108 KR2020018108W WO2022102857A1 WO 2022102857 A1 WO2022102857 A1 WO 2022102857A1 KR 2020018108 W KR2020018108 W KR 2020018108W WO 2022102857 A1 WO2022102857 A1 WO 2022102857A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
temperature
case
control unit
converter
Prior art date
Application number
PCT/KR2020/018108
Other languages
French (fr)
Korean (ko)
Inventor
강건민
양주석
강선희
김영탁
박광우
Original Assignee
주식회사 더블유피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 더블유피 filed Critical 주식회사 더블유피
Publication of WO2022102857A1 publication Critical patent/WO2022102857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a junction box integrated output compensation device for a solar cell module, and more particularly, a junction box connected to a solar cell module to transmit power to the outside and an output compensation device for compensating the output of the solar cell module are integrated It relates to a junction box-integrated output compensation device for a solar cell module.
  • the photovoltaic power generation system converts solar energy into electricity and consists of a photovoltaic (PV) module and a power conditioning system (PCS).
  • a solar inverter which is a power converter that converts DC to AC
  • This solar inverter consists of two parts. First, low voltage solar power DC power is used. The function of increasing the voltage to a high voltage suitable for the next stage and controlling the solar module to generate the maximum power is a DC-DC converter part of the front stage that performs MPPT (Maximum Power Ponit Tracking), It is the DC-AC inverter part of the rear stage that converts or transmits the DC power properly boosted in the front stage into AC power according to the power system.
  • MPPT Maximum Power Ponit Tracking
  • micro-inverter method in which one small inverter (micro inverter) is installed per PV module.
  • the micro-inverter does not convert the DC electricity collected from the entire string into large-capacity DC-AC at once, but converts the small-capacity DC-AC in the micro-inverter installed in each module, then connects the small-output AC to a common parallel circuit and collects it into the power system.
  • MPPT maximum power point tracking
  • microinverters are effective in shady places, but microinverters installed for each PV module are DC-AC inverters with the same capacity as the panel, and are more expensive and less efficient than DC-DC converters. After all, it is less profitable to install it in all PV modules, so it is only used when space is limited or there is a lot of shade.
  • a micro-converter method in which a small-capacity DC-DC converter (DC optimizer) is installed for each PV module has recently been developed.
  • DC optimizer a small-capacity DC-DC converter
  • This microconverter method divides the primary DC-DC converter, which was in charge of maximum output point tracking (MPPT) and boosting in the conventional centralized string inverter structure, into a number of small-capacity modules, making each microconverter, and installing it for each PV module.
  • MPPT maximum output point tracking
  • micro-converter It is designed to perform maximum output point tracking (MPPT) control according to the module situation. Therefore, similar to the micro-inverter method, the micro-converter installed in each module can control the maximum power point tracking (MPPT), enabling further development. Since a micro-converter is a DC-DC converter, the price is less than half that of a micro-inverter that converts DC-AC, and it has the advantage of excellent efficiency.
  • the minimum structure of a solar cell is called a cell, and a form in which a plurality of solar cells are electrically connected is called a PV module.
  • a PV module is generally composed of an array structure formed by connecting solar cells in series using a ribbon having conductivity on a module substrate.
  • the solar cell module is provided with a terminal box (junction box) equipped with connection terminals for collecting power generated from each solar cell string through a conductive bus bar and transmitting it to the power converter.
  • an output compensator such as a micro-converter and a junction box are separately provided, and a technology provided in a single junction box has been recently introduced for miniaturization and management efficiency of the device.
  • the present invention has been devised in view of the above points, and an object of the present invention is to provide a junction box-integrated output compensation device for a solar cell module that integrates a junction box and an output compensation device.
  • a junction box-integrated output compensation device for a solar cell module for solving the above technical problem relates to a junction box-integrated output compensation device connected to a solar cell (PV) module, respectively, comprising: a case in which a bypass diode is embedded; a thermoelectric module attached to an outer side of the case to dissipate heat from the case; a sensor unit provided inside the case to sense the current, voltage, and temperature of the PV module; a DC/DC converter provided inside the case to change the DC power generated from the PV module to be step-down or step-up and output; The sensor unit continuously monitors the current and voltage supplied by the PV module and uses the Maximum Power Point Tracking (MPPT) algorithm to determine the maximum power point (MPP: Maximun Power Point) of the PV module.
  • MPPT Maximum Power Point Tracking
  • a microcontroller comprising: an MPPT control unit that tracks and maintains the maximum output power; and a thermoelectric module control unit that controls driving of the thermoelectric module; and a converter control unit for controlling the DC/DC converter to output a voltage corresponding to the maximum power point tracked by the MPPT control unit.
  • the temperature sensor includes a first temperature sensor for detecting the temperature of the PV module, and a second temperature sensor for detecting the temperature inside the case
  • the microcontroller is a temperature value sensed from the first temperature sensor is set When it exceeds the reference value, it is determined that there is an abnormality and transmits a control command to the converter control unit, further comprising an abnormal state detection unit to turn off a switch in the DC/DC converter to block the operation of the internal circuit, the thermoelectric The module control unit receives the temperature information of the inside of the case from the second temperature sensor and controls to cool the case when the temperature is higher than a set temperature or to maintain a constant temperature inside the case.
  • it further includes a parameter DB in which an optimal voltage value for outputting a maximum power point per current for each temperature is stored, wherein the MPPT control unit detects the current sensor, the voltage sensor, and the first temperature sensor. An optimal voltage value corresponding to the sensed value is extracted from the parameter DB unit.
  • junction box-integrated output compensation device for a solar cell module it is possible to pursue miniaturization and cost reduction of the solar power generation system by integrating the output compensation device into the junction box, and a thermoelectric module outside the junction box case By attaching the junction box, it is possible to effectively dissipate heat caused by the high temperature of the junction box case by driving the bypass diode, which in turn has the effect of increasing the efficiency of the PV module.
  • FIG. 1 is a schematic view of a junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention
  • 3 and 4 are diagrams for explaining the tracking of I-V and P-V characteristics of the solar cell module and the maximum tracking point of the MPPT control unit.
  • the junction box-integrated output compensation device for a solar cell module is a case 100 installed on one side of the PV module 10 so as to be connected to the PV module 10. And, the thermoelectric module 200 attached to one side of the case, the bypass diode 102 installed inside the case 100, the sensor unit 110, the DC/DC converter 140, the microcontroller 130, respectively. , a converter control unit 140 and a communication unit 150 .
  • the case 100 is mounted on one side, for example, the back side of the PV module.
  • the inside of the case 100 may be sealed using silicon or the like to prevent moisture penetration of circuit elements.
  • the case 100 is provided with an input terminal so that a conductive line of the solar cell can be connected to a bypass diode 102 to be described later, and an output terminal is provided to output the converted DC power to the outside.
  • a heat dissipation plate having a corrugated structure is provided in the junction box, but optimal heat dissipation may not be achieved only with the heat dissipation plate having a specific structure.
  • thermoelectric module 200 for temperature control is attached to one side of the case so that heat is efficiently dissipated.
  • the thermoelectric module 200 is attached to one side of the case 100 and serves to radiate heat from the case 100 . As described above, high heat is generated from the bypass diode 102 or the like during operation of the junction box, and the generated heat may reduce the efficiency of a specific solar cell arranged at a position where the case 100 is attached. In the present invention, to prevent this, the heat absorbing surface of the thermoelectric module 200 is disposed to contact the case 100 so that the case 100 is cooled (heat dissipated). The thermoelectric module 200 is supplied with power by a power supply not shown.
