WO2022102759A1 - Biosensor, method for manufacturing field effect transistor for biosensor, and field effect transistor for biosensor - Google Patents

Biosensor, method for manufacturing field effect transistor for biosensor, and field effect transistor for biosensor Download PDF

Info

Publication number
WO2022102759A1
WO2022102759A1 PCT/JP2021/041808 JP2021041808W WO2022102759A1 WO 2022102759 A1 WO2022102759 A1 WO 2022102759A1 JP 2021041808 W JP2021041808 W JP 2021041808W WO 2022102759 A1 WO2022102759 A1 WO 2022102759A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
channel portion
fet
source electrode
drain electrode
Prior art date
Application number
PCT/JP2021/041808
Other languages
French (fr)
Japanese (ja)
Inventor
利弥 坂田
暁子 齋藤
象一 西谷
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2022562212A priority Critical patent/JPWO2022102759A1/ja
Publication of WO2022102759A1 publication Critical patent/WO2022102759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the techniques disclosed herein relate to biosensors, methods of manufacturing field effect transistors for biosensors, and field effect transistors for biosensors.
  • biosensors that use field effect transistors as detection elements have been known.
  • a biosensor using an ion-sensitive field-effect transistor in which a gate electrode is immersed in a solution into which a sample is charged can directly detect charges of biomolecules and ions, and is therefore unlabeled and non-invasive. It is effective for measuring biological functions.
  • Patent Document 1 discloses a biosensor including an ion-sensitive field-effect transistor in a detection unit.
  • a source electrode and a drain electrode are formed on the surface of the semiconductor substrate, a gate insulating film is formed at a position located between the two electrodes on the semiconductor substrate, and the gate insulating film is formed on the gate insulating film.
  • the field-effect transistor is realized by a plurality of layers such as an insulating film and a metal electrode formed on a substrate, so that the field-effect transistor is configured.
  • the field-effect transistor is configured.
  • the present invention has been created in view of the above points, and is capable of manufacturing a biosensor and a field effect transistor for a biosensor, which has a simpler configuration than the conventional one and can be manufactured by a simple manufacturing process. It is an object of the method and to provide a field effect transistor for a biosensor.
  • the biosensor according to the present invention is a biosensor that detects an electrical signal that changes according to the ion concentration of the solution, and includes an electric field effect transistor made of a conductive thin film provided on a substrate and a sample.
  • the conductive thin film comprises a storage portion for storing a solution, and the conductive thin film has a source electrode, a drain electrode, a channel portion arranged between the source electrode and the drain electrode, and a channel portion in contact with the solution. The thickness of the channel portion is thinner than that of the source electrode and the drain electrode.
  • the method for manufacturing an electric field effect transistor for a biosensor is a method for manufacturing an electric field effect transistor for a biosensor that detects an electric signal that changes according to the ion concentration of a solution, and is a source electrode and a drain electrode.
  • a photomask having an opening at the planned formation position and a mask portion at the planned formation position of the channel portion formed between the source electrode and the drain electrode is provided between the substrate and the mask portion.
  • the source electrode and the drain electrode of the conductive thin film are formed in the opening of the photomask, and the conductivity having a thickness thinner than that of the source electrode and the drain electrode.
  • the channel portion of the sex thin film is formed in the gap between the mask portion of the photomask and the substrate.
  • the electric field effect transistor for a biosensor according to the present invention is an electric field effect transistor for a biosensor that detects an electric signal that changes according to the ion concentration of a solution, and the electric field effect transistor is provided on a substrate.
  • the conductive thin film comprises a source electrode, a drain electrode, and a channel portion arranged between the source electrode and the drain electrode and in contact with the solution, and the channel thereof.
  • the film thickness of the portion is formed to be thinner than the film thickness of the source electrode and the drain electrode.
  • a biosensor using an ion-sensitive field-effect transistor as a detection element with a simpler configuration than before.
  • a biosensor using an ion-sensitive field-effect transistor as a detection element can be manufactured by a simple manufacturing process as compared with the conventional case.
  • the surface height at the boundary between the portion where the ITO film is not formed and the glass substrate is exposed and the portion where the ITO film is formed in a plan view is measured by AFM.
  • the biosensor 10 has an ion-sensitive field effect transistor (FET) 12 formed on a glass substrate 14 and a storage unit provided on the FET 12. 22 and.
  • FET field effect transistor
  • the solution 20 containing the sample which is the substance to be measured, is stored in the storage unit 22.
  • the biosensor 10 detects an electrical signal that changes based on the ion concentration of the solution 20 by the FET 12, and detects a change in the ion concentration of the solution 20 based on the obtained detection result.
  • biological substances such as cells, viruses, enzymes, antibodies, DNA and the like in biological samples such as blood, urine, sweat, tears and saliva can be applied.
  • the FET 12 is composed of only a single ITO (Indium Tin Oxide, indium tin oxide) film (an example of a conductive thin film) 16 formed on a glass substrate (an example of a substrate) 14. As shown in FIG. 2, the ITO film 16 has a long shape in a plan view, and has conductivity and transparency.
  • the FET 12 includes a source electrode 12A provided on one side of the ITO film 16 in the longitudinal direction (X-axis direction shown in FIGS. 1 and 2), a drain electrode 12B provided on the other side, a source electrode 12A, and a drain electrode.
  • a channel portion 12C provided between the 12B and the source electrode 12A and having a thinner film thickness than the drain electrode 12B is provided. In this embodiment, the channel portion 12C provided so as to separate the source electrode 12A and the drain electrode 12B is linearly arranged in a substantially central portion of the ITO film 16.
  • the carrier moving between the source electrode 12A and the drain electrode 12B may be restricted by the channel portion 12C by making the thickness of the channel portion 12C comparable to that of the channel portion 12C. Therefore, although the source electrode 12A, the drain electrode 12B, and the channel portion 12C are integrally formed of the same conductive thin film in the FET 12, the source electrode 12A and the drain electrode 12B show conductivity when the FET 12 operates. Only the channel portion 12C is configured to exhibit semiconductor characteristics.
  • the storage unit 22 is provided on the ITO film 16 and is composed of a tubular member having the ITO film 16 exposed at the bottom, and the solution 20 which is an electrolytic solution is stored in the internal space where the ITO film 16 is exposed at the bottom. ing.
  • the solution 20 for example, a phosphate buffer solution can be used.
  • the solution 20 stored in the storage section 22 covers at least the surface of the channel section 12C of the FET 12, and is in contact with the surface of the channel section 12C. It should be noted that the surface of the channel portion 12C contains an identification substance (not shown) that selectively binds to the detection target substance in the sample put into the solution 20 to generate charged ions. You may.
  • the reference electrode 24 as a gate electrode is immersed in the solution 20 from the surface thereof.
  • the reference electrode 24 is a reference potential in the FET 12, and for example, an Ag / AlCl electrode can be used.
  • the reference electrode 24 is electrically connected to the solution 20 in the reservoir 22 and applies a gate voltage to the channel portion 12C.
  • the reference electrode 24 is immersed in the solution 20 as the biosensor 10, but the gate voltage as the reference potential is applied to the channel portion 12C of the FET 12 by another configuration. You may.
  • a back gate type biosensor in which a reference electrode 24 is not provided and a substrate made of SiO 2 / Si is provided on the back surface of the ITO film 16 and a gate electrode is separately provided on the back surface thereof.
  • the gate potential can be controlled by applying the gate voltage to the channel portion 12C by the gate electrode provided on the back surface of the substrate, which has the same effect as the biosensor 10 of the present embodiment. Can be obtained.
  • the FET 12 is composed of only the source electrode 12A, the drain electrode 12B, and the channel portion 12C provided on the same ITO film 16.
  • a DC power supply and an ammeter are electrically connected to the source electrode 12A and the drain electrode 12B via wiring, respectively. This ammeter can measure the current flowing between the source electrode 12A and the drain electrode 12B (hereinafter referred to as "drain current").
  • a DC power source (not shown) is electrically connected between the source electrode 12A and the reference electrode 24.
  • the channel portion 12C provided in the FET 12 has a length L1 of, for example, 3 mm, and a width W1 of 0.1 mm.
  • the length of the channel portion 12C is orthogonal to the Z-axis direction, which is the thickness direction, and is orthogonal to the X-axis direction in which the source electrode 12A and the drain electrode 12B are arranged.
  • the width is a value in the X-axis direction and a value in the X-axis direction orthogonal to the Z-axis direction.
  • the film thickness of the channel portion 12C is formed to be thinner than the film thickness of the source electrode 12A and the drain electrode 12B. That is, in the ITO film 16, only the channel portion 12C is formed with a film thickness thinner than that of the other portions.
  • the channel portion 12C is viewed as a cross section (cross section shown in FIGS. 1 and 3) along both the thickness direction thereof and the direction from the source electrode 12A to the drain electrode 12B.
  • it has tapered portions 13A and 13B whose film thickness gradually decreases from the source electrode 12A side and the drain electrode 12B side toward the center side, and a channel thin film portion 13C formed between the tapered portions 13A and 13B.
  • tapered portions 13A and 13B can be formed when the FET 12 is manufactured by the manufacturing method described later.
  • the semiconductor characteristics of the FET 12 deteriorate when the film thickness (thickness) T2 of the channel portion 12C exceeds 30 nm.
  • the thickness is preferably 30 nm or less. It should be noted that it is desirable that the thickness of the channel portion 12C is 30 nm or less, which will be described with reference to FIG. 16 in the column of the verification test described later.
  • the film thickness (thickness) T2 of the channel portion 12C is preferably, for example, 20 nm or less, and more preferably several nm or more and 20 nm or less. Is desirable. This is because the thickness of the channel portion 12C becomes about the same as the thickness of the depletion layer, which limits the movement of carriers between the source electrode 12A and the drain electrode 12B, and causes the drain current to be the gate voltage or the channel portion 12C. This is because it can be controlled by the interfacial potential based on the charge on the surface.
  • the film thickness (thickness) T2 of the channel portion 12C is the thinnest portion (channel thin film portion 13C) of the film thickness of the channel portion 12C. Further, in this case, it is desirable that the film thickness (thickness) T1 of the source electrode 12A and the drain electrode 12B (the portion excluding the channel portion 12C) is, for example, 100 nm or more.
  • a photomask 30 patterned as shown in FIG. 4 is placed on the washed glass substrate 14 (an example of the arrangement process).
  • the photomask 30 has a mounting portion 30A mounted on the glass substrate 14.
  • the planned formation positions of the source electrode 12A and the drain electrode 12B of the FET 12 coincide with the planar shapes of the source electrode 12A and the drain electrode 12B of the FET 12.
  • a pattern 32 having openings 32A and 32B having an open shape and having a mask portion 32C having no openings is provided at a position where the channel portion 12C is scheduled to be formed.
  • the mask portion 32C at the position where the channel portion 12C is to be formed has, for example, a length L2 of 3 mm and a width W2 of 0.1 mm, and the length L1 of the channel portion 12C of the FET 12 to be formed. , Each of the width W2.
  • the thickness of this photomask 30 is 0.5 mm.
  • a film 34 is provided on the back surface of the mounting portion 30A of the photomask 30.
  • the film 34 is sandwiched between the glass substrate 14 and the mounting portion 30A (peripheral portion of the pattern 32) of the photomask 30.
  • the thickness T3 of this film 34 is, for example, about 10 ⁇ m.
  • a gap G1 is generated between the glass substrate 14 and the photomask 30 in the mask portion 32C corresponding to the channel portion 12C in the pattern 32 of the photomask 30 (see FIG. 6).
  • the height of the gap G1 in the present embodiment that is, the dimension in the Z-axis direction (thickness direction) can be adjusted to a predetermined dimension by adjusting the thickness T3 of the film 34.
  • the height of the gap G1 is preferably 10 ⁇ m or less.
  • the ITO film 16 is formed on the glass substrate 14 by the high-frequency sputtering method (an example of the thin film forming step).
  • ITO containing 10 wt% of SnO 2 (tin oxide) is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (for example, 25 ° C., 100 W, 25 minutes).
  • the oxygen partial pressure can be, for example, 0 Torr or 1 ⁇ 10 -1 to 1 ⁇ 10 -3 Torr.
  • the component fine particles 42 and 44 constituting the ITO film 16 discharged from the sputtering target are the openings of the pattern 32 of the photomask 30. Accumulate in parts 32A and 32B. As a result, the source electrode 12A and the drain electrode 12B are formed in the openings 32A and 32B.
  • the component fine particles 42 and 44 constituting the ITO film 16 discharged from the sputtering target also have an opening 32A in the gap G1 formed between the glass substrate 14 and the mask portion 32C of the photomask 30. , Enter from 32B respectively.
  • the component fine particles 42 and 44 released from the sputtering target are deposited in the gap G1 between the glass substrate 14 and the mask portion 32C.
  • the channel portion that connects the source electrode 12A and the drain electrode 12B by the particles that have entered the gap G1 from one opening 32A and the particles that have entered the gap G1 from the other opening 32B. 12C is formed in the gap G1. In this way, the FET 12 composed of only the ITO film 16 can be manufactured.
  • the component fine particles 42 and 44 discharged from the sputtering target enter the gap G1 between the glass substrate 14 and the photomask 30 through the openings 32A and 32B, thereby causing the gap.
  • the channel portion 12C of the ITO film 16 is formed in G1. Therefore, it is more difficult for the component fine particles 42 and 44 to enter the gap G1 than the openings 32A and 32B of the photomask 30.
  • the source electrode 12A and the drain electrode 12B having a predetermined thickness are formed in the openings 32A and 32B of the photomask 30, they are deposited on the glass substrate 14 in the gap G1. Since the amount of particles to be formed is reduced, the channel portion 12C having a thickness thinner than that of the source electrode 12A and the drain electrode 12B can be formed in the gap G1.
  • a photomask 30 having openings 32A and 32B and a mask portion 32C forming a gap G1 between the glass substrate 14 and the photomask 30 is used.
  • An ITO film 16 having a source electrode 12A and a drain electrode 12B having a film thickness and a channel portion 12C having a film thickness thinner than the film thickness of the source electrode 12A and the drain electrode 12B is manufactured by one-time sputtering. Can be done.
  • the solution 20 containing the sample is stored in the storage unit 22, and the reference electrode 24 is immersed in the solution 20 stored in the storage unit 22.
  • the biosensor 10 applies a voltage to the reference electrode 24 in a state where the channel portion 12C of the ITO film 16 is in contact with the solution 20 that produces hydrogen ions having a positive charge or hydroxide ions having a negative charge, for example.
  • a positive charge or a negative charge is charged on the surface of the channel portion 12C, whereby the charge density on the surface of the channel portion 12C changes, and the drain current flowing from the source electrode 12A to the drain electrode 12B changes.
  • the biosensor 10 detects the ion concentration of the solution 20 by electrically detecting the change in the charge density on the surface of the ITO film 16 by measuring the change in the drain current with a current meter, and obtains the detection. Changes in the state of the sample can be detected based on the results.
  • Such a biosensor 10 is used, for example, by directly culturing cells in solution 20 and detecting changes in hydrogen ion concentration in solution 20, that is, changes in pH due to the respiratory activity of living cells. It is possible to evaluate the respiratory volume of fertilized eggs and measure the metabolic function of cells.
  • the biosensor 10 of the present embodiment uses an FET 12 made of a conductive ITO film 16 provided on the substrate, and the source electrode 12A, the drain electrode 12B, the source electrode 12A and the drain are attached to the ITO film 16.
  • a channel portion 12C having a film thickness thinner than that of the electrode 12B is formed.
  • the biosensor 10 can be realized. Therefore, it can be manufactured with a simpler structure than the conventional one and with a simple manufacturing process.
  • the ITO film 16 that functions as the FET 12 can be manufactured by forming only the ITO film 16 on the glass substrate 14 by sputtering using the photomask 30.
  • the biosensor 10 can be manufactured by a simple manufacturing process as compared with the conventional case.
  • the films of the source electrode 12A and the drain electrode 12B are simply sputtered using the photomask 30 provided with the gap G1 between the glass substrate 14 and the photomask 30.
  • the channel portion 12C having a thickness thinner than the thickness can be formed by one sputtering. That is, the FET 12 can be formed in one film forming step. Therefore, the FET 12 for a biosensor can be manufactured by a manufacturing process that is much simpler than that in the past.
  • the ITO film 16 in which the source electrode 12A, the drain electrode 12B, and the channel portion 12C having a thickness thinner than the thickness of the source electrode 12A and the drain electrode 12B are integrally formed is once formed. Since it can be manufactured by forming a film by sputtering, the ITO film 16 can be manufactured without forming an interface between the source electrode 12A and the channel portion 12C and between the drain electrode 12B and the channel portion 12C, respectively. can.
  • the interface is, for example, between the source electrode 12A and the channel portion 12C and between the drain electrode 12B and the channel portion 12C when the cross section is observed by observing a backscattered electron image using SEM (Scanning Electron Microscopy). It means that there is a boundary line where the shades on the image are discontinuous.
  • the channel portion 12C having a film thickness thinner than that of the source electrode 12A and the drain electrode 12B is formed together with the source electrode 12A and the drain electrode 12B by forming a film by one-time sputtering. Therefore, since the channel portion 12C having a thin film thickness can be formed without performing the etching treatment, it is possible to prevent the surface of the channel portion 12C from being damaged by the etching treatment.
  • the principle that the FET 12 of the present embodiment, which is composed of only the ITO film 16 and has the channel portion 12C having no insulating film, exhibits semiconductor characteristics can be predicted as follows, for example.
  • the ion concentration in the solution 20 changes, the surface potential of the channel portion 12C changes in the solution 20, which causes a depletion layer in the upper part in the channel portion 12C.
  • the size of the depletion layer approaches the film thickness, and the influence of the depletion layer on the conductivity in the channel portion 12C becomes large.
  • the ITO film 16 having a high electron carrier density can obtain n-channel type semiconductor characteristics.
  • the channel portion 12C in contact with the solution 20 functions as a channel, and at the same time, the portion in contact with the solution 20 exhibits pH responsiveness similar to the oxide film in the conventional ion-sensitive field effect transistor. Therefore, the drain current flowing through the depletion layer can be controlled by the charge density on the surface of the channel portion 12C, and it is possible to realize a configuration in which on / off control is easier than in the conventional ion-sensitive field effect transistor. That is, since the electrical characteristics of the FET 12 are easily affected by the ion concentration on the surface of the channel portion 12C and the charge of the biomolecule, it is possible to realize a biosensor 10 having a good detection sensitivity.
  • the FET 12 is composed of an ITO film 16 provided on the glass substrate 14, and the ITO film 16 is arranged between the source electrode 12A, the drain electrode 12B, and the source electrode 12A and the drain electrode 12B. It also has a channel portion 12C in contact with the solution 20, and the film thickness of the channel portion 12C is formed to be thinner than the film thickness of the source electrode 12A and the drain electrode 12B. As a result, it is possible to realize the FET 12 which has a simpler configuration than the conventional one and can be manufactured by a simple manufacturing process.
  • the FET 12 used for the verification test was manufactured according to the above-mentioned manufacturing method. Specifically, high-frequency sputtering was performed under the sputtering conditions of 25 ° C., 100 W, and 25 minutes to form an ITO film 16 on the glass substrate 14. As the solution, a phosphate buffer solution having a pH of 4.01 to 9.18 was used.
  • the transmission characteristic that is, the voltage applied to the reference electrode 24 when the voltage between the drain electrode 12B and the source electrode 12A is constant (1V) (hereinafter, “gate”).
  • the gate When the change in the drain current with respect to the voltage) was confirmed, the result shown in FIG. 7A was obtained. From the result of FIG. 7A, in the FET 12, when the threshold voltage near 0.2V is exceeded, the value of the drain current suddenly rises, and the saturation region and the linear region can be confirmed in the portion exceeding the threshold voltage. rice field.
  • the output characteristic that is, the voltage applied to the drain electrode 12B when the gate voltage is constant (measured at intervals of 100 mV between 0 and 1 V) (hereinafter, “drain”).
  • drain the change in drain current with respect to
  • FIG. 7B the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage.
  • the FET 12 has n channels. It was confirmed that the semiconductor characteristics of the mold were realized. Since the leak current flowing between the source electrode 12A and the reference electrode 24 is very small, it does not affect the semiconductor characteristics of the FET 12.
  • the straight line shown by the solid line in FIG. 8B is a regression line obtained by plotting the surface potentials for each pH value from 4.01 to 9.18 in FIG. 8A, and the straight line shown by the broken line in FIG. 8B is shown in FIG. 8A. It is a regression line of the plot of the surface potential for each pH value from 9.18 to 4.01. Looking at FIG. 8B, it was confirmed that the slope of each regression line, that is, the slope sensitivity, was about 56 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that the FET 12 exhibits a good pH responsiveness.
  • the film thickness of the channel portion 12C of the FET 12 is made thicker than 30 nm.
  • the semiconductor characteristics of the FET 12 when formed were investigated. As a result, the results shown in FIGS. 9A and 9B were obtained.
  • the configuration other than the film thickness of the channel portion 12C was the same as that of the biosensor 10 of the present embodiment.
  • the graph of the transmission characteristics shown in FIG. 9A (measurement conditions are the same as those shown in FIG. 7A), it was confirmed that the drain current was constant regardless of the change in the gate voltage.
  • the graph of output characteristics shown in FIG. 9B (measurement conditions are the same as those shown in FIG. 7B), the drain current increases linearly in proportion to the increase in drain voltage at any gate voltage value. I was able to confirm that.
  • the present invention is not limited to this, and for example, other than the IGZO film, the IZO film, the IGO film, and the like.
  • Various conductive thin films may be applied. Examples of other materials of the conductive thin film constituting the FET 12 include molybdenum sulfide (MoS 2 ), boron nitride (BN), tungsten sulfide (WS 2 ), tin sulfide (SnS, SnS 2 ), maxine, and black phosphorus.
  • MoS 2 molybdenum sulfide
  • BN boron nitride
  • WS 2 tungsten sulfide
  • SnS, SnS 2 tin sulfide
  • maxine may be used.
  • maxin may use a material composed of a combination of a preperiod transition metal (Ti, V, Nb, etc.) and C or N (or both).
  • an example of forming an ITO film 16 containing SnO 2 in, for example, 10 wt% on a glass substrate 14 in the process of manufacturing the FET 12 is shown, but SnO is formed in the range of, for example, 5 wt% to 15 wt%.
  • the ITO film 16 having a different content of 2 may be formed.
  • the same effect as in the above embodiment can be obtained even if the content of SnO 2 in the ITO film 16 is different.
  • the manufacturing method of the FET 12 is not limited.
  • a single film having a uniform film thickness may be formed on the glass substrate 14, and then etching using photolithography may be performed to form a thin film on the channel portion. Even with such a manufacturing method, it is possible to realize an FET that is composed of only a single conductive thin film formed on the glass substrate 14 and has the same characteristics as those of the present embodiment.
  • the glass substrate 14 is applied as the substrate, but the present invention is not limited to this, and if a conductive thin film functioning as an FET can be formed on the surface, a substrate made of various other materials may be applied. You may do it.
  • 25 ° C. is exemplified as the temperature condition during sputtering in the thin film forming step, but in order to improve the electrical characteristics of the ITO film, for example, the temperature may be raised to 300 ° C. to 400 ° C. to form a film. good.
  • the drain current is kept constant (source follower circuit) and the channel portion 12C is used.
  • the change in the state of the sample may be detected by measuring the change in the potential on the surface.
  • the ITO film 16 to be the FET 12 is manufactured according to the manufacturing method described in the above section "(Manufacturing method of FET)", and the ITO is manufactured using a laser microscope equipped with a white interferometer (VK-X3000 manufactured by KEYENCE CORPORATION). The membrane 16 was observed.
  • a film 34 having a thickness of 10 ⁇ m is provided between the glass substrate 14 and the mounting portion 30A of the photomask 30, and is shown in FIG.
  • a gap G1 is provided between the glass substrate 14 and the photomask 30.
  • sputtering is performed for 25 minutes with a radio frequency (RF) sputtering device (manufactured by ULVAC (EC-2)), and the ITO film 16 which becomes the FET 12 by one sputtering is glassed.
  • RF radio frequency
  • the source electrode 12A is indicated as “Source”
  • the drain electrode 12B is indicated as “Drain”
  • the channel portion 12C is indicated as “Channel”.
  • the horizontal axis is the distance in the width direction of the ITO film 16 in which the drain electrode 12B is arranged from the source electrode 12A via the channel portion 12C
  • the vertical axis is the height of the ITO film 16. bottom.
  • the thickness of the glass substrate 14 measured in advance is also shown, the glass substrate 14 is referred to as “glass”, and the ITO film 16 is indicated as “ITO”.
  • the two vertical lines in the lower graph of FIG. 10A are provided as a guide for searching the center of the tapered portion of the ITO film 16 whose film thickness is gradually reduced in the graph.
