WO2022100207A1 - 一种触控面板及触控显示装置 - Google Patents

一种触控面板及触控显示装置 Download PDF

Info

Publication number
WO2022100207A1
WO2022100207A1 PCT/CN2021/115200 CN2021115200W WO2022100207A1 WO 2022100207 A1 WO2022100207 A1 WO 2022100207A1 CN 2021115200 W CN2021115200 W CN 2021115200W WO 2022100207 A1 WO2022100207 A1 WO 2022100207A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
capacitance
electrode
area
touch panel
Prior art date
Application number
PCT/CN2021/115200
Other languages
English (en)
French (fr)
Inventor
邓义超
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2022100207A1 publication Critical patent/WO2022100207A1/zh
Priority to US18/168,809 priority Critical patent/US20230195259A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • Embodiments of the present application relate to the technical field of display panels, and in particular, to a touch panel and a touch display device.
  • touch display devices are widely used.
  • the thickness of touch display devices is getting thinner and thinner, and the distance between the touch panel and the display panel is getting closer and closer.
  • the increase in the coupling capacitance of the panel to the display panel leads to an increase in the influence of the noise of the display panel on the touch panel, which affects the touch effect of the product.
  • Embodiments of the present application provide a touch panel and a display device, so as to reduce the influence of the noise of the display panel on the touch panel, and solve the problems of touch insensitivity or touch failure of the touch panel.
  • an embodiment of the present application provides a touch panel, including:
  • the touch electrodes include a touch sensing area and a capacitance adjusting area;
  • the touch sensing area is set to transmit touch signals; the capacitance adjustment area is set to reduce at least one of the capacitance to ground of the touch electrodes and the coupling capacitance between two adjacent touch electrodes.
  • an embodiment of the present application provides a touch display device, including a display panel arranged in layers and the touch panel described in the first aspect.
  • the touch panel provided by the embodiment of the present application includes a plurality of touch electrodes disposed on the same layer, and the touch electrodes include a touch sensing area and a capacitance adjusting area, wherein the touch sensing area is set to transmit touch signals, and the capacitance adjusting area is set In order to reduce the capacitance to ground of the touch electrodes and/or the coupling capacitance between two adjacent touch electrodes.
  • the touch signal is transmitted through the touch sensing area of the touch electrode, and the area of the entire touch electrode is reduced through the capacitance adjustment area of the touch electrode, so as to ensure that the touch electrode has a small capacitance to ground, or reduce the adjacent
  • the area of the touch electrodes can reduce the coupling capacitance between adjacent touch electrodes, thereby reducing the noise coupled from the display panel to the touch panel.
  • the touch sensing signal is a signal generated by a finger touching the touch panel, Therefore, the touch sensing signal remains unchanged, so that the signal-to-noise ratio of the touch signal of the touch panel is high, the capacitance to ground of the touch electrode can also be reduced, and the noise coupled from the display panel to the touch panel can be reduced. It has high touch sensitivity, reduces the influence of the noise of the display panel on the touch panel, and solves the problems of insensitive touch or invalid touch in the touch panel.
  • FIG. 1 is a schematic structural diagram of a touch panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a change curve of a touch electrode-to-ground capacitance and a coupling capacitance with a first width according to an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a variation curve of the capacitance C pY of the first electrode to ground and the capacitance C pX of the second electrode with the third width of D 3 and D 3 ′ according to an embodiment of the present application;
  • 15 is a schematic diagram of a variation curve of the coupling capacitance C m of the first electrode and the second electrode with the third width of D 3 and D 3 ′ provided by an embodiment of the present application;
  • FIG. 16 is a graph of the ground capacitance C pY of the second electrode and the ground capacitance C pX of the second electrode provided by an embodiment of the present application with D 1 , D 1 ′, D 0 , D 0 ′, D 2 and D 2 A schematic diagram of the variation curve of the third width of ';
  • FIG. 17 shows the variation of the coupling capacitance C m of the first electrode and the second electrode with the third width of D 1 , D 1 ′, D 0 , D 0 ′, D 2 , and D 2 ′ according to the embodiment of the present application Schematic diagram of the curve;
  • FIG. 18 is a graph of the ground capacitance C pY of the second electrode and the ground capacitance C pX of the second electrode provided by the embodiment of the present application with D 1 , D 1 ′, D 0 , D 0 ′, D 2 , D 2 A schematic diagram of the variation curve of the third width of ', D 3 and D 3 ';
  • FIG. 19 shows the coupling capacitance C m of a first electrode and a second electrode provided by an embodiment of the present application as a function of D 1 , D 1 ′, D 0 , D 0 ′, D 2 , D 2 ′, D 3 , and D 3
  • D 1 , D 1 ′, D 0 , D 0 ′, D 2 , D 2 ′, D 3 , and D 3 A schematic diagram of the variation curve of the third width of ';
  • FIG. 20 is a schematic structural diagram of a touch display device provided by an embodiment of the present application.
  • the distance between the touch panel and the display panel is getting closer and closer, which leads to the increase of the coupling capacitance of the touch panel to the display panel, and the increase of the noise of the display panel to the touch panel.
  • the signal-to-noise ratio of the control signal is reduced, which leads to the insensitivity of the touch panel or the failure of the touch, which affects the touch effect of the touch product.
  • FIG. 1 is a schematic structural diagram of a touch panel provided by an embodiment of the present application.
  • the touch panel provided by the embodiment of the present application includes a plurality of touch electrodes 1 arranged on the same layer, and the touch electrodes 1 include a touch sensing area 2 and a capacitance adjusting area 3 , wherein the touch sensing area 2 is set as To transmit touch signals, the capacitance adjustment area 3 is set to reduce the capacitance to ground of the touch electrodes 1 and/or the coupling capacitance between two adjacent touch electrodes 1 .