  • the bypass diode 102 is connected to the PV module 10 and operates in a short-circuit mode to short-circuit or open the bypass line when power is supplied, and open to open the bypass line when power is cut off. mode to operate. That is, the bypass diode prevents the current between the solar cell strings from flowing backward.
  • the number of bypass diodes 102 may vary depending on the number of solar cell strings constituting the PV module, and the detailed configuration and operation of such bypass diodes are widely known in the prior art and are not related to the gist of the present invention. A detailed description will be omitted.
  • the sensor unit 110 is connected to both ends of the bypass diodes to sense the current and voltage of the PV module.
  • the voltage sensor 114 and the current sensor 112 may be realized by various technologies, for example, using a very low resistance or using a current (voltage) probe.
  • the sensor unit 110 may further include a temperature sensor.
  • the temperature sensor is provided in the connection part with the PV module 10 in the case 100, and a first temperature sensor 116 that detects the temperature of the PV module 10 and the case 100 detects the temperature inside A second temperature sensor 118 is provided.
  • Information on the current, voltage, and temperature falsely sensed by the sensor unit 110 is transmitted to the microcontroller 130 .
  • This current and voltage data can be used for system monitoring purposes.
  • the temperature data, particularly the temperature data of the PV module represents a kind of failure and problem of the PV module, and also acts as a coefficient of output power production.
  • the DC/DC converter 140 changes the DC power generated in the PV module 10 to be step-down or step-up and output it.
  • the DC/DC converter 140 may include a buck converter circuit, a boost converter circuit, a buck-boost converter circuit, an N-buck converter circuit, and the like. Since the type and operation of the DC/DC converter are widely known in the prior art and are not related to the gist of the present invention, a detailed description thereof will be omitted.
  • the microcontroller 130 includes an MPPT control unit 132 , an abnormal state detection unit 134 , and a thermoelectric module control unit 136 .
  • the MPPT control unit 132 continuously monitors the current and voltage supplied by the PV module 10 and uses the Maximum Power Point Tracking (MPPT) algorithm to the maximum power point ( MPP:Maximun Power Point) to keep the maximum output power.
  • MPPT Maximum Power Point Tracking
  • the MPPT algorithm may use all common algorithms, such as, for example, a Perturb and Observe (P&O) algorithm, an Incremental Conductance (IC) algorithm, and the like.
  • FIG. 3 schematically shows the characteristics of a current versus voltage curve (solid line portion) in a solar cell
  • FIG. 4 shows the curves for three different temperature conditions.
  • the temperature may correspond to the insolation condition.
  • the dotted line indicates the power scale curve corresponding to each curve, and is determined by the product of voltage and current.
  • the abnormal state detection unit 134 determines that there is an abnormality and transmits a control command to the converter control unit 140 , and the DC/DC converter 120 ) to block the operation of the internal circuit by turning off the switch in the internal circuit to block power transmission to the outside or to block the operation of the PV module.
  • the thermoelectric module controller 136 controls the temperature of the thermoelectric module 200 .
  • the thermoelectric module control unit 136 receives the temperature information of the inside of the case from the second temperature sensor 118 and controls to cool the case when the temperature is higher than the set temperature or to maintain the inside of the case at a constant temperature.
  • the case 100 can be maintained at a constant temperature by the thermoelectric module 200 and the thermoelectric module controller 136 . Therefore, it is possible to prevent the efficiency of the solar cell at a specific location from being reduced due to the high heat generated by the existing bypass diode or the like.
  • the converter control unit 140 controls the DC/DC converter 120 to output a voltage corresponding to the maximum power point according to the maximum power point followed by the MPPT control unit 132 . That is, the converter control unit 140 transmits a duty cycle control signal to the DC/DC converter 120 according to the maximum power point calculated by the MPPT control unit 132 to adjust the output voltage.
  • junction box-integrated output compensation device when the junction box-integrated output compensation device according to the embodiment of the present invention is formed integrally with the PV module 10, it may be referred to as a MIC (Modul Integrated Converter) circuit.
  • MIC Mode Integrated Converter
  • some components except for the DC/DC converter may be implemented as a system on chip (SOC).
  • the communication unit 150 serves to transmit various types of sensing data of the sensor unit 110 to an external control server ( ). Such transmitted information enables real-time monitoring and analysis of the PV module 10 .
  • each junction box case has a unique ID, thereby facilitating identification and individual monitoring and individual maintenance of the PV module.
  • junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention having the above structure will be described as follows.
  • the voltage sensor and the current sensor of the sensor unit 110 continuously sense the current and voltage values of the PV module. This information is transmitted to the MPPT control unit 132, the MPPT control unit 132 tracks the maximum power point from the sensed current and voltage values, and the converter control unit 140 is the maximum power point tracked by the MPPT control unit 132.
  • the output of the DC/DC converter 120 is controlled so that a corresponding voltage is output.
  • the converter control unit 140 may turn off the DC/DC converter 120 .
  • the separate parameter DB unit (not shown) is included.
  • An optimal voltage value for outputting a maximum power point per current for each temperature is previously stored in the parameter DB unit. That is, the parameter DB unit stores the same content as in the graph of FIG. 4 .
  • the MPPT control unit 132 extracts an optimum voltage value corresponding to the sensed values from the voltage sensor, the current sensor, and the first temperature sensor from the parameter DB unit. Thereafter, the converter control unit 140 controls to output the extracted optimal voltage value from the output terminal. For example, if the currently sensed temperature and current values are known, the corresponding current and voltage curves can be found, and the optimal voltage value for this curve (for example, the voltage value corresponding to the point P corresponding to the maximum power point) ) can be extracted.
  • the voltage and current sensor senses the current and voltage values of the PV module 10 .
  • the first temperature sensor detects a temperature value of the PV module 10 .
  • the MPPT control unit 132 extracts the optimum voltage value corresponding to the sensing values sensed by the voltage and current sensors and the temperature sensor from the parameter DB unit.
  • the converter control unit 140 controls the DC/DC converter 140 to output the extracted optimal voltage value from the output terminal.
  • the switch built in the DC/DC converter 140 may be turned off.
  • the present invention relates to a junction box-integrated output compensation device for a solar cell module in which a junction box installed in a solar cell module to transmit power to the outside and an output compensation device for compensating the output of the solar cell module are integrated. there is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A junction box-integrated output compensation device for a photovoltaic (PV) module according to the disclosed present invention comprises: a case in which a bypass diode is embedded; and a thermoelectric module attached to an outer side of the case to radiate heat from the case. Provided inside the case are a sensor unit for sensing the current, voltage, and temperature of the PV module, a DC/DC converter for stepping up or down DC power generated in the PV module and outputting same, and a microcontroller. The microcontroller includes: a maximum power point tracking (MPPT) control unit which continuously monitors the current and voltage supplied by the PV module by means of the sensor unit and tracks a maximum power point (MPP) of the PV module by using an MPPT algorithm to maintain the maximum output power; and a thermoelectric module control unit for controlling the driving of the thermoelectric module.

Description

태양전지 모듈용 정션박스 일체형 출력보상 장치Junction box integrated output compensation device for solar cell module
본 발명은 태양전지 모듈용 정션박스 일체형 출력보상 장치에 관한 것으로서, 보다 상세하게는 태양전지 모듈과 연결되어 외부로 전력을 전달하는 정션박스 및 태양전지 모듈의 출력을 보상하는 출력보상 장치가 일체화된 태양전지 모듈용 정션박스 일체형 출력보상 장치에 관한 것이다.The present invention relates to a junction box integrated output compensation device for a solar cell module, and more particularly, a junction box connected to a solar cell module to transmit power to the outside and an output compensation device for compensating the output of the solar cell module are integrated It relates to a junction box-integrated output compensation device for a solar cell module.