  • the film thickness of the drain electrode 12B was examined from the surface height of the drain electrode 12B in the flat region and the thickness of the glass substrate 14 measured in advance, and it was about 100 nm. Further, from the lower graph of FIG.
  • the distance between the end of the flat surface portion of the source electrode 12A and the end of the flat surface portion of the drain electrode 12B, the length of the channel portion 12C, and the like are used in the manufacturing process of the ITO film 16. It can be selected based on the size of the photomask 30, but in this verification test, from the lower graph of FIG. 10A, the end of the flat surface portion of the source electrode 12A and the end of the flat surface portion of the drain electrode 12B. The distance between them was about 100 ⁇ 15 ⁇ m.
  • the results shown in FIG. 10B were obtained. From FIG. 10B, the surface height of the formed portion of the ITO film 16 is about 45 nm on average from the glass substrate 14 in which the ITO film 16 is not formed, and the surface height of the glass substrate 14 in which the ITO film 16 is not formed is about 45 nm. It was about 5 nm on average.
  • the source electrode 12A and the drain electrode 12B are flat surface portions having a thick film thickness that sandwich the channel thin film portion 13C having the thinnest film thickness in the ITO film 16, but the film thickness is increased from the flat surface portion. Even in the tapered portion sandwiching the channel thin film portion 13C, which is gradually becoming thinner, it is desirable that the region where the thickness of the ITO film 16 exceeds 30 nm is regarded as the source electrode 12A and the drain electrode 12B.
  • FIG. 10B shows the measurement results at the tapered portion of the ITO film 16 in FIG. 10A.
  • the film thickness of the ITO film 16 not including the thickness of the glass substrate 14 is about 40 nm, and the film thickness is more than 30 nm. Therefore, “S / D electrodes” indicating that the drain electrode 12B is used is indicated on the ITO film 16 portion shown in FIG. 10B.
  • a radio frequency (RF) sputtering apparatus was used to change the sputtering time in a 20% Ar atmosphere (without O 2 ) to produce an ITO film 16 on a glass substrate 14.
  • RF radio frequency
  • two types of films 34 having a thickness of 10 ⁇ m and a thickness of 20 ⁇ m having different thicknesses are prepared, and films having different thicknesses are provided between the glass substrate 14 and the mounting portion 30A of the photomask 30.
  • the ITO film 16 was manufactured on the glass substrate 14 by providing gaps G1 having different sizes between the glass substrate 14 and the photomask 30 using the 34.
  • the film thickness of the channel portion 12c and the film thicknesses of the source electrode 12A and the drain electrode 12B were measured using a laser microscope equipped with a white interferometer and an AFM.
  • the results shown in FIG. 11B were obtained.
  • FIG. 11A the sputtering time at the time of manufacturing the ITO film 16 is shown on the horizontal axis, and the film thickness of the channel portion 12C of each manufactured ITO film 16 is shown on the vertical axis.
  • FIG. 11A the sputtering time at the time of manufacturing the ITO film 16 is shown on the horizontal axis
  • the film thickness of the channel portion 12C of each manufactured ITO film 16 is shown on the vertical axis.
  • the sputtering time at the time of manufacturing the ITO film 16 is shown on the horizontal axis, and the film thicknesses of the source electrode 12A and the drain electrode 12B of each manufactured ITO film 16 are shown on the vertical axis.
  • the film thickness of the channel portion 12C here is the film thickness of the channel thin film portion 13C having the thinnest film thickness.
  • the film thickness of the source electrode 12A and the drain electrode 12B is the film thickness at a flat surface portion.
  • the thickness of the ITO film 16 of the channel portion 12C, the source electrode 12A, and the drain electrode 12B increases as the sputtering time is lengthened. It was also confirmed that the thickness of the channel portion 12C was increased by increasing the thickness of the film 34 from 10 ⁇ m to 20 ⁇ m. In this way, it was confirmed that the film thicknesses of the channel portion 12C, the source electrode 12A, and the drain electrode 12B of the ITO film 16 can be controlled by adjusting the thickness of the film 34 and the sputtering time.
  • the FET 12 used for the verification test was manufactured according to the above-mentioned manufacturing method. Specifically, a film 34 having a thickness of 10 ⁇ m is provided between the glass substrate 14 and the mounting portion 30A of the photomask 30, and a high frequency is set with a sputtering time of 25 minutes using an ITO target containing 10 wt% of SnO 2 . Sputtering was performed to form an ITO film 16 on the glass substrate 14. As the solution 20, a phosphate buffer solution having a pH of 4.01 to 9.18 was used.
  • the transmission characteristic that is, the drain current with respect to the gate voltage applied to the reference electrode 24 when the voltage between the drain electrode 12B and the source electrode 12A is constant (1 V).
  • the result shown in FIG. 12 was obtained. From the results of FIG. 12, it was confirmed that the threshold voltage ( VT ) of the FET 12 increased from about 0 V to about 0.2 V as the pH value increased from pH 4.01 to pH 9.18. In addition, the value of the drain current suddenly increased near the threshold voltage, and the saturation region and the linear region were confirmed in the portion exceeding the threshold voltage.
  • the pH response was very fast and the pH sensitivity was calculated to be about 60 mV / pH, confirming an ideal sensitivity close to the Nernst response.
  • an ITO film 16 containing 5 wt% of SnO 2 was prepared, and the transmission characteristics of a biosensor using the ITO film 16 as the FET 12 were investigated.
  • an ITO containing 5 wt% of SnO 2 is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W, 25 minutes), and an ITO film containing 5 wt% of SnO 2 is used.
  • ITO film 16 having a SnO 2 composition of 5 wt%) was formed on a glass substrate 14 to manufacture the FET 12.
  • the film thickness of the channel portion 12C of the ITO film 16 is approximately 20 nm.
  • the film thickness of the channel portion 12C was estimated from the sputtering time (25 minutes) when the thickness of the film 34 was 10 ⁇ m based on FIG. 11A.
  • FIG. 13A the result as shown in FIG. 13A was obtained.
  • the solution 20 a phosphate buffer solution having a pH of 7.41 was used.
  • the horizontal axis shows the gate voltage (denoted as VGS ), and the vertical axis shows the leak current (denoted as IGS ) and the drain current (denoted as IDS ).
  • VGS gate voltage
  • IGS drain current
  • IDS drain current
  • the output characteristics of the produced biosensor 10 were investigated.
  • the results shown in FIG. 13B were obtained.
  • the horizontal axis shows the drain voltage (denoted as VDS )
  • the vertical axis shows the drain current (denoted as IDS ).
  • the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage.
  • the linear region and saturation region with the pinch-off voltage as the boundary It was confirmed that this characteristic is substantially the same as the characteristic of FIG. 7B (ITO film 16 containing 10 wt% of SnO 2 ).
  • FIG. 13C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) and the surface potential.
  • the vertical axis is the surface potential (V) and the horizontal axis is the time change (seconds).
  • V surface potential
  • seconds time change
  • FIG. 13D is a graph summarizing the pH responsiveness to the surface potential of the channel portion of the biosensor 10 using the ITO film 16 having a SnO 2 composition of 5 wt% as the FET 12.
  • the horizontal axis shows the pH value and the vertical axis shows the surface potential.
  • the straight line shown by the solid line in FIG. 13D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 13C, and the straight line shown by the broken line in FIG. 13D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01. Looking at FIG.
  • an ITO film 16 containing 15 wt% of SnO 2 was prepared, and the transmission characteristics of the biosensor 10 using the 15 wt% as the FET 12 were investigated.
  • an ITO containing 15 wt% of SnO 2 is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W, 25 minutes), and an ITO film containing 15 wt% of SnO 2 is used.
  • an ITO film 16 (hereinafter, simply referred to as an ITO film 16 having a SnO 2 composition of 15 wt%) was formed on a glass substrate 14 to manufacture an FET 12 made of the ITO film 16.
  • the film thickness of the channel portion 12C of the ITO film 16 is approximately 20 nm.
  • the film thickness of the channel portion 12C was estimated from the sputtering time (25 minutes) when the thickness of the film 34 was 10 ⁇ m based on FIG. 11A.
  • FIG. 14A the result as shown in FIG. 14A was obtained.
  • the solution 20 a phosphate buffer solution having a pH of 7.41 was used.
  • the horizontal axis represents the gate voltage (denoted as VGS ), and the vertical axis represents the drain current (denoted as IDS ). From the result of FIG. 14A, even in this FET 12, when the threshold voltage near 0.1V was exceeded, the value of the drain current suddenly increased, and the saturation region and the linear region were confirmed in the portion exceeding the threshold voltage. It was confirmed that this characteristic is substantially the same as that of FIG. 7A (ITO film 16 having a SnO 2 composition of 10 wt%).
  • the output characteristics of the manufactured biosensor 10 were investigated.
  • the results shown in FIG. 14B were obtained.
  • the horizontal axis shows the drain voltage ( VDS )
  • the vertical axis shows the drain current ( IDS ).
  • the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage.
  • the linear region and saturation region with the pinch-off voltage as the boundary. It was confirmed that this characteristic is substantially the same as that of FIG. 7B (ITO film 16 having a SnO 2 composition of 10 wt%).
  • FIG. 14C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) and the surface potential.
  • the vertical axis is the surface potential (V) and the horizontal axis is the time change (seconds).
  • V surface potential
  • seconds time change
  • FIG. 14D is a graph summarizing the pH responsiveness to the surface potential of the channel portion of the biosensor 10 using the ITO film 16 having a SnO 2 composition of 15 wt% as the FET 12.
  • the horizontal axis shows the pH value and the vertical axis shows the surface potential.
  • the straight line shown by the solid line in FIG. 14D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 14C, and the straight line shown by the broken line in FIG. 14D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01. Looking at FIG.
  • sputtering was performed for 25 minutes with a radio frequency (RF) sputtering device to form an ITO film 16 which becomes an FET 12 by one sputtering on a glass substrate 14.
  • RF radio frequency
  • a biosensor 10 was produced using the obtained ITO film 16 as the FET 12. Then, in the biosensor 10, with the FET 12 immersed in the solution 20, the drain current is 100 ⁇ A, and the pH values are pH 4.01, pH 5.8, pH 6.8, pH 7.8, and pH 9.18 in about 800 seconds. The surface potential when changed to was measured by the source follower circuit.
  • FIGS. 15A to 15E time is shown on the horizontal axis and surface potential is shown on the vertical axis. Further, in the insets of FIGS. 15A to 15E, the horizontal axis indicates the pH value, and the vertical axis indicates the surface potential.
  • FIG. 15A shows the relationship between the surface potential and the pH value at 0 weeks after the ITO film 16 is immersed in the solution 20 (that is, immediately after the ITO film 16 is immersed in the solution 20). At week 0, the pH sensitivity was about 53 mV / pH, as shown in the inset.
  • FIG. 15B shows the relationship between the surface potential and pH when one week has passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 55 mV / pH.
  • FIG. 15C shows the relationship between the surface potential and the pH when two weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 54 mV / pH.
  • FIG. 15D shows the relationship between the surface potential and pH when 3 weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 54 mV / pH.
  • FIG. 15B shows the relationship between the surface potential and pH when one week has passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 55 mV / pH.
  • FIG. 15C shows the relationship between the surface potential and the pH when two weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 54 mV / pH
  • 15E shows the relationship between the surface potential and the pH when 4 weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 55 mV / pH.
  • the pH sensitivity from 0 week to 4 weeks was about 53 mV / pH to about 55 mV / pH, showing a substantially Nernst response.
  • the pH sensitivity was maintained in the solution 20 for a long period of time.
  • the time of sputtering performed in a 20% Ar atmosphere (without O 2 ) and the formation between the glass substrate 14 and the photomask 30 when the ITO film 16 is manufactured By changing the size of the gap G1 to be formed, a plurality of types of ITO films 16 having different film thicknesses of the channel portion 12C were produced.
  • a plurality of types of ITO films 16 having a film thickness of the channel portion 12C in the range of several nm to about 50 nm were produced, and a plurality of biosensors 10 using each ITO film 16 as an FET 12 were produced.
  • the film thickness of the channel portion 12C here is the film thickness of the channel thin film portion 13C having the thinnest film thickness, and was measured by a laser microscope equipped with a white interferometer and an AFM.
  • the film thickness of the channel portion 12C of the produced ITO film 16 the maximum conductivity ( ⁇ max ) of each biosensor 10 using the ITO film 16 as the FET 12, and the output current I On of each FET 12 in the on state.
  • the ratio to the output current I off in the off state I On / I off , hereinafter referred to as the on / off ratio
  • the horizontal axis shows the film thickness of the channel portion 12C
  • the vertical axis on the left side shows the maximum conductivity ( ⁇ max )
  • the vertical axis on the right side shows the on / off ratio of the FET 12.
  • the on / off ratio was about 105 from about 0 nm to about 25 nm. It was also confirmed that the on / off ratio sharply decreased in the range of about 25 nm to about 35 nm , and decreased to about 100 when the film thickness was about 50 nm. That is, when the film thickness of the channel portion 12C is smaller than about 30 to 40 nm (more strictly, 30 nm), which is assumed to be close to the maximum empty thickness (t Dm ) of the channel portion 12C, the on / off ratio is about 10. 5 indicates that the FET 12 has semiconductor characteristics when the film thickness of the channel portion 12C is smaller than 30 nm.
  • the film thickness of the channel portion 12C was larger than 30 nm, the on / off ratio decreased to about 100. This indicates that when the film thickness of the channel portion 12C is larger than 30 nm, the semiconductor characteristics are deteriorated.
  • the film thickness of the channel portion 12C of the ITO film 16 is 30 nm or less, preferably 25 nm or less, and 20 nm or less. Further, in this verification test, it was confirmed that "30 nm" corresponding to the maximum depletion thickness (t Dm ) of the channel portion 12C corresponds to the threshold value of the film thickness of the channel portion 12C showing the semiconductor characteristics. In other words, even in an FET 12 made of another material, for example, an FET 12 manufactured using an ITO target containing 5 wt% SnO 2 , the threshold value is expected to be a value corresponding to the maximum empty thickness (t Dm ). Will be done.
  • the maximum conductivity is about 10-3 , and when the film thickness is between several nm and about 10 nm, the maximum conductivity increases sharply as the film thickness increases. It was confirmed that the value of about 100 was maintained in the range where the film thickness was larger than about 10 nm .
  • the maximum conductivity is saturated when the film thickness of the channel portion 12C exceeds the film thickness of 4 nm indicated by “ ⁇ D ” in the figure. Further, it was confirmed that the maximum conductivity hardly changed even before and after the above-mentioned threshold value of the film thickness of 30 nm. This indicates that the current continues to flow regardless of whether or not the FET 12 exhibits semiconductor characteristics.
  • FIG. 17B is a graph summarizing the output characteristics of the drain current ( IDS ) of the FET 12 in the solution 20 having the above five pH values based on other indexes.
  • the horizontal axis of FIG. 17B shows the time, and the vertical axis shows the output characteristics of the drain current.
  • the output characteristics of the drain current on the vertical axis are shown as the ratio of the drain current at each of the five types of pH values (hereinafter referred to as the output current ratio) when the drain current when the pH value is pH 9.18 is used as a reference. ..
  • FIG. 17B shows the change over time of the current ratio for each gate voltage when the pH value is changed from pH 9.18 to pH 4.01 in five steps.
  • the solid line graph shows the output current ratio when the pH value is changed in 5 steps from pH 9.18 to pH 4.01 in 1000 seconds with ⁇ 0.1 V applied to the gate voltage.
  • the other two dashed graphs show the output current ratio when the pH value is changed in 5 steps from pH 9.18 to pH 4.01 in 1000 seconds with 0V or 0.2V applied to the gate voltage, respectively. show. It was confirmed that the output current ratio increased as the pH value decreased in the state where ⁇ 0.1 V, 0 V, and 0.2 V were applied to the gate voltage, respectively. This indicates that a change in pH value induces a change in surface potential ( ⁇ Vout) corresponding to a change in charge.
  • ⁇ Vout surface potential
  • FIG. 17B shows the output characteristics of the drain current for each pH value of pH 9.18, pH 7.8, pH 6.8, pH 5.8, and pH 4.01.
  • the vertical axis when the gate voltage is ⁇ 0.1 V, 0 V, 0.2 V is represented by a logarithm (Log 10).
  • the horizontal axis shows the pH value and the vertical axis shows the output current ratio. More specifically, on the vertical axis, when the gate voltage ( VGS ) is ⁇ 0.1 V, that is, in the region where the rate of change (slope) of the drain current is large in the graph of FIG. 12 (hereinafter referred to as the subthreshold regime). Shows the output current ratio. Further, when the gate voltage is 0V, that is, in the graph of FIG. 12, the output current ratio in the region where the drain current increases and the slope is smaller than the subthreshold regime (hereinafter, referred to as a regime close to the subthreshold) is used. show. Further, when the gate voltage is 0.2 V, that is, the output current ratio in the region where the slope is smaller (hereinafter referred to as a linear regime) in the graph of FIG. 12 is shown.
  • the output current ratio has been shown to respond exponentially to the pH value. It was confirmed that the drain current measured in the subthreshold regime was about 10 times larger than the drain current measured in the linear regime. This indicates that changes in pH can be detected with high sensitivity based on the conditions shown as the subthreshold regime.
  • FIG. 17C is a graph showing the time course of the surface potential of the channel portion 12C when the pH of the solution 20 is changed in the FET 12 having a SnO 2 composition of 10 wt%.
  • FIG. 17C shows the channel portion 12C of the FET 12 for about 200 seconds immediately after being immersed in the five solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.4, and pH 9.18. This is a measurement of the change in surface potential over time. It can be seen that at any pH value, the FET 12 is stable with almost no change in the surface potential immediately after the start of the surface potential measurement.
  • FIG. 17D is a graph summarizing the pH responsiveness to the surface potential of the channel portion 12C when the pH of the solution 20 is changed in the FET 12 having a SnO 2 composition of 10 wt%. Note that FIG. 17D is a graph substantially the same as FIG. 8B described above.
  • the straight line shown by the solid line in FIG. 17D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 17C, and the straight line shown by the broken line in FIG. 17D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01.
  • the horizontal axis shows the drain current
  • the vertical axis shows the pH sensitivity (mV / pH).
  • the subthreshold regime that is, when the drain current was measured at 1 ⁇ A, 10 ⁇ A, and 100 ⁇ A, showed approximately Nernst response of 55 mV / pH, 58 mV / pH, and 59 mV / pH, respectively. bottom.
  • FIG. 18 is a schematic view for explaining the method for manufacturing the ITO film 16 according to the second embodiment.
  • the manufacturing method according to the second embodiment comprises steps a to i.
  • the schematic views showing the steps a to i are referred to as (a) to (i).
  • a predetermined glass substrate 60 is prepared (step a), and then a resist 62 is placed on the upper surface of the glass substrate 60 in order to develop a predetermined pattern using a technique such as photolithography. Apply (step b). Next, with the resist 62 covered with a mask of a predetermined pattern, the resist 62 at the position where the channel portion is planned to be formed is removed on the glass substrate 60, and the region other than the position where the channel portion is planned to be formed is removed. The resists 62A and 62B are left in (step c).
  • a layered channel portion forming layer 64C is formed on the glass substrate 60 exposed at the planned channel portion forming position and on the resists 62A and 62B by the first sputtering (step d).
  • the film thickness of the channel portion forming layer 64C is preferably 30 nm or less, and more preferably 20 nm or less.
  • the channel portion forming layer 64C is left only at the position where the channel portion is planned to be formed on the glass substrate 60, and the channel portion 64C is formed at the position where the channel portion is planned to be formed (step e).
  • the channel portion 64C having a film thickness of 30 nm or less can be formed on the glass substrate 60.
  • the resists 66A, 66B, 66C are applied on the exposed glass substrate 60 and the channel portion 64C (step f). Further, a mask layer having a predetermined pattern for forming a source electrode and a drain electrode is formed on the applied resists 66A, 66B, 66C, and the resists 66A, 66B exposed from the mask layer are removed to form a channel portion. The resist 66C is left only on the upper surface of the 64C (step g).
  • a layered source / drain electrode forming layer 67 is formed on the glass substrate 60 exposed by removing the resists 66A and 66B and on the resist 66C by the second sputtering (step h). At this time, the film thickness of the source / drain electrode forming layer 67 is made thicker than the film thickness of the channel portion 64C. Finally, by removing the resist 66C on the channel portion 66C, the source / drain electrode forming layer 67 remains in the region other than the resist 66C, and the source electrode 68A and the drain electrode 68B that sandwich the channel portion 66C are sourced. -Formed from the drain electrode forming layer 67 (step i).
  • the source electrode 68A, the drain electrode 68B, and the channel portion 64C arranged between the source electrode 68A and the drain electrode 68B are provided, and the channel portion is provided.
  • the ITO film 16 having a thickness of 64C thinner than that of the source electrode 68A and the drain electrode 68B can be manufactured.
  • the source electrode 68A and the drain electrode 68B are formed by the second sputtering (step i). Therefore, two sputtering steps (step d and step i) are required. Therefore, an interface 70A exists between the upper surface of the channel portion 64C and the lower surface of the source electrode 68A, and an interface 70B exists between the upper surface of the channel portion 64C and the lower surface of the drain electrode 68B.
  • the FET 12 according to the second embodiment forms a thin film-like channel portion 64C on the glass substrate 60 by the first sputtering, the source electrode 68A as described in the first embodiment. It is difficult to form a tapered portion whose film thickness gradually decreases from the side and the drain electrode 68B side toward the center position side of the channel portion 64C, respectively, and the ITO film 16 having the channel portion 64 having a flat surface can be formed.
  • the material of the first sputtering and the material of the second sputtering are the same, but as a modification of the present embodiment, the semiconductor material is used in the first sputtering.
  • the channel portion 64C may be formed using the film, and the source electrode 68A and the drain electrode 68B may be formed using a conductive material different from that of the first sputtering in the second sputtering.
  • the ITO film 16 of the second embodiment was produced according to the above manufacturing method, and the biosensor 10 using the ITO film 16 as the FET 12 was produced.
  • ITO containing 10 wt% of SnO 2 is used as a sputtering target, and the above two sputterings are performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W) to obtain 10 wt% of SnO 2 .
  • the contained ITO film 16 was formed on a glass substrate 14 to produce an FET 12 made of the ITO film 16.
  • the film thickness of the channel portion 64C of the ITO film 16 produced under the above conditions is estimated to be approximately 20 nm, and the film thickness of each of the source electrode 68A and the drain electrode 68B is estimated to be approximately 100 nm. Then, when the transmission characteristics of the produced biosensor 10 were examined, the results shown in FIG. 19A were obtained.
  • a phosphate buffer solution having a pH of 7.41 was used as the solution.
  • the horizontal axis shows the gate voltage ( VGS ) and the vertical axis shows the drain current ( IDS ). From the results of FIG.
  • the value of the drain current rises when the threshold voltage near 0.4 V is exceeded, and the saturation region and the linear region are confirmed in the portion exceeding the threshold voltage. ..
  • this property is inferior to the property of FIG. 7A (ITO film 16 having a SnO 2 composition of 10 wt%) in that the subthreshold slope is inferior.
  • the characteristics of the subthreshold slope were about 60 mV / dec in the above embodiment, but deteriorated to about 100 mV / dec in the FET 12 of the second embodiment.
  • the reason why the characteristics of the subthreshold slope deteriorate when the FET 12 of the second embodiment is used is that the interface 70A between the channel portion 64C and the source electrode 68A, and the channel portion 64C and the drain electrode 68B are used. It is possible that the electrical traps that occur at the interface 70B between them have degraded the properties.
  • the FET 12 of the above embodiment since there is only an interface between the FET 12 and the solution 20, it is considered that the characteristics of the subthreshold slope are excellent.
  • the output characteristics of the biosensor 10 using the FET 12 of the second embodiment were investigated.
  • the results shown in FIG. 19B were obtained.
  • the horizontal axis shows the drain voltage ( VDS )
  • the vertical axis shows the drain current ( IDS ).
  • the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage.
  • the linear region and the saturation region with the pinch-off voltage as the boundary were confirmed. It was confirmed that this characteristic is substantially the same as that of FIG. 7B (ITO film 16 having a SnO 2 composition of 10 wt%).
  • FIG. 19C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) on the horizontal axis and the surface potential on the vertical axis. There is.
  • S time
  • the vertical axis represents the surface potential (V), and the horizontal axis represents the time change (seconds).
  • V surface potential
  • seconds time change
  • FIG. 19C it was confirmed that the FET 12 of the second embodiment is stable with almost no change in the surface potential immediately after the start of the measurement of the surface potential at any pH value. It was confirmed that this characteristic is substantially the same as that of FIG. 8A (ITO film 16 having a SnO 2 composition of 10 wt%).
  • FIG. 19D is a graph summarizing the pH responsiveness to the surface potential of the channel portion in the FET 12 of the second embodiment.
  • FIG. 19D shows the relationship between the pH value on the horizontal axis and the surface potential on the vertical axis.
  • the straight line shown by the solid line in FIG. 19D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 19C. It was confirmed that the slope of each regression line, that is, the pH sensitivity, was about 58 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that the FET 12 of the second embodiment shows good pH responsiveness. Further, it was confirmed that this characteristic is substantially the same as that of FIG. 8B (ITO film 16 having a SnO 2 composition of 10 wt%).