  • the plurality of touch electrodes 1 are arranged in the same layer, which reduces the thickness of the touch panel and is beneficial to reducing the thickness of the display device.
  • the capacitance adjustment area 3 can be hollowed out, the capacitance adjustment area 3 can be filled with an insulating layer, or a floating electrode can be set inside, the floating electrode and the adjacent touch electrodes are not connected and insulated, and the capacitance adjustment area 3 can be reduced.
  • the area of the entire touch electrode 1 is due to the formation of capacitance to ground between the touch electrode 1 and the display panel. For example, a capacitance to ground is formed between the touch electrode 1 and the cathode of the display panel. There is a coupling capacitance between them.
  • the capacitance adjustment area 3 and the capacitance adjustment area 3 is hollowed out, the area of the touch electrode 1 is reduced, the capacitance to ground of the touch electrode 1 can be reduced, and the touch sensitivity of the touch panel can be improved. It is also possible to reduce the coupling capacitance between adjacent touch electrodes 1 and reduce the noise signal in the touch signal, thereby improving the signal-to-noise ratio of the touch signal of the touch panel.
  • the touch panel may be a self-capacitance type touch panel or a mutual-capacitance type touch panel.
  • FIG. 1 exemplarily shows the case where the touch panel is a self-capacitance type touch panel.
  • the control panel is a self-capacitance touch panel, and a capacitance to ground will be generated between the touch electrode 1 and the ground.
  • the capacitance adjustment area 3 By setting the capacitance adjustment area 3, the area of the touch electrode 1 is reduced, and the pair of the touch electrode 1 can be reduced. Therefore, the noise coupled from the display panel to the touch panel can be reduced, and the touch sensitivity of the touch panel can be improved.
  • FIG. 2 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • FIG. 2 exemplarily shows the case where the touch panel is a mutual capacitance type touch panel.
  • the touch panel can be set as a mutual capacitance type touch panel, and the touch electrode 1 includes a first electrode and a second electrode, A coupling capacitance will be generated between adjacent touch electrodes 1, and a capacitance to ground will also be generated between the touch electrodes 1 and the ground.
  • the capacitance adjustment area 3 the area of the touch electrodes 1 is reduced, and the phase difference can be reduced.
  • the coupling capacitance between the adjacent touch electrodes 1 reduces the noise coupled from the display panel to the touch panel.
  • the touch sensing signal is a signal generated by a finger touching the touch panel
  • the touch sensing signal remains unchanged, so that the The touch signal of the touch panel has a high signal-to-noise ratio, and the capacitance to ground of the touch electrode 1 can also be reduced, and the noise coupled from the display panel to the touch panel can be reduced, so that the touch panel has higher touch sensitivity.
  • FIG. 2 does not show the bridge between the touch electrodes 1 of the mutual capacitance type.
  • the touch panel provided by this embodiment transmits the touch signal through the touch sensing area of the touch electrode, and ensures that the touch electrode has a smaller capacitance to ground through the capacitance adjustment area of the touch electrode, or reduces the number of adjacent two
  • the coupling capacitance between the touch electrodes, or ensuring that the touch electrodes have a small ground capacitance and a small coupling capacitance at the same time reduces the influence of the noise of the display panel on the touch panel and improves the performance of the touch electrodes.
  • the touch sensitivity of the touch sensing area makes the signal-to-noise ratio of the touch signal of the touch panel high, and solves the problems of insensitive touch or invalid touch of the touch panel.
  • FIG. 3 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the capacitance adjustment region 3 is provided with an inactive electrode 4 , and the inactive electrode 4 is in the same layer as the touch electrode 1 and is arranged in the air.
  • the inactive electrodes 4 are arranged in the same layer as the touch electrodes 1, so that the thickness of the touch panel can not be increased. No capacitance to ground can be generated between the invalid electrode 4 and the ground, and no coupling capacitance can be generated between the invalid electrode 4 and the adjacent touch electrodes 1 , so that the touch panel has smaller coupling capacitance and capacitance to ground.
  • the touch electrodes 1 are adjacent to the transparent cover plate, and the inactive electrodes 4 are arranged in the capacitance adjustment area 3, a uniform metal layer can be formed on the film layer where the touch electrodes 1 are located, and it is not easy to see the capacitance adjustment of the touch electrodes 1
  • the grid formed by the area 3 and the touch sensing area 2 makes the touch panel have better visual aesthetics.
  • FIG. 4 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the touch sensing area 2 is arranged around the capacitance adjusting area 3 .
  • This setting can ensure that the touch sensing area 2 has a smaller coupling capacitance, and at the same time, the signal transmission path of the touch sensing area 2 can form a closed loop, which can improve the strength of the touch sensing signal, thereby improving the sensitivity of the touch sensing signal. Signal-to-noise ratio.
  • the shape of the touch electrode 1 can be at least one of a rectangular block, a strip, a triangle or other irregular shapes, which can be set according to the actual needs of the touch panel.
  • the shapes of the electrodes 1 are the same or different.
  • FIG. 4 exemplarily depicts the case where the shape of the capacitance adjustment region 3 is different from the shape of the touch electrode 1 , and the shapes of the plurality of capacitance adjustment regions 3 are different.
  • the shapes of the capacitance adjustment region 3 and the touch electrodes 1 can be set as required, which are not limited herein.
  • FIG. 5 is a schematic structural diagram of another touch panel provided by an embodiment of the present application. On the basis of the above-mentioned embodiment, FIG.
  • the shape of the capacitance adjustment region 3 is the same as the shape of the touch electrode 1 .
  • the shape of the capacitance adjustment area 3 is the same as the shape of the touch electrode 1 , so that when the touch electrode 1 is fabricated, it is easier to set the touch sensing area 2 around the capacitance adjustment area 3 , which facilitates the fabrication of the touch electrode 1 .