태양광 발전 시스템은 태양 에너지를 전기로 변환하며 태양전지(PV:Photovoltaic) 모듈과 전력변환기(Power Conditioning System, PCS)로 구성된다. 태양광 발전 직류전력을 교류 전력계통에 전송하기 위해서는 직류를 교류로 변환하는 전력변환기인 태양광 인버터를 사용하며, 이 태양광 인버터는 두 부분으로 구성되는데, 첫째로 낮은 전압인 탸양광 발전 직류 전력을 다음 단계에 적합한 높은 전압으로 승합하고, 태양광 모듈이 최대의 전력을 발전하도록 조절하는 기능은 MPPT(Maximum Power Ponit Tracking)을 수행하는 앞단의 직류(DC)-직류(DC) 컨버터 부분과, 앞 단에서 적절하게 승압된 직류전력을 전력계통에 맞게 교류 전력으로 변호나하여 전송하는 뒷단의 직류(DC)-교류(AC) 인버터 부분이다.The photovoltaic power generation system converts solar energy into electricity and consists of a photovoltaic (PV) module and a power conditioning system (PCS). In order to transmit solar power DC power to the AC power system, a solar inverter, which is a power converter that converts DC to AC, is used. This solar inverter consists of two parts. First, low voltage solar power DC power is used. The function of increasing the voltage to a high voltage suitable for the next stage and controlling the solar module to generate the maximum power is a DC-DC converter part of the front stage that performs MPPT (Maximum Power Ponit Tracking), It is the DC-AC inverter part of the rear stage that converts or transmits the DC power properly boosted in the front stage into AC power according to the power system.
대부분의 태양광 발전 시스템은 다수의 PV 모듈(패널)을 직렬 연결해서 스트링을 만들고 이를 하나의 대용량 전력변환기로 변환하는 방식을 사용하는데, 이는 초기 설치비를 낮추지만 일부 PV 모듈에 그늘이 지거나 오염 물질이 있는 정도에 따라 발전량이 급격히 줄어드는 문제가 있다. 이는 스트링을 구성하는 일부 PV 모듈에 문제가 생겨 부분적으로 출력(전류)이 감소할 때, 직렬연결 회로의 특성 상 전류 병목현상이 생겨 전체 전류를 줄이기 때문임. 결국 한 부분의 이상이 전체로 파급되어 총 발전량을 대폭 감소시키게 된다. 대표적인 경우가 주택 및 건물 지붕에 설치하는 지붕형 태양광(Rooftop PV) 시스템에서 일부 모듈에 그늘이 지는 부분음영(Partial Shading) 현상이다. 또한 정상적인 날씨에서도 태양의 이동에 따라 각 PV 모듈에 입사하는 빛의 각도가 달라져 이것이 발전 전류에 차이를 만드는 모듈 미스매치(Module Mismatch)도 유사한 현상이다.Most solar power generation systems connect multiple PV modules (panels) in series to form a string and convert it into one large-capacity power converter. There is a problem in that the amount of power generation rapidly decreases depending on the degree of this. This is because when some PV modules composing the string have a problem and the output (current) is partially reduced, a current bottleneck occurs due to the characteristics of the series-connected circuit and reduces the total current. Eventually, an abnormality in one part spreads to the whole, which greatly reduces the total power generation. A typical case is the partial shading phenomenon in which some modules are shaded in a roof-top PV system installed on the roof of a house or building. In addition, even in normal weather, the angle of light incident on each PV module varies according to the movement of the sun, and this is a similar phenomenon to the module mismatch, which makes a difference in the generation current.
이를 해결하는 대표적인 출력보상 기술로 PV 모듈 하나당 한 개의 작은 인버터(마이크로 인버터)를 설치하는 마이크로인버터 방식이 있다. 마이크로인버터는 스트링 전체에서 모아진 DC 전기를 한꺼번에 대용량 DC-AC 변환을 하는 방식이 아니고, 모듈 각각에 설치한 마이크로인버터에서 소용량 DC-AC 변환을 한 후 소출력 교류를 공통 병렬회로에 연결해 모아서 전력계통에 전송하는 분산형 시스템이다. 마이크로인버터 방식은 개별 모듈마다 전용 인버터를 사용하기 때문에 태양전지 모듈 당 최대전력점추종(MPPT) 제어기능을 갖출 수 있어 더 많은 발전이 이루어지도록 한다.As a representative output compensation technology to solve this problem, there is a micro-inverter method in which one small inverter (micro inverter) is installed per PV module. The micro-inverter does not convert the DC electricity collected from the entire string into large-capacity DC-AC at once, but converts the small-capacity DC-AC in the micro-inverter installed in each module, then connects the small-output AC to a common parallel circuit and collects it into the power system. It is a distributed system that transmits Since the micro-inverter method uses a dedicated inverter for each individual module, it can be equipped with a maximum power point tracking (MPPT) control function per solar cell module, enabling more power generation.
그런데 마이크로인버터는 그늘진 장소에서는 효과적이나 PV 모듈마다 설치하는 마이크로인버터는 패널과 같은 용량의 DC-AC 인버터로 DC-DC 컨버터 대비 비싸고 효율이 떨어진다. 결국 모든 PV 모듈에 설치하기엔 투자 대비 수익성이 떨어지므로 공간 제약이 있거나 그늘이 심한 경우에만 사용하게 된다.However, microinverters are effective in shady places, but microinverters installed for each PV module are DC-AC inverters with the same capacity as the panel, and are more expensive and less efficient than DC-DC converters. After all, it is less profitable to install it in all PV modules, so it is only used when space is limited or there is a lot of shade.
마이크로인버터 방식의 단점(경제성)을 해결하기 위해 최근에는 PV 모듈마다 소용량의 DC-DC 컨버터(DC 옵티마이저)를 설치하는 마이크로컨버터 방식이 개발되고 있다. 이는 PV 모듈마다 DC-DC 변환을 하는 마이크로컨버터를 사용해 1차 직류승압을 하고, 각각의 승압된 직류전력을 모아 2차 DC-AC 변환을 하는 분산 모듈형 구조이다. 이 마이크로컨버터 방식은 종래 중앙집중식 스트링 인버터 구조에서 최대출력점추종(MPPT)과 승압을 담당하던 1차측 DC-DC 컨버터를 다수의 소용량 모듈로 나눠 각각을 마이크로컨버터로 만들고 이를 PV 모듈 마다 설치해서 각 모듈 상황에 맞는 최대출력점추종(MPPT) 제어를 수행하도록 한 것이다. 그러므로 마이크로인버터 방식과 유사하게 개별 모듈마다 설치된 마이크로컨버터가 최대전력점추종(MPPT) 제어를 할 수 있어 더 많은 발전이 가능해진다. 마이크로컨버터는 DC-DC 컨버터라서 DC-AC 변환을 하는 마이크로인버터보다 가격이 절반 이하로 크게 저렴하고 효율도 우수하다는 장점이 있다. In order to solve the disadvantages (economical) of the micro-inverter method, a micro-converter method in which a small-capacity DC-DC converter (DC optimizer) is installed for each PV module has recently been developed. This is a distributed modular structure that uses a microconverter that converts DC-DC for each PV module, performs primary DC boost, and collects each boosted DC power to perform secondary DC-AC conversion. This microconverter method divides the primary DC-DC converter, which was in charge of maximum output point tracking (MPPT) and boosting in the conventional centralized string inverter structure, into a number of small-capacity modules, making each microconverter, and installing it for each PV module. It is designed to perform maximum output point tracking (MPPT) control according to the module situation. Therefore, similar to the micro-inverter method, the micro-converter installed in each module can control the maximum power point tracking (MPPT), enabling further development. Since a micro-converter is a DC-DC converter, the price is less than half that of a micro-inverter that converts DC-AC, and it has the advantage of excellent efficiency.