Abstract

Provided are: a biosensor which has a simpler configuration and can be manufactured through a simpler manufacturing process than conventional biosensors; a method for manufacturing a field effect transistor for a biosensor; and a field effect transistor for a biosensor. A biosensor 10 for detecting an electric signal that varies with the ion concentration of a solution 20 comprises: a FET 12 composed of an ITO film 16 and provided on a glass substrate 14; and a storage part 22 for storing the solution 20 containing a sample. The ITO film 16 has a source electrode 12A, a drain electrode 12B, and a channel part 12C that is disposed between the source electrode 12A and the drain electrode 12B and is in contact with the solution 20. The film thickness of the channel part 12C is formed thinner than those of the source electrode 12A and the drain electrode 12B.

Description

バイオセンサ、バイオセンサ用の電界効果トランジスタの製造方法、及びバイオセンサ用の電界効果トランジスタBiosensors, method of manufacturing field effect transistors for biosensors, and field effect transistors for biosensors
 本明細書で開示される技術は、バイオセンサ、バイオセンサ用の電界効果トランジスタの製造方法、及びバイオセンサ用の電界効果トランジスタに関する。 The techniques disclosed herein relate to biosensors, methods of manufacturing field effect transistors for biosensors, and field effect transistors for biosensors.
 近年、電界効果トランジスタを検出素子として用いるバイオセンサが知られている。特に、試料を投入する溶液中にゲート電極を浸漬させたイオン感応性電界効果トランジスタを用いたバイオセンサは、生体分子やイオンの電荷を直接検出することが可能であるため、非標識、非侵襲的な生体機能の計測に有効である。 In recent years, biosensors that use field effect transistors as detection elements have been known. In particular, a biosensor using an ion-sensitive field-effect transistor in which a gate electrode is immersed in a solution into which a sample is charged can directly detect charges of biomolecules and ions, and is therefore unlabeled and non-invasive. It is effective for measuring biological functions.
 例えば、特許文献1には、イオン感応性の電界効果トランジスタを検出部に備えるバイオセンサが開示されている。特許文献1のバイオセンサにおける電界効果トランジスタでは、半導体基板の表面にソース電極及びドレイン電極が形成され、半導体基板上の両電極間に位置する箇所にゲート絶縁膜が形成され、ゲート絶縁膜上には金属電極が形成されている。さらに、この金属電極は、試料を含む溶液中に浸漬された参照電極(ゲート電極)と配線を介して電気的に接続されている。 For example, Patent Document 1 discloses a biosensor including an ion-sensitive field-effect transistor in a detection unit. In the field effect transistor in the biosensor of Patent Document 1, a source electrode and a drain electrode are formed on the surface of the semiconductor substrate, a gate insulating film is formed at a position located between the two electrodes on the semiconductor substrate, and the gate insulating film is formed on the gate insulating film. Is formed with a metal electrode. Further, this metal electrode is electrically connected to a reference electrode (gate electrode) immersed in a solution containing a sample via wiring.
特開2019-45417号公報Japanese Unexamined Patent Publication No. 2019-45417
 しかしながら、イオン感応性の電界効果トランジスタを用いた従来のバイオセンサは、基板上に形成された絶縁膜や金属電極等の複数の層によって電界効果トランジスタが実現されているため、電界効果トランジスタの構成が複雑なものとなり、また、電界効果トランジスタを製造するために複数回の工程が必要になるという問題があった。 However, in a conventional biosensor using an ion-sensitive field-effect transistor, the field-effect transistor is realized by a plurality of layers such as an insulating film and a metal electrode formed on a substrate, so that the field-effect transistor is configured. However, there is a problem that a plurality of steps are required to manufacture the field effect transistor.
 本発明は、上記の点に鑑みて創作されたもので、従来に比して簡易な構成で、かつ、簡単な製造工程で製造することができるバイオセンサ、バイオセンサ用の電界効果トランジスタの製造方法、及びバイオセンサ用の電界効果トランジスタを提供することを目的とする。 The present invention has been created in view of the above points, and is capable of manufacturing a biosensor and a field effect transistor for a biosensor, which has a simpler configuration than the conventional one and can be manufactured by a simple manufacturing process. It is an object of the method and to provide a field effect transistor for a biosensor.
 本発明に係るバイオセンサは、溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサであって、基板上に設けられた、導電性薄膜からなる電界効果トランジスタと、試料を含む前記溶液が貯留される貯留部と、を備え、前記導電性薄膜は、ソース電極と、ドレイン電極と、前記ソース電極と前記ドレイン電極との間に配置され、かつ、前記溶液と接するチャネル部と、を有し、前記チャネル部の膜厚は、前記ソース電極及び前記ドレイン電極の膜厚よりも薄く形成されている。 The biosensor according to the present invention is a biosensor that detects an electrical signal that changes according to the ion concentration of the solution, and includes an electric field effect transistor made of a conductive thin film provided on a substrate and a sample. The conductive thin film comprises a storage portion for storing a solution, and the conductive thin film has a source electrode, a drain electrode, a channel portion arranged between the source electrode and the drain electrode, and a channel portion in contact with the solution. The thickness of the channel portion is thinner than that of the source electrode and the drain electrode.
 本発明に係るバイオセンサ用の電界効果トランジスタの製造方法は、溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサ用の電界効果トランジスタの製造方法であって、ソース電極及びドレイン電極の形成予定位置に開口部を有するとともに、前記ソース電極及び前記ドレイン電極の間に形成されるチャネル部の形成予定位置にマスク部を有したフォトマスクを、基板と前記マスク部との間に間隙が形成されるように、前記基板上に配置する配置工程と、前記フォトマスクを配置した前記基板上にスパッタリング法によって導電性薄膜からなる前記電界効果トランジスタを形成する薄膜形成工程と、を含み、前記薄膜形成工程では、前記導電性薄膜の前記ソース電極と前記ドレイン電極とを、前記フォトマスクの前記開口部に形成し、前記ソース電極及び前記ドレイン電極の膜厚よりも薄い膜厚の前記導電性薄膜の前記チャネル部を、前記フォトマスクの前記マスク部と前記基板との間の間隙に形成する。 The method for manufacturing an electric field effect transistor for a biosensor according to the present invention is a method for manufacturing an electric field effect transistor for a biosensor that detects an electric signal that changes according to the ion concentration of a solution, and is a source electrode and a drain electrode. A photomask having an opening at the planned formation position and a mask portion at the planned formation position of the channel portion formed between the source electrode and the drain electrode is provided between the substrate and the mask portion. Includes an arrangement step of arranging the photomask on the substrate and a thin film forming step of forming the electric field effect transistor made of a conductive thin film on the substrate on which the photomask is arranged by a sputtering method. In the thin film forming step, the source electrode and the drain electrode of the conductive thin film are formed in the opening of the photomask, and the conductivity having a thickness thinner than that of the source electrode and the drain electrode. The channel portion of the sex thin film is formed in the gap between the mask portion of the photomask and the substrate.
 本発明に係るバイオセンサ用の電界効果トランジスタは、溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサ用の電界効果トランジスタであって、前記電界効果トランジスタが基板上に設けられた導電性薄膜からなり、前記導電性薄膜は、ソース電極と、ドレイン電極と、前記ソース電極と前記ドレイン電極との間に配置され、かつ、前記溶液と接するチャネル部と、を有し、前記チャネル部の膜厚が、前記ソース電極及び前記ドレイン電極の膜厚よりも薄く形成されている。 The electric field effect transistor for a biosensor according to the present invention is an electric field effect transistor for a biosensor that detects an electric signal that changes according to the ion concentration of a solution, and the electric field effect transistor is provided on a substrate. The conductive thin film comprises a source electrode, a drain electrode, and a channel portion arranged between the source electrode and the drain electrode and in contact with the solution, and the channel thereof. The film thickness of the portion is formed to be thinner than the film thickness of the source electrode and the drain electrode.
 本発明によれば、従来に比して簡単な構成で、イオン感応性の電界効果トランジスタを検出素子とするバイオセンサを実現することができる。また、従来に比して簡単な製造工程でイオン感応性の電界効果トランジスタを検出素子とするバイオセンサを製造することができる。 According to the present invention, it is possible to realize a biosensor using an ion-sensitive field-effect transistor as a detection element with a simpler configuration than before. In addition, a biosensor using an ion-sensitive field-effect transistor as a detection element can be manufactured by a simple manufacturing process as compared with the conventional case.
実施形態に係るバイオセンサの構成を示す概略図である。It is a schematic diagram which shows the structure of the biosensor which concerns on embodiment. 電界効果トランジスタの平面図である。It is a top view of the field effect transistor. 電界効果トランジスタのチャネル部を、その厚み方向及びソース電極からドレイン電極に向かう方向の両者に沿った断面から見たときの断面を拡大した拡大図である。It is an enlarged view of the cross section when the channel part of the field effect transistor is seen from the cross section along both the thickness direction and the direction from the source electrode to the drain electrode. フォトマスクの平面図である。It is a top view of a photomask. フォトマスクの載置部にフィルムを設けた構成を説明するための側面図である。It is a side view for demonstrating the structure which provided the film in the place | place | placing part of a photomask. スパッタリング法によるITO膜の成膜過程を示す概略図である。It is a schematic diagram which shows the film formation process of an ITO film by a sputtering method. チャネル部の厚みが20nm以下である場合の、本実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transmission characteristic of the FET of this embodiment when the thickness of a channel part is 20 nm or less. チャネル部の厚みが20nm以下である場合の、本実施形態のFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET of this embodiment when the thickness of a channel part is 20 nm or less. チャネル部の厚みが20nm以下である場合の、溶液のpH値を変化させたときのチャネル部の表面電位の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface potential of a channel part when the pH value of a solution is changed when the thickness of a channel part is 20 nm or less. チャネル部の厚みが20nm以下である場合の、チャネル部の表面電位に対するpH応答性をまとめたグラフである。It is a graph summarizing the pH responsiveness to the surface potential of a channel part when the thickness of a channel part is 20 nm or less. チャネル部の厚みが30nmより大きい場合の、本実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transmission characteristic of the FET of this embodiment when the thickness of a channel part is larger than 30 nm. チャネル部の厚みが20nm以下である場合の、本実施形態のFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET of this embodiment when the thickness of a channel part is 20 nm or less. 白色干渉計搭載レーザ顕微鏡を用いてITO膜の表面を計測したときの写真と、白色干渉計搭載レーザ顕微鏡の計測結果から求めたITO膜の表面高さを示すグラフである。It is a graph which shows the photograph when the surface of an ITO film was measured using the laser microscope equipped with a white interferometer, and the surface height of the ITO film obtained from the measurement result of the laser microscope equipped with a white interferometer. 図10Aの点線矢印が示す位置において、平面視でITO膜が非形成でガラス基板が露出している箇所と、ITO膜が形成されている箇所との境界における表面高さをAFMによって測定した測定結果を示すグラフである。At the position indicated by the dotted line arrow in FIG. 10A, the surface height at the boundary between the portion where the ITO film is not formed and the glass substrate is exposed and the portion where the ITO film is formed in a plan view is measured by AFM. It is a graph which shows the result. スパッタリングの時間とチャネル部の厚みとの関係を示すグラフである。It is a graph which shows the relationship between the sputtering time and the thickness of a channel part. スパッタリングの時間とソース電極及びドレイン電極の厚みとの関係を示すグラフである。It is a graph which shows the relationship between the sputtering time and the thickness of a source electrode and a drain electrode. 溶液のpHを変化させた場合の本実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the FET of this embodiment when the pH of a solution is changed. 5wt%のSnO組成のITO膜からなる本実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the FET of this embodiment which consists of the ITO film of 5 wt% SnO 2 composition. 5wt%のSnO組成のITO膜からなる本実施形態のFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET of this embodiment which consists of the ITO film of 5 wt% SnO 2 composition. 5wt%のSnO組成のITO膜をFETとして用いたバイオセンサにおいて、溶液のpH値を変化させたときのチャネル部の表面電位の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface potential of the channel part at the time of changing the pH value of a solution in the biosensor using the ITO film of 5 wt% SnO 2 composition as FET. 5wt%のSnO組成のITO膜をFETとして用いたバイオセンサについて、チャネル部の表面電位に対するpH応答性をまとめたグラフである。It is a graph which summarized the pH responsiveness to the surface potential of the channel part about the biosensor using the ITO film of 5 wt% SnO 2 composition as FET. 15wt%のSnO組成のITO膜からなる本実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the FET of this embodiment which consists of the ITO film of the SnO2 composition of 15 wt%. 15wt%のSnO組成のITO膜からなる本実施形態のFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET of this embodiment which consists of the ITO film of the SnO 2 composition of 15 wt%. 15wt%のSnO組成のITO膜をFETとして用いたバイオセンサにおいて、溶液のpH値を変化させたときのチャネル部の表面電位の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface potential of the channel part at the time of changing the pH value of a solution in the biosensor using the ITO film of 15 wt% SnO 2 composition as FET. 15wt%のSnO組成のITO膜をFETとして用いたバイオセンサについて、チャネル部の表面電位に対するpH応答性をまとめたグラフである。It is a graph summarizing the pH responsiveness to the surface potential of the channel part about the biosensor using the ITO film of the SnO2 composition of 15 wt% as the FET. 溶液に浸漬してから0週間目の電気的安定性を示すグラフである。It is a graph which shows the electrical stability at 0 weeks after the immersion in a solution. 溶液に浸漬してから1週間目の電気的安定性を示すグラフである。It is a graph which shows the electrical stability one week after soaking in a solution. 溶液に浸漬してから2週間目の電気的安定性を示すグラフである。It is a graph which shows the electrical stability 2 weeks after the immersion in a solution. 溶液に浸漬してから3週間目の電気的安定性を示すグラフである。It is a graph which shows the electrical stability 3 weeks after the immersion in a solution. 溶液に浸漬してから4週間目の電気的安定性を示すグラフである。It is a graph which shows the electrical stability 4 weeks after the immersion in a solution. チャネル部の厚みと最大導電率とオンオフ比との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a channel part, the maximum conductivity, and an on-off ratio. 溶液のpH値を変化させたときのサブスレッショルドスロープを示すグラフである。It is a graph which shows the subthreshold slope when the pH value of a solution is changed. 溶液のpH値を変化させたときのFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET when the pH value of a solution is changed. 10wt%のSnO組成のITO膜をFETとして用いたバイオセンサにおいて、溶液のpH値を変化させたときのチャネル部の表面電位の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface potential of the channel part at the time of changing the pH value of a solution in the biosensor using the ITO film of 10 wt% SnO 2 composition as FET. 10wt%のSnO組成のITO膜をFETとして用いたバイオセンサについて、チャネル部の表面電位に対するpH応答性をまとめたグラフである。It is a graph summarizing the pH responsiveness to the surface potential of the channel part about the biosensor using the ITO film of 10 wt% SnO 2 composition as FET. 第2実施形態のFETの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the FET of the 2nd Embodiment. 図18で説明した製造方法で製造した第2実施形態のFETの伝達特性を示すグラフである。It is a graph which shows the transmission characteristic of the FET of the 2nd Embodiment manufactured by the manufacturing method described with FIG. 図18で説明した製造方法で製造した第2実施形態のFETの出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET of the 2nd Embodiment manufactured by the manufacturing method described with FIG. 図18で説明した製造方法で製造したITO膜をFETとして用いたバイオセンサにおいて、溶液のpH値を変化させたときのチャネル部の表面電位の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the surface potential of the channel part at the time of changing the pH value of a solution in the biosensor using the ITO film manufactured by the manufacturing method described with FIG. 18 as an FET. 図18で説明した製造方法で製造したITO膜をFETとして用いたバイオセンサについて、チャネル部の表面電位に対するpH応答性をまとめたグラフである。It is a graph summarizing the pH responsiveness to the surface potential of the channel part about the biosensor using the ITO film manufactured by the manufacturing method described with FIG. 18 as an FET.
 <第1実施形態>
 (全体構成)
 以下図面に基づいて本発明の実施の形態を詳述する。初めに、本実施形態に係るバイオセンサ10の全体構成を説明する。図1に示すように、本実施形態に係るバイオセンサ10は、ガラス基板14上に形成されたイオン感応性の電界効果トランジスタ(FET:Field Effect Transistor)12と、FET12上に設けられた貯留部22と、を備える。バイオセンサ10では、測定対象物質である試料を含んだ溶液20が貯留部22に貯留されている。バイオセンサ10では、この溶液20のイオン濃度に基づいて変化する電気的信号をFET12によって検出し、得られた検出結果を基に溶液20のイオン濃度の変化等を検出する。なお、測定対象物である試料としては、血液や尿、汗、涙、唾液等の生体サンプル中の細胞、ウイルス、酵素、抗体、DNA等のような生物関連物質を適用することができる。
<First Embodiment>
(overall structure)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the overall configuration of the biosensor 10 according to the present embodiment will be described. As shown in FIG. 1, the biosensor 10 according to the present embodiment has an ion-sensitive field effect transistor (FET) 12 formed on a glass substrate 14 and a storage unit provided on the FET 12. 22 and. In the biosensor 10, the solution 20 containing the sample, which is the substance to be measured, is stored in the storage unit 22. The biosensor 10 detects an electrical signal that changes based on the ion concentration of the solution 20 by the FET 12, and detects a change in the ion concentration of the solution 20 based on the obtained detection result. As the sample to be measured, biological substances such as cells, viruses, enzymes, antibodies, DNA and the like in biological samples such as blood, urine, sweat, tears and saliva can be applied.
 FET12は、ガラス基板(基板の一例)14上に形成された単一のITO(Indium Tin Oxide、酸化インジウムスズ)膜(導電性薄膜の一例)16のみによって構成されている。図2に示すように、ITO膜16は、平面視において長尺状をなしており、導電性及び透明性を有している。FET12は、ITO膜16の長手方向(図1及び図2に示すX軸方向)の一方側に設けられたソース電極12Aと、他方側に設けられたドレイン電極12Bと、ソース電極12Aとドレイン電極12Bとの間に設けられ、かつ、ソース電極12A及びドレイン電極12Bよりも膜厚が薄いチャネル部12Cと、を備える。なお、本実施形態では、ソース電極12Aとドレイン電極12Bとを隔てる形で設けられたチャネル部12CがITO膜16の略中央部分に直線状に配置されている。 The FET 12 is composed of only a single ITO (Indium Tin Oxide, indium tin oxide) film (an example of a conductive thin film) 16 formed on a glass substrate (an example of a substrate) 14. As shown in FIG. 2, the ITO film 16 has a long shape in a plan view, and has conductivity and transparency. The FET 12 includes a source electrode 12A provided on one side of the ITO film 16 in the longitudinal direction (X-axis direction shown in FIGS. 1 and 2), a drain electrode 12B provided on the other side, a source electrode 12A, and a drain electrode. A channel portion 12C provided between the 12B and the source electrode 12A and having a thinner film thickness than the drain electrode 12B is provided. In this embodiment, the channel portion 12C provided so as to separate the source electrode 12A and the drain electrode 12B is linearly arranged in a substantially central portion of the ITO film 16.
 ここで、チャネル部12Cのみが薄い膜厚で形成された本実施形態のFET12では、バイオセンサ10として使用した際に、溶液20の状態に応じてチャネル部12Cに形成される空乏層の厚さが、チャネル部12Cの厚さと同程度になることで、ソース電極12Aとドレイン電極12Bとの間を移動するキャリアがチャネル部12Cにより制限され得る。このため、FET12は、ソース電極12A、ドレイン電極12B及びチャネル部12Cが同じ導電性薄膜で一体形成されているものの、FET12の作用時には、ソース電極12A及びドレイン電極12Bは導電性を示しつつも、チャネル部12Cのみが半導体特性を示すような構成となっている。 Here, in the FET 12 of the present embodiment in which only the channel portion 12C is formed with a thin film thickness, the thickness of the depletion layer formed in the channel portion 12C according to the state of the solution 20 when used as the biosensor 10. However, the carrier moving between the source electrode 12A and the drain electrode 12B may be restricted by the channel portion 12C by making the thickness of the channel portion 12C comparable to that of the channel portion 12C. Therefore, although the source electrode 12A, the drain electrode 12B, and the channel portion 12C are integrally formed of the same conductive thin film in the FET 12, the source electrode 12A and the drain electrode 12B show conductivity when the FET 12 operates. Only the channel portion 12C is configured to exhibit semiconductor characteristics.
 貯留部22は、ITO膜16上に設けられ、底部にITO膜16が露出した筒状の部材からなっており、底部にITO膜16が露出した内部空間に電解液である溶液20が貯留されている。溶液20としては、例えば、リン酸緩衝溶液を用いることができる。貯留部22に貯留された溶液20は、少なくともFET12のチャネル部12Cの表面を覆っており、チャネル部12Cの表面と接触している。なお、チャネル部12Cの表面上には、溶液20中に投入された試料中の検出対象物質と選択的に結合して、電荷を有するイオンが生じる識別物質(図示せず)を含ませるようにしてもよい。 The storage unit 22 is provided on the ITO film 16 and is composed of a tubular member having the ITO film 16 exposed at the bottom, and the solution 20 which is an electrolytic solution is stored in the internal space where the ITO film 16 is exposed at the bottom. ing. As the solution 20, for example, a phosphate buffer solution can be used. The solution 20 stored in the storage section 22 covers at least the surface of the channel section 12C of the FET 12, and is in contact with the surface of the channel section 12C. It should be noted that the surface of the channel portion 12C contains an identification substance (not shown) that selectively binds to the detection target substance in the sample put into the solution 20 to generate charged ions. You may.
 また、溶液20中にはその表面からゲート電極としての参照電極24が浸漬されている。参照電極24は、FET12における基準電位であり、例えばAg/AlCl電極を用いることができる。参照電極24は、貯留部22において溶液20と電気的に接続され、チャネル部12Cに対してゲート電圧を印加する。なお、本実施形態では、バイオセンサ10として、溶液20中に参照電極24が浸漬されている例を示したが、他の構成によってFET12のチャネル部12Cに対して基準電位としてのゲート電圧を印加してもよい。例えば、他のバイオセンサとしては、参照電極24を設けず、ITO膜16の裏面にSiO/Siからなる基板を設ける構成とし、その裏面に別途ゲート電極を設けたバックゲート型のバイオセンサであってもよい。この場合、基板の裏面に設けたゲート電極により、チャネル部12Cに対してゲート電圧を印加することでゲート電位を制御することができ、これにより、本実施形態のバイオセンサ10と同様の作用効果を得ることができる。 Further, the reference electrode 24 as a gate electrode is immersed in the solution 20 from the surface thereof. The reference electrode 24 is a reference potential in the FET 12, and for example, an Ag / AlCl electrode can be used. The reference electrode 24 is electrically connected to the solution 20 in the reservoir 22 and applies a gate voltage to the channel portion 12C. In this embodiment, the reference electrode 24 is immersed in the solution 20 as the biosensor 10, but the gate voltage as the reference potential is applied to the channel portion 12C of the FET 12 by another configuration. You may. For example, as another biosensor, a back gate type biosensor in which a reference electrode 24 is not provided and a substrate made of SiO 2 / Si is provided on the back surface of the ITO film 16 and a gate electrode is separately provided on the back surface thereof. There may be. In this case, the gate potential can be controlled by applying the gate voltage to the channel portion 12C by the gate electrode provided on the back surface of the substrate, which has the same effect as the biosensor 10 of the present embodiment. Can be obtained.
 (FETの構成)
 FET12は、同一のITO膜16上に設けられたソース電極12A、ドレイン電極12B、及びチャネル部12Cのみから構成されている。ソース電極12A及びドレイン電極12Bには、それぞれ配線を介して図示しない直流電源及び電流計が電気的に接続されている。この電流計では、ソース電極12Aとドレイン電極12Bとの間を流れる電流(以下、「ドレイン電流」という)を計測できるようになっている。また、ソース電極12Aと参照電極24との間には図示しない直流電源が電気的に接続されている。
(FET configuration)
The FET 12 is composed of only the source electrode 12A, the drain electrode 12B, and the channel portion 12C provided on the same ITO film 16. A DC power supply and an ammeter (not shown) are electrically connected to the source electrode 12A and the drain electrode 12B via wiring, respectively. This ammeter can measure the current flowing between the source electrode 12A and the drain electrode 12B (hereinafter referred to as "drain current"). Further, a DC power source (not shown) is electrically connected between the source electrode 12A and the reference electrode 24.
 FET12に設けられたチャネル部12Cは、図2に示すように、その長さL1が例えば3mmであり、その幅W1が0.1mmである。なお、図2に示すように、チャネル部12Cの長さとは、厚み方向であるZ軸方向と直交し、かつ、ソース電極12A及びドレイン電極12Bが配置されるX軸方向と直交するY軸方向の値であり、幅とは、X軸方向及びZ軸方向と直交するX軸方向の値である。また、チャネル部12Cは、図1に示すように、その膜厚がソース電極12A及びドレイン電極12Bの膜厚よりも薄く形成されている。すなわち、ITO膜16では、チャネル部12Cのみが他の部分よりも薄い膜厚で形成されている。 As shown in FIG. 2, the channel portion 12C provided in the FET 12 has a length L1 of, for example, 3 mm, and a width W1 of 0.1 mm. As shown in FIG. 2, the length of the channel portion 12C is orthogonal to the Z-axis direction, which is the thickness direction, and is orthogonal to the X-axis direction in which the source electrode 12A and the drain electrode 12B are arranged. The width is a value in the X-axis direction and a value in the X-axis direction orthogonal to the Z-axis direction. Further, as shown in FIG. 1, the film thickness of the channel portion 12C is formed to be thinner than the film thickness of the source electrode 12A and the drain electrode 12B. That is, in the ITO film 16, only the channel portion 12C is formed with a film thickness thinner than that of the other portions.
