WO2022102561A1 - Egr device - Google Patents

Egr device Download PDF

Info

Publication number
WO2022102561A1
WO2022102561A1 PCT/JP2021/040937 JP2021040937W WO2022102561A1 WO 2022102561 A1 WO2022102561 A1 WO 2022102561A1 JP 2021040937 W JP2021040937 W JP 2021040937W WO 2022102561 A1 WO2022102561 A1 WO 2022102561A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
pipe
passage
passage portion
heat
Prior art date
Application number
PCT/JP2021/040937
Other languages
French (fr)
Japanese (ja)
Inventor
衛 吉岡
伸二 河井
海翔 曹
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to JP2022561894A priority Critical patent/JPWO2022102561A1/ja
Publication of WO2022102561A1 publication Critical patent/WO2022102561A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/18Thermal insulation or heat protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities

Definitions

  • the technique disclosed in this specification relates to an EGR device configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
  • the EGR apparatus described in Patent Document 1 below is known.
  • an EGR cooler and an EGR valve are provided in the EGR passage, and an electronic control unit (ECU) controls the EGR valve to the required opening degree based on the engine rotation speed and the engine load. ..
  • the ECU determines at least one of the intake air temperature and the EGR gas temperature. When one of them is lower than the set value, the EGR valve is controlled to have an opening degree smaller than the required opening degree.
  • This control prevents a large amount of EGR gas, which has not been heated to a predetermined temperature, from flowing into the combustion chamber. Further, even before the engine is warmed up, the EGR passage is warmed by flowing a certain amount of EGR gas through the EGR passage.
  • This disclosed technique has been made in view of the above circumstances, and its purpose is to suppress a decrease in temperature of EGR gas flowing to a downstream passage portion of the EGR passage and to suppress generation of condensed water in the downstream passage portion.
  • the purpose is to provide an EGR device that makes it possible.
  • an embodiment of the present invention is configured such that a part of the exhaust gas discharged from the engine to the exhaust passage is made into EGR gas and flows to the intake passage through the EGR passage and is returned to the engine.
  • the EGR passage is provided with an EGR valve for adjusting the flow rate of the EGR gas
  • the EGR passage includes an upstream passage portion near the exhaust passage, a downstream passage portion near the intake passage, and an upper flow. It is intended that at least the most downstream portion of the middle flow passage portion, including the middle flow passage portion between the road portion and the downstream passage portion, is provided with a heat insulating means for keeping the EGR gas flowing there. ..
  • a heat insulating means for keeping the EGR gas flowing there is provided at least in the most downstream part of the middle flow passage portion of the EGR passage. Therefore, the heat of the EGR gas flowing from the upstream passage portion to the middle flow passage portion of the EGR passage is difficult to be transmitted to the outside by the heat insulating means, and flows to the downstream passage portion in a state where the EGR gas is kept warm.
  • the heat insulating means is formed by forming the middle flow passage portion with a resin material having a function of retaining heat of EGR gas. ..
  • the heat insulating means is configured by forming the middle flow passage portion with a resin material having a function of retaining heat of EGR gas. , The heat retaining property can be obtained in the middle flow passage portion itself, and it is not necessary to separately provide a heat insulating means.
  • the heat insulating means is preferably a heat insulating coat provided on the inner wall of the middle flow passage portion.
  • the heat insulating means is a heat insulating coat provided on the inner wall of the middle flow passage portion, so that the inner wall of the middle flow passage portion is provided. It becomes easy to form a heat insulating means for the warmth.
  • the middle flow passage portion includes a pipe made of a resin material having a function of retaining heat of EGR gas, and the heat insulating coat has a thickness thereof. Is preferably formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe.
  • the heat insulating coat is formed so that its thickness gradually or gradually increases from the downstream side to the upstream side of the pipe.
  • the temperature of the EGR gas flowing through the pipe is high on the upstream side of the pipe and decreases toward the downstream side. Therefore, the heat insulating property of the pipe is set according to the temperature change of the EGR gas flowing therein from the upstream side to the downstream side.
  • the heat insulating means is preferably an air layer provided outside the middle flow passage portion.
  • the heat insulating means includes a heating portion for heating the middle flow passage portion.
  • the heat insulating means includes the heating portion, the middle flow passage portion is heated by the heating portion. Therefore, both heat retention and temperature rise are possible.
  • the heating portion is a heat-generating film that generates heat by energization.
  • the heat generating film is heated by energization, so that the middle flow passage portion is widely heated in terms of surface at an arbitrary timing.
  • the heating portion is formed in at least a part of the middle flow passage portion and is composed of a hot water passage through which hot water flows.
  • the heating unit is composed of the hot water passage through which the hot water flows, the engine cooling water warmed by cooling the engine can be used. It can be used as hot water and flowed into a hot water passage.
  • the middle flow passage portion provided with the hot water passage includes an outer outer pipe and an inner inner pipe sandwiching the hot water passage, and is an outer pipe. It is preferable that the thickness of the inner tube is larger than the thickness of the inner tube.
  • the thickness of the outer pipe sandwiching the hot water passage is larger than the thickness of the inner pipe, so that the heat of the hot water is generated. It is easily transmitted to the inner wall of the inner pipe and difficult to escape to the outer wall of the outer pipe.
  • the hot water passage is provided along the flow path longitudinal direction of the middle flow passage portion.
  • the middle flow passage portion includes the EGR valve and the pipe arranged downstream from the EGR valve, and the EGR valve and the pipe. Is connected via a valve outlet flange provided on the outlet side of the EGR valve and a pipe inlet flange provided on the inlet side of the pipe, and the pipe and the downstream passage portion are connected to the pipe outlet provided on the outlet side of the pipe. It is connected via a flange and a passage inlet flange provided on the inlet side of the downstream passage portion, and a spacer is provided between the valve outlet flange and the pipe inlet flange and between the pipe outlet flange and the passage portion inlet flange. It is preferable that the hot water passage is provided along the circumferential direction of the spacer.
  • the hot water passage is composed of a metal pipe provided along the longitudinal direction of the flow path of the middle flow passage portion in the configuration of the above (8).
  • the hot water passage is composed of the metal pipe provided along the longitudinal direction of the flow path of the middle flow passage portion, the hot water passage is formed. It is more advantageous than the resin material against cracks caused by disturbance.
  • the metal pipe is fixed to the middle flow passage portion by insert molding.
  • the middle flow passage portion is provided with a holding means for holding the metal pipe along the longitudinal direction of the flow path, and the metal pipe is provided with a holding means. , It is preferable that the metal is fixed to the middle flow passage portion by being held by the holding means.
  • the metal pipe in addition to the action of the configuration of the above (12), the metal pipe is fixed by being held by the holding means along the longitudinal direction of the flow path of the middle flow passage portion.
  • the metal pipe In terms of resin cracks due to the difference in thermal expansion between the resin middle flow passage portion and the metal pipe and the manufacturing cost, it is superior to fixing the metal pipe to the middle flow passage portion by insert molding.
  • a heat transfer member is provided between the metal pipe held by the holding means and the middle flow passage portion, so that the metal pipe is provided. There is no gap between the pipe and the midstream passage, and the adhesion between the two is improved.
  • the heat transfer member is a flexible heat transfer sheet that is in close contact with the metal pipe and the middle flow passage portion.
  • an air layer for heat insulation is provided between the metal pipe and the holding means, so that the metal pipe is provided. The escape of heat from the air to the atmosphere is suppressed by the air layer.
  • the EGR passage has an EGR cooler for cooling the EGR gas and a bypass for bypassing the EGR cooler.
  • a passage and a bypass valve for opening and closing the bypass passage are further provided, the EGR cooler includes a heat exchanger for cooling, the heat exchanger includes an inlet and an outlet for EGR gas, and the bypass passage includes an EGR.
  • the midstream passage is located downstream of the heat exchanger outlet and the bypass passage outlet, including the gas inlet and outlet, and the EGR valve is provided in the midstream passage.
  • the middle flow passage portion is located downstream from the outlet of the heat exchanger and the outlet of the bypass passage, and is in the middle. Since the EGR valve is provided in the flow passage portion, the EGR gas flowing through the EGR valve and the middle flow passage portion flows to the downstream passage portion in a state of being kept warm by the heat insulating means.
  • a cooling unit for cooling at least a part of the bypass passage is further provided in the configuration of the above (17) or (18).
  • the EGR gas flowing through the bypass passage is cooled by the cooling portion, so that the EGR gas flows from the bypass passage to the middle flow passage portion.
  • the temperature of the EGR gas drops.
  • the EGR passage is further provided with an EGR cooler for cooling the EGR gas, and the EGR cooler is cooled.
  • the heat exchanger includes an inlet and an outlet for EGR gas, the middle flow passage portion is located downstream from the outlet of the heat exchanger, and the EGR valve is provided in the middle flow passage portion. Is preferable.
  • the middle flow passage portion is located downstream from the outlet of the heat exchanger, and the EGR is located in the middle flow passage portion. Since the valve is provided, the EGR gas flowing through the EGR valve and the middle flow passage portion flows to the downstream passage portion in a state of being kept warm by the heat insulating means.
  • the EGR valve includes a flow path through which the EGR gas flows, and the inner wall of the flow path has a function of retaining heat of the EGR gas. It is preferable that it is composed of a resin material having.
  • the flow path of the EGR valve is composed of a resin material having a function of retaining heat of the EGR gas. Heat retention is obtained in the flow path itself, and molding of the flow path becomes easy.
  • the flow path of the EGR valve includes an inlet and an outlet, and the inlet of the flow path becomes the outlet of the heat exchanger. It is preferable that they are arranged substantially adjacent to each other.
  • the inlet of the flow path of the EGR valve is arranged substantially adjacent to the outlet of the heat exchanger.
  • the EGR gas that has just flowed out from the outlet of the heat exchanger flows into the inlet of the resin flow path of the EGR valve at an early stage.
  • the heat transfer of the EGR gas to the middle flow passage portion can be reduced, the temperature drop of the EGR gas flowing to the downstream passage portion can be suppressed, and the downstream passage portion thereof can be suppressed. It is possible to suppress the generation of condensed water in.
  • the EGR gas can be effectively kept warm from the upstream side to the downstream side of the pipe according to the temperature change of the EGR gas flowing through the pipe.
  • the heat resistance of the piping can be effectively secured.
  • the number of parts constituting the EGR device can be reduced by the amount of the heat insulating means.
  • the EGR gas flowing through the middle flow passage portion can be effectively kept warm.
  • the EGR gas flowing through the middle flow passage portion can be responsively and stably kept warm.
  • heating can be performed without using the electrical configuration. Further, even if the flow of EGR gas in the middle flow passage is stopped, the heating of the middle flow passage is continued by the hot water in the hot water passage, so that when the EGR gas flows again in the middle flow passage, the middle flow is performed. The generation of condensed water in the road can be suppressed.
  • the heat transfer property of the hot water flowing through the hot water passage in the metal pipe to the inner wall of the middle flow passage portion can be improved. It is possible to improve the temperature rise property of the inner wall, and it is possible to improve the temperature rise property of the EGR gas flowing inside the middle flow passage portion.
  • the heat transfer property of the hot water flowing through the hot water passage to the inner wall of the middle flow passage portion can be further improved, and the temperature of the inner wall thereof is raised.
  • the property can be further improved, and the temperature rise property of the EGR gas flowing inside the middle flow passage portion can be further improved.
  • the temperature of the EGR gas can be lowered by the heat exchanger, and the EGR gas in the middle flow passage portion can be lowered. It is possible to suppress the melting damage due to.
  • the temperature of the EGR gas can be brought close to the heat resistant temperature of the resin constituting the middle flow passage portion, and the bypass passage can be provided. Even if the high temperature EGR gas flows, it is possible to suppress the melting damage of the middle flow passage portion due to the EGR gas.
  • the temperature of the EGR gas can be lowered by the heat exchanger, and the EGR gas in the middle flow passage portion can be lowered. It is possible to suppress the melting damage due to.
  • FIG. 6 is a configuration diagram showing a specific configuration on an EGR passage from an EGR cooler to an EGR gas distributor with a partial breakage according to the first embodiment.
  • FIG. 6 is a configuration diagram showing a configuration from the EGR valve of FIG. 2 to the EGR gas distributor according to the first embodiment.
  • FIG. 3 is a sectional view taken along line AA of FIG. 3 showing piping according to the first embodiment.
  • FIG. 3 is a sectional view taken along line BB of FIG. 3 showing piping according to the first embodiment.
  • a time chart showing the opening and closing of the EGR valve and the bypass valve and changes in various temperatures after the engine is started according to the first embodiment.
  • FIG. 3 is a configuration diagram according to FIG.
  • FIG. 5 is a cross-sectional view according to FIG. 5 showing piping according to the second embodiment.
  • FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a third embodiment.
  • FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a fourth embodiment.
  • FIG. 5 is a cross-sectional view showing a pipe cut in a direction orthogonal to the longitudinal direction thereof according to the fifth embodiment.
  • FIG. 6 is a cross-sectional view showing a pipe cut in a direction orthogonal to the longitudinal direction thereof according to the sixth embodiment.
  • FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a seventh embodiment.
  • FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to an eighth embodiment.
  • FIG. 9 is a configuration diagram according to FIG. 9 showing a configuration from an EGR cooler to an EGR gas distributor according to a ninth embodiment.
  • FIG. 15 is a sectional view taken along line CC of FIG. 15 showing piping according to the ninth embodiment.
  • FIG. 16 is a cross-sectional view according to FIG. 16 showing a configuration of piping according to the tenth embodiment.
  • FIG. 15 is a configuration diagram according to FIG.
  • FIG. 15 showing a configuration from an EGR cooler to an EGR gas distributor according to the eleventh embodiment.
  • FIG. 18 is a sectional view taken along line DD of FIG. 18 showing piping according to the eleventh embodiment.
  • FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the twelfth embodiment.
  • FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the thirteenth embodiment.
  • FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the 14th embodiment.
  • FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the fifteenth embodiment.
  • FIG. 24 is a sectional view taken along line EE of FIG. 24 showing a pipe to which a metal pipe is fixed according to a sixteenth embodiment.
  • FIG. 26 is a sectional view taken along line FF of FIG. 26 showing a pipe to which a metal pipe is fixed according to the 17th embodiment.
  • FIG. 25 is a cross-sectional view according to FIG. 25 showing a pipe to which a metal pipe is fixed according to the eighteenth embodiment.
  • FIG. 27 is a cross-sectional view according to FIG. 27 showing a pipe to which a metal pipe is fixed according to the nineteenth embodiment.
  • FIG. 28 is a cross-sectional view according to FIG.
  • FIG. 28 showing a pipe to which a metal pipe is fixed according to the twentieth embodiment.
  • FIG. 29 is a cross-sectional view according to FIG. 29 showing a pipe to which a metal pipe is fixed according to the 21st embodiment.
  • FIG. 32 is a sectional view taken along line GG of FIG. 32 showing a pipe to which a metal pipe is fixed according to the 22nd embodiment.
  • FIG. 34 is a sectional view taken along line OH of FIG. 34 showing a pipe to which a metal pipe is fixed according to the 23rd embodiment.
  • FIG. 15 is a configuration diagram according to FIG. 15 showing a configuration from an EGR cooler to an EGR gas distributor according to the 24th embodiment.
  • FIG. 4 is a cross-sectional view showing a connection portion between a metal upstream pipe and its outlet flange and a resin downstream pipe and its inlet flange, which are the objects of measurement according to the 24th embodiment.
  • FIG. 4 is a cross-sectional view showing a connection portion between a metal upstream pipe and its outlet flange and a metal downstream pipe and its inlet flange, which are related to the 24th embodiment in inverse proportion and are measurement targets.
  • a time chart showing (A) changes in engine speed (EGR flow rate) and (B) changes in various temperatures according to the 24th embodiment.
  • FIG. 1 A time chart showing (A) changes in engine speed (EGR flow rate) and (B) changes in various temperatures according to the 24th embodiment.
  • FIG. 9 is a configuration diagram according to FIG. 9 showing a configuration from an EGR cooler to an EGR gas distributor according to another embodiment.
  • FIG. 6 is a configuration diagram showing a configuration from an EGR cooler to an EGR gas distributor according to another embodiment.
  • FIG. 6 is a cross-sectional view according to FIG. 35 showing the pipe 16 according to another embodiment.
  • FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram.
  • the engine system mounted on the automobile includes an engine 1 having a plurality of cylinders.
  • the engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft.
  • the engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1.
  • the intake passage 2 is provided with a throttle device 4 and an intake manifold 5.
  • the exhaust passage 3 is provided with an exhaust manifold 6 and a catalyst 7.
  • a high-pressure loop type exhaust gas recirculation device (EGR device) 11 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR device high-pressure loop type exhaust gas recirculation device
  • the throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted.
  • the intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1.
  • One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder.
  • the catalyst 7 contains, for example, a three-way catalyst in order to purify the exhaust gas.
  • the engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder.
  • the fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1.
  • a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
  • the engine 1 is provided with an ignition device (not shown) corresponding to each cylinder.
  • the igniter is configured to ignite the combustible mixture in each cylinder.
  • the combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7.
  • the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
  • EGR device 11 As shown in FIG. 1, in the EGR device 11 of this embodiment, a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 is flowed to the intake passage 2 as an exhaust gas recirculation gas (EGR gas) to the engine 1. It is configured to recirculate to each cylinder of.
  • the EGR device 11 adjusts the flow rate of the exhaust gas recirculation passage (EGR passage) 12, the exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12.
  • a device (EGR gas distributor) 15 is provided.
  • the flow path through which the EGR gas of the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15 flows also constitutes the EGR passage 12.
  • the piping constituting the EGR passage 12 includes an inlet 12a and an outlet 12b.
  • the inlet 12a is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b is connected to the EGR gas distributor 15.
  • the EGR gas distributor 15 constitutes the final stage of the EGR passage 12.
  • the EGR valve 14 is provided downstream from the EGR cooler 13, and the EGR gas distributor 15 is provided downstream from the EGR valve 14.
  • the EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and is arranged so as to cross a plurality of branch pipes 5b of the intake manifold 5 in the longitudinal direction thereof.
  • the EGR gas distributor 15 has a gas chamber 15a in which the introduced EGR gas is collected, and a plurality (four) gas distribution passages 15b for distributing the EGR gas from the gas chamber 15a to each branch pipe 5b. include.
  • the EGR passage 12 includes an upstream passage portion USP near the exhaust passage 3, a downstream passage portion DSP near the intake manifold 5 constituting the intake passage 2, and an upstream passage portion USP and downstream. Includes a midstream passage MSP between the passage DSP.
  • the upstream passage portion USP includes a passage portion between the inlet 12a of the EGR passage 12 and the EGR cooler 13.
  • the midstream passage portion MSP includes a passage portion from the EGR cooler 13 to the inlet of the EGR gas distributor 15 (details of the range of the midstream passage portion MSP will be described later).
  • the downstream passage DSP includes a passage in the EGR gas distributor 15.
  • the upstream passage portion USP, the middle flow passage portion MSP, and the downstream passage portion DSP are not separated by the substantial flow path length of the EGR passage 12, and are on the EGR passage 12. It is classified according to the arrangement of equipment such as the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15 provided in the EGR cooler 13. It is also possible to classify the upstream passage portion USP, the middle flow passage portion MSP and the downstream passage portion DSP by the substantial flow path length of the EGR passage 12.
  • FIG. 2 is a configuration diagram showing a specific configuration on the EGR passage 12 from the EGR cooler 13 to the EGR gas distributor 15 with a partial break.
  • FIG. 3 shows the configuration from the EGR valve 14 to the EGR gas distributor 15 in FIG. 2 by a block diagram.
  • the inlet 34a of the flow path 34 of the EGR valve 14 is connected to the outlet 21c of the EGR cooler 13, and the EGR passage 12 is connected to the outlet 34b of the flow path 34 of the EGR valve 14.
  • the inlet 16a of the pipe 16 constituting the above is connected, and the outlet 16b of the pipe 16 is connected to the inlet of the EGR gas distributor 15.
  • the EGR cooler 13 includes a casing 21.
  • the casing 21 is provided from the main passage 21a through which the EGR gas flows, the inlet 21b for introducing the EGR gas, the outlet 21c for leading out the EGR gas, the introduction portion 21d between the main passage 21a and the inlet 21b, and the main passage 21a. It includes a lead-out portion 21e to the outlet 21c, a bent flow path portion 21f, and a bypass passage 21g provided in parallel with the main passage 21a and for bypassing the main passage 21a.
  • the main passage 21a is provided with a cooling heat exchanger 23 that exchanges heat between the EGR gas and the refrigerant. The heat exchanger 23 cools the EGR gas flowing through the main passage 21a.
  • the cooling water of the engine 1 circulates in the heat exchanger 23 as a refrigerant.
  • the heat exchanger 23 has a well-known configuration.
  • a butterfly valve type bypass valve 24 for opening and closing the bypass passage 21g is provided in the upstream portion of the bypass passage 21g.
  • the EGR gas black arrow, indicated by a hatched arrow
  • the outlet 21c is arranged at a position higher in the vertical direction than the inlet 21b.
  • the condensed water generated inside the EGR cooler 13 (indicated by a white arrow) flows through the bypass passage 21 g from the downstream portion to the upstream portion.
  • the heat exchanger 23 includes an inlet 23a and an outlet 23b of the EGR gas
  • the bypass passage 21g includes an inlet 21ga and an outlet 21gb of the EGR gas
  • the midstream passage MSP is located downstream of the outlet 23b of the heat exchanger 23 and the outlet 21gb of the bypass passage 21g
  • the EGR valve 14 is provided in the midstream passage MSP. That is, in this embodiment, the midstream passage portion MSP is composed of a passage portion from the outlet 23b of the heat exchanger 23 of the EGR cooler 13 to the inlet of the EGR gas distributor 15.
  • the EGR valve 14 is composed of a motor unit 31 having a built-in step motor and a valve unit 32.
  • the valve portion 32 includes a flow path 34, a valve seat 35 arranged in the flow path 34, a valve body 36, and a valve shaft 37.
  • the valve portion 32 includes a metal outer housing 38, a resin inner housing 39, and a resin flow path member 40 that covers a portion of the outer housing 38 facing the flow path 34.
  • the inner wall of the flow path 34 is composed of a resin inner housing 39 and a resin flow path member 40. That is, the inner wall of the flow path 34 is made of a resin material having a function of retaining heat of the EGR gas.
  • the pipe 16 connected to the outlet 34b of the EGR valve 14 is formed by refracting in a channel shape.
  • the pipe 16 is made of a resin material having a function of keeping the EGR gas warm.
  • the resin material for example, "66 nylon" can be used.
  • FIG. 4 shows the pipe 16 with a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 shows the pipe 16 with a cross-sectional view taken along the line BB of FIG.
  • the flow path 34 and the pipe 16 are formed on the entire inner wall of the flow path 34 of the EGR valve 14 and the entire inner wall of the pipe 16.
  • a heat insulating coat 41 is provided to keep the EGR gas flowing through the water warm.
  • a "ceramic coat" can be used as the heat insulating coat 41.
  • the heat insulating coat 41 corresponds to an example of the heat insulating means of this disclosed technique.
  • a heat insulating coat 41 for keeping the EGR gas warm is provided on the inner wall of the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 constituting the midstream passage portion MSP.
  • the thickness of the heat insulating coat 41 is formed to be uniform (same) between the upstream portion US, the middle flow portion MS, and the downstream portion DS of the pipe 16. To. Since the flow of EGR gas collides with the corner portion of the pipe 16 surrounded by the two-dot chain line S1 in FIG. 3, it is desirable to make the thickness of the heat insulating coat 41 particularly thicker than that of other portions.
  • the EGR passage 12 is composed of an upstream passage portion USP including an EGR cooler 13, a middle flow passage portion MSP including an EGR valve 14 and a pipe 16, and an EGR gas distributor 15. It is divided into a downstream passage section DSP. Since the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 constituting the midstream passage portion MSP are made of a resin material having a function of retaining heat of the EGR gas and have a certain length, the EGR valve 14 is used. The temperature drop of the EGR gas in the flow path 34 and the pipe 16 and the temperature of the EGR gas flowing into the EGR gas distributor 15 become problems. This is because when the EGR gas becomes lower than the dew point temperature, condensed water is generated in the EGR gas distributor 15.
  • the EGR gas flowing there is kept warm on the inner wall of the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 provided in the EGR passage 12.
  • a heat insulating coat 41 heat insulating means
  • the heat of the EGR gas flowing from the EGR cooler 13 or the like (upstream passage portion USP) provided in the EGR passage 12 to the flow path 34 of the EGR valve 14 and the pipe 16 (middle flow passage portion MSP) is generated by the heat insulating coat 41.
  • the EGR gas flows to the EGR gas distributor 15 (downstream passage portion DSP) in a state where the EGR gas is kept warm.
  • the midstream passage portion MSP is located downstream from the outlet 23b of the heat exchanger 23 of the EGR cooler 13 and the outlet 21gb of the bypass passage 21g, and the EGR valve 14 is provided in the midstream passage portion MSP. Therefore, the EGR gas flowing through the flow path 34 of the EGR valve 14 and the pipe 16 flows to the EGR gas distributor 15 in a state of being kept warm by the heat insulating coat 41.
  • the temperature of the EGR gas can be lowered by the heat exchanger 15, and the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 formed of the resin material are not melted by the EGR gas. It can be suppressed. Further, it is possible to reduce the heat transfer of the EGR gas to the resin material in the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14, and to the EGR gas distributor 15 (downstream passage portion DSP). The temperature drop of the flowing EGR gas can be suppressed, the EGR gas distributor 15 can be quickly warmed up, and the generation of condensed water in the EGR gas distributor 15 can be suppressed.
  • the flow path 34 of the EGR valve 14 constituting the middle flow passage portion MSP and the inner wall of the pipe 16 are made of a resin material having a function of retaining heat of the EGR gas, the flow path 34 thereof.
  • heat retention is obtained in the pipe 16 itself, and the flow path 34 and the pipe 16 can be easily formed. Therefore, it is possible to easily suppress the temperature drop of the EGR gas in the EGR valve 14 and the pipe 16 (middle flow passage portion MSP).
  • the heat insulating means is the heat insulating coat 41 provided on the inner wall of the flow path 34 and the pipe 16 of the EGR valve 14, the inner wall of the flow path 34 and the pipe 16 (middle flow passage portion MSP). It becomes easy to form a heat insulating means for the warmth. Therefore, it is possible to facilitate the manufacture of the EGR device 11 provided with the heat insulating means.
  • the flow path 34 of the EGR valve 14 is made of a resin material having a function of retaining heat in the EGR gas, the flow path 34 itself can obtain heat retention and the flow path thereof. Molding of 34 becomes easy. Therefore, it is possible to easily suppress the temperature drop of the EGR gas in the EGR valve 14.
  • FIG. 6 shows in this embodiment the opening and closing of the EGR valve 14 and the bypass valve 24 and changes in various temperatures after the engine is started by a time chart. That is, FIG. 6 shows the EGR gas temperature (pipe inlet gas temperature) PIG at the inlet 16a of the pipe 16 and the inner wall temperature of the inlet 16a of the pipe 16 when the EGR valve 14 and the bypass valve 24 are opened from a low temperature.
  • Pipe inlet inner wall temperature) PIW1, PIW2 EGR gas temperature at the outlet of the EGR gas distributor 15 (distributor outlet gas temperature) DOG1, DOG2, cooling water temperature (cooling water temperature) THW, at the outlet of the EGR gas distributor 15.
  • the changes in the inner wall temperature (distributor outlet inner wall temperature) DOWN1 and DOWN2 are shown.
  • the pipe inlet inner wall temperature PIW1 indicates a case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the pipe inlet inner wall temperature PIW2 shows a case where the heat insulating coat 41 is provided on the inner wall of the pipe 16.
  • the distributor outlet gas temperature DOG1 indicates a case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the distributor outlet gas temperature DOG2 shows a case where the heat insulating coat 41 is provided on the inner wall of the pipe 16.
  • the distributor outlet inner wall temperature DOWN 1 indicates the case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the distributor outlet inner wall temperature DOWN 2 indicates the case where the heat insulating coat 41 is provided on the inner wall of the pipe 16.
  • the cooling water temperature THW reaches the EGR start temperature T1 (for example, “40 ° C.”) at time t2, the EGR valve 14 and the bypass valve 24 are opened (in this case, the bypass valve is opened at time t5).
  • T1 for example, “40 ° C.”
  • the bypass valve is opened at time t5
  • EGR gas flows through the EGR passage 12, so that various temperatures other than the cooling water temperature THW, PIG, PIW1, PIW2, DOG1, DOG2, DOW1, and DOW2, also start to raise the temperature.
  • the pipe inlet gas temperature PIG rises higher than the others toward time t7.
  • the pipe inlet inner wall temperatures PIW1 and PIW2 become higher than the aromatic nylon heat resistant temperature T5, which is higher than the other temperatures T0 to T4, at time t7.
  • the pipe inlet inner wall temperature PIW1 when the heat insulating coat 41 is not provided is higher than the pipe inlet inner wall temperature PIW2 when the heat insulating coat 41 is provided.
  • the distributor outlet inner wall temperatures DOW1 and DOW2 are higher than the dew point temperature T2 at time t7, and the distributor outlet gas temperatures DOG1 and DOG2 are higher than the engine thermo temperature T3 at time t7, 66 nylon.
  • the heat resistant temperature is lower than T4.
  • the distributor outlet inner wall temperature DOWN2 and the distributor outlet gas temperature DOG2 when the heat insulating coat 41 is provided are higher than the distributor outlet inner wall temperature DOWN1 and the distributor outlet gas temperature DOG1 when the heat insulating coat 41 is not provided. Will also be higher. From this, it can be seen that the temperature drop of the EGR gas flowing to the EGR gas distributor 15 can be suppressed more when the heat insulating coat 41 is provided.
  • the distributor outlet inner wall temperature DOWN1 when the heat insulating coat 41 is not provided reaches the dew point temperature T2 at the time between the time t6 and the time t7, whereas the distributor outlet when the heat insulating coat 41 is provided.
  • the inner wall temperature DOWN2 has reached the dew point temperature T2 at a time between time t3 and time t4. From this, it can be seen that when the heat insulating coat 41 is provided, the EGR gas can be returned to each cylinder of the engine 1 from an earlier time after the engine is started without generating condensed water in the EGR gas distributor 15.
  • the bypass valve 24 is opened at time t2 and at time t5 as shown in FIG. I was able to close the valve.
  • the high-temperature EGR gas can flow for a long time through the bypass passage 21g without melting the resin flow path 34 and the pipe 16 due to overheating, and the apparent heat resistance of the flow path 34 and the pipe 16 is improved. I was able to make it.
  • the bypass valve 24 is closed at the latest at time t3 in order to suppress melting damage due to overheating of the flow path 34 and the pipe 16. Therefore, the time for the high temperature EGR gas to flow to the flow path 34 and the pipe 16 is shortened by the earlier the time to close the bypass valve 24.
  • FIG. 7 shows the configuration from the pipe 16 to the EGR gas distributor 15 by a configuration diagram according to FIG.
  • FIG. 8 shows the pipe 16 in a cross-sectional view according to FIG.
  • the thickness of the heat insulating coat 41 is formed to be different between the upstream portion US, the middle flow portion MS, and the downstream portion DS of the pipe 16.
  • the thickness of the heat insulating coat 41 is the smallest in the downstream portion DS (downstream side) of the pipe 16, and gradually increases in the order of the middle flow portion MS and the upstream portion US (upstream side). That is, the heat insulating coat 41 is formed so that its thickness gradually increases from the downstream portion DS (downstream side) to the upstream portion US (upstream side) of the pipe 16.
  • FIGS. 7 and 8 it is exaggerated to clarify the stepwise change in the thickness of the heat insulating coat 41.
  • it is desirable that the thickness of the heat insulating coat 41 is thicker than that of other portions at the corner portion of the pipe 16 surrounded by the two-dot chain line S1 in FIG. 7.
  • the thickness of the heat insulating coat 41 provided on the inner wall of the flow path 34 of the EGR valve 14 is the thickness of the heat insulating coat 41 of the upstream portion US of the pipe 16. Can be the same as or larger than that.
  • the heat insulating coat 41 is formed so that its thickness gradually increases from the downstream portion DS (downstream side) to the upstream portion US (upstream side) of the pipe 16.
  • the temperature of the EGR gas flowing through the pipe 16 is high in the upstream portion US of the pipe 16, and decreases toward the middle flow portion MS and the downstream portion DS. Therefore, the heat insulating property of the pipe 16 is set from the upstream portion US to the downstream portion DS according to the temperature change of the EGR gas flowing therethrough. Therefore, the EGR gas can be effectively kept warm from the upstream portion US to the downstream portion DS of the pipe 16 in accordance with the temperature change of the EGR gas flowing through the pipe 16, and the heat resistance of the pipe 16 can be effectively secured.
  • FIG. 9 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG. 2.
  • an assembly portion 21h for assembling the EGR valve 14 is provided in the flow path portion 21f of the casing 21 of the EGR cooler 13, and the EGR valve is provided in the hole of the assembly portion 21h.
  • the housing 46 of 14 By incorporating (drop-in) the housing 46 of 14, the EGR valve 14 is attached to the EGR cooler 13.
  • the housing 46 of the EGR valve 14 is made of a resin material having a function of retaining heat of the EGR gas, and is provided with a flow path 34 and a valve seat 35 on which the valve body 36 is seated.
  • the inlet 16a of the pipe 16 made of a resin material is connected to the outlet 21c of the EGR cooler 13.
  • a heat insulating coat 41 shown by a broken line is provided on the inner wall of the pipe 16.
  • the heat insulating coat 41 is formed to have a uniform thickness from the upstream side to the downstream side of the pipe 16, or is formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe 16. be able to. Further, the thickness of the heat insulating coat 41 can be made particularly thicker at the corner portion of the pipe 16 than at other portions.
  • the flow path 34 of the EGR valve 14 includes an inlet 34a and an outlet 34b, and the inlet 34a of the flow path 34 is arranged substantially adjacent to the outlet 23b of the heat exchanger 23.
  • the inlet 34a of the flow path 34 of the EGR valve 14 is arranged substantially adjacent to the outlet 23b of the heat exchanger 23, it has just flowed out from the outlet 23b of the heat exchanger 23.
  • the EGR gas flows into the inlet 34a of the resin flow path 34 of the EGR valve 14 at an early stage. Therefore, the temperature drop of the EGR gas that has just flowed out from the outlet 23b of the heat exchanger 23 can be suppressed by the flow path 34 of the EGR valve 14.
  • FIG. 10 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. 2.
  • an assembly portion 15c for assembling the EGR valve 14 is provided on the inlet side of the EGR gas distributor 15 made of a resin material, and a hole of the assembly portion 15c is provided.
  • the EGR valve 14 is attached to the EGR gas distributor 15 by incorporating the housing 46 of the EGR valve 14 into the EGR valve 14 (drop-in).
  • the housing 46 of the EGR valve 14 is made of a resin material having a function of retaining heat of the EGR gas, and is provided with a flow path 34 and a valve seat 35 on which the valve body 36 is seated.
  • An inlet 15d is provided at the bottom of the assembly portion 15c made of a resin material, and the outlet 16b of the pipe 16 is connected to the inlet 15d.
  • a heat insulating coat 41 shown by a broken line is provided on the inner wall of the pipe 16 and the inner wall of the flow path 34 of the housing 46. Also in this embodiment, the heat insulating coat 41 is formed to have a uniform thickness from the upstream side to the downstream side of the pipe 16, or is formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe 16. You can also do it.
  • FIG. 11 shows a cross-sectional view of the pipe 16 cut in a direction orthogonal to the longitudinal direction thereof.
  • the heat insulating means of this embodiment is composed of a heating unit 50 for heating the pipe 16 (middle flow passage unit MSP).
  • the heating unit 50 is provided on the inner wall of the pipe 16 made of a resin material, and is composed of a heat generating film 51 that generates heat by energization.
  • MSP middle flow passage unit
  • a positive electrode 53 having a positive terminal 53a and a negative electrode 54 having a negative terminal 54a are connected to the heat generating film 51. Then, the heat generating film 51 is energized from the positive terminal 53a and the negative terminal 54a via the positive electrode 53 and the negative electrode 54.
  • the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, since the heat retaining means is the heating unit 50, by heating the pipe 16 constituting the middle flow passage portion MSP by the heating unit 50, both the heat retention and the temperature rise of the pipe 16 become possible. More specifically, by generating heat by energizing the heating film 51 via the positive electrode 53 and the negative electrode 54, the inner wall of the pipe 16 (middle flow passage portion MSP) is heated over a wide area at an arbitrary timing. To. Therefore, the EGR gas flowing through the pipe 16 can be effectively kept warm. Further, the EGR gas flowing through the pipe 16 can be responsively and stably kept warm. As a result, the EGR gas flowing to the EGR gas distributor 15 can be effectively kept warm.
  • FIG. 12 shows a cross-sectional view of the pipe 16 cut in a direction orthogonal to the longitudinal direction thereof.
  • the heat insulating means of this embodiment is composed of an air layer 56 provided on the outside of a pipe 16 (middle flow passage portion MSP) made of a resin material having a function of keeping heat of EGR gas. ..
  • the pipe 16 has a double pipe structure formed by the outer pipe 16c and the inner pipe 16d, and an air layer 56 is formed between the two pipes 16c and 16d.
  • the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, since the heat insulating means is the air layer 56, it is not necessary to use a special member for the heat insulating means. Therefore, the number of parts constituting the EGR device 11 can be reduced by the amount of the heat insulating means. The air layer 56 can also effectively keep the EGR gas flowing through the pipe 16 warm.
  • FIG. 13 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG. 2.
  • this embodiment differs from the first embodiment in that a cooling unit 58 for cooling a part of the bypass passage 21g is further provided.
  • the cooling unit 58 is provided around a part of the bypass passage 21g in the longitudinal direction so that the cooling water of the engine 1 circulates.
  • the EGR device 11 of this embodiment in addition to the same actions and effects as those of the first embodiment, the following actions and effects can be obtained. That is, in this embodiment, since the EGR gas flowing through the bypass passage 21g is cooled by the cooling unit 58, the EGR gas flowing from the bypass passage 21g into the flow path 34 of the EGR valve 14 and the pipe 16 (middle flow passage portion MSP). The temperature drops. Therefore, the temperature of the EGR gas can be brought close to the heat resistant temperature of the resin material constituting the flow path 34 and the pipe 16 (middle flow passage portion MSP), and even if the high temperature EGR gas flows through the bypass passage 21 g, the EGR gas can be brought close to the heat resistant temperature. It is possible to suppress melting damage due to overheating of the flow path 34 and the pipe 16 (middle flow passage portion MSP) due to gas.
  • FIG. 14 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. 2.
  • a heat insulating coat 41 as a heat insulating means is provided on the inner wall of the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 made of a resin material (66 nylon).
  • the flow path 34 and the pipe 16 of the EGR valve 14 are made of a resin material having a function of retaining heat of the EGR gas (for example, "aromatic".
  • the heat insulating means is configured by forming it from "nylon").
  • the inner housing 39 and the flow path member 40 are formed of, for example, aromatic nylon.
  • the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, when the resin material constituting the flow path 34 and the pipe 16 of the EGR valve 14 is made of, for example, aromatic nylon, the heat resistant temperature of the aromatic nylon is higher than that of 66 nylon, so that the flow path 34 and the pipe The heat retaining property is obtained in the 16 itself, and it is not necessary to separately provide a heat retaining means. Therefore, it is possible to facilitate the manufacture of the EGR device 11 provided with the heat insulating means.
  • FIG. 15 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG.
  • the inner wall of the flow path 34 of the EGR valve 14 is made of a resin material
  • the inner wall of the pipe 16 (middle flow passage portion MSP) made of the resin material is provided with a heat insulating coat 41 as a heat insulating means.
  • the hot water passage 61 through which hot water flows along the longitudinal direction of the flow path of the pipe 16 is provided. It is formed.
  • engine cooling water as hot water warmed by cooling the engine 1 flows through the hot water passage 61.
  • the hot water passage 61 includes an inlet 61a provided in the vicinity of the inlet 16a of the pipe 16 and an outlet 61b provided in the vicinity of the outlet 16b of the pipe 16. The engine cooling water flows into the hot water passage 61 from the inlet 61a and flows out from the outlet 61b.
  • the pipe 16 shows the pipe 16 with a cross-sectional view taken along the line CC of FIG.
  • the pipe 16 of this embodiment has a double pipe structure, includes an outer outer pipe 16c and an inner inner pipe 16d sandwiching the hot water passage 61, and they are not divided. It is formed integrally.
  • the thickness of the outer tube 16c is larger than the thickness of the inner tube 16d.
  • the hot water passage 61 corresponds to an example of the heating unit 50 of this disclosed technique.
  • the EGR valve 14 and the pipe 16 are the valve outlet flange 21i provided at the outlet 21c of the casing 21 on the outlet side of the EGR valve 14, and the inlet of the pipe 16. It is connected via a pipe inlet flange 16e provided on the side.
  • the pipe 16 and the EGR gas distributor 15 (downstream passage portion DSP) are provided with a pipe outlet flange 16f provided on the outlet side of the pipe 16 and a distributor inlet flange 15e provided on the inlet side of the EGR gas distributor 15. It is connected via the passage portion entrance flange).
  • the EGR device 11 of this embodiment it is possible to obtain almost the same operation and effect as that of the fifth embodiment. That is, in the EGR device 11 of this embodiment, since the heat insulating means of the pipe 16 constituting the middle flow passage portion MSP is the heating unit 50, the pipe 16 is heated by the heating unit 50 to keep the pipe 16 warm. And temperature rise are possible. More specifically, the engine cooling water (hot water) flows through the hot water passage 61, so that the inner wall of the pipe 16 (middle flow passage portion MSP) is heated widely in terms of surface. Therefore, the EGR gas flowing through the pipe 16 can be effectively kept warm. Further, the EGR gas flowing through the pipe 16 can be responsively and stably kept warm. As a result, the EGR gas flowing to the EGR gas distributor 15 can be effectively kept warm.
  • the engine cooling water hot water
  • the heating unit 50 is composed of the hot water passage 61 through which the hot water flows, the engine cooling water warmed by cooling the engine 1 is used as hot water and flows to the hot water passage 61. It becomes possible. Therefore, unlike the fifth embodiment, heating can be performed without using an electric configuration. Further, even if the flow of the EGR gas in the pipe 16 is stopped, the heating of the pipe 16 is continued by the hot water in the hot water passage 61. Therefore, when the EGR gas flows through the pipe 16 again, the condensed water in the pipe 16 is continued. Occurrence can be suppressed.
  • the thickness of the outer pipe 16c sandwiching the hot water passage 61 is larger than the thickness of the inner pipe 16d, so that the heat of the hot water is the inner pipe 16d. It is easily transmitted to the inner wall and difficult to escape to the outer wall of the outer pipe 16c. Therefore, the heatability and heat retention of the EGR gas flowing inside the inner tube 16d can be enhanced.
  • the hot water passage 61 is provided along the flow path longitudinal direction of the pipe 16 (middle flow passage portion MSP), the EGR gas is warmed long along the flow of the EGR gas in the pipe 16. Will be. In this sense as well, the heatability and heat retention of the EGR gas flowing through the pipe 16 can be further enhanced.
  • FIG. 17 shows the configuration of the pipe 16 in a cross-sectional view according to FIG.
  • the pipe 16 of this embodiment is configured by joining the upper pipe portion 62 forming the upper side thereof and the lower pipe portion 63 forming the lower side thereof.
  • the hot water passage 61 is formed only in the lower pipe portion 63, and the hot water passage 61 is not formed in the upper pipe portion 62. That is, the lower pipe portion 63 is formed by the outer pipe 16c and the inner pipe 16d sandwiching the hot water passage 61.
  • the upper pipe portion 62 has an outer diameter equivalent to that of the inner pipe 16d of the lower pipe portion 63, and a flange 62a is formed at the joint portion with the lower pipe portion 63 along the longitudinal direction thereof. Then, the flange 62a of the upper pipe portion 62 and the upper end surface 63a of the lower pipe portion 63 are joined by welding 64 to form the pipe 16.
  • the hot water passage 61 is provided on the lower side of the pipe 16, but by arranging the upper pipe portion 62 and the lower pipe portion 63 upside down in FIG. 17, the hot water passage 61 is provided on the upper side of the pipe 16. You can also do it.
  • FIG. 18 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG.
  • the hot water passage 61 through which hot water flows along the longitudinal direction of the pipe 16 (middle flow passage portion MSP) made of a resin material is formed in a double pipe structure. It was formed integrally.
  • the hot water passage 61 is composed of a metal pipe 66 having a circular cross section provided along the longitudinal direction of the flow path of the pipe 16.
  • the metal pipe 66 is fixed to the resin pipe 16 by insert molding.
  • FIG. 19 shows the pipe 16 with a cross-sectional view taken along the line DD of FIG.
  • the pipe 16 of this embodiment includes an upper pipe portion 62 and a lower pipe portion 63, and both 62 and 63 have substantially the same outer diameter.
  • Flange 62a and 63b are formed in the upper pipe portion 62 and the lower pipe portion 63, respectively, along the longitudinal direction.
  • one metal pipe 66 is fixed by insert molding only to the lower pipe portion 63, and the metal pipe is not fixed to the upper pipe portion 62.
  • the metal pipe 66 is insert-molded so that the entire metal pipe 66 is completely covered with the resin material by the lower pipe portion 63.
  • the metal pipe 66 can be made of, for example, an aluminum pipe or an iron-plated pipe.
  • the hot water passage 61 is composed of the metal pipe 66 provided along the longitudinal direction of the flow path of the pipe 16 (middle flow passage portion MSP), the hot water passage 61 is cracked due to disturbance. On the other hand, it is more advantageous than the resin material. Therefore, the durability of the hot water passage 61 can be enhanced.
  • the metal pipe 66 is fixed to the pipe 16 (middle flow passage portion MSP) by insert molding, the adhesion of the metal pipe 66 to the pipe 16 is improved, and the metal pipe 66 is connected to the metal pipe 66.
  • the contact area with the pipe 16 becomes large. Therefore, it is possible to improve the heatability and heat retention of the EGR gas flowing through the pipe 16 by the engine cooling water (hot water) of the hot water passage 61. Further, since the metal pipe 66 is not exposed from the inner wall of the pipe 16, it is possible to prevent the metal pipe 66 from being corroded by the condensed water.
  • the metal pipe 66 since the hot water passage 61 is formed by the metal pipe 66, the metal pipe 66 is not cracked due to disturbance, and the engine cooling water flowing through the hot water passage 61 is the pipe 16. There is no risk of leaking inward. Further, as shown in FIG. 19, by not exposing the metal pipe 66 from the inner wall of the pipe 16, the metal pipe 66 is completely covered with the resin material, so that the condensed water generated inside the pipe 16 becomes the metal pipe 66. There is no contact. Further, since the metal pipe 66 can be made of, for example, an aluminum pipe or an iron-plated pipe, the manufacturing cost can be suppressed.
  • the metal pipe 66 since a part of the metal pipe 66 is bent and insert-molded into the pipe 16, the metal pipe 66 is positioned with respect to the pipe 16. Therefore, it is possible to prevent the metal pipe 66 from being displaced in the pipe 16.
  • FIG. 20 shows the pipe 16 in a cross-sectional view according to FIG.
  • two metal pipes 66 having a circular cross section are arranged in parallel only on the lower pipe portion 63 and fixed by insert molding.
  • Other configurations are the same as those of the eleventh embodiment.
  • the following actions and effects can be obtained in addition to the actions and effects of the eleventh embodiment. That is, in this embodiment, two metal pipes 66 having a circular cross section are arranged in parallel only on the lower pipe portion 63 and fixed by insert molding, thereby forming a hot water passage 61. Therefore, the area of the hot water passage 61 in contact with the pipe 16 increases. Therefore, the heatability and heat retention of the EGR gas flowing through the pipe 16 by the engine cooling water (hot water) of the hot water passage 61 can be further improved.
  • FIG. 21 shows the pipe 16 in a cross-sectional view according to FIG.
  • one metal pipe 67 having an elliptical cross section is arranged only in the lower pipe portion 63 and fixed by insert molding.
  • the major axis of the metal pipe 67 is set to be about twice the outer diameter of the metal pipe 66, and is arranged parallel to the horizontal direction of the pipe 16.
  • the minor diameter of the metal pipe 67 is set to be substantially the same as the outer diameter of the metal pipe 66, and is arranged in parallel with the vertical direction of the pipe 16.
  • Other configurations are the same as those of the eleventh and twelfth embodiments.
  • FIG. 22 shows the pipe 16 in a cross-sectional view according to FIG.
  • one metal pipe 66 having a circular cross section is inserted and fixed only to the lower pipe portion 63.
  • a metal heat sink 68 having a cross-sectional waveform is provided on the upper side of the metal pipe 66 so as to be in contact with the metal pipe 66, and the heat sink 68 is integrally piped with the metal pipe 66. It is fixed by being insert-molded into.
  • the width of the heat sink 68 is preferably three times or more the outer diameter of the metal pipe 66.
  • Other configurations are the same as those of the ninth embodiment.
  • one metal pipe 66 and the heat radiating plate 68 in contact with the metal pipe 66 are integrally fixed to the lower pipe portion 63 of the pipe 16 by insert molding. Therefore, in addition to the operation and effect of the ninth embodiment, the heat dissipation characteristic from the metal pipe 66 to the pipe 16 can be improved by the heat sink 68.
  • FIG. 23 shows the pipe 16 in a cross-sectional view according to FIG.
  • one metal pipe 66 having a circular cross section is inserted and fixed only to the lower pipe portion 63.
  • the upper side of the metal pipe 66 is exposed and arranged inside the pipe 16, that is, in the flow path through which the EGR gas flows.
  • the metal pipe 66 of this embodiment is formed of SUS to prevent rust.
  • Other configurations are the same as those of the ninth embodiment.
  • one metal pipe 66 is insert-molded only in the lower pipe portion 63, and the upper side of the metal pipe 66 is exposed and arranged in the inner flow path of the pipe 16. Will be done. Therefore, in this embodiment, in addition to the operation and effect of the ninth embodiment, the heat of the hot water passage 61 can be directly transferred to the EGR gas flowing inside the pipe 16, and the metal pipe 66 to the pipe 16 can be directly transferred. It is possible to improve the heat dissipation characteristics to.
  • FIG. 24 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view.
  • FIG. 25 shows the pipe 16 to which the metal pipe 66 is fixed by the cross-sectional view taken along the line EE of FIG. 24.
  • the lower pipe portion 63 of the pipe 16 (middle flow passage portion MSP) has a plurality of pipe holders for holding one metal pipe 66 along the longitudinal direction of the flow path. 71 is formed integrally with the pipe 16. As shown in FIG.
  • each pipe holder 71 is configured as a set of a pair of claw portions 71a so as to sandwich the outer periphery of the metal pipe 66 from both sides.
  • the space between the two claws 71a opens downward, and the metal pipe 66 is fitted between the two claws 71a.
  • the metal pipe 66 is held by the pipe holder 71 with respect to the lower pipe portion 63 and is fixed. In this fixed state, the metal pipe 66 is in contact with the lower outer wall of the lower pipe portion 63.
  • the pipe holder 71 corresponds to an example of a holding means in the disclosed technique.
  • the contact area of the metal pipe 66 with respect to the pipe 16 is inferior to that of the insert molding of the eleventh embodiment, but other than that, almost the same operation and effect as those of the eleventh embodiment are obtained. be able to.
  • the metal pipe 66 is fixed by being held by the pipe holder 71 (holding means) along the flow path longitudinal direction of the pipe 16 (middle flow passage portion MSP).
  • the pipe holder 71 holding means
  • MSP middle flow passage portion
  • FIG. 26 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view.
  • FIG. 27 shows a pipe 16 to which the metal pipe 66 is fixed by a sectional view taken along the line FF of FIG. 26.
  • a pipe holder 73 for holding one metal pipe 66 is provided in the lower pipe portion 63 of the pipe 16 (middle flow passage portion MSP) along the longitudinal direction thereof. ..
  • FIG. 26 shows a pipe holder 73 for holding one metal pipe 66 in the lower pipe portion 63 of the pipe 16 (middle flow passage portion MSP) along the longitudinal direction thereof.
  • the pipe holder 73 receives the lower receiving portion 74 for receiving the lower part of the metal pipe 66, the upper receiving portion 75 for receiving the upper side of the metal pipe 66, and the lower receiving portion 74. It is composed of a plurality of clips 76 for fixing to 75.
  • the lower receiving portion 74 extends along the longitudinal direction of the metal pipe 66 to receive the lower side of the metal pipe 66, has an arcuate cross section, and has flanges 74a on both sides.
  • the upper receiving portion 75 projects downward from the lower pipe portion 63 to receive the upper side of the metal pipe 66, extends along the longitudinal direction of the metal pipe 66, has a recess 75a having an arcuate cross section, and has flanges 75b on both sides. Is formed.
  • the upper half of the metal pipe 66 is fitted into the recess 75a of the upper receiving portion 75, the lower half thereof is covered with the lower receiving portion 74, and the flanges 74a and 75b thereof are sandwiched by a plurality of clips 76. It is fixed to the pipe 16. In this fixed state, the metal pipe 66 is in contact with the lower outer wall of the lower pipe portion 63.
  • the pipe holder 73 corresponds to an example of a holding means in the disclosed technique.
  • the contact area of the metal pipe 66 with respect to the pipe 16 is inferior to that of the insert molding of the eleventh embodiment, but other than that, almost the same operation and effect as those of the eleventh embodiment are obtained. be able to.
  • FIG. 28 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 25.
  • the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 of the pipe 16 extend along the metal pipe 66 and have thermal conductivity.
  • a good heat transfer sheet 77 is provided.
  • the heat transfer sheet 77 is formed of a flexible sheet material (for example, a rubber sheet). This embodiment differs from the 16th embodiment in this respect.
  • the heat transfer sheet 77 corresponds to an example of a heat transfer member in the disclosed technique.
  • the following actions and effects can be obtained in addition to the actions and effects of the 16th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. Therefore, there is no gap between the metal pipe 66 and the lower pipe portion 63, and the adhesion between the two 66 and 63 is improved.
  • the heat transfer property to the inner wall of the lower pipe portion 63 by the hot water flowing through the hot water passage 61 in the metal pipe 66 can be improved, the temperature rise property of the inner wall can be improved, and the inside of the pipe 16 can be improved. It is possible to improve the temperature rise property of the EGR gas flowing through the water.
  • the configuration of this embodiment even if a thermal expansion difference occurs between the metal pipe 66 and the lower pipe portion 63 due to the flexibility of the heat transfer sheet 77, heat transfer between the metal pipe 66 and the lower pipe portion 63 and the heat transfer portion 63. Adhesion with the sheet 77 is ensured. In this sense, the heat transfer property of the hot water flowing through the hot water passage 61 to the inner wall of the lower pipe portion 63 can be further improved, the temperature rise property of the inner wall can be further improved, and the EGR flowing inside the pipe 16 can be further improved. The temperature rise property of the gas can be further improved.
  • FIG. 29 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 27.
  • the metal pipe 66 is formed between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16.
  • a heat transfer sheet 77 that extends along the line and has good thermal conductivity is provided.
  • the heat transfer sheet 77 corresponds to an example of a heat transfer member in the disclosed technique.
  • the following actions and effects can be obtained in addition to the actions and effects of the 17th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP), so that the metal is provided. There is no gap between the pipe 66 and the lower pipe portion 63, and the adhesion between the two 66 and 63 is improved. Therefore, it is possible to improve the temperature rise property of the inner wall of the lower pipe portion 63 by the hot water flowing through the hot water passage 61 in the metal pipe 66, and improve the temperature rise property of the EGR gas flowing inside the pipe 16. can.
  • FIG. 30 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 28.
  • the metal pipe 66 is held by the pipe holder 71 (holding means) in the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16, and the metal pipe 66 is a heat transfer sheet.
  • a gap 78 is provided between the claw portion 71a of the pipe holder 71 and the metal pipe 66.
  • the gap 78 constitutes an example of an air layer (heat insulating layer) in the disclosed technique.
  • this embodiment is different from the eighteenth embodiment.
  • the following actions and effects can be obtained in addition to the actions and effects of the 18th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 and the lower pipe portion 63 in a state where the metal pipe 66 is held by the pipe holder 71, but the claw portion 71a and the metal pipe 66 A gap 78 is provided between the two. Therefore, when the engine is stopped, the heat escape from the metal pipe 66 to the atmosphere side is suppressed by the gap 78. Therefore, when the engine is stopped, it is possible to suppress a decrease in temperature of the inner wall of the pipe 16 (middle flow passage portion MSP).
  • FIG. 31 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 29.
  • the metal pipe 66 is held by the pipe holder 73 (holding means) in the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16, and the metal pipe 66 is a heat transfer sheet.
  • a gap 78 air layer (heat insulating layer)
  • this embodiment is different from the 19th embodiment.
  • the following actions and effects can be obtained in addition to the actions and effects of the 19th embodiment. That is, in this embodiment, the heat transfer sheet is held between the metal pipe 66 and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16 in a state where the metal pipe 66 is held by the pipe holder 73 (holding means). 77 is sandwiched, but a gap 78 is mainly provided between the lower receiving portion 74 and the metal pipe 66. Therefore, when the engine is stopped, the heat escape from the metal pipe 66 to the atmosphere side is suppressed by the gap 78.
  • MSP middle flow passage portion
  • the temperature drop of the inner wall of the pipe 16 can be suppressed.
  • hot water does not flow through the hot water passage 61 of the metal pipe 66, but the hot water stays, so that the staying hot water becomes a heat source. Since the heat escape from the metal pipe 66 is suppressed, the temperature drop of the inner wall of the pipe 16 can be effectively suppressed. Even during engine operation, the gap 78 suppresses the escape of heat from the metal pipe 66 to the atmosphere side, and the temperature drop of the inner wall of the pipe 16 can be suppressed.
  • FIG. 32 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view.
  • FIG. 33 shows a pipe 16 to which the metal pipe 66 is fixed by a sectional view taken along the line GG of FIG. 32.
  • heat is generated between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16.
  • a heat transfer plate 79 having good conductivity is provided.
  • this embodiment is different from the 18th embodiment in which the heat transfer sheet 77 is provided.
  • the heat transfer plate 79 corresponds to an example of a heat transfer member in the disclosed technique.
  • the heat transfer plate 79 is a metal plate and has a larger area than the heat transfer sheet 77 in order to expand the heat transfer range from the metal pipe 66 to the lower pipe portion 63.
  • the heat transfer plate 79 is sandwiched between the metal pipe 66 and the lower pipe portion 63, and is sandwiched between the main trunk portion 79a extending along the metal pipe 66 and the adjacent pipe holder 71 between the main trunk portion 79a and the lower pipe portion 63. Includes a wing 79b extending along the outer wall of the.
  • the main trunk portion 79a exerts the same function as the above-mentioned heat transfer sheet 77, but the wing portion 79b exerts a function of transferring the heat transferred from the metal pipe 66 to the heat transfer plate 79 to the outer wall of the lower pipe portion 63. ..
  • the following actions and effects can be obtained in addition to the actions and effects of the 18th embodiment. That is, in this embodiment, the heat transferred from the metal pipe 66 to the heat transfer plate 79 is further transferred to the outer wall of the lower pipe portion 63 via the blade portion 79b. Therefore, the temperature riser of the lower pipe portion 63 can be further improved by the amount of heat transferred to the outer wall of the lower pipe portion 63, and the temperature riser of the EGR gas flowing inside the pipe 16 can be further improved. ..
  • FIG. 34 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view.
  • FIG. 35 shows the pipe 16 to which the metal pipe 66 is fixed by the cross-sectional view taken along the line HH of FIG. 34.
  • heat is generated between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16.
  • a heat transfer plate 79 having good conductivity is provided.
  • This embodiment differs from the 19th embodiment in which the heat transfer sheet 77 is provided in this respect.
  • the heat transfer plate 79 corresponds to an example of a heat transfer member in the disclosed technique.
  • the heat transfer plate 79 is sandwiched between the metal pipe 66 and the lower pipe portion 63, and is between the main trunk portion 79a extending along the metal pipe 66 and the adjacent pipe holder 73. Includes a wing portion 79b extending from the main trunk portion 79a along the outer wall of the lower pipe portion 63.
  • the main trunk portion 79a exerts the same function as the above-mentioned heat transfer sheet 77, but the wing portion 79b exerts a function of transferring the heat transferred from the metal pipe 66 to the heat transfer plate 79 to the outer wall of the lower pipe portion 63. ..
  • the following actions and effects can be obtained in addition to the actions and effects of the 19th embodiment. That is, in this embodiment, the heat transferred from the metal pipe 66 to the heat transfer plate 79 is further transferred to the outer wall of the lower pipe portion 63 via the blade portion 79b. Therefore, the temperature riser of the lower pipe portion 63 can be further improved by the amount of heat transferred to the outer wall of the lower pipe portion 63, and the temperature riser of the EGR gas flowing inside the pipe 16 can be further improved. ..
  • FIG. 36 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG.
  • the hot water passage 61 is provided along the flow path longitudinal direction of the pipe 16.
  • the inlet side heating spacer 81 is provided sandwiched between the valve outlet flange 21i and the pipe inlet flange 16e.
  • an outlet side heating spacer 82 is provided so as to be sandwiched between the pipe outlet flange 16f and the distributor inlet flange 15e.
  • a hot water passage 61 is provided along the circumferential direction of each of the heating spacers 81 and 82. Cooling water (hot water) that has cooled the engine 1 flows through the hot water passage 61 of the inlet side heating spacer 81 and the hot water passage 61 of the outlet side heating spacer 82.
  • the hot water passage 61 of the inlet side heating spacer 81 and the hot water passage 61 of the outlet side heating spacer 82 are connected by a hot water pipe 83, and the hot water flowing through the hot water passage 61 on the inlet side passes through the hot water pipe 83 to the hot water on the outlet side. It is designed to flow to the passage 61.
  • the heating spacers 81 and 82 are each made of a resin material.
  • the heat of the hot water flowing through the hot water passages 61 of the heating spacers 81 and 82 passes through the front and rear flanges 21i, 16e, 16f and 15e via the heating spacers 81 and 82, and the flow path portion 21f of the casing 21 ( EGR valve 14 outlet side), the inlet 16a and outlet 16b of the pipe 16, and the inlet 15d of the EGR gas distributor 15, and their inner walls are heated. Therefore, the EGR gas flowing through each portion 21i, 16e, 16f, 15e, 21f, 16a, 16b, 15d of the middle flow passage portion MSP adjacent to each heating spacer 81, 82 can be effectively kept warm.
  • FIG. 37 is a cross-sectional view showing a connection portion between the metal upstream pipe 85 and its outlet flange 85a and the resin downstream pipe 86 and its inlet flange 86a, which are the objects of measurement according to this embodiment. ..
  • a metal flow path portion 21f and a valve outlet flange 21i are assumed.
  • FIG. 38 is a cross-sectional view showing a connection portion between the metal upstream pipe 85 and its outlet flange 85a and the metal downstream pipe 87 and its inlet flange 87a, which are in inverse proportion to each other and are measurement targets.
  • the metal downstream side pipe 87 and its inlet flange 87a it is assumed that the inlet side heating spacer 81, the pipe inlet flange 16e, and the pipe 16 are made of metal.
  • a hot water passage 61 is formed in the inlet flange 87a.
  • hot water of "60 ° C.” flows through the hot water passage 61 of FIGS. 37 and 38, and the temperature of the outside air around the hot water passage 61 is, for example, "25 ° C.”.
  • FIG. 39 shows (A) changes in engine speed (EGR flow rate) and (B) changes in various temperatures by time charts.
  • the thick solid line shows the temperature of hot water (first hot water temperature) TW1 flowing through the hot water passage 61 of the resin inlet flange 86a, and the solid line shows the hot water passage 61 flowing through the hot water passage 61 of the metal inlet flange 87a.
  • the temperature of hot water (second hot water temperature) TW2 is shown, the thick broken line shows the temperature of the inner wall of the resin inlet flange 86a (first inner wall temperature) TI1, and the broken line shows the temperature of the inner wall of the metal inlet flange 87a.
  • the thick one-point chain wire indicates the temperature of EGR gas flowing inside the resin inlet flange 86a (first EGR gas temperature) TG1, and the one-point chain wire is the metal inlet.
  • the temperature of the EGR gas flowing inside the flange 87a (second EGR gas temperature) TG2 is shown, and another broken line shows the cooling water temperature THW.
  • the various temperatures TW1, TW2, TI1, TI2, TG1, TG2, THW are set during engine operation in which the engine speed (EGR flow rate) becomes high.
  • the various temperatures TW1, TW2, TI1, TI2, TG1, TG2, THW decrease.
  • the resin inlet flange 86a has low thermal conductivity and cooling by the outside air is suppressed, so that the heat escape from the hot water passage 61 to the outside air becomes relatively small. Therefore, the drop in the first inner wall temperature TI1 is relatively small.
  • the metal inlet flange 87a has high thermal conductivity and is easily cooled by the outside air, so that the heat escapes from the hot water passage 61 to the outside air becomes relatively large. Therefore, the drop in the second inner wall temperature TI2 becomes relatively large.
  • the inlet flange 86a made of resin, the temperature rise of the inner wall thereof can be improved when the engine is running (when EGR is executed), and when the engine is stopped (when EGR is stopped), the temperature rise can be improved. It is possible to suppress the temperature drop of the inner wall. Further, by heating the EGR gas by the hot water passage 61 of the resin inlet flange 86a, the temperature drop of the inner wall of the downstream pipe 86 and the EGR gas flowing therethrough can be suppressed. In addition, the heating of the downstream side pipe 86 is not transmitted to the upstream side pipe 85.
  • the heat insulating means is provided in almost all of the middle flow passage portion MSP, but it is also possible to provide the heat insulating means only in the most downstream portion of the middle flow passage portion.
  • downstream passage portion DSP of the EGR passage 12 is configured by the EGR gas distributor 15, but the downstream passage portion can also be configured by the piping of the EGR passage instead of the EGR gas distributor.
  • the heat generating film 51 is provided on the inner wall of the pipe 16, but the heat generating film can also be provided on the outer wall of the pipe. Further, although the heating unit 50 is composed of the heating film 51, the heating unit can also be composed of a heating wire.
  • the casing 21 of the EGR cooler 13 is provided with the bypass passage 21g and the bypass valve 24.
  • the casing 21 of the EGR cooler 13 is provided. Therefore, the bypass passage 21g and the bypass valve 24 can be omitted.
  • the flow path portion 21f of the casing 21 can be made shorter than that shown in FIG. In this case, although the bypass passage 21g and the bypass valve 24 do not have the detour function of the EGR gas, other than that, the same operation and effect as those of the third embodiment can be obtained.
  • the middle flow passage portion MSP is located downstream from the outlet 23d of the heat exchanger 23 and the EGR valve 14 and the pipe 16 are provided in the middle flow passage portion MSP, the EGR gas flowing through the EGR valve 14 and the pipe 16 is kept warm. It flows to the EGR gas distributor 15 (downstream passage portion DSP) while being kept warm by the means. Therefore, the temperature of the EGR gas can be lowered by the heat exchanger 15, and the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 formed of the resin material are not melted by the EGR gas. It can be suppressed.
  • FIG. 40 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG.
  • the assembly portion 21h provided in the casing 21 in which the bypass passage 21g and the bypass valve 24 are omitted is provided in the axial direction of the heat exchanger 23.
  • the EGR valve 14 was attached to the EGR cooler 13 by arranging along the line and incorporating (drop-in) the casing 46 of the EGR valve 14 into the hole of the assembly portion 21h.
  • the assembly portion 21h provided in the casing 21 excluding the bypass passage 21g and the bypass valve 24 is arranged along the direction orthogonal to the axis of the heat exchanger 23, and the assembly thereof.
  • the EGR valve 14 can also be attached to the EGR cooler 13 by incorporating (drop-in) the casing 46 of the EGR valve 14 into the hole of the attachment portion 21h. In this case, the total height of the EGR cooler 13 to which the EGR valve 14 is attached can be shortened, and the whole can be made compact.
  • FIG. 41 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a block diagram.
  • the upper side of the metal pipe 66 is exposed and arranged inside the pipe 16, that is, in the flow path through which the EGR gas flows.
  • the heat sink 68 is arranged on the upper side of the metal pipe 66 exposed inside the pipe 16, and the heat sink 68 is placed in the flow path. It may be exposed.
  • a gap 78 air layer (heat insulating layer) may be provided between the lower receiving portion 74 of the pipe holder 73 and the metal pipe 66.
  • the heat transfer plate 79 is formed of metal, but since the heat transfer sheet 77 is formed of a sheet material such as flexible rubber, the heat transfer sheet 77 is sandwiched between the heat transfer plate 79 and the lower pipe portion 63. It can be brought into close contact with the metal pipe 66, and the heat transfer property from the metal pipe 66 to the lower pipe portion 63 can be improved. Further, since the gap 78 is provided between the lower receiving portion 74 and the metal pipe 66, the escape of heat from the metal pipe 66 to the atmosphere side is suppressed by the gap 78. Therefore, it is possible to suppress a decrease in temperature of the inner wall of the pipe 16.
  • the outer housing 38 constituting the valve portion 32 is made of metal and the inner housing 39 is made of resin, but both the outer housing and the inner housing may be made of resin.
  • the heat insulating coating 51, the air layer 56, the hot water passage 61 and the like are provided instead of omitting the heat insulating coat 41, but together with the heat insulating coat. It is also possible to provide a heating film, an air layer, a hot water passage, and the like.
  • the pipe 16 is composed of an upper pipe portion 62 and a lower pipe portion 63, and the lower pipe portion 16 is formed.
  • a heating portion was provided only in the pipe portion 63.
  • This disclosed technology can be applied to EGR devices installed in gasoline engines and diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