  • FIG. 6 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the first length L 1 of the capacitance adjustment area 3 is smaller than the second length L 2 of the touch sensing area 2 ;
  • the first length L 1 is the size of the long side of the capacitance adjustment area 3
  • the second length L 2 is the size of the long side of the touch sensing area 2;
  • the first width W 1 of the capacitance adjustment area 3 is smaller than the second width W 2 of the touch sensing area 2;
  • the first width W 1 is the capacitance adjustment area
  • the second width W 2 is the size of the short side of the touch sensing area 2 .
  • the signal transmission path of the touch sensing area 2 can form a closed loop, so that the transmission of the touch sensing signal on the touch electrode 1 is more uniform, the intensity of the touch sensing signal is improved, and the transmission process of the touch sensing signal is reduced.
  • the loss in the touch sensing signal is improved, the signal-to-noise ratio of the touch sensing signal is improved, and the touch effect of the touch panel is improved.
  • the side of the touch sensing area 2 adjacent to the side of the capacitance adjustment area 3 is greater than or equal to 50 ⁇ m in size D from the corresponding side of the capacitance adjustment area 3, and the first The range of a width W 1 is 150 ⁇ m ⁇ 300 ⁇ m.
  • the first length L 1 of the capacitance adjustment region 3 can be set unchanged, and the first width W 1 can be set in the range of 150 ⁇ m ⁇ 300 ⁇ m, such as 180 ⁇ m, 200 ⁇ m, 220 ⁇ m, 250 ⁇ m, etc., so that the ground capacitance of the touch electrode 1 and the coupling
  • the capacitances are all within an appropriate range, which ensures that the touch electrode 1 has a higher signal-to-noise ratio and improves the touch sensitivity of the touch panel.
  • FIG. 7 is a schematic diagram of a change curve of a touch electrode-to-ground capacitance and a coupling capacitance with a first width provided by an embodiment of the present application.
  • the X-axis is the first width W 1
  • the Y-axis is the capacitance value.
  • the coupling capacitance 6 between adjacent touch electrodes 1 see FIG.
  • Curve 6) is greater than 0.5pF and less than 1.5pF, the coupling capacitance is too small, it will be difficult to identify the touch signal when the change of the touch signal is small, when the coupling capacitance is too large, the noise is large, and the touch signal is relatively The noise is small, and the signal-to-noise ratio of the touch signal is low; when the first width W 1 is greater than 150 ⁇ m and less than 400 ⁇ m, the ground capacitance 9 (see curve 9 in FIG. 7 ) of the touch electrode 1 is less than 10pF, and the ground The capacitance is smaller, and the noise of the touch signal is smaller.
  • the range of the first width W 1 is set to be 150 ⁇ m ⁇ 300 ⁇ m, so that both the coupling capacitance and the ground capacitance are within a suitable range, which can ensure high sensitivity of the touch sensing signal and improve the touch effect.
  • FIG. 8 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the shape of the inactive electrode 4 may include at least one of a rectangle, a triangle, a regular hexagon and a circle.
  • the shape of the inactive electrode 4 can be set according to the shape of the capacitance adjustment region 3 or according to the needs of the touch sensing signal. It should be noted that, FIG. 8 exemplarily depicts the case where the invalid electrode 4 is a hexagon, and is not a limitation on the invalid electrode 4 .
  • the capacitance adjustment area 3 may be located at the edge of the touch sensing area 2 .
  • FIG. 9 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the capacitance adjustment area 3 is arranged on the edge of the touch sensing area 2 , so that the invalid electrode 4 is also arranged on the edge of the touch sensing area 2 , which does not affect the touch sensing area. 2.
  • the capacitance adjustment area 3 is arranged on the edge of the touch sensing area 2, which can reduce the adjacent edges of the capacitance adjustment area 3 and the touch sensing area 2, and the capacitance adjustment area 3 is fabricated
  • the inactive electrode 4 it is easier to realize the insulation between the inactive electrode 4 and the touch electrode 1 , which facilitates the fabrication of the inactive electrode 4 .
  • the touch panel may be a mutual capacitive touch panel or a self capacitive touch panel.
  • the touch panel may be a mutual capacitance type touch panel.
  • the touch electrode 1 includes a first electrode 11 and a second electrode 12 ; the first electrode 11 includes a touch sensing area 2 and a capacitance adjusting area 3 ; and/or the second electrode 12 It includes a touch sensing area 2 and a capacitance adjustment area 3 .
  • FIG. 10 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the touch panel is a mutual capacitance type touch panel
  • the touch electrode 1 includes a first electrode 11 and a second electrode 12
  • the first electrode 11 includes a touch sensing area 2 and capacitance adjustment area 3, reducing the area of the first electrode 11, which can reduce the capacitance 7 of the first electrode 11 to ground, and reduce the coupling capacitance 6 between the first electrode 11 and the second electrode 12, reduce the The noise of the touch sensing signal is reduced, so that the noise coupled from the display panel to the touch panel can be reduced, and the touch sensitivity of the touch panel can be improved.
  • FIG. 11 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the touch panel is a mutual capacitance type touch panel
  • the touch electrode 1 includes a first electrode 11 and a second electrode 12
  • the second electrode 12 includes a touch sensing area 2 and capacitance adjustment area 3, this arrangement reduces the area of the second electrode 12, can reduce the capacitance 8 of the second electrode 12 to ground, and reduce the coupling capacitance between the second electrode 12 and the first electrode 11 6, so that the noise coupled from the display panel to the touch panel can be reduced, and the touch sensitivity of the touch panel can be improved.
  • FIG. 12 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the touch panel is a mutual capacitance type touch panel
  • the touch electrode 1 includes a first electrode 11 and a second electrode 12
  • the first electrode 11 includes a touch sensing area 2 and the capacitance adjustment area 3
  • the second electrode 12 includes the touch sensing area 2 and the capacitance adjustment area 3.
  • This arrangement reduces the areas of the first electrode 11 and the second electrode 12, and can reduce the size of the first electrode 11 respectively.