 本実施形態では、チャネル部12Cは、図3に示すように、その厚み方向及びソース電極12Aからドレイン電極12Bに向かう方向の両者に沿った断面(図1及び図3に示す断面)を視たときに、ソース電極12A側及びドレイン電極12B側から中心側に向かうにつれて膜厚が次第に薄くなるテーパ部13A、13Bと、テーパ部13A、13B間に形成されるチャネル薄膜部13Cと、を有する。なお、このようなテーパ部13A、13Bは、後述する製造方法によってFET12を製造した際に形成され得る。 In the present embodiment, as shown in FIG. 3, the channel portion 12C is viewed as a cross section (cross section shown in FIGS. 1 and 3) along both the thickness direction thereof and the direction from the source electrode 12A to the drain electrode 12B. Occasionally, it has tapered portions 13A and 13B whose film thickness gradually decreases from the source electrode 12A side and the drain electrode 12B side toward the center side, and a channel thin film portion 13C formed between the tapered portions 13A and 13B. It should be noted that such tapered portions 13A and 13B can be formed when the FET 12 is manufactured by the manufacturing method described later.
 ここで、FET12を構成するITO膜16のうち、チャネル部12Cの膜厚(厚さ)T2が30nm超となったとき、FET12の半導体特性が低下することを確認したことから、チャネル部12Cの厚さは30nm以下であることが望ましい。なお、チャネル部12Cの厚さは30nm以下であることが望ましいことは、後述する検証試験の欄において図16にて説明する。 Here, among the ITO films 16 constituting the FET 12, it was confirmed that the semiconductor characteristics of the FET 12 deteriorate when the film thickness (thickness) T2 of the channel portion 12C exceeds 30 nm. The thickness is preferably 30 nm or less. It should be noted that it is desirable that the thickness of the channel portion 12C is 30 nm or less, which will be described with reference to FIG. 16 in the column of the verification test described later.
 そして、さらには、FET12を構成するITO膜16のうち、チャネル部12Cの膜厚(厚さ)T2は、例えば、20nm以下であることが望ましく、より好ましくは数nm以上、20nm以下であることが望ましい。これは、チャネル部12Cの厚さが空乏層の厚さと同程度になることで、ソース電極12Aとドレイン電極12Bとの間のキャリアの移動に制限がかかり、ドレイン電流をゲート電圧またはチャネル部12C表面の電荷に基づく界面電位により制御することが可能となるからである。 Further, among the ITO films 16 constituting the FET 12, the film thickness (thickness) T2 of the channel portion 12C is preferably, for example, 20 nm or less, and more preferably several nm or more and 20 nm or less. Is desirable. This is because the thickness of the channel portion 12C becomes about the same as the thickness of the depletion layer, which limits the movement of carriers between the source electrode 12A and the drain electrode 12B, and causes the drain current to be the gate voltage or the channel portion 12C. This is because it can be controlled by the interfacial potential based on the charge on the surface.
 なお、このようなチャネル部12Cの膜厚(厚さ)T2としては、チャネル部12Cの膜厚のうち最も薄い部分(チャネル薄膜部13C)であることが望ましい。また、この場合、ソース電極12A及びドレイン電極12B(チャネル部12Cを除いた部分)の膜厚(厚さ)T1は、例えば、100nm以上であることが望ましい。 It is desirable that the film thickness (thickness) T2 of the channel portion 12C is the thinnest portion (channel thin film portion 13C) of the film thickness of the channel portion 12C. Further, in this case, it is desirable that the film thickness (thickness) T1 of the source electrode 12A and the drain electrode 12B (the portion excluding the channel portion 12C) is, for example, 100 nm or more.
 (FETの製造方法)
 次に、図1に示すFET12の製造方法について説明する。まず、洗浄したガラス基板14上に、図4に示すようにパターニングしたフォトマスク30を載置する(配置工程の一例)。フォトマスク30は、ガラス基板14上に載置される載置部30Aを有する。また、フォトマスク30には、FET12のソース電極12A及びドレイン電極12Bの形成予定位置(チャネル部12Cの形成予定位置を除いた部分)に、FET12のソース電極12A及びドレイン電極12Bの平面形状と一致する形状の開口部32A、32Bを有し、チャネル部12Cの形成予定位置に、開口していないマスク部32Cを有したパターン32が設けられている。
(Method of manufacturing FET)
Next, a method for manufacturing the FET 12 shown in FIG. 1 will be described. First, a photomask 30 patterned as shown in FIG. 4 is placed on the washed glass substrate 14 (an example of the arrangement process). The photomask 30 has a mounting portion 30A mounted on the glass substrate 14. Further, in the photomask 30, the planned formation positions of the source electrode 12A and the drain electrode 12B of the FET 12 (the portion excluding the planned formation position of the channel portion 12C) coincide with the planar shapes of the source electrode 12A and the drain electrode 12B of the FET 12. A pattern 32 having openings 32A and 32B having an open shape and having a mask portion 32C having no openings is provided at a position where the channel portion 12C is scheduled to be formed.
 フォトマスク30のパターン32のうちチャネル部12Cの形成予定位置にあるマスク部32Cは、例えば、長さL2が3mm、幅W2が0.1mmであり、形成するFET12のチャネル部12Cの長さL1、幅W2とそれぞれ一致している。なお、このフォトマスク30の厚さは0.5mmである。 Of the pattern 32 of the photomask 30, the mask portion 32C at the position where the channel portion 12C is to be formed has, for example, a length L2 of 3 mm and a width W2 of 0.1 mm, and the length L1 of the channel portion 12C of the FET 12 to be formed. , Each of the width W2. The thickness of this photomask 30 is 0.5 mm.
 また、図5に示すように、フォトマスク30の載置部30Aには、裏面にフィルム34が設けられる。これにより、フォトマスク30をガラス基板14上に載置する際に、ガラス基板14と、フォトマスク30の載置部30A(パターン32の周辺部分)との間にフィルム34が挟み込まれる。なお、このフィルム34の厚さT3は、例えば、10μm程度である。これにより、フォトマスク30のパターン32のうちチャネル部12Cに対応するマスク部32Cにおいて、ガラス基板14とフォトマスク30との間に間隙G1が生じる(図6参照)。 Further, as shown in FIG. 5, a film 34 is provided on the back surface of the mounting portion 30A of the photomask 30. As a result, when the photomask 30 is placed on the glass substrate 14, the film 34 is sandwiched between the glass substrate 14 and the mounting portion 30A (peripheral portion of the pattern 32) of the photomask 30. The thickness T3 of this film 34 is, for example, about 10 μm. As a result, a gap G1 is generated between the glass substrate 14 and the photomask 30 in the mask portion 32C corresponding to the channel portion 12C in the pattern 32 of the photomask 30 (see FIG. 6).
 本実施形態における間隙G1の高さ、すなわちZ軸方向(厚さ方向)の寸法は、フィルム34の厚さT3を調整することで所定の寸法に調整できる。間隙G1の高さは、10μm以下とすることが望ましい。 The height of the gap G1 in the present embodiment, that is, the dimension in the Z-axis direction (thickness direction) can be adjusted to a predetermined dimension by adjusting the thickness T3 of the film 34. The height of the gap G1 is preferably 10 μm or less.
 次に、高周波スパッタリング法により、ガラス基板14上にITO膜16を成膜する(薄膜形成工程の一例)。ここでは、例えば、SnO(酸化スズ)を10wt%含有するITOをスパッタリングターゲットとして用い、アルゴン雰囲気中でスパッタリングターゲットに適した条件(例えば、25℃、100W、25分)でスパッタリングを行う。また酸素分圧は、例えば0Torr又は1×10-1~1×10-3Torrとすることができる。このとき、図6に示すように、スパッタリングターゲットから放出されたITO膜16を構成する成分微粒子42,44(なお、42,44は異なる成分微粒子を示す)は、フォトマスク30のパターン32の開口部32A、32B内に堆積してゆく。これにより、ソース電極12A及びドレイン電極12Bが開口部32A、32Bに形成される。 Next, the ITO film 16 is formed on the glass substrate 14 by the high-frequency sputtering method (an example of the thin film forming step). Here, for example, ITO containing 10 wt% of SnO 2 (tin oxide) is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (for example, 25 ° C., 100 W, 25 minutes). The oxygen partial pressure can be, for example, 0 Torr or 1 × 10 -1 to 1 × 10 -3 Torr. At this time, as shown in FIG. 6, the component fine particles 42 and 44 constituting the ITO film 16 discharged from the sputtering target (note that 42 and 44 indicate different component fine particles) are the openings of the pattern 32 of the photomask 30. Accumulate in parts 32A and 32B. As a result, the source electrode 12A and the drain electrode 12B are formed in the openings 32A and 32B.
 また、この際、スパッタリングターゲットから放出されたITO膜16を構成する成分微粒子42,44は、ガラス基板14とフォトマスク30のマスク部32Cとの間に形成されている間隙G1にも開口部32A、32Bからそれぞれ入り込んでゆく。その結果、ガラス基板14とマスク部32Cとの間の間隙G1には、スパッタリングターゲットから放出された成分微粒子42,44が堆積してゆく。これにより、一方の開口部32Aから間隙G1内に入り込んでいった粒子と、他方の開口部32Bから間隙G1に入り込んでいった粒子と、によって、ソース電極12A及びドレイン電極12Bを連接するチャネル部12Cが間隙G1内に形成される。このようにしてITO膜16のみから構成されるFET12を製造することができる。 Further, at this time, the component fine particles 42 and 44 constituting the ITO film 16 discharged from the sputtering target also have an opening 32A in the gap G1 formed between the glass substrate 14 and the mask portion 32C of the photomask 30. , Enter from 32B respectively. As a result, the component fine particles 42 and 44 released from the sputtering target are deposited in the gap G1 between the glass substrate 14 and the mask portion 32C. As a result, the channel portion that connects the source electrode 12A and the drain electrode 12B by the particles that have entered the gap G1 from one opening 32A and the particles that have entered the gap G1 from the other opening 32B. 12C is formed in the gap G1. In this way, the FET 12 composed of only the ITO film 16 can be manufactured.
 本実施形態の製造方法では、上述したように、ガラス基板14とフォトマスク30との間の間隙G1にスパッタリングターゲットから放出された成分微粒子42,44が開口部32A、32Bから入り込むことにより、間隙G1内にITO膜16のチャネル部12Cが形成される。このため、間隙G1内では、フォトマスク30の開口部32A、32Bよりも成分微粒子42,44が入り込み難くなる。 In the manufacturing method of the present embodiment, as described above, the component fine particles 42 and 44 discharged from the sputtering target enter the gap G1 between the glass substrate 14 and the photomask 30 through the openings 32A and 32B, thereby causing the gap. The channel portion 12C of the ITO film 16 is formed in G1. Therefore, it is more difficult for the component fine particles 42 and 44 to enter the gap G1 than the openings 32A and 32B of the photomask 30.
 これにより、本実施形態の製造方法では、フォトマスク30の開口部32A、32Bに所定の膜厚であるソース電極12A及びドレイン電極12Bを形成した際に、間隙G1内のガラス基板14上に堆積する粒子量が少なくなるため、ソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cを間隙G1内に形成できる。 As a result, in the manufacturing method of the present embodiment, when the source electrode 12A and the drain electrode 12B having a predetermined thickness are formed in the openings 32A and 32B of the photomask 30, they are deposited on the glass substrate 14 in the gap G1. Since the amount of particles to be formed is reduced, the channel portion 12C having a thickness thinner than that of the source electrode 12A and the drain electrode 12B can be formed in the gap G1.
 なお、本実施形態の製造方法では、フォトマスク30の開口部32A、32Bと間隙G1との連通部分である間隙G1内の開口領域部分の近傍では多く粒子が堆積するものの、間隙G1内の中心位置に近づくにつれて間隙G1内に入り込む粒子が少なくなり、粒子が堆積し難くなる。その結果、図3に示したように、チャネル部12Cには、ソース電極12A側及びドレイン電極12B側からそれぞれ中心側に向かうにつれて膜厚が薄くなるテーパ部13A、13Bが形成される。 In the manufacturing method of the present embodiment, although a large amount of particles are deposited in the vicinity of the opening region portion in the gap G1 which is the communication portion between the openings 32A and 32B of the photomask 30 and the gap G1, the center in the gap G1 is deposited. As the position approaches, the number of particles entering the gap G1 decreases, and it becomes difficult for the particles to accumulate. As a result, as shown in FIG. 3, tapered portions 13A and 13B are formed in the channel portion 12C in which the film thickness decreases toward the center side from the source electrode 12A side and the drain electrode 12B side, respectively.
 このように、本実施形態に係る製造方法では、開口部32A、32Bを有するとともに、ガラス基板14との間に間隙G1を形成するマスク部32Cを有したフォトマスク30を用いることで、所定の膜厚からなるソース電極12A及びドレイン電極12Bと、これらソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cとを有したITO膜16を、一回のスパッタリングで製造することができる。 As described above, in the manufacturing method according to the present embodiment, a photomask 30 having openings 32A and 32B and a mask portion 32C forming a gap G1 between the glass substrate 14 and the photomask 30 is used. An ITO film 16 having a source electrode 12A and a drain electrode 12B having a film thickness and a channel portion 12C having a film thickness thinner than the film thickness of the source electrode 12A and the drain electrode 12B is manufactured by one-time sputtering. Can be done.
 (バイオセンサの作用及び効果)
 以上の構成において、バイオセンサ10では、試料を含む溶液20が貯留部22に貯留されるとともに、貯留部22に貯留された溶液20内に参照電極24を浸漬させる。バイオセンサ10は、例えば、正電荷を有する水素イオン又は負電荷を有する水酸化物イオンを生じる溶液20にITO膜16のチャネル部12Cが接した状態で参照電極24に電圧を印加する。
(Action and effect of biosensor)
In the above configuration, in the biosensor 10, the solution 20 containing the sample is stored in the storage unit 22, and the reference electrode 24 is immersed in the solution 20 stored in the storage unit 22. The biosensor 10 applies a voltage to the reference electrode 24 in a state where the channel portion 12C of the ITO film 16 is in contact with the solution 20 that produces hydrogen ions having a positive charge or hydroxide ions having a negative charge, for example.
 バイオセンサ10では、正電荷又は負電荷がチャネル部12Cの表面に帯電し、これによりチャネル部12Cの表面の電荷密度が変化して、ソース電極12Aからドレイン電極12Bへ流れるドレイン電流が変化する。バイオセンサ10は、このドレイン電流の変化を電流計で測定することにより、ITO膜16の表面の電荷密度の変化を電気的に検出することで溶液20のイオン濃度を検出し、得られた検出結果に基づいて試料の状態変化を検出することができる。 In the biosensor 10, a positive charge or a negative charge is charged on the surface of the channel portion 12C, whereby the charge density on the surface of the channel portion 12C changes, and the drain current flowing from the source electrode 12A to the drain electrode 12B changes. The biosensor 10 detects the ion concentration of the solution 20 by electrically detecting the change in the charge density on the surface of the ITO film 16 by measuring the change in the drain current with a current meter, and obtains the detection. Changes in the state of the sample can be detected based on the results.
 このようなバイオセンサ10は、例えば、細胞を溶液20中で直接培養し、生きた細胞の呼吸活性により溶液20中の水素イオン濃度が変化、すなわちpHが変化するのを検出することによって、細胞としての受精卵の呼吸量評価、細胞の代謝機能などを測定することができる。 Such a biosensor 10 is used, for example, by directly culturing cells in solution 20 and detecting changes in hydrogen ion concentration in solution 20, that is, changes in pH due to the respiratory activity of living cells. It is possible to evaluate the respiratory volume of fertilized eggs and measure the metabolic function of cells.
 また、本実施形態のバイオセンサ10は、基板上に設けられた導電性を有するITO膜16からなるFET12を用い、ITO膜16に、ソース電極12Aと、ドレイン電極12Bと、ソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cが形成されている。このように、ソース電極12A、ドレイン電極12B及びチャネル部12Cに区画された単一のITO膜16を形成するのみで、別途、絶縁膜の形成や不純物の注入など他の製造工程を加えることなく、バイオセンサ10を実現することができる。このため、従来に比して簡易な構成で、かつ、簡単な製造工程で製造することができる。 Further, the biosensor 10 of the present embodiment uses an FET 12 made of a conductive ITO film 16 provided on the substrate, and the source electrode 12A, the drain electrode 12B, the source electrode 12A and the drain are attached to the ITO film 16. A channel portion 12C having a film thickness thinner than that of the electrode 12B is formed. In this way, only the single ITO film 16 partitioned by the source electrode 12A, the drain electrode 12B, and the channel portion 12C is formed, and no other manufacturing process such as formation of an insulating film or injection of impurities is added separately. , The biosensor 10 can be realized. Therefore, it can be manufactured with a simpler structure than the conventional one and with a simple manufacturing process.
 また、本実施形態では、フォトマスク30を用いたスパッタリングによって、ガラス基板14上にITO膜16のみを成膜することで、FET12として機能するITO膜16を製造することができるため、その分、従来に比して簡単な製造工程で、バイオセンサ10を製造することができる。 Further, in the present embodiment, the ITO film 16 that functions as the FET 12 can be manufactured by forming only the ITO film 16 on the glass substrate 14 by sputtering using the photomask 30. The biosensor 10 can be manufactured by a simple manufacturing process as compared with the conventional case.
 特に、本実施形態では、FET12の製造過程において、ガラス基板14とフォトマスク30との間の間隙G1を設けたフォトマスク30を用いてスパッタリングを行うだけで、ソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cを、1回のスパッタリングで形成することができる。すなわち、FET12を1回の成膜工程で形成することができる。このため、従来に比して一段と簡単な製造工程で、バイオセンサ用のFET12を製造することができる。 In particular, in the present embodiment, in the manufacturing process of the FET 12, the films of the source electrode 12A and the drain electrode 12B are simply sputtered using the photomask 30 provided with the gap G1 between the glass substrate 14 and the photomask 30. The channel portion 12C having a thickness thinner than the thickness can be formed by one sputtering. That is, the FET 12 can be formed in one film forming step. Therefore, the FET 12 for a biosensor can be manufactured by a manufacturing process that is much simpler than that in the past.
 また、本実施形態では、ソース電極12Aと、ドレイン電極12Bと、これらソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cとが一体成形されたITO膜16を、1回のスパッタリングによる成膜によって製造することができるので、ソース電極12A及びチャネル部12Cの間や、ドレイン電極12B及びチャネル部12Cの間にそれぞれ界面が形成されることなくITO膜16を製造することができる。なお、界面とは、例えば、SEM(Scanning Electron Microscopy)を用いた反射電子像観察により断面を観察した際に、ソース電極12A及びチャネル部12Cの間や、ドレイン電極12B及びチャネル部12Cの間に画像上の濃淡が不連続となる、境界線が存在することを意味する。 Further, in the present embodiment, the ITO film 16 in which the source electrode 12A, the drain electrode 12B, and the channel portion 12C having a thickness thinner than the thickness of the source electrode 12A and the drain electrode 12B are integrally formed is once formed. Since it can be manufactured by forming a film by sputtering, the ITO film 16 can be manufactured without forming an interface between the source electrode 12A and the channel portion 12C and between the drain electrode 12B and the channel portion 12C, respectively. can. The interface is, for example, between the source electrode 12A and the channel portion 12C and between the drain electrode 12B and the channel portion 12C when the cross section is observed by observing a backscattered electron image using SEM (Scanning Electron Microscopy). It means that there is a boundary line where the shades on the image are discontinuous.
 また、本実施形態では、1回のスパッタリングによる成膜によって、ソース電極12A及びドレイン電極12Bの膜厚よりも薄い膜厚のチャネル部12Cを、ソース電極12A及びドレイン電極12Bとともに成膜していることから、エッチング処理を行わずに膜厚の薄いチャネル部12Cを形成できるので、エッチング処理によってチャネル部12Cの表面に損傷が生じることを防止できる。 Further, in the present embodiment, the channel portion 12C having a film thickness thinner than that of the source electrode 12A and the drain electrode 12B is formed together with the source electrode 12A and the drain electrode 12B by forming a film by one-time sputtering. Therefore, since the channel portion 12C having a thin film thickness can be formed without performing the etching treatment, it is possible to prevent the surface of the channel portion 12C from being damaged by the etching treatment.
 なお、ITO膜16のみから構成され、絶縁膜を有しないチャネル部12Cを有する、本実施形態のFET12が、半導体特性を示す原理は、例えば、次のように予想することができる。溶液20中のイオン濃度が変化すると、溶液20内においてチャネル部12Cの表面電位が変化し、これにより、チャネル部12C内の上部に空乏層が生じる。この膜厚の薄いチャネル部12Cでは空乏層の大きさが膜厚に近づき、チャネル部12Cにおいて導電性に対する空乏層の影響が大きくなる。その結果、電子キャリア密度の高いITO膜16では、nチャネル型の半導体特性を得ることができるものと予想される。 The principle that the FET 12 of the present embodiment, which is composed of only the ITO film 16 and has the channel portion 12C having no insulating film, exhibits semiconductor characteristics can be predicted as follows, for example. When the ion concentration in the solution 20 changes, the surface potential of the channel portion 12C changes in the solution 20, which causes a depletion layer in the upper part in the channel portion 12C. In the channel portion 12C having a thin film thickness, the size of the depletion layer approaches the film thickness, and the influence of the depletion layer on the conductivity in the channel portion 12C becomes large. As a result, it is expected that the ITO film 16 having a high electron carrier density can obtain n-channel type semiconductor characteristics.
 本実施形態において、溶液20と接触するチャネル部12Cは、チャネルとして機能すると同時に、溶液20と接触する部分は従来のイオン感応性電界効果トランジスタにおける酸化膜と同様に、pH応答性を示す。このため、空乏層を流れるドレイン電流をチャネル部12C表面の電荷密度で制御できることになり、従来のイオン感応性電界効果トランジスタに比べてオン/オフの制御を行い易い構成を実現することができる。即ち、FET12の電気特性において、チャネル部12C表面におけるイオン濃度や生体分子の電荷の影響を受け易くなるため、検出感度が良好な好感度のバイオセンサ10を実現することができる。 In the present embodiment, the channel portion 12C in contact with the solution 20 functions as a channel, and at the same time, the portion in contact with the solution 20 exhibits pH responsiveness similar to the oxide film in the conventional ion-sensitive field effect transistor. Therefore, the drain current flowing through the depletion layer can be controlled by the charge density on the surface of the channel portion 12C, and it is possible to realize a configuration in which on / off control is easier than in the conventional ion-sensitive field effect transistor. That is, since the electrical characteristics of the FET 12 are easily affected by the ion concentration on the surface of the channel portion 12C and the charge of the biomolecule, it is possible to realize a biosensor 10 having a good detection sensitivity.
 以上の構成によれば、FET12では、ガラス基板14上に設けられたITO膜16からなり、ITO膜16は、ソース電極12Aと、ドレイン電極12Bと、ソース電極12A及びドレイン電極12Bの間に配置され、かつ、溶液20と接するチャネル部12Cと、を有し、当該チャネル部12Cの膜厚が、ソース電極12A及びドレイン電極12Bの膜厚よりも薄く形成するようにした。これにより、従来に比して簡易な構成で、かつ、簡単な製造工程で製造することができるFET12を実現できる。 According to the above configuration, the FET 12 is composed of an ITO film 16 provided on the glass substrate 14, and the ITO film 16 is arranged between the source electrode 12A, the drain electrode 12B, and the source electrode 12A and the drain electrode 12B. It also has a channel portion 12C in contact with the solution 20, and the film thickness of the channel portion 12C is formed to be thinner than the film thickness of the source electrode 12A and the drain electrode 12B. As a result, it is possible to realize the FET 12 which has a simpler configuration than the conventional one and can be manufactured by a simple manufacturing process.
 (バイオセンサの特性評価)
 次に、本実施形態のバイオセンサ10を作製して、FET12の半導体特性について評価する検証試験を行った。上述した製造方法に従って検証試験に用いるFET12を作製した。具体的には、スパッタリング条件を25℃、100W、25分として高周波スパッタリングを行い、ガラス基板14上にITO膜16を成膜した。なお、溶液としては、pH4.01~pH9.18のリン酸緩衝溶液を用いた。
(Biosensor characterization)
Next, the biosensor 10 of the present embodiment was manufactured, and a verification test was conducted to evaluate the semiconductor characteristics of the FET 12. The FET 12 used for the verification test was manufactured according to the above-mentioned manufacturing method. Specifically, high-frequency sputtering was performed under the sputtering conditions of 25 ° C., 100 W, and 25 minutes to form an ITO film 16 on the glass substrate 14. As the solution, a phosphate buffer solution having a pH of 4.01 to 9.18 was used.
 そして、作製したFET12を用いて、その伝達特性、すなわち、ドレイン電極12Bとソース電極12Aとの間の電圧を一定(1V)としたときの、参照電極24に印加される電圧(以下、「ゲート電圧」という)に対するドレイン電流の変化を確認したところ、図7Aに示すような結果が得られた。図7Aの結果から、FET12では、0.2V近傍の閾値電圧を越えると、ドレイン電流の値が急に上昇しており、閾値電圧を越えた部分において飽和領域と線形領域を確認することができた。 Then, using the manufactured FET 12, the transmission characteristic, that is, the voltage applied to the reference electrode 24 when the voltage between the drain electrode 12B and the source electrode 12A is constant (1V) (hereinafter, “gate”). When the change in the drain current with respect to the voltage) was confirmed, the result shown in FIG. 7A was obtained. From the result of FIG. 7A, in the FET 12, when the threshold voltage near 0.2V is exceeded, the value of the drain current suddenly rises, and the saturation region and the linear region can be confirmed in the portion exceeding the threshold voltage. rice field.
 また、作製したFET12を用いて、その出力特性、すなわち、ゲート電圧を一定(0~1Vの間で100mV間隔毎に測定)としたときの、ドレイン電極12Bに印加される電圧(以下、「ドレイン電圧」という)に対するドレイン電流の変化を確認したところ、図7Bに示すような結果が得られた。図7Bの結果から、FET12では、いずれの曲線も、ドレイン電圧が一定値を超えるまではドレイン電流が増加し、ドレイン電圧が一定値を超えるとドレイン電流がドレイン電圧に依存しない値となっており、ピンチオフ電圧を境界とする線形領域と飽和領域を確認することができた。 Further, using the manufactured FET 12, the output characteristic, that is, the voltage applied to the drain electrode 12B when the gate voltage is constant (measured at intervals of 100 mV between 0 and 1 V) (hereinafter, “drain”). When the change in drain current with respect to (referred to as "voltage") was confirmed, the results shown in FIG. 7B were obtained. From the results of FIG. 7B, in the FET 12, the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage. , It was possible to confirm the linear region and the saturation region with the pinch-off voltage as the boundary.
 以上のように、図7A及び図7Bに示すグラフは、いずれも通常のnチャネル型のMOSFETが示す伝達特性及び出力特性のグラフとほぼ同様の曲線を描いていることから、FET12では、nチャネル型の半導体特性が実現されていることを確認することができた。なお、ソース電極12Aと参照電極24との間を流れるリーク電流は非常に小さいため、FET12の半導体特性に影響を及ぼすものではない。 As described above, since the graphs shown in FIGS. 7A and 7B both draw curves substantially similar to the graphs of the transmission characteristics and the output characteristics shown by the normal n-channel MOSFET, the FET 12 has n channels. It was confirmed that the semiconductor characteristics of the mold were realized. Since the leak current flowing between the source electrode 12A and the reference electrode 24 is very small, it does not affect the semiconductor characteristics of the FET 12.