This EGR device has an EGR passage provided with: an EGR cooler (13) for cooling an EGR gas; a bypass passage (21g) for bypassing the EGR cooler (13); a bypass valve (24) for opening/closing the bypass passage (21g); an EGR valve (14) for adjusting the flow rate of the EGR gas; a pipe (16); and an EGR gas distributor (15). The EGR cooler (13) and the bypass passage (21g) constitute an upstream passage portion of the EGR passage, the EGR valve (14) and the pipe (16) constitute a midstream passage portion thereof, and the EGR gas distributor (15) constitutes a downstream passage portion thereof. The inner wall of a flow path (34) of the EGR valve (14) and the inner wall of the pipe (16) are provided with a thermal barrier coating (41) serving as a heat insulating means for maintaining the temperature of the EGR gas flowing therein.

Description

EGR装置EGR device
 この明細書に開示される技術は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流し、エンジンへ還流させるように構成したEGR装置に関する。 The technique disclosed in this specification relates to an EGR device configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
 従来、この種の技術として、例えば、下記の特許文献1に記載されるEGR装置が知られている。このEGR装置は、EGR通路にEGRクーラとEGR弁が設けられており、電子制御装置(ECU)が、エンジン回転数とエンジン負荷とに基づきEGR弁を要求開度に制御するようになっている。また、このEGR装置は、エンジンが暖まる前にEGRクーラで冷却されたEGRガスがエンジンの燃焼室へ還流されることによる不具合を防止するために、ECUは、吸気温度及びEGRガス温度のうち少なくとも一方が設定値よりも低い場合に、EGR弁を要求開度より小さい開度に制御するようになっている。この制御により、所定温度にまで昇温していないEGRガスが、燃焼室へ大量に流入することを防止するようにしている。また、エンジンが暖まる前でも、EGR通路にある程度のEGRガスを流すことで、EGR通路を暖めるようにしている。 Conventionally, as this kind of technique, for example, the EGR apparatus described in Patent Document 1 below is known. In this EGR device, an EGR cooler and an EGR valve are provided in the EGR passage, and an electronic control unit (ECU) controls the EGR valve to the required opening degree based on the engine rotation speed and the engine load. .. Further, in this EGR device, in order to prevent a malfunction caused by the EGR gas cooled by the EGR cooler being returned to the combustion chamber of the engine before the engine warms up, the ECU determines at least one of the intake air temperature and the EGR gas temperature. When one of them is lower than the set value, the EGR valve is controlled to have an opening degree smaller than the required opening degree. This control prevents a large amount of EGR gas, which has not been heated to a predetermined temperature, from flowing into the combustion chamber. Further, even before the engine is warmed up, the EGR passage is warmed by flowing a certain amount of EGR gas through the EGR passage.
特開2014-125974号公報Japanese Unexamined Patent Publication No. 2014-125974
 ところが、特許文献1に記載のEGR装置では、エンジンが暖まる前でもEGR通路にEGRガスを流すことでEGR通路を暖めているものの、EGR通路がEGRガスから熱を受けることでEGRガス温度が下がるため、EGR通路の下流側(下流通路部)ほどEGRガスによる暖機効果が低下し、十分に暖めることができない。そのため、EGR通路の下流通路部(例えば、終段のEGRガス分配器)で凝縮水が発生するおそれがあった。 However, in the EGR apparatus described in Patent Document 1, although the EGR passage is warmed by flowing the EGR gas through the EGR passage even before the engine is warmed up, the EGR gas temperature is lowered by receiving heat from the EGR gas in the EGR passage. Therefore, the warm-up effect of the EGR gas is reduced toward the downstream side (downstream passage portion) of the EGR passage, and it is not possible to sufficiently warm the EGR passage. Therefore, there is a possibility that condensed water is generated in the downstream passage portion of the EGR passage (for example, the EGR gas distributor at the final stage).
 この開示技術は、上記事情に鑑みてなされたものであって、その目的は、EGR通路の下流通路部へ流れるEGRガスの温度低下を抑制し、その下流通路部における凝縮水の発生を抑制することを可能としたEGR装置を提供することにある。 This disclosed technique has been made in view of the above circumstances, and its purpose is to suppress a decrease in temperature of EGR gas flowing to a downstream passage portion of the EGR passage and to suppress generation of condensed water in the downstream passage portion. The purpose is to provide an EGR device that makes it possible.
 (1)上記目的を達成するために、本発明の態様は、エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流してエンジンへ還流させるように構成したEGR装置において、EGR通路には、EGRガスの流量を調節するためのEGR弁が設けられ、EGR通路は、排気通路に近い上流側通路部と、吸気通路に近い下流通路部と、上流通路部と下流通路部との間の中流通路部とを含み、中流通路部の少なくとも最下流部には、そこを流れるEGRガスを保温するための保温手段が設けられることを趣旨とする。 (1) In order to achieve the above object, an embodiment of the present invention is configured such that a part of the exhaust gas discharged from the engine to the exhaust passage is made into EGR gas and flows to the intake passage through the EGR passage and is returned to the engine. In the EGR device, the EGR passage is provided with an EGR valve for adjusting the flow rate of the EGR gas, and the EGR passage includes an upstream passage portion near the exhaust passage, a downstream passage portion near the intake passage, and an upper flow. It is intended that at least the most downstream portion of the middle flow passage portion, including the middle flow passage portion between the road portion and the downstream passage portion, is provided with a heat insulating means for keeping the EGR gas flowing there. ..
 上記(1)の構成によれば、EGR通路の中流通路部の少なくとも最下流部に、そこを流れるEGRガスを保温するための保温手段が設けられる。従って、EGR通路の上流通路部から中流通路部へ流れたEGRガスの熱は、保温手段により外部へ伝わり難くなり、EGRガスが保温された状態で下流通路部へ流れる。 According to the configuration of (1) above, a heat insulating means for keeping the EGR gas flowing there is provided at least in the most downstream part of the middle flow passage portion of the EGR passage. Therefore, the heat of the EGR gas flowing from the upstream passage portion to the middle flow passage portion of the EGR passage is difficult to be transmitted to the outside by the heat insulating means, and flows to the downstream passage portion in a state where the EGR gas is kept warm.
 (2)上記目的を達成するために、上記(1)の構成において、保温手段は、中流通路部を、EGRガスを保温する機能を有する樹脂材により形成することで構成されることが好ましい。 (2) In order to achieve the above object, in the above configuration (1), it is preferable that the heat insulating means is formed by forming the middle flow passage portion with a resin material having a function of retaining heat of EGR gas. ..
 上記(2)の構成によれば、上記(1)の構成の作用に加え、保温手段は、中流通路部を、EGRガスを保温する機能を有する樹脂材により形成することで構成されるので、中流通路部自体に保温性が得られ、保温手段を別途設ける必要がない。 According to the configuration of (2) above, in addition to the action of the configuration of (1) above, the heat insulating means is configured by forming the middle flow passage portion with a resin material having a function of retaining heat of EGR gas. , The heat retaining property can be obtained in the middle flow passage portion itself, and it is not necessary to separately provide a heat insulating means.
 (3)上記目的を達成するために、上記(1)又は(2)の構成において、保温手段は、中流通路部の内壁に設けられる断熱コートであることが好ましい。 (3) In order to achieve the above object, in the above configuration (1) or (2), the heat insulating means is preferably a heat insulating coat provided on the inner wall of the middle flow passage portion.
 上記(3)の構成によれば、上記(1)又は(2)の構成の作用に加え、保温手段が、中流通路部の内壁に設けられる断熱コートであるので、中流通路部の内壁に対する保温手段の形成が容易となる。 According to the configuration of (3) above, in addition to the action of the configuration of (1) or (2) above, the heat insulating means is a heat insulating coat provided on the inner wall of the middle flow passage portion, so that the inner wall of the middle flow passage portion is provided. It becomes easy to form a heat insulating means for the warmth.
 (4)上記目的を達成するために、上記(3)の構成において、中流通路部は、EGRガスを保温する機能を有する樹脂材により構成される配管を含み、断熱コートは、その厚さが配管の下流側から上流側にかけて段階的又は徐々に増加するように形成されることが好ましい。 (4) In order to achieve the above object, in the configuration of (3) above, the middle flow passage portion includes a pipe made of a resin material having a function of retaining heat of EGR gas, and the heat insulating coat has a thickness thereof. Is preferably formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe.
 上記(4)の構成によれば、上記(3)の構成の作用に加え、断熱コートは、その厚さが配管の下流側から上流側にかけて段階的又は徐々に増加するように形成される。ここで、配管を流れるEGRガスの温度は、配管の上流側で高く、下流側にかけて低下する。従って、配管は、その上流側から下流側にかけてそこを流れるEGRガスの温度変化に合わせて断熱性が設定される。 According to the configuration of the above (4), in addition to the action of the configuration of the above (3), the heat insulating coat is formed so that its thickness gradually or gradually increases from the downstream side to the upstream side of the pipe. Here, the temperature of the EGR gas flowing through the pipe is high on the upstream side of the pipe and decreases toward the downstream side. Therefore, the heat insulating property of the pipe is set according to the temperature change of the EGR gas flowing therein from the upstream side to the downstream side.
 (5)上記目的を達成するために、上記(1)乃至(4)のいずれかの構成において、保温手段は、中流通路部の外側に設けられる空気層であることが好ましい。 (5) In order to achieve the above object, in any of the above configurations (1) to (4), the heat insulating means is preferably an air layer provided outside the middle flow passage portion.
 上記(5)の構成によれば、上記(1)乃至(4)のいずれかの構成の作用に加え、保温手段が空気層であることから、保温手段のために特別な部材を使う必要がない。 According to the configuration of (5) above, in addition to the action of any of the configurations (1) to (4) above, since the heat insulating means is an air layer, it is necessary to use a special member for the heat insulating means. not.
 (6)上記目的を達成するために、上記(1)乃至(5)のいずれかの構成において、保温手段は、中流通路部を加熱するための加熱部を含むことが好ましい。 (6) In order to achieve the above object, in any of the above configurations (1) to (5), it is preferable that the heat insulating means includes a heating portion for heating the middle flow passage portion.
 上記(6)の構成によれば、上記(1)乃至(5)のいずれかの構成の作用に加え、保温手段が、加熱部を含むことから、中流通路部を加熱部により加熱することで、その保温と昇温の両方が可能となる。 According to the configuration of the above (6), in addition to the action of the configuration of any one of the above (1) to (5), since the heat insulating means includes the heating portion, the middle flow passage portion is heated by the heating portion. Therefore, both heat retention and temperature rise are possible.
 (7)上記目的を達成するために、上記(6)の構成において、加熱部は、通電により発熱する発熱被膜であることが好ましい。 (7) In order to achieve the above object, in the configuration of the above (6), it is preferable that the heating portion is a heat-generating film that generates heat by energization.
 上記(7)の構成によれば、上記(6)の構成の作用に加え、発熱被膜を通電により発熱させることで、中流通路部が任意のタイミングで、面的に広く加熱される。 According to the configuration of the above (7), in addition to the action of the configuration of the above (6), the heat generating film is heated by energization, so that the middle flow passage portion is widely heated in terms of surface at an arbitrary timing.
 (8)上記目的を達成するために、上記(6)の構成において、加熱部は、中流通路部の少なくとも一部に形成され、温水が流れる温水通路により構成されることが好ましい。 (8) In order to achieve the above object, in the configuration of (6) above, it is preferable that the heating portion is formed in at least a part of the middle flow passage portion and is composed of a hot water passage through which hot water flows.
 上記(8)技術の構成によれば、上記(6)の構成の作用に加え、加熱部が、温水が流れる温水通路により構成されるので、エンジンを冷却することで温められたエンジン冷却水を温水として利用し、温水通路へ流すことが可能となる。 According to the configuration of the above technique (8), in addition to the action of the configuration of the above (6), since the heating unit is composed of the hot water passage through which the hot water flows, the engine cooling water warmed by cooling the engine can be used. It can be used as hot water and flowed into a hot water passage.
 (9)上記目的を達成するために、上記(8)の構成において、温水通路が設けられる中流通路部は、温水通路を挟んだ外側の外管と内側の内管とを含み、外管の厚みが内管の厚みよりも大きいことが好ましい。 (9) In order to achieve the above object, in the configuration of the above (8), the middle flow passage portion provided with the hot water passage includes an outer outer pipe and an inner inner pipe sandwiching the hot water passage, and is an outer pipe. It is preferable that the thickness of the inner tube is larger than the thickness of the inner tube.
 上記(9)の構成によれば、上記(8)の構成の作用に加え、中流通路部は、温水通路を挟んだ外管の厚みが内管の厚みよりも大きいので、温水の熱が内管の内壁には伝わり易く、外管の外壁へは逃げ難い。 According to the configuration of the above (9), in addition to the action of the configuration of the above (8), in the middle flow passage portion, the thickness of the outer pipe sandwiching the hot water passage is larger than the thickness of the inner pipe, so that the heat of the hot water is generated. It is easily transmitted to the inner wall of the inner pipe and difficult to escape to the outer wall of the outer pipe.
 (10)上記目的を達成するために、上記(8)又は(9)の構成において、温水通路は、中流通路部の流路長手方向に沿って設けられることが好ましい。 (10) In order to achieve the above object, in the configuration of the above (8) or (9), it is preferable that the hot water passage is provided along the flow path longitudinal direction of the middle flow passage portion.
 上記(10)の構成によれば、上記(8)又は(9)の構成の作用に加え、温水通路が中流通路部の流路長手方向に沿って設けられるので、中流通路部でのEGRガスの流れに沿ってEGRガスが長く温められる。 According to the configuration of the above (10), in addition to the action of the configuration of the above (8) or (9), since the hot water passage is provided along the flow path longitudinal direction of the middle flow passage portion, in the middle flow passage portion. The EGR gas is warmed for a long time along the flow of the EGR gas.
 (11)上記目的を達成するために、上記(8)又は(9)の構成において、中流通路部は、EGR弁と、EGR弁より下流に配置された配管とを含み、EGR弁と配管とが、EGR弁の出口側に設けられる弁出口フランジと、配管の入口側に設けられる管入口フランジとを介して接続され、配管と下流通路部とが、配管の出口側に設けられる管出口フランジと、下流通路部の入口側に設けられる通路部入口フランジとを介して接続され、弁出口フランジと管入口フランジとの間及び管出口フランジと通路部入口フランジとの間の少なくとも一方にスペーサが挟まって設けられ、温水通路は、スペーサの周方向に沿って設けられることが好ましい。 (11) In order to achieve the above object, in the configuration of the above (8) or (9), the middle flow passage portion includes the EGR valve and the pipe arranged downstream from the EGR valve, and the EGR valve and the pipe. Is connected via a valve outlet flange provided on the outlet side of the EGR valve and a pipe inlet flange provided on the inlet side of the pipe, and the pipe and the downstream passage portion are connected to the pipe outlet provided on the outlet side of the pipe. It is connected via a flange and a passage inlet flange provided on the inlet side of the downstream passage portion, and a spacer is provided between the valve outlet flange and the pipe inlet flange and between the pipe outlet flange and the passage portion inlet flange. It is preferable that the hot water passage is provided along the circumferential direction of the spacer.
 上記(11)の構成によれば、上記(8)又は(9)の構成の作用に加え、弁出口フランジと管入口フランジとの間及び管出口フランジと通路部入口フランジとの間の少なくと一方に挟まって設けられるスペーサの周方向に沿って温水通路が設けられる。従って、弁出口フランジと管入口フランジを流れるEGRガス及び管出口フランジと通路部入口フランジを流れるEGRガスの少なくとも一方が、スペーサの周方向に沿って温水通路の温水により温められる。 According to the configuration of (11) above, in addition to the operation of the configuration of (8) or (9) above, at least between the valve outlet flange and the pipe inlet flange and between the pipe outlet flange and the passage portion inlet flange. A hot water passage is provided along the circumferential direction of the spacer provided sandwiched between them. Therefore, at least one of the EGR gas flowing through the valve outlet flange and the pipe inlet flange and the EGR gas flowing through the pipe outlet flange and the passage portion inlet flange is warmed by the hot water in the hot water passage along the circumferential direction of the spacer.
 (12)上記目的を達成するために、上記(8)の構成において、温水通路は、中流通路部の流路長手方向に沿って設けられる金属パイプにより構成されることが好ましい。 (12) In order to achieve the above object, it is preferable that the hot water passage is composed of a metal pipe provided along the longitudinal direction of the flow path of the middle flow passage portion in the configuration of the above (8).
 上記(12)の構成によれば、上記(8)の構成の作用に加え、温水通路が中流通路部の流路長手方向に沿って設けられる金属パイプにより構成されるので、温水通路が、外乱による亀裂に対し樹脂材より有利となる。 According to the configuration of the above (12), in addition to the action of the configuration of the above (8), since the hot water passage is composed of the metal pipe provided along the longitudinal direction of the flow path of the middle flow passage portion, the hot water passage is formed. It is more advantageous than the resin material against cracks caused by disturbance.
 (13)上記目的を達成するために、上記(12)の構成において、金属パイプは、中流通路部に対しインサート成形により固定されることが好ましい。 (13) In order to achieve the above object, in the above configuration (12), it is preferable that the metal pipe is fixed to the middle flow passage portion by insert molding.
 上記(13)の構成によれば、上記(12)の構成の作用に加え、金属パイプが中流通路部に対しインサート成形により固定されるので、金属パイプの中流通路部に対する密着性が良くなり、金属パイプとの中流通路部との接触面積が大きくなる。また、インサート成形の仕様によっては、金属パイプを中流通路部の内壁から露出させないようにすることも可能である。 According to the configuration of the above (13), in addition to the action of the configuration of the above (12), since the metal pipe is fixed to the middle flow passage portion by insert molding, the adhesion to the middle flow passage portion of the metal pipe is good. Therefore, the contact area between the metal pipe and the middle flow passage portion becomes large. Further, depending on the specifications of insert molding, it is possible to prevent the metal pipe from being exposed from the inner wall of the midstream passage portion.
 (14)上記目的を達成するために、上記(12)の構成において、中流通路部には、その流路長手方向に沿って金属パイプを保持するための保持手段が設けられ、金属パイプは、中流通路部に対し保持手段により保持されることにより固定されることが好ましい。 (14) In order to achieve the above object, in the configuration of the above (12), the middle flow passage portion is provided with a holding means for holding the metal pipe along the longitudinal direction of the flow path, and the metal pipe is provided with a holding means. , It is preferable that the metal is fixed to the middle flow passage portion by being held by the holding means.
 上記(14)の構成によれば、上記(12)の構成の作用に加え、金属パイプが、中流通路部の流路長手方向に沿って保持手段により保持されることで固定されるので、樹脂製の中流通路部と金属パイプとの間の熱膨張差による樹脂亀裂と製造コストの点で、中流通路部に金属パイプをインサート成形により固定するよりも優位となる。 According to the configuration of the above (14), in addition to the action of the configuration of the above (12), the metal pipe is fixed by being held by the holding means along the longitudinal direction of the flow path of the middle flow passage portion. In terms of resin cracks due to the difference in thermal expansion between the resin middle flow passage portion and the metal pipe and the manufacturing cost, it is superior to fixing the metal pipe to the middle flow passage portion by insert molding.
 (15)上記目的を達成するために、上記(14)の構成において、保持手段により保持される金属パイプと中流通路部との間には、伝熱部材が設けられることが好ましい。 (15) In order to achieve the above object, it is preferable to provide a heat transfer member between the metal pipe held by the holding means and the middle flow passage portion in the configuration of the above (14).
 上記(15)の構成によれば、上記(14)の構成の作用に加え、保持手段により保持される金属パイプと中流通路部との間には、伝熱部材が設けられるので、金属パイプと中流通路部との間に隙間がなくなり、両者の間の密着性が向上する。 According to the configuration of the above (15), in addition to the action of the configuration of the above (14), a heat transfer member is provided between the metal pipe held by the holding means and the middle flow passage portion, so that the metal pipe is provided. There is no gap between the pipe and the midstream passage, and the adhesion between the two is improved.
 (16)上記目的を達成するために、上記(15)の構成において、 伝熱部材は、金属パイプ及び中流通路部と密着する柔軟な伝熱シートであることを趣旨とする。 (16) In order to achieve the above object, in the configuration of the above (15), the heat transfer member is a flexible heat transfer sheet that is in close contact with the metal pipe and the middle flow passage portion.
 上記(16)の構成によれば、上記(15)の構成の作用に加え、伝熱シートの柔軟性により金属パイプと中流通路部との間に熱膨張差が生じても、金属パイプ及び中流通路部と伝熱シートとの密着性は確保される。 According to the configuration of the above (16), in addition to the action of the configuration of the above (15), even if a thermal expansion difference occurs between the metal pipe and the middle flow passage portion due to the flexibility of the heat transfer sheet, the metal pipe and Adhesion between the midstream passage and the heat transfer sheet is ensured.
 (17)上記目的を達成するために、上記(14)乃至(16)のいずれかの構成において、金属パイプと保持手段との間に、断熱用の空気層が設けられることを趣旨とする。 (17) In order to achieve the above object, in any of the above configurations (14) to (16), it is intended that an air layer for heat insulation is provided between the metal pipe and the holding means.
 上記(17)の構成によれば、上記(14)乃至(16)のいずれかの構成の作用に加え、金属パイプと保持手段との間に、断熱用の空気層が設けられるので、金属パイプから大気側への熱の逃げが空気層により抑制される。 According to the configuration of (17) above, in addition to the action of any of the configurations (14) to (16) above, an air layer for heat insulation is provided between the metal pipe and the holding means, so that the metal pipe is provided. The escape of heat from the air to the atmosphere is suppressed by the air layer.
 (18)上記目的を達成するために、上記(2)乃至(17)のいずれかの構成において、EGR通路には、EGRガスを冷却するためのEGRクーラと、EGRクーラをバイパスするためのバイパス通路と、バイパス通路を開閉するためのバイパス弁とが更に設けられ、EGRクーラは、冷却用の熱交換器を含み、熱交換器は、EGRガスの入口と出口を含み、バイパス通路は、EGRガスの入口と出口を含み、中流通路部は、熱交換器の出口及びバイパス通路の出口より下流に位置し、EGR弁は、中流通路部に設けられることが好ましい。 (18) In order to achieve the above object, in any of the above configurations (2) to (17), the EGR passage has an EGR cooler for cooling the EGR gas and a bypass for bypassing the EGR cooler. A passage and a bypass valve for opening and closing the bypass passage are further provided, the EGR cooler includes a heat exchanger for cooling, the heat exchanger includes an inlet and an outlet for EGR gas, and the bypass passage includes an EGR. It is preferred that the midstream passage is located downstream of the heat exchanger outlet and the bypass passage outlet, including the gas inlet and outlet, and the EGR valve is provided in the midstream passage.
 上記(18)の構成によれば、上記(2)乃至(17)のいずれかの構成の作用に加え、中流通路部が熱交換器の出口及びバイパス通路の出口より下流に位置し、中流通路部にEGR弁が設けられるので、EGR弁及び中流通路部を流れるEGRガスが保温手段により保温された状態で下流通路部へ流れる。 According to the configuration of (18) above, in addition to the action of any of the configurations (2) to (17) above, the middle flow passage portion is located downstream from the outlet of the heat exchanger and the outlet of the bypass passage, and is in the middle. Since the EGR valve is provided in the flow passage portion, the EGR gas flowing through the EGR valve and the middle flow passage portion flows to the downstream passage portion in a state of being kept warm by the heat insulating means.
 (19)上記目的を達成するために、上記(17)又は(18)の構成において、バイパス通路の少なくとも一部を冷却するための冷却部が更に設けられることが好ましい。 (19) In order to achieve the above object, it is preferable that a cooling unit for cooling at least a part of the bypass passage is further provided in the configuration of the above (17) or (18).
 上記(19)の構成によれば、上記(17)又は(18)の構成の作用に加え、バイパス通路を流れるEGRガスが冷却部により冷却されるので、バイパス通路から中流通路部へ流入するEGRガスの温度が低下する。 According to the configuration of the above (19), in addition to the action of the configuration of the above (17) or (18), the EGR gas flowing through the bypass passage is cooled by the cooling portion, so that the EGR gas flows from the bypass passage to the middle flow passage portion. The temperature of the EGR gas drops.
 (20)上記目的を達成するために、上記(2)乃至(17)のいずれかの構成において、EGR通路には、EGRガスを冷却するためのEGRクーラが更に設けられ、EGRクーラは、冷却用の熱交換器を含み、熱交換器は、EGRガスの入口と出口を含み、中流通路部は、熱交換器の出口より下流に位置し、EGR弁は、中流通路部に設けられることが好ましい。 (20) In order to achieve the above object, in any of the above configurations (2) to (17), the EGR passage is further provided with an EGR cooler for cooling the EGR gas, and the EGR cooler is cooled. The heat exchanger includes an inlet and an outlet for EGR gas, the middle flow passage portion is located downstream from the outlet of the heat exchanger, and the EGR valve is provided in the middle flow passage portion. Is preferable.
 上記(20)の構成によれば、上記(2)乃至(17)のいずれかの構成の作用に加え、中流通路部が熱交換器の出口より下流に位置し、中流通路部にEGR弁が設けられるので、EGR弁及び中流通路部を流れるEGRガスが保温手段により保温された状態で下流通路部へ流れる。 According to the configuration of (20) above, in addition to the action of any of the configurations (2) to (17) above, the middle flow passage portion is located downstream from the outlet of the heat exchanger, and the EGR is located in the middle flow passage portion. Since the valve is provided, the EGR gas flowing through the EGR valve and the middle flow passage portion flows to the downstream passage portion in a state of being kept warm by the heat insulating means.
 (21)上記目的を達成するために、上記(1)乃至(20)のいずれかの構成において、EGR弁は、EGRガスが流れる流路を含み、流路の内壁がEGRガスを保温する機能を有する樹脂材により構成されることが好ましい。 (21) In order to achieve the above object, in any of the above configurations (1) to (20), the EGR valve includes a flow path through which the EGR gas flows, and the inner wall of the flow path has a function of retaining heat of the EGR gas. It is preferable that it is composed of a resin material having.
 上記(21)の構成によれば、上記(1)乃至(20)のいずれかの構成の作用に加え、EGR弁の流路がEGRガスを保温する機能を有する樹脂材により構成されるので、その流路自体に保温性が得られ、また、その流路の成形が容易となる。 According to the configuration of (21) above, in addition to the action of any of the configurations (1) to (20) above, the flow path of the EGR valve is composed of a resin material having a function of retaining heat of the EGR gas. Heat retention is obtained in the flow path itself, and molding of the flow path becomes easy.
 (22)上記目的を達成するために、上記(16)乃至(21)のいずれかの構成において、EGR弁の流路は、入口と出口を含み、流路の入口が熱交換器の出口に略隣接して配置されることが好ましい。 (22) In order to achieve the above object, in any of the configurations (16) to (21) above, the flow path of the EGR valve includes an inlet and an outlet, and the inlet of the flow path becomes the outlet of the heat exchanger. It is preferable that they are arranged substantially adjacent to each other.
 上記(22)の構成によれば、上記(16)乃至(21)のいずれかの構成の作用に加え、EGR弁の流路の入口が熱交換器の出口に略隣接して配置されるので、熱交換器の出口から流れ出たばかりのEGRガスがEGR弁の樹脂製の流路の入口に早期に流れ入る。 According to the configuration of (22) above, in addition to the operation of any of the configurations (16) to (21) above, the inlet of the flow path of the EGR valve is arranged substantially adjacent to the outlet of the heat exchanger. The EGR gas that has just flowed out from the outlet of the heat exchanger flows into the inlet of the resin flow path of the EGR valve at an early stage.
 上記(1)の構成によれば、中流通路部へのEGRガスの熱の伝わりを低減することができ、下流通路部へ流れるEGRガスの温度低下を抑制することができ、その下流通路部における凝縮水の発生を抑制することができる。 According to the configuration of (1) above, the heat transfer of the EGR gas to the middle flow passage portion can be reduced, the temperature drop of the EGR gas flowing to the downstream passage portion can be suppressed, and the downstream passage portion thereof can be suppressed. It is possible to suppress the generation of condensed water in.
 上記(2)の構成によれば、上記(1)の構成の効果に加え、保温手段を備えたEGR装置の製造を容易化することができる。 According to the configuration of (2) above, in addition to the effect of the configuration of (1) above, it is possible to facilitate the manufacture of an EGR device provided with heat insulating means.
 上記(3)の構成によれば、上記(1)又は(2)の構成の効果に加え、保温手段を備えたEGR装置の製造を容易化することができる。 According to the configuration of (3) above, in addition to the effect of the configuration of (1) or (2) above, it is possible to facilitate the manufacture of an EGR device provided with heat insulating means.
 上記(4)の構成によれば、上記(3)の構成の効果に加え、配管を流れるEGRガスの温度変化に合わせて、配管の上流側から下流側にかけてEGRガスを有効に保温できると共に、配管の耐熱性を有効に確保できる。 According to the configuration of (4) above, in addition to the effect of the configuration of (3) above, the EGR gas can be effectively kept warm from the upstream side to the downstream side of the pipe according to the temperature change of the EGR gas flowing through the pipe. The heat resistance of the piping can be effectively secured.
 上記(5)の構成によれば、上記(1)乃至(3)のいずれかの構成の効果に加え、保温手段の分だけEGR装置を構成する部品点数を減らすことができる。 According to the configuration of (5) above, in addition to the effect of any of the configurations (1) to (3) above, the number of parts constituting the EGR device can be reduced by the amount of the heat insulating means.
 上記(6)の構成によれば、上記(1)又は(2)の構成の効果に加え、中流通路部を流れるEGRガスを有効に保温することができる。 According to the configuration of (6) above, in addition to the effect of the configuration of (1) or (2) above, the EGR gas flowing through the middle flow passage portion can be effectively kept warm.
 上記(7)の構成によれば、上記(6)の構成の効果に加え、中流通路部を流れるEGRガスを応答性良く、安定的に保温することができる。 According to the configuration of (7) above, in addition to the effect of the configuration of (6) above, the EGR gas flowing through the middle flow passage portion can be responsively and stably kept warm.
 上記(8)の構成によれば、上記(6)の構成の効果に加え、電気的構成を用いることなく加熱することができる。また、中流通路部のEGRガスの流れが停止しても、温水通路の温水により中流通路部の加熱が継続されるので、中流通路部をEGRガスが再び流れたときに、中流通路部での凝縮水の発生を抑制することができる。 According to the configuration of (8) above, in addition to the effect of the configuration of (6) above, heating can be performed without using the electrical configuration. Further, even if the flow of EGR gas in the middle flow passage is stopped, the heating of the middle flow passage is continued by the hot water in the hot water passage, so that when the EGR gas flows again in the middle flow passage, the middle flow is performed. The generation of condensed water in the road can be suppressed.
 上記(9)の構成によれば、上記(8)の構成の効果に加え、内管の内部を流れるEGRガスの加熱性及び保温性を高めることができる。 According to the configuration of (9) above, in addition to the effect of the configuration of (8) above, the heatability and heat retention of the EGR gas flowing inside the inner pipe can be enhanced.
 上記(10)の構成によれば、上記(8)又は(9)の構成の効果に加え、中流通路部を流れるEGRガスの加熱性及び保温性を更に高めることができる。 According to the configuration of (10) above, in addition to the effect of the configuration of (8) or (9) above, the heatability and heat retention of the EGR gas flowing through the middle flow passage portion can be further enhanced.
 上記(11)の構成によれば、上記(8)又は(9)の構成の効果に加え、スペーサに隣接する中流通路部の部位を流れるEGRガスを有効に保温することができる。 According to the configuration of (11) above, in addition to the effect of the configuration of (8) or (9) above, the EGR gas flowing through the portion of the middle flow passage portion adjacent to the spacer can be effectively kept warm.
 上記(12)の構成によれば、上記(8)の構成の効果に加え、温水通路としての耐久性を高めることができる。 According to the configuration of (12) above, in addition to the effect of the configuration of (8) above, the durability as a hot water passage can be enhanced.
 上記(13)の構成によれば、上記(12)の構成の効果に加え、温水通路の温水による、中流通路部を流れるEGRガスの加熱性及び保温性を高めることができる。また、金属パイプが中流通路部の内壁から露出しないことで、凝縮水による金属パイプの腐食を防止することができる。 According to the configuration of the above (13), in addition to the effect of the configuration of the above (12), it is possible to enhance the heatability and heat retention of the EGR gas flowing through the middle flow passage portion by the hot water of the hot water passage. Further, since the metal pipe is not exposed from the inner wall of the middle flow passage portion, it is possible to prevent the metal pipe from being corroded by the condensed water.
 上記(14)の構成によれば、上記(12)の構成の効果に加え、金属パイプの延長と設計の自由度を向上させることができる。 According to the configuration of (14) above, in addition to the effect of the configuration of (12) above, it is possible to extend the metal pipe and improve the degree of freedom in design.
 上記(15)の構成によれば、上記(14)の構成の効果に加え、金属パイプの中の温水通路を流れる温水による中流通路部の内壁への伝熱性を向上させることができ、その内壁の昇温性を向上させることができ、中流通路部の内部を流れるEGRガスの昇温性を向上させることができる。 According to the configuration of (15) above, in addition to the effect of the configuration of (14) above, the heat transfer property of the hot water flowing through the hot water passage in the metal pipe to the inner wall of the middle flow passage portion can be improved. It is possible to improve the temperature rise property of the inner wall, and it is possible to improve the temperature rise property of the EGR gas flowing inside the middle flow passage portion.