  • the ground capacitance 7 and the ground capacitance 8 of the second electrode 12 are reduced, and the coupling capacitance 6 between the second electrode 12 and the first electrode 11 is reduced, so that the noise coupled from the display panel to the touch panel can be reduced.
  • the sensing signal remains unchanged, the signal-to-noise ratio of the touch sensing signal is greatly improved, the touch sensitivity of the touch panel is improved, the influence of the noise of the display panel on the touch panel is reduced, and the problem of the touch panel is solved. There is a problem that the touch is not sensitive or the touch is invalid.
  • FIG. 13 is a schematic structural diagram of another touch panel provided by an embodiment of the present application.
  • the touch sensing area 2 includes at least two touch sensing areas 21
  • the capacitance adjusting area 3 includes at least two capacitance adjusting areas 31 ; each touch sensing area 21 is correspondingly provided with a At least one capacitance adjustment partition 31 is provided.
  • Each touch-sensing sub-region 21 is correspondingly provided with at least one capacitance adjusting sub-region 31 , and the capacitance to ground of the touch-sensing sub-region 21 can be reduced in each touch-sensing sub-region 21 , so that the The touch sensing area 2 has as small a capacitance to ground as possible, which improves the signal-to-noise ratio of the touch sensing signal, so that the touch effect of each area of the touch panel is better. It should be noted that, FIG.
  • each touch sensing sub-area 21 is provided with one capacitance adjustment sub-area 31
  • each touch-sensing sub-area 21 may also be correspondingly provided with a plurality of capacitance adjustment sub-areas 31 . This will not be repeated here.
  • the first electrode 11 may include two touch-sensing sub-areas 21 , which are the first touch-sensing sub-area Y 0 and the second touch-sensing sub-area Y 0 ′, respectively, and the second electrode 12 may include six touch-sensing sub-areas 21 .
  • the touch sensing area 21 is the third touch sensing area X 0 and the fourth touch sensing area X 0 ′, the fifth touch sensing area X 1 and the sixth touch sensing area X 1 ′, and the seventh touch sensing area X 1 ′.
  • the touch sensing area X 2 and the eighth touch sensing area X 2 ′ are the first touch-sensing sub-area Y 0 and the second touch-sensing sub-area Y 0 ′, respectively, and the second electrode 12 may include six touch-sensing sub-areas 21 .
  • the touch sensing area 21 is the third touch sensing area X 0 and the fourth touch sensing area
  • Each touch sensing area 21 may be correspondingly provided with a capacitance adjusting area 31, and each capacitance adjusting area 31 may include an inactive electrode 4.
  • the first touch sensing area Y 0 and the second touch sensing area Y 0 ′ is respectively set with the first inactive electrode D 3 and the second inactive electrode D 3 ′;
  • the third touch sensing sub-area X 0 and the fourth touch-sensing sub-area X 0 ′ are respectively provided with the third inactive electrode D 1 and the third inactive electrode D 3 ′.
  • inactive electrodes D 1 ′, the fifth touch sensing area X 1 and the sixth touch sensing area X 1 ′ are respectively set with the fifth inactive electrode D 0 and the sixth inactive electrode D 0 ′, and the seventh touch sensing area X 2 and the eighth touch sensing sub-area X 2 ′ are respectively provided with a seventh inactive electrode D 2 and an eighth inactive electrode D 2 ′.
  • the third width of the invalid electrode D 2 and the eighth invalid electrode D 2 ′ adjust the area of the corresponding invalid electrode, and then adjust the area of the first electrode and the second electrode in the corresponding area, thereby adjusting the gap between the first electrode and the second electrode The capacitance to ground and the coupling capacitance between the first electrode and the second electrode.
  • FIG. 14 is a schematic diagram of the variation curve of the ground capacitance C pY of the first electrode and the ground capacitance C pX of the second electrode with the third width of D 3 and D 3 ′ according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a change curve of the coupling capacitance C m of the first electrode and the second electrode with the third width of D 3 and D 3 ′ according to an embodiment of the present application.
  • FIG. 16 is a graph of the ground capacitance C pY of the first electrode and the ground capacitance C pX of the second electrode provided by an embodiment of the present application with D 1 , D 1 ′, D 0 , D 0 ′, D 2 and D 2 Schematic diagram of the variation curve of the third width.
  • FIG. 17 shows the variation of the coupling capacitance C m of the first electrode and the second electrode with the third width of D 1 , D 1 ′, D 0 , D 0 ′, D 2 , and D 2 ′ according to the embodiment of the present application Schematic diagram of the curve.
  • FIG. 18 is a graph of the ground capacitance C pY of the first electrode and the ground capacitance C pX of the second electrode provided by an embodiment of the present application with D 1 , D 1 ′, D 0 , D 0 ′, D 2 , D 2 ', D 3 and D 3 ' Schematic diagram of the variation curve of the third width.
  • FIG. 19 shows the coupling capacitance C m of a first electrode and a second electrode provided by an embodiment of the present application as a function of D 1 , D 1 ′, D 0 , D 0 ′, D 2 , D 2 ′, D 3 , and D 3 Schematic diagram of the variation curve of the third width.
  • setting the first width W 1 in the range of 150 ⁇ m ⁇ 300 ⁇ m can make the coupling capacitance C m between the first electrode 11 and the second electrode 12 , the coupling capacitance C m between the first electrode 11 and the second electrode 12 , the The capacitance C pY to ground and the capacitance C pX to ground of the second electrode 12 are both within a suitable range, which can make the noise of the display panel to the touch panel smaller, ensure that the touch sensing signal has a higher sensitivity, and improve the touch Effect.
  • FIG. 20 is a schematic structural diagram of a touch display device provided by an embodiment of the present application.
  • the touch display device 100 provided by the embodiment of the present application includes the display panel 200 arranged in layers and the touch panel 300 described in any of the above embodiments, and may also include a touch panel arranged on the touch panel 300 .
  • the transparent cover plate 400 on the side of the panel 300 away from the display panel 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请实施例公开了一种触控面板及触控显示装置,该触控面板包括同层设置的多个触控电极,触控电极包括触控感应区和电容调整区,其中,触控感应区设置为传输触控信号,电容调整区设置为减小触控电极的对地电容和相邻两个触控电极之间的耦合电容中的至少之一。