 次に、作製したバイオセンサ10を用いて、FET12のpH応答性について評価する検証試験を行った。ここでは、pH4.01、pH5.8、pH6.8、pH7.4、pH9.18の、pH値が異なる5種の溶液20を用意し、参照電極24を溶液20中に浸し、浸した直後から約200秒間、FET12のチャネル部12Cの表面電位の経時変化を測定した。その結果、図8Aに示すような結果が得られた。図8Aでは、縦軸を表面電位(V)、横軸を時間変化(秒)で表している。図8Aに示すように、FET12では、いずれのpH値においても、表面電位の測定開始直後から表面電位の変化はほとんどなく安定していることが確認できた。 Next, a verification test was conducted to evaluate the pH responsiveness of the FET 12 using the produced biosensor 10. Here, five kinds of solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.4, and pH 9.18 are prepared, and the reference electrode 24 is immersed in the solution 20 immediately after the immersion. The change with time of the surface potential of the channel portion 12C of the FET 12 was measured for about 200 seconds. As a result, the result shown in FIG. 8A was obtained. In FIG. 8A, the vertical axis represents the surface potential (V) and the horizontal axis represents the time change (seconds). As shown in FIG. 8A, it was confirmed that the FET 12 was stable with almost no change in the surface potential immediately after the start of the surface potential measurement at any pH value.
 また、図8Bに実線で示す直線は、図8Aにおける4.01から9.18までの各pH値に対する表面電位をプロットしたものの回帰直線であり、図8Bに破線で示す直線は、図8Aにおける9.18から4.01までの各pH値に対する表面電位をプロットしたものの回帰直線である。図8Bを見ると、各回帰直線の傾き、すなわちスロープ感度は、それぞれ約56mVであり、ネルンストの式から求められる理論値とほぼ同じ値であることを確認することができた。以上のことから、FET12は、良好なpH応答性を示すことを確認することができた。 The straight line shown by the solid line in FIG. 8B is a regression line obtained by plotting the surface potentials for each pH value from 4.01 to 9.18 in FIG. 8A, and the straight line shown by the broken line in FIG. 8B is shown in FIG. 8A. It is a regression line of the plot of the surface potential for each pH value from 9.18 to 4.01. Looking at FIG. 8B, it was confirmed that the slope of each regression line, that is, the slope sensitivity, was about 56 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that the FET 12 exhibits a good pH responsiveness.
 次に、本実施形態のバイオセンサ10に関し、上述した製造工程において例えばフィルム34を複数枚重ねて20μm以上の高さの間隙G1を設けることで、FET12のチャネル部12Cの膜厚を30nmより厚く形成したときのFET12の半導体特性について調べた。その結果、図9A及び図9Bに示すような結果が得られた。なお、この検証試験では、チャネル部12Cの膜厚以外の構成については、本実施形態のバイオセンサ10と同様とした。図9Aに示す伝達特性のグラフ(測定条件は図7Aに示すグラフと同様)を見ると、ゲート電圧の変化によらず、ドレイン電流が一定であることが確認できた。また、図9Bに示す出力特性のグラフ(測定条件は図7Bに示すグラフと同様)を見ると、いずれのゲート電圧値においても、ドレイン電圧の増加に比例してドレイン電流が直線的に増加することが確認できた。 Next, regarding the biosensor 10 of the present embodiment, in the manufacturing process described above, for example, by stacking a plurality of films 34 and providing a gap G1 having a height of 20 μm or more, the film thickness of the channel portion 12C of the FET 12 is made thicker than 30 nm. The semiconductor characteristics of the FET 12 when formed were investigated. As a result, the results shown in FIGS. 9A and 9B were obtained. In this verification test, the configuration other than the film thickness of the channel portion 12C was the same as that of the biosensor 10 of the present embodiment. Looking at the graph of the transmission characteristics shown in FIG. 9A (measurement conditions are the same as those shown in FIG. 7A), it was confirmed that the drain current was constant regardless of the change in the gate voltage. Looking at the graph of output characteristics shown in FIG. 9B (measurement conditions are the same as those shown in FIG. 7B), the drain current increases linearly in proportion to the increase in drain voltage at any gate voltage value. I was able to confirm that.
 以上のことから、本実施形態のバイオセンサ10では、FET12のチャネル部12Cの膜厚が30nmより厚くなると、FET12の半導体特性が低下してゆくことが確認できた。 From the above, it was confirmed that in the biosensor 10 of the present embodiment, when the film thickness of the channel portion 12C of the FET 12 becomes thicker than 30 nm, the semiconductor characteristics of the FET 12 deteriorate.
 (他の実施形態)
 なお、上記の実施形態では、基板上に設けられた、導電性薄膜として、ITO膜16を適用した場合について述べたが、これに限らず、例えば、IGZO膜、IZO膜及びIGO膜等の他の種々の導電性薄膜を適用してもよい。FET12を構成する導電性薄膜の他の材料としては、例えば、硫化モリブデン(MoS)、窒化ホウ素(BN)、硫化タングステン(WS)、硫化スズ(SnS、SnS)、マキシン、黒リンなどを用いることができる。このうちマキシンは、前周期遷移金属(Ti、V、Nbなど)とC又はN(又はその両方)との組み合わせによって構成される材料を用いてもよい。
(Other embodiments)
In the above embodiment, the case where the ITO film 16 is applied as the conductive thin film provided on the substrate has been described, but the present invention is not limited to this, and for example, other than the IGZO film, the IZO film, the IGO film, and the like. Various conductive thin films may be applied. Examples of other materials of the conductive thin film constituting the FET 12 include molybdenum sulfide (MoS 2 ), boron nitride (BN), tungsten sulfide (WS 2 ), tin sulfide (SnS, SnS 2 ), maxine, and black phosphorus. Can be used. Of these, maxin may use a material composed of a combination of a preperiod transition metal (Ti, V, Nb, etc.) and C or N (or both).
 上記の実施形態では、FET12の製造過程において、ガラス基板14上にSnOを、例えば10wt%含有するITO膜16を成膜する例を示したが、例えば5wt%~15wt%の範囲内でSnOの含有率が異なるITO膜16を成膜してもよい。上記の実施形態におけるバイオセンサ10では、ITO膜16におけるSnOの含有率が異なっても、上記の実施形態と同様の効果を得ることができる。 In the above embodiment, an example of forming an ITO film 16 containing SnO 2 in, for example, 10 wt% on a glass substrate 14 in the process of manufacturing the FET 12 is shown, but SnO is formed in the range of, for example, 5 wt% to 15 wt%. The ITO film 16 having a different content of 2 may be formed. In the biosensor 10 in the above embodiment, the same effect as in the above embodiment can be obtained even if the content of SnO 2 in the ITO film 16 is different.
 上記の実施形態では、FET12の製造過程において、ガラス基板14とフォトマスク30との間に間隙G1を設けた状態でスパッタリングを行う例を示したが、FET12の製造方法については限定されない。例えば、ガラス基板14上に膜厚が均一な単一の膜を成膜し、その後にフォトリソグラフィを用いたエッチングを行うことによってチャネル部の膜厚のみを薄く形成してもよい。このような製造方法であっても、ガラス基板14上に成膜した単一の導電性薄膜のみからなり、かつ本実施形態と同様の特性を示すFETを実現することができる。 In the above embodiment, in the manufacturing process of the FET 12, sputtering is performed with the gap G1 provided between the glass substrate 14 and the photomask 30, but the manufacturing method of the FET 12 is not limited. For example, a single film having a uniform film thickness may be formed on the glass substrate 14, and then etching using photolithography may be performed to form a thin film on the channel portion. Even with such a manufacturing method, it is possible to realize an FET that is composed of only a single conductive thin film formed on the glass substrate 14 and has the same characteristics as those of the present embodiment.
 上記の実施形態では、基板として、ガラス基板14を適用したが、本発明はこれに限らず、FETとして機能する導電性薄膜を表面に形成できれば、他の種々の材質でなる基板を適用するようにしてもよい。 In the above embodiment, the glass substrate 14 is applied as the substrate, but the present invention is not limited to this, and if a conductive thin film functioning as an FET can be formed on the surface, a substrate made of various other materials may be applied. You may do it.
 上記の実施形態では、薄膜形成工程におけるスパッタリング時の温度条件として25℃を例示したが、ITO膜の電気特性を向上させるために例えば300℃~400℃まで温度を上げて成膜を行ってもよい。 In the above embodiment, 25 ° C. is exemplified as the temperature condition during sputtering in the thin film forming step, but in order to improve the electrical characteristics of the ITO film, for example, the temperature may be raised to 300 ° C. to 400 ° C. to form a film. good.
 上記の実施形態では、ドレイン電流の変化を測定することにより、ITO膜16表面の電荷密度の変化を検出する例を示したが、例えばドレイン電流を一定にして(ソースフォロワ回路)、チャネル部12C表面の電位の変化を測定することで試料の状態変化を検出してもよい。 In the above embodiment, an example of detecting the change in the charge density on the surface of the ITO film 16 by measuring the change in the drain current is shown. However, for example, the drain current is kept constant (source follower circuit) and the channel portion 12C is used. The change in the state of the sample may be detected by measuring the change in the potential on the surface.
<検証試験>
 (白色干渉計搭載レーザ顕微鏡を用いたITO膜の観察結果について)
 次に、上記の「(FETの製造方法)」の欄で説明した製造方法に従ってFET12となるITO膜16を製造し、白色干渉計搭載レーザ顕微鏡(キーエンス社製 VK-X3000)を用いて当該ITO膜16を観察した。
<Verification test>
(About the observation result of ITO film using a laser microscope equipped with a white interferometer)
Next, the ITO film 16 to be the FET 12 is manufactured according to the manufacturing method described in the above section "(Manufacturing method of FET)", and the ITO is manufactured using a laser microscope equipped with a white interferometer (VK-X3000 manufactured by KEYENCE CORPORATION). The membrane 16 was observed.
 具体的には、フォトマスク30をガラス基板14上に載置する際に、ガラス基板14とフォトマスク30の載置部30Aとの間に、厚さ10μmのフィルム34を設け、図6に示したように、フォトマスク30のパターン32のうち、チャネル部12Cに対応するマスク部32Cにおいて、ガラス基板14とフォトマスク30との間に間隙G1を設けた。そして、SnOを10wt%含有するITOターゲットを用い、高周波(RF)スパッタリング装置(アルバック社製(EC-2)にて25分間スパッタリングして、1回のスパッタリングでFET12となるITO膜16をガラス基板14上に成膜した。 Specifically, when the photomask 30 is placed on the glass substrate 14, a film 34 having a thickness of 10 μm is provided between the glass substrate 14 and the mounting portion 30A of the photomask 30, and is shown in FIG. As described above, in the mask portion 32C corresponding to the channel portion 12C in the pattern 32 of the photomask 30, a gap G1 is provided between the glass substrate 14 and the photomask 30. Then, using an ITO target containing 10 wt% of SnO 2 , sputtering is performed for 25 minutes with a radio frequency (RF) sputtering device (manufactured by ULVAC (EC-2)), and the ITO film 16 which becomes the FET 12 by one sputtering is glassed. A film was formed on the substrate 14.
 次いで、製造したITO膜16の表面を上記の白色干渉計搭載レーザ顕微鏡を用いて計測したところ、図10Aの上方に示すような写真が得られた。また、上記の白色干渉計搭載レーザ顕微鏡によって得られた計測結果において、図10Aの上方の写真中、直線L上でのITO膜16の表面高さを求めたところ、図10Aの下方に示すようなグラフが得られた。 Next, when the surface of the manufactured ITO film 16 was measured using the above-mentioned laser microscope equipped with a white interferometer, a photograph as shown above in FIG. 10A was obtained. Further, in the measurement results obtained by the above-mentioned laser microscope equipped with a white interferometer, the surface height of the ITO film 16 on the straight line L was obtained in the upper photograph of FIG. 10A, and as shown in the lower part of FIG. 10A. Graph was obtained.
 図10Aの上方の写真では、ソース電極12Aを「Source」と示し、ドレイン電極12Bを「Drain」と示し、チャネル部12Cを「Channel」と示している。また、図10Aの下方のグラフでは、ソース電極12Aからチャネル部12Cを介してドレイン電極12Bが配置されるITO膜16の幅方向における距離を横軸とし、ITO膜16の高さを縦軸とした。また、図10Aの下方のグラフでは、予め測定したガラス基板14の厚さも示しており、当該ガラス基板14を「glass」と示し、ITO膜16を「ITO」と示している。 In the upper photograph of FIG. 10A, the source electrode 12A is indicated as "Source", the drain electrode 12B is indicated as "Drain", and the channel portion 12C is indicated as "Channel". Further, in the lower graph of FIG. 10A, the horizontal axis is the distance in the width direction of the ITO film 16 in which the drain electrode 12B is arranged from the source electrode 12A via the channel portion 12C, and the vertical axis is the height of the ITO film 16. bottom. Further, in the lower graph of FIG. 10A, the thickness of the glass substrate 14 measured in advance is also shown, the glass substrate 14 is referred to as “glass”, and the ITO film 16 is indicated as “ITO”.
 図10Aの下方のグラフ中における2本の縦線は、グラフ中、膜厚が次第に薄くなっているITO膜16のテーパ部の中心を探索するため目安として設けたものである。図10Aの下方のグラフから、ドレイン電極12Bの平坦な領域での表面高さと、予め測定したガラス基板14の厚さとからドレイン電極12Bの膜厚を調べたところ、約100nmであった。また、図10Aの下方のグラフから、ITO膜16では、ソース電極12Aとチャネル部12Cとの境界や、ドレイン電極12Bとチャネル部12Cとの境界が明確でないものの、ソース電極12A側及びドレイン電極12B側の平坦な表面からそれぞれチャネル部12Cの中心位置(グラフ中×で表記)側に向けて次第に膜厚が小さくなるテーパ部が形成されていることが確認できた。 The two vertical lines in the lower graph of FIG. 10A are provided as a guide for searching the center of the tapered portion of the ITO film 16 whose film thickness is gradually reduced in the graph. From the lower graph of FIG. 10A, the film thickness of the drain electrode 12B was examined from the surface height of the drain electrode 12B in the flat region and the thickness of the glass substrate 14 measured in advance, and it was about 100 nm. Further, from the lower graph of FIG. 10A, in the ITO film 16, although the boundary between the source electrode 12A and the channel portion 12C and the boundary between the drain electrode 12B and the channel portion 12C are not clear, the source electrode 12A side and the drain electrode 12B It was confirmed that tapered portions whose film thickness gradually decreased from the flat surface on the side toward the center position (indicated by x in the graph) of the channel portions 12C were formed.
 なお、ソース電極12Aの平坦な表面箇所の端部と、ドレイン電極12Bの平坦な表面箇所の端部との間の距離や、チャネル部12Cの長さ等は、ITO膜16の製造過程で用いるフォトマスク30のサイズに基づいて選定できるが、本検証試験では、図10Aの下方のグラフから、ソース電極12Aの平坦な表面箇所の端部と、ドレイン電極12Bの平坦な表面箇所の端部との間の距離が、100±15μm程度であった。 The distance between the end of the flat surface portion of the source electrode 12A and the end of the flat surface portion of the drain electrode 12B, the length of the channel portion 12C, and the like are used in the manufacturing process of the ITO film 16. It can be selected based on the size of the photomask 30, but in this verification test, from the lower graph of FIG. 10A, the end of the flat surface portion of the source electrode 12A and the end of the flat surface portion of the drain electrode 12B. The distance between them was about 100 ± 15 μm.
 次に、図10Aの下方のグラフ中、点線矢印が示す位置において、平面視でITO膜16が非形成でガラス基板14が露出している箇所と、ITO膜16が形成されている箇所との境界における表面高さをAFM(Atomic Force Microscope)によって測定したところ、図10Bに示すような結果が得られた。図10Bから、ITO膜16の形成箇所の表面高さは、ITO膜16が非形成のガラス基板14から平均して45nm程度であり、ITO膜16が非形成のガラス基板14の表面高さは、平均して5nm程度であった。 Next, in the lower graph of FIG. 10A, at the position indicated by the dotted line arrow, there are a portion where the ITO film 16 is not formed and the glass substrate 14 is exposed in a plan view, and a portion where the ITO film 16 is formed. When the surface height at the boundary was measured by AFM (Atomic Force Microscope), the results shown in FIG. 10B were obtained. From FIG. 10B, the surface height of the formed portion of the ITO film 16 is about 45 nm on average from the glass substrate 14 in which the ITO film 16 is not formed, and the surface height of the glass substrate 14 in which the ITO film 16 is not formed is about 45 nm. It was about 5 nm on average.
 なお、原則として、ITO膜16中、膜厚が最も薄いチャネル薄膜部13Cを挟み込む、膜厚が厚い平坦な表面箇所をソース電極12A及びドレイン電極12Bとしているが、平坦な表面箇所から膜厚が次第に薄くなっている、チャネル薄膜部13Cを挟むテーパ部であっても、ITO膜16の膜厚が30nm超の領域は、ソース電極12A及びドレイン電極12Bと見なすことが望ましい。 As a general rule, the source electrode 12A and the drain electrode 12B are flat surface portions having a thick film thickness that sandwich the channel thin film portion 13C having the thinnest film thickness in the ITO film 16, but the film thickness is increased from the flat surface portion. Even in the tapered portion sandwiching the channel thin film portion 13C, which is gradually becoming thinner, it is desirable that the region where the thickness of the ITO film 16 exceeds 30 nm is regarded as the source electrode 12A and the drain electrode 12B.
 したがって、図10Bは、図10AにおいてITO膜16のテーパ部での測定結果であるが、ガラス基板14の厚さを含まないITO膜16の膜厚が40nm程度であり膜厚が30nm超であることから、図10Bに示すITO膜16部分に、ドレイン電極12Bであることを示す「S/D electrodes」を表記している。 Therefore, FIG. 10B shows the measurement results at the tapered portion of the ITO film 16 in FIG. 10A. The film thickness of the ITO film 16 not including the thickness of the glass substrate 14 is about 40 nm, and the film thickness is more than 30 nm. Therefore, “S / D electrodes” indicating that the drain electrode 12B is used is indicated on the ITO film 16 portion shown in FIG. 10B.
 (スパッタリングの時間とチャネル部の厚みとの関係について)
 次に、上記の「(FETの製造方法)」の欄で説明した製造方法に従ってITO膜16を製造する際にスパッタリングの時間を変え、膜厚が異なる複数のITO膜16を製造し、スパッタリングの時間とITO膜16の膜厚との関係を調べた。
(Relationship between sputtering time and channel thickness)
Next, when the ITO film 16 is manufactured according to the manufacturing method described in the above-mentioned "(FET manufacturing method)" column, the sputtering time is changed to manufacture a plurality of ITO films 16 having different film thicknesses, and the sputtering is performed. The relationship between the time and the film thickness of the ITO film 16 was investigated.
 この検証試験では、高周波(RF)スパッタリング装置を使用して、20%Ar雰囲気(Oなし)下でスパッタリングの時間を変え、ガラス基板14上にITO膜16を製造した。また、この際、厚さ10μmと厚さ20μmの、厚さが異なる2種類のフィルム34を準備し、ガラス基板14とフォトマスク30の載置部30Aとの間に、それぞれ厚さが異なるフィルム34を用いてガラス基板14とフォトマスク30との間に異なる大きさの間隙G1を設けてガラス基板14上にITO膜16を製造した。 In this verification test, a radio frequency (RF) sputtering apparatus was used to change the sputtering time in a 20% Ar atmosphere (without O 2 ) to produce an ITO film 16 on a glass substrate 14. At this time, two types of films 34 having a thickness of 10 μm and a thickness of 20 μm having different thicknesses are prepared, and films having different thicknesses are provided between the glass substrate 14 and the mounting portion 30A of the photomask 30. The ITO film 16 was manufactured on the glass substrate 14 by providing gaps G1 having different sizes between the glass substrate 14 and the photomask 30 using the 34.
 そして、製造した各ITO膜16について、白色干渉計搭載レーザ顕微鏡とAFMとを用いてチャネル部12cの膜厚と、ソース電極12A及びドレイン電極12Bの各膜厚とを測定したところ、図11A及び図11Bに示すような結果が得られた。図11Aは、ITO膜16の製造時におけるスパッタリングの時間を横軸に示し、製造した各ITO膜16のチャネル部12Cの膜厚を縦軸に示す。図11Bは、ITO膜16の製造時におけるスパッタリングの時間を横軸に示し、製造した各ITO膜16のソース電極12A及びドレイン電極12Bの膜厚を縦軸に示す。なお、ここでのチャネル部12Cの膜厚とは、膜厚が最も薄いチャネル薄膜部13Cの膜厚である。また、ソース電極12A及びドレイン電極12Bの膜厚とは、平坦な表面箇所での膜厚である。 Then, for each of the manufactured ITO films 16, the film thickness of the channel portion 12c and the film thicknesses of the source electrode 12A and the drain electrode 12B were measured using a laser microscope equipped with a white interferometer and an AFM. The results shown in FIG. 11B were obtained. In FIG. 11A, the sputtering time at the time of manufacturing the ITO film 16 is shown on the horizontal axis, and the film thickness of the channel portion 12C of each manufactured ITO film 16 is shown on the vertical axis. In FIG. 11B, the sputtering time at the time of manufacturing the ITO film 16 is shown on the horizontal axis, and the film thicknesses of the source electrode 12A and the drain electrode 12B of each manufactured ITO film 16 are shown on the vertical axis. The film thickness of the channel portion 12C here is the film thickness of the channel thin film portion 13C having the thinnest film thickness. The film thickness of the source electrode 12A and the drain electrode 12B is the film thickness at a flat surface portion.
 また、図11A及び図11Bのグラフでは、厚さ10μmのフィルム34を用いてガラス基板14とフォトマスク30との間に間隙G1を設けてガラス基板14上にITO膜16を製造したときの各膜厚を「〇10-μm Sheet」と示し、厚さ20μmのフィルム34を用いてガラス基板14とフォトマスク30との間に間隙G1を設けてガラス基板14上にITO膜16を製造したときの各膜厚を「×20-μm Sheet」と示している。 Further, in the graphs of FIGS. 11A and 11B, when the ITO film 16 is manufactured on the glass substrate 14 by providing a gap G1 between the glass substrate 14 and the photomask 30 using the film 34 having a thickness of 10 μm. When the film thickness is indicated as "010-μm Sheet" and the ITO film 16 is manufactured on the glass substrate 14 by providing a gap G1 between the glass substrate 14 and the photomask 30 using a film 34 having a thickness of 20 μm. Each film thickness of is indicated as "× 20-μm Sheet".
 図11A及び図11Bから、チャネル部12C、ソース電極12A、及びドレイン電極12BのITO膜16の厚みは、スパッタリング時間を長くするに従って増加することが確認できた。また、フィルム34の厚さを10μmから20μmに厚くすることで、チャネル部12Cの厚みが厚くなることも確認できた。このように、フィルム34の厚さとスパッタリングの時間とを調整することにより、ITO膜16のチャネル部12C、ソース電極12A、及びドレイン電極12Bの各膜厚をそれぞれ制御できることが確認できた。 From FIGS. 11A and 11B, it was confirmed that the thickness of the ITO film 16 of the channel portion 12C, the source electrode 12A, and the drain electrode 12B increases as the sputtering time is lengthened. It was also confirmed that the thickness of the channel portion 12C was increased by increasing the thickness of the film 34 from 10 μm to 20 μm. In this way, it was confirmed that the film thicknesses of the channel portion 12C, the source electrode 12A, and the drain electrode 12B of the ITO film 16 can be controlled by adjusting the thickness of the film 34 and the sputtering time.
 (バイオセンサの特性評価)
 次に、本実施形態のバイオセンサ10を作製して、FET12の半導体特性について評価する検証試験を行った。上述した製造方法に従って検証試験に用いるFET12を作製した。具体的には、ガラス基板14とフォトマスク30の載置部30Aとの間に、厚さ10μmのフィルム34を設け、SnOを10wt%含むITOのターゲットを用いてスパッタリング時間を25分として高周波スパッタリングを行い、ガラス基板14上にITO膜16を成膜した。なお、溶液20としては、pH4.01~pH9.18のリン酸緩衝溶液を用いた。
(Biosensor characterization)
Next, the biosensor 10 of the present embodiment was manufactured, and a verification test was conducted to evaluate the semiconductor characteristics of the FET 12. The FET 12 used for the verification test was manufactured according to the above-mentioned manufacturing method. Specifically, a film 34 having a thickness of 10 μm is provided between the glass substrate 14 and the mounting portion 30A of the photomask 30, and a high frequency is set with a sputtering time of 25 minutes using an ITO target containing 10 wt% of SnO 2 . Sputtering was performed to form an ITO film 16 on the glass substrate 14. As the solution 20, a phosphate buffer solution having a pH of 4.01 to 9.18 was used.
 そして、作製したFET12を用いて、その伝達特性、すなわち、ドレイン電極12Bとソース電極12Aとの間の電圧を一定(1V)としたときの、参照電極24に印加されるゲート電圧に対するドレイン電流の変化を確認したところ、図12に示すような結果が得られた。図12の結果から、FET12では、pH値がpH4.01からpH9.18に上がるにつれて、閾値電圧(V)が約0Vから約0.2Vに上がることが確認された。また、閾値電圧近傍においてドレイン電流の値が急に上昇しており、閾値電圧を越えた部分において飽和領域と線形領域を確認した。図12に示すように、pH応答は非常に速く、pH感度は約60mV/pHと計算され、ネルンスト応答に近い理想的な感度を確認した。 Then, using the produced FET 12, the transmission characteristic, that is, the drain current with respect to the gate voltage applied to the reference electrode 24 when the voltage between the drain electrode 12B and the source electrode 12A is constant (1 V). When the change was confirmed, the result shown in FIG. 12 was obtained. From the results of FIG. 12, it was confirmed that the threshold voltage ( VT ) of the FET 12 increased from about 0 V to about 0.2 V as the pH value increased from pH 4.01 to pH 9.18. In addition, the value of the drain current suddenly increased near the threshold voltage, and the saturation region and the linear region were confirmed in the portion exceeding the threshold voltage. As shown in FIG. 12, the pH response was very fast and the pH sensitivity was calculated to be about 60 mV / pH, confirming an ideal sensitivity close to the Nernst response.
(SnOを5wt%含有したITO膜の特性評価)
 次に、SnOを5wt%含有したITO膜16を作製し、当該ITO膜16をFET12として使用したバイオセンサの伝達特性を調べた。ここでは、SnOを5wt%含有するITOをスパッタリングターゲットとして用い、アルゴン雰囲気中でスパッタリングターゲットに適した条件(25℃、100W、25分)でスパッタリングを行い、SnOを5wt%含有したITO膜16(以下、単に、5wt%のSnO組成のITO膜16と称する)をガラス基板14上に成膜してFET12を製造した。なお、このITO膜16のチャネル部12Cの膜厚は、おおよそ20nmである。チャネル部12Cの膜厚は、図11Aに基づいて、フィルム34の厚さが10μmの場合における、スパッタリング時間(25分)から推測した。
(Characteristic evaluation of ITO film containing 5 wt% SnO 2 )
Next, an ITO film 16 containing 5 wt% of SnO 2 was prepared, and the transmission characteristics of a biosensor using the ITO film 16 as the FET 12 were investigated. Here, an ITO containing 5 wt% of SnO 2 is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W, 25 minutes), and an ITO film containing 5 wt% of SnO 2 is used. 16 (hereinafter, simply referred to as ITO film 16 having a SnO 2 composition of 5 wt%) was formed on a glass substrate 14 to manufacture the FET 12. The film thickness of the channel portion 12C of the ITO film 16 is approximately 20 nm. The film thickness of the channel portion 12C was estimated from the sputtering time (25 minutes) when the thickness of the film 34 was 10 μm based on FIG. 11A.