 上記(16)の構成によれば、上記(15)の構成の効果に加え、温水通路を流れる温水による中流通路部の内壁への伝熱性を更に向上させることができ、その内壁の昇温性を更に向上させることができ、中流通路部の内部を流れるEGRガスの昇温性を更に向上させることができる。 According to the configuration of the above (16), in addition to the effect of the configuration of the above (15), the heat transfer property of the hot water flowing through the hot water passage to the inner wall of the middle flow passage portion can be further improved, and the temperature of the inner wall thereof is raised. The property can be further improved, and the temperature rise property of the EGR gas flowing inside the middle flow passage portion can be further improved.
 上記(17)の構成によれば、上記(14)乃至(16)のいずれかの構成の効果に加え、中流通路部の内壁の温度低下を抑制することができる。 According to the configuration of (17) above, in addition to the effect of any of the configurations (14) to (16) above, it is possible to suppress a decrease in temperature of the inner wall of the middle flow passage portion.
 上記(18)の構成によれば、上記(2)乃至(17)のいずれかの構成の効果に加え、熱交換器によりEGRガスの温度を低下させることができ、中流通路部のEGRガスによる溶損を抑制することができる。 According to the configuration of (18) above, in addition to the effect of any of the configurations (2) to (17) above, the temperature of the EGR gas can be lowered by the heat exchanger, and the EGR gas in the middle flow passage portion can be lowered. It is possible to suppress the melting damage due to.
 上記(19)の構成によれば、上記(17)又は(18)の構成の効果に加え、EGRガスの温度を中流通路部を構成する樹脂の耐熱温度に近付けることができ、バイパス通路に高温のEGRガスが流れても、EGRガスによる中流通路部の溶損を抑制することができる。 According to the configuration of the above (19), in addition to the effect of the configuration of the above (17) or (18), the temperature of the EGR gas can be brought close to the heat resistant temperature of the resin constituting the middle flow passage portion, and the bypass passage can be provided. Even if the high temperature EGR gas flows, it is possible to suppress the melting damage of the middle flow passage portion due to the EGR gas.
 上記(20)の構成によれば、上記(2)乃至(17)のいずれかの構成の効果に加え、熱交換器によりEGRガスの温度を低下させることができ、中流通路部のEGRガスによる溶損を抑制することができる。 According to the configuration of (20) above, in addition to the effect of any of the configurations (2) to (17) above, the temperature of the EGR gas can be lowered by the heat exchanger, and the EGR gas in the middle flow passage portion can be lowered. It is possible to suppress the melting damage due to.
 上記(21)の構成によれば、上記(1)乃至(20)のいずれかの構成の効果に加え、EGR弁におけるEGRガスの温度低下の抑制を容易化することができる。 According to the configuration of the above (21), in addition to the effect of the configuration of any one of the above (1) to (20), it is possible to facilitate the suppression of the temperature decrease of the EGR gas in the EGR valve.
 上記(22)の構成によれば、上記(16)乃至(21)のいずれかの構成の効果に加え、熱交換器の出口から流れ出たばかりのEGRガスの温度低下をEGR弁の流路により抑制することができる。 According to the configuration of (22) above, in addition to the effect of any of the configurations (16) to (21) above, the temperature drop of the EGR gas that has just flowed out from the outlet of the heat exchanger is suppressed by the flow path of the EGR valve. can do.
第1実施形態に係り、エンジンシステムを示す概略構成図。A schematic configuration diagram showing an engine system according to the first embodiment. 第1実施形態に係り、EGRクーラからEGRガス分配器までのEGR通路上の具体的な構成を一部破断して示す構成図。FIG. 6 is a configuration diagram showing a specific configuration on an EGR passage from an EGR cooler to an EGR gas distributor with a partial breakage according to the first embodiment. 第1実施形態に係り、図2のEGR弁からEGRガス分配器までの構成を示す構成図。FIG. 6 is a configuration diagram showing a configuration from the EGR valve of FIG. 2 to the EGR gas distributor according to the first embodiment. 第1実施形態に係り、配管を示す図3のA-A線断面図。FIG. 3 is a sectional view taken along line AA of FIG. 3 showing piping according to the first embodiment. 第1実施形態に係り、配管を示す図3のB-B線断面図。FIG. 3 is a sectional view taken along line BB of FIG. 3 showing piping according to the first embodiment. 第1実施形態に係り、エンジン始動後のEGR弁とバイパス弁の開閉及び各種温度の変化を示すタイムチャート。A time chart showing the opening and closing of the EGR valve and the bypass valve and changes in various temperatures after the engine is started according to the first embodiment. 第2実施形態に係り、配管からEGRガス分配器までの構成を示す図3に準ずる構成図。FIG. 3 is a configuration diagram according to FIG. 3 showing a configuration from piping to an EGR gas distributor according to a second embodiment. 第2実施形態に係り、配管を示す図5に準ずる断面図。FIG. 5 is a cross-sectional view according to FIG. 5 showing piping according to the second embodiment. 第3実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図2に準ずる構成図。FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a third embodiment. 第4実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図2に準ずる構成図。FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a fourth embodiment. 第5実施形態に係り、配管をその長手方向と直交する方向に切断して示す断面図。FIG. 5 is a cross-sectional view showing a pipe cut in a direction orthogonal to the longitudinal direction thereof according to the fifth embodiment. 第6実施形態に係り、配管をその長手方向と直交する方向に切断して示す断面図。FIG. 6 is a cross-sectional view showing a pipe cut in a direction orthogonal to the longitudinal direction thereof according to the sixth embodiment. 第7実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図2に準ずる構成図。FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to a seventh embodiment. 第8実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図2に準ずる構成図。FIG. 2 is a configuration diagram according to FIG. 2 showing a configuration from an EGR cooler to an EGR gas distributor according to an eighth embodiment. 第9実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図9に準ずる構成図。FIG. 9 is a configuration diagram according to FIG. 9 showing a configuration from an EGR cooler to an EGR gas distributor according to a ninth embodiment. 第9実施形態に係り、配管を示す図15のC-C線断面図。FIG. 15 is a sectional view taken along line CC of FIG. 15 showing piping according to the ninth embodiment. 第10実施形態に係り、配管の構成を示す図16に準ずる断面図。FIG. 16 is a cross-sectional view according to FIG. 16 showing a configuration of piping according to the tenth embodiment. 第11実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図15に準ずる構成図。FIG. 15 is a configuration diagram according to FIG. 15 showing a configuration from an EGR cooler to an EGR gas distributor according to the eleventh embodiment. 第11実施形態に係り、配管を示す図18のD-D線断面図。FIG. 18 is a sectional view taken along line DD of FIG. 18 showing piping according to the eleventh embodiment. 第12実施形態に係り、配管を示す図19に準ずる断面図。FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the twelfth embodiment. 第13実施形態に係り、配管を示す図19に準ずる断面図。FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the thirteenth embodiment. 第14実施形態に係り、配管を示す図19に準ずる断面図。FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the 14th embodiment. 第15実施形態に係り、配管を示す図19に準ずる断面図。FIG. 19 is a cross-sectional view according to FIG. 19 showing piping according to the fifteenth embodiment. 第16実施形態に係り、金属パイプが固定された配管の一部を示す側面図。A side view showing a part of a pipe to which a metal pipe is fixed according to a sixteenth embodiment. 第16実施形態に係り、金属パイプが固定された配管を示す図24のE-E線断面図。FIG. 24 is a sectional view taken along line EE of FIG. 24 showing a pipe to which a metal pipe is fixed according to a sixteenth embodiment. 第17実施形態に係り、金属パイプが固定された配管の一部を示す側面図。A side view showing a part of a pipe to which a metal pipe is fixed according to the seventeenth embodiment. 第17実施形態に係り、金属パイプが固定された配管を示す図26のF-F線断面図。FIG. 26 is a sectional view taken along line FF of FIG. 26 showing a pipe to which a metal pipe is fixed according to the 17th embodiment. 第18実施形態に係り、金属パイプが固定された配管を示す図25に準ずる断面図。FIG. 25 is a cross-sectional view according to FIG. 25 showing a pipe to which a metal pipe is fixed according to the eighteenth embodiment. 第19実施形態に係り、金属パイプが固定された配管を示す図27に準ずる断面図。FIG. 27 is a cross-sectional view according to FIG. 27 showing a pipe to which a metal pipe is fixed according to the nineteenth embodiment. 第20実施形態に係り、金属パイプが固定された配管を示す図28に準ずる断面図。FIG. 28 is a cross-sectional view according to FIG. 28 showing a pipe to which a metal pipe is fixed according to the twentieth embodiment. 第21実施形態に係り、金属パイプが固定された配管を示す図29に準ずる断面図。FIG. 29 is a cross-sectional view according to FIG. 29 showing a pipe to which a metal pipe is fixed according to the 21st embodiment. 第22実施形態に係り、金属パイプが固定された配管の一部を示す側面図。A side view showing a part of a pipe to which a metal pipe is fixed according to the 22nd embodiment. 第22実施形態に係り、金属パイプが固定された配管を示す図32のG-G線断面図。FIG. 32 is a sectional view taken along line GG of FIG. 32 showing a pipe to which a metal pipe is fixed according to the 22nd embodiment. 第23実施形態に係り、金属パイプが固定された配管の一部を示す側面図。A side view showing a part of a pipe to which a metal pipe is fixed according to the 23rd embodiment. 第23実施形態に係り、金属パイプが固定された配管を示す図34のH-H線断面図。FIG. 34 is a sectional view taken along line OH of FIG. 34 showing a pipe to which a metal pipe is fixed according to the 23rd embodiment. 第24実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図15に準ずる構成図。FIG. 15 is a configuration diagram according to FIG. 15 showing a configuration from an EGR cooler to an EGR gas distributor according to the 24th embodiment. 第24実施形態に係り、測定対象である、金属製の上流側配管及びその出口フランジと、樹脂製の下流側配管及びその入口フランジとの接続部分を示す断面図。FIG. 4 is a cross-sectional view showing a connection portion between a metal upstream pipe and its outlet flange and a resin downstream pipe and its inlet flange, which are the objects of measurement according to the 24th embodiment. 第24実施形態に関連した対比例に係り、測定対象である、金属製の上流側配管及びその出口フランジと、金属製の下流側配管及びその入口フランジとの接続部分を示す断面図。FIG. 4 is a cross-sectional view showing a connection portion between a metal upstream pipe and its outlet flange and a metal downstream pipe and its inlet flange, which are related to the 24th embodiment in inverse proportion and are measurement targets. 第24実施形態に係り、(A)エンジン回転数(EGR流量)の変化と、(B)各種温度の変化を示すタイムチャート。A time chart showing (A) changes in engine speed (EGR flow rate) and (B) changes in various temperatures according to the 24th embodiment. 別の実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す図9に準ずる構成図。FIG. 9 is a configuration diagram according to FIG. 9 showing a configuration from an EGR cooler to an EGR gas distributor according to another embodiment. 別の実施形態に係り、EGRクーラからEGRガス分配器までの構成を示す構成図。FIG. 6 is a configuration diagram showing a configuration from an EGR cooler to an EGR gas distributor according to another embodiment. 別の実施形態に係り、配管16を示す図23に準ずる断面図。A cross-sectional view according to FIG. 23 showing the pipe 16 according to another embodiment. 別の実施形態に係り、配管16を示す図35に準ずる断面図。FIG. 6 is a cross-sectional view according to FIG. 35 showing the pipe 16 according to another embodiment.
 以下、EGR装置をガソリンエンジンシステムに具体化したいくつかの実施形態について説明する。 Hereinafter, some embodiments in which the EGR device is embodied in a gasoline engine system will be described.
<第1実施形態>
 先ず、第1実施形態について図面を参照して詳細に説明する。
<First Embodiment>
First, the first embodiment will be described in detail with reference to the drawings.
[エンジンシステムについて]
 図1に、この実施形態のガソリンエンジンシステム(以下、単に「エンジンシステム」と言う。)を概略構成図により示す。自動車に搭載されたエンジンシステムは、複数の気筒を有するエンジン1を備える。このエンジン1は、4気筒、4サイクルのレシプロエンジンであり、ピストン及びクランクシャフト等の周知の構成を含む。エンジン1には、各気筒へ吸気を導入するための吸気通路2と、エンジン1の各気筒から排気を導出するための排気通路3が設けられる。吸気通路2には、スロットル装置4及び吸気マニホールド5が設けられる。排気通路3には、排気マニホールド6及び触媒7が設けられる。加えて、排気通路3と吸気通路2との間には、高圧ループタイプの排気還流装置(EGR装置)11が設けられる。
[About the engine system]
FIG. 1 shows a gasoline engine system of this embodiment (hereinafter, simply referred to as “engine system”) by a schematic configuration diagram. The engine system mounted on the automobile includes an engine 1 having a plurality of cylinders. The engine 1 is a 4-cylinder, 4-cycle reciprocating engine and includes well-known configurations such as a piston and a crankshaft. The engine 1 is provided with an intake passage 2 for introducing intake air into each cylinder and an exhaust passage 3 for deriving exhaust gas from each cylinder of the engine 1. The intake passage 2 is provided with a throttle device 4 and an intake manifold 5. The exhaust passage 3 is provided with an exhaust manifold 6 and a catalyst 7. In addition, a high-pressure loop type exhaust gas recirculation device (EGR device) 11 is provided between the exhaust passage 3 and the intake passage 2.
 スロットル装置4は、吸気マニホールド5より上流の吸気通路2に配置され、運転者のアクセル操作に応じてバタフライ式のスロットル弁4aを開度可変に開閉駆動させることで、吸気通路2を流れる吸気量を調節するようになっている。吸気マニホールド5は、主として樹脂材により構成され、エンジン1の直上流にて吸気通路2に配置され、吸気が導入される一つのサージタンク5aと、サージタンク5aに導入された吸気をエンジン1の各気筒へ分配するためにサージタンク5aから分岐した複数(4つ)の分岐管5bとを含む。触媒7には、排気を浄化するために、例えば、三元触媒が内蔵される。 The throttle device 4 is arranged in the intake passage 2 upstream of the intake manifold 5, and by driving the butterfly type throttle valve 4a to open and close with a variable opening according to the accelerator operation of the driver, the amount of intake air flowing through the intake passage 2 Is designed to be adjusted. The intake manifold 5 is mainly composed of a resin material and is arranged in the intake passage 2 directly upstream of the engine 1. One surge tank 5a into which the intake air is introduced and the intake air introduced in the surge tank 5a are used in the engine 1. It includes a plurality of (four) branch pipes 5b branched from the surge tank 5a for distribution to each cylinder. The catalyst 7 contains, for example, a three-way catalyst in order to purify the exhaust gas.
 エンジン1には、各気筒に対応して燃料を噴射するための燃料噴射装置(図示略)が設けられる。燃料噴射装置は、燃料供給装置(図示略)から供給される燃料をエンジン1の各気筒へ噴射するように構成される。各気筒では、燃料噴射装置から噴射される燃料と吸気マニホールド5から導入される吸気とにより可燃混合気が形成される。 The engine 1 is provided with a fuel injection device (not shown) for injecting fuel corresponding to each cylinder. The fuel injection device is configured to inject fuel supplied from a fuel supply device (not shown) into each cylinder of the engine 1. In each cylinder, a combustible air-fuel mixture is formed by the fuel injected from the fuel injection device and the intake air introduced from the intake manifold 5.
 エンジン1には、各気筒に対応して点火装置(図示略)が設けられる。点火装置は、各気筒で可燃混合気に点火するように構成される。各気筒内の可燃混合気は、点火装置の点火動作により爆発・燃焼し、燃焼後の排気は、各気筒から排気マニホールド6及び触媒7を経て外部へ排出される。このとき、各気筒でピストン(図示略)が上下運動し、クランクシャフト(図示略)が回転することにより、エンジン1に動力が得られる。 The engine 1 is provided with an ignition device (not shown) corresponding to each cylinder. The igniter is configured to ignite the combustible mixture in each cylinder. The combustible air-fuel mixture in each cylinder explodes and burns due to the ignition operation of the ignition device, and the exhaust gas after combustion is discharged from each cylinder to the outside via the exhaust manifold 6 and the catalyst 7. At this time, the piston (not shown) moves up and down in each cylinder, and the crankshaft (not shown) rotates to obtain power to the engine 1.
[EGR装置について]
 図1に示すように、この実施形態のEGR装置11は、エンジン1の各気筒から排気通路3へ排出される排気の一部を排気還流ガス(EGRガス)として吸気通路2へ流してエンジン1の各気筒へ還流させるように構成される。EGR装置11は、排気還流通路(EGR通路)12と、EGR通路12を流れるEGRガスを冷却するための排気還流クーラ(EGRクーラ)13と、EGR通路12を流れるEGRガスの流量を調節するための排気還流弁(EGR弁)14と、EGR通路12を流れるEGRガスをエンジン1の各気筒へ分配するために、吸気マニホールド5の各分岐管5bへEGRガスを分配するための排気還流ガス分配器(EGRガス分配器)15とを備える。これらEGRクーラ13、EGR弁14及びEGRガス分配器15のEGRガスが流れる流路もEGR通路12を構成している。EGR通路12を構成する配管は、入口12aと出口12bを含む。その入口12aは、触媒7より上流の排気通路3に接続され、その出口12bは、EGRガス分配器15に接続される。この実施形態で、EGRガス分配器15は、EGR通路12の終段を構成している。EGR通路12において、EGR弁14は、EGRクーラ13より下流に設けられ、EGRガス分配器15は、EGR弁14より下流に設けられる。
[About EGR equipment]
As shown in FIG. 1, in the EGR device 11 of this embodiment, a part of the exhaust gas discharged from each cylinder of the engine 1 to the exhaust passage 3 is flowed to the intake passage 2 as an exhaust gas recirculation gas (EGR gas) to the engine 1. It is configured to recirculate to each cylinder of. The EGR device 11 adjusts the flow rate of the exhaust gas recirculation passage (EGR passage) 12, the exhaust gas recirculation cooler (EGR cooler) 13 for cooling the EGR gas flowing through the EGR passage 12, and the EGR gas flowing through the EGR passage 12. Exhaust gas recirculation valve (EGR valve) 14 and exhaust gas recirculation gas distribution for distributing EGR gas to each branch pipe 5b of the intake manifold 5 in order to distribute the EGR gas flowing through the EGR passage 12 to each cylinder of the engine 1. A device (EGR gas distributor) 15 is provided. The flow path through which the EGR gas of the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15 flows also constitutes the EGR passage 12. The piping constituting the EGR passage 12 includes an inlet 12a and an outlet 12b. The inlet 12a is connected to the exhaust passage 3 upstream of the catalyst 7, and the outlet 12b is connected to the EGR gas distributor 15. In this embodiment, the EGR gas distributor 15 constitutes the final stage of the EGR passage 12. In the EGR passage 12, the EGR valve 14 is provided downstream from the EGR cooler 13, and the EGR gas distributor 15 is provided downstream from the EGR valve 14.
 EGRガス分配器15は、主として樹脂材により構成され、全体として横長な形状を有し、その長手方向において、吸気マニホールド5の複数の分岐管5bを横切るように配置される。この実施形態で、EGRガス分配器15は、導入されたEGRガスが集まるガスチャンバ15aと、ガスチャンバ15aから各分岐管5bへEGRガスを分配する複数(4つ)のガス分配通路15bとを含む。 The EGR gas distributor 15 is mainly composed of a resin material, has a horizontally long shape as a whole, and is arranged so as to cross a plurality of branch pipes 5b of the intake manifold 5 in the longitudinal direction thereof. In this embodiment, the EGR gas distributor 15 has a gas chamber 15a in which the introduced EGR gas is collected, and a plurality (four) gas distribution passages 15b for distributing the EGR gas from the gas chamber 15a to each branch pipe 5b. include.
 このEGR装置11では、EGR弁14が開弁することにより、排気通路3を流れる排気の一部がEGRガスとしてEGR通路12を流れ、EGRクーラ13、EGR弁14及びEGRガス分配器15を介して吸気マニホールド5の各分岐管5bへ分配され、更にエンジン1の各気筒へ分配されて還流される。 In this EGR device 11, when the EGR valve 14 is opened, a part of the exhaust gas flowing through the exhaust passage 3 flows through the EGR passage 12 as EGR gas, and passes through the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15. It is distributed to each branch pipe 5b of the intake manifold 5, and further distributed to each cylinder of the engine 1 to be circulated.
 EGR通路12は、図1に矢印で示すように、排気通路3に近い上流通路部USPと、吸気通路2を構成する吸気マニホールド5に近い下流通路部DSPと、上流通路部USPと下流通路部DSPとの間の中流通路部MSPとを含む。この実施形態では、上流通路部USPは、EGR通路12の入口12aからEGRクーラ13までの間の通路部を含む。中流通路部MSPは、EGRクーラ13からEGRガス分配器15の入口までの通路部を含む(中流通路部MSPの範囲の詳細については後述する。)。下流通路部DSPは、EGRガス分配器15の中の通路部を含む。上記したように、この実施形態で、上流通路部USP、中流通路部MSP及び下流通路部DSPは、EGR通路12の実質的な流路長さで区分けされておらず、EGR通路12上に設けられるEGRクーラ13、EGR弁14及びEGRガス分配器15等の機器の配置に応じて区分けされている。上流通路部USP、中流通路部MSP及び下流通路部DSPを、EGR通路12の実質的な流路長さで区分することも可能である。 As shown by an arrow in FIG. 1, the EGR passage 12 includes an upstream passage portion USP near the exhaust passage 3, a downstream passage portion DSP near the intake manifold 5 constituting the intake passage 2, and an upstream passage portion USP and downstream. Includes a midstream passage MSP between the passage DSP. In this embodiment, the upstream passage portion USP includes a passage portion between the inlet 12a of the EGR passage 12 and the EGR cooler 13. The midstream passage portion MSP includes a passage portion from the EGR cooler 13 to the inlet of the EGR gas distributor 15 (details of the range of the midstream passage portion MSP will be described later). The downstream passage DSP includes a passage in the EGR gas distributor 15. As described above, in this embodiment, the upstream passage portion USP, the middle flow passage portion MSP, and the downstream passage portion DSP are not separated by the substantial flow path length of the EGR passage 12, and are on the EGR passage 12. It is classified according to the arrangement of equipment such as the EGR cooler 13, the EGR valve 14, and the EGR gas distributor 15 provided in the EGR cooler 13. It is also possible to classify the upstream passage portion USP, the middle flow passage portion MSP and the downstream passage portion DSP by the substantial flow path length of the EGR passage 12.
 図2に、EGRクーラ13からEGRガス分配器15までのEGR通路12上の具体的な構成を一部破断して構成図により示す。図3に、図2のEGR弁14からEGRガス分配器15までの構成を構成図により示す。図2、図3に示すように、この実施形態では、EGRクーラ13の出口21cにEGR弁14の流路34の入口34aが接続され、EGR弁14の流路34の出口34bにEGR通路12を構成する配管16の入口16aが接続され、配管16の出口16bがEGRガス分配器15の入口に接続される。 FIG. 2 is a configuration diagram showing a specific configuration on the EGR passage 12 from the EGR cooler 13 to the EGR gas distributor 15 with a partial break. FIG. 3 shows the configuration from the EGR valve 14 to the EGR gas distributor 15 in FIG. 2 by a block diagram. As shown in FIGS. 2 and 3, in this embodiment, the inlet 34a of the flow path 34 of the EGR valve 14 is connected to the outlet 21c of the EGR cooler 13, and the EGR passage 12 is connected to the outlet 34b of the flow path 34 of the EGR valve 14. The inlet 16a of the pipe 16 constituting the above is connected, and the outlet 16b of the pipe 16 is connected to the inlet of the EGR gas distributor 15.
 図2に示すように、EGRクーラ13は、ケーシング21を備える。ケーシング21は、EGRガスが流れる主通路21aと、EGRガスを導入する入口21bと、EGRガスを導出する出口21cと、主通路21aから入口21bまでの間の導入部21dと、主通路21aから出口21cまでの間の導出部21e及び屈折した流路部21fと、主通路21aと平行に設けられ、主通路21aをバイパスするためのバイパス通路21gとを含む。主通路21aには、EGRガスと冷媒との間で熱交換を行う冷却用の熱交換器23が設けられる。この熱交換器23により、主通路21aを流れるEGRガスを冷却するようになっている。熱交換器23には、冷媒としてエンジン1の冷却水が循環するようになっている。熱交換器23は、周知の構成を有する。バイパス通路21gの上流部には、同通路21gを開閉するためのバタフライ弁式のバイパス弁24が設けられる。この実施形態で、図2に示すように、EGRクーラ13は、主通路21a及びバイパス通路21gをEGRガス(黒塗りの矢印、ハッチングを付した矢印で示す。)が斜め上方へ向けて流れるように斜めに配置される。この斜めの配置状態において、出口21cは入口21bよりも鉛直方向において高い位置に配置される。また、この斜めの配置状態において、EGRクーラ13の内部で発生した凝縮水(白抜きの矢印で示す。)は、バイパス通路21gを下流部から上流部へ向けて流れるようになっている。 As shown in FIG. 2, the EGR cooler 13 includes a casing 21. The casing 21 is provided from the main passage 21a through which the EGR gas flows, the inlet 21b for introducing the EGR gas, the outlet 21c for leading out the EGR gas, the introduction portion 21d between the main passage 21a and the inlet 21b, and the main passage 21a. It includes a lead-out portion 21e to the outlet 21c, a bent flow path portion 21f, and a bypass passage 21g provided in parallel with the main passage 21a and for bypassing the main passage 21a. The main passage 21a is provided with a cooling heat exchanger 23 that exchanges heat between the EGR gas and the refrigerant. The heat exchanger 23 cools the EGR gas flowing through the main passage 21a. The cooling water of the engine 1 circulates in the heat exchanger 23 as a refrigerant. The heat exchanger 23 has a well-known configuration. A butterfly valve type bypass valve 24 for opening and closing the bypass passage 21g is provided in the upstream portion of the bypass passage 21g. In this embodiment, as shown in FIG. 2, in the EGR cooler 13, the EGR gas (black arrow, indicated by a hatched arrow) flows diagonally upward through the main passage 21a and the bypass passage 21g. Arranged diagonally. In this diagonally arranged state, the outlet 21c is arranged at a position higher in the vertical direction than the inlet 21b. Further, in this diagonally arranged state, the condensed water generated inside the EGR cooler 13 (indicated by a white arrow) flows through the bypass passage 21 g from the downstream portion to the upstream portion.
 図2に示すように、熱交換器23は、EGRガスの入口23aと出口23bを含み、バイパス通路21gは、EGRガスの入口21gaと出口21gbを含む。この実施形態で、中流通路部MSPは、熱交換器23の出口23b及びバイパス通路21gの出口21gbより下流に位置し、EGR弁14は、中流通路部MSPに設けられる。すなわち、この実施形態において、中流通路部MSPは、EGRクーラ13の熱交換器23の出口23bからEGRガス分配器15の入口までの通路部により構成される。 As shown in FIG. 2, the heat exchanger 23 includes an inlet 23a and an outlet 23b of the EGR gas, and the bypass passage 21g includes an inlet 21ga and an outlet 21gb of the EGR gas. In this embodiment, the midstream passage MSP is located downstream of the outlet 23b of the heat exchanger 23 and the outlet 21gb of the bypass passage 21g, and the EGR valve 14 is provided in the midstream passage MSP. That is, in this embodiment, the midstream passage portion MSP is composed of a passage portion from the outlet 23b of the heat exchanger 23 of the EGR cooler 13 to the inlet of the EGR gas distributor 15.
 図2、図3に示すように、EGR弁14は、ステップモータを内蔵したモータ部31と、弁部32とから構成される。弁部32は、流路34と、流路34に配置された弁座35、弁体36及び弁軸37を含む。弁部32は、金属製の外ハウジング38と、樹脂製の内ハウジング39と、流路34に面する外ハウジング38の部分を覆う樹脂製の流路部材40とを含む。この流路34の内壁は、樹脂製の内ハウジング39と、樹脂製の流路部材40とにより構成される。すなわち、流路34の内壁は、EGRガスを保温する機能を有する樹脂材により構成される。 As shown in FIGS. 2 and 3, the EGR valve 14 is composed of a motor unit 31 having a built-in step motor and a valve unit 32. The valve portion 32 includes a flow path 34, a valve seat 35 arranged in the flow path 34, a valve body 36, and a valve shaft 37. The valve portion 32 includes a metal outer housing 38, a resin inner housing 39, and a resin flow path member 40 that covers a portion of the outer housing 38 facing the flow path 34. The inner wall of the flow path 34 is composed of a resin inner housing 39 and a resin flow path member 40. That is, the inner wall of the flow path 34 is made of a resin material having a function of retaining heat of the EGR gas.
 EGR弁14の出口34bに接続された配管16は、チャネル状に屈折して形成される。この実施形態で、配管16はEGRガスを保温する機能を有する樹脂材により構成される。樹脂材として、例えば「66ナイロン」を使用することができる。 The pipe 16 connected to the outlet 34b of the EGR valve 14 is formed by refracting in a channel shape. In this embodiment, the pipe 16 is made of a resin material having a function of keeping the EGR gas warm. As the resin material, for example, "66 nylon" can be used.
 図4に、配管16を図3のA-A線断面図により示す。図5に、配管16を図3のB-B線断面図により示す。この実施形態では、図2に破線で、図3~図5にハッチングで示すように、EGR弁14の流路34の内壁の全面と配管16の内壁の全面には、流路34と配管16を流れるEGRガスを保温するために断熱コート41が設けられる。断熱コート41として、例えば「セラミックコート」を使用することができる。断熱コート41は、この開示技術の保温手段の一例に相当する。中流通路部MSPを構成するEGR弁14の流路34の内壁と配管16の内壁には、EGRガスを保温するための断熱コート41が設けられる。この実施形態で、図3、図5に示すように、断熱コート41の厚さは、配管16の上流部US、中流部MS及び下流部DSの間で一律(同一)の厚さに形成される。なお、図3に2点鎖線S1で囲って示す配管16のコーナ部では、EGRガスの流れが衝突することから、断熱コート41の厚さを他の部位よりも特に厚くすることが望ましい。 FIG. 4 shows the pipe 16 with a cross-sectional view taken along the line AA of FIG. FIG. 5 shows the pipe 16 with a cross-sectional view taken along the line BB of FIG. In this embodiment, as shown by the broken line in FIG. 2 and the hatching in FIGS. 3 to 5, the flow path 34 and the pipe 16 are formed on the entire inner wall of the flow path 34 of the EGR valve 14 and the entire inner wall of the pipe 16. A heat insulating coat 41 is provided to keep the EGR gas flowing through the water warm. As the heat insulating coat 41, for example, a "ceramic coat" can be used. The heat insulating coat 41 corresponds to an example of the heat insulating means of this disclosed technique. A heat insulating coat 41 for keeping the EGR gas warm is provided on the inner wall of the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 constituting the midstream passage portion MSP. In this embodiment, as shown in FIGS. 3 and 5, the thickness of the heat insulating coat 41 is formed to be uniform (same) between the upstream portion US, the middle flow portion MS, and the downstream portion DS of the pipe 16. To. Since the flow of EGR gas collides with the corner portion of the pipe 16 surrounded by the two-dot chain line S1 in FIG. 3, it is desirable to make the thickness of the heat insulating coat 41 particularly thicker than that of other portions.
[EGR装置の作用及び効果について]
 以上説明したこの実施形態のEGR装置11によれば、エンジン1から排気通路3へ排出される排気ガスの一部は、EGRガスとしてEGR通路12へ流れ、EGRクーラ13、EGR弁14及びEGRガス分配器15等を流れて吸気マニホールド5の各分岐管5bへ好適に分配され、エンジン1の各気筒へ分配されて還流される。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment described above, a part of the exhaust gas discharged from the engine 1 to the exhaust passage 3 flows into the EGR passage 12 as EGR gas, and the EGR cooler 13, the EGR valve 14 and the EGR gas It flows through the distributor 15 and the like, is suitably distributed to each branch pipe 5b of the intake manifold 5, is distributed to each cylinder of the engine 1, and is circulated.
 ここで、図1に示すように、EGR通路12は、EGRクーラ13を含む上流通路部USPと、EGR弁14と配管16を含む中流通路部MSPと、EGRガス分配器15で構成される下流通路部DSPとに分けられる。そして、中流通路部MSPを構成するEGR弁14の流路34及び配管16の内壁がEGRガスを保温する機能を有する樹脂材により構成され、ある程度の長さを有することから、それらEGR弁14の流路34及び配管16でのEGRガスの温度低下や、EGRガス分配器15へ流入するEGRガスの温度が問題になる。EGRガスが露点温度より低くなると、EGRガス分配器15で凝縮水が発生してしまうからである。 Here, as shown in FIG. 1, the EGR passage 12 is composed of an upstream passage portion USP including an EGR cooler 13, a middle flow passage portion MSP including an EGR valve 14 and a pipe 16, and an EGR gas distributor 15. It is divided into a downstream passage section DSP. Since the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 constituting the midstream passage portion MSP are made of a resin material having a function of retaining heat of the EGR gas and have a certain length, the EGR valve 14 is used. The temperature drop of the EGR gas in the flow path 34 and the pipe 16 and the temperature of the EGR gas flowing into the EGR gas distributor 15 become problems. This is because when the EGR gas becomes lower than the dew point temperature, condensed water is generated in the EGR gas distributor 15.
 そこで、この実施形態のEGR装置11の構成によれば、EGR通路12に設けられるEGR弁14の流路34及び配管16(中流通路部MSP)の内壁に、そこを流れるEGRガスを保温するための断熱コート41(保温手段)が設けられる。従って、EGR通路12に設けられるEGRクーラ13等(上流通路部USP)からEGR弁14の流路34及び配管16(中流通路部MSP)へ流れたEGRガスの熱は、断熱コート41により外部へ伝わり難くなり、EGRガスが保温された状態でEGRガス分配器15(下流通路部DSP)へ流れる。特に、中流通路部MSPがEGRクーラ13の熱交換器23の出口23b及びバイパス通路21gの出口21gbより下流に位置し、中流通路部MSPにEGR弁14が設けられる。従って、EGR弁14の流路34及び配管16を流れるEGRガスが断熱コート41により保温された状態でEGRガス分配器15へ流れる。このため、熱交換器15によりEGRガスの温度を低下させることができ、樹脂材より形成されるEGR弁14の流路34及び配管16(中流通路部MSP)の、EGRガスによる溶損を抑制することができる。また、EGR弁14の流路34及び配管16(中流通路部MSP)での樹脂材へのEGRガスの熱の伝わりを低減することができ、EGRガス分配器15(下流通路部DSP)へ流れるEGRガスの温度低下を抑制することができ、EGRガス分配器15を素早く暖機して、そのEGRガス分配器15における凝縮水の発生を抑制することができる。 Therefore, according to the configuration of the EGR device 11 of this embodiment, the EGR gas flowing there is kept warm on the inner wall of the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 provided in the EGR passage 12. A heat insulating coat 41 (heat insulating means) is provided for this purpose. Therefore, the heat of the EGR gas flowing from the EGR cooler 13 or the like (upstream passage portion USP) provided in the EGR passage 12 to the flow path 34 of the EGR valve 14 and the pipe 16 (middle flow passage portion MSP) is generated by the heat insulating coat 41. It becomes difficult to transmit to the outside, and the EGR gas flows to the EGR gas distributor 15 (downstream passage portion DSP) in a state where the EGR gas is kept warm. In particular, the midstream passage portion MSP is located downstream from the outlet 23b of the heat exchanger 23 of the EGR cooler 13 and the outlet 21gb of the bypass passage 21g, and the EGR valve 14 is provided in the midstream passage portion MSP. Therefore, the EGR gas flowing through the flow path 34 of the EGR valve 14 and the pipe 16 flows to the EGR gas distributor 15 in a state of being kept warm by the heat insulating coat 41. Therefore, the temperature of the EGR gas can be lowered by the heat exchanger 15, and the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 formed of the resin material are not melted by the EGR gas. It can be suppressed. Further, it is possible to reduce the heat transfer of the EGR gas to the resin material in the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14, and to the EGR gas distributor 15 (downstream passage portion DSP). The temperature drop of the flowing EGR gas can be suppressed, the EGR gas distributor 15 can be quickly warmed up, and the generation of condensed water in the EGR gas distributor 15 can be suppressed.
 この実施形態の構成によれば、中流通路部MSPを構成するEGR弁14の流路34及び配管16の内壁がEGRガスを保温する機能を有する樹脂材により構成されるので、その流路34及び配管16自体に保温性が得られ、また、流路34及び配管16の成形が容易となる。このため、EGR弁14及び配管16(中流通路部MSP)におけるEGRガスの温度低下の抑制を容易化することができる。 According to the configuration of this embodiment, since the flow path 34 of the EGR valve 14 constituting the middle flow passage portion MSP and the inner wall of the pipe 16 are made of a resin material having a function of retaining heat of the EGR gas, the flow path 34 thereof. In addition, heat retention is obtained in the pipe 16 itself, and the flow path 34 and the pipe 16 can be easily formed. Therefore, it is possible to easily suppress the temperature drop of the EGR gas in the EGR valve 14 and the pipe 16 (middle flow passage portion MSP).