한편, 태양전지의 최소 구조를 셀(Cell)이라고 하며, 복수의 태양전지 셀을 전기적으로 연결한 형태를 PV 모듈이라고 한다. 이러한 PV 모듈은 일반적으로 모듈 기판상에 전도성을 갖는 리본(Ribbon)을 이용하여 태양전지 셀들을 직렬로 연결하여 형성된 어레이 구조로 구성된다. 아울러 태양전지모듈에는 각 태양전지 스트링에서 생산된 전력을 전도성을 갖는 버스 바(Bus Bar)를 통해 취합하여 전력변환기로 전달하기 위한 접속 단자들을 구비한 단자함(정션박스)가 설치되어 있다. On the other hand, the minimum structure of a solar cell is called a cell, and a form in which a plurality of solar cells are electrically connected is called a PV module. Such a PV module is generally composed of an array structure formed by connecting solar cells in series using a ribbon having conductivity on a module substrate. In addition, the solar cell module is provided with a terminal box (junction box) equipped with connection terminals for collecting power generated from each solar cell string through a conductive bus bar and transmitting it to the power converter.
이렇게 마이크로컨버터와 같은 출력보상기와 정션박스가 별도로 구비되는바, 장치의 소형화 및 관리의 효율화를 위해 하나의 정션박스에 구비되는 기술이 최근에 소개된다.As such, an output compensator such as a micro-converter and a junction box are separately provided, and a technology provided in a single junction box has been recently introduced for miniaturization and management efficiency of the device.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로써, 본 발명의 기술적 과제는 정션박스와 출력보상 장치를 일체화시키도록 하는 태양전지 모듈용 정션박스 일체형 출력보상 장치 제공하는데 있다.The present invention has been devised in view of the above points, and an object of the present invention is to provide a junction box-integrated output compensation device for a solar cell module that integrates a junction box and an output compensation device.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 태양전지 모듈용 정션박스 일체형 출력보상 장치는 태양전지(PV) 모듈에 각각 연결되는 정션박스 일체형 출력보상 장치에 관한 것으로서, 바이패스 다이오드가 내장되는 케이스; 상기 케이스의 외측 일측면에 부착되어 상기 케이스를 방열시키는 열전모듈; 상기 케이스 내부에 구비되어, 상기 PV 모듈의 전류와 전압 및 온도를 감지하는 센서부; 상기 케이스 내부에 구비되어, 상기 PV 모듈에서 발생하는 직류전원을 강압 또는 승압되게 변화하여 출력시키는 DC/DC 컨버터; 상기 센서부에 의해 상기 PV 모듈에 의해 공급되는 전류 및 전압을 연속적으로 감시하고 최대 전력점 추적(MPPT:Maximun Power Point Tracking) 알고리즘을 이용하여 PV 모듈의 최대전력점(MPP:Maximun Power Point)을 추종하여 최대 출력 전력을 유지하도록 하는 MPPT 제어부와, 상기 열전모듈의 구동을 제어하는 열전모듈 제어부를 포함하는 마이크로 컨트롤러; 및, 상기 DC/DC 컨버터가 상기 MPPT 제어부에 의해 트래킹된 최대 전력점에 대응하는 전압을 출력하도록 제어하는 컨버터 제어부;를 포함한다.A junction box-integrated output compensation device for a solar cell module according to the present invention for solving the above technical problem relates to a junction box-integrated output compensation device connected to a solar cell (PV) module, respectively, comprising: a case in which a bypass diode is embedded; a thermoelectric module attached to an outer side of the case to dissipate heat from the case; a sensor unit provided inside the case to sense the current, voltage, and temperature of the PV module; a DC/DC converter provided inside the case to change the DC power generated from the PV module to be step-down or step-up and output; The sensor unit continuously monitors the current and voltage supplied by the PV module and uses the Maximum Power Point Tracking (MPPT) algorithm to determine the maximum power point (MPP: Maximun Power Point) of the PV module. a microcontroller comprising: an MPPT control unit that tracks and maintains the maximum output power; and a thermoelectric module control unit that controls driving of the thermoelectric module; and a converter control unit for controlling the DC/DC converter to output a voltage corresponding to the maximum power point tracked by the MPPT control unit.
또한 상기 온도센서는 PV 모듈의 온도를 감지하는 제1 온도센서와, 상기 케이스 내부의 온도를 감지하는 제2 온도센서를 포함하며, 상기 마이크로 컨트롤러는 상기 제1 온도센서로부터 감지된 온도값이 설정된 기준치를 초과하는 경우 이상이 있는 것으로 판단하여 상기 컨버터 제어부에 제어명령을 송출하여, 상기 DC/DC 컨버터 내의 스위치를 턴 오프시켜 내부 회로의 동작을 차단하도록 하는 이상상태 감지부를 더 포함하고, 상기 열전모듈 제어부는 상기 제2 온도센서로부터 상기 케이스 내부의 온도정보를 받아 설정된 온도보다 높을 경우 냉각하도록 제어하거나 또는 케이스 내부가 일정 온도를 유지할 수 있도록 제어한다.In addition, the temperature sensor includes a first temperature sensor for detecting the temperature of the PV module, and a second temperature sensor for detecting the temperature inside the case, the microcontroller is a temperature value sensed from the first temperature sensor is set When it exceeds the reference value, it is determined that there is an abnormality and transmits a control command to the converter control unit, further comprising an abnormal state detection unit to turn off a switch in the DC/DC converter to block the operation of the internal circuit, the thermoelectric The module control unit receives the temperature information of the inside of the case from the second temperature sensor and controls to cool the case when the temperature is higher than a set temperature or to maintain a constant temperature inside the case.
한편 본 발명에 의하면 온도 별로 전류당 최대 전력점을 출력하기 위한 최적의 전압 값이 저장되어 있는 파라미터 DB;를 더 포함하며, 상기 MPPT 제어부는 상기 전류센서와 전압센서 및 제1 온도센서로부터 감지된 센싱 값에 대응되는 최적의 전압 값을 상기 파라미터 DB부로부터 추출한다.Meanwhile, according to the present invention, it further includes a parameter DB in which an optimal voltage value for outputting a maximum power point per current for each temperature is stored, wherein the MPPT control unit detects the current sensor, the voltage sensor, and the first temperature sensor. An optimal voltage value corresponding to the sensed value is extracted from the parameter DB unit.
본 발명에 따른 태양전지 모듈용 정션박스 일체형 출력보상 장치에 의하면, 정션박스에 출력보상 장치를 일체화시킴으로써 태양광 발전 시스템의 소형화 및 경비 절감을 추구할 수 있고, 또한 정션박스 케이스의 외측에 열전모듈을 부착시킴에 따라, 바이패스 다이오드의 구동에 의해 정션박스 케이스가 고열이 되는 것에 효과적으로 방열할 수 있어, 결국 PV 모듈의 효율을 높이는 효과가 있다. According to the junction box-integrated output compensation device for a solar cell module according to the present invention, it is possible to pursue miniaturization and cost reduction of the solar power generation system by integrating the output compensation device into the junction box, and a thermoelectric module outside the junction box case By attaching the junction box, it is possible to effectively dissipate heat caused by the high temperature of the junction box case by driving the bypass diode, which in turn has the effect of increasing the efficiency of the PV module.