 そして、得られたFET12を使用して、図1に示すようなバイオセンサ10を製造し、当該バイオセンサ10の伝達特性を調べたところ、図13Aに示すような結果が得られた。なお、溶液20として、pH7.41のリン酸緩衝溶液を用いた。図13Aでは、横軸にゲート電圧(VGSと表記)を示し、縦軸にリーク電流(IGSと表記)とドレイン電流(IDSと表記)とを示している。図13Aの結果から、このFET12では、0.1V近傍の閾値電圧を越えると、ドレイン電流の値が急に上昇しており、閾値電圧を越えた部分において飽和領域と線形領域を確認した。この特性は、上記の図7A(SnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Then, using the obtained FET 12, a biosensor 10 as shown in FIG. 1 was manufactured, and the transmission characteristics of the biosensor 10 were examined. As a result, the result as shown in FIG. 13A was obtained. As the solution 20, a phosphate buffer solution having a pH of 7.41 was used. In FIG. 13A, the horizontal axis shows the gate voltage (denoted as VGS ), and the vertical axis shows the leak current (denoted as IGS ) and the drain current (denoted as IDS ). From the result of FIG. 13A, in this FET 12, when the threshold voltage near 0.1V was exceeded, the value of the drain current suddenly increased, and the saturation region and the linear region were confirmed in the portion exceeding the threshold voltage. It was confirmed that this characteristic is substantially the same as the characteristic of FIG. 7A (ITO film 16 having SnO 2 composition) described above.
 そして、作製したバイオセンサ10の出力特性について調べた。ゲート電圧を一定(0~1Vの間で100mV間隔毎に測定)としたときの、ドレイン電極12Bに印加されるドレイン電圧に対するドレイン電流の変化を確認したところ、図13Bに示すような結果が得られた。図13Bでは、横軸にドレイン電圧(VDSと表記)を示し、縦軸にドレイン電流(IDSと表記)を示している。図13Bの結果から、このFET12では、いずれの曲線も、ドレイン電圧が一定値を超えるまではドレイン電流が増加し、ドレイン電圧が一定値を超えるとドレイン電流がドレイン電圧に依存しない値となっており、ピンチオフ電圧を境界とする線形領域と飽和領域を確認した。この特性は、上記の図7B(SnOを10wt%含有したITO膜16)の特性と略同様の特性であることを確認した。 Then, the output characteristics of the produced biosensor 10 were investigated. When the change in the drain current with respect to the drain voltage applied to the drain electrode 12B when the gate voltage was constant (measured at intervals of 100 mV between 0 and 1 V) was confirmed, the results shown in FIG. 13B were obtained. Was done. In FIG. 13B, the horizontal axis shows the drain voltage (denoted as VDS ), and the vertical axis shows the drain current (denoted as IDS ). From the results of FIG. 13B, in this FET 12, the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage. We confirmed the linear region and saturation region with the pinch-off voltage as the boundary. It was confirmed that this characteristic is substantially the same as the characteristic of FIG. 7B (ITO film 16 containing 10 wt% of SnO 2 ).
 次に、作製したバイオセンサ10を用いて、SnOを5wt%含有したITO膜16(FET12)における、pH応答性について評価する検証試験を行った。ここでは、pH4.01、pH5.8、pH6.8、pH7.8、pH9.18の、pH値が異なる5種の溶液20を用意し、参照電極24を溶液20中に浸し、浸した直後から約200秒間、FET12のチャネル部12Cの表面電位の経時変化を測定した。その結果、図13Cに示すような結果が得られた。図13Cは、溶液20のpH値を変化させたときのチャネル部12Cの表面電位の経時変化を示すグラフであり、時間(S)と表面電位との関係が示されている。図13Cでは、縦軸を表面電位(V)とし、横軸を時間変化(秒)としている。図13Cに示すように、FET12では、いずれのpH値においても、表面電位の測定開始直後から表面電位の変化はほとんどなく安定していることを確認した。この特性は、上記の図8A(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Next, using the produced biosensor 10, a verification test was conducted to evaluate the pH responsiveness of the ITO film 16 (FET12) containing 5 wt% of SnO 2 . Here, five kinds of solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.8, and pH 9.18 are prepared, and the reference electrode 24 is immersed in the solution 20 immediately after the immersion. The change with time of the surface potential of the channel portion 12C of the FET 12 was measured for about 200 seconds. As a result, the result shown in FIG. 13C was obtained. FIG. 13C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) and the surface potential. In FIG. 13C, the vertical axis is the surface potential (V) and the horizontal axis is the time change (seconds). As shown in FIG. 13C, it was confirmed that the FET 12 was stable with almost no change in the surface potential immediately after the start of the surface potential measurement at any pH value. It was confirmed that this characteristic is substantially the same as that of FIG. 8A (ITO film 16 having a SnO 2 composition of 10 wt%).
 図13Dは、5wt%のSnO組成のITO膜16をFET12として用いたバイオセンサ10について、チャネル部の表面電位に対するpH応答性をまとめたグラフである。図13Dでは、横軸にpH値を示し、縦軸に表面電位を示している。図13Dに実線で示す直線は、図13CにおけるpH4.01からpH9.18までの各pH値に対する表面電位をプロットしたものの回帰直線であり、図13Dに破線で示す直線は、図13CにおけるpH9.18からpH4.01までの各pH値に対する表面電位をプロットしたものの回帰直線である。図13Dを見ると、各回帰直線の傾き、すなわちスロープ感度は、それぞれ約56mVであり、ネルンストの式から求められる理論値とほぼ同じ値であることを確認することができた。以上のことから、このFET12でも、良好なpH応答性を示すことを確認することができた。この特性は、上記の図8B(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 FIG. 13D is a graph summarizing the pH responsiveness to the surface potential of the channel portion of the biosensor 10 using the ITO film 16 having a SnO 2 composition of 5 wt% as the FET 12. In FIG. 13D, the horizontal axis shows the pH value and the vertical axis shows the surface potential. The straight line shown by the solid line in FIG. 13D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 13C, and the straight line shown by the broken line in FIG. 13D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01. Looking at FIG. 13D, it was confirmed that the slope of each regression line, that is, the slope sensitivity, was about 56 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that this FET 12 also shows good pH responsiveness. It was confirmed that this characteristic is substantially the same as that of FIG. 8B (ITO film 16 having a SnO 2 composition of 10 wt%).
 上記の図13Aから図13Dに示すように、SnOを5wt%含有したITO膜16をFET12として使用したバイオセンサ10においても、SnOを10wt%含有したITO膜16をFET12として用いたバイオセンサ10と略同様の計測結果が得られることを確認した。 As shown in FIGS. 13A to 13D above, even in the biosensor 10 using the ITO film 16 containing 5 wt% SnO 2 as the FET 12, the biosensor using the ITO film 16 containing 10 wt% SnO 2 as the FET 12. It was confirmed that almost the same measurement results as in 10 could be obtained.
(SnOを15wt%含有したITO膜の特性評価)
 さらに、SnOを15wt%含有したITO膜16を作製し、当該15wt%をFET12として用いたバイオセンサ10の伝達特性を調べた。ここでは、SnOを15wt%含有するITOをスパッタリングターゲットとして用い、アルゴン雰囲気中でスパッタリングターゲットに適した条件(25℃、100W、25分)でスパッタリングを行い、SnOを15wt%含有したITO膜16(以下、単に、15wt%のSnO組成のITO膜16と称する)をガラス基板14上に成膜して、ITO膜16からなるFET12を製造した。なお、このITO膜16のチャネル部12Cの膜厚は、おおよそ20nmである。チャネル部12Cの膜厚は、図11Aに基づいて、フィルム34の厚さが10μmの場合における、スパッタリング時間(25分)から推測した。
(Characteristic evaluation of ITO film containing 15 wt% SnO 2 )
Further, an ITO film 16 containing 15 wt% of SnO 2 was prepared, and the transmission characteristics of the biosensor 10 using the 15 wt% as the FET 12 were investigated. Here, an ITO containing 15 wt% of SnO 2 is used as a sputtering target, and sputtering is performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W, 25 minutes), and an ITO film containing 15 wt% of SnO 2 is used. 16 (hereinafter, simply referred to as an ITO film 16 having a SnO 2 composition of 15 wt%) was formed on a glass substrate 14 to manufacture an FET 12 made of the ITO film 16. The film thickness of the channel portion 12C of the ITO film 16 is approximately 20 nm. The film thickness of the channel portion 12C was estimated from the sputtering time (25 minutes) when the thickness of the film 34 was 10 μm based on FIG. 11A.
 そして、得られたFET12を使用して、図1に示すようなバイオセンサ10を製造し、当該バイオセンサ10の伝達特性を調べたところ、図14Aに示すような結果が得られた。なお、溶液20として、pH7.41のリン酸緩衝溶液を用いた。図14Aでは、横軸にゲート電圧(VGSと表記)を示し、縦軸をドレイン電流(IDSと表記)としている。図14Aの結果から、このFET12でも、0.1V近傍の閾値電圧を越えると、ドレイン電流の値が急に上昇しており、閾値電圧を越えた部分において飽和領域と線形領域を確認した。この特性は、上記の図7A(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Then, using the obtained FET 12, a biosensor 10 as shown in FIG. 1 was manufactured, and the transmission characteristics of the biosensor 10 were examined. As a result, the result as shown in FIG. 14A was obtained. As the solution 20, a phosphate buffer solution having a pH of 7.41 was used. In FIG. 14A, the horizontal axis represents the gate voltage (denoted as VGS ), and the vertical axis represents the drain current (denoted as IDS ). From the result of FIG. 14A, even in this FET 12, when the threshold voltage near 0.1V was exceeded, the value of the drain current suddenly increased, and the saturation region and the linear region were confirmed in the portion exceeding the threshold voltage. It was confirmed that this characteristic is substantially the same as that of FIG. 7A (ITO film 16 having a SnO 2 composition of 10 wt%).
 そして、製造したバイオセンサ10の出力特性について調べた。ゲート電圧を一定(0~1Vの間で100mV間隔毎に測定)としたときの、ドレイン電極12Bに印加されるドレイン電圧に対するドレイン電流の変化を確認したところ、図14Bに示すような結果が得られた。図14Bでは、横軸にドレイン電圧(VDS)を示し、縦軸にドレイン電流(IDS)を示している。図14Bの結果から、このFET12でも、いずれの曲線も、ドレイン電圧が一定値を超えるまではドレイン電流が増加し、ドレイン電圧が一定値を超えるとドレイン電流がドレイン電圧に依存しない値となっており、ピンチオフ電圧を境界とする線形領域と飽和領域を確認した。この特性は、上記の図7B(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Then, the output characteristics of the manufactured biosensor 10 were investigated. When the change in the drain current with respect to the drain voltage applied to the drain electrode 12B when the gate voltage was constant (measured at intervals of 100 mV between 0 and 1 V) was confirmed, the results shown in FIG. 14B were obtained. Was done. In FIG. 14B, the horizontal axis shows the drain voltage ( VDS ), and the vertical axis shows the drain current ( IDS ). From the result of FIG. 14B, in any of the curves of this FET 12, the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage. We confirmed the linear region and saturation region with the pinch-off voltage as the boundary. It was confirmed that this characteristic is substantially the same as that of FIG. 7B (ITO film 16 having a SnO 2 composition of 10 wt%).
 次に、作製したバイオセンサ10を用いて、15wt%のSnO組成のITO膜16(FET12)における、pH応答性について評価する検証試験を行った。ここでは、pH4.01、pH5.8、pH6.8、pH7.8、pH9.18の、pH値が異なる5種の溶液20を用意し、参照電極24を溶液20中に浸し、浸した直後から約200秒間、FET12のチャネル部12Cの表面電位の経時変化を測定した。その結果、図14Cに示すような結果が得られた。図14Cは、溶液20のpH値を変化させたときのチャネル部12Cの表面電位の経時変化を示すグラフであり、時間(S)と表面電位との関係が示している。図14Cでは、縦軸を表面電位(V)とし、横軸を時間変化(秒)としている。図14Cに示すように、FET12では、いずれのpH値においても、表面電位の測定開始直後から表面電位の変化はほとんどなく安定していることを確認した。この特性は、上記の図8A(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Next, using the produced biosensor 10, a verification test was conducted to evaluate the pH responsiveness of the ITO film 16 ( FET12 ) having a SnO2 composition of 15 wt%. Here, five kinds of solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.8, and pH 9.18 are prepared, and the reference electrode 24 is immersed in the solution 20 immediately after the immersion. The change with time of the surface potential of the channel portion 12C of the FET 12 was measured for about 200 seconds. As a result, the result shown in FIG. 14C was obtained. FIG. 14C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) and the surface potential. In FIG. 14C, the vertical axis is the surface potential (V) and the horizontal axis is the time change (seconds). As shown in FIG. 14C, it was confirmed that the FET 12 was stable with almost no change in the surface potential immediately after the start of the surface potential measurement at any pH value. It was confirmed that this characteristic is substantially the same as that of FIG. 8A (ITO film 16 having a SnO 2 composition of 10 wt%).
 図14Dは、15wt%のSnO組成のITO膜16をFET12として用いたバイオセンサ10について、チャネル部の表面電位に対するpH応答性をまとめたグラフである。図14Dでは、横軸にpH値を示し、縦軸に表面電位を示している。図14Dに実線で示す直線は、図14CにおけるpH4.01からpH9.18までの各pH値に対する表面電位をプロットしたものの回帰直線であり、図14Dに破線で示す直線は、図14CにおけるpH9.18からpH4.01までの各pH値に対する表面電位をプロットしたものの回帰直線である。図14Dを見ると、各回帰直線の傾き、すなわちスロープ感度は、それぞれ約56~57mVであり、ネルンストの式から求められる理論値とほぼ同じ値であることを確認することができた。以上のことから、FET12は、良好なpH応答性を示すことを確認することができた。この特性は、上記の図8B(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 FIG. 14D is a graph summarizing the pH responsiveness to the surface potential of the channel portion of the biosensor 10 using the ITO film 16 having a SnO 2 composition of 15 wt% as the FET 12. In FIG. 14D, the horizontal axis shows the pH value and the vertical axis shows the surface potential. The straight line shown by the solid line in FIG. 14D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 14C, and the straight line shown by the broken line in FIG. 14D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01. Looking at FIG. 14D, it was confirmed that the slope of each regression line, that is, the slope sensitivity, was about 56 to 57 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that the FET 12 exhibits a good pH responsiveness. It was confirmed that this characteristic is substantially the same as that of FIG. 8B (ITO film 16 having a SnO 2 composition of 10 wt%).
 上記の図14Aから図14Dに示すように、SnOを15wt%含有したITO膜16をFET12として使用したバイオセンサ10においても、SnOを5wt%又は10wt%含有したITO膜16をFET12として用いたバイオセンサ10と略同様の計測結果が得られることを確認した。 As shown in FIGS. 14A to 14D above, even in the biosensor 10 using the ITO film 16 containing 15 wt% SnO 2 as the FET 12, the ITO film 16 containing 5 wt% or 10 wt% SnO 2 is used as the FET 12. It was confirmed that almost the same measurement result as that of the biosensor 10 was obtained.
 (溶液中における安定性の特性評価)
 続いて、溶液20中におけるFET12の電気的な安定性の特性評価を行った。溶液20中の電気的な安定性の検証を行うにあたり、10wt%のSnO組成のITO膜16を、バイオセンサ10のFET12として使用した。具体的には、フォトマスク30をガラス基板14上に載置する際に、ガラス基板14とフォトマスク30の載置部30Aとの間に、厚さ10μmのフィルム34を設け、図6に示したように、フォトマスク30のパターン32のうち、チャネル部12Cに対応するマスク部32Cにおいて、ガラス基板14とフォトマスク30との間に間隙G1を設けた。そして、SnOを10wt%含有するITOターゲットを用い、高周波(RF)スパッタリング装置にて25分間スパッタリングして、1回のスパッタリングでFET12となるITO膜16をガラス基板14上に成膜した。このように、フィルム34の厚さや、スパッタリング時間を調整して、チャネル部12Cの膜厚がおおよそ20nm程度のITO膜16を作製した。
(Characteristics of stability in solution)
Subsequently, the characteristics of the electrical stability of the FET 12 in the solution 20 were evaluated. In verifying the electrical stability in the solution 20, an ITO film 16 having a SnO 2 composition of 10 wt% was used as the FET 12 of the biosensor 10. Specifically, when the photomask 30 is placed on the glass substrate 14, a film 34 having a thickness of 10 μm is provided between the glass substrate 14 and the mounting portion 30A of the photomask 30, and is shown in FIG. As described above, in the mask portion 32C corresponding to the channel portion 12C in the pattern 32 of the photomask 30, a gap G1 is provided between the glass substrate 14 and the photomask 30. Then, using an ITO target containing 10 wt% of SnO 2 , sputtering was performed for 25 minutes with a radio frequency (RF) sputtering device to form an ITO film 16 which becomes an FET 12 by one sputtering on a glass substrate 14. In this way, the thickness of the film 34 and the sputtering time were adjusted to produce the ITO film 16 having a film thickness of the channel portion 12C of about 20 nm.
 次いで、得られたITO膜16をFET12として用いたバイオセンサ10を作製した。そして、バイオセンサ10において、FET12を溶液20中に浸漬した状態で、ドレイン電流を100μAとして、約800秒間にpH値をpH4.01、pH5.8、pH6.8、pH7.8、pH9.18に変化させたときの表面電位を、ソースフォロワ回路によって計測した。 Next, a biosensor 10 was produced using the obtained ITO film 16 as the FET 12. Then, in the biosensor 10, with the FET 12 immersed in the solution 20, the drain current is 100 μA, and the pH values are pH 4.01, pH 5.8, pH 6.8, pH 7.8, and pH 9.18 in about 800 seconds. The surface potential when changed to was measured by the source follower circuit.
 図15A~図15Eでは、横軸に時間を示し、縦軸に表面電位を示す。また、図15A~図15Eの挿入図では、横軸にpH値を示し、縦軸に表面電位を示す。図15Aは、ITO膜16を溶液20に浸漬してから0週間目(すなわち、ITO膜16を溶液20に浸漬した直後)における表面電位とpH値との関係を示す。第0週間目では、挿入図に示されるように、pH感度が約53mV/pHであった。 In FIGS. 15A to 15E, time is shown on the horizontal axis and surface potential is shown on the vertical axis. Further, in the insets of FIGS. 15A to 15E, the horizontal axis indicates the pH value, and the vertical axis indicates the surface potential. FIG. 15A shows the relationship between the surface potential and the pH value at 0 weeks after the ITO film 16 is immersed in the solution 20 (that is, immediately after the ITO film 16 is immersed in the solution 20). At week 0, the pH sensitivity was about 53 mV / pH, as shown in the inset.
 図15Bは、ITO膜16を溶液20に浸漬してから1週間を経過したときの表面電位とpHとの関係を示し、このときのpH感度が約55mV/pHであった。図15Cは、ITO膜16を溶液20に浸漬してから2週間を経過したときの表面電位とpHとの関係を示し、このときのpH感度が約54mV/pHであった。図15Dは、ITO膜16を溶液20に浸漬してから3週間を経過したときの表面電位とpHとの関係を示し、このときのpH感度が約54mV/pHであった。図15Eは、ITO膜16を溶液20に浸漬してから4週間を経過したときの表面電位とpHとの関係を示し、このときのpH感度が約55mV/pHであった。このように、0週間経過時から4週間経過時におけるpH感度は約53mV/pHから約55mV/pHであって、略ネルンスト応答を示すことを確認した。このように、pH感度は溶液20中で長期間維持されることを確認した。 FIG. 15B shows the relationship between the surface potential and pH when one week has passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 55 mV / pH. FIG. 15C shows the relationship between the surface potential and the pH when two weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 54 mV / pH. FIG. 15D shows the relationship between the surface potential and pH when 3 weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 54 mV / pH. FIG. 15E shows the relationship between the surface potential and the pH when 4 weeks have passed since the ITO film 16 was immersed in the solution 20, and the pH sensitivity at this time was about 55 mV / pH. As described above, it was confirmed that the pH sensitivity from 0 week to 4 weeks was about 53 mV / pH to about 55 mV / pH, showing a substantially Nernst response. Thus, it was confirmed that the pH sensitivity was maintained in the solution 20 for a long period of time.
 (チャネル部の膜厚を変えたときのFETの半導体特性の評価)
 次に、ITO膜16のチャネル部12Cの膜厚を変えて、pH7.41の溶液20(例えばリン酸緩衝液)中におけるFET12の半導体特性について調べた。この検証試験では、SnOを10wt%含有するITOをスパッタリングターゲットとして用い、アルゴン雰囲気中でスパッタリングターゲットに適した条件(25℃、100W)でスパッタリングを行い、SnOを10wt%含有したITO膜16をガラス基板14上に成膜してFET12を製造した。
(Evaluation of FET semiconductor characteristics when the film thickness of the channel is changed)
Next, the film thickness of the channel portion 12C of the ITO film 16 was changed, and the semiconductor characteristics of the FET 12 in the solution 20 (for example, a phosphate buffer solution) having a pH of 7.41 were investigated. In this verification test, ITO containing 10 wt% of SnO 2 was used as a sputtering target, and sputtering was performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W), and the ITO film 16 containing 10 wt% of SnO 2 was subjected to sputtering. Was formed on the glass substrate 14 to manufacture the FET 12.
 この際、高周波(RF)スパッタリング装置を使用して、20%Ar雰囲気(Oなし)下で行われるスパッタリングの時間と、ITO膜16の作製時にガラス基板14とフォトマスク30との間に形成する間隙G1の大きさと、を変えて、チャネル部12Cの膜厚が異なる複数種類のITO膜16を作製した。ここでは、チャネル部12Cの膜厚が数nmから約50nmの範囲の複数種類のITO膜16を作製し、各ITO膜16をそれぞれFET12として用いた複数のバイオセンサ10を作製した。なお、ここでのチャネル部12Cの膜厚は、膜厚が最も薄いチャネル薄膜部13Cの膜厚であって、白色干渉計搭載レーザ顕微鏡及びAFMによって測定した。 At this time, using a radio frequency (RF) sputtering device, the time of sputtering performed in a 20% Ar atmosphere (without O 2 ) and the formation between the glass substrate 14 and the photomask 30 when the ITO film 16 is manufactured. By changing the size of the gap G1 to be formed, a plurality of types of ITO films 16 having different film thicknesses of the channel portion 12C were produced. Here, a plurality of types of ITO films 16 having a film thickness of the channel portion 12C in the range of several nm to about 50 nm were produced, and a plurality of biosensors 10 using each ITO film 16 as an FET 12 were produced. The film thickness of the channel portion 12C here is the film thickness of the channel thin film portion 13C having the thinnest film thickness, and was measured by a laser microscope equipped with a white interferometer and an AFM.
 そして、作製したITO膜16のチャネル部12Cの膜厚と、当該ITO膜16をFET12として使用した各バイオセンサ10の最大導電率(σmax)と、各FET12のオン状態における出力電流IOnとオフ状態における出力電流Ioffとの比率(IOn/Ioff、以下、オンオフ比とする)とを調べたところ、図16に示すような結果が得られた。図16は、横軸にチャネル部12Cの膜厚を示し、左側の縦軸に最大導電率(σmax)を示し、右側の縦軸にFET12のオンオフ比を示す。 Then, the film thickness of the channel portion 12C of the produced ITO film 16, the maximum conductivity (σ max ) of each biosensor 10 using the ITO film 16 as the FET 12, and the output current I On of each FET 12 in the on state. When the ratio to the output current I off in the off state (I On / I off , hereinafter referred to as the on / off ratio) was investigated, the results shown in FIG. 16 were obtained. In FIG. 16, the horizontal axis shows the film thickness of the channel portion 12C, the vertical axis on the left side shows the maximum conductivity (σ max ), and the vertical axis on the right side shows the on / off ratio of the FET 12.
 まず、オンオフ比の検証結果について説明する。オンオフ比は、膜厚が約0nmから約25nmまで約10であることを確認した。また、オンオフ比は、膜厚が約25nmから約35nmの範囲で急激に減少し、膜厚が約50nmでは約10付近まで低下することを確認した。すなわち、チャネル部12Cの膜厚がチャネル部12Cの最大空乏厚さ(tDm)に近いと想定される約30~40nm(より厳密には、30nm)より小さい場合には、オンオフ比は約10であり、これは、チャネル部12Cの膜厚が30nmより小さい場合には、FET12が半導体特性を備えることを示している。一方、チャネル部12Cの膜厚が30nmより大きい場合、オンオフ比は約10付近まで低下することを確認した。これは、チャネル部12Cの膜厚が30nmより大きい場合には、半導体特性が低下することを示している。 First, the verification result of the on / off ratio will be described. It was confirmed that the on / off ratio was about 105 from about 0 nm to about 25 nm. It was also confirmed that the on / off ratio sharply decreased in the range of about 25 nm to about 35 nm , and decreased to about 100 when the film thickness was about 50 nm. That is, when the film thickness of the channel portion 12C is smaller than about 30 to 40 nm (more strictly, 30 nm), which is assumed to be close to the maximum empty thickness (t Dm ) of the channel portion 12C, the on / off ratio is about 10. 5 indicates that the FET 12 has semiconductor characteristics when the film thickness of the channel portion 12C is smaller than 30 nm. On the other hand, it was confirmed that when the film thickness of the channel portion 12C was larger than 30 nm, the on / off ratio decreased to about 100. This indicates that when the film thickness of the channel portion 12C is larger than 30 nm, the semiconductor characteristics are deteriorated.
 上記のとおり、FET12について良好な半導体特性を得るという観点から、ITO膜16のチャネル部12Cの膜厚を30nm以下、好ましくは25nm以下、20nm以下とすることが望ましいことが確認できた。また、この検証試験では、チャネル部12Cの最大空乏厚さ(tDm)に相当する「30nm」が、半導体特性を示すチャネル部12Cの膜厚の閾値に相当することを確認した。言い換えると、他の材料からなるFET12、例えば5wt%のSnOを含有するITOターゲットを用いて製造されたFET12においても、閾値は最大空乏厚さ(tDm)に相当する値となることが予想される。 As described above, from the viewpoint of obtaining good semiconductor characteristics for the FET 12, it was confirmed that it is desirable that the film thickness of the channel portion 12C of the ITO film 16 is 30 nm or less, preferably 25 nm or less, and 20 nm or less. Further, in this verification test, it was confirmed that "30 nm" corresponding to the maximum depletion thickness (t Dm ) of the channel portion 12C corresponds to the threshold value of the film thickness of the channel portion 12C showing the semiconductor characteristics. In other words, even in an FET 12 made of another material, for example, an FET 12 manufactured using an ITO target containing 5 wt% SnO 2 , the threshold value is expected to be a value corresponding to the maximum empty thickness (t Dm ). Will be done.
 続いて、最大導電率(σmax)の検証結果について説明する。最大導電率は、チャネル部12Cの膜厚が極端に小さい場合、最大導電率が約10-3となり、当該膜厚が数nmから約10nmの間では膜厚の増加に伴って急激に上昇し、膜厚が約10nmより大きい範囲では約10の値を維持することを確認した。なお、ここでは、チャネル部12Cの膜厚が図中の「λ」で示される膜厚4nmを超えると最大導電率が飽和することを確認した。また、最大導電率は、上記の膜厚の閾値である30nmの前後においてもほとんど変化しないことを確認した。これは、FET12が半導体特性を示すか否かにかかわらず電流が流れ続けてしまうことを示す。 Next, the verification result of the maximum conductivity (σ max ) will be described. When the film thickness of the channel portion 12C is extremely small, the maximum conductivity is about 10-3 , and when the film thickness is between several nm and about 10 nm, the maximum conductivity increases sharply as the film thickness increases. It was confirmed that the value of about 100 was maintained in the range where the film thickness was larger than about 10 nm . Here, it was confirmed that the maximum conductivity is saturated when the film thickness of the channel portion 12C exceeds the film thickness of 4 nm indicated by “λ D ” in the figure. Further, it was confirmed that the maximum conductivity hardly changed even before and after the above-mentioned threshold value of the film thickness of 30 nm. This indicates that the current continues to flow regardless of whether or not the FET 12 exhibits semiconductor characteristics.
 (サブスレッショルドスロープの評価)
 次に、FET12のpH応答の感度を示すサブスレッショルドスロープ(SS)について検証した結果を説明する。ここでは、10wt%のSnO組成でチャネル部12Cの膜厚が20nmのFET12を溶液20に浸漬させ、溶液20のpH値をpH9.18、pH7.8、pH6.8、pH5.8、pH4.01の順に変化させて、サブスレッショルドスロープを計測した。図17Aには、横軸にpH値を示し、縦軸にサブスレッショルドスロープを示す。図17Aに示すように、300Kのサーマルリミットにおいて略60mV/decの急勾配のサブスレッショルドスロープを確認した。これは、従来のシリコンベースのイオン感応性電界効果トランジスタのサブスレッショルドスロープ(200mV/dec)よりも優れていることを示している。