Description

一种触控面板及触控显示装置
本申请要求在2020年11月13日提交中国专利局、申请号为202011270175.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示面板技术领域,尤其涉及一种触控面板及触控显示装置。
背景技术
随着触控技术的发展以及人们生活水平的提高,触控显示装置得到广泛应用,触控显示装置的厚度越来越薄,触控面板与显示面板的距离也越来越近,使得触控面板对显示面板的耦合电容增大,导致显示面板的噪声对触控面板的影响增大,影响产品的触控效果。
发明内容
本申请实施例提供一种触控面板及显示装置,以减小显示面板的噪声对触控面板的影响,解决触控面板存在的触控不灵敏或触控失效的问题。
第一方面,本申请实施例提供了一种触控面板,包括:
同层设置的多个触控电极,触控电极包括触控感应区和电容调整区;
其中,触控感应区设置为传输触控信号;电容调整区设置为减小触控电极的对地电容和相邻两个触控电极之间的耦合电容中的至少之一。
第二方面,本申请实施例提供了一种触控显示装置,包括层叠设置的显示面板以及第一方面所述的触控面板。
本申请实施例提供的触控面板包括同层设置的多个触控电极,触控电极包括触控感应区和电容调整区,其中,触控感应区设置为传输触控信号,电容调整区设置为减小触控电极的对地电容和/或相邻两个触控电极之间的耦合电容。 通过触控电极的触控感应区传输触控信号,并通过触控电极的电容调整区减小了整个触控电极的面积,保证触控电极有较小的对地电容,或者减小相邻两个触控电极之间的耦合电容,或者保证触控电极有较小的对地电容的同时相邻两个触控电极之间有较小的耦合电容,通过设置电容调整区,减小了触控电极的面积,可以减小相邻触控电极之间的耦合电容,从而减小显示面板耦合至触控面板的噪声,由于触控感应信号是手指触摸至触控面板上产生的信号,因此触控感应信号不变,使得触控面板的触控信号的信噪比较高,还可以减小触控电极的对地电容,减少显示面板耦合到触控面板的噪声,使得触控面板有较高的触控灵敏度,减小了显示面板的噪声对触控面板的影响,解决了触控面板存在的触控不灵敏或触控失效的问题。
附图说明
图1是本申请实施例提供的一种触控面板的结构示意图;
图2是本申请实施例提供的另一种触控面板的结构示意图;
图3是本申请实施例提供的又一种触控面板的结构示意图;
图4是本申请实施例提供的又一种触控面板的结构示意图;
图5是本申请实施例提供的又一种触控面板的结构示意图;
图6是本申请实施例提供的又一种触控面板的结构示意图;
图7是本申请实施例提供的一种触控电极对地电容以及耦合电容随第一宽度的变化曲线的示意图;
图8是本申请实施例提供的又一种触控面板的结构示意图;
图9是本申请实施例提供的又一种触控面板的结构示意图;
图10是本申请实施例提供的又一种触控面板的结构示意图;
图11是本申请实施例提供的又一种触控面板的结构示意图;
图12是本申请实施例提供的又一种触控面板的结构示意图;
图13是本申请实施例提供的又一种触控面板的结构示意图;
图14是本申请实施例提供的一种第一电极的对地电容C pY和第二电极的对地电容C pX随D 3和D 3’的第三宽度的变化曲线的示意图;
图15是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 3和D 3’的第三宽度的变化曲线的示意图;
图16是本申请实施例提供的一种第二电极的对地电容C pY和第二电极的对地电容C pX随D 1、D 1’、D 0、D 0’、D 2和D 2’的第三宽度的变化曲线的示意图;
图17是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 1、D 1’、D 0、D 0’、D 2和D 2’的第三宽度的变化曲线的示意图;
图18是本申请实施例提供的一种第二电极的对地电容C pY和第二电极的对地电容C pX随D 1、D 1’、D 0、D 0’、D 2、D 2’、D 3和D 3’的第三宽度的变化曲线的示意图;
图19是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 1、D 1’、D 0、D 0’、D 2、D 2’、D 3和D 3’的第三宽度的变化曲线的示意图;
图20是本申请实施例提供的一种触控显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
正如背景技术中提到的触控面板与显示面板的距离越来越近,导致触控面板对显示面板的耦合电容增大,显示面板对触控面板的噪声增大,使得触控面板的触控信号的信噪比减小,导致触控面板触控不灵敏或触控失效的问题,影响触控产品的触控效果。
图1是本申请实施例提供的一种触控面板的结构示意图。参见图1,本申请实施例提供的触控面板包括同层设置的多个触控电极1,触控电极1包括触控感应区2和电容调整区3,其中,触控感应区2设置为传输触控信号,电容调整区3设置为减小触控电极1的对地电容和/或相邻两个触控电极1之间的耦合电容。
多个触控电极1同层设置,降低了触控面板的厚度,有利于减薄显示装置的厚度。电容调整区3可以是镂空设置,电容调整区3可以用绝缘层填充,也可以在内部设置浮置电极,浮置电极和相邻的触控电极不连接且绝缘,电容调整区3可以减小整个触控电极1的面积,由于触控电极1与显示面板之间会形成对地电容,例如触控电极1与显示面板的阴极之间形成对地电容,相邻两个触控电极1之间存在耦合电容,通过设置电容调整区3,电容调整区3镂空设置,将触控电极1的面积减小,可以减小触控电极1的对地电容,提高触控面板的触控灵敏度,还可以减小相邻触控电极1之间的耦合电容,降低触控信号中的噪声信号,从而提升触控面板的触控信号的信噪比。
示例性地,触控面板可以是自容型触控面板或互容型触控面板,图1示例性地画出触控面板为自容型触控面板的情况,参见图1,可以设置触控面板为自容型触控面板,触控电极1与地之间会产生对地电容,通过设置电容调整区3,减小了触控电极1的面积,可以减小触控电极1的对地电容,从而可以减少显示面板耦合到触控面板的噪声,提高触控面板的触控灵敏度。
图2是本申请实施例提供的又一种触控面板的结构示意图。图2示例性地示出触控面板为互容型触控面板的情况,参见图2,可以设置触控面板为互容型触控面板,触控电极1包括第一电极和第二电极,相邻的触控电极1之间会产生耦合电容,触控电极1与地之间也会产生对地电容,通过设置电容调整区3,减小了触控电极1的面积,可以减小相邻触控电极1之间的耦合电容,从而减小显示面板耦合至触控面板的噪声,由于触控感应信号是手指触摸至触控面板上产生的信号,因此触控感应信号不变,使得触控面板的触控信号的信噪比较高,还可以减小触控电极1的对地电容,减少显示面板耦合到触控面板的噪声,使得触控面板有较高的触控灵敏度。需要说明的是,图2并未示出互容型的触 控电极1之间的跨桥。