도 1은 본 발명의 실시예에 따른 태양전지 모듈용 정션박스 일체형 출력보상장치의 개략 도면,1 is a schematic view of a junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 태양전지 모듈용 정션박스 일체형 출력보상장치의 블럭 구성도,2 is a block diagram of a junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention;
도 3 및 도 4는 태양전지 모듈의 I-V와 P-V 특성 및 MPPT 제어부의 최대추적점을 추적하는 것을 설명하기 위한 도면이다.3 and 4 are diagrams for explaining the tracking of I-V and P-V characteristics of the solar cell module and the maximum tracking point of the MPPT control unit.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art completely It is provided to inform you. In the drawings, like reference numerals refer to like elements.
도 1 및 도 2를 참조하면 본 발명의 실시예에 따른 태양전지 모듈용 정션박스 일체형 출력보상 장치는, PV 모듈(10)과 연결되도록 PV 모듈(10)의 일측면에 설치되는 케이스(100)와, 케이스 일측면에 부착되는 열전모듈(200), 상기 케이스(100) 내부에 각각 설치되는 바이패스 다이오드(102), 센서부(110), DC/DC 컨버터(140), 마이크로 컨트롤러(130), 컨버터 제어부(140) 및 통신부(150)를 포함한다. 1 and 2, the junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention is a case 100 installed on one side of the PV module 10 so as to be connected to the PV module 10. And, the thermoelectric module 200 attached to one side of the case, the bypass diode 102 installed inside the case 100, the sensor unit 110, the DC/DC converter 140, the microcontroller 130, respectively. , a converter control unit 140 and a communication unit 150 .
케이스(100)는 PV 모듈의 일측면 예를 들어 배면에 장착된다. 케이스(100)는 회로 소자들의 수분 침투 방지를 위해 그 내부는 실리콘 등을 이용하여 밀봉이 수행될 수 있다. 케이스(100)에는 입력단자가 구비되어 태양전지의 도전성 라인이 후술할 바이패스 다이오드(102)와 연결할 수 있도록 하고, 출력단자가 구비되어 전력 변환된 직류 전원이 외부로 출력할 수 있도록 한다.The case 100 is mounted on one side, for example, the back side of the PV module. The inside of the case 100 may be sealed using silicon or the like to prevent moisture penetration of circuit elements. The case 100 is provided with an input terminal so that a conductive line of the solar cell can be connected to a bypass diode 102 to be described later, and an output terminal is provided to output the converted DC power to the outside.
한편, 정션 박스의 동작시에는 바이패스 다이오드(102) 등으로부터 고열이 발생하는데, 발생된 열은 케이스(100)가 부착된 위치에 배열된 특정의 태양전지의 효율을 감소시킬 수 있다. 이를 방지하게 위해 종래에는 정션 박스 내에 주름 구조 등의 방열플레이트를 구비하는데, 이러한 특정 구조의 방열플레이트 만으로는 최적의 방열이 이루어지지 않을 수 있다. Meanwhile, high heat is generated from the bypass diode 102 or the like during operation of the junction box, and the generated heat may reduce the efficiency of a specific solar cell arranged at a position to which the case 100 is attached. To prevent this, conventionally, a heat dissipation plate having a corrugated structure is provided in the junction box, but optimal heat dissipation may not be achieved only with the heat dissipation plate having a specific structure.
따라서, 본 발명에 의하면 방열이 효율적으로 이루어지도록 케이스의 일측면에 온도조절을 위한 열전모듈(200)이 부착된다. Therefore, according to the present invention, the thermoelectric module 200 for temperature control is attached to one side of the case so that heat is efficiently dissipated.
열전모듈(200)은 케이스(100)의 일측에 부착되어 케이스(100)를 방열시키는 역할을 한다. 전술한 바와 같이 정션 박스의 동작시에는 바이패스 다이오드(102) 등으로부터 고열이 발생하는데, 발생된 열은 케이스(100)가 부착된 위치에 배열된 특정의 태양전지의 효율을 감소시킬 수 있다. 본 발명은 이를 방지하게 위해 열전모듈(200)의 흡열면이 케이스(100)에 접촉하도록 배치하여 케이스(100)를 냉각(방열)시키도록 한다. 열전모듈(200)은 미도시된 전원공급부에 의해 전원이 공급된다. The thermoelectric module 200 is attached to one side of the case 100 and serves to radiate heat from the case 100 . As described above, high heat is generated from the bypass diode 102 or the like during operation of the junction box, and the generated heat may reduce the efficiency of a specific solar cell arranged at a position where the case 100 is attached. In the present invention, to prevent this, the heat absorbing surface of the thermoelectric module 200 is disposed to contact the case 100 so that the case 100 is cooled (heat dissipated). The thermoelectric module 200 is supplied with power by a power supply not shown.
바이패스 다이오드(102)는 PV 모듈(10)에 연결되어 전원이 공급될 시에는 바이패스 라인을 단락 또는 개방되게 하는 단락모드로 동작하고, 전원이 차단될 시에는 바이패스 라인을 개방되게 하는 개방모드로 동작하도록 되어 있다. 즉, 바이패스 다이오드는 태양전지 스트링들 간의 전류가 역류하는 것을 방지하게 된다. 바이패스 다이오드(102)의 개수는 PV 모듈을 구성하는 태양전지 스트링의 개수에 따라 달라질 수 있으며, 이와 같은 바이패스 다이오드의 상세한 구성 및 동작은 종래 기술에 의해 널리 알려지 있고 본 발명의 요지과 관련이 없으므로 상세한 설명은 생략하기로 한다.The bypass diode 102 is connected to the PV module 10 and operates in a short-circuit mode to short-circuit or open the bypass line when power is supplied, and open to open the bypass line when power is cut off. mode to operate. That is, the bypass diode prevents the current between the solar cell strings from flowing backward. The number of bypass diodes 102 may vary depending on the number of solar cell strings constituting the PV module, and the detailed configuration and operation of such bypass diodes are widely known in the prior art and are not related to the gist of the present invention. A detailed description will be omitted.
센서부(110)는 바이패스 다이오들의 양단에 연결되어, PV 모듈의 전류 및 전압을 감지한다. 이러한 전압센서(114) 및 전류센서(112)는 다양한 기술 예를 들어 매우 낮은 저항을 이용하거나 전류(전압) 프로브 등을 이용하는 기술에 의해 실현될 수 있다. The sensor unit 110 is connected to both ends of the bypass diodes to sense the current and voltage of the PV module. The voltage sensor 114 and the current sensor 112 may be realized by various technologies, for example, using a very low resistance or using a current (voltage) probe.
한편, 센서부(110)는 온도센서를 더 구비할 수 있다. 온도센서는 케이스(100) 내에서 PV 모듈(10)과의 연결부에 구비되어, PV 모듈(10)의 온도를 감지하는 제1 온도센서(116)와, 케이스(100) 내부의 온도를 감지하는 제2 온도센서(118)를 구비한다. Meanwhile, the sensor unit 110 may further include a temperature sensor. The temperature sensor is provided in the connection part with the PV module 10 in the case 100, and a first temperature sensor 116 that detects the temperature of the PV module 10 and the case 100 detects the temperature inside A second temperature sensor 118 is provided.
센서부(110)에 의개 감지된 전류, 전압 및 온도 정보는 마이크로 컨트롤러(130)에 전달된다. 이러한 전류 및 전압 데이터는 시스템의 감시 목적으로 이용할 수 있다. 그리고, 온도 데이터 특히 PV 모듈의 온도 데이터는 PV 모듈의 일종의 고장 및 문제를 나타내며, 또한 출력 전력 생산의 계수로서 작용한다. Information on the current, voltage, and temperature falsely sensed by the sensor unit 110 is transmitted to the microcontroller 130 . This current and voltage data can be used for system monitoring purposes. And, the temperature data, particularly the temperature data of the PV module, represents a kind of failure and problem of the PV module, and also acts as a coefficient of output power production.