 この実施形態の構成によれば、保温手段がEGR弁14の流路34及び配管16の内壁に設けられる断熱コート41であるので、その流路34及び配管16(中流通路部MSP)の内壁に対する保温手段の形成が容易となる。このため、保温手段を備えたEGR装置11の製造を容易化することができる。 According to the configuration of this embodiment, since the heat insulating means is the heat insulating coat 41 provided on the inner wall of the flow path 34 and the pipe 16 of the EGR valve 14, the inner wall of the flow path 34 and the pipe 16 (middle flow passage portion MSP). It becomes easy to form a heat insulating means for the warmth. Therefore, it is possible to facilitate the manufacture of the EGR device 11 provided with the heat insulating means.
 この実施形態の構成によれば、EGR弁14の流路34がEGRガスを保温する機能を有する樹脂材により構成されるので、その流路34自体に保温性が得られ、また、その流路34の成形が容易となる。このため、EGR弁14におけるEGRガスの温度低下の抑制を容易化することができる。 According to the configuration of this embodiment, since the flow path 34 of the EGR valve 14 is made of a resin material having a function of retaining heat in the EGR gas, the flow path 34 itself can obtain heat retention and the flow path thereof. Molding of 34 becomes easy. Therefore, it is possible to easily suppress the temperature drop of the EGR gas in the EGR valve 14.
 図6に、この実施形態において、エンジン始動後のEGR弁14とバイパス弁24の開閉及び各種温度の変化をタイムチャートにより示す。すなわち、図6は、低温時からEGR弁14とバイパス弁24を開弁したときの、配管16の入口16aにおけるEGRガスの温度(配管入口ガス温度)PIG、配管16の入口16aの内壁温度(配管入口内壁温度)PIW1,PIW2、EGRガス分配器15の出口のEGRガス温度(分配器出口ガス温度)DOG1,DOG2、冷却水の温度(冷却水温度)THW、EGRガス分配器15の出口の内壁温度(分配器出口内壁温度)DOW1,DOW2の変化を示す。ここで、配管入口内壁温度PIW1は、配管16の内壁に断熱コート41を設けない場合を、配管入口内壁温度PIW2は、配管16の内壁に断熱コート41を設けた場合をそれぞれ示す。分配器出口ガス温度DOG1は、配管16の内壁に断熱コート41を設けない場合を、分配器出口ガス温度DOG2は、配管16の内壁に断熱コート41を設けた場合をそれぞれ示す。分配器出口内壁温度DOW1は、配管16の内壁に断熱コート41を設けない場合を、分配器出口内壁温度DOW2は、配管16の内壁に断熱コート41を設けた場合をそれぞれ示す。 FIG. 6 shows in this embodiment the opening and closing of the EGR valve 14 and the bypass valve 24 and changes in various temperatures after the engine is started by a time chart. That is, FIG. 6 shows the EGR gas temperature (pipe inlet gas temperature) PIG at the inlet 16a of the pipe 16 and the inner wall temperature of the inlet 16a of the pipe 16 when the EGR valve 14 and the bypass valve 24 are opened from a low temperature. Pipe inlet inner wall temperature) PIW1, PIW2, EGR gas temperature at the outlet of the EGR gas distributor 15 (distributor outlet gas temperature) DOG1, DOG2, cooling water temperature (cooling water temperature) THW, at the outlet of the EGR gas distributor 15. The changes in the inner wall temperature (distributor outlet inner wall temperature) DOWN1 and DOWN2 are shown. Here, the pipe inlet inner wall temperature PIW1 indicates a case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the pipe inlet inner wall temperature PIW2 shows a case where the heat insulating coat 41 is provided on the inner wall of the pipe 16. The distributor outlet gas temperature DOG1 indicates a case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the distributor outlet gas temperature DOG2 shows a case where the heat insulating coat 41 is provided on the inner wall of the pipe 16. The distributor outlet inner wall temperature DOWN 1 indicates the case where the heat insulating coat 41 is not provided on the inner wall of the pipe 16, and the distributor outlet inner wall temperature DOWN 2 indicates the case where the heat insulating coat 41 is provided on the inner wall of the pipe 16.
 図6に示すように、時刻t1にて、上記した各温度PIG,PIW1,PIW2,DOG1,DOG2,DOW1,DOW2,THWが低温である所定温度T0(例えば、「25℃」)のときに、エンジン1が始動を開始すると、冷却水温度THWは昇温を開始し、やがて時刻t7にて上限温度であるエンジンサーモ温度T3に達する。 As shown in FIG. 6, at time t1, when the above-mentioned temperatures PIG, PIW1, PIW2, DOG1, DOG2, DOW1, DOWN2, THW are at a predetermined temperature T0 (for example, “25 ° C.”), which is a low temperature, When the engine 1 starts to start, the cooling water temperature THW starts to raise the temperature, and eventually reaches the engine thermo temperature T3 which is the upper limit temperature at time t7.
 ここで、時刻t2にて、冷却水温度THWがEGR開始温度T1(例えば、「40℃」)に達すると、EGR弁14とバイパス弁24が開弁する(この場合、時刻t5にてバイパス弁24のみが閉弁する)と、EGR通路12にEGRガスが流れることから、冷却水温度THW以外の各種温度PIG,PIW1,PIW2,DOG1,DOG2,DOW1,DOW2も昇温を開始する。このとき、配管入口ガス温度PIGは、時刻t7へ向けて他より高く昇温する。これに対し、配管入口内壁温度PIW1,PIW2は、時刻t7にて、他の温度T0~T4よりも高い芳香族ナイロン耐熱温度T5を超えて高くなる。ここでは、断熱コート41を設けない場合の配管入口内壁温度PIW1の方が、断熱コート41を設けた場合の配管入口内壁温度PIW2よりも高くなる。 Here, when the cooling water temperature THW reaches the EGR start temperature T1 (for example, “40 ° C.”) at time t2, the EGR valve 14 and the bypass valve 24 are opened (in this case, the bypass valve is opened at time t5). When only 24 is closed), EGR gas flows through the EGR passage 12, so that various temperatures other than the cooling water temperature THW, PIG, PIW1, PIW2, DOG1, DOG2, DOW1, and DOW2, also start to raise the temperature. At this time, the pipe inlet gas temperature PIG rises higher than the others toward time t7. On the other hand, the pipe inlet inner wall temperatures PIW1 and PIW2 become higher than the aromatic nylon heat resistant temperature T5, which is higher than the other temperatures T0 to T4, at time t7. Here, the pipe inlet inner wall temperature PIW1 when the heat insulating coat 41 is not provided is higher than the pipe inlet inner wall temperature PIW2 when the heat insulating coat 41 is provided.
 一方、分配器出口内壁温度DOW1,DOW2は、時刻t7にて、露点温度T2よりも高くなり、分配器出口ガス温度DOG1,DOG2は、時刻t7にて、エンジンサーモ温度T3よりも高く、66ナイロン耐熱温度T4よりも低くなる。ここでは、断熱コート41を設けた場合の分配器出口内壁温度DOW2と分配器出口ガス温度DOG2の方が、断熱コート41を設けない場合の分配器出口内壁温度DOW1と分配器出口ガス温度DOG1よりも高くなる。これにより、断熱コート41を設けた場合の方が、EGRガス分配器15へ流れるEGRガスの温度低下を抑制できることがわかる。しかも、断熱コート41を設けない場合の分配器出口内壁温度DOW1が、時刻t6と時刻t7との間の時刻で露点温度T2に達したのに対し、断熱コート41を設けた場合の分配器出口内壁温度DOW2は、時刻t3と時刻t4との間の時刻で露点温度T2に達している。これにより、断熱コート41を設けた場合の方が、エンジン始動後のより早い時期から、EGRガス分配器15で凝縮水を発生させることなくEGRガスをエンジン1の各気筒へ還流できることがわかる。 On the other hand, the distributor outlet inner wall temperatures DOW1 and DOW2 are higher than the dew point temperature T2 at time t7, and the distributor outlet gas temperatures DOG1 and DOG2 are higher than the engine thermo temperature T3 at time t7, 66 nylon. The heat resistant temperature is lower than T4. Here, the distributor outlet inner wall temperature DOWN2 and the distributor outlet gas temperature DOG2 when the heat insulating coat 41 is provided are higher than the distributor outlet inner wall temperature DOWN1 and the distributor outlet gas temperature DOG1 when the heat insulating coat 41 is not provided. Will also be higher. From this, it can be seen that the temperature drop of the EGR gas flowing to the EGR gas distributor 15 can be suppressed more when the heat insulating coat 41 is provided. Moreover, the distributor outlet inner wall temperature DOWN1 when the heat insulating coat 41 is not provided reaches the dew point temperature T2 at the time between the time t6 and the time t7, whereas the distributor outlet when the heat insulating coat 41 is provided. The inner wall temperature DOWN2 has reached the dew point temperature T2 at a time between time t3 and time t4. From this, it can be seen that when the heat insulating coat 41 is provided, the EGR gas can be returned to each cylinder of the engine 1 from an earlier time after the engine is started without generating condensed water in the EGR gas distributor 15.
 なお、この実施形態では、EGR弁14の流路34の内壁と配管16の内壁に断熱コート41を設けたので、図6に示すように、バイパス弁24を時刻t2で開弁し、時刻t5で閉弁することができた。これにより、樹脂製の流路34及び配管16を過熱で溶損させることなく、バイパス通路21gを通じて高温のEGRガスを長く流すことができ、流路34及び配管16の見かけ上の耐熱性を向上させることができた。これに対し、流路34及び配管16の内壁に断熱コート41を設けない場合は、流路34及び配管16の過熱による溶損を抑制するために、バイパス弁24を遅くとも時刻t3には閉弁させる必要があり、そのようにバイパス弁24を閉弁させる時期が早くなる分だけ高温のEGRガスを流路34及び配管16へ流せる時間が短くなってしまう。 In this embodiment, since the heat insulating coat 41 is provided on the inner wall of the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16, the bypass valve 24 is opened at time t2 and at time t5 as shown in FIG. I was able to close the valve. As a result, the high-temperature EGR gas can flow for a long time through the bypass passage 21g without melting the resin flow path 34 and the pipe 16 due to overheating, and the apparent heat resistance of the flow path 34 and the pipe 16 is improved. I was able to make it. On the other hand, when the heat insulating coat 41 is not provided on the inner walls of the flow path 34 and the pipe 16, the bypass valve 24 is closed at the latest at time t3 in order to suppress melting damage due to overheating of the flow path 34 and the pipe 16. Therefore, the time for the high temperature EGR gas to flow to the flow path 34 and the pipe 16 is shortened by the earlier the time to close the bypass valve 24.
<第2実施形態>
 次に、第2実施形態について図面を参照して詳細に説明する。なお、以下の説明において、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明する。
<Second Embodiment>
Next, the second embodiment will be described in detail with reference to the drawings. In the following description, the components equivalent to those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences will be mainly described.
[配管における断熱コートの構成について]
 この実施形態では、配管16における断熱コート41の構成の点で第1実施形態と異なる。すなわち、図7に、配管16からEGRガス分配器15までの構成を図3に準ずる構成図により示す。図8に、配管16を図5に準ずる断面図により示す。図7、図8に示すように、この実施形態では、断熱コート41の厚さが、配管16の上流部US、中流部MS及び下流部DSの間で異なる厚さに形成される。すなわち、断熱コート41の厚さは、配管16の下流部DS(下流側)で最も小さく、中流部MS、上流部US(上流側)の順に段階的に大きくなっている。すなわち、断熱コート41は、その厚さが配管16の下流部DS(下流側)から上流部US(上流側)にかけて段階的に増加するように形成される。図7、図8では、断熱コート41の段階的な厚さの変化を明確にするために誇張的に示している。なお、この実施形態でも、図7に2点鎖線S1で囲って示す配管16のコーナ部で断熱コート41の厚さを他の部位よりも厚くすることが望ましい。なお、図7では、EGR弁14の図示を省略しているが、EGR弁14の流路34の内壁に設けられる断熱コート41の厚さは、配管16の上流部USの断熱コート41の厚さと同じか、それよりも大きくすることができる。
[About the composition of the heat insulating coat in piping]
This embodiment differs from the first embodiment in the configuration of the heat insulating coat 41 in the pipe 16. That is, FIG. 7 shows the configuration from the pipe 16 to the EGR gas distributor 15 by a configuration diagram according to FIG. FIG. 8 shows the pipe 16 in a cross-sectional view according to FIG. As shown in FIGS. 7 and 8, in this embodiment, the thickness of the heat insulating coat 41 is formed to be different between the upstream portion US, the middle flow portion MS, and the downstream portion DS of the pipe 16. That is, the thickness of the heat insulating coat 41 is the smallest in the downstream portion DS (downstream side) of the pipe 16, and gradually increases in the order of the middle flow portion MS and the upstream portion US (upstream side). That is, the heat insulating coat 41 is formed so that its thickness gradually increases from the downstream portion DS (downstream side) to the upstream portion US (upstream side) of the pipe 16. In FIGS. 7 and 8, it is exaggerated to clarify the stepwise change in the thickness of the heat insulating coat 41. Also in this embodiment, it is desirable that the thickness of the heat insulating coat 41 is thicker than that of other portions at the corner portion of the pipe 16 surrounded by the two-dot chain line S1 in FIG. 7. Although the EGR valve 14 is not shown in FIG. 7, the thickness of the heat insulating coat 41 provided on the inner wall of the flow path 34 of the EGR valve 14 is the thickness of the heat insulating coat 41 of the upstream portion US of the pipe 16. Can be the same as or larger than that.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第1実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態で、断熱コート41は、その厚さが配管16の下流部DS(下流側)から上流部US(上流側)にかけて段階的に増加するように形成される。ここで、配管16を流れるEGRガスの温度は、配管16の上流部USで高く、中流部MS、下流部DSにかけて低下する。従って、配管16は、その上流部USから下流部DSにかけて、そこを流れるEGRガスの温度変化に合わせて断熱性が設定される。このため、配管16を流れるEGRガスの温度変化に合わせて、配管16の上流部USから下流部DSにかけてEGRガスを有効に保温できると共に、配管16の耐熱性を有効に確保できる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the first embodiment. That is, in this embodiment, the heat insulating coat 41 is formed so that its thickness gradually increases from the downstream portion DS (downstream side) to the upstream portion US (upstream side) of the pipe 16. Here, the temperature of the EGR gas flowing through the pipe 16 is high in the upstream portion US of the pipe 16, and decreases toward the middle flow portion MS and the downstream portion DS. Therefore, the heat insulating property of the pipe 16 is set from the upstream portion US to the downstream portion DS according to the temperature change of the EGR gas flowing therethrough. Therefore, the EGR gas can be effectively kept warm from the upstream portion US to the downstream portion DS of the pipe 16 in accordance with the temperature change of the EGR gas flowing through the pipe 16, and the heat resistance of the pipe 16 can be effectively secured.
<第3実施形態>
 次に、第3実施形態について図面を参照して詳細に説明する。
<Third Embodiment>
Next, the third embodiment will be described in detail with reference to the drawings.
[EGR弁の配置について]
 この実施形態では、EGR通路12におけるEGR弁14の配置の点で前記各実施形態と異なる。すなわち、図9に、EGRクーラ13からEGRガス分配器15までの構成を図2に準ずる構成図により示す。図9に示すように、この実施形態では、EGRクーラ13のケーシング21の流路部21fに、EGR弁14を組み付けるための組付部21hが設けられ、その組付部21hの孔にEGR弁14のハウジング46が組み入れられる(ドロップイン)ことで、EGR弁14がEGRクーラ13に取り付けられる。EGR弁14のハウジング46は、EGRガスを保温する機能を有する樹脂材により構成され、流路34と、弁体36が着座する弁座35が設けられる。EGRクーラ13の出口21cには、樹脂材により構成される配管16の入口16aが接続される。配管16の内壁には、破線で示す断熱コート41が設けられる。この実施形態でも、断熱コート41を、配管16の上流側から下流側にかけて一律の厚さで形成したり、配管16の下流側から上流側にかけ段階的又は徐々に増加するように形成したりすることができる。また、配管16のコーナ部で断熱コート41の厚さを他の部位よりも特に厚くすることができる。
[About the arrangement of EGR valves]
This embodiment differs from each of the above embodiments in that the EGR valve 14 is arranged in the EGR passage 12. That is, FIG. 9 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG. 2. As shown in FIG. 9, in this embodiment, an assembly portion 21h for assembling the EGR valve 14 is provided in the flow path portion 21f of the casing 21 of the EGR cooler 13, and the EGR valve is provided in the hole of the assembly portion 21h. By incorporating (drop-in) the housing 46 of 14, the EGR valve 14 is attached to the EGR cooler 13. The housing 46 of the EGR valve 14 is made of a resin material having a function of retaining heat of the EGR gas, and is provided with a flow path 34 and a valve seat 35 on which the valve body 36 is seated. The inlet 16a of the pipe 16 made of a resin material is connected to the outlet 21c of the EGR cooler 13. A heat insulating coat 41 shown by a broken line is provided on the inner wall of the pipe 16. Also in this embodiment, the heat insulating coat 41 is formed to have a uniform thickness from the upstream side to the downstream side of the pipe 16, or is formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe 16. be able to. Further, the thickness of the heat insulating coat 41 can be made particularly thicker at the corner portion of the pipe 16 than at other portions.
 加えて、この実施形態では、EGR弁14の流路34は、入口34aと出口34bを含み、流路34の入口34aが熱交換器23の出口23bに略隣接して配置される。 In addition, in this embodiment, the flow path 34 of the EGR valve 14 includes an inlet 34a and an outlet 34b, and the inlet 34a of the flow path 34 is arranged substantially adjacent to the outlet 23b of the heat exchanger 23.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第1実施形態とほぼ同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、EGR弁14がEGRクーラ13の組付部21hに組み付けられるので、EGR装置11の全体をコンパクト化することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, in this embodiment, since the EGR valve 14 is assembled to the assembly portion 21h of the EGR cooler 13, the entire EGR device 11 can be made compact.
 また、この実施形態の構成によれば、EGR弁14の流路34の入口34aが熱交換器23の出口23bに略隣接して配置されるので、熱交換器23の出口23bから流れ出たばかりのEGRガスがEGR弁14の樹脂製の流路34の入口34aに早期に流れ入る。このため、熱交換器23の出口23bから流れ出たばかりのEGRガスの温度低下をEGR弁14の流路34により抑制することができる。 Further, according to the configuration of this embodiment, since the inlet 34a of the flow path 34 of the EGR valve 14 is arranged substantially adjacent to the outlet 23b of the heat exchanger 23, it has just flowed out from the outlet 23b of the heat exchanger 23. The EGR gas flows into the inlet 34a of the resin flow path 34 of the EGR valve 14 at an early stage. Therefore, the temperature drop of the EGR gas that has just flowed out from the outlet 23b of the heat exchanger 23 can be suppressed by the flow path 34 of the EGR valve 14.
<第4実施形態>
 次に、第4実施形態について図面を参照して詳細に説明する。
<Fourth Embodiment>
Next, the fourth embodiment will be described in detail with reference to the drawings.
[EGR弁の配置について]
 この実施形態では、EGR通路12におけるEGR弁14の配置の点で前記各実施形態と異なる。すなわち、図10に、EGRクーラ13からEGRガス分配器15までの構成を図2に準ずる構成図により示す。図10に示すように、この実施形態では、樹脂材により構成されるEGRガス分配器15の入口側に、EGR弁14を組み付けるための組付部15cが設けられ、その組付部15cの孔にEGR弁14のハウジング46が組み入れられる(ドロップイン)ことで、EGR弁14がEGRガス分配器15に取り付けられる。EGR弁14のハウジング46は、EGRガスを保温する機能を有する樹脂材により構成され、流路34と、弁体36が着座する弁座35が設けられる。樹脂材により構成される組付部15cの底部には入口15dが設けられ、その入口15dには、配管16の出口16bが接続される。配管16の内壁及びハウジング46の流路34の内壁には、破線で示す断熱コート41が設けられる。この実施形態でも、断熱コート41を、配管16の上流側から下流側にかけて一律の厚さで形成したり、配管16の下流側から上流側にかけ段階的又は徐々に増加するように形成したりすることもできる。
[About the arrangement of EGR valves]
This embodiment differs from each of the above embodiments in that the EGR valve 14 is arranged in the EGR passage 12. That is, FIG. 10 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. 2. As shown in FIG. 10, in this embodiment, an assembly portion 15c for assembling the EGR valve 14 is provided on the inlet side of the EGR gas distributor 15 made of a resin material, and a hole of the assembly portion 15c is provided. The EGR valve 14 is attached to the EGR gas distributor 15 by incorporating the housing 46 of the EGR valve 14 into the EGR valve 14 (drop-in). The housing 46 of the EGR valve 14 is made of a resin material having a function of retaining heat of the EGR gas, and is provided with a flow path 34 and a valve seat 35 on which the valve body 36 is seated. An inlet 15d is provided at the bottom of the assembly portion 15c made of a resin material, and the outlet 16b of the pipe 16 is connected to the inlet 15d. A heat insulating coat 41 shown by a broken line is provided on the inner wall of the pipe 16 and the inner wall of the flow path 34 of the housing 46. Also in this embodiment, the heat insulating coat 41 is formed to have a uniform thickness from the upstream side to the downstream side of the pipe 16, or is formed so as to gradually or gradually increase from the downstream side to the upstream side of the pipe 16. You can also do it.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第1実施形態とほぼ同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、EGR弁14がEGRガス分配器15の組付部15cに組み付けられるので、EGR装置11の全体をコンパクト化することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, in this embodiment, since the EGR valve 14 is assembled to the assembly portion 15c of the EGR gas distributor 15, the entire EGR device 11 can be made compact.
<第5実施形態>
 次に、第5実施形態について図面を参照して詳細に説明する。
<Fifth Embodiment>
Next, the fifth embodiment will be described in detail with reference to the drawings.
[保温手段の構成について]
 この実施形態では、配管16における保温手段の構成の点で前記各実施形態と異なる。すなわち、図11に、配管16をその長手方向と直交する方向に切断した断面図により示す。図11に示すように、この実施形態の保温手段は、配管16(中流通路部MSP)を加熱するための加熱部50により構成される。この実施形態で、加熱部50は、樹脂材により構成される配管16の内壁に設けられ、通電により発熱する発熱被膜51により構成される。図11において、発熱被膜51には、プラス端子53aを有するプラス電極53と、マイナス端子54aを有するマイナス電極54とが接続される。そして、プラス端子53a及びマイナス端子54aからプラス電極53及びマイナス電極54を介して発熱被膜51が通電されるようになっている。
[About the configuration of heat insulating means]
This embodiment is different from each of the above-described embodiments in the configuration of the heat insulating means in the pipe 16. That is, FIG. 11 shows a cross-sectional view of the pipe 16 cut in a direction orthogonal to the longitudinal direction thereof. As shown in FIG. 11, the heat insulating means of this embodiment is composed of a heating unit 50 for heating the pipe 16 (middle flow passage unit MSP). In this embodiment, the heating unit 50 is provided on the inner wall of the pipe 16 made of a resin material, and is composed of a heat generating film 51 that generates heat by energization. In FIG. 11, a positive electrode 53 having a positive terminal 53a and a negative electrode 54 having a negative terminal 54a are connected to the heat generating film 51. Then, the heat generating film 51 is energized from the positive terminal 53a and the negative terminal 54a via the positive electrode 53 and the negative electrode 54.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11構成によれば、第1実施形態とほぼ同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、保温手段が加熱部50であることから、中流通路部MSPを構成する配管16を加熱部50により加熱することで、その配管16の保温と昇温の両方が可能となる。より具体的には、プラス電極53及びマイナス電極54を介して発熱被膜51を通電により発熱させることで、配管16(中流通路部MSP)の内壁が任意のタイミングで、面的に広く加熱される。このため、配管16を流れるEGRガスを有効に保温することができる。また、配管16を流れるEGRガスを応答性良く、安定的に保温することができる。この結果、EGRガス分配器15へ流れるEGRガスを有効に保温することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 configuration of this embodiment, the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, since the heat retaining means is the heating unit 50, by heating the pipe 16 constituting the middle flow passage portion MSP by the heating unit 50, both the heat retention and the temperature rise of the pipe 16 become possible. More specifically, by generating heat by energizing the heating film 51 via the positive electrode 53 and the negative electrode 54, the inner wall of the pipe 16 (middle flow passage portion MSP) is heated over a wide area at an arbitrary timing. To. Therefore, the EGR gas flowing through the pipe 16 can be effectively kept warm. Further, the EGR gas flowing through the pipe 16 can be responsively and stably kept warm. As a result, the EGR gas flowing to the EGR gas distributor 15 can be effectively kept warm.
<第6実施形態>
 次に、第6実施形態について図面を参照して詳細に説明する。
<Sixth Embodiment>
Next, the sixth embodiment will be described in detail with reference to the drawings.
[保温手段の構成について]
 この実施形態では、配管16における保温手段の構成の点で前記各実施形態と異なる。すなわち、図12に、配管16をその長手方向と直交する方向に切断した断面図により示す。図12に示すように、この実施形態の保温手段は、EGRガスを保温する機能を有する樹脂材より構成される配管16(中流通路部MSP)の外側に設けられる空気層56により構成される。配管16は、外管16cと内管16dにより二重管構造をなし、両管16c,16dの間に空気層56が形成される。
[About the configuration of heat insulating means]
This embodiment is different from each of the above-described embodiments in the configuration of the heat insulating means in the pipe 16. That is, FIG. 12 shows a cross-sectional view of the pipe 16 cut in a direction orthogonal to the longitudinal direction thereof. As shown in FIG. 12, the heat insulating means of this embodiment is composed of an air layer 56 provided on the outside of a pipe 16 (middle flow passage portion MSP) made of a resin material having a function of keeping heat of EGR gas. .. The pipe 16 has a double pipe structure formed by the outer pipe 16c and the inner pipe 16d, and an air layer 56 is formed between the two pipes 16c and 16d.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第1実施形態とほぼ同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、保温手段が空気層56であることから、保温手段のために特別な部材を使う必要がない。このため、保温手段の分だけEGR装置11を構成する部品点数を減らすことができる。この空気層56によっても、配管16を流れるEGRガスを有効に保温することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, since the heat insulating means is the air layer 56, it is not necessary to use a special member for the heat insulating means. Therefore, the number of parts constituting the EGR device 11 can be reduced by the amount of the heat insulating means. The air layer 56 can also effectively keep the EGR gas flowing through the pipe 16 warm.
<第7実施形態>
 次に、第7実施形態について図面を参照して詳細に説明する。
<7th Embodiment>
Next, the seventh embodiment will be described in detail with reference to the drawings.
[バイパス通路の構成について]
 この実施形態では、EGRクーラ13に設けられるバイパス通路21gの構成の点で前記各実施形態と異なる。すなわち、図13に、EGRクーラ13からEGRガス分配器15までの構成を図2に準ずる構成図により示す。図13に示すように、この実施形態では、バイパス通路21gの一部を冷却するための冷却部58を更に設けた点で第1実施形態と構成が異なる。冷却部58は、バイパス通路21gの長手方向の一部にてその周囲に設けられ、エンジン1の冷却水が循環するようになっている。
[About the configuration of the bypass passage]
This embodiment differs from each of the above embodiments in that the bypass passage 21g provided in the EGR cooler 13 is configured. That is, FIG. 13 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG. 2. As shown in FIG. 13, this embodiment differs from the first embodiment in that a cooling unit 58 for cooling a part of the bypass passage 21g is further provided. The cooling unit 58 is provided around a part of the bypass passage 21g in the longitudinal direction so that the cooling water of the engine 1 circulates.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、前記第1実施形態と同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、バイパス通路21gを流れるEGRガスが冷却部58により冷却されるので、バイパス通路21gからEGR弁14の流路34及び配管16(中流通路部MSP)へ流入するEGRガスの温度が低下する。このため、EGRガスの温度を、流路34及び配管16(中流通路部MSP)を構成する樹脂材の耐熱温度に近付けることができ、バイパス通路21gに高温のEGRガスが流れても、EGRガスによる流路34及び配管16(中流通路部MSP)の過熱による溶損を抑制することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, in addition to the same actions and effects as those of the first embodiment, the following actions and effects can be obtained. That is, in this embodiment, since the EGR gas flowing through the bypass passage 21g is cooled by the cooling unit 58, the EGR gas flowing from the bypass passage 21g into the flow path 34 of the EGR valve 14 and the pipe 16 (middle flow passage portion MSP). The temperature drops. Therefore, the temperature of the EGR gas can be brought close to the heat resistant temperature of the resin material constituting the flow path 34 and the pipe 16 (middle flow passage portion MSP), and even if the high temperature EGR gas flows through the bypass passage 21 g, the EGR gas can be brought close to the heat resistant temperature. It is possible to suppress melting damage due to overheating of the flow path 34 and the pipe 16 (middle flow passage portion MSP) due to gas.
<第8実施形態>
 次に、第8実施形態について図面を参照して詳細に説明する。
<8th Embodiment>
Next, the eighth embodiment will be described in detail with reference to the drawings.
[保温手段の構成について]
 この実施形態では、EGR弁14及び配管16における保温手段の構成の点で前記各実施形態と異なる。すなわち、図14に、EGRクーラ13からEGRガス分配器15までの構成を図2に準ずる構成図により示す。前記第1実施形態では、EGR弁14の流路34の内壁と、樹脂材(66ナイロン)により構成される配管16の内壁に保温手段としての断熱コート41を設けた。これに対し、この実施形態では、断熱コートを省略し、断熱コートを設ける代わりに、EGR弁14の流路34及び配管16を、EGRガスを保温する機能を有する樹脂材(例えば、「芳香族ナイロン」)により形成することで保温手段が構成される。ここで、流路34については、内ハウジング39及び流路部材40を、例えば、芳香族ナイロンにより形成することになる。
[About the configuration of heat insulating means]
This embodiment is different from each of the above-described embodiments in the configuration of the heat insulating means in the EGR valve 14 and the pipe 16. That is, FIG. 14 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. 2. In the first embodiment, a heat insulating coat 41 as a heat insulating means is provided on the inner wall of the flow path 34 of the EGR valve 14 and the inner wall of the pipe 16 made of a resin material (66 nylon). On the other hand, in this embodiment, instead of omitting the heat insulating coat and providing the heat insulating coat, the flow path 34 and the pipe 16 of the EGR valve 14 are made of a resin material having a function of retaining heat of the EGR gas (for example, "aromatic". The heat insulating means is configured by forming it from "nylon"). Here, with respect to the flow path 34, the inner housing 39 and the flow path member 40 are formed of, for example, aromatic nylon.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第1実施形態とほぼ同等の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、EGR弁14の流路34及び配管16を構成する樹脂材を、例えば、芳香族ナイロンにより構成した場合、芳香族ナイロンは、66ナイロンよりも耐熱温度が高いことから、流路34及び配管16自体に保温性が得られ、保温手段を別途設ける必要がない。このため、保温手段を備えたEGR装置11の製造を容易化することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects substantially equivalent to those of the first embodiment. That is, when the resin material constituting the flow path 34 and the pipe 16 of the EGR valve 14 is made of, for example, aromatic nylon, the heat resistant temperature of the aromatic nylon is higher than that of 66 nylon, so that the flow path 34 and the pipe The heat retaining property is obtained in the 16 itself, and it is not necessary to separately provide a heat retaining means. Therefore, it is possible to facilitate the manufacture of the EGR device 11 provided with the heat insulating means.
<第9実施形態>
 次に、第9実施形態について図面を参照して詳細に説明する。
<9th embodiment>
Next, the ninth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記各実施形態と異なる。すなわち、図15に、EGRクーラ13からEGRガス分配器15までの構成を図9に準ずる構成図により示す。前記第3実施形態では、EGR弁14の流路34の内壁を樹脂材により構成すると共に、樹脂材により構成される配管16(中流通路部MSP)の内壁に保温手段としての断熱コート41を設けた。これに対し、この実施形態では、配管16(中流通路部MSP)において、断熱コートを省略し、断熱コートを設ける代わりに、配管16の流路長手方向に沿って温水が流れる温水通路61が形成される。温水通路61には、例えば、エンジン1を冷却することで温められた温水としてのエンジン冷却水が流れるようになっている。温水通路61は、配管16の入口16aの近傍に設けられた入口61aと、配管16の出口16bの近傍に設けられた出口61bを含む。エンジン冷却水は、温水通路61に対し、その入口61aから流れ込み、その出口61bから流れ出るようになっている。図16に、配管16を図15のC-C線断面図により示す。図16に示すように、この実施形態の配管16は、二重管構造をなし、温水通路61を挟んだ外側の外管16cと内側の内管16dとを含み、それらが分割されることなく一体に形成される。この実施形態では、外管16cの厚みが内管16dの厚みより大きくなっている。温水通路61は、この開示技術の加熱部50の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from each of the above-described embodiments in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 15 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. In the third embodiment, the inner wall of the flow path 34 of the EGR valve 14 is made of a resin material, and the inner wall of the pipe 16 (middle flow passage portion MSP) made of the resin material is provided with a heat insulating coat 41 as a heat insulating means. Provided. On the other hand, in this embodiment, in the pipe 16 (middle flow passage portion MSP), instead of omitting the heat insulating coat and providing the heat insulating coat, the hot water passage 61 through which hot water flows along the longitudinal direction of the flow path of the pipe 16 is provided. It is formed. For example, engine cooling water as hot water warmed by cooling the engine 1 flows through the hot water passage 61. The hot water passage 61 includes an inlet 61a provided in the vicinity of the inlet 16a of the pipe 16 and an outlet 61b provided in the vicinity of the outlet 16b of the pipe 16. The engine cooling water flows into the hot water passage 61 from the inlet 61a and flows out from the outlet 61b. FIG. 16 shows the pipe 16 with a cross-sectional view taken along the line CC of FIG. As shown in FIG. 16, the pipe 16 of this embodiment has a double pipe structure, includes an outer outer pipe 16c and an inner inner pipe 16d sandwiching the hot water passage 61, and they are not divided. It is formed integrally. In this embodiment, the thickness of the outer tube 16c is larger than the thickness of the inner tube 16d. The hot water passage 61 corresponds to an example of the heating unit 50 of this disclosed technique.
 ここで、図15に示すように、この実施形態では、EGR弁14と配管16とが、EGR弁14の出口側にてケーシング21の出口21cに設けられる弁出口フランジ21iと、配管16の入口側に設けられる管入口フランジ16eとを介して接続される。また、配管16とEGRガス分配器15(下流通路部DSP)とが、配管16の出口側に設けられる管出口フランジ16fと、EGRガス分配器15の入口側に設けられる分配器入口フランジ15e(通路部入口フランジ)とを介して接続される。 Here, as shown in FIG. 15, in this embodiment, the EGR valve 14 and the pipe 16 are the valve outlet flange 21i provided at the outlet 21c of the casing 21 on the outlet side of the EGR valve 14, and the inlet of the pipe 16. It is connected via a pipe inlet flange 16e provided on the side. Further, the pipe 16 and the EGR gas distributor 15 (downstream passage portion DSP) are provided with a pipe outlet flange 16f provided on the outlet side of the pipe 16 and a distributor inlet flange 15e provided on the inlet side of the EGR gas distributor 15. It is connected via the passage portion entrance flange).