本实施例提供的触控面板通过触控电极的触控感应区传输触控信号,并通过触控电极的电容调整区保证触控电极有较小的对地电容,或者减小相邻两个触控电极之间的耦合电容,或者保证触控电极有较小的对地电容的同时有较小的耦合电容,减小了显示面板的噪声对触控面板的影响,提高了触控电极的触控感应区的触控灵敏度,使得触控面板的触控信号的信噪比较高,解决了触控面板存在的触控不灵敏或触控失效的问题。
可选地,图3是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图3,电容调整区3设置有无效电极4,无效电极4与触控电极1同层,且浮空设置。
无效电极4与触控电极1同层设置,可以不增加触控面板的厚度,无效电极4浮空设置,浮空设置即无效电极4和相邻的触控电极1不连接且绝缘设置,使得无效电极4与地之间不能产生对地电容,无效电极4与相邻的触控电极1之间也不能产生耦合电容,使得触控面板有较小的耦合电容和对地电容。此外,由于触控电极1邻近透明盖板,将无效电极4设置于电容调整区3,可以在触控电极1所在的膜层形成均匀的金属层,不容易看到触控电极1的电容调整区3和触控感应区2形成的网格,使得触控面板具有较好的视觉美观性。
可选地,图4是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图4,触控感应区2围绕电容调整区3设置。
这样设置可以保证触控感应区2有较小的耦合电容的同时,可以使得触控感应区2信号传输的路径形成闭合环路,可以提升触控感应信号的强度,从而提升触控感应信号的信噪比。
可选的,触控电极1的形状可以为矩形块、条状、三角形或者其他不规则 形状中的至少一种,可以根据触控面板的实际需要设置,电容调整区3的形状可以与触控电极1的形状相同或不同,图4示例性地画出电容调整区3的形状与触控电极1的形状不相同,多个电容调整区3的形状不同的情况。可以根据需要设置电容调整区3和触控电极1的形状,在此不作任何限定。图5是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,图5示例性地画出电容调整区3的形状与触控电极1的形状相同的情况。设置电容调整区3的形状与触控电极1的形状相同,使得在制作触控电极1时,更容易将触控感应区2包围电容调整区3设置,方便制作触控电极1。
可选地,图6是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图6,电容调整区3的第一长度L 1小于触控感应区2的第二长度L 2;第一长度L 1为电容调整区3的长边的尺寸,第二长度L 2为触控感应区2的长边的尺寸;电容调整区3的第一宽度W 1小于触控感应区2的第二宽度W 2;第一宽度W 1为电容调整区3的短边的尺寸,第二宽度W 2为触控感应区2的短边的尺寸。
这样设置可以使得触控感应区2信号传输的路径形成闭合环路,使触控感应信号在触控电极1上的传输更均匀,提升触控感应信号的强度,减少触控感应信号在传输过程中的损耗,提高触控感应信号的信噪比,改善触控面板的触控效果。
可选地,在上述实施例的基础上,参见图6,与电容调整区3的边相邻的触控感应区2的边距离电容调整区3的对应边的尺寸D大于或等于50μm,第一宽度W 1的范围为150μm~300μm。
由于触控电极1的对地电容以及耦合电容过大将引起噪声放大进而降低触控感应信号的信噪比,触控电极1的对地电容以及耦合电容过小会影响触控感 应信号的强度,影响触控感应的灵敏度。可以设置电容调整区3的第一长度L 1不变,设置第一宽度W 1的范围为150μm~300μm,例如为180μm、200μm、220μm、250μm等,使得触控电极1的对地电容以及耦合电容均处在合适的范围内,保证触控电极1有较高的信噪比,改善触控面板的触控灵敏度。示例性地,图7是本申请实施例提供的一种触控电极对地电容以及耦合电容随第一宽度的变化曲线的示意图。参见图7,X轴为第一宽度W 1,Y轴为电容值,当第一宽度W 1大于50μm且小于300μm时,相邻的触控电极1之间的耦合电容6(参见图7中的曲线6)大于0.5pF且小于1.5pF,耦合电容过小,会在触控信号的变化量较小时,很难识别触控信号,当耦合电容过大时,噪声较大,触控信号相对噪声较小,触控信号的信噪比较低;当第一宽度W 1大于150μm且小于400μm时,触控电极1的对地电容9(参见图7中的曲线9)小于10pF,对地电容较小,触控信号的噪声较小。设置第一宽度W 1的范围为150μm~300μm,使得耦合电容和对地电容均在合适的范围内,可以保证触控感应信号有较高的灵敏度,提高触控效果。
可选地,图8是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图8,无效电极4的形状可以包括矩形、三角形、正六边形以及圆形中的至少一种。
无效电极4的形状可以根据电容调整区3的形状设置,也可以根据触控感应信号的需要设置。需要说明的是,图8示例性的画出无效电极4为六边形的情况,并非对无效电极4的限定。
可选地,电容调整区3可以位于触控感应区2的边缘。
图9是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图9,将电容调整区3设置在触控感应区2的边缘上,使得无效 电极4也设置在触控感应区2的边缘上,不影响触控感应区2主***置的触控感应信号的传输,将电容调整区3设置在触控感应区2的边缘上,可以减少电容调整区3与触控感应区2相邻的边,在电容调整区3制作无效电极4时更容易实现无效电极4与触控电极1之间的绝缘,方便制作无效电极4。
可选地,触控面板可以为互容型触控面板或自容型触控面板。触控面板可以为互容型触控面板,触控电极1包括第一电极11和第二电极12;第一电极11包括触控感应区2和电容调整区3;和/或第二电极12包括触控感应区2和电容调整区3。
图10是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,结合图7和图10,触控面板为互容型触控面板,触控电极1包括第一电极11和第二电极12,第一电极11包括触控感应区2和电容调整区3,减小了第一电极11的面积,可以减小第一电极11的对地电容7,并减小第一电极11与第二电极12之间的耦合电容6,减小触控感应信号的噪声,从而可以减少显示面板耦合到触控面板的噪声,提高触控面板的触控灵敏度。
图11是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,结合图7和图11,触控面板为互容型触控面板,触控电极1包括第一电极11和第二电极12;第二电极12包括触控感应区2和电容调整区3,该设置方式减小了第二电极12的面积,可以减小第二电极12的对地电容8,并减小第二电极12与第一电极11之间的耦合电容6,从而可以减少显示面板耦合到触控面板的噪声,提高触控面板的触控灵敏度。