DC/DC 컨버터(140)는 PV 모듈(10)에서 발생하는 직류전원을 강압 또는 승압되게 변화하여 출력한다. 예를 들어 DC/DC 컨버터(140)는 벅 컨버터 회로, 부트스 컨버터 회로, 벅-부스트 컨버터 회로, N-벅 컨버터 회로 등이 적용될 수 있다. DC/DC 컨버터의 종류 및 동작은 종래 기술에 의해 널리 알려지 있고 본 발명의 요지과 관련이 없으므로 상세한 설명은 생략하기로 한다.The DC/DC converter 140 changes the DC power generated in the PV module 10 to be step-down or step-up and output it. For example, the DC/DC converter 140 may include a buck converter circuit, a boost converter circuit, a buck-boost converter circuit, an N-buck converter circuit, and the like. Since the type and operation of the DC/DC converter are widely known in the prior art and are not related to the gist of the present invention, a detailed description thereof will be omitted.
마이크로 컨트롤러(130)는 MPPT 제어부(132)와 이상상태 감지부(134) 및 열전모듈 제어부(136)를 포함한다.The microcontroller 130 includes an MPPT control unit 132 , an abnormal state detection unit 134 , and a thermoelectric module control unit 136 .
MPPT 제어부(132)는 PV 모듈(10)에 의해 공급되는 전류 및 전압을 연속적으로 감시하고 최대 전력점 추적(MPPT:Maximun Power Point Tracking) 알고리즘을 이용하여 해당 PV 모듈(10)의 최대전력점(MPP:Maximun Power Point)을 추종하여 최대 출력 전력을 유지한다. MPPT 알고리즘은 예를 들면 P&O(Perturb and Observe) 알고리즘, IC(Incremental Conductance) 알고리즘 등과 같은 모든 통상의 알고리즘을 사용할 수 있다. The MPPT control unit 132 continuously monitors the current and voltage supplied by the PV module 10 and uses the Maximum Power Point Tracking (MPPT) algorithm to the maximum power point ( MPP:Maximun Power Point) to keep the maximum output power. The MPPT algorithm may use all common algorithms, such as, for example, a Perturb and Observe (P&O) algorithm, an Incremental Conductance (IC) algorithm, and the like.
도 3은 태양전지에서의 전류 대 전압의 곡선(실선 부분)의 특성을 개략적으로 나타낸 것이며, 도 4는 서로 다른 3개의 온도 조건 별로 곡선을 도시한 것이다. 여기서 온도란 일사량 조건과 대응될 수 있다. 그리고, 점선 부분은 각 곡선에 대응되는 전력 스케일 곡선을 나타내는 것으로서 전압과 전류의 곱에 의해 결정된다.3 schematically shows the characteristics of a current versus voltage curve (solid line portion) in a solar cell, and FIG. 4 shows the curves for three different temperature conditions. Here, the temperature may correspond to the insolation condition. And, the dotted line indicates the power scale curve corresponding to each curve, and is determined by the product of voltage and current.
도 4를 참조하면, 모든 온도 조건에 대해, 전압이 어느 정도 증가하면 전류가 급격히 떨어지는 것을 알 수 있다. 이러한 전류 값의 하락에 따라 전력 스케일 역시 급감하게 된다. PV 모듈의 출력 효율을 높이기 위해서는, 도면의 그래프에서 최대 전력점을 트래킹하여 그에 대응되는 전압을 출력단에서 출력할 수 있도록 제어해야 한다. 최대 전력점은 감지된 전압과 전류의 곱이 가장 큰 지점에 해당된다.Referring to FIG. 4 , it can be seen that, for all temperature conditions, when the voltage is increased to a certain extent, the current rapidly drops. As the current value decreases, the power scale also decreases sharply. In order to increase the output efficiency of the PV module, it is necessary to track the maximum power point in the graph of the drawing and control so that the corresponding voltage can be output from the output terminal. The maximum power point corresponds to the point where the product of the sensed voltage and current is greatest.
이상상태 감지부(134)는 온도센서(제1 온도센서)의 감지 값이 일정 기준치를 초과할 경우 이상이 있는 것으로 판단하여 컨버터 제어부(140)에 제어명령을 송출하여, DC/DC 컨버터(120) 내의 스위치를 턴 오프시켜 내부 회로의 동작을 차단하여 외부로의 전력 전달을 차단하거나 PV 모듈의 구동을 차단할 수 있다.When the detection value of the temperature sensor (first temperature sensor) exceeds a predetermined reference value, the abnormal state detection unit 134 determines that there is an abnormality and transmits a control command to the converter control unit 140 , and the DC/DC converter 120 ) to block the operation of the internal circuit by turning off the switch in the internal circuit to block power transmission to the outside or to block the operation of the PV module.
열전모듈 제어부(136)는 열전모듈(200)의 온도를 제어한다. 열전모듈 제어부(136)는 제2 온도센서(118)로부터 케이스 내부의 온도정보를 받아 설정된 온도보다 높을 경우 냉각하도록 제어하거나 또는 케이스 내부가 일정 온도를 유지할 수 있도록 제어한다. 이와 같이 열전모듈(200) 및 열전모듈 제어부(136)에 의해 케이스(100)를 일정한 온도로 유지할 수 있다. 따라서 기존의 바이패스 다이오드 등으로부터 발생되는 고열에 의해 특정 위치의 태양전지의 효율이 감소되는 것을 방지할 수 있다The thermoelectric module controller 136 controls the temperature of the thermoelectric module 200 . The thermoelectric module control unit 136 receives the temperature information of the inside of the case from the second temperature sensor 118 and controls to cool the case when the temperature is higher than the set temperature or to maintain the inside of the case at a constant temperature. As described above, the case 100 can be maintained at a constant temperature by the thermoelectric module 200 and the thermoelectric module controller 136 . Therefore, it is possible to prevent the efficiency of the solar cell at a specific location from being reduced due to the high heat generated by the existing bypass diode or the like.
컨버터 제어부(140)는 MPPT 제어부(132)의 추종된 최대전력점에 따라 DC/DC 컨버터(120)에서 최대전력점에 대응되는 전압이 출력되도록 제어한다. 즉 컨버터 제어부(140)는 MPPT 제어부(132)에서 산출한 최대전력점에 따라 DC/DC 컨버터(120)에 듀티 사이클 제어신호를 전송하여 출력 전압을 조정한다.The converter control unit 140 controls the DC/DC converter 120 to output a voltage corresponding to the maximum power point according to the maximum power point followed by the MPPT control unit 132 . That is, the converter control unit 140 transmits a duty cycle control signal to the DC/DC converter 120 according to the maximum power point calculated by the MPPT control unit 132 to adjust the output voltage.
한편, 본 발명의 실시예에 따른 정션박스 일체형 출력보상 장치가 PV 모듈(10)과 일체형으로 형성되는 경우 MIC(Modul Integrated Converter) 회로라고 칭할 수 있다. 또한, 정션박스 일체형 출력보상 장치는 DC/DC 컨버터를 제외한 일부 구성요소들이 SOC(System On Chip)로 구현될 수 있다.On the other hand, when the junction box-integrated output compensation device according to the embodiment of the present invention is formed integrally with the PV module 10, it may be referred to as a MIC (Modul Integrated Converter) circuit. In addition, in the junction box integrated output compensation device, some components except for the DC/DC converter may be implemented as a system on chip (SOC).