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第5実施形態とほぼ同等の作用及び効果を得ることができる。すなわち、この実施形態のEGR装置11は、中流通路部MSPを構成する配管16の保温手段が加熱部50であることから、配管16を加熱部50により加熱することで、その配管16の保温と昇温の両方が可能となる。より具体的には、温水通路61にエンジン冷却水(温水)が流れることで、配管16(中流通路部MSP)の内壁が面的に広く加熱される。このため、配管16を流れるEGRガスを有効に保温することができる。また、配管16を流れるEGRガスを応答性良く、安定的に保温することができる。この結果、EGRガス分配器15へ流れるEGRガスを有効に保温することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, it is possible to obtain almost the same operation and effect as that of the fifth embodiment. That is, in the EGR device 11 of this embodiment, since the heat insulating means of the pipe 16 constituting the middle flow passage portion MSP is the heating unit 50, the pipe 16 is heated by the heating unit 50 to keep the pipe 16 warm. And temperature rise are possible. More specifically, the engine cooling water (hot water) flows through the hot water passage 61, so that the inner wall of the pipe 16 (middle flow passage portion MSP) is heated widely in terms of surface. Therefore, the EGR gas flowing through the pipe 16 can be effectively kept warm. Further, the EGR gas flowing through the pipe 16 can be responsively and stably kept warm. As a result, the EGR gas flowing to the EGR gas distributor 15 can be effectively kept warm.
 この実施形態の構成によれば、加熱部50が、温水が流れる温水通路61により構成されるので、エンジン1を冷却することで温められたエンジン冷却水を温水として利用し、温水通路61へ流すことが可能となる。このため、第5実施形態とは異なり、電気的構成を用いることなく加熱することができる。また、配管16のEGRガスの流れが停止しても、温水通路61の温水により配管16の加熱が継続されるので、配管16をEGRガスが再び流れたときに、配管16での凝縮水の発生を抑制することができる。 According to the configuration of this embodiment, since the heating unit 50 is composed of the hot water passage 61 through which the hot water flows, the engine cooling water warmed by cooling the engine 1 is used as hot water and flows to the hot water passage 61. It becomes possible. Therefore, unlike the fifth embodiment, heating can be performed without using an electric configuration. Further, even if the flow of the EGR gas in the pipe 16 is stopped, the heating of the pipe 16 is continued by the hot water in the hot water passage 61. Therefore, when the EGR gas flows through the pipe 16 again, the condensed water in the pipe 16 is continued. Occurrence can be suppressed.
 この実施形態の構成によれば、配管16(中流通路部MSP)は、温水通路61を挟んだ外管16cの厚みが内管16dの厚みよりも大きいので、温水の熱が内管16dの内壁には伝わり易く、外管16cの外壁へは逃げ難い。このため、内管16dの内部を流れるEGRガスの加熱性及び保温性を高めることができる。 According to the configuration of this embodiment, in the pipe 16 (middle flow passage portion MSP), the thickness of the outer pipe 16c sandwiching the hot water passage 61 is larger than the thickness of the inner pipe 16d, so that the heat of the hot water is the inner pipe 16d. It is easily transmitted to the inner wall and difficult to escape to the outer wall of the outer pipe 16c. Therefore, the heatability and heat retention of the EGR gas flowing inside the inner tube 16d can be enhanced.
 この実施形態の構成によれば、温水通路61が配管16(中流通路部MSP)の流路長手方向に沿って設けられるので、配管16でのEGRガスの流れに沿ってEGRガスが長く温められる。この意味でも、配管16を流れるEGRガスの加熱性及び保温性を更に高めることができる。 According to the configuration of this embodiment, since the hot water passage 61 is provided along the flow path longitudinal direction of the pipe 16 (middle flow passage portion MSP), the EGR gas is warmed long along the flow of the EGR gas in the pipe 16. Will be. In this sense as well, the heatability and heat retention of the EGR gas flowing through the pipe 16 can be further enhanced.
<第10実施形態>
 次に、第10実施形態について図面を参照して詳細に説明する。
<10th Embodiment>
Next, the tenth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16において、加熱部50としての温水通路61の構成の点で前記第9実施形態と異なる。すなわち、図17に、配管16の構成を図16に準ずる断面図により示す。図17に示すように、この実施形態の配管16は、その上側を形成する上管部62と、その下側を形成する下管部63とを接合することで構成される。この実施形態では、下管部63のみに温水通路61が形成され、上管部62には温水通路61が形成されていない。すなわち、下管部63は、温水通路61を挟んだ外管16cと内管16dにより形成される。上管部62は、下管部63の内管16dと同等の外径を有し、下管部63との接合部には、その長手方向に沿ってフランジ62aが形成される。そして、上管部62のフランジ62aと、下管部63の上端面63aとが溶着64により接合されることで配管16が形成される。
[About the configuration of the heating part]
This embodiment is different from the ninth embodiment in the configuration of the hot water passage 61 as the heating unit 50 in the pipe 16. That is, FIG. 17 shows the configuration of the pipe 16 in a cross-sectional view according to FIG. As shown in FIG. 17, the pipe 16 of this embodiment is configured by joining the upper pipe portion 62 forming the upper side thereof and the lower pipe portion 63 forming the lower side thereof. In this embodiment, the hot water passage 61 is formed only in the lower pipe portion 63, and the hot water passage 61 is not formed in the upper pipe portion 62. That is, the lower pipe portion 63 is formed by the outer pipe 16c and the inner pipe 16d sandwiching the hot water passage 61. The upper pipe portion 62 has an outer diameter equivalent to that of the inner pipe 16d of the lower pipe portion 63, and a flange 62a is formed at the joint portion with the lower pipe portion 63 along the longitudinal direction thereof. Then, the flange 62a of the upper pipe portion 62 and the upper end surface 63a of the lower pipe portion 63 are joined by welding 64 to form the pipe 16.
 図17には、配管16の下側に温水通路61を設けたが、図17の上管部62と下管部63を上下逆に配置することで、配管16の上側に温水通路61を設けることもできる。 In FIG. 17, the hot water passage 61 is provided on the lower side of the pipe 16, but by arranging the upper pipe portion 62 and the lower pipe portion 63 upside down in FIG. 17, the hot water passage 61 is provided on the upper side of the pipe 16. You can also do it.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、配管16に接する温水通路61の面積は少なくなるものの、第9実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, although the area of the hot water passage 61 in contact with the pipe 16 is reduced, almost the same operation and effect as those of the ninth embodiment can be obtained.
<第11実施形態>
 次に、第11実施形態について図面を参照して詳細に説明する。
<11th Embodiment>
Next, the eleventh embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第9及び第10の実施形態と異なる。すなわち、図18に、EGRクーラ13からEGRガス分配器15までの構成を図15に準ずる構成図により示す。前記第9及び第10の実施形態では、樹脂材により構成される配管16(中流通路部MSP)の長手方向に沿って温水が流れる温水通路61を、配管16を二重管構造に形成することで一体に形成した。これに対し、この実施形態では、温水通路61は、配管16の流路長手方向に沿って設けられる断面円形の金属パイプ66により構成される。この実施形態では、金属パイプ66は、樹脂製の配管16にインサート成形により固定される。図18に示すように、金属パイプ66は、温水通路61の入口61aの近傍が直角に曲げられ、この曲げられた状態で金属パイプ66が配管16にインサート成形される。図19に、配管16を図18のD-D線断面図により示す。図19に示すように、この実施形態の配管16は、上管部62と下管部63とを含み、両者62,63は、ほぼ同等の外径を有する。上管部62と下管部63には、それぞれ長手方向に沿ってフランジ62a,63bが形成される。そして、上管部62のフランジ62aと、下管部63のフランジ63bとが溶着64により接合されることで配管16が構成される。この実施形態では、下管部63のみに一つの金属パイプ66がインサート成形されることで固定され、上管部62には金属パイプは固定されていない。この実施形態では、金属パイプ66は、その全体が下管部63にて樹脂材で完全に覆われるようにインサート成形される。金属パイプ66は、例えば、アルミ製パイプや鉄メッキ製パイプにより構成することができる。
[About the configuration of the heating part]
This embodiment is different from the ninth and tenth embodiments in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 18 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 with a configuration diagram according to FIG. In the ninth and tenth embodiments, the hot water passage 61 through which hot water flows along the longitudinal direction of the pipe 16 (middle flow passage portion MSP) made of a resin material is formed in a double pipe structure. It was formed integrally. On the other hand, in this embodiment, the hot water passage 61 is composed of a metal pipe 66 having a circular cross section provided along the longitudinal direction of the flow path of the pipe 16. In this embodiment, the metal pipe 66 is fixed to the resin pipe 16 by insert molding. As shown in FIG. 18, in the metal pipe 66, the vicinity of the inlet 61a of the hot water passage 61 is bent at a right angle, and the metal pipe 66 is insert-molded into the pipe 16 in this bent state. FIG. 19 shows the pipe 16 with a cross-sectional view taken along the line DD of FIG. As shown in FIG. 19, the pipe 16 of this embodiment includes an upper pipe portion 62 and a lower pipe portion 63, and both 62 and 63 have substantially the same outer diameter. Flange 62a and 63b are formed in the upper pipe portion 62 and the lower pipe portion 63, respectively, along the longitudinal direction. Then, the flange 62a of the upper pipe portion 62 and the flange 63b of the lower pipe portion 63 are joined by welding 64 to form the pipe 16. In this embodiment, one metal pipe 66 is fixed by insert molding only to the lower pipe portion 63, and the metal pipe is not fixed to the upper pipe portion 62. In this embodiment, the metal pipe 66 is insert-molded so that the entire metal pipe 66 is completely covered with the resin material by the lower pipe portion 63. The metal pipe 66 can be made of, for example, an aluminum pipe or an iron-plated pipe.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、配管16に加熱部50としての温水通路61が設けられるので、前記第9及び第10の実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, since the hot water passage 61 as the heating unit 50 is provided in the pipe 16, it is possible to obtain almost the same operation and effect as those of the ninth and tenth embodiments.
 この実施形態の構成によれば、温水通路61が配管16(中流通路部MSP)の流路長手方向に沿って設けられる金属パイプ66により構成されるので、温水通路61が、外乱による亀裂に対し樹脂材より有利となる。このため、温水通路61としての耐久性を高めることができる。 According to the configuration of this embodiment, since the hot water passage 61 is composed of the metal pipe 66 provided along the longitudinal direction of the flow path of the pipe 16 (middle flow passage portion MSP), the hot water passage 61 is cracked due to disturbance. On the other hand, it is more advantageous than the resin material. Therefore, the durability of the hot water passage 61 can be enhanced.
 この実施形態の構成によれば、金属パイプ66が配管16(中流通路部MSP)に対しインサート成形により固定されるので、金属パイプ66の配管16に対する密着性が良くなり、金属パイプ66との配管16との接触面積が大きくなる。このため、温水通路61のエンジン冷却水(温水)による、配管16を流れるEGRガスの加熱性及び保温性を高めることができる。また、金属パイプ66が配管16の内壁から露出しないことで、凝縮水による金属パイプ66の腐食を防止することができる。 According to the configuration of this embodiment, since the metal pipe 66 is fixed to the pipe 16 (middle flow passage portion MSP) by insert molding, the adhesion of the metal pipe 66 to the pipe 16 is improved, and the metal pipe 66 is connected to the metal pipe 66. The contact area with the pipe 16 becomes large. Therefore, it is possible to improve the heatability and heat retention of the EGR gas flowing through the pipe 16 by the engine cooling water (hot water) of the hot water passage 61. Further, since the metal pipe 66 is not exposed from the inner wall of the pipe 16, it is possible to prevent the metal pipe 66 from being corroded by the condensed water.
 また、この実施形態の構成によれば、温水通路61が金属パイプ66で形成されるので、金属パイプ66に外乱により亀裂が入ることがなく、温水通路61を流れるエンジン冷却水が、配管16の内側へ漏れ出るおそれがない。また、図19に示すように、金属パイプ66を配管16の内壁から露出させないことで、金属パイプ66が樹脂材で完全に覆われるので、配管16の内側で発生した凝縮水が金属パイプ66に接触することがない。更に、金属パイプ66を、例えば、アルミ製パイプや鉄メッキ製パイプにより構成できるので、製造コストを抑えることができる。 Further, according to the configuration of this embodiment, since the hot water passage 61 is formed by the metal pipe 66, the metal pipe 66 is not cracked due to disturbance, and the engine cooling water flowing through the hot water passage 61 is the pipe 16. There is no risk of leaking inward. Further, as shown in FIG. 19, by not exposing the metal pipe 66 from the inner wall of the pipe 16, the metal pipe 66 is completely covered with the resin material, so that the condensed water generated inside the pipe 16 becomes the metal pipe 66. There is no contact. Further, since the metal pipe 66 can be made of, for example, an aluminum pipe or an iron-plated pipe, the manufacturing cost can be suppressed.
 この実施形態の構成によれば、金属パイプ66の一部が折り曲げられて配管16にインサート成形されるので、金属パイプ66を配管16に対し位置決めされる。このため、配管16における金属パイプ66の位置ずれを防止することができる。 According to the configuration of this embodiment, since a part of the metal pipe 66 is bent and insert-molded into the pipe 16, the metal pipe 66 is positioned with respect to the pipe 16. Therefore, it is possible to prevent the metal pipe 66 from being displaced in the pipe 16.
<第12実施形態>
 次に、第12実施形態について図面を参照して詳細に説明する。
<12th Embodiment>
Next, the twelfth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第11実施形態と異なる。すなわち、図20に、配管16を図19に準ずる断面図により示す。図20に示すように、この実施形態では、下管部63のみに断面円形の二つの金属パイプ66が平行に配置されてインサート成形されることで固定される。その他の構成については、第11実施形態のそれと同じである。
[About the configuration of the heating part]
This embodiment is different from the eleventh embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 20 shows the pipe 16 in a cross-sectional view according to FIG. As shown in FIG. 20, in this embodiment, two metal pipes 66 having a circular cross section are arranged in parallel only on the lower pipe portion 63 and fixed by insert molding. Other configurations are the same as those of the eleventh embodiment.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、前記第11実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、下管部63のみに断面円形の二つの金属パイプ66が平行に配置されてインサート成形されることで固定され、これにより温水通路61が構成される。従って、配管16に接する温水通路61の面積が増える。このため、温水通路61のエンジン冷却水(温水)による、配管16を流れるEGRガスの加熱性及び保温性を更に高めることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the eleventh embodiment. That is, in this embodiment, two metal pipes 66 having a circular cross section are arranged in parallel only on the lower pipe portion 63 and fixed by insert molding, thereby forming a hot water passage 61. Therefore, the area of the hot water passage 61 in contact with the pipe 16 increases. Therefore, the heatability and heat retention of the EGR gas flowing through the pipe 16 by the engine cooling water (hot water) of the hot water passage 61 can be further improved.
<第13実施形態>
 次に、第13実施形態について図面を参照して詳細に説明する。
<13th Embodiment>
Next, the thirteenth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第11及び第12の実施形態と異なる。すなわち、図21に、配管16を図19に準ずる断面図により示す。図21に示すように、この実施形態では、下管部63のみに断面楕円形の一つの金属パイプ67が配置されてインサート成形されることで固定される。図21に示す断面において、金属パイプ67の長径は、金属パイプ66の外径の約二倍に設定され、配管16の水平方向と平行に配置される。また、金属パイプ67の短径は、金属パイプ66の外径とほぼ同じに設定され、配管16の垂直方向と平行に配置される。その他の構成については、第11及び第12の実施形態のそれと同じである。
[About the configuration of the heating part]
This embodiment is different from the eleventh and twelfth embodiments in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 21 shows the pipe 16 in a cross-sectional view according to FIG. As shown in FIG. 21, in this embodiment, one metal pipe 67 having an elliptical cross section is arranged only in the lower pipe portion 63 and fixed by insert molding. In the cross section shown in FIG. 21, the major axis of the metal pipe 67 is set to be about twice the outer diameter of the metal pipe 66, and is arranged parallel to the horizontal direction of the pipe 16. Further, the minor diameter of the metal pipe 67 is set to be substantially the same as the outer diameter of the metal pipe 66, and is arranged in parallel with the vertical direction of the pipe 16. Other configurations are the same as those of the eleventh and twelfth embodiments.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、下管部63のみに断面楕円形状の一つの金属パイプ67がインサート成形されることで固定され、これにより温水通路61が構成されるので、第12実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, one metal pipe 67 having an elliptical cross section is inserted and fixed only to the lower pipe portion 63, whereby the hot water passage 61 is formed. Therefore, the twelfth embodiment is performed. It is possible to obtain almost the same action and effect as the morphology.
<第14実施形態>
 次に、第14実施形態について図面を参照して詳細に説明する。
<14th Embodiment>
Next, the 14th embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第9実施形態と異なる。すなわち、図22に、配管16を図19に準ずる断面図により示す。図22に示すように、この実施形態では、下管部63のみに断面円形の一つの金属パイプ66がインサート成形されることで固定される。ここで、図22において、金属パイプ66の上側には、金属パイプ66に接するように、断面波形をなす金属製の放熱板68が設けられ、その放熱板68が金属パイプ66と一体に配管16にインサート成形されることで固定される。図22の断面図において、放熱板68の横幅は、金属パイプ66の外径の3倍以上の長さが望ましい。その他の構成については、第9実施形態のそれと同じである。
[About the configuration of the heating part]
This embodiment is different from the ninth embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 22 shows the pipe 16 in a cross-sectional view according to FIG. As shown in FIG. 22, in this embodiment, one metal pipe 66 having a circular cross section is inserted and fixed only to the lower pipe portion 63. Here, in FIG. 22, a metal heat sink 68 having a cross-sectional waveform is provided on the upper side of the metal pipe 66 so as to be in contact with the metal pipe 66, and the heat sink 68 is integrally piped with the metal pipe 66. It is fixed by being insert-molded into. In the cross-sectional view of FIG. 22, the width of the heat sink 68 is preferably three times or more the outer diameter of the metal pipe 66. Other configurations are the same as those of the ninth embodiment.
[EGR装置の作用及び効果について]
 従って、この実施形態のEGR装置11によれば、配管16の下管部63に対し、一つの金属パイプ66とそれに接する放熱板68が、インサート成形されることで一体に固定される。このため、第9実施形態の作用及び効果に加え、金属パイプ66から配管16への放熱特性を放熱板68により向上させることができる。
[About the action and effect of the EGR device]
Therefore, according to the EGR device 11 of this embodiment, one metal pipe 66 and the heat radiating plate 68 in contact with the metal pipe 66 are integrally fixed to the lower pipe portion 63 of the pipe 16 by insert molding. Therefore, in addition to the operation and effect of the ninth embodiment, the heat dissipation characteristic from the metal pipe 66 to the pipe 16 can be improved by the heat sink 68.
<第15実施形態>
 次に、第15実施形態について図面を参照して詳細に説明する。
<15th Embodiment>
Next, the fifteenth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第9実施形態と異なる。すなわち、図23に、配管16を図19に準ずる断面図により示す。図23に示すように、この実施形態では、下管部63のみに断面円形の一つの金属パイプ66がインサート成形されることで固定される。ここで、図23に示すように、金属パイプ66の上側は、配管16の内側、すなわちEGRガスが流れる流路の中に露出して配置される。なお、この実施形態の金属パイプ66は、錆止めのためにSUSにより形成される。その他の構成については、第9実施形態のそれと同じである。
[About the configuration of the heating part]
This embodiment is different from the ninth embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 23 shows the pipe 16 in a cross-sectional view according to FIG. As shown in FIG. 23, in this embodiment, one metal pipe 66 having a circular cross section is inserted and fixed only to the lower pipe portion 63. Here, as shown in FIG. 23, the upper side of the metal pipe 66 is exposed and arranged inside the pipe 16, that is, in the flow path through which the EGR gas flows. The metal pipe 66 of this embodiment is formed of SUS to prevent rust. Other configurations are the same as those of the ninth embodiment.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、下管部63のみに一つの金属パイプ66がインサート成形されると共に、金属パイプ66の上側が、配管16の内側の流路の中に露出して配置される。このため、この実施形態では、第9実施形態の作用及び効果に加え、配管16の内側を流れるEGRガスに対し、温水通路61の熱を直接的に伝えることができ、金属パイプ66から配管16への放熱特性を向上させることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, one metal pipe 66 is insert-molded only in the lower pipe portion 63, and the upper side of the metal pipe 66 is exposed and arranged in the inner flow path of the pipe 16. Will be done. Therefore, in this embodiment, in addition to the operation and effect of the ninth embodiment, the heat of the hot water passage 61 can be directly transferred to the EGR gas flowing inside the pipe 16, and the metal pipe 66 to the pipe 16 can be directly transferred. It is possible to improve the heat dissipation characteristics to.
<第16実施形態>
 次に、第16実施形態について図面を参照して詳細に説明する。
<16th Embodiment>
Next, the 16th embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第9~第15の実施形態と異なる。すなわち、図24には、金属パイプ66が固定された配管16の一部を側面図により示す。図25には、金属パイプ66が固定された配管16を、図24のE-E線断面図により示す。図24、図25に示すように、配管16(中流通路部MSP)の下管部63には、その流路長手方向に沿って、一つの金属パイプ66を保持するための複数のパイプホルダ71が配管16と一体に形成される。図25に示すように、各パイプホルダ71は、金属パイプ66の外周を両脇から挟むように一対の爪部71aを一組として構成される。二つの爪部71aの間は下方へ向けて開き、それら爪部71aの間に金属パイプ66が嵌め込まれる。金属パイプ66は、このようにパイプホルダ71に嵌め込まれることで、下管部63に対しパイプホルダ71により保持されことで固定される。この固定状態において、金属パイプ66は、下管部63の下側外壁に沿って接触している。このパイプホルダ71は、この開示技術における保持手段の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the ninth to fifteenth embodiments in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 24 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view. FIG. 25 shows the pipe 16 to which the metal pipe 66 is fixed by the cross-sectional view taken along the line EE of FIG. 24. As shown in FIGS. 24 and 25, the lower pipe portion 63 of the pipe 16 (middle flow passage portion MSP) has a plurality of pipe holders for holding one metal pipe 66 along the longitudinal direction of the flow path. 71 is formed integrally with the pipe 16. As shown in FIG. 25, each pipe holder 71 is configured as a set of a pair of claw portions 71a so as to sandwich the outer periphery of the metal pipe 66 from both sides. The space between the two claws 71a opens downward, and the metal pipe 66 is fitted between the two claws 71a. By being fitted into the pipe holder 71 in this way, the metal pipe 66 is held by the pipe holder 71 with respect to the lower pipe portion 63 and is fixed. In this fixed state, the metal pipe 66 is in contact with the lower outer wall of the lower pipe portion 63. The pipe holder 71 corresponds to an example of a holding means in the disclosed technique.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、金属パイプ66の配管16に対する接触面積の点では第11実施形態のインサート成形より劣るものの、それ以外は第11実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the contact area of the metal pipe 66 with respect to the pipe 16 is inferior to that of the insert molding of the eleventh embodiment, but other than that, almost the same operation and effect as those of the eleventh embodiment are obtained. be able to.
 また、この実施形態の構成によれば、金属パイプ66が、配管16(中流通路部MSP)の流路長手方向に沿ってパイプホルダ71(保持手段)により保持されることで固定されるので、樹脂製の配管16と金属パイプ66との間の熱膨張差による樹脂亀裂と製造コストの点で、インサート成形による固定よりも優位となる。このため、金属パイプ66の延長と設計の自由度を向上させることができる。 Further, according to the configuration of this embodiment, the metal pipe 66 is fixed by being held by the pipe holder 71 (holding means) along the flow path longitudinal direction of the pipe 16 (middle flow passage portion MSP). In terms of resin cracks due to the difference in thermal expansion between the resin pipe 16 and the metal pipe 66 and manufacturing cost, it is superior to fixing by insert molding. Therefore, the extension of the metal pipe 66 and the degree of freedom in design can be improved.
<第17実施形態>
 次に、第17実施形態について図面を参照して詳細に説明する。
<17th Embodiment>
Next, the 17th embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第16実施形態と異なる。すなわち、図26には、金属パイプ66が固定された配管16の一部を側面図により示す。図27には、金属パイプ66が固定された配管16を、図26のF-F線断面図により示す。図26、図27に示すように、配管16(中流通路部MSP)の下管部63には、その長手方向に沿って、一つの金属パイプ66を保持するためのパイプホルダ73が設けられる。図27に示すように、パイプホルダ73は、金属パイプ66の下を受けるために下受け部74と、金属パイプ66の上側を受けるための上受け部75と、下受け部74を上受け部75に固定するための複数のクリップ76とから構成される。下受け部74は、金属パイプ66の下側を受けるために金属パイプ66の長手方向に沿って延び、断面円弧状をなし、両側にフランジ74aを有する。上受け部75は、金属パイプ66の上側を受けるために下管部63から下方へ突出すると共に金属パイプ66の長手方向に沿って延び、断面円弧状の凹部75aを有し、両側にフランジ75bが形成される。金属パイプ66は、その上側半分が上受け部75の凹部75aに嵌め入れられ、その下側半部が下受け部74で覆われ、それらのフランジ74a,75bが複数のクリップ76で挟持されることで配管16に固定される。この固定状態において、金属パイプ66は、下管部63の下側外壁に沿って接触している。このパイプホルダ73は、この開示技術における保持手段の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the 16th embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 26 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view. FIG. 27 shows a pipe 16 to which the metal pipe 66 is fixed by a sectional view taken along the line FF of FIG. 26. As shown in FIGS. 26 and 27, a pipe holder 73 for holding one metal pipe 66 is provided in the lower pipe portion 63 of the pipe 16 (middle flow passage portion MSP) along the longitudinal direction thereof. .. As shown in FIG. 27, the pipe holder 73 receives the lower receiving portion 74 for receiving the lower part of the metal pipe 66, the upper receiving portion 75 for receiving the upper side of the metal pipe 66, and the lower receiving portion 74. It is composed of a plurality of clips 76 for fixing to 75. The lower receiving portion 74 extends along the longitudinal direction of the metal pipe 66 to receive the lower side of the metal pipe 66, has an arcuate cross section, and has flanges 74a on both sides. The upper receiving portion 75 projects downward from the lower pipe portion 63 to receive the upper side of the metal pipe 66, extends along the longitudinal direction of the metal pipe 66, has a recess 75a having an arcuate cross section, and has flanges 75b on both sides. Is formed. The upper half of the metal pipe 66 is fitted into the recess 75a of the upper receiving portion 75, the lower half thereof is covered with the lower receiving portion 74, and the flanges 74a and 75b thereof are sandwiched by a plurality of clips 76. It is fixed to the pipe 16. In this fixed state, the metal pipe 66 is in contact with the lower outer wall of the lower pipe portion 63. The pipe holder 73 corresponds to an example of a holding means in the disclosed technique.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、金属パイプ66の配管16に対する接触面積の点では第11実施形態のインサート成形より劣るものの、それ以外は第11実施形態とほぼ同等の作用及び効果を得ることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the contact area of the metal pipe 66 with respect to the pipe 16 is inferior to that of the insert molding of the eleventh embodiment, but other than that, almost the same operation and effect as those of the eleventh embodiment are obtained. be able to.
<第18実施形態>
 次に、第18実施形態について図面を参照して詳細に説明する。
<18th Embodiment>
Next, the eighteenth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第16の実施形態と異なる。すなわち、図28には、金属パイプ66が固定された配管16を、図25に準ずる断面図により示す。図28に示すように、この実施形態では、パイプホルダ71(保持手段)により保持される金属パイプ66と配管16の下管部63との間に、金属パイプ66に沿って伸び、熱伝導性の良好な伝熱シート77が設けられる。この伝熱シート77は、柔軟なシート材(例えば、ゴムシート)により形成される。この実施形態は、この点で第16実施形態と異なる。この伝熱シート77は、この開示技術における伝熱部材の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the 16th embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 28 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 25. As shown in FIG. 28, in this embodiment, the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 of the pipe 16 extend along the metal pipe 66 and have thermal conductivity. A good heat transfer sheet 77 is provided. The heat transfer sheet 77 is formed of a flexible sheet material (for example, a rubber sheet). This embodiment differs from the 16th embodiment in this respect. The heat transfer sheet 77 corresponds to an example of a heat transfer member in the disclosed technique.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第16実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、パイプホルダ71(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に伝熱シート77が挟まれて設けられるので、金属パイプ66と下管部63との間に隙間がなくなり、両者66,63の間の密着性が向上する。このため、金属パイプ66の中の温水通路61を流れる温水による下管部63の内壁への伝熱性を向上させることができ、その内壁の昇温性を向上させることができ、配管16の内部を流れるEGRガスの昇温性を向上させることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 16th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. Therefore, there is no gap between the metal pipe 66 and the lower pipe portion 63, and the adhesion between the two 66 and 63 is improved. Therefore, the heat transfer property to the inner wall of the lower pipe portion 63 by the hot water flowing through the hot water passage 61 in the metal pipe 66 can be improved, the temperature rise property of the inner wall can be improved, and the inside of the pipe 16 can be improved. It is possible to improve the temperature rise property of the EGR gas flowing through the water.
 また、この実施形態の構成によれば、伝熱シート77の柔軟性により金属パイプ66と下管部63との間に熱膨張差が生じても、金属パイプ66及び下管部63と伝熱シート77との密着性は確保される。この意味で、温水通路61を流れる温水による下管部63の内壁への伝熱性を更に向上させることができ、その内壁の昇温性を更に向上させることができ、配管16の内部を流れるEGRガスの昇温性を更に向上させることができる。 Further, according to the configuration of this embodiment, even if a thermal expansion difference occurs between the metal pipe 66 and the lower pipe portion 63 due to the flexibility of the heat transfer sheet 77, heat transfer between the metal pipe 66 and the lower pipe portion 63 and the heat transfer portion 63. Adhesion with the sheet 77 is ensured. In this sense, the heat transfer property of the hot water flowing through the hot water passage 61 to the inner wall of the lower pipe portion 63 can be further improved, the temperature rise property of the inner wall can be further improved, and the EGR flowing inside the pipe 16 can be further improved. The temperature rise property of the gas can be further improved.
<第19実施形態>
 次に、第19実施形態について図面を参照して詳細に説明する。
<19th Embodiment>
Next, the 19th embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第17の実施形態と異なる。すなわち、図29には、金属パイプ66が固定された配管16を、図27に準ずる断面図により示す。図29に示すように、この実施形態では、パイプホルダ73(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に、金属パイプ66に沿って伸び、熱伝導性の良好なお伝熱シート77が設けられる。この実施形態は、この点で第17実施形態と異なる。この伝熱シート77は、この開示技術における伝熱部材の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the 17th embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 29 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 27. As shown in FIG. 29, in this embodiment, the metal pipe 66 is formed between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. A heat transfer sheet 77 that extends along the line and has good thermal conductivity is provided. This embodiment differs from the 17th embodiment in this respect. The heat transfer sheet 77 corresponds to an example of a heat transfer member in the disclosed technique.
[EGR装置の作用及び効果について]
 従って、この実施形態のEGR装置11によれば、第17実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、パイプホルダ73(保持手段)により保持される金属パイプ66と下管部63(中流通路部MSP)との間に伝熱シート77が挟まれて設けられるので、金属パイプ66と下管部63との間に隙間がなくなり、両者66,63の間の密着性が向上する。このため、金属パイプ66の中の温水通路61を流れる温水による下管部63の内壁の昇温性を向上させることができ、配管16の内部を流れるEGRガスの昇温性を向上させることができる。
[About the action and effect of the EGR device]
Therefore, according to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 17th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP), so that the metal is provided. There is no gap between the pipe 66 and the lower pipe portion 63, and the adhesion between the two 66 and 63 is improved. Therefore, it is possible to improve the temperature rise property of the inner wall of the lower pipe portion 63 by the hot water flowing through the hot water passage 61 in the metal pipe 66, and improve the temperature rise property of the EGR gas flowing inside the pipe 16. can.
<第20実施形態>
 次に、第20実施形態について図面を参照して詳細に説明する。
<20th Embodiment>
Next, the twentieth embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第18実施形態と異なる。すなわち、図30には、金属パイプ66が固定された配管16を、図28に準ずる断面図により示す。図30に示すように、この実施形態では、金属パイプ66は、パイプホルダ71(保持手段)により配管16の下管部63(中流通路部MSP)に保持され、金属パイプ66が伝熱シート77を介して下管部63に接するが、パイプホルダ71の爪部71aと金属パイプ66との間には隙間78が設けられる。この隙間78は、この開示技術における空気層(断熱層)の一例を構成する。この点で、この実施形態は第18実施形態と異なる。
[About the configuration of the heating part]
This embodiment is different from the eighteenth embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 30 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 28. As shown in FIG. 30, in this embodiment, the metal pipe 66 is held by the pipe holder 71 (holding means) in the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16, and the metal pipe 66 is a heat transfer sheet. Although it is in contact with the lower pipe portion 63 via 77, a gap 78 is provided between the claw portion 71a of the pipe holder 71 and the metal pipe 66. The gap 78 constitutes an example of an air layer (heat insulating layer) in the disclosed technique. In this respect, this embodiment is different from the eighteenth embodiment.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第18実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、金属パイプ66がパイプホルダ71により保持された状態で、金属パイプ66と下管部63との間に伝熱シート77が挟まれるが、爪部71aと金属パイプ66との間に隙間78が設けられる。従って、エンジン停止時には、金属パイプ66から大気側への熱の逃げが隙間78により抑制される。このため、エンジン停止時には、配管16(中流通路部MSP)の内壁の温度低下を抑制することができる。ここで、エンジン停止時には、金属パイプ66の温水通路61を温水が流れないが温水は滞留するので、その滞留した温水が熱源になる。そして、金属パイプ66からの熱逃げが抑制されるので、配管16の内壁の温度低下を有効に抑制することができる。エンジン運転時にも、隙間78により金属パイプ66から大気側への熱の逃げが抑制され、配管16の内壁の温度低下を抑制することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 18th embodiment. That is, in this embodiment, the heat transfer sheet 77 is sandwiched between the metal pipe 66 and the lower pipe portion 63 in a state where the metal pipe 66 is held by the pipe holder 71, but the claw portion 71a and the metal pipe 66 A gap 78 is provided between the two. Therefore, when the engine is stopped, the heat escape from the metal pipe 66 to the atmosphere side is suppressed by the gap 78. Therefore, when the engine is stopped, it is possible to suppress a decrease in temperature of the inner wall of the pipe 16 (middle flow passage portion MSP). Here, when the engine is stopped, hot water does not flow through the hot water passage 61 of the metal pipe 66, but the hot water stays, so that the staying hot water becomes a heat source. Since the heat escape from the metal pipe 66 is suppressed, the temperature drop of the inner wall of the pipe 16 can be effectively suppressed. Even during engine operation, the gap 78 suppresses the escape of heat from the metal pipe 66 to the atmosphere side, and the temperature drop of the inner wall of the pipe 16 can be suppressed.