(Evaluation of subthreshold slope)
Next, the result of verifying the subthreshold slope (SS) showing the sensitivity of the pH response of the FET 12 will be described. Here, an FET 12 having a SnO 2 composition of 10 wt% and a film thickness of 20 nm in the channel portion 12C is immersed in the solution 20, and the pH values of the solution 20 are pH 9.18, pH 7.8, pH 6.8, pH 5.8, pH 4. The subthreshold slope was measured by changing in the order of 0.01. In FIG. 17A, the horizontal axis shows the pH value, and the vertical axis shows the subthreshold slope. As shown in FIG. 17A, a steep subthreshold slope of approximately 60 mV / dec was confirmed at a thermal limit of 300 K. This shows that it is superior to the subthreshold slope (200 mV / dec) of the conventional silicon-based ion-sensitive field-effect transistor.
 図17Bは、上記の5種類のpH値の溶液20における、FET12のドレイン電流(IDS)の出力特性を他の指標に基づきまとめたグラフである。図17Bの横軸には、時間を示し、縦軸にはドレイン電流の出力特性を示す。縦軸のドレイン電流の出力特性は、pH値がpH9.18の場合のドレイン電流を基準としたときの、5種類の各pH値におけるドレイン電流の比率(以下、出力電流比率と称する)として示す。 FIG. 17B is a graph summarizing the output characteristics of the drain current ( IDS ) of the FET 12 in the solution 20 having the above five pH values based on other indexes. The horizontal axis of FIG. 17B shows the time, and the vertical axis shows the output characteristics of the drain current. The output characteristics of the drain current on the vertical axis are shown as the ratio of the drain current at each of the five types of pH values (hereinafter referred to as the output current ratio) when the drain current when the pH value is pH 9.18 is used as a reference. ..
 図17Bでは、pH値をpH9.18からpH4.01まで5段階で変化させたときの、電流比率の経時変化をゲート電圧ごとに示す。例えば、実線のグラフは、ゲート電圧に-0.1Vを印加した状態で、1000秒間にpH値をpH9.18からpH4.01まで5段階に変化させたときの出力電流比率を示す。他の二つの破線のグラフは、それぞれゲート電圧に0V又は0.2Vを印加した状態で、1000秒間にpH値をpH9.18からpH4.01まで5段階に変化させたときの出力電流比率を示す。ゲート電圧に-0.1V、0V、0.2Vをそれぞれ印加した状態において、pH値が低くなるにつれて出力電流比率が上昇することを確認した。これは、pH値の変化は、電荷の変化に対応する表面電位(ΔVout)の変化を誘発することを示している。 FIG. 17B shows the change over time of the current ratio for each gate voltage when the pH value is changed from pH 9.18 to pH 4.01 in five steps. For example, the solid line graph shows the output current ratio when the pH value is changed in 5 steps from pH 9.18 to pH 4.01 in 1000 seconds with −0.1 V applied to the gate voltage. The other two dashed graphs show the output current ratio when the pH value is changed in 5 steps from pH 9.18 to pH 4.01 in 1000 seconds with 0V or 0.2V applied to the gate voltage, respectively. show. It was confirmed that the output current ratio increased as the pH value decreased in the state where −0.1 V, 0 V, and 0.2 V were applied to the gate voltage, respectively. This indicates that a change in pH value induces a change in surface potential (ΔVout) corresponding to a change in charge.
 また、図17Bの挿入図には、pH値がpH9.18、pH7.8、pH6.8、pH5.8、pH4.01ごとのドレイン電流の出力特性が示されている。この図17Bは、図12に示されるドレイン電流の出力特性のうちゲート電圧が-0.1V、0V、0.2Vの場合の縦軸を対数(Log10)で表記したものである。 Further, the inset diagram of FIG. 17B shows the output characteristics of the drain current for each pH value of pH 9.18, pH 7.8, pH 6.8, pH 5.8, and pH 4.01. In FIG. 17B, among the output characteristics of the drain current shown in FIG. 12, the vertical axis when the gate voltage is −0.1 V, 0 V, 0.2 V is represented by a logarithm (Log 10).
 また、図17Bの挿入図には、横軸にpH値を示し、縦軸に出力電流比率を示す。より詳細には、縦軸にはゲート電圧(VGS)が-0.1Vのとき、すなわち図12のグラフにおいてドレイン電流の変化率(傾き)が大きい領域(以下、サブスレッショルドレジームとする)の出力電流比率を示す。また、ゲート電圧が0Vのとき、すなわち図12のグラフにおいてドレイン電流が増加する領域であってサブスレッショルドレジームよりも傾きが小さい領域(以下、サブスレッショルドに近いレジームとする。)の出力電流比率を示す。さらに、ゲート電圧が0.2Vのとき、すなわち図12のグラフにおいて傾きがより小さい領域(以下、線形レジームとする。)の出力電流比率が示されている。 Further, in the inset of FIG. 17B, the horizontal axis shows the pH value and the vertical axis shows the output current ratio. More specifically, on the vertical axis, when the gate voltage ( VGS ) is −0.1 V, that is, in the region where the rate of change (slope) of the drain current is large in the graph of FIG. 12 (hereinafter referred to as the subthreshold regime). Shows the output current ratio. Further, when the gate voltage is 0V, that is, in the graph of FIG. 12, the output current ratio in the region where the drain current increases and the slope is smaller than the subthreshold regime (hereinafter, referred to as a regime close to the subthreshold) is used. show. Further, when the gate voltage is 0.2 V, that is, the output current ratio in the region where the slope is smaller (hereinafter referred to as a linear regime) in the graph of FIG. 12 is shown.
 特に、出力電流比率は、pH値に対して指数関数的に応答することが示されている。サブスレッショルドレジームで計測されたドレイン電流は、線形レジームで計測されたドレイン電流よりも約10倍大きいことを確認した。これは、サブスレッショルドレジームとして示される条件に基づいてpHの変化を高感度に検出が可能であることを示している。 In particular, the output current ratio has been shown to respond exponentially to the pH value. It was confirmed that the drain current measured in the subthreshold regime was about 10 times larger than the drain current measured in the linear regime. This indicates that changes in pH can be detected with high sensitivity based on the conditions shown as the subthreshold regime.
 図17Cは、10wt%のSnO組成のFET12において、溶液20のpHを変化させたときのチャネル部12Cの表面電位の経時変化を示すグラフである。図17Cは、pH4.01、pH5.8、pH6.8、pH7.4、pH9.18の、pH値が異なる5種の溶液20中に浸した直後から約200秒間、FET12のチャネル部12Cの表面電位の経時変化を測定したものである。いずれのpH値においても、FET12は、表面電位の測定開始直後から表面電位の変化はほとんどなく、安定していることがわかる。 FIG. 17C is a graph showing the time course of the surface potential of the channel portion 12C when the pH of the solution 20 is changed in the FET 12 having a SnO 2 composition of 10 wt%. FIG. 17C shows the channel portion 12C of the FET 12 for about 200 seconds immediately after being immersed in the five solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.4, and pH 9.18. This is a measurement of the change in surface potential over time. It can be seen that at any pH value, the FET 12 is stable with almost no change in the surface potential immediately after the start of the surface potential measurement.
 図17Dは、10wt%のSnO組成のFET12において、溶液20のpHを変化させたときのチャネル部12Cの表面電位に対するpH応答性をまとめたグラフである。なお、この図17Dは上記の図8Bと略同一のグラフである。図17Dに実線で示す直線は、図17CにおけるpH4.01からpH9.18までの各pH値に対する表面電位をプロットしたものの回帰直線であり、図17Dに破線で示す直線は、図17CにおけるpH9.18からpH4.01までの各pH値に対する表面電位をプロットしたものの回帰直線である。 FIG. 17D is a graph summarizing the pH responsiveness to the surface potential of the channel portion 12C when the pH of the solution 20 is changed in the FET 12 having a SnO 2 composition of 10 wt%. Note that FIG. 17D is a graph substantially the same as FIG. 8B described above. The straight line shown by the solid line in FIG. 17D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 17C, and the straight line shown by the broken line in FIG. 17D is the pH 9. It is a regression line of the plot of the surface potential for each pH value from 18 to pH 4.01.
 表面電位(ΔVout)とpH値(ΔpH)との間の線形関係が得られることを確認した。これは、表面電位は、半導体特性ではなくチャネル部12C表面での平衡反応に強く依存していることが理由として考えられる。このように、図17Dに示される各回帰直線の傾き、すなわちスロープ感度は、pH値をpH4.01からpH9.18に変化させた場合には約58mVであり、pH値をpH9.18からpH4.01に変化させた場合には約56mVであり、それぞれネルンストの式から求められる理論値とほぼ同じ値である。以上のことから、FET12は、良好なpH応答性を示すことを確認した。 It was confirmed that a linear relationship between the surface potential (ΔVout) and the pH value (ΔpH) was obtained. This is considered to be because the surface potential strongly depends on the equilibrium reaction on the surface of the channel portion 12C, not on the semiconductor characteristics. Thus, the slope of each regression line shown in FIG. 17D, that is, the slope sensitivity, is about 58 mV when the pH value is changed from pH 4.01 to pH 9.18, and the pH value is changed from pH 9.18 to pH 4. When changed to 0.01, the pH is about 56 mV, which are almost the same as the theoretical values obtained from the Nernst equation. From the above, it was confirmed that the FET 12 exhibits a good pH responsiveness.
 また、図17Dの挿入図において、横軸にドレイン電流を示し、縦軸にpH感度(mV/pH)を示す。図17Dの挿入図に示すように、サブスレッショルドレジーム、すなわちドレイン電流が1μA、10μA、100μAにおいて計測した場合において、それぞれ55mV/pH、58mV/pH、59mV/pHの略ネルンスト応答を示すことを確認した。 Further, in the insertion diagram of FIG. 17D, the horizontal axis shows the drain current, and the vertical axis shows the pH sensitivity (mV / pH). As shown in the inset of FIG. 17D, it was confirmed that the subthreshold regime, that is, when the drain current was measured at 1 μA, 10 μA, and 100 μA, showed approximately Nernst response of 55 mV / pH, 58 mV / pH, and 59 mV / pH, respectively. bottom.
 <第2実施形態>
 (第2実施形態のFETにおける特性評価)
 次に、第2実施形態の製造方法によって第2実施形態に係るITO膜16を製造し、当該ITO膜16をFET12として使用したバイオセンサ10を作製した。そして、作製したバイオセンサの半導体特性等を調べる検証試験を行った。まず初めに、第2実施形態に係るITO膜16の製造方法について説明する。図18は、第2実施形態に係るITO膜16の製造方法を説明するための概略図である。図18に示すように、第2実施形態に係る製造方法は、工程aから工程iからなる。なお、図18では工程a~工程iを示す概略図について(a)~(i)と表記している。
<Second Embodiment>
(Characteristic evaluation in FET of the second embodiment)
Next, the ITO film 16 according to the second embodiment was manufactured by the manufacturing method of the second embodiment, and the biosensor 10 using the ITO film 16 as the FET 12 was manufactured. Then, a verification test was conducted to investigate the semiconductor characteristics of the manufactured biosensor. First, a method for manufacturing the ITO film 16 according to the second embodiment will be described. FIG. 18 is a schematic view for explaining the method for manufacturing the ITO film 16 according to the second embodiment. As shown in FIG. 18, the manufacturing method according to the second embodiment comprises steps a to i. In FIG. 18, the schematic views showing the steps a to i are referred to as (a) to (i).
 図18に示すように、まず、所定のガラス基板60を準備し(工程a)、その後、フォトリソグラフィなどの技術を用いて所定のパターンを現像するために、ガラス基板60の上面にレジスト62を塗布する(工程b)。次いで、レジスト62上に、所定パターンのマスクを被せた状態で、ガラス基板60上において、チャネル部が形成されるチャネル部形成予定位置のレジスト62を除去し、当該チャネル部形成予定位置以外の領域にレジスト62A,62Bを残す(工程c)。 As shown in FIG. 18, first, a predetermined glass substrate 60 is prepared (step a), and then a resist 62 is placed on the upper surface of the glass substrate 60 in order to develop a predetermined pattern using a technique such as photolithography. Apply (step b). Next, with the resist 62 covered with a mask of a predetermined pattern, the resist 62 at the position where the channel portion is planned to be formed is removed on the glass substrate 60, and the region other than the position where the channel portion is planned to be formed is removed. The resists 62A and 62B are left in (step c).
 そして、チャネル部形成予定位置に露出したガラス基板60上及びレジスト62A,62B上に、1回目のスパッタリングにより、層状のチャネル部形成層64Cを成膜する(工程d)。この際、チャネル部形成層64Cの膜厚は、30nm以下が望ましく、さらには20nm以下がより望ましい。 Then, a layered channel portion forming layer 64C is formed on the glass substrate 60 exposed at the planned channel portion forming position and on the resists 62A and 62B by the first sputtering (step d). At this time, the film thickness of the channel portion forming layer 64C is preferably 30 nm or less, and more preferably 20 nm or less.
 その後、レジスト64A,64Bを除去し、ガラス基板60上のチャネル部形成予定位置にだけチャネル部形成層64Cを残存させて、当該チャネル部形成予定位置にチャネル部64Cを形成する(工程e)。このようにして、例えば、膜厚が30nm以下でなるチャネル部64Cをガラス基板60上に形成することができる。 After that, the resists 64A and 64B are removed, the channel portion forming layer 64C is left only at the position where the channel portion is planned to be formed on the glass substrate 60, and the channel portion 64C is formed at the position where the channel portion is planned to be formed (step e). In this way, for example, the channel portion 64C having a film thickness of 30 nm or less can be formed on the glass substrate 60.
 そして、露出したガラス基板60上とチャネル部64C上にレジスト66A,66B,66Cを塗布する(工程f)。さらに、塗布したレジスト66A,66B,66C上に、ソース電極及びドレイン電極を形成するための所定パターンのマスク層を形成し、当該マスク層から露出したレジスト66A,66Bを除去することにより、チャネル部64Cの上面にだけレジスト66Cを残存させる(工程g)。 Then, the resists 66A, 66B, 66C are applied on the exposed glass substrate 60 and the channel portion 64C (step f). Further, a mask layer having a predetermined pattern for forming a source electrode and a drain electrode is formed on the applied resists 66A, 66B, 66C, and the resists 66A, 66B exposed from the mask layer are removed to form a channel portion. The resist 66C is left only on the upper surface of the 64C (step g).
 続いて、レジスト66A,66Bを除去することで露出したガラス基板60上と、レジスト66C上とに、2回目のスパッタリングにより、層状のソース・ドレイン電極形成層67を成膜する(工程h)。この際、ソース・ドレイン電極形成層67の膜厚は、チャネル部64Cの膜厚よりも厚くする。最後に、チャネル部66C上のレジスト66Cを除去することにより、当該レジスト66C以外の領域にソース・ドレイン電極形成層67を残存させ、チャネル部66Cを挟み込むようなソース電極68A及びドレイン電極68Bをソース・ドレイン電極形成層67から形成する(工程i)。 Subsequently, a layered source / drain electrode forming layer 67 is formed on the glass substrate 60 exposed by removing the resists 66A and 66B and on the resist 66C by the second sputtering (step h). At this time, the film thickness of the source / drain electrode forming layer 67 is made thicker than the film thickness of the channel portion 64C. Finally, by removing the resist 66C on the channel portion 66C, the source / drain electrode forming layer 67 remains in the region other than the resist 66C, and the source electrode 68A and the drain electrode 68B that sandwich the channel portion 66C are sourced. -Formed from the drain electrode forming layer 67 (step i).
 これにより、第2実施形態に係る製造方法でも、ソース電極68Aと、ドレイン電極68Bと、これらソース電極68A及びドレイン電極68Bの間に配置されるチャネル部64Cと、を有し、かつ、チャネル部64Cの膜厚が、ソース電極68A及びドレイン電極68Bの膜厚よりも薄く形成されているITO膜16を製造することができる。 As a result, even in the manufacturing method according to the second embodiment, the source electrode 68A, the drain electrode 68B, and the channel portion 64C arranged between the source electrode 68A and the drain electrode 68B are provided, and the channel portion is provided. The ITO film 16 having a thickness of 64C thinner than that of the source electrode 68A and the drain electrode 68B can be manufactured.
 このように、第2実施形態のFET12においては、1回目のスパッタリングによりチャネル部64Cを形成した後(工程d)、2回目のスパッタリングによりソース電極68A及びドレイン電極68Bを形成する(工程i)ことから、2回のスパッタリング工程(工程d及び工程i)が必要となる。このため、チャネル部64Cの上面とソース電極68Aの下面との間には界面70Aが存在し、また、チャネル部64Cの上面とドレイン電極68Bの下面との間には界面70Bが存在する。 As described above, in the FET 12 of the second embodiment, after the channel portion 64C is formed by the first sputtering (step d), the source electrode 68A and the drain electrode 68B are formed by the second sputtering (step i). Therefore, two sputtering steps (step d and step i) are required. Therefore, an interface 70A exists between the upper surface of the channel portion 64C and the lower surface of the source electrode 68A, and an interface 70B exists between the upper surface of the channel portion 64C and the lower surface of the drain electrode 68B.
 また、第2実施形態に係るFET12は、1回目のスパッタリングによってガラス基板60上に薄膜状で表面が平坦なチャネル部64Cを形成することから、第1実施形態で説明したような、ソース電極68A側及びドレイン電極68B側からそれぞれチャネル部64Cの中心位置側に向けて次第に膜厚が小さくなるテーパ部は形成され難く、表面が平坦なチャネル部64を有するITO膜16となり得る。 Further, since the FET 12 according to the second embodiment forms a thin film-like channel portion 64C on the glass substrate 60 by the first sputtering, the source electrode 68A as described in the first embodiment. It is difficult to form a tapered portion whose film thickness gradually decreases from the side and the drain electrode 68B side toward the center position side of the channel portion 64C, respectively, and the ITO film 16 having the channel portion 64 having a flat surface can be formed.
 第2実施形態では、上記の1回目のスパッタリングの材料と、2回目のスパッタリングの材料とは同一であることが望ましいが、本実施形態の変形例として、上記の1回目のスパッタリングにおいて半導体材料を用いてチャネル部64Cを成膜し、2回目のスパッタリングにおいては1回目とは異なる導電性の材料を用いてソース電極68A及びドレイン電極68Bを成膜してもよい。 In the second embodiment, it is desirable that the material of the first sputtering and the material of the second sputtering are the same, but as a modification of the present embodiment, the semiconductor material is used in the first sputtering. The channel portion 64C may be formed using the film, and the source electrode 68A and the drain electrode 68B may be formed using a conductive material different from that of the first sputtering in the second sputtering.
 以下では、このような複数のスパッタリングの工程を経て製造された第2実施形態のFET12について検証試験を行った結果について説明する。まず、上記の製造方法に従って第2実施形態のITO膜16を作製し、当該ITO膜16をFET12として使用したバイオセンサ10を作製した。なお、ここでは、SnOを10wt%含有するITOをスパッタリングターゲットとして用い、アルゴン雰囲気中でスパッタリングターゲットに適した条件(25℃、100W)で上記の2回のスパッタリングを行い、SnOを10wt%含有したITO膜16をガラス基板14上に成膜して、ITO膜16からなるFET12を作製した。 Hereinafter, the results of verification tests on the FET 12 of the second embodiment manufactured through such a plurality of sputtering steps will be described. First, the ITO film 16 of the second embodiment was produced according to the above manufacturing method, and the biosensor 10 using the ITO film 16 as the FET 12 was produced. Here, ITO containing 10 wt% of SnO 2 is used as a sputtering target, and the above two sputterings are performed in an argon atmosphere under conditions suitable for the sputtering target (25 ° C., 100 W) to obtain 10 wt% of SnO 2 . The contained ITO film 16 was formed on a glass substrate 14 to produce an FET 12 made of the ITO film 16.
 上記の条件で作成したITO膜16のチャネル部64Cの膜厚は略20nmと推定され、また、ソース電極68A及びドレイン電極68Bのそれぞれの膜厚は略100nmと推定される。そして、作製したバイオセンサ10の伝達特性を調べたところ、図19Aに示すような結果が得られた。なお、溶液として、pH7.41のリン酸緩衝溶液を用いた。図19Aでは、横軸にゲート電圧(VGS)を示し、縦軸にドレイン電流(IDS)を示している。図19Aの結果から、第2実施形態のFET12では、0.4V近傍の閾値電圧を越えると、ドレイン電流の値が上昇しており、閾値電圧を越えた部分において飽和領域と線形領域を確認した。しかしながら、この特性は、上記の図7A(10wt%のSnO組成のITO膜16)の特性よりもサブスレッショルドスロープが劣っていることを確認した。 The film thickness of the channel portion 64C of the ITO film 16 produced under the above conditions is estimated to be approximately 20 nm, and the film thickness of each of the source electrode 68A and the drain electrode 68B is estimated to be approximately 100 nm. Then, when the transmission characteristics of the produced biosensor 10 were examined, the results shown in FIG. 19A were obtained. A phosphate buffer solution having a pH of 7.41 was used as the solution. In FIG. 19A, the horizontal axis shows the gate voltage ( VGS ) and the vertical axis shows the drain current ( IDS ). From the results of FIG. 19A, in the FET 12 of the second embodiment, the value of the drain current rises when the threshold voltage near 0.4 V is exceeded, and the saturation region and the linear region are confirmed in the portion exceeding the threshold voltage. .. However, it was confirmed that this property is inferior to the property of FIG. 7A (ITO film 16 having a SnO 2 composition of 10 wt%) in that the subthreshold slope is inferior.
 サブスレッショルドスロープの特性は、上記実施形態では約60mV/decであったが、第2実施形態のFET12では約100mV/decに劣化することを確認した。このように、第2実施形態のFET12を用いた場合に、サブスレッショルドスロープの特性が劣化する理由として、チャネル部64Cとソース電極68Aとの間の界面70A、及びチャネル部64Cとドレイン電極68Bとの間の界面70Bにおいて生じる電気的なトラップが、特性を劣化させた可能性が考えられる。一方、上記実施形態のFET12では、FET12と溶液20との間の界面しか存在ないため、サブスレッショルドスロープの特性が優れていると考えられる。 It was confirmed that the characteristics of the subthreshold slope were about 60 mV / dec in the above embodiment, but deteriorated to about 100 mV / dec in the FET 12 of the second embodiment. As described above, the reason why the characteristics of the subthreshold slope deteriorate when the FET 12 of the second embodiment is used is that the interface 70A between the channel portion 64C and the source electrode 68A, and the channel portion 64C and the drain electrode 68B are used. It is possible that the electrical traps that occur at the interface 70B between them have degraded the properties. On the other hand, in the FET 12 of the above embodiment, since there is only an interface between the FET 12 and the solution 20, it is considered that the characteristics of the subthreshold slope are excellent.
 そして、第2実施形態のFET12を用いたバイオセンサ10の出力特性について調べた。ゲート電圧を一定(0~1Vの間で100mV間隔毎に測定)としたときの、ドレイン電極12Bに印加されるドレイン電圧に対するドレイン電流の変化を確認したところ、図19Bに示すような結果が得られた。図19Bでは、横軸にドレイン電圧(VDS)を示し、縦軸にドレイン電流(IDS)を示している。図19Bの結果から、FET12では、いずれの曲線も、ドレイン電圧が一定値を超えるまではドレイン電流が増加し、ドレイン電圧が一定値を超えるとドレイン電流がドレイン電圧に依存しない値となっており、ピンチオフ電圧を境界とする線形領域と飽和領域を確認した。この特性は、上記の図7B(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Then, the output characteristics of the biosensor 10 using the FET 12 of the second embodiment were investigated. When the change in the drain current with respect to the drain voltage applied to the drain electrode 12B when the gate voltage was constant (measured at intervals of 100 mV between 0 and 1 V) was confirmed, the results shown in FIG. 19B were obtained. Was done. In FIG. 19B, the horizontal axis shows the drain voltage ( VDS ), and the vertical axis shows the drain current ( IDS ). From the results of FIG. 19B, in the FET 12, the drain current increases until the drain voltage exceeds a certain value, and when the drain voltage exceeds a certain value, the drain current becomes a value independent of the drain voltage. , The linear region and the saturation region with the pinch-off voltage as the boundary were confirmed. It was confirmed that this characteristic is substantially the same as that of FIG. 7B (ITO film 16 having a SnO 2 composition of 10 wt%).
 次に、第2実施形態のFET12における、pH応答性について評価する検証試験を行った。ここでは、pH4.01、pH5.8、pH6.8、pH7.8、pH9.18の、pH値が異なる5種の溶液20を用意し、参照電極24を溶液20中に浸し、浸した直後から約200秒間、FET12のチャネル部12Cの表面電位の経時変化を測定した。その結果、図19Cに示すような結果が得られた。図19Cは、溶液20のpH値を変化させたときのチャネル部12Cの表面電位の経時変化を示すグラフであり、横軸の時間(S)と縦軸の表面電位との関係が示されている。図19Cでは、縦軸に表面電位(V)を示し、横軸を時間変化(秒)としている。図19Cに示すように、第2実施形態のFET12では、いずれのpH値においても、表面電位の測定開始直後から表面電位の変化はほとんどなく安定していることを確認した。この特性は、上記の図8A(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 Next, a verification test was conducted to evaluate the pH responsiveness of the FET 12 of the second embodiment. Here, five kinds of solutions 20 having different pH values of pH 4.01, pH 5.8, pH 6.8, pH 7.8, and pH 9.18 are prepared, and the reference electrode 24 is immersed in the solution 20 immediately after the immersion. The change with time of the surface potential of the channel portion 12C of the FET 12 was measured for about 200 seconds. As a result, the result shown in FIG. 19C was obtained. FIG. 19C is a graph showing the time course of the surface potential of the channel portion 12C when the pH value of the solution 20 is changed, and shows the relationship between the time (S) on the horizontal axis and the surface potential on the vertical axis. There is. In FIG. 19C, the vertical axis represents the surface potential (V), and the horizontal axis represents the time change (seconds). As shown in FIG. 19C, it was confirmed that the FET 12 of the second embodiment is stable with almost no change in the surface potential immediately after the start of the measurement of the surface potential at any pH value. It was confirmed that this characteristic is substantially the same as that of FIG. 8A (ITO film 16 having a SnO 2 composition of 10 wt%).
 図19Dは、第2実施形態のFET12における、チャネル部の表面電位に対するpH応答性をまとめたグラフである。図19Dでは、横軸のpH値と縦軸の表面電位との関係を示している。図19Dに実線で示す直線は、図19CにおけるpH4.01からpH9.18までの各pH値に対する表面電位をプロットしたものの回帰直線である。各回帰直線の傾き、すなわちpH感度は、約58mVであり、ネルンストの式から求められる理論値とほぼ同じ値であることを確認した。以上のことから、第2実施形態のFET12は、良好なpH応答性を示すことを確認した。また、この特性は、上記の図8B(10wt%のSnO組成のITO膜16)の特性と略同様の特性であることを確認した。 FIG. 19D is a graph summarizing the pH responsiveness to the surface potential of the channel portion in the FET 12 of the second embodiment. FIG. 19D shows the relationship between the pH value on the horizontal axis and the surface potential on the vertical axis. The straight line shown by the solid line in FIG. 19D is a regression line obtained by plotting the surface potential for each pH value from pH 4.01 to pH 9.18 in FIG. 19C. It was confirmed that the slope of each regression line, that is, the pH sensitivity, was about 58 mV, which was almost the same as the theoretical value obtained from the Nernst equation. From the above, it was confirmed that the FET 12 of the second embodiment shows good pH responsiveness. Further, it was confirmed that this characteristic is substantially the same as that of FIG. 8B (ITO film 16 having a SnO 2 composition of 10 wt%).
 10 バイオセンサ
 12 FET(電界効果トランジスタ)
 12A ソース電極
 12B ドレイン電極
 12C チャネル部
 14 ガラス基板(基板)
 16 ITO膜(導電性薄膜)
 18 容器
 20 溶液
 22 貯留部
 24 参照電極
 30 フォトマスク
 G1 間隙