통신부(150)는 센서부(110)의 각종 센싱 데이터를 외부의 관제 서버()로 전송하는 역할을 한다. 이러한 전송된 정보들은 해당 PV 모듈(10)의 실시간 모니터링 및 분석을 가능하게 한다. 여기서 개별 정션박스 케이스별로 고유 ID를 가지도록 함으로써 해당 PV 모듈의 식별 및 개별 모니터링 및 개별 유지관리를 용이하게 한다.The communication unit 150 serves to transmit various types of sensing data of the sensor unit 110 to an external control server ( ). Such transmitted information enables real-time monitoring and analysis of the PV module 10 . Here, each junction box case has a unique ID, thereby facilitating identification and individual monitoring and individual maintenance of the PV module.
상기의 구조를 갖는 본 발명의 실시예에 따른 태양전지 모듈용 정션박스 일체형 출력보상 장치의 동작을 설명하면 다음과 같다.The operation of the junction box-integrated output compensation device for a solar cell module according to an embodiment of the present invention having the above structure will be described as follows.
먼저, 센서부(110)의 전압센서, 전류센서는 PV 모듈의 전류, 전압 값을 연속적으로 감지한다. 이러한 정보는 MPPT 제어부(132)로 전송되고 MPPT 제어부(132)는 감지된 전류 및 전압 값으로부터 최대 전력점을 트래킹하고, 컨버터 제어부(140)는 MPPT 제어부(132)에 의해 트래킹된 최대 전력점에 대응되는 전압이 출력하도록 DC/DC 컨버터(120)의 출력을 제어한다. First, the voltage sensor and the current sensor of the sensor unit 110 continuously sense the current and voltage values of the PV module. This information is transmitted to the MPPT control unit 132, the MPPT control unit 132 tracks the maximum power point from the sensed current and voltage values, and the converter control unit 140 is the maximum power point tracked by the MPPT control unit 132. The output of the DC/DC converter 120 is controlled so that a corresponding voltage is output.
여기서 상기 온도 센서의 감지값이 기준치를 초과할 경우, 컨버터 제어부(140)는 DC/DC 컨버터(120)를 턴 오프시킬 수 있다.Here, when the detected value of the temperature sensor exceeds the reference value, the converter control unit 140 may turn off the DC/DC converter 120 .
이러한 일 실시예의 경우, 실시간 감지된 전압 및 전류 값으로부터 직접 최대 전력점을 탐색하는 구성에 해당된다. In the case of such an embodiment, it corresponds to the configuration of directly searching for the maximum power point from the real-time sensed voltage and current values.
기 저장된 DB 정보를 활용하여 최대 전력점을 탐색하는 다른 실시예에 관하여 알아본다.Another embodiment of searching for a maximum power point using pre-stored DB information will be described.
이를 위해, 상기 별도의 파라미터 DB부(미도시)를 포함한다. To this end, the separate parameter DB unit (not shown) is included.
상기 파라미터 DB부에는 상기 온도 별로 전류당 최대 전력점을 출력하기 위한 최적의 전압 값이 미리 저장되어 있다. 즉, 파라미터 DB부에는 도 4의 그래프와 같은 내용이 저장되어 있다.An optimal voltage value for outputting a maximum power point per current for each temperature is previously stored in the parameter DB unit. That is, the parameter DB unit stores the same content as in the graph of FIG. 4 .
이러한 경우, 상기 MPPT 제어부(132)는 상기 전압센서 및 전류센서와 상기 제1 온도센서로부터 감지된 센싱 값에 대응되는 최적의 전압 값을 상기 파라미터 DB부로부터 추출한다. 이후, 상기 컨버터 제어부(140)에서는 상기 추출된 최적의 전압 값을 출력단에서 출력하도록 제어한다. 예를 들어, 현재 감지된 온도와 전류 값을 알면 이에 대응되는 전류 및 전압 곡선을 찾을 수 있고, 이 곡선에 대한 최적의 전압값(예를 들어 최대 전력점에 해당되는 P 지점에 대응되는 전압 값)을 추출할 수 있다.In this case, the MPPT control unit 132 extracts an optimum voltage value corresponding to the sensed values from the voltage sensor, the current sensor, and the first temperature sensor from the parameter DB unit. Thereafter, the converter control unit 140 controls to output the extracted optimal voltage value from the output terminal. For example, if the currently sensed temperature and current values are known, the corresponding current and voltage curves can be found, and the optimal voltage value for this curve (for example, the voltage value corresponding to the point P corresponding to the maximum power point) ) can be extracted.
이상과 같은 본 발명의 다른 실시예에 따른 태양전지 모듈용 정션박스 일체형 출력보상 장치의 동작을 설명하면 다음과 같다. 먼저, 상기 전압 및 전류 센서에서는 상기 PV 모듈(10)의 전류 및 전압 값을 감지한다. 그리고, 상기 제1 온도 센서에서는 상기 PV 모듈(10)의 온도 값을 감지한다. 이후, MPPT 제어부(132)에서는 상기 전압 및 전류 센서와 상기 온도 센서로부터 감지된 센싱 값에 대응되는 상기 최적의 전압 값을 상기 파라미터 DB부로부터 추출한다. 다음, 상기 컨버터 제어부(140)에서는 DC/DC 컨버터(140)가 상기 추출된 최적의 전압값을 출력단에서 출력하도록 제어한다. 물론, 여기서 상기 온도 센서의 감지값이 기준치를 초과할 경우, DC/DC 컨버터(140)에 내장된 스위치를 턴 오프시킬 수 있다.The operation of the junction box-integrated output compensation device for a solar cell module according to another embodiment of the present invention as described above is as follows. First, the voltage and current sensor senses the current and voltage values of the PV module 10 . And, the first temperature sensor detects a temperature value of the PV module 10 . Thereafter, the MPPT control unit 132 extracts the optimum voltage value corresponding to the sensing values sensed by the voltage and current sensors and the temperature sensor from the parameter DB unit. Next, the converter control unit 140 controls the DC/DC converter 140 to output the extracted optimal voltage value from the output terminal. Of course, when the detected value of the temperature sensor exceeds the reference value, the switch built in the DC/DC converter 140 may be turned off.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the present invention has been described with reference to the accompanying drawings and the above-described preferred embodiments, the present invention is not limited thereto, and is defined by the following claims. Accordingly, those of ordinary skill in the art can variously change and modify the present invention within the scope without departing from the spirit of the claims to be described later.
본 발명은 태양전지 모듈에 설치되어 외부로 전력을 전달하는 정션박스 및 태양전지 모듈의 출력을 보상하는 출력보상 장치가 일체화된 태양전지 모듈용 정션박스 일체형 출력보상 장치에 관한 것으로서 산업상 이용가능성이 있다.The present invention relates to a junction box-integrated output compensation device for a solar cell module in which a junction box installed in a solar cell module to transmit power to the outside and an output compensation device for compensating the output of the solar cell module are integrated. there is.