<第21実施形態>
 次に、第21実施形態について図面を参照して詳細に説明する。
<21st Embodiment>
Next, the 21st embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第19実施形態と異なる。すなわち、図31には、金属パイプ66が固定された配管16を、図29に準ずる断面図により示す。図31に示すように、この実施形態では、金属パイプ66は、パイプホルダ73(保持手段)により配管16の下管部63(中流通路部MSP)に保持され、金属パイプ66が伝熱シート77を介して下管部63に接するが、主としてパイプホルダ73の下受け部74と金属パイプ66との間には隙間78(空気層(断熱層))が設けられる。この点で、この実施形態は第19実施形態と異なる。
[About the configuration of the heating part]
This embodiment is different from the 19th embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 31 shows the pipe 16 to which the metal pipe 66 is fixed by a cross-sectional view according to FIG. 29. As shown in FIG. 31, in this embodiment, the metal pipe 66 is held by the pipe holder 73 (holding means) in the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16, and the metal pipe 66 is a heat transfer sheet. Although it is in contact with the lower pipe portion 63 via 77, a gap 78 (air layer (heat insulating layer)) is mainly provided between the lower receiving portion 74 of the pipe holder 73 and the metal pipe 66. In this respect, this embodiment is different from the 19th embodiment.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第19実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、金属パイプ66がパイプホルダ73(保持手段)により保持された状態で、金属パイプ66と配管16の下管部63(中流通路部MSP)との間に伝熱シート77が挟まれるが、主として下受け部74と金属パイプ66との間に隙間78が設けられる。従って、エンジン停止時には、金属パイプ66から大気側への熱の逃げが隙間78により抑制される。このため、エンジン停止時には、配管16の内壁の温度低下を抑制することができる。ここで、エンジン停止時には、金属パイプ66の温水通路61を温水が流れないが温水は滞留するので、その滞留した温水が熱源になる。そして、金属パイプ66からの熱逃げが抑制されるので、配管16の内壁の温度低下を有効に抑制することができる。エンジン運転時にも、隙間78により金属パイプ66から大気側への熱の逃げが抑制され、配管16の内壁の温度低下を抑制することができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 19th embodiment. That is, in this embodiment, the heat transfer sheet is held between the metal pipe 66 and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16 in a state where the metal pipe 66 is held by the pipe holder 73 (holding means). 77 is sandwiched, but a gap 78 is mainly provided between the lower receiving portion 74 and the metal pipe 66. Therefore, when the engine is stopped, the heat escape from the metal pipe 66 to the atmosphere side is suppressed by the gap 78. Therefore, when the engine is stopped, the temperature drop of the inner wall of the pipe 16 can be suppressed. Here, when the engine is stopped, hot water does not flow through the hot water passage 61 of the metal pipe 66, but the hot water stays, so that the staying hot water becomes a heat source. Since the heat escape from the metal pipe 66 is suppressed, the temperature drop of the inner wall of the pipe 16 can be effectively suppressed. Even during engine operation, the gap 78 suppresses the escape of heat from the metal pipe 66 to the atmosphere side, and the temperature drop of the inner wall of the pipe 16 can be suppressed.
<第22実施形態>
 次に、第22実施形態について図面を参照して詳細に説明する。
<22nd Embodiment>
Next, the 22nd embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第18実施形態と異なる。すなわち、図32には、金属パイプ66が固定された配管16の一部を側面図により示す。図33には、金属パイプ66が固定された配管16を、図32のG-G線断面図により示す。図32、図33に示すように、この実施形態では、パイプホルダ71(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に、熱伝導性の良好な伝熱プレート79が設けられる。この点で、この実施形態は伝熱シート77が設けられる第18実施形態と異なる。この伝熱プレート79は、この開示技術における伝熱部材の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the eighteenth embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 32 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view. FIG. 33 shows a pipe 16 to which the metal pipe 66 is fixed by a sectional view taken along the line GG of FIG. 32. As shown in FIGS. 32 and 33, in this embodiment, heat is generated between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. A heat transfer plate 79 having good conductivity is provided. In this respect, this embodiment is different from the 18th embodiment in which the heat transfer sheet 77 is provided. The heat transfer plate 79 corresponds to an example of a heat transfer member in the disclosed technique.
 図32、図33に示すように、伝熱プレート79は、金属プレートであり、金属パイプ66から下管部63への伝熱範囲を拡大するために伝熱シート77よりも広い面積を有する。伝熱プレート79は、金属パイプ66と下管部63との間に挟まれ、金属パイプ66に沿って伸びる主幹部79aと、隣り合うパイプホルダ71の間にて主幹部79aから下管部63の外壁に沿って伸びる翼部79bとを含む。主幹部79aは、前述した伝熱シート77と同等の機能を発揮するが、翼部79bは、金属パイプ66から伝熱プレート79に伝わる熱を、下管部63の外壁へ伝える機能を発揮する。 As shown in FIGS. 32 and 33, the heat transfer plate 79 is a metal plate and has a larger area than the heat transfer sheet 77 in order to expand the heat transfer range from the metal pipe 66 to the lower pipe portion 63. The heat transfer plate 79 is sandwiched between the metal pipe 66 and the lower pipe portion 63, and is sandwiched between the main trunk portion 79a extending along the metal pipe 66 and the adjacent pipe holder 71 between the main trunk portion 79a and the lower pipe portion 63. Includes a wing 79b extending along the outer wall of the. The main trunk portion 79a exerts the same function as the above-mentioned heat transfer sheet 77, but the wing portion 79b exerts a function of transferring the heat transferred from the metal pipe 66 to the heat transfer plate 79 to the outer wall of the lower pipe portion 63. ..
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第18実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、金属パイプ66から伝熱プレート79に伝わる熱が、翼部79bを介して下管部63の外壁へ更に伝わる。このため、下管部63の外壁に熱が伝わる分だけ下管部63の昇温性を更に向上させることができ、配管16の内部を流れるEGRガスの昇温性を更に向上させることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 18th embodiment. That is, in this embodiment, the heat transferred from the metal pipe 66 to the heat transfer plate 79 is further transferred to the outer wall of the lower pipe portion 63 via the blade portion 79b. Therefore, the temperature riser of the lower pipe portion 63 can be further improved by the amount of heat transferred to the outer wall of the lower pipe portion 63, and the temperature riser of the EGR gas flowing inside the pipe 16 can be further improved. ..
<第23実施形態>
 次に、第23実施形態について図面を参照して詳細に説明する。
<23rd Embodiment>
Next, the 23rd embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第19実施形態と異なる。すなわち、図34には、金属パイプ66が固定された配管16の一部を側面図により示す。図35には、金属パイプ66が固定された配管16を、図34のH-H線断面図により示す。図34、図35に示すように、この実施形態では、パイプホルダ73(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に、熱伝導性の良好なお伝熱プレート79が設けられる。この実施形態は、この点で伝熱シート77が設けられる第19実施形態と異なる。この伝熱プレート79は、この開示技術における伝熱部材の一例に相当する。
[About the configuration of the heating part]
This embodiment is different from the 19th embodiment in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 34 shows a part of the pipe 16 to which the metal pipe 66 is fixed by a side view. FIG. 35 shows the pipe 16 to which the metal pipe 66 is fixed by the cross-sectional view taken along the line HH of FIG. 34. As shown in FIGS. 34 and 35, in this embodiment, heat is generated between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. A heat transfer plate 79 having good conductivity is provided. This embodiment differs from the 19th embodiment in which the heat transfer sheet 77 is provided in this respect. The heat transfer plate 79 corresponds to an example of a heat transfer member in the disclosed technique.
 図34、図35に示すように、伝熱プレート79は、金属パイプ66と下管部63との間に挟まれ、金属パイプ66に沿って伸びる主幹部79aと、隣りあうパイプホルダ73の間にて主幹部79aから下管部63の外壁に沿って伸びる翼部79bとを含む。主幹部79aは、前述した伝熱シート77と同等の機能を発揮するが、翼部79bは、金属パイプ66から伝熱プレート79に伝わる熱を、下管部63の外壁へ伝える機能を発揮する。 As shown in FIGS. 34 and 35, the heat transfer plate 79 is sandwiched between the metal pipe 66 and the lower pipe portion 63, and is between the main trunk portion 79a extending along the metal pipe 66 and the adjacent pipe holder 73. Includes a wing portion 79b extending from the main trunk portion 79a along the outer wall of the lower pipe portion 63. The main trunk portion 79a exerts the same function as the above-mentioned heat transfer sheet 77, but the wing portion 79b exerts a function of transferring the heat transferred from the metal pipe 66 to the heat transfer plate 79 to the outer wall of the lower pipe portion 63. ..
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11によれば、第19実施形態の作用及び効果に加え、次のような作用及び効果を得ることができる。すなわち、この実施形態では、金属パイプ66から伝熱プレート79に伝わる熱が、翼部79bを介して下管部63の外壁へ更に伝わる。このため、下管部63の外壁に熱が伝わる分だけ下管部63の昇温性を更に向上させることができ、配管16の内部を流れるEGRガスの昇温性を更に向上させることができる。
[About the action and effect of the EGR device]
According to the EGR device 11 of this embodiment, the following actions and effects can be obtained in addition to the actions and effects of the 19th embodiment. That is, in this embodiment, the heat transferred from the metal pipe 66 to the heat transfer plate 79 is further transferred to the outer wall of the lower pipe portion 63 via the blade portion 79b. Therefore, the temperature riser of the lower pipe portion 63 can be further improved by the amount of heat transferred to the outer wall of the lower pipe portion 63, and the temperature riser of the EGR gas flowing inside the pipe 16 can be further improved. ..
<第24実施形態>
 次に、第24実施形態について図面を参照して詳細に説明する。
<24th Embodiment>
Next, the 24th embodiment will be described in detail with reference to the drawings.
[加熱部の構成について]
 この実施形態では、配管16における加熱部50の構成の点で前記第9~第23の実施形態と異なる。すなわち、図36には、EGRクーラ13からEGRガス分配器15までの構成を図15に準ずる構成図により示す。前記第9~第23の実施形態では、温水通路61が配管16の流路長手方向に沿って設けられた。これに対し、この実施形態では、弁出口フランジ21iと管入口フランジ16eとの間に、入口側加熱スペーサ81が挟まって設けられる。また、管出口フランジ16fと分配器入口フランジ15eとの間に、出口側加熱スペーサ82が挟まって設けられる。この実施形態では、それら各加熱スペーサ81,82の周方向に沿って温水通路61が設けられる。入口側加熱スペーサ81の温水通路61と出口側加熱スペーサ82の温水通路61には、エンジン1を冷却して温められた冷却水(温水)が流れるようになっている。入口側加熱スペーサ81の温水通路61と出口側加熱スペーサ82の温水通路61は、温水パイプ83により接続され、入口側の温水通路61を流れた温水が、温水パイプ83を介して出口側の温水通路61へ流れるようになっている。この実施形態で、各加熱スペーサ81,82は、それぞれ樹脂材により形成される。
[About the configuration of the heating part]
This embodiment is different from the ninth to 23rd embodiments in the configuration of the heating unit 50 in the pipe 16. That is, FIG. 36 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG. In the ninth to 23rd embodiments, the hot water passage 61 is provided along the flow path longitudinal direction of the pipe 16. On the other hand, in this embodiment, the inlet side heating spacer 81 is provided sandwiched between the valve outlet flange 21i and the pipe inlet flange 16e. Further, an outlet side heating spacer 82 is provided so as to be sandwiched between the pipe outlet flange 16f and the distributor inlet flange 15e. In this embodiment, a hot water passage 61 is provided along the circumferential direction of each of the heating spacers 81 and 82. Cooling water (hot water) that has cooled the engine 1 flows through the hot water passage 61 of the inlet side heating spacer 81 and the hot water passage 61 of the outlet side heating spacer 82. The hot water passage 61 of the inlet side heating spacer 81 and the hot water passage 61 of the outlet side heating spacer 82 are connected by a hot water pipe 83, and the hot water flowing through the hot water passage 61 on the inlet side passes through the hot water pipe 83 to the hot water on the outlet side. It is designed to flow to the passage 61. In this embodiment, the heating spacers 81 and 82 are each made of a resin material.
[EGR装置の作用及び効果について]
 この実施形態のEGR装置11の構成によれば、前記第9~第23の実施形態と異なり次のような作用及び効果を得ることができる。すなわち、この実施形態では、弁出口フランジ21iと管入口フランジ16eとの間に挟まれて設けられる入口側加熱スペーサ81及び管出口フランジ16fと分配器入口フランジ15e(通路部入口フランジ)との間に挟まって設けられる出口側加熱スペーサ82の周方向に沿って温水通路61が設けられる。従って、弁出口フランジ21iと管入口フランジ16eを流れるEGRガス及び管出口フランジ16fと分配器入口フランジ15eを流れるEGRガスが、各加熱スペーサ81,82の温水通路61の温水の熱により加熱される。加えて、各加熱スペーサ81,82の温水通路61を流れる温水の熱が、各加熱スペーサ81,82を介して前後のフランジ21i,16e,16f,15eを介してケーシング21の流路部21f(EGR弁14の出口側)、配管16の入口16a及び出口16b、並びにEGRガス分配器15の入口15dへ伝わり、それらの内壁が加熱される。このため、各加熱スペーサ81,82に隣接する中流通路部MSPの各部位21i,16e,16f,15e,21f,16a,16b,15dを流れるEGRガスを有効に保温することができる。
[About the action and effect of the EGR device]
According to the configuration of the EGR device 11 of this embodiment, the following actions and effects can be obtained unlike the ninth to 23rd embodiments. That is, in this embodiment, between the inlet side heating spacer 81 and the pipe outlet flange 16f provided sandwiched between the valve outlet flange 21i and the pipe inlet flange 16e and the distributor inlet flange 15e (passage inlet flange). A hot water passage 61 is provided along the circumferential direction of the outlet-side heating spacer 82 provided so as to be sandwiched between the two. Therefore, the EGR gas flowing through the valve outlet flange 21i and the pipe inlet flange 16e and the EGR gas flowing through the pipe outlet flange 16f and the distributor inlet flange 15e are heated by the heat of the hot water in the hot water passage 61 of the heating spacers 81 and 82. .. In addition, the heat of the hot water flowing through the hot water passages 61 of the heating spacers 81 and 82 passes through the front and rear flanges 21i, 16e, 16f and 15e via the heating spacers 81 and 82, and the flow path portion 21f of the casing 21 ( EGR valve 14 outlet side), the inlet 16a and outlet 16b of the pipe 16, and the inlet 15d of the EGR gas distributor 15, and their inner walls are heated. Therefore, the EGR gas flowing through each portion 21i, 16e, 16f, 15e, 21f, 16a, 16b, 15d of the middle flow passage portion MSP adjacent to each heating spacer 81, 82 can be effectively kept warm.
 ここで、この実施形態のように弁出口フランジ21iと管入口フランジ16eとの間に、温水通路61を有する入口側加熱スペーサ81を設けたことを想定した各種温度の測定結果について説明する。図37は、この実施形態に係り、測定対象である、金属製の上流側配管85及びその出口フランジ85aと、樹脂製の下流側配管86及びその入口フランジ86aとの接続部分を断面図により示す。上流側配管85及びその出口フランジ85aは、金属製の流路部21f及び弁出口フランジ21iを想定した。樹脂製の下流側配管86及びその入口フランジ86aは、樹脂製の入口側加熱スペーサ81、管入口フランジ16e及び配管16を想定した。入口フランジ86aには、温水通路61が形成される。図38は、対比例に係り、測定対象である、金属製の上流側配管85及びその出口フランジ85aと、金属製の下流側配管87及びその入口フランジ87aとの接続部分を断面図により示す。金属製の下流側配管87及びその入口フランジ87aは、入口側加熱スペーサ81、管入口フランジ16e及び配管16を金属製にしたことを想定した。入口フランジ87aには、温水通路61が形成される。ここで、図37及び図38の温水通路61には、例えば「60℃」の温水が流れ、その周囲の外気温度は、例えば「25℃」である。図39には、(A)エンジン回転数(EGR流量)の変化と、(B)各種温度の変化をタイムチャートにより示す。 Here, various temperature measurement results assuming that an inlet side heating spacer 81 having a hot water passage 61 is provided between the valve outlet flange 21i and the pipe inlet flange 16e as in this embodiment will be described. FIG. 37 is a cross-sectional view showing a connection portion between the metal upstream pipe 85 and its outlet flange 85a and the resin downstream pipe 86 and its inlet flange 86a, which are the objects of measurement according to this embodiment. .. For the upstream pipe 85 and its outlet flange 85a, a metal flow path portion 21f and a valve outlet flange 21i are assumed. As the resin downstream pipe 86 and its inlet flange 86a, a resin inlet side heating spacer 81, a pipe inlet flange 16e, and a pipe 16 are assumed. A hot water passage 61 is formed in the inlet flange 86a. FIG. 38 is a cross-sectional view showing a connection portion between the metal upstream pipe 85 and its outlet flange 85a and the metal downstream pipe 87 and its inlet flange 87a, which are in inverse proportion to each other and are measurement targets. As for the metal downstream side pipe 87 and its inlet flange 87a, it is assumed that the inlet side heating spacer 81, the pipe inlet flange 16e, and the pipe 16 are made of metal. A hot water passage 61 is formed in the inlet flange 87a. Here, for example, hot water of "60 ° C." flows through the hot water passage 61 of FIGS. 37 and 38, and the temperature of the outside air around the hot water passage 61 is, for example, "25 ° C.". FIG. 39 shows (A) changes in engine speed (EGR flow rate) and (B) changes in various temperatures by time charts.
 図39(B)において、太い実線は樹脂製の入口フランジ86aの温水通路61を流れる温水の温度(第1の温水温度)TW1を示し、実線は金属製の入口フランジ87aの温水通路61を流れる温水の温度(第2の温水温度)TW2を示し、太い破線は樹脂製の入口フランジ86aの内壁の温度(第1の内壁温度)TI1を示し、破線は金属製の入口フランジ87aの内壁の温度(第2の内壁温度)TI2を示し、太い1点鎖線は樹脂製の入口フランジ86aの内部を流れるEGRガスの温度(第1のEGRガス温度)TG1を示し、1点鎖線は金属製の入口フランジ87aの内部を流れるEGRガスの温度(第2のEGRガス温度)TG2を示し、別の破線は冷却水温度THWを示す。 In FIG. 39B, the thick solid line shows the temperature of hot water (first hot water temperature) TW1 flowing through the hot water passage 61 of the resin inlet flange 86a, and the solid line shows the hot water passage 61 flowing through the hot water passage 61 of the metal inlet flange 87a. The temperature of hot water (second hot water temperature) TW2 is shown, the thick broken line shows the temperature of the inner wall of the resin inlet flange 86a (first inner wall temperature) TI1, and the broken line shows the temperature of the inner wall of the metal inlet flange 87a. (Second inner wall temperature) TI2 is shown, the thick one-point chain wire indicates the temperature of EGR gas flowing inside the resin inlet flange 86a (first EGR gas temperature) TG1, and the one-point chain wire is the metal inlet. The temperature of the EGR gas flowing inside the flange 87a (second EGR gas temperature) TG2 is shown, and another broken line shows the cooling water temperature THW.
 図39に示すように、エンジン1の運転と停止を交互に繰り返した場合、エンジン回転数(EGR流量)が高くなるエンジン運転時には、各種温度TW1,TW2,TI1,TI2,TG1,TG2,THWはそれぞれ上昇し、エンジン回転数(EGR流量)がゼロになるエンジン停止時には、各種温度TW1,TW2,TI1,TI2,TG1,TG2,THWは低下する。 As shown in FIG. 39, when the engine 1 is alternately started and stopped, the various temperatures TW1, TW2, TI1, TI2, TG1, TG2, THW are set during engine operation in which the engine speed (EGR flow rate) becomes high. When the engine is stopped and the engine speed (EGR flow rate) becomes zero, the various temperatures TW1, TW2, TI1, TI2, TG1, TG2, THW decrease.
 ここで、エンジン停止後において、樹脂製の入口フランジ86aは、熱伝導性が低く、外気による冷却が抑制されるので、温水通路61から外気への熱の逃げが比較的小さくなる。このため、第1の内壁温度TI1の降下は比較的小さくなる。これに対し、エンジン停止後において、金属製の入口フランジ87aは、熱伝導性が高く、外気により冷やされ易いので、温水通路61から外気への熱の逃げが比較的大きくなる。このため、第2の内壁温度TI2の降下は比較的大きくなる。このように、入口フランジ86aを樹脂製にすることで、エンジン運転時(EGR実行時)には、その内壁の温度上昇を改善することができ、エンジン停止時(EGR停止時)には、その内壁の温度降下を抑制することができる。また、樹脂製の入口フランジ86aの温水通路61によりEGRガスを加熱することで、下流側配管86の内壁と、そこを流れるEGRガスの温度低下が抑えられる。加えて、下流側配管86の加熱が上流側配管85へ伝わることもない。 Here, after the engine is stopped, the resin inlet flange 86a has low thermal conductivity and cooling by the outside air is suppressed, so that the heat escape from the hot water passage 61 to the outside air becomes relatively small. Therefore, the drop in the first inner wall temperature TI1 is relatively small. On the other hand, after the engine is stopped, the metal inlet flange 87a has high thermal conductivity and is easily cooled by the outside air, so that the heat escapes from the hot water passage 61 to the outside air becomes relatively large. Therefore, the drop in the second inner wall temperature TI2 becomes relatively large. In this way, by making the inlet flange 86a made of resin, the temperature rise of the inner wall thereof can be improved when the engine is running (when EGR is executed), and when the engine is stopped (when EGR is stopped), the temperature rise can be improved. It is possible to suppress the temperature drop of the inner wall. Further, by heating the EGR gas by the hot water passage 61 of the resin inlet flange 86a, the temperature drop of the inner wall of the downstream pipe 86 and the EGR gas flowing therethrough can be suppressed. In addition, the heating of the downstream side pipe 86 is not transmitted to the upstream side pipe 85.
[別の実施形態について]
 なお、この開示技術は前記各実施形態に限定されるものではなく、開示技術の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
[About another embodiment]
The disclosed technique is not limited to each of the above-described embodiments, and a part of the configuration may be appropriately modified and implemented without departing from the spirit of the disclosed technique.
 (1)前記各実施形態では、中流通路部MSPのほぼ全部に保温手段を設けたが、中流通路部の最下流部のみに保温手段を設けることもできる。 (1) In each of the above-described embodiments, the heat insulating means is provided in almost all of the middle flow passage portion MSP, but it is also possible to provide the heat insulating means only in the most downstream portion of the middle flow passage portion.
 (2)前記各実施形態では、EGR通路12の下流通路部DSPをEGRガス分配器15により構成したが、下流通路部をEGRガス分配器ではなくEGR通路の配管により構成することもできる。 (2) In each of the above embodiments, the downstream passage portion DSP of the EGR passage 12 is configured by the EGR gas distributor 15, but the downstream passage portion can also be configured by the piping of the EGR passage instead of the EGR gas distributor.
 (3)前記第5実施形態では、発熱被膜51を配管16の内壁に設けたが、発熱被膜を配管の外壁に設けることもできる。また、加熱部50を発熱被膜51により構成したが、加熱部を電熱線により構成することもできる。 (3) In the fifth embodiment, the heat generating film 51 is provided on the inner wall of the pipe 16, but the heat generating film can also be provided on the outer wall of the pipe. Further, although the heating unit 50 is composed of the heating film 51, the heating unit can also be composed of a heating wire.
 (4)前記第3実施形態では、図9に示すように、EGRクーラ13のケーシング21に、バイパス通路21gとバイパス弁24を設けたが、図40に示すように、EGRクーラ13のケーシング21から、バイパス通路21gとバイパス弁24を省略することもできる。この場合、図40に示すように、ケーシング21の流路部21fを図9に示すよりも短くすることもできる。この場合、バイパス通路21gとバイパス弁24によるEGRガスの迂回機能はないものの、それ以外は第3実施形態と同等の作用及び効果を得ることができる。すなわち、中流通路部MSPが熱交換器23の出口23dより下流に位置し、中流通路部MSPにEGR弁14及び配管16が設けられるので、EGR弁14及配管16を流れるEGRガスが保温手段により保温された状態でEGRガス分配器15(下流通路部DSP)へ流れる。このため、熱交換器15によりEGRガスの温度を低下させることができ、樹脂材より形成されるEGR弁14の流路34及び配管16(中流通路部MSP)の、EGRガスによる溶損を抑制することができる。また、EGR弁14の流路34及び配管16(中流通路部MSP)での樹脂材へのEGRガスの熱の伝わりを低減することができ、EGR通路12のEGRガス分配器15(下流通路部DSP)へ流れるEGRガスの温度低下を抑制することができ、そのEGRガス分配器15における凝縮水の発生を抑制することができる。図40には、EGRクーラ13からEGRガス分配器15までの構成を図9に準ずる構成図により示す。 (4) In the third embodiment, as shown in FIG. 9, the casing 21 of the EGR cooler 13 is provided with the bypass passage 21g and the bypass valve 24. However, as shown in FIG. 40, the casing 21 of the EGR cooler 13 is provided. Therefore, the bypass passage 21g and the bypass valve 24 can be omitted. In this case, as shown in FIG. 40, the flow path portion 21f of the casing 21 can be made shorter than that shown in FIG. In this case, although the bypass passage 21g and the bypass valve 24 do not have the detour function of the EGR gas, other than that, the same operation and effect as those of the third embodiment can be obtained. That is, since the middle flow passage portion MSP is located downstream from the outlet 23d of the heat exchanger 23 and the EGR valve 14 and the pipe 16 are provided in the middle flow passage portion MSP, the EGR gas flowing through the EGR valve 14 and the pipe 16 is kept warm. It flows to the EGR gas distributor 15 (downstream passage portion DSP) while being kept warm by the means. Therefore, the temperature of the EGR gas can be lowered by the heat exchanger 15, and the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14 formed of the resin material are not melted by the EGR gas. It can be suppressed. Further, it is possible to reduce the heat transfer of the EGR gas to the resin material in the flow path 34 and the pipe 16 (middle flow passage portion MSP) of the EGR valve 14, and the EGR gas distributor 15 (downstream passage) of the EGR passage 12 can be reduced. The temperature drop of the EGR gas flowing to the part DSP) can be suppressed, and the generation of condensed water in the EGR gas distributor 15 can be suppressed. FIG. 40 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a configuration diagram according to FIG.
 (5)上記(4)の別の実施形態では、図40に示すように、バイパス通路21gとバイパス弁24を省略したケーシング21に設けられる組付部21hを、熱交換器23の軸線方向に沿って配置し、その組付部21hの孔にEGR弁14のハウジング46を組み入れる(ドロップイン)ことで、EGR弁14をEGRクーラ13に取り付けた。これに対し、図41に示すように、バイパス通路21gとバイパス弁24を省略したケーシング21に設けられる組付部21hを、熱交換器23の軸線と直交する方向に沿って配置し、その組付部21hの孔にEGR弁14のハウジング46を組み入れる(ドロップイン)ことで、EGR弁14をEGRクーラ13に取り付けることもできる。この場合、EGR弁14が取り付けられたEGRクーラ13の全高を短くすることができ、全体をコンパクトにすることができる。図41には、EGRクーラ13からEGRガス分配器15までの構成を構成図により示す。 (5) In another embodiment of (4) above, as shown in FIG. 40, the assembly portion 21h provided in the casing 21 in which the bypass passage 21g and the bypass valve 24 are omitted is provided in the axial direction of the heat exchanger 23. The EGR valve 14 was attached to the EGR cooler 13 by arranging along the line and incorporating (drop-in) the casing 46 of the EGR valve 14 into the hole of the assembly portion 21h. On the other hand, as shown in FIG. 41, the assembly portion 21h provided in the casing 21 excluding the bypass passage 21g and the bypass valve 24 is arranged along the direction orthogonal to the axis of the heat exchanger 23, and the assembly thereof. The EGR valve 14 can also be attached to the EGR cooler 13 by incorporating (drop-in) the casing 46 of the EGR valve 14 into the hole of the attachment portion 21h. In this case, the total height of the EGR cooler 13 to which the EGR valve 14 is attached can be shortened, and the whole can be made compact. FIG. 41 shows the configuration from the EGR cooler 13 to the EGR gas distributor 15 by a block diagram.
 (6)前記第15実施形態では、図23に示すように、金属パイプ66の上側を、配管16の内側、すなわちEGRガスが流れる流路の中に露出して配置した。これに対し、図42に、配管16を図23に準ずる断面図で示すように、配管16の内側に露出した金属パイプ66の上側に放熱板68を配置し、放熱板68を流路内に露出させてもよい。 (6) In the fifteenth embodiment, as shown in FIG. 23, the upper side of the metal pipe 66 is exposed and arranged inside the pipe 16, that is, in the flow path through which the EGR gas flows. On the other hand, in FIG. 42, as shown in the cross-sectional view of the pipe 16 according to FIG. 23, the heat sink 68 is arranged on the upper side of the metal pipe 66 exposed inside the pipe 16, and the heat sink 68 is placed in the flow path. It may be exposed.
 (7)前記第23実施形態では、図35に示すように、パイプホルダ73(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に、熱伝導性の良好な伝熱プレート79のみを設けた。これに対し、図43に、配管16を図35に準ずる断面図に示すように、パイプホルダ73(保持手段)により保持される金属パイプ66と配管16の下管部63(中流通路部MSP)との間に、熱伝導性の良好な伝熱プレート79と伝熱シート77を重ねて設けることもできる。併せて、パイプホルダ73の下受け部74と金属パイプ66との間に、隙間78(空気層(断熱層))を設けることもできる。ここで、伝熱プレート79は金属より形成されるが、伝熱シート77は柔軟なゴム等のシート材より形成されるので、伝熱プレート79と下管部63との間を伝熱シート77を介して密着させることができ、金属パイプ66から下管部63への伝熱性を向上させることができる。また、下受け部74と金属パイプ66との間に隙間78が設けられるので、金属パイプ66から大気側への熱の逃げが隙間78により抑制される。このため、配管16の内壁の温度低下を抑制することができる (7) In the 23rd embodiment, as shown in FIG. 35, between the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16. , Only the heat transfer plate 79 having good thermal conductivity was provided. On the other hand, in FIG. 43, as shown in the cross-sectional view of the pipe 16 according to FIG. 35, the metal pipe 66 held by the pipe holder 73 (holding means) and the lower pipe portion 63 (middle flow passage portion MSP) of the pipe 16 ), A heat transfer plate 79 having good thermal conductivity and a heat transfer sheet 77 may be provided on top of each other. At the same time, a gap 78 (air layer (heat insulating layer)) may be provided between the lower receiving portion 74 of the pipe holder 73 and the metal pipe 66. Here, the heat transfer plate 79 is formed of metal, but since the heat transfer sheet 77 is formed of a sheet material such as flexible rubber, the heat transfer sheet 77 is sandwiched between the heat transfer plate 79 and the lower pipe portion 63. It can be brought into close contact with the metal pipe 66, and the heat transfer property from the metal pipe 66 to the lower pipe portion 63 can be improved. Further, since the gap 78 is provided between the lower receiving portion 74 and the metal pipe 66, the escape of heat from the metal pipe 66 to the atmosphere side is suppressed by the gap 78. Therefore, it is possible to suppress a decrease in temperature of the inner wall of the pipe 16.
 (8)前記第1実施形態では、弁部32を構成する外ハウジング38を金属製とし、内ハウジング39を樹脂製としたが、外ハウジングと内ハウジングの両方を樹脂製とすることもできる。 (8) In the first embodiment, the outer housing 38 constituting the valve portion 32 is made of metal and the inner housing 39 is made of resin, but both the outer housing and the inner housing may be made of resin.
 (9)前記第5、第6、第8~第24等の実施形態では、断熱コート41を省略する代わりに、発熱被膜51、空気層56及び温水通路61等を設けたが、断熱コートと共に発熱被膜、空気層及び温水通路等を設けることもできる。 (9) In the fifth, sixth, eighth to twenty-fourth embodiments, the heat insulating coating 51, the air layer 56, the hot water passage 61 and the like are provided instead of omitting the heat insulating coat 41, but together with the heat insulating coat. It is also possible to provide a heating film, an air layer, a hot water passage, and the like.
 (10)前記第22実施形態では、パイプホルダ71(保持手段)により保持される金属パイプ66と配管16の下管部63との間に、熱伝導性の良好な伝熱プレート79のみを設けた。これに対し、上記(7)の別の実施形態と同様、パイプホルダ71(保持手段)により保持される金属パイプ66と配管16の下管部63との間に、熱伝導性の良好な伝熱プレート79と伝熱シート77を重ねて設けることもできる。 (10) In the 22nd embodiment, only the heat transfer plate 79 having good thermal conductivity is provided between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 of the pipe 16. rice field. On the other hand, as in the other embodiment of (7) above, good thermal conductivity is transmitted between the metal pipe 66 held by the pipe holder 71 (holding means) and the lower pipe portion 63 of the pipe 16. The heat plate 79 and the heat transfer sheet 77 may be provided on top of each other.
 (11)前記第10~第23の実施形態、上記(6)、(7)及び(10)の別の実施形態では、配管16を上管部62と下管部63とで構成し、下管部63のみに加熱部を設けた。これに対し、配管の上管部のみに加熱部を設けることもできる。 (11) In the tenth to twenty-third embodiments, and in another embodiment of the above (6), (7) and (10), the pipe 16 is composed of an upper pipe portion 62 and a lower pipe portion 63, and the lower pipe portion 16 is formed. A heating portion was provided only in the pipe portion 63. On the other hand, it is also possible to provide a heating portion only on the upper pipe portion of the pipe.
 この開示技術は、ガソリンエンジンやディーゼルエンジンに設けられるEGR装置に適用することができる。 This disclosed technology can be applied to EGR devices installed in gasoline engines and diesel engines.
1 エンジン
2 吸気通路
3 排気通路
11 EGR装置
12 EGR通路
13 EGRクーラ
14 EGR弁
15 EGRガス分配器(EGR通路の下流通路部を構成する)
15e 分配器入口フランジ(通路部入口フランジ)
16 配管(EGR通路の中流通路部を構成する)
16a 入口
16b 出口
16c 外管
16d 内管
16e 管入口フランジ
16f 管出口フランジ
21c 出口
21g バイパス通路
21ga 入口
21gb 出口
21i 弁出口フランジ
23 熱交換器
23a 入口
23b 出口
24 バイパス弁
34 流路
34a 入口
34b 出口
41 断熱コート(保温手段)
50 加熱部
51 発熱被膜(加熱部)
56 空気層(保温手段)
58 冷却部
61 温水通路(加熱部)
66 金属パイプ
67 金属パイプ
71 パイプホルダ(保持手段)
73 パイプホルダ(保持手段)
77 伝熱シート(伝熱部材)
78 隙間(空気層)
79 伝熱プレート(伝熱部材)
81 入口側加熱スペーサ
82 出口側加熱スペーサ
USP 上流通路部
MSP 中流通路部
DSP 下流通路部
1 Engine 2 Intake passage 3 Exhaust passage 11 EGR device 12 EGR passage 13 EGR cooler 14 EGR valve 15 EGR gas distributor (constituting the downstream passage portion of the EGR passage)
15e Distributor inlet flange (passage inlet flange)
16 Piping (constituting the midstream passage of the EGR passage)
16a Inlet 16b Outlet 16c Outer pipe 16d Inner pipe 16e Pipe inlet flange 16f Pipe outlet flange 21c Outlet 21g Bypass passage 21ga Inlet 21gb Outlet 21i Valve outlet flange 23 Heat exchanger 23a Inlet 23b Outlet 24 Bypass valve 34 Flow path 34a Inlet 34b Outlet 41 Insulation coat (heat insulation means)
50 Heating part 51 Heat-generating film (heating part)
56 Air layer (heat insulating means)
58 Cooling section 61 Hot water passage (heating section)
66 Metal pipe 67 Metal pipe 71 Pipe holder (holding means)
73 Pipe holder (holding means)
77 Heat transfer sheet (heat transfer member)
78 Gap (air layer)
79 Heat transfer plate (heat transfer member)
81 Inlet side heating spacer 82 Outlet side heating spacer USP Upstream passage MSP Midstream passage DSP Downstream passage