图12是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,结合图7和图12,触控面板为互容型触控面板,触控电极1包括第一电极11和第二电极12,第一电极11包括触控感应区2和电容调整区3且第 二电极12包括触控感应区2和电容调整区3,该设置方式减小了第一电极11和第二电极12的面积,可以分别减小第一电极11的对地电容7和第二电极12的对地电容8,并减小第二电极12与第一电极11之间的耦合电容6,从而可以减少显示面板耦合到触控面板的噪声,在触控感应信号不变的情况下,较大程度地提升触控感应信号的信噪比,改善触控面板的触控灵敏度,减小了显示面板的噪声对触控面板的影响,解决了触控面板存在的触控不灵敏或触控失效的问题。
可选地,图13是本申请实施例提供的又一种触控面板的结构示意图。在上述实施例的基础上,参见图13,触控感应区2包括至少两个触控感应分区21,电容调整区3包括至少两个电容调整分区31;每个触控感应分区21对应设置有至少一个电容调整分区31。
每个触控感应分区21对应设置有至少一个电容调整分区31,可以在每一个触控感应分区21均减小触控感应分区21的对地电容,使得由多个触控感应分区21构成的触控感应区2有尽可能小的对地电容,提升触控感应信号的信噪比,使得触控面板的各个区域的触控效果均较好。需要说明的是,图13示例性地画出每个触控感应分区21对应设置有一个电容调整分区31的情况,每个触控感应分区21也可以对应设置有多个电容调整分区31,在此不再赘述。
示例性的,参见图13,第一电极11可以包括两个触控感应分区21,分别为第一触控感应分区Y 0和第二触控感应分区Y 0’,第二电极12可以包括六个触控感应分区21,分别为第三触控感应分区X 0和第四触控感应分区X 0’,第五触控感应分区X 1和第六触控感应分区X 1’,第七触控感应分区X 2和第八触控感应分区X 2’。每个触控感应分区21可以对应设置有一个电容调整分区31,且每个电容调整分区31可以包括一个无效电极4,参见图13,第一触控感应分区Y 0 和第二触控感应分区Y 0’分别对应设置第一无效电极D 3和第二无效电极D 3’;第三触控感应分区X 0和第四触控感应分区X 0’分别对应设置第三无效电极D 1和第四无效电极D 1’,第五触控感应分区X 1和第六触控感应分区X 1’分别对应设置第五无效电极D 0和第六无效电极D 0’,第七触控感应分区X 2和第八触控感应分区X 2’分别对应设置第七无效电极D 2和第八无效电极D 2’。
可以通过调整第一无效电极D 3、第二无效电极D 3’、第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的第三宽度,调整对应无效电极的面积,进而调整对应区域的第一电极和第二电极的面积,从而调节第一电极和第二电极之间的对地电容和第一电极和第二电极之间的耦合电容。
示例性的,图14是本申请实施例提供的一种第一电极的对地电容C pY和第二电极的对地电容C pX随D 3和D 3’的第三宽度的变化曲线的示意图。图15是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 3和D 3’的第三宽度的变化曲线的示意图。在上述实施例的基础上,结合图13至图15可知,在第一无效电极D 3、第二无效电极D 3’的第三长度不变的情况下,随着第一无效电极D 3和第二无效电极D 3’的第三宽度的增加,第一无效电极D 3和第二无效电极D 3’的面积增加,第一电极11的第一触控感应分区Y 0和第二触控感应分区Y 0’的面积减小,第一电极11的对地电容C pY减小,第二电极12的对地电容C pX恒定,第一电极11和第二电极12的耦合电容C m减小。
图16是本申请实施例提供的一种第一电极的对地电容C pY和第二电极的对地电容C pX随D 1、D 1’、D 0、D 0’、D 2和D 2’的第三宽度的变化曲线的示意图。图17是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 1、D 1’、D 0、D 0’、D 2和D 2’的第三宽度的变化曲线的示意图。在上述实施例的基础上, 结合图13、图16和图17可知,在第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的第三长度不变的情况下,随着第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的第三宽度的增加,第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的面积增加,对应的第二电极12的第三触控感应分区X 0、第四触控感应分区X 0’、第五触控感应分区X 1、第六触控感应分区X 1’、第七触控感应分区X 2以及第八触控感应分区X 2’的面积减小,第一电极11的对地电容C pY恒定,第二电极12的对地电容C pX减小,第一电极11和第二电极12的耦合电容C m减小。
图18是本申请实施例提供的一种第一电极的对地电容C pY和第二电极的对地电容C pX随D 1、D 1’、D 0、D 0’、D 2、D 2’、D 3和D 3’的第三宽度的变化曲线的示意图。图19是本申请实施例提供的一种第一电极和第二电极的耦合电容C m随D 1、D 1’、D 0、D 0’、D 2、D 2’、D 3和D 3’的第三宽度的变化曲线的示意图。在上述实施例的基础上,结合图13、图18和图19可知,在第一无效电极D 3、第二无效电极D 3’、第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的第三长度不变的情况下,随着第一无效电极D 3、第二无效电极D 3’、第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的第三宽度的增加,第一无效电极D 3、第二无效电极D 3’、第三无效电极D 1、第四无效电极D 1’、第五无效电极D 0、第六无效电极D 0’、第七无效电极D 2和第八无效电极D 2’的面积增加,对应的第一电极11的第一触控感应分区Y 0和第二触控感应分区Y 0’的面积减小,第一电极11的对地电容C pY减小,对应的第二 电极12的第三触控感应分区X 0、第四触控感应分区X 0’、第五触控感应分区X 1、第六触控感应分区X 1’、第七触控感应分区X 2以及第八触控感应分区X 2’的面积减小,第二电极12的对地电容C pX减小,第一电极11和第二电极12之间的耦合电容C m较大程度的减小。综上,结合图7和图18至图19,设置第一宽度W 1的范围为150μm~300μm,可以使得第一电极11和第二电极12之间的耦合电容C m、第一电极11的对地电容C pY以及第二电极12的对地电容C pX均在合适的范围内,可以使得显示面板对触控面板的噪声较小,保证触控感应信号有较高的灵敏度,提高触控效果。
可选地,图20是本申请实施例提供的一种触控显示装置的结构示意图。在上述实施例的基础上,参见图20,本申请实施例提供的触控显示装置100包括层叠设置的显示面板200以及上述任意实施例所述的触控面板300,还可以包括设置于触控面板300远离显示面板200一侧的透明盖板400。