 
10 Biosensor 12 FET (Field Effect Transistor)
12A Source Electrode 12B Drain Electrode 12C Channel Part 14 Glass Substrate (Substrate)
16 ITO film (conductive thin film)
18 Container 20 Solution 22 Reservoir 24 Reference electrode 30 Photomask G1 Gap

Claims (10)

  1.  溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサであって、
     基板上に設けられた、導電性薄膜からなる電界効果トランジスタと、
     試料を含む前記溶液が貯留される貯留部と、を備え、
     前記導電性薄膜は、ソース電極と、ドレイン電極と、前記ソース電極と前記ドレイン電極との間に配置され、かつ、前記溶液と接するチャネル部と、を有し、
     前記チャネル部の膜厚は、前記ソース電極及び前記ドレイン電極の膜厚よりも薄く形成されている、
     バイオセンサ。
    A biosensor that detects an electrical signal that changes according to the ion concentration of a solution.
    A field effect transistor made of a conductive thin film provided on the substrate,
    A reservoir in which the solution containing the sample is stored,
    The conductive thin film has a source electrode, a drain electrode, and a channel portion arranged between the source electrode and the drain electrode and in contact with the solution.
    The film thickness of the channel portion is formed to be thinner than the film thickness of the source electrode and the drain electrode.
    Biosensor.
  2.  前記チャネル部の膜厚が30nm以下である、請求項1に記載のバイオセンサ。 The biosensor according to claim 1, wherein the film thickness of the channel portion is 30 nm or less.
  3.  前記チャネル部の膜厚が20nm以下である、請求項1に記載のバイオセンサ。 The biosensor according to claim 1, wherein the film thickness of the channel portion is 20 nm or less.
  4.  前記チャネル部は、前記ソース電極及び前記ドレイン電極側から中心位置側に向けて次第に膜厚が小さくなるテーパ部を備える、請求項1~3のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 3, wherein the channel portion includes a tapered portion whose film thickness gradually decreases from the source electrode side and the drain electrode side toward the center position side.
  5.  前記導電性薄膜を構成する材料が、酸化インジウムスズ、硫化モリブデン、窒化ホウ素、硫化タングステン、硫化スズ、マキシン及び黒リンのうち少なくともいずれか1種以上を含む、請求項1~4のいずれか1項に記載のバイオセンサ。 Any one of claims 1 to 4, wherein the material constituting the conductive thin film contains at least one of indium tin oxide, molybdenum sulfide, boron nitride, tungsten sulfide, tin sulfide, maxine and black phosphorus. The biosensor described in the section.
  6.  溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサ用の電界効果トランジスタの製造方法であって、
     ソース電極及びドレイン電極の形成予定位置に開口部を有するとともに、前記ソース電極及び前記ドレイン電極の間に形成されるチャネル部の形成予定位置にマスク部を有したフォトマスクを、基板と前記マスク部との間に間隙が形成されるように、前記基板上に配置する配置工程と、
     前記フォトマスクを配置した前記基板上にスパッタリング法によって導電性薄膜からなる前記電界効果トランジスタを形成する薄膜形成工程と、を含み、
     前記薄膜形成工程では、
     前記導電性薄膜の前記ソース電極と前記ドレイン電極とを、前記フォトマスクの前記開口部に形成し、前記ソース電極及び前記ドレイン電極の膜厚よりも薄い膜厚の前記導電性薄膜の前記チャネル部を、前記フォトマスクの前記マスク部と前記基板との間の間隙に形成する、
     バイオセンサ用の電界効果トランジスタの製造方法。
    A method for manufacturing a field effect transistor for a biosensor that detects an electrical signal that changes according to the ion concentration of a solution.
    A photomask having an opening at a position where the source electrode and the drain electrode are planned to be formed and a mask portion at a position where a channel portion formed between the source electrode and the drain electrode is planned to be formed is provided on the substrate and the mask portion. The arrangement step of arranging on the substrate so that a gap is formed between the two and
    A thin film forming step of forming the field effect transistor made of a conductive thin film by a sputtering method on the substrate on which the photomask is arranged is included.
    In the thin film forming step,
    The source electrode and the drain electrode of the conductive thin film are formed in the opening of the photomask, and the channel portion of the conductive thin film having a thickness thinner than that of the source electrode and the drain electrode. Is formed in the gap between the mask portion of the photomask and the substrate.
    A method for manufacturing a field effect transistor for a biosensor.
  7.  前記配置工程では、前記基板上に載置される前記フォトマスクの載置部にフィルムを設けることで、前記基板と前記マスク部との間に前記間隙を形成する、
     請求項6に記載のバイオセンサ用の電界効果トランジスタの製造方法。
    In the arrangement step, by providing a film on the mounting portion of the photomask mounted on the substrate, the gap is formed between the substrate and the mask portion.
    The method for manufacturing a field effect transistor for a biosensor according to claim 6.
  8.  前記配置工程における前記間隙の高さを選定し、前記薄膜形成工程によって、前記間隙に30nm以下の膜厚の前記チャネル部を形成する、請求項6又は7に記載のバイオセンサ用の電界効果トランジスタの製造方法。 The field effect transistor for a biosensor according to claim 6 or 7, wherein the height of the gap in the arrangement step is selected, and the channel portion having a film thickness of 30 nm or less is formed in the gap by the thin film forming step. Manufacturing method.
  9.  前記配置工程における前記間隙の高さが10μm以下である、請求項6又は7に記載のバイオセンサ用の電界効果トランジスタの製造方法。 The method for manufacturing a field effect transistor for a biosensor according to claim 6 or 7, wherein the height of the gap in the arrangement step is 10 μm or less.
  10.  溶液のイオン濃度に応じて変化する電気的信号を検出するバイオセンサ用の電界効果トランジスタであって、
     前記電界効果トランジスタが基板上に設けられた導電性薄膜からなり、
     前記導電性薄膜は、ソース電極と、ドレイン電極と、前記ソース電極と前記ドレイン電極との間に配置され、かつ、前記溶液と接するチャネル部と、を有し、
     前記チャネル部の膜厚が、前記ソース電極及び前記ドレイン電極の膜厚よりも薄く形成されている、
     バイオセンサ用の電界効果トランジスタ。
    A field-effect transistor for a biosensor that detects an electrical signal that changes according to the ion concentration of a solution.
    The field effect transistor consists of a conductive thin film provided on the substrate.
    The conductive thin film has a source electrode, a drain electrode, and a channel portion arranged between the source electrode and the drain electrode and in contact with the solution.
    The film thickness of the channel portion is formed to be thinner than the film thickness of the source electrode and the drain electrode.
    Field effect transistor for biosensors.
PCT/JP2021/041808 2020-11-12 2021-11-12 Biosensor, method for manufacturing field effect transistor for biosensor, and field effect transistor for biosensor WO2022102759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562212A JPWO2022102759A1 (en) 2020-11-12 2021-11-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189027 2020-11-12
JP2020-189027 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102759A1 true WO2022102759A1 (en) 2022-05-19

Family

ID=81602435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041808 WO2022102759A1 (en) 2020-11-12 2021-11-12 Biosensor, method for manufacturing field effect transistor for biosensor, and field effect transistor for biosensor

Country Status (2)

Country Link
JP (1) JPWO2022102759A1 (en)
WO (1) WO2022102759A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450944A (en) * 1987-08-21 1989-02-27 Olympus Optical Co Chemical sensitive field effect transistor
JPH0792136A (en) * 1993-09-22 1995-04-07 Kanji Masui Ion sensor
JP2002286692A (en) * 2001-03-26 2002-10-03 Japan Science & Technology Corp Field-effect transistor
WO2006097566A1 (en) * 2005-03-18 2006-09-21 Avantone Oy Methods and arrangements for acquiring and utilising enhanced electronic conduction in an organic thin film transistor
JP2010045159A (en) * 2008-08-12 2010-02-25 Fujifilm Corp Thin film field effect transistor and process of fabricating the same
JP2012073154A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Gas sensor and manufacturing method of the same
JP2012122749A (en) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd Biosensor
WO2019200164A1 (en) * 2018-04-11 2019-10-17 The Regents Of The University Of California Devices and methods for detecting/discriminating complementary and mismatched nucleic acids using ultrathin film field-effect transistors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450944A (en) * 1987-08-21 1989-02-27 Olympus Optical Co Chemical sensitive field effect transistor
JPH0792136A (en) * 1993-09-22 1995-04-07 Kanji Masui Ion sensor
JP2002286692A (en) * 2001-03-26 2002-10-03 Japan Science & Technology Corp Field-effect transistor
WO2006097566A1 (en) * 2005-03-18 2006-09-21 Avantone Oy Methods and arrangements for acquiring and utilising enhanced electronic conduction in an organic thin film transistor
JP2010045159A (en) * 2008-08-12 2010-02-25 Fujifilm Corp Thin film field effect transistor and process of fabricating the same
JP2012073154A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Gas sensor and manufacturing method of the same
JP2012122749A (en) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd Biosensor
WO2019200164A1 (en) * 2018-04-11 2019-10-17 The Regents Of The University Of California Devices and methods for detecting/discriminating complementary and mismatched nucleic acids using ultrathin film field-effect transistors

Also Published As

Publication number Publication date
JPWO2022102759A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
Jang et al. Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body
Kireev et al. Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity
CN104950023B (en) TFT ion transducer, the TFT ion transducer device using the TFT ion transducer
Reddy et al. High-k dielectric Al 2 O 3 nanowire and nanoplate field effect sensors for improved pH sensing
Lu et al. High-performance double-gate $\alpha $-InGaZnO ISFET pH sensor using a HfO2 gate dielectric
US20210155475A1 (en) Method and device for detecting cellular targets in bodily sources using carbon nanotube thin film
US20170336347A1 (en) SiNW PIXELS BASED INVERTING AMPLIFIER
JP2016502644A (en) Integrated circuit having sensing transistor array, sensing device, and measuring method
Hinnemo et al. Protein sensing beyond the debye length using graphene field-effect transistors
CN105705942B (en) Device and method for measuring small voltages and potentials at biological, chemical or other samples
Jakob et al. Flexible thin film pH sensor based on low‐temperature atomic layer deposition
LU101020B1 (en) Ion-sensitive field effect transistor
JP5903872B2 (en) Transistor type sensor and method for manufacturing transistor type sensor
Pal et al. Analytical modeling and simulation of AlGaN/GaN MOS-HEMT for high sensitive pH sensor
US10908155B2 (en) Biological sensing system
WO2022102759A1 (en) Biosensor, method for manufacturing field effect transistor for biosensor, and field effect transistor for biosensor
Sinha et al. Fabrication, characterization, and modeling of an aluminum oxide-gate ion-sensitive field-effect transistor-based pH sensor
RU2638125C2 (en) Integrated circuit with nano-conductor sensors, measuring device, method of measurement and method of manufacture
Capua et al. Label-free C-reactive protein Si nanowire FET sensor arrays with super-Nernstian back-gate operation
Hazarika et al. Survey on ion sensitive field effect transistor from the view point of pH sensitivity and drift
KR20120021683A (en) Field effect transistor biosensor based on field effect transistor and method for fabricating the same
Yusof et al. pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor
Jakob Development and investigation of metal oxide nanostructures for sensing applications
JP5472013B2 (en) Transistor type sensor
Petrelli et al. From rigid to flexible: solution-processed carbon nanotube deposition on polymeric substrates for the fabrication of transistor-based ion sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892004

Country of ref document: EP

Kind code of ref document: A1