Claims (22)

  1.  エンジンから排気通路へ排出される排気の一部をEGRガスとしてEGR通路を介して吸気通路へ流して前記エンジンへ還流させるように構成したEGR装置において、
     前記EGR通路には、前記EGRガスの流量を調節するためのEGR弁が設けられ、
     前記EGR通路は、前記排気通路に近い上流側通路部と、前記吸気通路に近い下流通路部と、前記上流通路部と前記下流通路部との間の中流通路部とを含み、
     前記中流通路部の少なくとも最下流部には、そこを流れるEGRガスを保温するための保温手段が設けられる
    ことを特徴とするEGR装置。
    In an EGR device configured to flow a part of the exhaust gas discharged from the engine to the exhaust passage as EGR gas to the intake passage through the EGR passage and return it to the engine.
    The EGR passage is provided with an EGR valve for adjusting the flow rate of the EGR gas.
    The EGR passage includes an upstream passage portion close to the exhaust passage, a downstream passage portion close to the intake passage, and a middle flow passage portion between the upstream passage portion and the downstream passage portion.
    An EGR device characterized in that at least the most downstream portion of the middle flow passage portion is provided with a heat insulating means for retaining heat of the EGR gas flowing therethrough.
  2.  請求項1に記載のEGR装置において、
     前記保温手段は、前記中流通路部を、前記EGRガスを保温する機能を有する樹脂材により形成することで構成される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 1,
    The heat insulating means is an EGR device characterized in that the middle flow passage portion is formed of a resin material having a function of retaining heat of the EGR gas.
  3.  請求項1又は2に記載のEGR装置において、
     前記保温手段は、前記中流通路部の内壁に設けられる断熱コートである
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 1 or 2,
    The EGR device is characterized in that the heat retaining means is a heat insulating coat provided on the inner wall of the middle flow passage portion.
  4.  請求項3に記載のEGR装置において、
     前記中流通路部は、前記EGRガスを保温する機能を有する樹脂材により構成される配管を含み、
     前記断熱コートは、その厚さが前記配管の下流側から上流側にかけて段階的又は徐々に増加するように形成される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 3,
    The middle flow passage portion includes a pipe made of a resin material having a function of retaining heat of the EGR gas.
    The EGR device is characterized in that the heat insulating coat is formed so that its thickness gradually or gradually increases from the downstream side to the upstream side of the pipe.
  5.  請求項1乃至4のいずれかに記載のEGR装置において、
     前記保温手段は、前記中流通路部の外側に設けられる空気層である
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 1 to 4.
    The EGR device is characterized in that the heat insulating means is an air layer provided outside the middle flow passage portion.
  6.  請求項1乃至5のいずれかに記載のEGR装置において、
     前記保温手段は、前記中流通路部を加熱するための加熱部を含む
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 1 to 5,
    The heat insulating means is an EGR device including a heating portion for heating the middle flow passage portion.
  7.  請求項6に記載のEGR装置において、
     前記加熱部は、通電により発熱する発熱被膜である
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 6,
    The EGR device is characterized in that the heating unit is a heat-generating coating that generates heat when energized.
  8.  請求項6に記載のEGR装置において、
     前記加熱部は、前記中流通路部の少なくとも一部に形成され、温水が流れる温水通路により構成される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 6,
    The EGR device is characterized in that the heating portion is formed in at least a part of the middle flow passage portion and is composed of a hot water passage through which hot water flows.
  9.  請求項8に記載のEGR装置において、
     前記温水通路が設けられる前記中流通路部は、前記温水通路を挟んだ外側の外管と内側の内管とを含み、
     前記外管の厚みが前記内管の厚みよりも大きい
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 8,
    The middle flow passage portion provided with the hot water passage includes an outer outer pipe and an inner inner pipe sandwiching the hot water passage.
    An EGR device characterized in that the thickness of the outer tube is larger than the thickness of the inner tube.
  10.  請求項8又は9に記載のEGR装置において、
     前記温水通路は、前記中流通路部の流路長手方向に沿って設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 8 or 9.
    The EGR device is characterized in that the hot water passage is provided along the flow path longitudinal direction of the middle flow passage portion.
  11.  請求項8又は9に記載のEGR装置において、
     前記中流通路部は、前記EGR弁と、前記EGR弁より下流に配置された配管とを含み、
     前記EGR弁と前記配管とが、前記EGR弁の出口側に設けられる弁出口フランジと、前記配管の入口側に設けられる管入口フランジとを介して接続され、
     前記配管と前記下流通路部とが、前記配管の出口側に設けられる管出口フランジと、前記下流通路部の入口側に設けられる通路部入口フランジとを介して接続され、
     前記弁出口フランジと前記管入口フランジとの間及び前記管出口フランジと前記通路部入口フランジとの間の少なくとも一方に加熱スペーサが挟まって設けられ
     前記温水通路は、前記加熱スペーサの周方向に沿って設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 8 or 9.
    The midstream passage portion includes the EGR valve and a pipe arranged downstream of the EGR valve.
    The EGR valve and the pipe are connected via a valve outlet flange provided on the outlet side of the EGR valve and a pipe inlet flange provided on the inlet side of the pipe.
    The pipe and the downstream passage portion are connected via a pipe outlet flange provided on the outlet side of the pipe and a passage portion inlet flange provided on the inlet side of the downstream passage portion.
    A heating spacer is provided between the valve outlet flange and the pipe inlet flange and at least one of the pipe outlet flange and the passage portion inlet flange, and the hot water passage is provided along the circumferential direction of the heating spacer. An EGR device characterized in that it is provided.
  12.  請求項8に記載のEGR装置において、
     前記温水通路は、前記中流通路部の流路長手方向に沿って設けられる金属パイプにより構成される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 8,
    The EGR device is characterized in that the hot water passage is composed of a metal pipe provided along the longitudinal direction of the flow path of the middle flow passage portion.
  13.  請求項12に記載のEGR装置において、
     前記金属パイプは、前記中流通路部に対しインサート成形により固定される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 12,
    The EGR device, wherein the metal pipe is fixed to the middle flow passage portion by insert molding.
  14.  請求項12に記載のEGR装置において、
     前記中流通路部には、その流路長手方向に沿って前記金属パイプを保持するための保持手段が設けられ、
     前記金属パイプは、前記中流通路部に対し前記保持手段により保持されることにより固定される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 12,
    The middle flow passage portion is provided with a holding means for holding the metal pipe along the longitudinal direction of the flow path.
    An EGR device characterized in that the metal pipe is fixed to the middle flow passage portion by being held by the holding means.
  15.  請求項14に記載のEGR装置において、
     前記保持手段により保持される前記金属パイプと前記中流通路部との間には、伝熱部材が設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 14,
    An EGR device characterized in that a heat transfer member is provided between the metal pipe held by the holding means and the middle flow passage portion.
  16.  請求項15に記載のEGR装置において、
     前記伝熱部材は、前記金属パイプ及び前記中流通路部と密着する柔軟な伝熱シートである
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 15,
    The EGR device is characterized in that the heat transfer member is a flexible heat transfer sheet that is in close contact with the metal pipe and the middle flow passage portion.
  17.  請求項14乃至16のいずれかに記載のEGR装置において、
     前記金属パイプと前記保持手段との間に、断熱用の空気層が設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 14 to 16.
    An EGR device characterized in that an air layer for heat insulation is provided between the metal pipe and the holding means.
  18.  請求項2乃至17のいずれかに記載のEGR装置において、
     前記EGR通路には、前記EGRガスを冷却するためのEGRクーラと、前記EGRクーラをバイパスするためのバイパス通路と、前記バイパス通路を開閉するためのバイパス弁とが更に設けられ、
     前記EGRクーラは、冷却用の熱交換器を含み、前記熱交換器は、前記EGRガスの入口と出口を含み、
     前記バイパス通路は、前記EGRガスの入口と出口を含み、
     前記中流通路部は、前記熱交換器の前記出口及び前記バイパス通路の前記出口より下流に位置し、
     前記EGR弁は、前記中流通路部に設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 2 to 17.
    The EGR passage is further provided with an EGR cooler for cooling the EGR gas, a bypass passage for bypassing the EGR cooler, and a bypass valve for opening and closing the bypass passage.
    The EGR cooler includes a heat exchanger for cooling, and the heat exchanger includes an inlet and an outlet for the EGR gas.
    The bypass passage includes an inlet and an outlet for the EGR gas.
    The middle flow passage portion is located downstream of the outlet of the heat exchanger and the outlet of the bypass passage.
    The EGR valve is an EGR device provided in the middle flow passage portion.
  19.  請求項17又は18に記載のEGR装置において、
     前記バイパス通路の少なくとも一部を冷却するための冷却部が更に設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to claim 17 or 18.
    An EGR device further provided with a cooling unit for cooling at least a part of the bypass passage.
  20.  請求項2乃至17のいずれかに記載のEGR装置において、
     前記EGR通路には、前記EGRガスを冷却するためのEGRクーラが更に設けられ、前記EGRクーラは、冷却用の熱交換器を含み、前記熱交換器は、前記EGRガスの入口と出口を含み、
     前記中流通路部は、前記熱交換器の前記出口より下流に位置し、
     前記EGR弁は、前記中流通路部に設けられる
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 2 to 17.
    The EGR passage is further provided with an EGR cooler for cooling the EGR gas, the EGR cooler includes a heat exchanger for cooling, and the heat exchanger includes an inlet and an outlet for the EGR gas. ,
    The middle flow passage portion is located downstream from the outlet of the heat exchanger.
    The EGR valve is an EGR device provided in the middle flow passage portion.
  21.  請求項1乃至20のいずれかに記載のEGR装置において、
     前記EGR弁は、前記EGRガスが流れる流路を含み、前記流路の内壁が前記EGRガスを保温する機能を有する樹脂材により構成される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 1 to 20,
    The EGR valve includes a flow path through which the EGR gas flows, and the inner wall of the flow path is made of a resin material having a function of retaining heat of the EGR gas.
  22.  請求項16乃至21のいずれかに記載のEGR装置において、
     前記EGR弁の前記流路は、入口と出口を含み、前記流路の前記入口が前記熱交換器の前記出口に略隣接して配置される
    ことを特徴とするEGR装置。
    In the EGR apparatus according to any one of claims 16 to 21,
    The EGR apparatus, wherein the flow path of the EGR valve includes an inlet and an outlet, and the inlet of the flow path is arranged substantially adjacent to the outlet of the heat exchanger.
PCT/JP2021/040937 2020-11-13 2021-11-08 Egr device WO2022102561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561894A JPWO2022102561A1 (en) 2020-11-13 2021-11-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189266 2020-11-13
JP2020189266 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102561A1 true WO2022102561A1 (en) 2022-05-19