Claims (16)

  1. 一种触控面板,包括:
    同层设置的多个触控电极,所述触控电极包括触控感应区和电容调整区;
    其中,所述触控感应区设置为传输触控信号;所述电容调整区设置为减小所述触控电极的对地电容和相邻两个所述触控电极之间的耦合电容中的至少之一。
  2. 根据权利要求1所述的触控面板,其中,所述电容调整区设置有无效电极,所述无效电极与所述触控电极同层,且浮空设置。
  3. 根据权利要求1所述的触控面板,其中,所述触控感应区围绕所述电容调整区设置。
  4. 根据权利要求3所述的触控面板,其中,所述电容调整区的第一长度小于所述触控感应区的第二长度,所述电容调整区的第一宽度小于所述触控感应区的第二宽度;其中,所述第一长度为所述电容调整区的长边的尺寸,所述第二长度为所述触控感应区的长边的尺寸,所述第一宽度为所述电容调整区的短边的尺寸,所述第二宽度为所述触控感应区的短边的尺寸。
  5. 根据权利要求4所述的触控面板,其中,与所述电容调整区的边相邻的所述触控感应区的边距离所述电容调整区的对应边的尺寸大于或等于50μm;所述第一宽度的范围为150μm~300μm。
  6. 根据权利要求2所述的触控面板,其中,所述无效电极的形状包括矩形、三角形、正六边形以及圆形中的至少一种。
  7. 根据权利要求1所述的触控面板,其中,所述电容调整区位于所述触控感应区的边缘。
  8. 根据权利要求1所述的触控面板,其中,所述触控面板为互容型触控面板,所述触控电极包括第一电极和第二电极;所述第一电极包括所述触控感应区和所述电容调整区;和所述第二电极包括所述触控感应区和所述电容调整区。
  9. 根据权利要求1所述的触控面板,其中,所述触控面板为互容型触控面板,所述触控电极包括第一电极和第二电极;所述第一电极包括所述触控感应 区和所述电容调整区;或所述第二电极包括所述触控感应区和所述电容调整区。
  10. 根据权利要求1所述的触控面板,其中,所述电容调整区镂空设置。
  11. 根据权利要求1所述的触控面板,其中,所述电容调整区用绝缘层填充。
  12. 根据权利要求1所述的触控面板,其中,所述触控面板为自容型触控面板。
  13. 根据权利要求1所述的触控面板,其中,所述电容调整区的形状与所述触控电极1的形状相同或不同。
  14. 根据权利要求1所述的触控面板,其中,所述触控感应区包括至少两个触控感应分区,所述电容调整区包括至少两个电容调整分区;每个所述触控感应分区对应设置有至少一个所述电容调整分区。
  15. 一种触控显示装置,包括层叠设置的显示面板以及权利要求1至14任一所述的触控面板。
  16. 根据权利要求15所述的触控显示装置,还包括透明盖板,所述透明盖板设置于所述触控面板远离所述显示面板的一侧。
PCT/CN2021/115200 2020-11-13 2021-08-30 一种触控面板及触控显示装置 WO2022100207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/168,809 US20230195259A1 (en) 2020-11-13 2023-02-14 Touch panel and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011270175.6A CN112328115A (zh) 2020-11-13 2020-11-13 一种触控面板及触控显示装置
CN202011270175.6 2020-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/168,809 Continuation US20230195259A1 (en) 2020-11-13 2023-02-14 Touch panel and touch display device

Publications (1)

Publication Number Publication Date
WO2022100207A1 true WO2022100207A1 (zh) 2022-05-19

Family

ID=74317541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115200 WO2022100207A1 (zh) 2020-11-13 2021-08-30 一种触控面板及触控显示装置

Country Status (3)

Country Link
US (1) US20230195259A1 (zh)
CN (1) CN112328115A (zh)
WO (1) WO2022100207A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112328115A (zh) * 2020-11-13 2021-02-05 昆山国显光电有限公司 一种触控面板及触控显示装置
CN112817487B (zh) * 2021-02-26 2022-08-02 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108964A1 (en) * 2014-07-02 2017-04-20 Japan Aviation Electronics Industry, Limited Touch panel having inconspicuous electrodes
CN108646952A (zh) * 2018-03-29 2018-10-12 上海天马微电子有限公司 触控显示面板和触控显示装置
CN109766024A (zh) * 2019-01-11 2019-05-17 京东方科技集团股份有限公司 一种触控面板及显示装置
CN111258462A (zh) * 2020-01-09 2020-06-09 京东方科技集团股份有限公司 一种触控面板及显示装置
CN112328115A (zh) * 2020-11-13 2021-02-05 昆山国显光电有限公司 一种触控面板及触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108964A1 (en) * 2014-07-02 2017-04-20 Japan Aviation Electronics Industry, Limited Touch panel having inconspicuous electrodes
CN108646952A (zh) * 2018-03-29 2018-10-12 上海天马微电子有限公司 触控显示面板和触控显示装置
CN109766024A (zh) * 2019-01-11 2019-05-17 京东方科技集团股份有限公司 一种触控面板及显示装置
CN111258462A (zh) * 2020-01-09 2020-06-09 京东方科技集团股份有限公司 一种触控面板及显示装置
CN112328115A (zh) * 2020-11-13 2021-02-05 昆山国显光电有限公司 一种触控面板及触控显示装置

Also Published As

Publication number Publication date
CN112328115A (zh) 2021-02-05
US20230195259A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2022100207A1 (zh) 一种触控面板及触控显示装置
US10473964B2 (en) Touch display panel and method for manufacturing the same
US10521059B2 (en) Touch panel, mutual capacitive touch screen, and touch display device
WO2017049674A1 (zh) 一种内嵌触摸液晶面板及其阵列基板
WO2016045240A1 (zh) 触控显示面板及其制作方法、驱动方法、触控显示装置
US9671909B2 (en) Mutual capacitance one glass solution touch panel and manufacture method thereof
WO2016192121A1 (zh) 自电容式内嵌触摸屏及其制备方法、液晶显示器
KR20120007716U (ko) 일종 정전용량식 터치 센서와 터치 감지 장치 및 터치 단말
CN111475051B (zh) 显示面板及显示装置
US9817532B2 (en) Touch panel and display device
WO2019105051A1 (zh) 一种触控显示面板及其制备方法、触控显示装置
US9298330B2 (en) Capacitive touch panel having complementarily matching adjacent electrode units and display device including the capacitive touch panel
TW201439829A (zh) 觸控面板
TW201342442A (zh) 觸控面板
WO2017219794A1 (zh) 一种触控面板及其制作方法、触控装置
US9626047B2 (en) Capacitive touch unit and capacitive touch screen
CN104407466A (zh) 一种显示基板、显示面板和显示装置
CN104049403A (zh) 触控彩膜基板及其制作方法、显示面板和显示装置
US20180267646A1 (en) Touch screen and display device containing the same
WO2013037294A1 (zh) 内嵌电容式触控面板及其制备方法
US11068113B2 (en) Touch electrode and touch display device
WO2020010881A1 (zh) 触控模组、其制备方法及触控显示装置
WO2017117981A1 (zh) 触控基板及其制作方法、触控装置
KR20160012690A (ko) 정전용량방식의 터치 패널
US9733771B2 (en) Touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890736

Country of ref document: EP

Kind code of ref document: A1