Claims (3)

  1. 태양전지(PV) 모듈에 각각 연결되는 정션박스 일체형 출력보상 장치에 관한 것으로서,It relates to a junction box-integrated output compensation device connected to each solar cell (PV) module,
    바이패스 다이오드가 내장되는 케이스;a case in which a bypass diode is built-in;
    상기 케이스의 외측 일측면에 부착되어 상기 케이스를 방열시키는 열전모듈;a thermoelectric module attached to an outer side of the case to dissipate heat from the case;
    상기 케이스 내부에 구비되어, 상기 PV 모듈의 전류와 전압 및 온도를 감지하는 센서부;a sensor unit provided inside the case to sense the current, voltage, and temperature of the PV module;
    상기 케이스 내부에 구비되어, 상기 PV 모듈에서 발생하는 직류전원을 강압 또는 승압되게 변화하여 출력시키는 DC/DC 컨버터;a DC/DC converter provided inside the case to change the DC power generated from the PV module to be step-down or step-up and output;
    상기 센서부에 의해 상기 PV 모듈에 의해 공급되는 전류 및 전압을 연속적으로 감시하고 최대 전력점 추적(MPPT:Maximun Power Point Tracking) 알고리즘을 이용하여 PV 모듈의 최대전력점(MPP:Maximun Power Point)을 추종하여 최대 출력 전력을 유지하도록 하는 MPPT 제어부와, 상기 열전모듈의 구동을 제어하는 열전모듈 제어부를 포함하는 마이크로 컨트롤러; 및,The sensor unit continuously monitors the current and voltage supplied by the PV module and uses the Maximum Power Point Tracking (MPPT) algorithm to determine the maximum power point (MPP: Maximun Power Point) of the PV module. a microcontroller comprising: an MPPT control unit to follow and maintain the maximum output power; and a thermoelectric module control unit to control driving of the thermoelectric module; and,
    상기 DC/DC 컨버터가 상기 MPPT 제어부에 의해 트래킹된 최대 전력점에 대응하는 전압을 출력하도록 제어하는 컨버터 제어부;를 포함하는 것을 특징으로 하는 태양전지 모듈용 정션박스 일체형 출력보상 장치.and a converter control unit for controlling the DC/DC converter to output a voltage corresponding to the maximum power point tracked by the MPPT control unit.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 온도센서는 PV 모듈의 온도를 감지하는 제1 온도센서와, 상기 케이스 내부의 온도를 감지하는 제2 온도센서를 포함하며,The temperature sensor includes a first temperature sensor for detecting the temperature of the PV module, and a second temperature sensor for detecting the temperature inside the case,
    상기 마이크로 컨트롤러는 상기 제1 온도센서로부터 감지된 온도값이 설정된 기준치를 초과하는 경우 이상이 있는 것으로 판단하여 상기 컨버터 제어부에 제어명령을 송출하여, 상기 DC/DC 컨버터 내의 스위치를 턴 오프시켜 내부 회로의 동작을 차단하도록 하는 이상상태 감지부를 더 포함하고,When the temperature value sensed by the first temperature sensor exceeds a set reference value, the microcontroller determines that there is an abnormality and sends a control command to the converter control unit to turn off a switch in the DC/DC converter to turn off the internal circuit Further comprising an abnormal state detection unit to block the operation of,
    상기 열전모듈 제어부는 상기 제2 온도센서로부터 상기 케이스 내부의 온도정보를 받아 설정된 온도보다 높을 경우 냉각하도록 제어하거나 또는 케이스 내부가 일정 온도를 유지할 수 있도록 제어하는 것을 특징으로 하는 태양전지 모듈용 정션박스 일체형 출력보상 장치.The thermoelectric module control unit receives the temperature information inside the case from the second temperature sensor and controls to cool it when the temperature is higher than a set temperature, or to control the inside of the case to maintain a constant temperature. All-in-one output compensation device.
  3. 제 2 항에 있어서, 3. The method of claim 2,
    온도 별로 전류당 최대 전력점을 출력하기 위한 최적의 전압 값이 저장되어 있는 파라미터 DB;를 더 포함하며,It further includes a parameter DB in which the optimum voltage value for outputting the maximum power point per current for each temperature is stored;
    상기 MPPT 제어부는 상기 전류센서와 전압센서 및 제1 온도센서로부터 감지된 센싱 값에 대응되는 최적의 전압 값을 상기 파라미터 DB부로부터 추출하는 것을 특징으로 하는 태양전지 모듈용 정션박스 일체형 출력보상 장치.The MPPT control unit extracts an optimal voltage value corresponding to the sensed values sensed from the current sensor, the voltage sensor, and the first temperature sensor from the parameter DB unit.
PCT/KR2020/018108 2020-11-10 2020-12-10 Junction box-integrated output compensation device for photovoltaic module WO2022102857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200149466A KR20220063516A (en) 2020-11-10 2020-11-10 Power Compensation Device integrated Junction Box for Photovoltaic Module
KR10-2020-0149466 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102857A1 true WO2022102857A1 (en) 2022-05-19

Family

ID=81602425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018108 WO2022102857A1 (en) 2020-11-10 2020-12-10 Junction box-integrated output compensation device for photovoltaic module

Country Status (2)

Country Link
KR (1) KR20220063516A (en)
WO (1) WO2022102857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065040A1 (en) * 2022-09-26 2024-04-04 The Governors Of The University Of Alberta Partial energy processing converters for a high efficiency and full mppt range pv module integrated converter mic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005261A1 (en) * 2022-07-01 2024-01-04 주식회사 지구루 Method and system for improving power generation efficiency of photovoltaic power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213761A1 (en) * 2009-02-25 2010-08-26 Solfocus, Inc. Field Level Inverter Controller
KR101260880B1 (en) * 2011-12-07 2013-05-06 한윤희 Junction box with mppt control function in solar cell module and driving method for thereof
KR101496199B1 (en) * 2014-04-18 2015-02-26 (주)대연씨앤아이 Solar cell module having function for breaking of power and control method therefor
KR20170012774A (en) * 2015-07-23 2017-02-03 주식회사 태찬테크 Power output compensation system for maximum efficiency of photovoltaic power generation
KR102136877B1 (en) * 2020-03-09 2020-07-22 주식회사 케이디파워솔루션 Connection board system for photovoltaic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408855B1 (en) 2013-08-26 2014-07-02 (주)알티에스에너지 Micro convertor device using photovoltaic module and control method thereof
KR20170118384A (en) 2016-04-15 2017-10-25 주식회사 이엘티 Solar cell module junction box with converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213761A1 (en) * 2009-02-25 2010-08-26 Solfocus, Inc. Field Level Inverter Controller
KR101260880B1 (en) * 2011-12-07 2013-05-06 한윤희 Junction box with mppt control function in solar cell module and driving method for thereof
KR101496199B1 (en) * 2014-04-18 2015-02-26 (주)대연씨앤아이 Solar cell module having function for breaking of power and control method therefor
KR20170012774A (en) * 2015-07-23 2017-02-03 주식회사 태찬테크 Power output compensation system for maximum efficiency of photovoltaic power generation
KR102136877B1 (en) * 2020-03-09 2020-07-22 주식회사 케이디파워솔루션 Connection board system for photovoltaic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065040A1 (en) * 2022-09-26 2024-04-04 The Governors Of The University Of Alberta Partial energy processing converters for a high efficiency and full mppt range pv module integrated converter mic

Also Published As

Publication number Publication date
KR20220063516A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
US11594880B2 (en) Distributed power harvesting systems using DC power sources
US11962243B2 (en) Method for distributed power harvesting using DC power sources
US20200220494A1 (en) Distributed Power Harvesting Systems Using DC Power Sources
EP2135348B1 (en) Distributed power harvesting systems using dc power sources
WO2022102857A1 (en) Junction box-integrated output compensation device for photovoltaic module
US11687112B2 (en) Distributed power harvesting systems using DC power sources
US20200389019A1 (en) Distributed Power Harvesting Systems Using DC Power Sources
KR20220100391A (en) Power Compensation Device integrated Junction Box for Photovoltaic Module
US11855231B2 (en) Distributed power harvesting systems using DC power sources
KR20220149080A (en) Solar power system for power compensation of shaded area photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961726

Country of ref document: EP

Kind code of ref document: A1