Family

ID=81602310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040937 WO2022102561A1 (en) 2020-11-13 2021-11-08 Egr device

Country Status (2)

Country Link
JP (1) JPWO2022102561A1 (en)
WO (1) WO2022102561A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477818U (en) * 1977-11-11 1979-06-02
JPH06288305A (en) * 1993-03-31 1994-10-11 Suzuki Motor Corp Exhaust gas re-circulation device for engine
JP2000087810A (en) * 1998-09-08 2000-03-28 Hino Motors Ltd Exhaust gas recirculation system
JP2010180818A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Exhaust recirculating device for internal combustion engine
JP2014125974A (en) * 2012-12-26 2014-07-07 Daihatsu Motor Co Ltd Internal combustion engine
JP2014190333A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp EGR device
JP2015101987A (en) * 2013-11-22 2015-06-04 株式会社デンソー EGR valve device
JP2016023545A (en) * 2014-07-16 2016-02-08 愛三工業株式会社 Exhaust gas recirculation device for engine
JP2016075259A (en) * 2014-10-09 2016-05-12 愛三工業株式会社 Warm-up device of exhaust gas recirculation passage
JP2016079896A (en) * 2014-10-17 2016-05-16 アイシン精機株式会社 Air-intake apparatus
JP2019196769A (en) * 2018-05-11 2019-11-14 株式会社Soken Engine control system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477818U (en) * 1977-11-11 1979-06-02
JPH06288305A (en) * 1993-03-31 1994-10-11 Suzuki Motor Corp Exhaust gas re-circulation device for engine
JP2000087810A (en) * 1998-09-08 2000-03-28 Hino Motors Ltd Exhaust gas recirculation system
JP2010180818A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Exhaust recirculating device for internal combustion engine
JP2014125974A (en) * 2012-12-26 2014-07-07 Daihatsu Motor Co Ltd Internal combustion engine
JP2014190333A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp EGR device
JP2015101987A (en) * 2013-11-22 2015-06-04 株式会社デンソー EGR valve device
JP2016023545A (en) * 2014-07-16 2016-02-08 愛三工業株式会社 Exhaust gas recirculation device for engine
JP2016075259A (en) * 2014-10-09 2016-05-12 愛三工業株式会社 Warm-up device of exhaust gas recirculation passage
JP2016079896A (en) * 2014-10-17 2016-05-16 アイシン精機株式会社 Air-intake apparatus
JP2019196769A (en) * 2018-05-11 2019-11-14 株式会社Soken Engine control system

Also Published As

Publication number Publication date
JPWO2022102561A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP5880471B2 (en) Multi-cylinder engine cooling system
JP6056741B2 (en) Multi-cylinder engine cooling system
US4768493A (en) Blow-by gas heating system for internal combustion engines
JP5293550B2 (en) Multi-cylinder engine intake system
JP4594462B2 (en) Intake device for internal combustion engine
US6571779B2 (en) Internal combustion engine having combustion heater
US6830016B2 (en) System and method for cooling an engine
US11193456B1 (en) EGR system
JP4267349B2 (en) Exhaust gas recirculation device for internal combustion engine
WO2022102561A1 (en) Egr device
US10961884B1 (en) Exhaust gas heat recovery device system and method
JP3240795B2 (en) EGR gas cooling structure
JPH04292570A (en) Fuel injection internal combusion engine with spark ignition device and heating system
JP2002030930A (en) Internal combustion engine having combustion heater
US4133327A (en) Fuel vaporizing heat exchanger for an internal combustion engine
US7013869B2 (en) Fuel supply system for internal combustion engine
US11306689B2 (en) EGR system
JP4325063B2 (en) Intake device for internal combustion engine
WO2022024578A1 (en) Egr system
JP6061584B2 (en) Internal combustion engine
JP2022023773A (en) EGR system
JP2021188575A (en) Gas passage structure
JP2006143012A (en) Temperature adjusting device for vehicle
JP2012246805A (en) Exhaust circulation device of internal combustion engine
JP2008157102A (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891807

Country of ref document: EP

Kind code of ref document: A1